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preface

SCOPE

In this book we address ourselves to the full spectrum of systems programiming
endeavors, including the use and implementation of assemblers, macros, louders,
compilers, and operating systems. We present each of these components in
detail, exposing the pertinent design issues. The issues are discussed withiu the
context of modern computer languages and advanced operating systems; it is
recognized that in addition to the traditional compiler problem of syntax and
semantics, we now have storage allocation and accessing methods to contend
with, and that file systems, multiprocessing, and multiprogramming are now
commonplace in operating systems. To introduce the more formal aspects of
computer science, we have included a presentation of formal systems and thei:
application to programming languages.

The book is written as a text, with problems and exercises, with particuiar
emphasis on the problems and examples. We have assumed that the reader has had
experience in some high level language.

An attempt has been made to keep the book as machine-independent as
possible; the text has, in fact, been used in conjunction with severzl different
types of machines. However, to add substance to the book, we have taken
specific examples from an IBM 360/370 type machine and, in our discussion
of compilers, from languages with features like those exhibited in PL/I.

The book covers material contained in six courses of Curriculum (3 as
described by the Association of Computing Machinery (ACM) Curriculum Cem-
mittee in Computer Science.! The basic course, Computer Organization: and

1As documented in the Communications of the Association of Computing Maclhinzry
(CACM), vol. 11, ne. 3, p. 151 (March 1968).
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Programming (B2), is covered in Chapters 1 through 5; Programming Languages
(12) znd Compiler Construction (15), are covered in Chapters 6, 7, and 8,
Systems Programming (14); Advanced Computer Organization (A2); ana Large
Scale Information Systems (A8) are covered in Chapter 9.

Y

MAIN USES

We feel that the book has three major uses: (1) as an undergraduate text in a
one- or two-semester course on systems programming; (2) as a book for pro-
fessionals; and (3) as a reference for graduate students.

More specifically, the book has been used to meet the needs of the following
types of courses:

1. A first course in the undergraduate computer science curriculum (fol-
lowing an introductory programming course, e.g, FORTRAN, PL/I).

. A general Institute service course for non-computer scientists.

. An advanced course in software.

. A software engineering course emphasizing practical issues.

An extensive review or introductory course for graduate students in

computer science.

bWk

At M.LT. the book is used in the undergraduate course 6.251, Digital
Computer Programming Systems. There is a tradition and excitement associated
with the course, and it is one of the most highly subscribed elective courses,
having as many as 350 students per semester. I am also told that it is one of the
most challenging. At M.I.T. the course is used to meet all of the above needs.

We have also used the material as a two-semester graduate course. In the first
semester we dealt with the topics of machine organization, assemblers, macros,
loaders, I/O programming, and operating systems (Chapter 1, 2, 3, 4, 5, and
parts of 9). In the second we discussed programming languages, design of com-
pilers, formal systems, and other aspects of operating systems not covered in
the first semester (Chapters 6, 7, 8, 9).

The course has been given at several industrial firms: Honeywell, U. S. Under-
water Systems Center, Martin Marietta, and others, where it focused mainly on
the design issues of these system components, and omitted the formal systems
aspects (Chapter 7).

This text was used to give an intensive course in programming at SESA in
France, and also for the sequence of computer courses included in a two-year
technical program at the Lowell School in Boston.

At Texas Tech University in Lubbock, Texas the programming course was
first taught by using the video tapes of the lectures at M.L.T., which were seni to
Texas for replay in the subsequent week. This method of transferring the course
proved to be effective, since the undergraduates in Texas took the same quizzes
and exams as did the M.L.T. students, and there was no appreciable difference in
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grades. Video tapes of the course are available, and may be obtained by
writing the author at M.L.T.

At M.LT. the machine used in conjunction with this course was the IBM
360/370 type computer. At U. S. Underwater Sound Laboratories a UNIVAC
1108 was employed, while at Honeywell various Honeywell machines were used.

It is helpful for students to have had experience with assembly language and
PL/1, though we have found that in many cases they have had neither. Some
students have been able to use Chapters 2 and 6 as an introduction to assembly
language and PL/I, especially in conjunction with reference manuals and
lectures.

If used by professionals or graduate students, the book is self-sufficient in that
there are enough details for 370 and PL/I to support the rest of the material.

In addition to discussing the traditional system components of assemblers and
macros, the book gives special emphasis to important features of systems pro-
gramming presently not covered in many texts—compilers, the advanced problems
of storage allocation, recursion, operating systems, and 1/Q programming.

The problems are designed to be expository and solutions are available in the
Teacher's Manual. Also included in the Teacher’s Manual are sample syllabuses,
quizzes, and helpful hints in presenting material.
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note to the student

This book does not presuppose extensive knowledge of assembly language
although students with some experience in this language will find the
material casier to approach. Chapter 2 contains basic information on assembly-
language programming, Chapter 6 on high level languages, PL/I in particular.
Students may wish to refer to additional sources on assembly language pro-
grammming and PL/L.

Chapters 8 and 9 (Compilers and Operating Systems) are long and dense.
(Entire courses have been built around the material in these chapters.) While
both these chapters, like all the others in the book, are logical entities, we have
divided them, for your convenience, into parts that are more manageable.

To be competent in any technical field, and particularly in one developing as
rapidly as that of computer science, it is important to be familiar with the
current literature. Chapter 10 contains references, Use them.

The book does presuppose familiarity with programming. The inexpérienced
reader should not therefore be discouraged if he finds the material difficult
because of its depth and density.

This material is basic to computer science, and we believe that the student
who explores it in depth will find it both relevant and exciting. [ know of no
other formal way of acquiring this material.

xwlil
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background

This book has two major objectives: to teach procedures for the design of soft.
ware systems and to provide a basis for judgement in the design of software. To
facilitate our task, we have taken specific examples from systems programs. We
discuss the design and implementation of the major system components.

What is systems programming? You may visualize a computer as some sort of
beast that obeys all commands, It has been said that computers are basically
people made out of metal or, conversely, people are computers made out of
flesh and blood. However, once we get close to computers, we see that they are
basically machines that follow very specific and primitive instructions.

In the early days of computers, people communicated with them by on and
off switches denoting primitive instructions. Soon people wanted to give more
complex instructions. For example, they wanted to be able tosay X =30+ Y,
given that ¥ = 10, what is X7 Present day computers cannot understand such
language without the aid of systems programs. Systems programs (e.g., com-
pilers, loaders, macro processors, operating systems) were developed to make
computers better adapted to the needs of their users. Further, people wanted
more assistance in the mechanics of preparing their programs.

Compilers are systems programs that accept people-like languages and translate
them into machine language. Loaders are systems programs that prepare machine
language programs for execution. Macro processors allow programmers to ase
abbreviations. Operating systems and file systems allow flexible storing and
retrieval of information (Fig. 1.1).

There are over 100,000 computers in use now in virtually every application.
The productivity of each computer is heavily dependent upon the effectiveness,
efficiency, and sophistication of the systems programs.

In this chapter we introduce some terminology and outline machine structure

and the basic tasks of an operating system.
1
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People
Application programming
Macro
Compilers Assemblers P -
. Searching
| Loaders Text editors | Debugging aids and sorting
!LU"D programs | File systems| Scheduler | Libraries m;ﬂneamm mag:;gﬁent

FIGURE 1.1 Foundations of systems programming

1.1 MACHINE STRUCTURE

We begin by sketching the general hardware organization of a computer system
(Fig. 1.2).
kS

Memory
110 110 e e |cPU CPU | o ®
processor processor
Teletype
Card
read/punch
Disk
or drum

FIGURE 12 General hardware organization of a computer system

Memory is the device where information is stored. Processors are the devices
that-operate on this information. One may view information as being stored in
the form of ones and zeros. Each one or zero is a separate binary digit called a
bit. Bits are typically grouped in units that are called words, characters, or bytes.
Memory locations are specified by addresses, where each address identifies a
specific bvte, word, or character,
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The contents of a word may be interpreted as data (values to be operated on)
or instructions (operations to be performed). A processor is a device that per-
forms a sequence of operations specified by instructions in memory. A program
(or procedure) is a sequence of instructions.

Memory may be thought of as mailboxes containing groups of ones and zeros.
Below we depict a series of memory locations whose addresses are 10,000
through 10,002.

Address Contents

10,000 0000 0000 0000 0001
10,001 0011 0000 0000 0000
10,002 0000 0000 0000 0100

An IBM 1130 processor treating location 10,001 as an instruction would inter-
pret its contents as a “halt™ instruction. Treating the same location as numerical
data, the processor would interpret its contents as the binary number 0011 0000
0000 0000 (decimal 12,288). Thus instructions and data share the same storage
medium,

Information in memory is coded into groups of bits that may be interpreted
as characters, instructions, or numbers. A code is a set of rules for interpreting
groups of bits, e.g., codes for representation of decimal digits (BCD), for char-
acters (EBCDIC, or ASCII), or for instructions (specific processor operation
codes). We have depicted two types of processors: Input/Output (1/0) processors
and Central Processing Units (CPUs). The I/O processors are concerned with the
transfer of data between memory and peripheral devices such as disks, drums,
printers, and typewriters. The CPUs are concerned with manipulations of data
stored in memory. The 1/O processors execute I/O instructions that are stored in
memory,; they are generally activated by a command from the CPU. Typically,
this consists of an “execute I/O" in#ruction whose argument is the address of
the start of the 1/O program. The CPU interprets this instruction and passes the
argument to the I/O processor (commonly called 1/O channels).

The I/O instruction set may be entirely different from that of the CPU and
may be executed asynchronously (simultaneously) with CPU operation. Asyn-
chronous operation of 1/O channels and CPUs was one of the earliest forms of
multiprocessing. Multiprocessing means having more than one processor oper-
ating on the same memory simultaneously,

Since instructions, like data, are stored in memory and can be reated as data,
by changing the bit configuration of an instruction — adding a numter to it — we
may change it to 2 different instruction. Procedures that modify themselves are
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called impure procedures. Writing such procedures is poor programming practice.
Other programmers find them difficult to read, and moreover they cannot be
shared by multiple processors. Each processor executing an impure procedure
modifies its contents. Another processor attempting to execute the same pro-
cedure may encounter dilferent instructions or data. Thus, impure procedures
are not readily reusable. A pure procedure does not modify itself. To ensura that
the instructions are the same each time a program is used, pure procedure.
(re-c2ntrant code) are employed.

1.2 EVOLUTION OF THE COMPONENTS OF A PROGRAMMING SYSTEM

1.2.1 Assemblers

Let us review some aspects of the development of ti-e components of a program-
ming system.

At one time, the computer programmer had at his disposal a basic machine
that interpreted, through hardware, certain fundamental instructions. He would
program this computer by writing a series of ones and zeros (machine language),
place them into the memory of the machine, and press a button, whereupon the
computer would start to interpret them as instructions.

Programmers found it difficult to write or read programs in machine language.
In their quest for a more convenient language they began to use a mnemonic
(symbol) for each machine instruction, which they would subsequently translate
into machine language. Such a mnemonic machine language is now called an
assembly language. Programs known as assemblers were written to automate the
translation of assembly language into machine language. The input to an as-
sembler program is called the source program, the output is a machine languag?
translation (ebject program).

1.2.2 Loaders

Once the assembler produces an object program, that program must be placed
into memory and executed. It is the purpose of the loader to assure that object
nrograms are r.!laced in memory in an executable form.

The assembler could place the object program directly in memory and transfer
conirol to it, threby ciusing the machine language program to be executed.



BACKGROUND 5

However, this would waste core! by leaving the assembler in memory while the
user’s program was being executed. Also the programmer would have to retrans-
late his program with each execution, thus wasting translation time. To overcome
the problems of wasted translation time and wasted memory, systems program-
mers developed another component, called the loader.

A loader is a program that places programs into memory and prepares them for
execution. In a simple loading scheme, the assembler outputs the machine
language translation of a program on a secondary storage device and a loader is
placed in core. The loader places into memory the machine language version of
the user’s program and transfers control to it. Since the loader program is much
smaller than the assembler, this makes more core available to the user’s program.

The realization that many users were writing virtually the same programs led
to the development of *“‘ready-made” programs (packages). These packages were
written by the computer manufacturers or the users. As the programmer became
more sophisticated, he wanted to mix and combine ready-made programs with
his own. In response to this demand, a facility was provided whereby the user
could write a main program that used several other programs or subroutines. A
subroutine is a body of computer instructions designed to be used by other
routines to accomplish a task. There are two types of subroutines: closed and
open subroutines. An open subroutine or macro definition is one whose code is
inserted into the main program (fiow continues). Thus if the same open sub-
routine were called four times, it would appear in four different places in the
calling program. A closed subroutine can be stored outside the main routine,
and control transfers to the subroutine. Associated with the closed subroutine
are two tasks the main program must perform: transfer of control and transfer
of data.

Initially, closed subroutines had to be loaded into memory at a specific ad-
dress. For example, if a user wished to employ a square root subroutine, he
would have to write his main program so that it would transfer to the location
assigned to the square root routine (SQRT). His program and the subroutine
would be assembled together. If a second user wished to use the same subroutine,
he also would assemble it along with his own program, and the complete machine
language translation would be loaded into memory. An example of core alloca-
tion under this inflexible loading scheme is depicted in Figure 1.3, where core is
depicted as a linear array of locations with the program areas shaded.

IMain memory is typically implemented as magnetic cores; hence me wory and core are used
synonymously.
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Locations

Rt A e o SORTE:

F;.r.agram 2324

: Prngrafn"l e

FIGURE 1.3 Example core allocation for absolute loading

Note that program 1 has “holes” in core. Program 2 overlays and thereby
destroys part of the SQRT subroutine.

Programmers wished to use subroutines that referred to each other symbolical-
ly and did not want to be concerned with the address of parts of their programs.
They expected the computer system to assign locations to their subroutines and
to substitute addresses for their symbolic references.

Systems programmers noted that it would be more efficient if subroutines
could be translated into an object form that the loader could “relocate™ directly
behind the user’s program. The task of adjusting programs so they may be placed
in arbitrary core locations is called relocation. Relocating loaders perform four
functions:

1. Allocate space in memory for the programs (allocation)

2. Resolve symbolic references between object decks (linking)

3. Adjust all address-dependent locations, such as address constants, to cor-
respond to the allocated space (relocation)

4. Physically place the machine instructions and data into memory (loading).

The various types of loaders that we will discuss (*compile-and-go,” absolute,
relocating, direct-linking, dynamic-loading, and dynamic-linking) differ primarily
in the manner in which these four basic functions are accomplished.

The period of execution of a user’s program- is called execution time. The
period of translating a user’s source program is called assembly or compile time.
Load time refers to the period of loading and preparing an object program for
execution.

1.2.3 Macros

To reiieve programmers of the need to repeat identical parts of their program,
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operating systems provide a macro processing facility, which permits the pro-
arammer to define an abbreviation for a part of his program and to use the ab-
breviation in his program. The macro processor treats the identical parts of the
program defined by the abbreviation as a macro definition and saves the defini-
tion. The macro processor substitutes the definition for all occurrences of the
abbreviation (macro call) in the program.

In addition to helping programmers abbreviate their programs, macro facilities
have been used as general text handlers and for specializing operating systems to
individual computer installations. In specializing operating systems (systems
generation), the entire operating system is written as a series of macro defini-
tions. To specialize the operating system, a series of macro calls are written.
These are processed by the macro processor by substituting the appropriate
Jefinitions, thereby producing all the programs for an operating system.

1.2.4 Compilers

As the user’s problems became more categorized into areas such as scientific,
business, and statistical problems, specialized languages (high level languages)
were developed that allowed the user to express certain problems concisely and
easily. These high level languages — examples are FORTRAN, COBOL, ALGOL,
and PL/l — are processed by compilers and interpreters. A compiler is a program
that accepts a program written in a high level language and produces an object
program. An interpreter is a program that appears to execute a source program
as if it were machine language. The same name (FORTRAN, COBOL, etc.) is
often used to designate both a compiler and its associated language.

Modern compilers must be able to provide the complex facilities that pro-
grammers are now demanding. The compiler must furnish complex accessing
methods for pointer variables and data structures used in languages like PL/I,
COBOL, and ALGOL 68. Modern compilers must interact closely with the oper-
ating system to handle statements concerning the hardware interrupts of a com-
puter (e.g. conditional statements in PL/I).

1.2.5 Formal Systems

A formal system is an uninterpreted calculus. It consists of an alphabet, a set of
words called axioms, and a finite set of relations called rules of inference. Ex-
amples of formal systems are: set theory, boolean algebra, Post systems, and
Backus Normal Form. Formal systems are becoming important in the design,
implementation, and study of programming languages. Specifically, they can be
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used to specify the syntax (form) and the semantics (meaning) of programming
languages. They have been used in syntax-directed compilation, compiler verifica-
tion, and complexity studies of languages.

1.3 EVOLUTION OF OPERATING SYSTEMS

Just a few years ago a FORTRAN programmer would approach the computer
with his source deck in his left hand and a green deck of cards that would be a

FORTRAN compiler in his right hand. He would:

1. Place the FORTRAN compiler (green deck) in the card hopper and press
the load button. The computer would load the FORTRAN compiler.

2. Place his source language deck into the card hopper. The FORTRAN com-
piler would proceed to translate it into a machine language deck, which
was punched onto red cards.

3. Reach into the card library for a pink deck of cards marked “loader,” and
place them in the card hopper. The computer would load the loader into
its memory.

4. Place his newly translated object deck in the card hopper. The loader
would load it into the machine.

S. Place in the card hopper the decks of any subroutines which his program
called. The loader would load these subroutines.

6. Finally, the loader would transfer execution to the user’s program, which
might require the reading of data cards.

This system of multicolored decks was somewhat unsatisfactory, and there was
strong motivation for moving to a more flexible system. One reason was that
valuable computer time was being wasted as the machine stood idle during card-
handling activities and between jobs. (A job is a unit of specified work, e.g., an
assembly of a program.) To eliminate this waste, the facility to barch jobs was
provided, permitting a number of jobs to be placed together into the card hopper
to be read. A batch operating system performed the task of batching jobs. For
example the batch system would perform steps 1 through 6 above retrieving the
FORTRAN compiler and loader from secondary storage.

As the demands for computer time, memory, devices, and files increased, the
efficient management of these resources became more critical. In Chapter 9 we
discuss various methods of managing them. These resources are valuable, and in-
efficient management of them can be costly. The management of each resource
has evolved as the cost and sophistication of its use increased.

In simple batched systems, the memory resource was allocated totally to a
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single program.-Thus, if a program did not need the entire memory, a portion of
that resource was wasted. Multiprogramming operatine 5y stems with partitioned
core memory were developed to circumvent this problem. Multiprogramming al-
lows multiple programs to reside in separate areas of core at the same time. Pro-
grams were given a fixed portion of core (Multiprogramming with Fixed Tasks
(MFT)) or a varying-size portion of core (Multiprogramming with Varigble Tasks
(MVT)).

Often in such partitioned memory systems some portion could not be used
since it was too small to contain a program. The problem of “holes” or unused
portions of core is called fragmentation. Fragmentation has been minimized by
thie technique of relocatable partitions (Burmu;hs 6500) and by paging (XDS
940, HIS 645). Relocatable partitioned core allows the unused portions to be
condensed into one continuous part of core.

Paging is a method of memory allocation by which the program is subdivided
into equal portions or pages, and core is subdivided into equal portions or blocks.
The pages are loaded into blocks.

There are two paging techniques: simple and demand. In simple paging all the
pages of a program must be in core for execution. In demand paging a progrem
can be executed without all pages being in core, i.e., pages are fetched into co1e
as they are needed (demanded).

The reader will recall from section 1.1 that a system with several processors is
termed a multiprocessing system. The traffic controller coordinates the proces-
sors and the processes. The resource of processor time is allocated by a program
known as the scheduler. The processor concerned with 1/0 is referred to as the
I/0 processor, and programming this processor is called I/0 programming.

The resource of files of information is allocated by the file system. A segment
is a group of information that a user wishes to treat as an entity, Files are seg-
ments. There are two types of files: (1) directories and (2) data or programs.
Directories contain the locations of other files. In a hierarchical file system,
directories may point to other directories, which in turn may point to directories
or files.

Time-sharing is one method of allocating processor time. It is typically char-
acterized by interactive processing and time-slicing of the CPU’s time to allow
quick response to each user.

A virtual memory (name space, address space) consists of those addresses that
may be generated by a processor during execution of a computation. The mem-
ory space consists of the set of addresses that correspond to physical memory
locations. The technique of segmentation provides a large nam .pace and a good
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protection mechanism. Protection and sharing are methods of allowing controlled
access to segments.

1.4 OPERATING SYSTEM USER VIEWPOINT: FUNCTIONS

From the user’s point of view, the purpose of an operating system (monitor) is
to assist him in the mechanics of solving problems. Specifically, the following
functions are performed by the system:

1. Job sequencing, scheduling, and traffic controller operation

2. Inputfoutput programming

3. Protecting itself from the user; protecting the user from other users
4. Secondary storage management

5. Error handling

Consider the situation in which one user has a job that takes four hours, and
another user has a job that takes four seconds. If both jobs were submitted
simultaneously, it would seem to be more appropriate for the four-second user
to have his run go first. Based on considerations such as this, job scheduling is
automatically performed by the operating system. If it is possible to do input
and output while simultancously executing a program, as is the case with many
computer systems, all these functions are scheduled by the traffic controller.

As we have said, the IO channel may be thought of as a separate computer
with its own specialized set of instructions. Most users do not want to learn how
to program it (in many cases quite a complicated task). The user would like to
simply say in his program, “Read,” causing the monitor system to supply a pro-
gram to the 1/O channel for execution. Such a facility is provided by operating
systems. In many cases the program supplied to the 1/O channel consists of a
sequence of closely interwoven interrupt routines that handle the situation in
this way: “Hey, Mr. 1/O Channel, did you receive that character? *Yes, I re-
ceived it.” “Are you sure you received it?” “Yes, I'm sure.” “Okay, I'll send
another one.” “Fine, send it.” “You're sure you want me to send another one?”
“Send it!”

An extremely important function of an operating system is to protect the user
from being hurt, either maliciously or accidentally, by other users; that is, pro-
tect him when other users are executing or changing their programs, files, or data
bases. The operating system must insure inviolability. As well as protecting
users from each other, the operating system must also protect itself from users
who, whether maliciously or accidentally, might “crash” the system.

Students are great challengers of protection mechanisms. When the systems
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programming course is given at M.I.T., we find that due to the large number of
students participating it is very difficult to personally grade every program run
on the machine problems. So for the very simple problems — certainly the first
problem which may be to count the number of A’s in a register and leave
the answer in another register — we have written a grading program that is in-
cluded as part of the operating system. The grading program calls the student’s
program and transfers control to it, In this simple problem the student’s program
processes the contents of the register, leaves his answer in another register, and
returns to the grading program. The latter checks to find out if the correct
number has been left in the answer register. Afterwards, the grading program
prints out a listing of all the students in the class and their grades. For example:

VITA KOHN - CORRECT
RACHEL BUXBAUM —— CORRECT
JOE LEVIN — INCORRECT
LOFTI ZADEH -— CORRECT

On last year's run, the computer listing began as follows:

JAMES ARCHER — CORRECT
ED MCCARTHY —— CORRECT
ELLEN NANGLE — INCORRECT
JOHN SCHWARTZ — MAYBE

(We are not sure how John Schwartz did this; we gave him an A in the course.)

Secondary storage management is a task performed by an operating system in
conjunction with the use of disks, tapes, and other secondary storage for a user’s
programs and data.

An operating system must respond to errors. For example, if the programmer
should overflow a register, it is not economical for the computer to simply stop
and wait for an operator to intervene. When an error occurs, the operating system
must take appropriate action.

1.5 OPERATING SYSTEM USER VIEWPOINT:
BATCH CONTROL LANGUAGE

Many users view an operating system only through the batch system control
cards by which they must preface their programs. In this section we will discuss
a simple monitor system and the control cards associated with it. Other more
complex monitors are discussed in Chapter 9.
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Monitor is a term that refers to the control programs of an operating system.
Typically, in a batch system the jobs are stacked in a card reader, and the
monitor system sequentially processes each job. A job may consist of several
separate programs to be executed sequentially, each individual program being
called a job step. In a batch monitor system the user communicates with the
system by way of a control language. In a simple batch monitor system w2 have
two classes of control cards: execution cards and definition cards. For example,
an execution card may be in the following format:

) step name EXEC name of program to be executed, Argument 1, Argument 2
The job control card, a definition card, may take on the following format:

/f job name JOB {User name, identification, expected time use, lines to
be printed out, expected number of cards to be printed
out,

Usually there is an end-of-file card, whose format might consist of /*, signifying
the termination of a collection of data. Let us take the following example of a
FORTRAN job.

//EXAMPLE JOB DONOVAN, T168,1,100,0
//STEP1 EXEC FORTRAN, NOPUNCH
READ 9100,N
DO100I=1,N
12=]*1
13=1*I*I
100 PRINT 9100,1,12,13
9100 FORMAT (3110)

END
.\"'
I{STEP2 EXEC LOAD
I'I
//STEP3 EXEC OBJECT
13
f'

The first control card is an example of a definition card. We have defined the
user to be Donovan. The system must set up an accounting file for the user,
noting that he expects to use one minute of time, to output a hundred lines of
output, and to punch no cards. The next control card, EXEC FORTRAN,
NOPUNCH, is an example of an execution card; that is, the system is to execute
the program FORTRAN, given one argument — NOPUNCH. This argument al-
lows the monitor system to perform more efficiently; since no cards are to be
punched, it need not utilize the punch routines. The data to the compiler is the
FORTPR.AN program shown, terminated by an end-of-filz card [*,

The next control card is another example of an execution card and in this
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case causes the execution of the loader. The program that has just been compiled
will be loaded, together with all the routines necessary for its execution, where-
upon the loader will “*bind™ the subroutines to the main program. This job step
is terminated by an end-of-file card. The EXEC OBJECT card is another execu-
tion card, causing the monitor system to execute the object program just com
piled. The data card, 10, is-input to the program and is followed by the end-of-
file card.

The simple loop shown in Figure 1.4 presents an overview of an implementa-
tion of a batch monitor system. The monitor system must read in the first card,
presumably a job card. In processing a job card, the monitor saves the user’s
name, account number, allotted time, card punch limit, and line print limit. If
the next control card happens to be an execution card, then the monitor will
load the corresponding program from secondary storage and process the job step
by transferring control to the executable program. If there is an error during
processing, the s'ystem notes the error and goes back to process the next job
step.

Start

Read first job card

l

Process job card

V4

Process control cards

Process job step Error = Féorf:r“

Mo error |
Y

i
End of joh?

No

Yes

FIGURE 1.4 Majn loop of a simple batch monitor system
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1.6 OPERATING SYSTEM USER VIEWPOINT: FACILITIES

For the applications-oriented user, the function of the operating system is to
provide facilities to help solve problems. The questions of scheduling or protec-
tion are of no interest to him; what he is concerned with is the available software.
The following facilities are typically provided by modern operating systems:

1. Assemblers

2. Compilers, such as FORTRAN, COBOL and PL/I

3. Subroutine libraries, such as SINE, COSINE, SQUARE ROOT

. Linkage editors and nrogram loaders that bind subroutines together and
prepare programs for execution

. Utility routines, such as SORT/MERGE and TAPE COPY

. Application packages, such as circuit analysis or simulation
Debugging facilities; such as program tracing and “‘core dumps™

. Data management and file processing

. Management of system hardware

.h

O o1k

Although this “facilities” aspect of an operating system may be of great
interest to the user, we feel that the answer to the question, “How many com-
pilers does that operating system have?” may tell more about the orientation of
the manufacturer’s marketing force than it does about the structure and ef-
fectiveness of the operating system.

1.7 SUMMARY
The major components of a programming system are:

1. Assembler

Input to an assembler is an assembly language program. Output is an object pro-
grain plus information that enables the loader to prepare the object program for
execution,

2. Macro Processor

A macro call is an abbreviation (or name) for some code. A macro definition is a
sequence of code that has a name (macro call). A macro processor is a progiam
that substitutes and specializes macro definitions for macro calls.

3. Loader

A loader is a routine that loads an object program and prepares it for execution.
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There are various loading schemes: absolute, relocating, and direct-linking. In
general, the loader must load, relocate, and link the object program.

4. Compilers

A compiler is a program that accepts a source program “in a high-level language”™
and produces a corresponding object program.

5. Operating Systems

An operating system is concerned with the allocation of resources and services,
such as memory, processors, devices, and information. The operating system
correspondingly includes programs to manage these resources, such as a traffic
controller, a scheduler, memory management module, 1/0 progrems, and a file
system.
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QUESTIONS
1. What is the difference between (processor, procedure); (procedure, pro-

4,

gram); (processor, I/O channel); (multiprocessing, multiprogramming); and
{(open subroutine, closed subroutine)?

Bits in memory may represent data or instructions. How does the proces-
sor “know™ whether a given location represents an instruction or a piece
of data?

Assume that you have available to you a 360-type computer and the fol-
lowing available input decks:

Deck A: A Basic Assembly Language (BAL) assembler written in binary
code {(machine language)

Deck B: A FORTRAN to BAL translator, written in BAL

Deck C: A FORTRAN program that will read data cards and print the
square roots of the data

Deck D: A data deck for the square root program of deck C

In order to compute the square roots you will have to make four computer
runs, The runs are described schematically below. Each run involves
(reading from left to right) an input deck that will be operated on by a
program to produce an output deck. Of course, the output deck produced
by one run may be used as either the input deck or the program of a
subsequent run.

In the figure below identify the unlabelled decks with the letters A, B, C,
D,E,F,G.

Input Program (binary deck) Output
A
#1 E
#2 " )1 F
#3 : G

| j Square roots-
#4 . “““ofdeck D

Thﬂre is a distinction between hardware {physical devices made of nuts,
bolts, transistors, etc.) and software (informaticn stored as a binary pat-
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tern on cards, tape, disc, with the ultimate purpose of being loaded into
core memory to be used as a program or data). Label each of the following
as hardware or software:

Compiler

. Processor

Operating system

. Loader

1/O channel

Core memory

Assembler

. File

Monitor
J. Disk drive

5. A simple batch monitor was discussed in section 1.5. In this problem, we
will increase its flexibility and look more closely at its structure. To give
the user more control over resource allocation, we introduce the concept
of a dara set; a data set is simply a source or repository for data, which can
take the physical form of a disk, printer, card reader, etc. The user defines
his data sets by means of a new control card:

TR Mo AD TR

// Logical data set name DD  parameter list

For instance, in the FORTRAN compilation of section 1.5, SYSPRINT is
the logical name for the source language listing data set, and

/I SYSPRINT DD UNIT = 00E

says that the listing is to be made on the device numbered Q0E (printer).
Other data sets used by the compiler are:

SYSIN {Source language input; usually card reader)
SYSLIN (Object code output; usually disk)

The loader would use:

SYSLIN (Qutput of transiator)
SYSPRINT (Messages—usually printer)
SYSLIB (Library subroutines; usually on disk)

And the user program:

SYSIN (Data, usually from card reader)
SYSPRINT (Printer, Same as above)

To include data cards in the same deck as control cards, an asterisk (*) is
put in the parameter field of the DD card, meaning “follows in input
stream.” The data cards must be ernded with a /* (end of data set) card,
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QUESTIONS

and a DD * data set must be the last data set in a job step.

On a system with a disk numbered 141 and printer numbered OQE, the
job from section 1.5 with all data sets defined would be:

/"
i
i
i
"

.\‘i
i
/"
"
1/
i
I
"

f'l

EXAMPLE J0B DONOVAN, T168, 1, 100,0
STEP1 EXEC FORTRAN, NO PUNCH
SYSPRINT DD UNIT = 00E
SYSLIN DD UNIT = 141
SYSIN bD .
READ 9100,N
DO 100 I1=IN
12 = 1%
13 = 1*I*
100 PRINT 9100,1.12,13
9100 FORMAT {3110}
END
STEP2 EXEC LOADER
SYSPRINT DD UNIT = DOE
SYSLIB oD DSNAME = FORTLIB
SYSLIN oD FROM STEP1.SYSLIN
STEP3 EXEC OBJECT
SYSPRINT DD UNIT = 00E
SYSIN DD .
10

The monitor must read the user’s control cards, allocate resources as
requested, and initiate execution of the requested job steps. Consider it to
be broken down into two sections:

i)} The readerfinterpreter (RDR/INT) reads control cards, interprets them,
and builds datz bases from the information on the control cards.
2) The initiator/terminator (INIT/TERM) schedules resources and initiates
and terminates job steps, using the data bases created by the RDR/INT.

al

b.

a o

b

Why is it useful to have logical names that can be assigned by the
user to any physical unit he chooses?

What data base(s) must the RDR/INT build for the INIT/TERM to
support the DD control card feature?

What other data base(s) are needed?

. As the RDR/INT reads cards sequentially, at what point does it

transfer control to the INIT/TERM to actually perform the job
step? (Remember that data cards in a DD * data set are not read by
the RDR/INT, but as data by the program being executed.)

. What would happen to each data base of the RDR/INT at the end of

each job step?
What would happen to each data base at the end of each job?

. What errors might be recognized by RDR/INT? By INIT/TERM?

What action could be taken?
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6. To increase the flexibility of our batch monitor system even more, we
want to add a new parameter called PRIORITY to the JOB card. This
viould be a number from 0 to 9, with higher numbers being run first and,
of course, charged more. Obviously, we can no longer read in one job at a
time, so we add a facility called a queue.

The data bases created by the RDR/INT for each job will be placed on the
queue until there are no more jobs to be read, and then INIT/TERM will
be allowed to run the highest priority job. A check will be made after-
wards to see whether any new jobs must be added to the queue, and then
the remaining job with the highest priority will be run:

ENTER

<

RDR/INT

Add job
to queue

-

Any more jobs
to be read in? Yes

No

INIT/TERM
Run highest priority
job from queue

a. What addition(s) must be made to the data bascs created by the
RDRJINT?

b. In the model of section 1.5 we could ignore data cards in DD * data
sets. What, if anything, is done about them now?

. Why is the PRIORITY parameter useful?



machine structure, machine
language, and assembly language

The purpose of this chapter is to discuss machine structure, machine language,
and assembly language.

We have taken examples from the IBM Systems/360 and 3701 Qur purpose is
not to teach specific assembly languages, and we present only enough material to
illustrate the design of assemblers (and later the design of compilers). The in-
troduction to 370 assembly language afforded by our discussion should be sup-
plemented by further reading (see Chapter 10 (References) — machine structure).
We have written this section primarily for two classes of people: those who
know assembly language programming well and want to become somewhat
familiar with the 370; and those who have not programmed in any assembly
language and who may use this chapter as an introduction to the manuals. The
approach and examples can be easily translated to other machines.

2.1 GENERAL MACHINE STRUCTURE

Almost all conventional modern computers are based upon the “stored program
computer” concept, generally credited to the mathematician John von Neumannr
(1903-1957). Figure 2.1 illustrates the structure of the CPU for a typical von
Neumann machine, such as the IBM System/360.

The CPU consists of an instruction interpreter, a location counter, an instruc-
tion register and various working registers and general registers. The instruction
interpreter is a group of electrical circuits (hardware), that performs the intent
of instructions fetched from memory. The Location Counter (LC), alsc called

1The IBM System/360 (or just 360) is the name of a series of IBM computers in production
since 1964, all of which have compatible instruction sets and manuals, The 1BM 370, a re-
vised version of the 360, was introduced in 1970, The 370 is compatible with the 360.
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FIGURE 2.1 General machine structure

Program Counter (PC) or Instruction Counter (IC), is a hardware memory device
which denotes the location of the current instruction being executed. A copy of
the current instruction is stored in the Instruction Register (IR). The working
registers are memory devices that serve as “scratch pads” for the instruction
interpreter, while the general registers are used by the programmer as storage
locations and for special functions.

The primary interface between the memory and the CPU is via the memory
address register and the memory buffer register. The Memory Address Register
(MAR) contains the address of the memory location that is to be read from or
stored into. The Memory Buffer Register (MBR) contains a copy of the designat-
ed memory location specified by the MAR after a “read,” or the new contenls
of the memory locaticn prior to a *write.” The memory controller is hardware
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that transfers data between the MBR and the core memory location the address
of which is in the MAR.

The I/O channels may be thought of as separate computers which interpret
special instructions for inputting and outputting information from the memory.

To illustrate how these components of the machine structure interact, let us
consider a simple computer (SC-6251). The SC-6251 has four general registers,
designated 00, 01, 10, and 11 in binary rotation. The basic instruction format is
as foliows:

Operation Register Memory
code number location
(op) (reg) (addr)

For example, the instruction
ADD 2176

would cause the data stored in memory location 176 to be added to the curren:
contents of general register 2. The resulting sum would be left as the new
contents of register 2. The micro-flowchart in Figure 2.2 illustrates the sequence
of hardware operations performed within the instruction interpreter to execut:
an instruction.

Although the specific details vary from computer to computer, this example cf
machine structure is representative of all conventional machines.

2.1.1 General Approach to a New Machine

Outlined in this section is an approach that may be taken to become familiar
with a new machine. It consists of finding answers to a series of questions that
we ask if we wish to program the machine,

We first list these questions and then answer them for the IBM 360 and 37C.
In section 9.1 we will ask these same questions regarding I/O channels (which
may be considered as separate computers).

1. MEMORY
What is the memory’s basic unit, size, and addressing scheme?

2. REGISTERS
How many registers are there? What are their size, function, and interrelationship?



24 CGEMERAL MACHINE STRUCTURE

MAR <= IC

L

MBR <= M{MAR) | {Read instruction from memory)

v

IR <= MBR {Put instruction in instruction
register}
v/
( Test instruction
type
ADD \LEUBTHACT\LMU LTIPL\’\LBHANCH T Other ~
\y OP codes

MAR <= IR (addr)

L

MBR <= M(MAR) | (Read data from memory)

N

WR <= R{IR{reg)) (Copy designated general register
into working register)

WR <= WR+MBR (Perform addition)

L

R(IR(reg)) <= WR | {Leave resulting sum in general register)

v

IC <= IC+1

{increase instruction counter to location
of next instruction)

FIGURE 22 Example micro flowchart for ADD instruction
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3. DATA

What types of data can be handled by the computer? Can it handle characters,
numbers, logical data? How is this data stored?

4, INSTRUCTIONS

What are the classes of instructions on the machine? Are there arithmetic instrue-
tions, logical instructions, symbol-maripulation instructions? What are their
formats? How are they stored in memory?

5. SPECIAL FEATURES
What is the interrupt structure of the machine? What sort of protection mecha-
nism is available to the user?

2.1.2 Machine Structure = 360 and 370

In this section we will answer these questions in the context of the IBM 360.
The material is equally applicable to the 370.

1. MEMORY
The basic unit of memory in the 360 isa byte — eight bits of information, That
is, each addressable position in memory can contain eight bits of information.
There are facilities to operate on contiguous bytes in basic units. The basic units
are as follows:

Unit of memory Bytes Length in bits
Byte 1 8
Halfword 2 16
Word 4 32
Doubleworu 8 64

A unit of memory consisting of four bits is sometimes referred to as a nibble

The size of the 360 memory is up to 224 bytes (about sixteen million).

The addressing on the 360 memory may consist of three components. Speci'i-
cally, the value of an address equals the value of an offset, plus the contents of a
base register, plus the contents of an index register. We will give examples of this
addressing later.

In general, operations on units of memory are specified by the low-order byte
address. For example, when addressing a word (four bytes) the address of the
word is that of the low order byte.

2. REGISTERS
The 360 has 16 general-purpose registers consisting of 32 bits each. In addition
there are 4 floating-point registers consisting of 64 bits each. It has a 64-bit
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Program Status Word (PSW) that contains the value of the location counter,
protection information, and interrupt status.

The general-purpose registers may be used for various arithmetic and logical
operations and as base registers. When the programmer uses them in arithmetic
or logical operations, he thinks of these registers as scratch pads to which num-
bers are added, subtracted, compared, and so forth. When used as base registers,
they aid in the formation of the address. Take for example the instruction

Index register

A 1,801 (2, 15)

1

Offset Base
register

It is interpreted as an add instruction. A number is to be added to the contents
of register 1.

The location of the number is 901 (offser) plus the contents of register 2
(index) plus the contents of register 15 (base). That is, if those three numbers
were added together, the result would be the address of the memory location
whose contents we wish to add to the contents of register 1.

One may ask why such complexity in the formation of addressing is necessary.
The motivation is twofold. First, a base register aids in the process of relocation
of a program, As we will see, an entire program may be moved from one series
of locations to another by changing the contents of a base register.2 A major
motivation for employing base registers, however, is to promote efficient ad-
dressing of core. For example, in order to address all possible core locations (16
million) in the 360 without the use of a base register, we would need 24 bits for
every address. By way of illustration, if the preceding add instruction were
formed in core as depicted in the following diagram, we would need a total of
40 bits to store it: 8 bits for the op code, 4 bits to specify one of 16 possible
regisiers to which the number is added, an additional 4 bits to specify one of
16 possible index registers, and lastly, 24 bits to specify the address of the num-
ber we wish to add

2pase registers do not completely solve the problem of relocation, The difficult problem of
address consfants must also be resolved, An address constant is a feature by which a pro-
grammer may specifly that a certain location in memory contains an address of a specified
memory location,
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Arg |Index
Op code
p reg reg Address
8 bits 4 bits 4 bits 24 bits Total: 40

If we use a base register, we can store the instruction in the following format.
“We could specify any one of 16 possible registers as the base register, using 4 bits,
and employ an additional 12 for an offset. The total number of bits for an add
instruction would be 32, a savings of 8 bits per address reference.

Arg [index| g
Op code reg reg ase Offset
8 bits 4 bits 4 bits 4 bits 12 bits Total: 32

The disadvantages of this shorter form are the overhead associated with the
formation of the address during execution and the fact that the offset, which is
12 bits long, can only specify a number from 0 to 4,095. Thus, it may be dif-
ficult to “reach™ the data. That is, without using an index register and without
zhanging the contents of the base register, the core location we wish to address
cunnot be any further than 4,095 locations away from the core location to
which the base register is pointing.

3. DATA
The 360 may store several different types of data as is depicted in Figure 2.3.
That is, groups of bits stored in memory are interpreted by a 360 processor in
several ways. If a 360 interprets the contents of two bytes as an integer (Fig.
2.3a), it interprets the first bit as a sign and the remaining 15 as a binary number
(e.z., 0000 0010 0001 1101 is interpreted as the binary number equivalent to
the decimal number +541).3 If a 360 interprets the contents of two bytes as a
packed decimal (Fig. 2.3c), it would interpret the first byte as two BCD coded
digits, the first four bits of the second byte as a BCD digit, and the last four as
4 sign (e.g., 0000 0010 0001 1101 is interpreted as the decimal number -021).
0 2 1 Sig

All data and instructions are physically stored as sequences of binary ones and

zeros. Thus, a 16-bit fixed-point halfword with decimal value +300 would be

35ec Appendia A for binary to decimal conversions,
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a) Short form s|
fixed point
01 15
Sign bit $ Full j
bl Longform |
fixed point S Integer I
01 5 3
an
1t :Fl,"_""” (4 b'lts-.’l\
c) Decimal packed D D D s
: ) }
[
, wotd Iﬂ 34 78 True form binary-coded
one code {4 bits i
-—:1', decimal digit [1 ljﬂtll
A
d} Unpacked Z D z D S D
31
0 34 78 1112 1518 Ksign
{4 bits)
e] Short form
floating point s§ C F
01 78 N 31
Sign £ Bcharacteristic Fm‘f’i_""
-
fl Long form
floating point S ¢ F )1
¢
01 78 Character codes (8 bits) 63
AR
g) Logical
{characters) ch ch i ch
0 78 15 1 1to 256 bytes )

FIGURE 2.3 Data formats for the system/360 and 370

stored in binary as ‘0000 0001 0010 1100". For convenience, binary number:,
are usually writien in the hexadecimal (base 16) number system rather than the
binary (buse 2) number system. The hexadecimal digits are shown in Figure 2.4.
Note that every hexadecimal digit can be replaced by exactly four binary digits
and vice versa. Thus when we have the number +300 in decimal, which equals

B'0000 ©0Gt 0010 1100) inbinary
R e o T
®x 0 1 2 C in hexadecimal
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Hexadecimal Binary Decimal
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 8
A 1010 10
B 1011 1
c 1100 12
D 110 13
E 1110 14
F 11 15

FIGURE 24 Hexadecimal-binary-decimal conversion

The prefixes X and B indicate mode of representation (hexadecimal, binary).

Fixed-point numbers may be stored in either a halfword or a fullword (Figs.
2.3a and 2.3b).

The 360 allows the storage of numbers in decimal form (Figs. 2.3c and 2.3d).
That is, numbers may be stored not as binary numbers but in a format closely
approximating the decimal representation. For example, the number 12 couid
zppear in one byte where the first four bits would contain a decimal 1 (0001)
and the second four bits would contain a decimal 2 (0010). Decimal forms are
useful in business data processing.

The 360 allows floating-point numbers, logical data, and character strings
(Fig. 2.3g) to be represented in memory as depicted in Figure 2.3,

There are instructions to operate on all these types of data.

4. INSTRUCTIONS
The 360 has arithmetic, logical, control or transter, and special interrupt
instructions.

The formats of the 360 instructions are depicted in Figure 2.5.

These five types of ihstructions differ basically in the types of operands they
use.

Register operands refer to data stored in one of the 16 general registers (32 bits
long), which are addressed by a four-bit field in the instruction. Since registers
are usually constructed of high-speed circuitry, they provide faster access to data
than does core storage.

For example, the instruction Add register 3, 4
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Format

S B bytes >
F.‘:— 4 bytes =
2 bytes ——>
| Register operands
RR 1 2
QP Ri R2
0 78 1112 15
Register
X operand 1 Storage operand 2
op R1 x2 B2 D2
1] 78 1112 1516 1920 3
Register operands Storage operand
RS 1 3 2
OF R1 R3 B2 D2
0 78 1112 1516 1920 31
Immediate
operand Storage operand
5| 2 1
op I2 B1. D1
0 78 1516 1820 N
ss Length 1 Storage operands 2
op L B1 D1 B2 D2
0 78 1516 1920 3132 336 ¥

Mnemonics used:
OP =~  operation code

Ri  ~  contents of general register used as operand
X =~  -tontents of general register used as index
Bi ~  contents of general register used as base

Di =~ displacement

li ~ immediate data

L —~ operand length

EICURE 25 Basic 360 instruction formats
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«——2bytes ———>
op R1 R2
0001 1010 | 0011 | 0100 | (RR - format)

— ——

Add register 3 4

causes the contents of general register 4 (32 bits) to be added to the contents of
general register 3 (32 bits) and the resulting sum to be left in general register 3.

Storage operands refer to data stored in core memory. The length of the
operand depends upon the specific data type (as illustrated in Figure 2.3). Oper-
and data ficlds that are longer than one byte are specified by the address of the
lowest-address byte (logically leftmost). For example, the 32-bit binary fixed-
point full word with value +267 (in hexadecimal X‘00 00 01 OB"), stored in
locations 1016, 1017, 1018, and 1019 as depicted below is said to be “located
at address 1016.”

k 4bytes = 32 bits |

0000 0000 | 0000 0000 | 0000 0001 | 0000 1011
Byte address 1016 1017 1018 1019

The address of the ith storage operand is computed from the instruction in the
following way:

Address = c(Bi) + c{Xil + DI {RX format)
or ciBi) + Di (RS, S1, SS format)

where ¢(Bi) and c(Xi) denote the contents of general registers Bi and Xi
respectively. Exception: if Xi=0, then (Xi) are treated as 0; likewise for Bi=0.

For example, if we assume that general register 5 contains the number 1000,
the following instruction:

|< 4 bytes
oP R X2 B2 D2

N

0101 1010 | 0011 | 0000 | 0101 | 0000 0001 0000 | (RX - format)
Add from 3 0 5 16

storage ta

reg.ster
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causes the contents of the word (32 bits) located at address

c(B2) + c(X2) + D2
cl5) + (0] + 16
1000 + O + 16
1016

to be added to the contents of general register 3 (32 bits), with the resulting sum
left in general register 3.

Another example, assuming again that general register 5 contains 1000, is the
following instruction: (Note: in S8 instructions the length is always one less than
the data moved, e.g., length = 0 means move one byte.)

(3 6 bytes =

OP L B1 D1 B2 D2

IHDIDDID 0100 1111 | 0101 | 000000100000 | 0101 | 000106010 1100
\

[ — i o

iMlove bytes 79 B 32 B 300
from operand 2
to operand 1 (SS — format)

This instruction involves two storage operands:

Storage operand 1 address = c(B1) + D1 = c{5) + 32
= 1000 + 32 = 1032

Storage operand 2 address = c{82) + D2 = ¢(b) + 300
= 1000 + 300 = 1300

This instruction copies (moves) the 80 bytes from locations 1032 - 1111 to
locations 1300 - 1379, Since  character is stored as a byte (see Fig. 2.3g), this
instruction could be viewed as copying an 80-character “card image™ from one
area to another.

Immediate operands are a single byte of data and are stored as part of the
instruction.

Again assuming register 5 to contain 1000, the following SS instruction,

causes the byte 0100 0000 (bits 8 through 15 of instruction) to be stored at
location 1004,
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k 4 bytes >
oP 12 B1 D1
1001 0010 | 0100 0000 | 0101 | 0000 0000 0100 | (S! - format)

- —

Move immedi- B4 6 4
ate byte to (Code for
operand 1 character

blank)

Representative 360/370 instructions

Various 360 instructions will be used throughout this book in examples and as
needed in problem sets and machine problem assignments. The following subset
is particularly relevant to our purpose and should be studied in the appropriate
reference manual. (See Appendix A for complete set of instructions.)

Hexadecimal
op code Mnemonic Meaning (format)
Load group

58 L Load (RX)

48 LH Load halfword [RX)
g a8 LM Load multiple (RS)
‘ﬁ. 18 LR Load {RR)
ks 12 LTR Load and test (RR)
‘5 L
B Store group
E 50 ST Store (RX)

40 STH Store halfword (R X)

S0 STM Store multiple (RS)

Add-group

BA A Add (RX)

44 AH Add halfword (RX)
0 1A AR Add (RR)
[=1]
_FE_ Compare-group
E 59 (o Compare (RX)
E ' 49 CH Compare halfword [RX)
_EL 19 CR Compare |[RR)
é Divide-group

5D D Divide {(RX)

L 1D DR Divide (RR)




Fixed-point arithmetic

Logical

Hexadecimal
op code

5C
4C
1c

5B
48

iB

(55
D5
95
15

D2
a2

54
o4
94
14

56
(8] §
a5
16

b g7
I D7

a7
17

8D
B9
BC

Mnemonic

Multiply-group

M
MH
MR

Subtract-group

S
SH
SR

Compare-group

CL
CcLC
CLI
CLR

Move-group

MWV
MW

And-group

N
NC
M
NA

Or-group

Q
ac
ol
OR

Exclusive-or group

X
xc
Xl
XR

Shift

SLDL
SLL
SRDL
SHL

GENERAL MACHINE STRUCTURE

Meaning (format)

Multiply {RX)
Multiply halfword (RX)
Multiply (RR)

Subtract (RX)
Subtract halfword (RX)
Subtract (RR)

Compare logical (RX)
Compare logical (55)
Compare logical (SI)
Compare logical (RR)

Move (SS)
Move (51}

Boolean AND [RX)
Boolean AND (S5)
Boolean AND (51}

Boolean AND (AR}

Boolean OR (RX)
Boolean OR (S5)
Ecolean OR 'S1)

Buolear OR (RR)

Exclusive-or (R X)
Exclusive-ar (S5)
Exclusive-or (S1)

Exclusive-or (RR)

Shift left (double logical) +R5)
Shift lefr isingle logical) {FS)

Shift right (double logicall (RS
Shift rignt (single logicall (RS
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Hexadecimal
op code Mnemonic Meaning (format)
Linkage group
45 BAL Branch and link {RX)
05 BALR Branch and link (RR)
-E Branch group
{
.5; 47 BC Branch on condition (RX)
F o7 BCR Branch on condition (RR)
46 BCT Branch on count {R X}
\ 0B BECTR Branch on count (RR)
Miscellaneous
[ 9E HIO Halt 1/0 (RX)
@ 41 LA Load address (R X)
8 ac S0 Start 1/O (RX)
S ] OA svVe Supervisor call {SI)
= oD TIO Test 1/JO (RX)
% 43 ic Insert character (RX)
91 ™™ Test under mask {S1)
42 sTC Store character (R X}

5. SPECIAL FEATURES
The 360 has hardware protection in blocks of 2,048 bytes and has an elaborate
interrupt structure discussed in Chapter 9.

2.2 MACHINE LANGUAGE

In this section we will discuss machine language (the actual code executed by a
computer). Again, our examples are taken from a 360-type computer. However,
they are easily applied to other machines.

In this section we will start the reader on his way to learning machine language.
After reading this section, the reader is referred to one of the many books or
manuals that discuss the machine language of the particular machine that he will
be using,.

We will not write machine language in ones and zeros, nor will we use hexa-
decimal numbers. Rather, we will use amnemonic form of machine language.
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'
Binary : Mnemonic
0101 1000 0010 0000 0001 (0011 1001 1100 EL 2, 924(0,1)
opP R1 | x2 | B2 D2 {ur R1, D2(X2,82)
58 2 0 1 39C :
Hexadecimal I

FIGURE 2.8 Mnemonic form of machine language

Figure 2.6 depicts a series of ones and zeros that may be interpreted by the
CPU as a load instruction, and the mnemonic form that we shall employ to
represent this instruction. _

The following simple example will be used several times in this chapter to
demonstrate features of machine language:

Write a program that will add the number 49 to the contents of 10 adjacent
fullwords in memory, under the following set of assumptions:

Assumption 1. The 10 numbers that are to be added to are in contiguous

fullwords beginning at absolute core location 952.
Assumption 2. The program is in core starting at absolute location 48.
Assumption 3. The number 49 is a fullword at absolute location 948.
Assumption4. Register 1 contains a 48.

Core may be thought of as shown in Figure 2.7.

2.2.1 LongWay, No Looping

Figure 2.8 illustrates a program to accomplish this addition.

The first instruction L 2,904(0,1) loads the first number into register 2. Reg-
ister 2 will be used as the accumulator. As was explained in section 2.1.3, the 360
addresses are made up of an offset plus the contents of an index register, plus the
contents of a base register. In this instruction we have denoted the index register
as being 0. There is a zero register. However, when it is used as an index, base, or
branch register, it is assumed tc have zero contents. Therefore, the address
specified in the first load instruction above is equal to 904 plus the contents of
register 1 (which contains a 48), i.e., 952. This is the absolute address of the first
data element, DATAL.

The next instruction in the program adds the contents of absolute location
948 to register 2. Absolute location 948 contains a 49, Next comes a store
instruction that stores the contents of register 2 back into absolute 1ocation 952,
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Alsolute Relative
locaticn location Core

AR — - — _— = — —

8 1] V

j Program
ri

948 — — — 900 — = — — 49

952 —~ — — 904 = — — — DATA 1

056 -— — — 908 — — — = DATA 2

988 -— — ~— 940 — = == — DATA 10

FIGURE 2.7 Diagram of core setup for addition problem

destroying the original first data item and replacing it by a new one that is equal
to DATAI plus 49. Similarly, the next three instructions add 49 to DATA2. An
identical set of three instructions is used for each data item,

The preceding program will work; however, there are some potential problems.
For example, if we wanted to process 300 data items rather than just 10, the
storage needed for the instructions would be (3 instructions) x (length of each
instruction) x (number of data items) = 3,600 bytes. Thus the instructions would
overlay our data in core. Furthermore, the distance from the first instruction to
the last piece of data would be 4,800 bytes, since the data itself occupies 4 X
300 = 1,200 bytes. Using register ! as a base register, it would be impossible to



33 MACHINE LANGUAGIZ

Absofute Relative
address address Hexadecimal Instructions Comments
48 o 58201388 L 2904(0,1) Load reg 2 from loc
904+Cireg 1) = 952
52 4 5A201384 A 2900(0,1) Add 49 (loc=0004
clreg 1)) = 948
56 8 502012328 ST 2,904(0,1) Storeback
60 12 BB20138C L 2908(0,7) Load nextdata
o4 16 5A201384 A 2900(0,1) Add49
63 20 5020138C ST 2,908(0,1) .Store back
a48 800 00000031 49
o5z aps .

"

FIGURE 2.8 Program for addition problem — straightforward approach

access both the first data item and the last. The programmer must be aware of
this type of problem if he is writing in machine language, and should bear in
mind the fact that the largest possible value of an offset is 212-1 or 4,095, whicii
may not reach ull his data. (It is, of course, possible to use more than one base
register.)

Note that if the preceding program were loaded into location 336 instead of
location 48, it would still execute correctly if the content of register 1 was 336.
Moving the program to a different location is a process called relocation. The
use of base registers facilitates this process.

2.2.2 Address Modification Using Instructions As Data

Our example may be analogous to the “program” depicted in Figure 2.9. If an
M.LT. student had a date with a girl, he might write a program to do the fol-

lowing.

1 2 3 4 5
It
Rent Get slide Call refused Goto
tuxedo rule Nancy change 3 1
to Mary

FIGURE 29 Situation

The preceding boxes represent locations, and the words in those boxes repre-
sent instructions to the processor, in this case, the M.L.T. student. The program
would have the student rent a tuxedo, get a slide rule (this is M.I.T.), and call
Nancy. But if Nancy refuses, the M.LT. student does not want to write a new
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program, so he writes an instruction that simply changes the contents of loc
tiorr 3 from Nancy to Mary and then repeats 1 through 4, The execution of the
instruction in location 4 changes the instruction in location 3. Of course, in the
preceding program he could end up renting many tuxedos, and if Mary refuses,
she will receive an awful lot of telephone calls.

This M.LT. student, however, has grasped two basic programming techniques.
The first is that the instruction in location 3 may be treated as data. The second
is looping, which he accomplished with the transfer rule in step 5. In this section
and the next we will see how these two techniques can simplify our previous
program. .

Observe that in the program in Figure 2.8 we were merely using three instruc-
tions over and over again. The only element that changed was the offset of the
load and store commands. In the first set of three instructions, the offset was
904. In the next set it was 908, then 912. An alternate technique is to write a
machine language program consisting only of those three instructions, followed
by a sequence of commands that would change the offset of the load and store
instructions by adding 4 to them. The computer would execute the thice
instructions, change two of them so that the offset was increased by 4, and loop
back to re-execute the set of three instructions. Of course, they would now have
a Jifferent offset and therefore would refer to a diflerent address.

The program in Figure 2.10 depicts a sequence of instructions that will per-
form the operation of adding the number 49 to 10 locations in core by modify-
ing the instructions themselves.

Aosolute Relative
address address Instructions Comments
48 0 L 2,904{(0,7)
b2 4 A 2.900(0,1) Add 49 to a number
56 8 ST 2,904(0,1)
60 12 L 20001 Increase di-.:p!acemen.t of
64 16 A 2,89610,1) load instruction by 4
68 20 5T 2,0i0,1)
2 24 L 2801 Increase displacement of
76 28 A 2.89I0,1) store instruction by 4
80 32 ST 2,8(0,1)
Branch to relative location O ning times
944 896 .
943 900 49
952 a04 Mumbers

. *
" -
- *

FIGURE 2.10 Program for addition problem using instruction medification



40 MACHINE LANGUAGE

ADDITIONAL ASSUMPTIONS:

Assumption 5.  Relative location 896 contains a 4.

To see how the program operates we must keep in mind that the contents of
location 48 (Fig. 2.11) are not L 2,904(0,1), but rather

0101 1000 0010 0000 0001 0011 1000 1000

—_

L 2 o 1 904
Bit (1} 78 1112 1516 1920 31
number
Byte a8 49 50 51
number

FIGURE 2.1t Contents of location 48

The offset of the instruction is the last and rightmost part of the number
stored in that location. This instruction may be interpreted as a piece of data,
and adding the number 4 to it updates the offset.

Treating instructions as data is not a good programming technique because in
maintaining the program over a period of time, it may become difficult to under-
stand what the original programmer was doing. In the case of multiprocessing
systems it would violate all the rules of pure procedures (re-entrant code), which
are procedures that do not modify themselves. We are including this example
merely to exemplify instruction formats and explicitly demonstrate that instruc-
tions are stored as a type of data.

2.2.3 Address Modification Using Index Registers

Perhaps the most elegant way to solve this example is to use the index registers
for address modification. Recall that an address equals the offset plus the con-
tents of the base register plus the contents of an index register. We use the same
three main instructions: the load instruction, add 49, and the store instruction.
We simply loop through those three instructions, updating the contents of an
index register by 4 during each pass and so updating the value of the address
specified in the load and store instructions. The following program section uses
this technique:
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Absolute Relative
address address Instructions Comments
48 0 SR 4.4 Clear register 4
50 2 L 2904(4,1) Load data element of a ray
54 6 A 2,900(0,1) Add 49
58 10 ST 2,904(4,1) Replace data element
62 14 A 4.B89610,1) Add 4 to index register

Branch back to relative location 2, ning times

The first instruction in this program is a subtract instruction. [t is a register-to-
register instruction, subtracting register 4 from register 4, thereby initializing its
contents to 0. Note that this instruction is only two bytes long. As we discussed
in the previous section, the 360/370 has different length instructions. The SK
instruction starts at absolute location 48. The next instruction starts at location
50. Notice also that the load and store instructions now specify register 4 as an
index register. The first time through the loop, register 4 will contain 0, the next
time, 4, etc. This will point the load and store instructions at a different data
item each time.

Now that we have seen how to modify instruction addresses, we will prezecd
to add the instructions that will carry out the actual looping.

2.24 Looping

In this section we will discuss two looping methods using machine language. We
will make the additional assumptions:

Assumption 6. Relative location 892 contains a 10
Assumption 7.  Relative location 888 contains a 1 (first method only)

Figure 2.12 depicts one looping scheme.

After the first four basic instructions are executed, there is a sequence o°
instructions that subtracts one from the temporary location and detects whether
or not the result is positive. If positive, control loops back to the main program
at relative location 2.

There is one instruction, Branch on Count (BCT, shown in Fig. 2.13) that a.
complishes the work of the last four instructions in Figure 2.12.

The reader is referred to the manuals for the explanation of the BCT instruc-
tion. Essentially, register 3 is decremented by 1 until a 0 is reached. While the
content of register 3 is positive, we transfer to the address specified in the ad-
dress field, in this case, 6 plus the contents of register 1. When zero is reached,
no branch occurs. Most computers have a similar branching instruction.



Absolute
address

936
940
944
948
952

FIGURE 2.12 Program for addition problem showing looping

Absolute
address

48
62
54
58
62
66
70

940
944
948
952

292

Relative
address

1]
2
B
10
14
18
22
26
30

8es8
892
896

900
904

Relative
address

0
a4
5]
10
14
18
22

892
896
900
204

unused

Instructions

44
2,904(4,1)
2,900(0,1)
2,904(4,1)
4,896(0,1)
3,892(0,1)
3,888(0,1)
3,892(0,1)
2,2(0,1)

ggor>gq>rg

—

1

|

MACHINE LANGUAGE

Add 49 to a number

Add 4 to index register
Load temp into register 3
Subtract 1

Store temp

Branch if result is positive
{2 denotes a condition
code)

(Initially 10 - decremented by 1 after each loop)

4
49
Numbers

Instructions
L 3,892(0,1)
SR 4.4
L 2,204(4.1)
A 2,900(0,1)
ST 2,904(4.1)
A 4,8961(0,1)
BCT 3,6(0,1)
10
4
49
Numbers

FIGURE 2.13 Final version of example

Load register 3 with 10
Clear register 4

Add 49 to a number

Add 4 to index register
Subtract ong from register
3 and branch to relative lo-
cation & when positive
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We now have reduced the program to 26 bytes of instructions and 52 bytes of
data, in contrast to the 120 bytes of instructions and 44 of data utilized in our
first attempt. This is a savings of 86 bytes. Note: all of the preceding programs
could be placed elsewhere in core, at location 400 rather than 48, for example,
and only register 1 need be changed.

2.3 ASSEMBLY LANGUAGE

When the user wishes to communicate with the computer, he has available to
him a spectrum of languages:

Engligsh Best for programmer
PL/l, FORTRAN

Assembly language
Mnemonic machine language
Machine language Best for machine

So far we have discussed the two lowest members of this spectrum, We will
now go into assembly language, which is the most machine-dependent language
used by programmers today.

There are four main advantages to using assembly language rather than machine
language.

1. Itis mnemonic;e.g., we write ST instcad of the bit configuration 01010000
for the store instruction

2. Addresses are symbolic, not absolute

3. Reading is easier

4. Introduction of data to program is easier

A disadvantage of assembly language is that it requires the use of an assembler
to translate a source program into object code. Many of the features of 360 or
370 assembly language exist in assembly languages for other machines (if the
reader is using another machine). These examples may be easily translated into
the machine he is using.

2.3.1 An Assembly Language Program

Let us rewrite the program discussed in the previous section in assembly language
(shown in Fig. 2.14). In doing so, the assumptions that were made when written
in machine language are eliminated. One of the assumptions is that the program’s
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starting address was absolute core location 48. We, as programmers, cannot pre-
sume to know into what locatien our program will be loaded in core. Thus there
must be a way for us 1o load the base register with the address of the program in
core just prior to execution time. That is, execution time is the only time in
which the program, the programmer, or anyone else can be certain as to where
in core the loader will load the user's program. The BALR instruction is one
mechanism for loading the base register.

If the assembler is to automatically compute the displacement field of instruc-
tions, it must know what register can be used as a base register and what that
register will contain. The USING instruction tells both of these things to the as-
sembler and thus makes it possible for it to produce correct code. The USING
instruction is a pseudo-op. A pseudo-op is an assembly language instruction that
specifies an operation of the assembler; it is distinguished from a machine-op
which represents to the assembler a machine instruction. The Define Constant
(DC) and Define Storage (DS) instructions are pseudo-ops that instruct the
assembler to place a 10, a 4, and a 49 in 3 consecutive fullwords (“'F") in mem-
ory and leave 10 more for data. A number before the F would cause multiple
allocations, e.g. DS 100F causes the assembler to set aside a 100 full word area.

Program Comments
TEEST START ldentifies name of program
BEGIN BALR 15.0 Set register 15 to the address of the nextinstruc-
tion

USING  BEGIN+2,15 Pseudo-op indicating to assembler register 151s
base register and its content is address of next

instruction
SR 44 Clear register 4 {set index=0)
L 3,TEN Load the number 10 into register 3
LOOP L 2,DATAL4) Load data {index) into register 2
A 2,FORTY9 Add 49
5T 2,DATAL4) Store updated value of data (index)
A 4, FOULRH Add 4 to register 4 {set index = index+4)
BCT 3.L00P Decrement register 3 by 1, if result non-zero,
branch back to loop
BR 14 Branch back to caller
TEN DC F'10' Constant 10
FOUR DC F'4* Constant 4
FORTYS DCc Fr49' Constant 49
DATA DC F'1,3,3,33,
45,890 Words to be processed
END

FIGURE 2.14 An assembly language program
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CLARIFICATION

1.

USING is a pseudo-op that indicates to the assembler which general register
to use as a base and what its contents will be. This is necessary because no
special registers are set aside for addressing, thus the programmer must in-
form the assembler which register(s) to use and how to use them. Since ad-
dresses are relative, he can indicate to the assembler the address contained
in the base register. The assembler is thus able to produce the machine
code with the correct base register and offset.

2. BALR is an instruction to the computer to load a register with the next

address and branch to the address in the second field. When the second
operand is register 0, as it is here, execution proceeds with the next instruc-
tion. It is important to see the distinction between the BALR, which loads
the base register, and the USING, which informs the assembler what is in
the base register. The distinction will be clearer after we study the as-
sembler, but for now, note that a USING only provides information to the
assembler but does not load the register. Therefore, if the register does not
contain the address that the USING says it should contain, a program error
may result.

3. START is a pseudo-op that tells the assembler where the beginning of the

program is and allows the user to give a name to the program. In this casz
the name is TEST.

4. END is a pseudo-op that tells the assembler that the last card of the pro-

5.

gram has been reached.

Note that instead of addresses in the operand fields of the instructions as
in the example of Figure 2.8, there are symbolic names. The main reason
for assemblers coming into ¢xistence was to shift the burdens of calculating
specific addresses from the programmer to the computer.

. BR 14, the last machine-op instruction, is a branch to the location whose

address is in general register 14. By convention, calling programs leave
their return address in register 14.

2.3.2 Example Using Literals

Here we will repeat the same example using literals, which are mechanisms where-
by the assembler creates data areas for the programmer, containing constants he
requests.

In the program of Figure 2.15 the arguments =F'10°, =F'49’, =F'4" are lil2rals
which will result in the creation of a data area containing 10,49,4 and replace-
ment of the literal operand with the address of the data it describes,

The assembler translates the instruction L 3,= F’10' so that its address portion
points to a full word that contains a 10. Normally, the assembler will construct
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TEST START .0
BEGIN BALR  BASEO

USING  BEGIN#+2,BASE

SR 4.4

L 3,=F10
LOOP L 2,DATA (4)

A 2, = F49’

ST 2,DATA (4)

A 4,=F4q

BCT 3,16

BR 14

LTORG
DATA DC F'1,3,3.3345830
BASE EQU 15

END

FIGURE 2.15 Assembly language program using literals

a “litcral table™ at the end of the program. This table will contain all the con-
stants that have been requested through the use of literals. However, the pseudo-
op LTORG can tell the assembler to place the encountered literals at an earlier
location. This pseudo-op is used in the case where we have a very long program.
For example, if our DC instruction contained 10,000 pieces of data, it would
have been impossible for the offset of the load instruction to reach the literals at
the end of our program. In this case, we would want to force the literals into the
program before the DC instruction,

In the BCT instruction in the same program we have used as an address *-16.
The star is a mnemonic that means “here.” The expression *-16 refers to the
address of the present instruction minus 16 locations, which is LOOP. (This type
of addressing is not usually good practice: should it become necessary for the
programmer to insert other statements in-between LOOP and BCT, he would
have to remember to change the 16.)

The statement BASE EQU 15 assigns this value 15 to the symbol BASE; BASE
will be everywhere evaluated as 15. The EQU pseudo-op allows the programmer
to define variables. Here, for example, if he wished to use a different base
register, he would need only to change the EQU statement. Any sort of valid
arithmetic expression may appear as the operand of the EQU statement.

Depicted in Figure 2.16 is the assembled version (that is, the output of the as-

sembler) of the preceding program.
Observe that some pseudo-ops (e.g., START and USING) do not generate

machine code. Note also that the BR 14 instruction has been translated to
BCR 15,14. This is because BR is a member of the assembler mnemonic group
of instructions that allow the programmer to use a more mnemonic op code in
place of BC followed by a particular mask value (see Appendix A).
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24 SUMMARY

We have presented a general approach to understanding a new machine, and ap-
plied this approach in the context of the IBM 360 and 370. We have evolved a
machine language example illustrating base register use, storage of instructions
and data, indexing and looping. Some features of 360 Basic Assembly Language
(BAL) were introduced, e.g., symbolic addressing, literals and pseudo-ops.

Relative Assembled
Assembly language program location mnemonic program
TEST START
BEGIN EALR 15,0 0 EALR 15,0
USING BEGIN+2,15
SR 4,4 2 SR 4.4
L 3, =F"10’ 4 L 3,30(0.1€)
LOOP L 2, DATA (4) 8 L 2,42(4,15]
A 2, =F'49’ 12 A 2,34(0,15)
ST 2,DATA (4) 16 ST 2,4214,15)
A 4,=F'4' 20 A 4,38(0,1%)
BCT 3,*%16 24 BCT 3,610,15)
BR 14 28 BCR 15,14
LTORG
32 10
36 49
40 4
DATA DC F1,2,3334590 44 1
48 3
52 3
END

FIGURE 2,16 Assembled version of example program
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QUESTIONS?

1. All data is stored as ones and zeros, taking on meaning only when inter-
preted according to some rule. Order the following sets of strings ac-
cording to the specified conditions:

a. OP1 1001 o111 1001 1100
op2 0110 1001 0010 1100
0oP3 1000 0011 D110 1101
1) Halfword integers
2) Packed decimals

b. OP1 0100 1110 1M 0110
op2 0110 0000 "M 0001
OP3 11 o1m 111 0010

1) Halfword integers
2) Characters (EBCDIC)

2. Below are several hexadecimal strings representing fullwords and halfwords
from core.

(1) 052C {2) 452C
(3)  4528367D (4) 5914973C

For each of the above,

a. Write the binary equivalent.

b. Assume each to be a halfword/fullword integer, and write its value in
decimal.

¢. Assume each to be a packed decimal number, and write its value in
decimal.

d. If it represents a legitimate 360 machine instruction, give the mnemonic
representation, if not, tell why not.

3. This problem will investigate basic properties of machine architecture. The
simple machine in our example consists of a location-addressed memory
where instructions and data are stored, and a Central Processing Unit
(CPU) that interprets instructions and performs the specified operations.
The CPU contains an Instruction Register (IR) which holds the present
instruction being interpreted.

Memory

ceu [S >

4An * denoles that the question may require the use of IBM 360 manuals, A 1 denotes that
the question is a machine problem.



MACHINE STRUCTURE, MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 49

An instruction on this machine has the form

Op code Operand 1 Operand 2 Result Next

In questions a - d you are to redesign this basic machine with the objective
of shortening the instruction length. For these questions consider the
following instruction

ADD A B c NEXT

which adds the number at location A to that at location B and stores the
result at C. The next instruction fetched for interpretation is located at
NEXT.

of

a. Give a method oy which the NEXT field of the instruction could be
eliminated. What additional instruction would be required in this new
machine that was not required in the original? What additional register
must be added to the CPU?

b. Give a method by which the RESULT field of the instruction would be
eliminated. (Do not add any registers to the CPU.) What additional
instruction would be required for this new machine that was not
required in the original?

¢. Another way to eliminate the RESULT field is to add a single register
to the CPU that is the same size as a memory word. Such a register is
usually referred to as an accumulator (AC). The additional instruction
that is required in this case is a store instruction which stores the
contents of the accumulator into a specified word in memory. All other
instructions take two operands and place their result into the accumus-
lator, In addition to the RESULT field, one of the operand fields can
also be eliminated, Describe how this can be done. What additional
instruction is required?

d. The IBM 360 and many other computers use the two-address instruc-
tion format that you obtained from questions 2 and 3, rather than the
four-address format of our basic machine. What advantages are to be
found by shortening the instruction length? What are the disadvantages
of this scheme?

4. a. What are the advantages of the 360's multiple register scheme over
. machines with fewer or specialized registers?
b. On the 360, register 0 operates differently in three contexts from the
other registers. Give an example of each and explain how register 0 is
being used in each case.

5. *a. What is the diffcrence in function between the BALR and USING
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instructions? What happens to each at assembly time? At execution
time?

. For each of the following program segments show the equivalent
mnemonic machine language and determine the value placed in register
! by the instruction LH 1,DATAZ2.

OCT156 START 0 OCT15 START 0

BALR 15,0 USING *15

USING *15 BALR 15,0

LR 10,15 LA 10,DATA2

USING .10 USING DATA2,10

LH 1.0ATA2 DROP 15

BR 14 LH 1.0ATA2
DATA oc H'1 DATA1 DC F1'
DATA2 DC H'2' DATAZ DC F2
DATA3 DC H'3' DATA3 DC F'3

END END

. The following program is supposed to multiply 3 times 2 and store the
result into location 1000, Will it? (Note: The address of 1000 refers
to location 1000 in core; no base or index register is used.)

L 3,=F2
M a' = Fral
ST 3, 1000

. Will the following divide 10 by 27 Justify.

L 3,=F10
D 2,=F2
5T 3, 1000

. What is the difference between

INDEX EQU 5
INDEX DC F's’

. What is the difference between the CR instruction and the CLR
instruction?

. What will be in register 3 after each instruction in the following
sequence of instructions:

LA 3, = AIXYZ)

LR 3 3

L 3,=F'%
XyZ LCR 3, 3

LNR 3, 3
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b. Which instruction will be executed after the BE SAME. Why?

CLI =F'3'.3

BE SAME

LR 3,5
SAME AR 5,5

9. When do ‘SRDA 0,5’ and *‘SRDL 0,5" execute differently?

When do ‘SLL 1,1" and ‘LA 1,0(1,1)’ execute differently?

¢. When do “‘MVC TEMP(0), DATA’ and ‘MVC TEMP(1), DATA’ execute
differently?

d. Is ‘LA 1,0(1) equivalent to a no-operation? Is ‘SRA 1,0'? If not,
explain.

e. Assume STOMP is defined by:

gFe

STOMP DC C' ERASURE’
How will the following instructions execute individually?

MvC STOMP+1(8), STOMP
MVC STOMP(8), STOMP+1

10. Do all the 360°s instructions set or check the CC (Condition Code)? What
is the role of the CC in the 360s instruction set?

11. Draw micro-flowcharts for the following IBM 360 instructions (see Fig.
2.2).

a. 5 (Subtract, RX form)
b. BCR (Branch on Condition, RR form)
c. BXLE (Branch on Index Less than or Equal, RS form).

12, Consider the following computer system organization, referred to as a
“stack” computer.

There are two memories: one memory is directly addressable, that is, it is
possible to load from or store into any location at any time, The other
memory has an associated register, called the “stack pointer;” it is only
possible to load from or store into the location currently specified by the
“stack pointer.” We will refer to the “Stack Pointer™ as SP.

There are three types of instructions: (1) instructions that transfer data
between the two memories, (2) instructions that operate on the “stack”
memory only, and (3) transfer instructions. Note that there are no regis-
ters such as an AC (accumulator) or GPRs (General Purpose Registers) as
on the IBM 7094 or 360.

We will first discuss the ADD instruction. Assume the *stack” memory has
the contents specified in Figure (a) below:



SP

X 4
3
: ® .,
i
X 1
X 0
(2)

QUESTIONS

|| x|

(®)

The ADD instruction will change the *“stack” memory to the contents of
Figure (b). Memory locations marked X are not affected by the instruction
and may be ignored. Note that the following two actions occurred: (1) the
contents of the locations specified by C(SP) and C(SP-1) are added and the
result stored in the location specified by C(SP-1) and (2) SP is decreased

by 1.

a. Draw a machine organization diagram for this computer (see Fig. 2.1).
b. Draw a micro-flowchart for the ADD i.‘nls'truc:tiun. It should be similar
in complexity to the preceding flowchart in Figure 2.2, but the actuzl
registers etc., will not necessarily be the same. You should clearly
specify your notation. Assume the instruction is already in the de-
coding register. (Hopefully, you noticed that the ADD instruction does
not have an operand, only an op-code. Assume that the ADD instruc-
tion requires only one byte of op-code.)
c. The LOAD instruction operates as described below. Assume that the
regular memory has its contents illustrated in Figure (¢) and the
“stack” memory is still as in Figure (b). The instruction LOAD 100

would result in Figure (d).

108 X
104 X
100 76
96 X

94 X
(c)

=N Wk

X

76

9

X

X

@

Note that the instruction loads into the location specified by C(SP+1)
and then increases C(SP) by 1. Assume that the LOAD instruction is

four bytes long, i.e.

oP Actual Address
< 1 5 H&—— 3 bytes
byte

Draw a micro-flowchart for the LOAD instruction.
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13. The following 360 assembly language program computes the function:

A=2+B+2+C-1

1) COMPUTE START
2) USING *15
3) L 1.8
4) SLA 1.1
5) L 2C
6) SLA 21
7) AR 12
8) S 1. =F1’
9) ST 1.A
10) BR 14
1) A DC F'0’
12 B DC F'5’
13} C Dc F'7
14) END

. Verify that the preceding program works correctly by simulating tha
instructions one by one and filling in the table below. Indicate the con-

tents of each register and memory location after each instruction is
executed,

Contents of
fnstruction Register 1 register 2 Location A
3
4
5
6
7
8
9

b. The above program is reasonably efficient; it only requires 44 bytes anc

cleverly avoids the use of the slow multiply instruction and the literal 2.
It is known that by rewriting statements 3 through 9 only, it is possible
to reduce the entire program to only 12 statements that require 32
bytes. This new program must compute the same function though not
necessarily in the same way.

Fill in the blank spaces in the following program to represent a new
program that is more efficient than the preceding one. It need not be
optimal nor use all the statements 3 through 9.

1) COMPUTE START

2) USING *15
3)

4)

5)
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6)
7}
8)
9)
100
i
12)
13)

o Rl v+ [y =
7888%

14.

D

QUESTIONS

14

F'0’
F's’
F7’

Obtain the manufacturer’s manual for any digital computer and answer the

five basic questions of section 2.1.1.
15. twrite a subroutine in 360 assembly language that does the following.

a+

When control is passed to your program, registers 2 and 3 will contain

8 EBCDIC characters (four eight-bit characters in each register).

The subroutine should count the number of EBCDIC commas and

b.
return the count in register 1.
Example:
INPUT:
QUTPUT:

Register 2 Register 3

A ,BC D E , F (EBCDIC)
Reagister 1

00000002 (HEXADECIMAL)

A reasonable solution to this problem will probably require from 8-20

assembler cards.

There will be a graders to evaluate your program. The format for each
program is:
GRADER STUDENT
Loads registers 2,3 STUDENT START O
L 15, =V (STUDENT) ENTRY STUDENTN
BALR 14,16 USING *,15
Checks for right answer . Body of program
BR 14 DC and DS
. pseudo-ops
{if any)
LTORG

STUDENTN EQU

L

END

5‘l'I:u.', problem can be done without a grader. The student will have to supply data and a
riain program. A grading program calls student programs and keeps a record of the results.
We specify the grader only as an aid to the instructor or student who wishes to nse sucha

1 fieme,
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The student’s program must not change the contents of registers 14 or 135.

16. TAll data forms are read by the assembler into the machine in character
format (EBCDIC), so the assembler or compiler must provide routines for

vonverting the data into the internal representation specified by the pro-
grammer.

Your assignment is to write a 360 assembly language subroutine that
simulates the data processing performed by an assembler in handling a
‘DC’ pseudo-op for C, X, P, and F formats. You will be given an EBCDIC
character string of specified byte-length in storage and asked to convert it
to a specified internal data format,

a. Communication with the Gradingj Program When your program is
entered, the general registers will contain the following information.
Register Q:

The contents of register zero indicate the type of conversion to be
performed, as follows:

0 Character

1 Hexadecimal

2 Packed decimal
3 Fullword binary

Register 1:
The contents of register one indicate the length and location of the
data to be converted. Bits 0-7 contain the byte count of the data

(including any optional sign as described below) and bits 8-31 con-
tain the absolute address of the data:

Count Address

0 78 K}

Registers 2-12:
The contents of registers 2-12 are not significant, but must be saved
and restored by your program.

Register 13:
Register 13 contains the address of an 18 fullword arca where you
may save general registers.

Register 14: _
Register 14 contains the address of the return point in the grading
program. You should branch to this address when you have com-
pleted processing.

Register 15:
Register 15 contains the address of the eniry point to your program.
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When your program returns to the grading program, the contents of
registers 2-12 should be the same as when you were called, and register
1 should contain the address of a fullword area in your program with
the following structure:

Count Address

0 78 31

The “count™ will be the length in bytes of the converted data, and the
“address” will be the absolute address of an area within your program
containing the converted data.

The following restrictions will be placed on the input and output data:
Character data will have a maximum byte count of 40.

Data to be converted to hexadecimal will have a maximum byte
count of 40, yielding a maximum answer count of 20, and the byte
count will be even, (Thus, you will not have to pad with zercs.)

Data to be converted to packed decimal will have, at most, 16 sig-
nificant decimal digits not including an optional prefixed plus or
minus sign. When you return your answer, it should be as short as
possible, that is, with leading zeros removed. You must return the
answer with the EBCDIC preferred sign codes C and D.

Data to be converted to fullword binary will also have an optional
prefixed plus or minus sign, and a maximum significant digit count
of 16. Your answer should be aligned to a fullword boundary.

You must not modify the input strings in any way.

b. Examples If you were given the string *110°, with a count of 3, your
answer would be:

Internal code Final
Conversion (hexadecimal) count
C F1F1F0 3
X 0110 2
P 110C 2
F 00000OSE 4

Note the zero padding and justification in the X, P, F conversions.

17. Twrite a 360 assembly language subroutine that will perform addition and
subtraction of mixed base numbers. For example:
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Register Contents (hex)
1days 22 hours 3 min R1 L+ {on] 16 03]
- 22 hours 20 min ) R2 [ = TooT 16 [ 14 ]
G days 23 hours 43 min R3 [+ Tool 17 T287]

Registers 1 and 2 contain the operands; register 0 will contain your
answer, For each register the first byte is the sign, the second is the
number of days, third number of hours, fourth number of minutes,

The student program must have the same form as problem 16.



assemblers

An assembler is a program that accepts as input an assembly language program
and produces its machine language equivalent along with information for the
loader (Fig. 3.1). In this chapter we will discuss the design of an assembler.

Assembly Machine language
language —> Assembler S and other
pruggraﬁ information for
the lpader
Data bases

FIGURE 3.1 Function of an ascembler

We focus on procedures for producing the machine language. However, the
reader must keep in mind that (in all but the most primitive of loading schemes)
the assembler must also produce other information for the loader to use. For
example, externally defined symbols must be noted and passed on to the loader;
the assembler does not know the address (value) of these symbols and it is up to
the loader to find the programs containing them, load them into core, and place
the values of these symbols in the calling program. Loading is discussed in
Chapter 5.

In this chapter we are primarily concerned with the production of machine
language. The illustrative examples use a 360-type assembler and mnemonic
machine language. In our design of an assembler, and later in our design of a
macro processor, many possible algorithms could have been used. We have
chosen a way which we feel demonstrates the basic tasks of such programs

Throughout this book, we will be referring to **decks” and “programs.” At one

tinie a “deck” always meant a deck of cards. Today, with the widespread use of
54
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ather forms cnf,l secondary storage and of typewriter terminals, many programs
never actually take the form of card decks. A “card” is a convenient unit of
information; other devices offer similar divisions into units, or records, often of
variable lengths. These different forms of storage are essentially interchangeable;
a “‘statement” may be a card or other record, and a “card” may be a record on
tape or drum. The term *‘deck,” as used in this book and throughout the com-
puter industry, has become a commonplace for every form of program used as
input or output 10 a computer.

3.1 GENERAL DESIGN PROCEDURE

Before discussing the detailed design of an assembler, let us examine the general
proliem of designing software. Listed below are six steps that should be fol-
lowed by the designer:

1. Specify the problem

2. Specify data structures

3. Define format of data structures

4. Specify algorithm

5. Look for modularity (i.e., capability of one program to be subdivided into
independent programming units)

6. Repeat 1 through 5 on modules

In this book we have followed this procedure in the design of the assembler,
loader, and compiler,

3.2 DESIGN OF ASSEMBLER

3.2.1 Statement of Problem

Let us pretend that we are the assembler trying to translate the program in the
left column of Figure 3.2. We read the START instruction and note thatitisa
pseudo-op instruction (to the assembler) giving JOHN as the name of this pro-
gram; the assembler must pass the name on to the loader. The next instruction
is the USING pseudo-op. This tells the assembler (us) that register 15 is the base
register and at execution time will contain the address of the first instruction of
the program.
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Source program First pass Second pass
Relative Mnemonic Relative Mnemanic
address instruction address instruction
JOHN START 0O
USING *,15 .
L 1,FIVE 1] L 1,-(015) Q L 1,16(0,15)
A 1,FOUR 4 A 1,-0,15) 4 A 1,12(0,15)
"FOUR DC F'4q 12 4 12 4
FIVE DC F's" 16 ] 16 5
TEMP DS 1F 20 - 20 -

END

FIGURE 3.2 Intermediate steps in assembling a program

There is no BALR instruction. This program was presumably called by another
program that left the address of the first instruction in register 15 (see standard
subroutine linkage conventions in Appendix B). Next comes a Load instruction:
L 1, FIVE. We can look up the bit configuration for the mnemonic in a table
and put the bit configuration for the L in the appropriate place in the machine
language instruction. Now we need the address of FIVE. At this point, however,
we do not know where FIVE is, so we cannot supply its address. Because no
index register is being used, we put in O for the index register. We know that
register 15 is being used as the base register, but we cannot calculate the offset.
The base register 15 is pointing to the beginning of this program, and the offset
is going to be the difference between the location FIVE and the location of the
beginning of the program, which is not known at this time. We maintain a loca-
tion counter indicating the relative address of the instruction being processed,
this counter is incremented by 4 (length of a Load instruction).

The next instruction is an Add instruction. We look up the op-code, but we do
not know the offset for FOUR, The same thing happens with the Store instruc-
tion. The DC instruction is a pseudo-op directing us to define some data; for
FOUR we are to produce a‘4’. We know that this word will be stored at relative
location 12, because the location counter now has the value 12, having been
incremented by the length of each preceding instruction. The first instruction,
four bytes long, is at relative address 0. The next two instructions are also four
bytes long. We say that the symbol “*FOUR" has the value 12. The next instruc-
tion has as a label FIVE and an associated location counter value of 16. The
label on TEMP has an associated value of 20. We have thus produced the code in
the center column of Figure 3.2
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As the assembler, we can now go back through the program and fill in the off-
sets as is done in the third column of Figure 3.2.

Because symbols can appear before *hey are defined, it is convenient to make
two passes over the input (as this example shows). The first pass has only to de-
fine the symbols; the second pass can then generate the instructions and ad-
dresses. (There are one-pass assemblers and multiple-pass assemblers. Their design
and implications are discussed in this chapter). Specifically, an assembler must
do the following:

1. Generate instructions:
a. Evaluate the mnemonic in the operation field to produce its machine
code.
b. Evaluate the subfields — find the value of each symbol, process literals,
and assign addresses.
2. Process pseudo ops

We can group these tasks into two passes or sequential scans over the input;
associated with each task are one or more assembler modules.

Pass 1: Purpose — define symbols and literals
1. Determine length of machine instructions (MOTGET1)
2. Keep track of Location Counter (LC)
3. Remember values of symbols until pass 2 (STSTO)
4. Process some pseudo ops, e.g., EQU, DS (POTGET1)
5. Remember literals (LITSTO)

Pass 2: Purpose — generate object program
1. Look up value of symbols (STGET)
2. Generate instructions (MOTGET2)
3. Generate data (for DS, DC, and literals)
4. Process pseudo ops (POTGET2)

Figures 3.3 and 3.4 outline the steps involved in pass 1 and pass 2. The specifics
of the data bases and a more detailed algorithm are developed in the following
sections.

3.2.2 Data Structure

The second step in our design procedure is to establish the data bases that we
have to work with.

Pass 1 data bases:
1. Input source program.
2. A Location Counter (LC), used to keep track of each instruction’s location.
3. A table, the Machine-Operation Table (MOT), that indicates the symbolic
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Initialize

F, h
Store label
in ST with
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STSTO
USING
DROP
Search
Pseudo-Op Table Found 4 Type? END Go to
(POT) o pass 2
POTGET g?_;
Mot found
g W
Search Determine
Machine-Op Table length of data
{MOT) space required
MDT_G ET \L
4/ Process
Get length 5 Update
of instruction litersals A Location Counter (LC)
LITSTO

FIGURE 3.3 Pass 1 overview: define symbols

mnemonic for each instruction and its length (two, four, or six bytes).

4. A table, the Pseudo-Operation Table (POT), that indicates the symbolic
mnemonic and action to be taken for each pseudo-op in pass 1.

5. A table, the Symbol Table (ST), that is used to store each label and its
corresponding value.

6. Atable, the Literal Table (LT), that is used to store each literal encountered
and its corresponding assigned location.

7. A copy of the input to be used later by pass 2, This may be stored in a
secondary storage device, such as magnetic tape, disk, or drum, or the
original source deck may be read by the assembler a second time for pass 2.

Pass 2 data bases:

1. Copy of source program input to pass 1.
2. Location Counter (LC).
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‘L (BT}
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the parts of the
instruction
kY-
Update
Location AV
Counter e

FIGURE 3.4 Pass 2 overview: evaluate ficlds and generate code

3. A table, the Machine Operation Table (MOT), that indicates for each
instruction: (a) symbolic mnemonic; (b) length; (¢) binary machine op-
code, and (d) format (e.g., RS, RX, SI).

4. A table, the Pseudo-Operation Table (POT), that indicates for each pseudo-
op the symbolic mnemonic and the action to be taken in pass 2.

5. The Symbol Table (ST), prepared by pass 1, containing each label and its
corresponding value.

6. A table, the Base Table (BT), that indicates which registers are currently
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specified as base registers by USING pseudo-ops and what are the specified
contents of these registers.
7. A work-space, INST, that is used to hold each instruction as its various

parts (e.g., binary op-code, register fields, length fields, displacement fields)
arz being assembled together.
8. A workspace, PRINT LINE, used to produce a printed listing,
9. A workspace, PUNCH CARD, used prior to actual outputting for con-
verting the assembled instructiuns into the format needed by the loader.
10. An output deck of assembled instructions in the format needed by the
loader.

Figure 3.5 illustrates the interrelation of some of the data bases and the two
passes of the assembler.

32.2.3 Format of Data Bases

The third step in our design procedure is to specify the format and content of
each of the data bases — a task that must be undertaken even before describing
the specific algorithm underlying the assembler design. In actuality, the algorithm,
data base, and formats are all interlocked. Their specification is in practical de--
signs, circular, in that the designer has in mind some features of the format and
algorithm he plans to use and continues to iterate their design until all cases
work,

Pass 2 requires a Machine-Operation Table (MOT) containing name, length,
binary ¢code, and format; pass 1 requires only name and length. We could use two
separate tables with different formats and contents or use the same table for
both passes; the same is true of the Pseudo-Operation Table (POT). By generaliz-
ing the table formats; we could combine the MOT and POT into one table. For
this particular design, we will use a single MOT but two separate POTs.

Once we decide what information belongs in each data base, it is necessary to
specify the format of each entry. For example, in what format are symbols
stored (ec.g., left justified, padded with blanks, coded in EBCDIC or ASCII) and
what are the coding conventions? The Extended Binary Coded Decimal Inter-
charige Code (EBCDIC) is the standard IBM 360 coding scheme for representing
characters as eight-bit bytes. The character “A,” for instance, is represented in
EBCDIC as 1100 0001 binary (C1 in hexadecimal).

Tae Machine-Op Table (MOT) and Pseudo-Op Tables (POTs) are examples of
Jfixed tables. The contents of these tables are not filled in or altered during the
assembly process. Figure 3.6 depicts a possible content and format of the
machine-op table. The op code is the key and its value is the binary op-code
equivalent, which is stored for use in geners{ting machine code. The instruction
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FIGURE 35 Use of data bases by assembler passes

length is stored for use in updating the location counter; the instruction format

for use in forming the machine language equivalent.
Figure 3.7 depicts a possible pseudo-op table. Each pseudo-op is listed with zn

associated pointer to the assembler routine for processing the pseudo-op.
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s 6-bytes per entry >
Mnemanic Binary instruction Instruction Mot
op-code op-code length format used in
(4-bytes) (1-byte} {2-bits) {3-bitg) this design
{characters) (hexadecimal) {binary) {binary) {3-bits)
“Abbb" BA 10 om
"AHBbL" 47 10 o001
“ALbYL" SE 10 001
“ALRbL" 1E o 000
“ARbbL" 1A om 000
"MVCH" D2 " 100
b ~represents the character “blank"
Codes:
I nstruction length Instruction format
01 = 1 half-words = 2 bytes 000 = RR
10 = 2 haif-words = 4 bytes 001 = RAX
11 = J half-words = & bytes 010 = RS
011 = 5|
100 = 55
FIGURE 3.6 Machine-Op Table (MOT) for pass | and pass 2
< 8-bytes per entry >
Address
of routina
Pseudo-op 10 process
{9-bytes) pseudo-op
{character) {3-bytes = 24 bit address)
“DROPH" P1DROP
“ENDbHL " P1END
"EQUbLL" P1EQU
"START" PISTART
"USING” P1USING

LTM:& are presumably

labels of routines in pass
1; the table will actually
contain the physical ad-

dresses,

FIGURE 3.7 Pseudo-Op Table (POT) for pass 1 (similar table for pass 2)

The Symbol Table and Literal Table (Fig. 3.8) include for each entry not only
the name and assembly-time value fields but also a length ficld and a relative-
location indicator. The length field indicates the length (in bytes) of the instruc-
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tion or datum to which the symbol is attached. For example, consider

COMMA DC c/

F Ds F
AD A 1F
WORD DC 3F'6"

The symbol COMMA has length 1; F has length 4; AD has length 4 (an add
instruction is four bytes long); and WORD has length 4 (the multiplier, 3, is not
considered in determining length). The symbol * (current value of location
counter) alway's has a length of 1. If a symbol is equivalent (via EQU) to another,
its length is made the same as that of the other. The length field is used by the
assembler to calculate length codes used with certain SS-type instructions.

< 14-bytes per entry >
Symbaol Value Length Relocation
18-by1es) {4-bytes) {1-bytel {1-byte)
{characters) {hexadecimal) (hexadecimal) (eharacter)
“JOHMNbDLE ™ Qooo 01 “R"
YFOURbLLL" Qooc 04 "R™
“FIVEbbbb" o010 04 = i
“TEMPOOED" ooag 04 “R"

FIGURE 3.8 Symbol Table (ST) for pass 1 and pass 2

The relative-iocation indicator tells the assembler whether the value of the
symbol is absolute (does not change il the program is moved in core), or relative
to the base of the program. The assembler can use a simple heuristic to
decide into which class a symbol falls. If the symbol is defined by equivalence
with a constant (e.g., 6) or an absolute symbol, then the symbol is absolute.
Ctherwise, it is a relative symbol. The relative-location field in the symbol table
will have an “R” in it if the symbol is relative, or an “A” if the symbol is ab-
solute. In the actual assembler a substantially more complex algorithm is gener-
ally used.

Figure 3.9 depicts a possible base table that is used by the assembler to gen-
erate the proper base register reference in machine instructions and to compute
the correct offsets. Basically, the assembler must generate an address (offset, a
base register number, an index register number) for most symbolic references.
The symbol table contains the address of the symbol relative to the beginning of
the program. When generating an address, the assembler may use the base register
table to choose a base register that vill contain a value closest = tke symbolic
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reference. The address is then formulated. Base register number = the base

register containing a value closest to the symbolic reference. Offset = (value of
symbol in symbol table) - (contents of base register).

08— d-bytes per entry ————3

Availability Designated relative-address
indicator Contents of base register
{1-byte) {3-bytes = 24-bit address)
(character} {hexadecimal)
1 H‘Nl-l Jﬂh'
2 irNJI F
M . 15
. . entries
14 N
15 u-\rlu m m 'DU V
Code=
Availability

Y ~ register specified in USING

N =~

-FIGURE 3.9 Base Table (BT) for pass 2

pseudo-op

register never specified in USING
pseudo-op or subsequently made

unavailable by the DROP

pseudo-op

The following assembly program is used to illustrate the use of the variable
tables (symbol table, literal table, and base table) and to demonstrate the
motivation for the algorithms presented in the next section. We are only con-
cerned with the problem of assembling this program; its specific function is

irrelevant.

Statement no.

- B - AT L

Sample Assembly Source Pragram
PRGAM2 START 0
USING *15
LA 15,5ETUP
SR TOTAL, TOTAL
AC EQU 2
INDEX EQU 3
TOTAL EQU 4
DATABASE EQU T3
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Sample Assembly Source Program (continued)

Statement no.
g SETUP EQU .
10 USING SETUP, 15
11 L DATABASE, = AIDATA1)
12 USING DATAAREA, DATABASE
13 SR INDEX, INDEX
14 LOOP L AC, DATA1 (INDEX)
15 AR TOTAL, AC
16 A AC, = F'5’
17 ST AC,SAVE (INDEX)
18 A INDEX, = F'4'
19 C INDEX, = F'BOODQ'
20 ENE LOOP
21 LR 1, TOTAL
22 ER 14
23 LTORG
24 SAVE Ds 2000F
25 DATAAREA EQU *
26 DATA} DC F'25,26,97,101 ....
({2000 numbers)
27 END

In keeping with the purpose of pass 1 of an assembler (define symbols and
literals), we can create the symbol and literal tables shown below.

Variable Tables
Symbol Table
Symbol Value Length Relocation
PRGAMZ 0 1 R
AC 2 1 A
INDEX 3 1 A
TOTAL 4 1 A
DATABASE 13 1 A
SETUP 6 1 R
LOOP 12 4 R
SAVE 64 4 R
DATAAREA 8064 1 R
DATAN 8064 4 R
Literal Table
AlDATAT) 48 4 A
F's' 52 4 R
Fa4 66 4 R
F'8000° G0 ) R
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As in the flowchart of Figure 3.3, we scan the program above keeping a location
ccunter. For each symbol in the 1:bel field we make an entry in the symbol
table. For the symbol PRGAM?2 its value is its relative location. By IBM con-
vention its length is 1,

We update the location counter, noting that the LA instruction is four bytes
long and the SR is two. Continuing, we find that the next five symbols are de-
fined by the pseudo-op EQU. These symbols are entered into the symbol table
and the associated values given in the argument fields of the EQU statements are
entered. The location counter is further updated noting that the L instruction is
four bytes and the SR is two. (None of the pseudo-ops encountered affect the
location counter since they do not result i any object code.) Thus the location
counter has a value 12 when LOOP is encountered. Therefore, LOOP is entered
into the symbol table with a value 12. It is a relocatable variable and so noted.
Its length is 4 since it denotes a location that will contain a four-byte instruction.
All other symbols are entered in like manner.

In the same pass all literals are recognized and entered into a literal table. The
first literal is in statement 11 and its value is the address of the location that will
contain the literal, Since this is the first literal, it will have the first address of
the literal area. The LTORG pseudo-op (statement 23) forces the literal table to
be placed there, where the location counter is updated to the next double word
boundary which equals 48. Thus the value of "=A(DATA1)’ is its address, 48.
Similarly, the value of the literal F'5 is the next location in the literal table, 52
and so on.

Base table (showing only base registers in use)

1) After statement 2:

base contents
15 0
2 After statement 10:
base contents
15 6
3}  After statement 12:
base contents
13 8064

15 6
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The literal table and the symbol table being completed, we may initiate pass 2
(Fig. 3.4), whose purpose is to evaluate arguments and generate code. To gen-
erate proper address in an instruction, we need to know the base register. To
compute the offset, we need to know the content of the base register. The as-
sembler of course does not know the execution time value of the base register,
but it does know the value relative to the start of the program. Therefore, the
assembler enters as “‘contents” its relative value. This value is used to compute
the offset. Processing the USING pseudo-ops produces the base table shown

above.

For each instruction in pass 2, we create the equivalent machine language in-
struction as shown below. For example, for statement 3 we:

1. Look up value of SETUP in symbo! table {which is 6)
2. Look up value of op code in machine op table (binary op code for LA}

3. Formulate address

a. Determine base register — pick one that has content closest to value of
SETUP (register 15)
b. Offset = value of symbol — content of base register = 6-0=6
¢. Formulate address: offset {index register, base register) = 6(0,15)
4, Average output code in appropriate formula

Similarly, we generate instructions for the remaining code as shown below.

Corresponding
staterment no.

n
13
14
15
16
17
18
19
20
21
22
23

Generated "machine”™ code
Location Instruction/datum
0 LA 15,6 (0,15)
4 SR 4.4
6 L 13,42 (0,15)
10 SR 3.3
12 L 2,0 (313)
16 AR 42
18 A 2,46 [(0,15)
22 5T 2,58 {3,15)
26 A 3,50 (0,15)
30 c 3,54 (0,15)
34 BC 7.6 (0,15)
38 LR 14
40 BECR 15,14
48 8064
52 X'00000005"
b6 X'00000004'

60

8000



Generated "machine™ code [continued)

Corresponding
statement no. Location Instruction /datum
24 64 .
25 8064 X"00000015"
3.2.4 Algorithm

The flowcharts in Figures 3.10 and 3.11 describe in some detail an algorithm for
an assembler for an IBM 360 computer. These diagrams represent a simplification
of the operations performed in a complex assembler but they illustrate most of
the logical processes involved.

PASS 1: DEFINE SYMBOLS

The purpose of the first pass is to assign a location to each instruction and data-
defining pseudo-instruction, and thus to define values for symbols appearing in
the label fields of the source program. Initially, the Location Counter (LC) is set
to the first location in the program (relative address 0). Then a source statement
is read. The operation-code field is examined to determine if it is a pseudo-op; if
it is not, the table of machine op-codes (MOT) is searched to find a match for
the source statement’s opcode field. The matched MOT entry specifies the
length (2,4 or 6 bytes) of the instruction, The operand field is scanned for the
presence of a literal. If a new literal is found, it is entered into the Literal Table
(LT) for later processing. The label field of the source statement is then ex-
amined for the presence of a symbol. If there is a label, the symbol is saved in
the Symbol Table (ST) along with the current value of the location counter.
Finally, the current value of the location counter is incremented by the length
of the instruction and a copy of the source card is saved for use by pass 2. The
above sequence is then repeated for the next instruction.

The loop described is physically a small portion of pass 1 even though it is the
most important function. The largest sections of pass 1 and pass 2 are devoted to
the special processing needed for the various pseudo-operations. For simplicity,
only a few major pseudo-ops are explicitly indicated in the flowchart (Fig. 3.10);
the others are processed in a straightforward manner.

We now consider what must be done to process a pseudo-op. The simplest pro-
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pass 2
WRITE1
I

FIGURE 3.10 Detailed pass 1 flowchart
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!LC —LC + L

bytes 3and 4

FIGURE 3.11 Detailed pass 2 flowchart
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cedure occurs for USING and DROP, P'ass 1 is only concerned with pseudo-ops
that define symbols (labels) or affect the location counter; USING and DROP do
neither, The assembler need only save the USING and DROP cards for pass 2.

In the case of the EQU pseudo-op during pass 1, we are concerned only with
defining the symbol in the label field. This requires evaluating the expression in
the operand field. (The symbols in the operand field of an EQU statement must
have been defined previously.)

The DS and DC pseudo-ops can affect both the location counter and the
definition of symbols in pass 1. The operand field must be examined to de-
termine the number of by tes of storage required. Due to requirements for certain
alignment conditions (e.g., fullwords must start on a byte whose address is a
multiple of four), it may be necessary to adjust the location counter before de-
fining the symbol.

When the END pseudo-op is encountered, pass 1 is terminated. Before trans-
ferring control to pass 2, there are various “housekeeping” operations that must
be performed. These include assigning locations to literals that have been col-
lected during pass 1, a procedure that is very similar to that for the DC pseudo-
op. Finally, conditions are reinitialized for processing by pass 2.

PASS 2: GENERATE CODE

After all the symbols have been defined by pass 1, it is possible to finish the as-
sembly by processing each card and determining values for its operation code
and its operand field. In addition, pass 2 must structure the generated code into
the appropriate format for later processing by the loader, and print an assembly
listing containing the original source and the hexadecimal equivalent of the bytes
generated. The Location Counter is initialized as in pass I, and the processing
continues as follows.

A card is read from the source file left by pass 1. As in pass 1, the operation
code field is examined to determine if it is a pseudo-op; if it is not, the table of
machine op-codes (MOT) is searched to find a match for the card’s op-code field.
The matching MOT entry specifics the length, binary op-code, and the format-
type of the instruction. The operand fields of the different instruction format
types require somewhat different processing.

For the RR-format instructions, each of the two register specification ficldsis
evaluated. This evaluation may be very simple, as in:

AR 23

or more complex, as in:

MR EVEN ,EVEN +1
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The two ficlds are inserted into their respective four-bit fields in the second byte
of the RR-instruction.

For RX-format instructions, the register and index fields are evaluated and
processed in the same way as the register specifications for RR-format instruc-
tions, The storage address operand is evaluated to generate an Effective Address
(EA). Then the base register table (BT) must be examined to find a suitable base
register (B) such that D = EA - ¢(B) < 4096. The corresponding displacement
can then be determined. The 4-bit base register specification and 12-bit displace-
ment fields are then assembled into the third and fourth bytes of the ifstruction.
Only the RR and RX instruction types are explicitly shown in the flowchart
(Fig. 3.11). The other instruction formats are handled similarly.

After the instruction has been assembled, it is put into the necessary format
for later processing by the loader. Typically, several instructions are placed on a
single card (see Chapter 5 for a more detailed discussion). A listing line contain-
ing a copy of the source card, its assigned storage location, and its hexadecimal
representation is then printed. Finally, the location counter is incremented and
processing is continued with the next card. _

As in pass 1, each of the pseudo-ops calls for special processing. The EQU
pseudo-op requires very little processing in pass 2, because symbol definition
was completed in pass 1. It is necessary only to print the EQU card as part of the
printed listing.

The USING and DROP pseudo-ops, which were largely ignored in pass I, re-
quire additional processing in pass 2. The operand fields of the pseudo-ops
are evaluated; then the corresponding Base Table entry is either marked as
available, if USING, or unavailable, if DROP. The base table is used extensively
in pass 2 to compute the base and displacement fields for machine instructions
with storage operands,

The DS and DC pseudo-ops are processed essentially as in pass 1. In pass 2,
however, actual code must be generated for the DC pseudo-op. Depending upon
the data types specified, this involves various conversions (e.g., floating point
character to binary representation) and symbol evaluations (e.g., address con-
stants).

The END pscudo-op indicates the end of the source program and terminates
the assembly. Various “housekeeping™ tasks must now be performed. For ex-
ample, code must be generated for any literals remaining in the Literal Table

(L),

3.25 Look for Modularity

We now review our design, looking for functions that can be isolated. Typically,
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such functions fall into two categories: (1) multi-use and (2) unique.

In the flowcharts for pass 1 (Fig. 3.10) and pass 2 (Fig. 3.11), we exami~-
each step as a candidate for logical separation. Likely choices are identified in
the flowcharts by the shape

¥

Function

MName

v

where “name” is the name assigned to the function (e.g., MOTGET, EVAL,
PRINT).

Listed below are some of the functions that may be isolated in the two passes.

P:"LSS 1:

1. READ1 ———— Read the next assembly source card.

2. POTGET e Search the pass 1 Pseudo-Op Table (POT)
for a match with the operation field of the
current source card.

3. MOTGET? — Search the Machine-Op Table (MOT) fora
match with the operation of the current
source card.

4. STSTO ——— Store a label and its associated value into the
Symbol Table (ST). If the symbol is already
in the table, return error Indication (multk
ply-defined symbaol).

5. LTSTO  — Store a literal into the Literal Table (LT);
do not store the same literal twice.

6. WRITE1 — Virite a copy of the assembly source card on
a storage device for use by pass 2.

7. DLENGTH — Scan operand field of DS or DC pseudo-op
todetermine the amount of storage required.

8. EVAL —_— Evaluate an arithmetic expression consisting

of constants and symbols {e.g. 6, ALPHA,
BETA + 4 * GAMMAJ).
9, STGET — Search the Symbol Table IST) for the entry
corresponding to a specific symbol (used by
STSTO, and EVAL).
10. LITASS - Assign storage locations to each literal in the
liweral table {may use DLENGTH).
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PASS 2:
1. READ2 _ Read the next assembly source card from
the file copy.
2. POTGET2 — Similar to POTGET1 (search POT).
3. MOTGET2 —_— Same as in pass 1 (search MOT}.
4, EVAL —_— Same as in pass 1 (evaluate expressions),
5. PUNCH —_— Convert generated instruction to card for-
mat; punch card when it is filled with data,
6. PRINT e Convert relative location and generated code
to character format: print the line along
with copy of the spurce card.
7. DCGEN —_— Process the fields of the DC pseudo-op to
generate object code (uses EVAL and
PUNCH]).
8. DLENGTH —_— Same as In pass 1.
9. BTSTO —_— Insert data into appropriate entry of Base
Table (BT).

10. BTDROP —_— Insert "unavallable” Indicator into appro-
priate entry of BT.

11. BTGET e Convert effective address into base and dis
placement by searching Base Table (BT) for
evailable base registers.

12. LTGEN E Generate code for literals {uses DCGEN).

Each of these functions should independently go through the entire design
process (problem statement, data bases, algorithm, modularity, etc.). These
functions can be implemented as separate external subroutines, as internal sub-
routines, or as sections of the pass | and pass 2 programs. In any case, the ability
to treat functions separately makes it much easier to design the structure of the
assembler and each of its parts. Thus, rather than viewing the assembler as a
single program (of from 1,000 to 10,000 source statements typically), we view it
as a coordinated collection of routines each of relatively minor size and com-
plexity.

We will not attempt to examine all of these functional routines in detail since
they are quite straightforward. There are two particular observations of interest:
(1) several of the routines involve the scanning or evaluation of fields (e.g.,
DLENGTH, EVAL, DCGEN); (2) several other routines involve the processing of
tables by storing or searching (e.g., POTGETI, POTGET2, MOTGET1, MOT-
GET2, LTSTO, STSTO, STGET). The section of this book dealing with the
implementation of compilers (Chapter 8) will discuss techniques for parsing
fields and evaluating arithmetic expressions. many of which are also applicable
to the functional modules of the assembler.
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Table processing, as discussed in regard to assembler implementation, is found
in almost every type of system program, including compilers, loaders, file sys-
tems and operating systems, as well as in many application programs. The general
topic of processing data structures and data organizations plays a crucial role in
systems programming. Since storing and searching for entries in tables often
represent the largest expenditures of time in an assembler, the next section
examines some techniques for organizing these tasks.

3.3 TABLE PROCESSING: SEARCHING AND SORTING

THE PROBLEM

It is often necessary to maintain large tables of information in such a way that
items may be moved in and out quickly and easily. Let us consider the re-
stricted case of a table whose entries are made on the basis of a keyword, such as
the symbol table maintained by an assembly program.

The assembler symbol table is composed of multiple-word entries in a fixed
format. In the table is the symbol name, its value, and various attributes, such as
relocatability. The symbol name is the key, the string distinguishing each entry
from the others that is matched during a search. Each symbol has a correspond-
ing location, its value, (Analogously, in a telephone directory a subscriber’s name
is the key and his telephone number is the value.) There are two important
things to notice about the assembler symbol table:

1. The symbolsare placed in the table in the order in which they are gathered,
so the table is unlikely to be ordered.

2. The symbols and their associated data are placed in consecutive locations
in the table. They are all packed starting at one end of the table.

These two statements are true of most tables constructed one entry at a time
without an encoding of addresses.

SEARCHING A TABLE

The problem of searching is as follows: given a keyword, find an entry in the
table that matches, and return its value. The special problems — more than one
entry with the same keyword, and no entry found — require individual treat-
ment depending on the function of the table. In the case of an assembler’s sym-

bol table, these special cases correspond to multiply defined symbols and ur-
defined symbols, |
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3.3.1 Linear Search

For a table in which the items have not been ordered (by sorting or otherwise),
one way to look for a given keyword is to compare exhaustively every entry in
the table with the given keyword. This is known as a linear search and is
demonstrated in Figure 3.12.

LA 4,SYMTBL Start of table
LoopP cLC 018,4), SYMBOL Compare symbols
BE SYMFOUND Equal
A 4=F14" Move to next symbaol
c 4, LAST Are we at end of table
BNE LOOP Loop back if not
NOTFOUND {Symbol not found)
SYMFOUND {Symbol found)
SYMBOL Ds CL14 Symbol to be searched for, character
string of length 14
SYMTBL DS 100CL14 Symbol table space (14 bytes per entry)
LAST DC Al——) Address of current end of symbol table

FIGURE 3.12 Sample linear search program

Here the symbols and values are stored in adjacent locations in an array named
SYMTBL and defined by a DS. The word LAST contains the location of the
current *“end of table.”

The loop described will compare the keyword (in the location SYMBOL) with
each successive item in the table. When a match is found, exit is made via
SYMFOUND,; if no match is found by the end of the table, execution will go to
location NOTFOUND.

On the average we would search half the table, using a linear search, before
finding an entry. Therefore, the average length of time to find an entry is

N
Tlavg) = [overhead essociated with entry probe] x 3

Such a linear search procedure is fine for short tables and has the great virtue
of simplicity, but for long tables it can be very slow. It is comparable to looking
up a word in a dictionary whose contents are not ordered. It would provide
little comfort to know that on the average you only have to search half of the
dictionary.
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3.3.2 Binary Search

When consulting a dictionary, we don’t search every page for the definition of a
word. We make a vague estimate of the location of our word in the dictionary
(i.e., page number) and we open to that page. If the word is not on it, we go
either to the right or left a number of pages and check again. We know which
way to go because we are aware of an important property possessed by the
dictionary, namely, it is ordered (B follows A, and S comes way after G). Such
ordering of letters is called a lexicographical order.

A more systematic way of searching an ordered table is: Start at the middle of
the table and compare the keyword with the middle entry. The keyword may be
equal to, greater than, or smaller than the item checked. The next action taken
for each of these outcomes is as follows:

1. If equal, the symbol is found.
2. If greater, use the top half of the given table as a new table to search.
3. If smaller, use the bottom half of the table.

This method, effectively divides the table in half on every probe, system-
atically bracketing the item searched for. The search is terminated with a ‘not
found’ condition when the length of the last subtable searched is down to 1 and
the item has not been found.

As an example of this type of search, consider a table of 15 items (Fig. 3.13).
Suppose for example that we are searching for item IF (for convenience the
values are not shown). We first compare IF with the middle item LO and find
that IF must be in the top half of the table; a second comparison with the
middle item in this half cf the table, FU, shows IF to be in the second quarter;
a third comparison with /W shows IF to be in the third eighth of the table (i.e.,
between items 4 and 6), and a final comparison is made with the item in posi-
tion 5. A comparison failure on the fourth probe would have revealed that the
item did not exist in the table.

This bracketing method of searching a table should be clear in principle al-
though its implementation may be a little more complicated. It is known as a
binary search or a logarithmic search, and it should be clear that since the ef-
fective table is halved on each probe, a maximum of about log,(N) probes is
required to search it.

Comparing the times of the linear search with those of the binary search,
where A and B are overhead times associated with each table probe, we obtain

T (tin}) = As=N
T (bin) = Belogy(N);

Since the binary search is more complicated, we can expect the constant B to
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Number Symbol Probe 1 Probe 2 Probe 3 Probe 4
1 AL
2 EX
3 FN
4 FU L IF > FU
5 iF IF = |F
6 w IF < IW
7 LE
8 LO IF <LO |
g NC
10 oP
1 OR
12 RD
13 RN
14 TE
15 Tl

FIGURE 3.13 Illustration of binary search

be considerably larger than A. Thus, a plot of T versus N for the two searching
methods might look like Figure 3.14.

Linear

Binary

Time

Table size

FIGURE 3.14 Search time versus N

Thus for small N we should use linear search while for large N we should use a
binary search. The crossover point is generally around 50 - 100 items for
machines like the 360. For othcr computers the number might vary from 10 to
1,000 depending on the available hardware.

Figure 3.15 depicts a sample binary search program. Since the binary process
continually divides by 2, for efficiency and simplicity we assume table size isa
power of 2 (e.g., 2,4,8,16, .. .etc.). This condition is easily attained by merely
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adding sufficient “‘dummy” entries to the end of the table (e.g., entries for the
symbol ZZZZ ZZZ7).

L 55SIZE Set table size (2N «14 bytes)
SRL 51 Divide by 2 by shifting
LR 65 Copy into register 6
LOCP SRL 6,1 Divide table size in half again
LA 4SYMTBLIE) Set eddress of table entry
CLC 0(8.4) SYMBOL Compare with symbol
BE FOUND Symbals match, entry found
BH TOOHIGH SYMTBL entry > SYMBOL
TOOLOW AR 56 Move higher in table
B TESTEND
TOOHIGH SR 56 Move lower in table
TESTEND LTR 6,6 Test if remaining size is 0
BNZ LOOP No, look at next entry
NOTFOUND {Symbol not found)
FOUND {Symbol found)

FIGURE 3.16 Sample binary search program

3.3.3 Sorting

It seems clear that for some purposes a binary search is more efficient than a
linear one; but such a search requires an ordered table, which may not be easily
obtainable. The Machine-Op Table (MOT) and Pseudo-Op Table (POT) of the
assembler are fixed tables that can be manually organized so as to be ordered.
Normally, however, a table is not generated in an ordered fashion; indeed, the
symbol table created by an assembler is usually far from ordered, the symbols
being stored in the exact order in which they appear in label fields.

3.3.3.1 INTERCHANGE SORT

We now address the problem of how to sort a table. There are a number of ways
of doing this, some simple and some complicated. Figure 3.16 is a section of
coding that performs an interchange sort (also known as a bubble sort, a sinking
,ort or a sifting sort). This simple sort takes adjacent pairs of items in the table
and puts them in order (interchanges them) as required. Such a sorting algorithm
is not very efficient, but it is simple. Let us take an example to see how it works.
Consider the table of 12 numbers shown in Figure 3.17; each column represents
cne pass over the numbers interchanging any two adjacent numbers that are out
of order. This particular table is completely sorted in only seven passes over the
data. In the worst case, N-1 (here, 11) passes would be necessary. The inter-
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change sort is thus able to exploit whatever natural order there may be in the
table. Moreover, on each pass through the data at least one item is added to the
bottom of the list in perfect order (in this case the 31 first, thea 27, then 26,
etc.). Hence, the sort could be made more efficient by (1) shortening the portion
of the sorted list on each pass; and (2) checking for early completion. Such an
optimized sort should require roughly N+(N-1)/2 comparisons and thus should
take a time roughly proportional to N2,

LOOP cLC
BNH
MvC
MVC
MvC

OK A

BNE

SYMTBL Ds

DS
TEMP DS
LAST oC

BLAST
4SYMTBL
0(8,4),14(4)
oK
TEMP(14),0(4)
0(14,4),14(4)
14(14,4) TEMP
4,=F14'
4,LAST

LOOP

OF
100CL 14
CL14

Al=—-)

Compare adjacent symbols — 8 bytes
Correct order
Switch entries

- &

Move to next entry

15 it last entry
Mo

Symbol table

14 bytes per entry

Temporary entry

Location of next free entry in table

FIGURE 3.16 Interchange sort example in 360 assembly code

Unsorted
List

Order of C
comparison

\ 4 11

Ist 2nd
pass

05

19

26
2 16
16 02
02 09
0 1
11 21.
21 27
31 31

FIGURE 3.17 Ilustration of interchange sort

3rd

{.'I

4th Sth oth fthand
final pass

D‘I 01 13 o1
05 .(U 02
1 3 1 02 0s
6 Cu 09 09
02 09 " 11
C 1. 13 13
1 16 16 16
19 19 19 19
21 21 21 21
26 26 26 26
27 27 27 27
31 31 31 31

We would like an even better sorting method which requires less time. Soiting
methods fall into one of three basic types: (1) distributive sorts which sort by
examining entries cne digit at a time; (2) comparative sorts which sort by
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companng keywords two at a time; and (3) address calculation sorts that
transform a key into an address close to where the symbol is expected to end
up.
3.3.3.2 SHELLSORT
A fast comparative sort algorithm is due to D.L. Shell (see bibliography, Chapter
10) and is referred to as a Shell sort. It approaches optimal performance for a
comparative type of sort. The Shell sort is similar to the interchange sort in that
it moves data items by exchanges. However, it begins by comparing items a
distance *'d” apart. This means that items that are way out of place will be
moved more rapidly than a simple interchange sort. In each pass the value of
d is decreased usually;
d.+1

dyy =5
1 every pass, each item is compared with the one located d positions further in
the vector of items. If the higher item has a lower value, an exchange is made.
The sort continues by comparing the next item in the vector with an item d
locations away (if one exists). If an exchange is again indicated, it is made and
the comparison is tried again with the next entry. This proceeds until no lower
items remain, This process is called bubbling; if you think of low valued items
floating to the top, the behavior in the subprocess is like that of a bubble in a
water tank. After bubbling can no longer occur with a fixed value of d, the
process begins again with a new d.

It is difficult to predict the time requirements of the Shell sort since it is hard
to show the effect of one pass on another. It should be obvious that if the above
method of calculating d is used, the number of passes will be approximately
log,(d) since bubbling when d=1 will complete the sort. Empirical studies have
shown that the Shell sort takes approximately B+N#(log,N)? units of time for
an N element vector. The constant of proportionality B is fairly small, so for
small N the Shell sort will out-perform the radix exchange sort described in
section 3.3.3.4 (N up to 1,000). An example of a Shell sort is given in Figure
3.18.

3.3.3.3 BUCKET SORT

One simple distributive sort is called the radix sort or bucket sort. The sort in-
volves examining the Jeast significant digit of the keyword first, and the item is
then assigned to a bucket uniquely dependent on the value of the digit. After all
items have been distributed, the “buckets” items are merged in order and then
the process is repeated until no more digits are left. A number system of base P
Tequires P buckets,
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Pazs 1

(d4 =6}
19 - 19
13 T‘ 13
05 02
27 dy, *09
o1 01
26 l *21
3 =£- 31
16 16
02 *05
09 27
1 1
21 =26

* = Exchange

** = Dual exchange

*** = Tripie exchange

FIGURE 3.18 Example of a Shell sort

Pass 2
{dy = 3)
-== *09
;F M
2 02
_‘I’._ '19
=11
*05
—_——  *27
.'13
=21
—_— '3
*16
26

Consider for example the radix sorting of the numbers as shown in Figure
3.19. You should be able to figure out rather quickly how this sort works. In
fact, this is precisely the method used on a card sorting machine. However,
there are serious disadvantages to using it internally on a digital computer (or on
tape sorts for that matter): (1) it takes two separate processes, a separation and a
merge; and (2) it requires a lot of extra storace for the buckets. However, this

Original

table
19
13
05
27
o
26
3
16
02
09
1
21
T

Separate, based

on last digit

First
distribution

0)

101,31,11.21

2) 02
313
4)

6) 05

6) 26,16
7) 27

g8}

9) 19,09

Merge

o1
31
1"
21
02
13
05
26
16
27
19
09
T

Separate, based

on first digit

FIGURE 3.19 Demonstration of radix sorting

Second
distribution

0) 01,02,95,09
1) 11,13,16,19

2) 21,26,27
3) 31

4)

)

6}

7}

8}

9)

Final
merge

o1
02
05
09
1"
13
16
19
21
26
27
31
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last disadvantage can be overcome by chaining records within a logical “bucket”
rather than pre-allocating maximum size buckets.

3.3.3.4 RADIX EXCHANGE SORT

A considerably better distributive sort is the radix exchange sort which is applic-
able when the keys are expressed (or are expressable) in binary. Sorting is ac-
complished by considering groups with the same (M) first bits and ordering that
group with respect to the (M+1)st bit. The ordering of a group on a given bit is
accomplished by scanning down from the top of the group for a one bit and up
from the bottom for a zero bit; these two are exchanged and the sort continues.
This algorithm requires the program to keep up with a large number of groups
and, coded in a bad form, could require an additional table N long. However,
with optimal coding it is possible to keep track of the groups by simply monitor-
ing the top of the table and a list of break points, one for each bit of the key-
word. (Thus with 32 bit words a table of only 33 entries is required.) An ex-
ample of the radix exchange sort is shown in Figure 3.20. It is a rather com-
plicated example and somewhat difficult to understand — qualities characteristic
of most distributive sorts.

If the sort algorithm is programmed to quit sorting when a group contains only
one item, then the time required for the radix exchange sort is proportional to
Nxlog(N) as compared to N#log,(K) for the bucket sort (here K is the maximum
key size and p is the radix). Note that the radix exchange sort does not require
extra table space for “buckets.”

3.3.3.5 ADDRESS CALCULATION SORT

The last example is of the address calculation sort. This can be one of the fastest
types of sorts if enough storage space is available. The sorting is done by trans-
forming the key into an address in the table that “represents” the key. For ex-
ample, if the key were four characters long, one method of calculating the
appropriate table address would be to divide the key by the table Jength in items,
multiply by the length of an item and add the address of the table. If the table
length is a power of 2, tten the division reduces to a shift. This sort would take
only N* (time to calculate address) if it were known that no two keys would be
assigned the same address. However, in general, this is not the case and several
keys will be reduced to the same address.

Therefore, before putiing an item at the calculated address it is necessary to
first check whether that location is already occupiced. If so, the item is compared
with the one that is already there, and a linear search in the correct direction is
performed to find the correct place for the new item. If we are lucky, there will
be an empty space in which to put the items in order. Otherwise, it will be
necessary to move some previous entries to make room. It is the search and
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moves that increase the time required for this type of sort.

The time required for the sort can be decreased by making the table bigger
than the number of values it will be required to hold. This will provide more
open spaces in the table and create less likelihood of address conflicts, long
searches or long moves. With a table about 2.2 times the size of the data to
sort, this approach (aliowing for a final pass to compact the table) uses time
proportional to N, making it the fastest type of sort.

An example of an address calculation sort is given in Figure 3.21. The table is
of size 12; since it is known that the maximum key is less than 36, the address
transformation is to divide the key by 3 and take the integer part (e.g., 19/3=6
+ 1/3 so use 6). A “*” indicates a conflict between keys, and an arrow indicates
when a move is necessary and in which direction. The associated addresses cal-
culated are given in the second row,

3.3.3.6 COMPARISON OF SORTS

We have discussed five different kinds of sorts: interchange, radix, radix-
exchange, Shell, and address calculation. The characteristics for each of these
sorts are presented below:

Tyvpe Average time (approx)  Extra storage (wasted space)
Interchange AsN2 None
Shell B+N=(logz(N))2 None
Radix C+N+log, (K) N+p
Radix exchange D«Ne«logo(N) k+1
Address calculation EsN 2.2+N lapproximata)

where N is the table size, K is the maximum key size (32 generally, on the 360),
and p is the radix of the radix sort. A, B, C, D, and E are the constants of
proportionality.

Comparative sorts can take a time from roughly proportional to N2 down to
roughly proportional to N=log(N). They are insensitive to the distribution of
magnitudes; they take good advantage of any natural order in the data; and they
generally require no extra storage.

Distributive sorts usually require a time roughly proportional to N*lugp (K)
(where p is the radix of the number system employed and K is the maximum
size of the key) because there are N numbers with digits to check and there are
logp (K) digits per number. However, the distributive sorts are sensitive to the
distribution of magnitudes of the entries; they can make scant use of any natural
order in the data; and they quite often requiie considerable additional storage.

Address calculation sorts usually operate quite fast on the first elements
entered in the table since address conflicts are unlikely. However, as the table
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Data

number = 1 2 3 4 5 6 7 8 91 10 11 12
Data = 19 13 (06 {27 | O 26 | A 16 | 02 | 09 1 21
Calculated

add:ess = B 4 1 9 0 8 |10 6 0 3 3 7
Table

0 —— == == == 101 |OT |OT | OV |*0O1 ] O] O1 | O
1 - |=— |05 |05 |05 |05 | 05| 05 lﬂ‘z 02 | 02| 02
2 — == — == | — | == | — W05 |"05 | 05 | 05
3 — = | =—= =~ | == |== ] == ]| =] —] 09 |*09 | 09
4 - 113 |13 |13 |13 |13 | 13| 13| 13} 3|1t | 1N
5 —l— ]| | |- 6] 16| 16 ||13 | 13
6 19 (19119 |19 |19 (19 |19] 19|19} 19 liﬁ 16
7 —— | == | == | == == | == == | == = 18 [ *1D
8 —|—=|=—=|——|— |26 | 26| 26 | 26 | 26 | 26 || 21
8 — |- == | 27 | 27 |27 | 27 | 27 | 27 | 27 | 27 l?ﬁ
10 _— |- ||| || 3| 31| 31| 31| 31 |27
n —_—_ |- -] |- |- ]| == — ]| - [¥3

FIGURE 3.21 Example of address calculation sort

fills up, the time to add a new entry increases exponentially.

In summary, the interchange sort is by far the simplest and should on that
account be used whenever speed is not crucial. The radix sort is efficient in iime
but requires an inordinate amount of space so that it is seldom used on a com-
puter; for card sorting, where space is no problem, this is a good sort. The radix-
exchange sort is very fast and requires very little extra storage (roughly 32 words
on the 360), but it is difficult to program and debug. The address calcdation
sort requires the most space to be efficient, but if such space is available, it is
faster than any other method.

3.3.4 Hash or Random Entry Searching

Binary search algorithms, while fast, can only operate on tables that are ordered
and packed, i.e., tables that have adjacent items ordered by keywords. Such
search procedures may therefore have to be used in conjunction with a sort
algorithm which both orders and packs the data.

Actually, it is unnecessary for the table to be ordered and packed to achieve
good speed in searching. As we shall presently see, it is possible to do consid-
erably better with an unpacked, unordered table, provided it is sparse, i.e., the
number of storage spaces allocated to it exceeds the number of items to be
stored.

We have already observed that the address calculation sort gives good results
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with a sparse table. However, having to put elements in order slows down the
process. A considerable improvement can be achieved by inserting elementsin a
random (or pseudo-random) way. The random entry-number K is generated
fiom the key by methods similar to those used in address calculation. If the Kth
position is void, then the new element is put there; if not, then some other cell
must be found for the insertion.

The first problem is the generation of a random number from the key. Of
course, we don’t really want a random number in the sense that a given keyword
may yield one position today and another tomorrow. What we want is a pro-
cedure that will generate pseudo-random, consistent table positions for key-
words. One fairly good prospect for four character EBCDIC keywords is to
simply divide the keyword by the table length N and use the remainder. This
scheme works well as long as N and the key size (32 bits in our case) have no
common factors, For a given group of M keywords, the remainders should be
fairly evenly distributed over 0-{(N-1). Another method is to treat the keyword
as a binary fraction and multiply it by another binary fraction:

L 1SYMEOL
M 0RHO

The result is a 64-bit product in registers 0 and 1. If RHO is chosen carefully, the
low order 31 bits will be evenly distributed between O to 1, and a second
multiplication by N will generate a number uniformly distributed over 0--(N-1).
This is known as the power residue method. It has the advantage that the
31-bit first result can be used to generate gnother uniformly distributed number
(by multiplying again by RHO) in the event that the first probe of the table is
unsuccessful.
The second problem is the procedure to be followed when the first trial entry

results in a filled position. There are a number of methods of resolving this
problem, three of which will be covered here. These are:

1. Random entry with replacement A sequence of random numbers is gerer-
ated from the keyword (such as by the power residue method). From each of
these a number between 1 and N is formed and the table is probed at that posi-
tion. Probings are terminated when a void space is found. Notice that the random
numbers generated are independent and it is perfectly possible (but not likely)
to probe the same position twice.

2. Random entry without replacement This is the same as above except that
any attempt to probe the same position twice is bypassed. This method holds
advantage over the above only when probes are expensive, e.g., for files on tape
or drum.
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3. Open addressing 1f the first probe gives a position K and that position is
filled, then the next location K+1 is probed, and so on until a free position is
found. If the search runs off the bottom of the table, then it is renewed at the
top (i.e., the table is considered to be cyclic).

Of these three perhaps the open addressing scheme is the simplest. An ex-
ample here should serve to illustrate this method.

Consider a table of 17 positions (N=17) in which the following twelve numbers
are to be stored: 19, 13, 05, 27, 01, 26, 31, 16,02, 09, 11, 21. These items are
to be entered in the table at a position defined by the remainder after division
by 17; if that position is filled, then the next position is examined, etc. Figure
3.22 shows the progress of entry for the 12 items; notice the resolution of con-
flicts on items G2, 09, and 11. The column ‘Probes to find’ gives the number of
probes necessary to find the corresponding items in the table; thus it takes 3
probes to find items 09, and 1 to find item 26. The column ‘Probes to find not’
gives the number of probes necessary to determine that an item is not in the
table; thus the search for the number 54 would give an initial position of 3 and it
would take 4 probes to find that the item is not present. The item is known not
to be present when a void position is encountered (position 6 in this case).
Notice here that the following figures hold-

Length of table N =17

Items stored M =12

Density e = 1217 = 0,705
Probes to store Tg =16

Average probes to find Tp = 16/12 = 1.33
Average probes to find not Tn = 54016 = 3.37

The comparative times for a packed table, using radix exchange sort and binary
search, are as follows:

Probes to store and sort Ty = M+Melog(M) = 65
Average probe to find Tp = logz(M) = 3.58
Average probe to find not Tp = loga(M) = 3.58

Thus, it would appear that the open addressing scheme holds considerable
advantage in speed, but it pays for this by having a table nearly 50 percent longer
than necessary. Furthermore, the table cannot be compressed after its initial
assignment nor can the assigned area be easily shared among several tables. One
final very serious disadvantage is that it is very difficult to delere any item from
the table — one cannot simply zero out that location because this might break
the addressing chain.

It is interesting to consider the expected probe time, ete., for the random entry
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Position ftem Probes to find Probes to find not
0 1
1 01 1 6
2 19, 02* 1 ]
3 02 2 4
4 21 1 3
5 05 1 2
6 1
7 1
8 1
g9 26, 09* 1 7

10 27, 09" 1 6
1" 09, 11" 3 5
12 1 2 4
13 13 1 3
14 31 1 2
15 1
16 16 1 1

16 54

FIGURE 3.22 Fxample of open addressing

metheds, The simpler method to evaluate is random entry with replacement.
Consider a table of N positions with K-1 elements already inserted. We define
density p = (K-1)/N.

1
Probes to store Kth: L, = —
P

Probestosearch: T, =

P log

1
* 1o
These figures are very interesting and illustrate well the tradeoff between search
time and table density.

For open addressing the figures are considerably different. As the table be-
comes denser, the probability of long strings becomes greater so that more
probes are required, In fact, it can be shown that the number of probes to find
is roughly

L= .

=1+2. L
Tplo) = 1 + 3 i

and that the time to determine that an item is not in the table is roughly

mw=%
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