

বিদ্যাসাগর বিশ্ববিদ্যালয় VIDYASAGAR UNIVERSITY

Question Paper

B.Sc. Honours Examinations 2022

(Under CBCS Pattern)

Semester - IV

Subject: MATHEMATICS

Paper : C 10 - T

Ring Theory and Linear Algebra - I

Full Marks: 60
Time: 3 Hours

Candidates are required to give their answers in their own words as far as practicable.

The figures in the margin indicate full marks.

1. Answer any *five* questions:

 $2 \times 5 = 10$

- (a) Let X be any set and R be the power set of X. Does $(R, +, \cdot)$ form a ring where $A + B = A \cup B$ and $A \cdot B = A \cap B$ for all $A, B \in R$.
- (b) Extend $S = \{(1,1,0), (1,1,1)\}$ to a basis of the vector space \mathbb{R}^3 over \mathbb{R} .
- (c) Find the total number of units in the ring $M_2(Z_3)$, with usual notations.
- (d) Let V be a vector space over the field F and W_1 , W_2 be two subspaces of V. Is $W_1 \cup W_2$ a subspace of V?
- (e) In the ring $M_2(\mathbb{Z})$ of all 2×2 matrices over \mathbb{Z} , check whether the set $\left\{\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix} | \ a, b \in \mathbb{Z} \right\} \text{ forms an ideal or not.}$ P.T.O.

- (f) Determine the linear operator $T: \mathbb{R}^3 \to \mathbb{R}^3$ over \mathbb{R} such that T sends the vectors (1,0,0), (0,1,0), (0,0,1) to (0,1,0), (0,0,1), (1,0,0), respectively.
- (g) Show that the mapping $f: \mathbb{Z}\sqrt{2} \to M_2(\mathbb{R})$ (where $M_2(\mathbb{R})$ denotes the ring of all 2 \times 2 real matrices) defined by $f(a+b\sqrt{2})=\begin{pmatrix} a & 2b \\ b & a \end{pmatrix}$ is a homomorphism of rings.
- (h) Give an example of a linear operator T on a vector space V such that ker T = Im T.
- 2. Answer any *four* questions :

 $5 \times 4 = 20$

- (a) Let I denote the set of all polynomials in $\mathbb{Z}[x]$ with constant term of the form $4k(k \in \mathbb{Z})$. Show that I is an ideal of $\mathbb{Z}[x]$. Is it a prime ideal? Is it a maximal ideal? Give proper justification in support of your answer. 2+2+1=5
- (b) Let V be a vector space over the field F and $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ be a basis for V. Let $\beta \in V$ be a non-null vector such that $\beta = c_1\alpha_1 + c_2\alpha_2 + + c_n\alpha_n$ for some $c_1, c_2,, c_n \in F$ where $c_k \neq 0$ for some $1 \leq k \leq n$. Then show that $\{\alpha_1, \alpha_2,, \alpha_{k-1}, \beta, \alpha_{k+1},, \alpha_n\}$ is also a basis for V.
- (c) Let (F, +, .) be a field and $u \ne 0 \in F$. Define multiplication \times in F by $a \times b = a.u.b$ for $a, b \in F$. Prove that $(F, +, \times)$ is a field.
- (d) Find a non-identity linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ such that the T(W) = W where $W = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$.
- (e) Let R be a ring and S be a non-empty subset of R. Show that $M = \{a \in R \mid ax = 0 \text{ for all } x \in S\}$ is a left ideal of R. Give an example to show that M need not be always an ideal of R. 2+3=5
- (f) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation defined by T(a,b,c) = (a+b,2c-a) for all $(a,b,c) \in \mathbb{R}^3$. Find the matrix representation of T relative to the pair of bases $B = \{(1,0,-1),(1,1,1),(1,0,0)\}$ and $B' = \{(0,1),(1,0)\}$.

3. Answer any *three* questions :

 $10 \times 3 = 30$

- (a) (i) Let R be the ring of all continuous function from \mathbb{R} to \mathbb{R} . Show that $A = \{ f \in R \mid f(0) = 0 \}$ is a maximal ideal of R.
 - (ii) Check whether the rings $\mathbb{Z}[i]$ and $\mathbb{Z}[\sqrt{2}]$ is isomorphic.
 - (iii) Let V be a real vector space with three subspaces P, Q, R satisfying $V = P \cup Q \cup R$. Prove that at least one of P, Q, R must be V itself.

3+3+4=10

- (b) (i) Let I and J be two ideals of a ring R. Find the smallest ideal of R containing both I and J.
 - (ii) Give an example to show that quotient ring of an integral domain is not always an integral domain.
 - (iii) The matrix of a linear operator $T: \mathbb{R}^3 \to \mathbb{R}^3$ with respect to the ordered basis $B = \{(-1,1,1), (1,-1,1), (1,1,-1)\}$ is $A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 3 \\ 3 & 3 & 1 \end{pmatrix}$. Find the matrix of T with respect to the ordered basis $B_1 = \{(0,1,1), (1,0,1), (1,1,0)\}$.

3+2+5=10

- (c) (i) Let $S = \{\frac{a}{b} \in \mathbb{Q} \mid \gcd(a, b) = 1 \text{ and } 3 \text{ does not divide } b\}$. Show that S is a ring under usual addition and multiplication of rational numbers. Also prove that $M = \{\frac{a}{b} \in S \mid 3 \text{ divides } a\}$ is an ideal of S and the quotient ring S/M is a field.
 - (ii) Let V, W be two finite dimensional vector spaces over the same field $F, T: V \to W$ be a linear transformation. Then prove that following are equivalent: (A) T carries each linearly independent subset of V to a linearly independent subset of W. (B) $\ker T = \{\theta\}$. (2+2+2)+4=10
- (d) (i) Prove that the ring Z_n is s principal ideal ring.

- (ii) Find all non-trivial ring homomorphisms from the ring \mathbb{Z}_{12} to the ring $\mathbb{Z}_{28}.$
- (iii) Let U, V, W be three finite dimensional vector spaces over the field $F,T:V\to W$ be a linear transformation and $S:W\to U$ be an isomorphism. Then prove that (A) dim ker $T=\dim \ker ST$ and (B) dim $\operatorname{Im} T=\dim \operatorname{Im} ST$.
- (e) (i) In a commutative ring R with unity, then show that an ideal P is a prime ideal if and only if the quotient ring $\frac{R}{P}$ is an integral domain.
 - (ii) Give an example of an infinite ring with finite characteristic.
 - (iii) Let U and W be two subspaces of a vector space V over the field F. Prove that $U \cup W$ is a subspace of V if and only if either $U \subseteq W$ or $W \subseteq U$.

4+2+4=10