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1. Answer any five questions : 2×5=10

(a) Let X be any set and R be the power set of X. Does (R, + ,·) form a ring where

A B A B    and ·A B A B   for all ,A B R .

(b) Extend S = {(1,1,0), (1,1,1)} to a basis of the vector space 3 over .

(c) Find the total number of units in the ring M2 (Z3), with usual notations.

(d) Let V be a vector space over the field F and W1, W2 be two subspaces of V. Is

1 2W W  a subspace of V ?

(e) In the ring  2M   of all 2 × 2 matrices over , check whether the set

  0 | ,0
a a bb   forms an ideal or not.

P.T.O.



(f) Determine the linear operator 3 3:T    over such that T sends the vectors

(1,0,0), (0,1,0), (0,0,1) to (0,1,0), (0,0,1), (1,0,0), respectively.

(g) Show that the mapping  2: 2f M  (where  2M   denotes the ring of all 2

× 2 real matrices) defined by    22 a bf a b b a   is a homomorphism of rings.

(h) Give an example of a linear operator T on a vector space V such that ker T = Im T.

2. Answer any four questions : 5×4=20

(a) Let I denote the set of all polynomials in  x  with constant term of the form

 4k k . Show that I is an ideal of  x . Is it a prime ideal? Is it a maximal

ideal? Give proper justification in support of your answer. 2+2+1=5

(b) Let V be a vector space over the field F and  1 2, ,......, n    be a basis for V. Let

V  be a non-null vector such that 1 1 2 2 .... n nc c c         for some

1 2, ,......, nc c c F  where 0kc   for some 1 k n  . Then show that

 1 2 1 1, ,....., , , ,....,k k n        is also a basis for V. 5

(c) Let (F, + , .) be a field and  0u F  . Define multiplication × in F by a×b=a.u.b

for ,a b F . Prove that (F, +, ×) is a field.

(d) Find a non-identity linear transformation 3 3:T    such that the  T W W

where   3, , | 0W x y z x y z     .

(e) Let R be a ring and S be a non-empty subset of R. Show that

 | 0 for allM a R ax x S     is a left ideal of R. Give an example to show that

M need not be always an ideal of R. 2+3=5

(f) Let 3 2:T    be a linear transformation defined by    , , , 2T a b c a b c a  

for all   3, ,a b c  . Find the matrix representation of T relative to the pair of bases

      1,0, 1 , 1,1,1 , 1,0,0B    and     ' 0,1 , 1,0B  .
P.T.O.
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3. Answer any three questions : 10×3=30

(a) (i) Let R be the ring of all continuous function from  to . Show that

  | 0 0A f R f    is a maximal ideal of R.

(ii) Check whether the rings  i  and 2 
   is isomorphic.

(iii) Let V be a real vector space with three subspaces P, Q, R satisfying

V P Q R   . Prove that at least one of P, Q, R must be V itself.

3+3+4=10

(b) (i) Let I and J be two ideals of a ring R. Find the smallest ideal of R containing

both I and J.

(ii) Give an example to show that quotient ring of an integral domain is not

always an integral domain.

(iii) The matrix of a linear operator 3 3:T    with respect to the ordered

basis       1,1,1 , 1, 1,1 , 1,1, 1B      is 
1 2 2
2 1 3
3 3 1

A
 
 
 
 

. Find the matrix

of T with respect to the ordered basis       1 0,1,1 , 1,0,1 , 1,1,0B  .

3+2+5=10

(c) (i) Let S = {
a
b
 | gcd (a, b) = 1 and 3 does not divide b}. Show that S is a

ring under usual addition and multiplication of rational numbers. Also

prove that M = {
a S
b
 | 3 divides a} is an ideal of S and the quotient ring

S/M is a field.

(ii) Let V, W be two finite dimensional vector spaces over the same field

, :F T V W  be a linear transformation. Then prove that following are

equivalent : (A) T carries each linearly independent subset of V to a

linearly independent subset of W. (B)  kerT   . (2+2+2)+4=10

(d) (i) Prove that the ring Zn is s principal ideal ring.

P.T.O.
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(ii) Find all non-trivial ring homomorphisms from the ring 12 to the ring 28.

(iii) Let U, V, W be three finite dimensional vector spaces over the field

, :F T V W  be a linear transformation and :S W U  be an

isomorphism. Then prove that (A) dim ker T = dim ker ST and (B) dim

ImT = dim Im ST. 3+3+4=10

(e) (i) In a commutative ring R with unity, then show that an ideal P is a prime

ideal if and only if the quotient ring 
R
P  is an integral domain.

(ii) Give an example of an infinite ring with finite characteristic.

(iii) Let U and W be two subspaces of a vector space V over the field F. Prove

that U W  is a subspace of V if and only if either U W  or W U .

4+2+4=10

(   4   )




