

বিদ্যাসাগর বিশ্ববিদ্যালয়

VIDYASAGAR UNIVERSITY

BCA

1st Semester Examination 2021

DIGITAL ELECTRONICS

PAPER-1104

Full Marks: 70

Time: 3 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group - A

Answer any four questions.

4×15

- 1. (a) Implement XOR logic gate using NOR Gates.
 - (b) Prove that:

$$AB + C(\overline{AB + AC}) = AB$$

(c) Implement $f(A,B,C) = \sum_{m} (0,2,4,6,7)$ using 4 : 1 multiplexer.

4+4+7

2. (a) Simplify the following expression using K-map method and implement the same using logic gates :

$$f = \sum (0,2,5,7,8,10,13,15)$$

- (b) Minimize the following Boolean expresions using Boolean laws.
 - (i) $(A + B) (A + \bar{B})$

(ii) ABC +
$$A\bar{B}C$$
 + $AB\bar{C}$ (5+5)+5

- 3. (a) What is encoder?
 - (b) Design a 8 X 3 Encoder and explain its operation with a truth table.
 - (c) What is parity generator? Design and explain 8 bit parity generator circuit. 2+6+7
- 4. (a) What is flip-flop? Compare level clocking and edge triggering.
 - (b) Design and explain a D-flipflop.
 - (c) What is the advantage and disadvantage of D-flip-flop? 5+6+4
- 5. (a) Design and explain a 4 bit ripple up counter.
 - (b) Design a Gray to Binary code converter.
 - (c) What is shift-register? 6+7+2

6.	Write short notes on any three of the following:	3×5
	(a) Digital comparator.	
	(b) Universal gates.	
	(c) MOD-10 counter.	
	(d) J-K master slave flip-flop.	
	(e) Full adder.	
7.	(a) Design MOD-7 counter by D-flip flop.	
	(b) Implement J-K flip flop using SR flip flop.	8+7
8.	(a) Explain bidirectional shift register.	
	(b) Design a 1×16 decoder using 1×4 decoders.	8+7
Group – B		
	Answer any one question.	1×10
9.	(a) State associative and distributive low.	
	(b) Distinguish between sequential and combinational circuit.	
	(c) What is prime implicant?	4+4+2
10	(a) Define race around condition.	
	(b) Compare between flipflop and latch.	

- (c) What is parity checker?
- (d) What is gray code?

2+4+2+2

Jidyasakat Unitueksika

C/21/BCA/1st Sem/1104