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To Allen Gerry and Neil Tame,
who took the time

to give a group of kids

some really cool problems



There once was a classical theory,

Of which quantum disciples were leery.
They said, “Why spend so long

On a theory that’s wrong?”’

Well, it works for your everyday query!
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Preface

This book grew out of Harvard University’s honors freshman mechanics course.
Itis essentially two books in one. Roughly half of each chapter follows the form of
anormal textbook, consisting of text, along with exercises suitable for homework
assignments. The other half takes the form of a “problem book,” with all sorts
of problems (and solutions) of varying degrees of difficulty. I’ve always thought
that doing problems is the best way to learn, so if you’ve been searching for a
supply to puzzle over, I think this will keep you busy for a while.

This book is somewhat of a quirky one, so let me say right at the start how I
imagine it being used:

e As the primary text for honors freshman mechanics courses. My original motivation
for writing it was the fact that there didn’t exist a suitable book for Harvard’s freshman
course. So after nine years of using updated versions in the class, here is the finished
product.

e As a supplementary text for standard freshman courses for physics majors. Although
this book starts at the beginning of mechanics and is self contained, it doesn’t spend
as much time on the introductory material as other freshman books do. I therefore
don’t recommend using this as the only text for a standard freshman mechanics course.
However, it will make an extremely useful supplement, both as a problem book for all
students, and as a more advanced textbook for students who want to dive further into
certain topics.

e Asasupplementary text for upper-level mechanics courses, or as the primary text which
is supplemented with another book for additional topics often covered in upper-level
courses, such as Hamilton’s equations, fluids, chaos, Fourier analysis, electricity and
magnetism applications, etc. With all of the worked examples and in-depth discussions,
you really can’t go wrong in pairing up this book with another one.

e As a problem book for anyone who likes solving physics problems. This audience
ranges from advanced high-school students, who I think will have a ball with it, to
undergraduate and graduate students who want some amusing problems to ponder, to
professors who are looking for a new supply of problems to use in their classes, and
finally to anyone with a desire to learn about physics by doing problems. If you want,
you can consider this to be a problem book that also happens to have comprehensive

xiii
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introductions to each topic’s set of problems. With about 250 problems (with included
solutions) and 350 exercises (without included solutions), in addition to all the examples
in the text, I think you’ll get your money’s worth! But just in case, I threw in 600 figures,
50 limericks, nine appearances of the golden ratio, and one cameo of e~ 7.

The prerequisites for the book are solid high-school foundations in mechanics
(no electricity and magnetism required) and single-variable calculus. There are
two minor exceptions to this. First, a few sections rely on multivariable calcu-
lus, so I have given a review of this in Appendix B. The bulk of it comes in
Section 5.3 (which involves the curl), but this section can easily be skipped on
a first reading. Other than that, there are just some partial derivatives, dot prod-
ucts, and cross products (all of which are reviewed in Appendix B) sprinkled
throughout the book. Second, a few sections (4.5, 9.2-9.3, and Appendices D
and E) rely on matrices and other elementary topics from linear algebra. But a
basic understanding of matrices should suffice here.

Abrief outline of the book is as follows. Chapter 1 discusses various problem-
solving strategies. This material is extremely important, so if you read only one
chapter in the book, make it this one. You should keep these strategies on the
tip of your brain as you march through the rest of the book. Chapter 2 covers
statics. Most of this will likely be familiar, but you’ll find some fun problems.
In Chapter 3, we learn about forces and how to apply /' = ma. There’s a bit of
math here needed for solving some simple differential equations. Chapter 4 deals
with oscillations and coupled oscillators. Again, there’s a fair bit of math needed
for solving linear differential equations, but there’s no way to avoid it. Chapter 5
deals with conservation of energy and momentum. You’ve probably seen much
of this before, but it has lots of neat problems.

In Chapter 6, we introduce the Lagrangian method, which will most likely be
new to you. It looks rather formidable at first, but it’s really not all that rough.
There are difficult concepts at the heart of the subject, but the nice thing is that the
technique is easy to apply. The situation here is analogous to taking a derivative
in calculus; there are substantive concepts on which the theory rests, but the act
of taking a derivative is fairly straightforward.

Chapter 7 deals with central forces and planetary motion. Chapter 8 covers
the easier type of angular momentum situations, where the direction of the
angular momentum vector is fixed. Chapter 9 covers the more difficult type,
where the direction changes. Spinning tops and other perplexing objects fall into
this category. Chapter 10 deals with accelerating reference frames and fictitious
forces.

Chapters 11 through 14 cover relativity. Chapter 11 deals with relativistic
kinematics — abstract particles flying through space and time. Chapter 12 covers
relativistic dynamics — energy, momentum, force, etc. Chapter 13 introduces the
important concept of “4-vectors.” The material in this chapter could alternatively
be put in the previous two, but for various reasons I thought it best to create a



Preface

separate chapter for it. Chapter 14 covers a few topics from General Relativity.
It’s impossible for one chapter to do this subject justice, of course, so we’ll just
look at some basic (but still very interesting) examples. Finally, the appendices
cover various useful, but slightly tangential, topics.

Throughout the book, I have included many “Remarks.” These are written
in a slightly smaller font than the surrounding text. They begin with a small-
capital “Remark” and end with a shamrock (&). The purpose of these remarks is
to say something that needs to be said, without disrupting the overall flow of the
argument. In some sense these are “extra” thoughts, although they are invariably
useful in understanding what is going on. They are usually more informal than
the rest of the text, and I reserve the right to use them to occasionally babble
about things that I find interesting, but that you may find tangential. For the most
part, however, the remarks address issues that arise naturally in the course of the
discussion. I often make use of “Remarks” at the ends of the solutions to problems,
where the obvious thing to do is to check limiting cases (this topic is discussed in
Chapter 1). However, in this case, the remarks are not “extra” thoughts, because
checking limiting cases of your answer is something you should always do.

For your reading pleasure (I hope!), I have included limericks throughout the
text. I suppose that these might be viewed as educational, but they certainly don’t
represent any deep insight I have into the teaching of physics. I have written them
for the sole purpose of lightening things up. Some are funny. Some are stupid.
But at least they’re all physically accurate (give or take).

As mentioned above, this book contains a huge number of problems. The ones
with included solutions are called “Problems,” and the ones without included
solutions, which are intended to be used for homework assignments, are called
“Exercises.” There is no fundamental difference between these two types, except
for the existence of written-up solutions. I have chosen to include the solutions
to the problems for two reasons. First, students invariably want extra practice
problems, with solutions, to work on. And second, I had a thoroughly enjoyable
time writing them up. But a warning on these problems and exercises: Some are
easy, but many are very difficult. I think you’ll find them quite interesting, but
don’t get discouraged if you have trouble solving them. Some are designed to be
brooded over for hours. Or days, or weeks, or months (as I can attest to!).

The problems (and exercises) are marked with a number of stars (actually
asterisks). Harder problems earn more stars, on a scale from zero to four. Of
course, you may disagree with my judgment of difficulty, but I think that an
arbitrary weighting scheme is better than none at all. As a rough idea of what I
mean by the number of stars, one-star problems are solid problems that require
some thought, and four-star problems are really, really, really hard. Try a few
and you’ll see what I mean. Even if you understand the material in the text
backwards and forwards, the four-star (and many of the three-star) problems will
still be extremely challenging. But that’s how it should be. My goal was to create
an unreachable upper bound on the number (and difficulty) of problems, because
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it would be an unfortunate circumstance if you were left twiddling your thumbs,
having run out of problems to solve. I hope I have succeeded.

For the problems you choose to work on, be careful not to look at the solution
too soon. There’s nothing wrong with putting a problem aside for a while and
coming back to it later. Indeed, this is probably the best way to learn things. If
you head to the solution at the first sign of not being able to solve a problem,
then you have wasted the problem.

ReMARK: This gives me an opportunity for my first remark (and first limerick, too). A fact that
often gets overlooked is that you need to know more than the correct way(s) to do a problem; you
also need to be familiar with many incorrect ways of doing it. Otherwise, when you come upon
anew problem, there may be a number of decent-looking approaches to take, and you won’t be
able to immediately weed out the poor ones. Struggling a bit with a problem invariably leads
you down some wrong paths, and this is an essential part of learning. To understand something,
you not only have to know what’s right about the right things; you also have to know what’s
wrong about the wrong things. Learning takes a serious amount of effort, many wrong turns,
and a lot of sweat. Alas, there are no shortcuts to understanding physics.

The ad said, For one little fee,

You can skip all that course-work ennui.
So send your tuition,

For boundless fruition!

Get your mail-order physics degree! &

Any book that takes ten years to write is bound to contain the (greatly appreci-
ated) input of many people. I am particularly thankful for Howard Georgi’s help
over the years, with his numerous suggestions, ideas for many problems, and
physics sanity checks. I would also like to thank Don Page for his entertaining
and meticulous comments and suggestions, and an eye for catching errors in ear-
lier versions. Other friends and colleagues who have helped make this book what
it is (and who have made it all the more fun to write) are John Bechhoefer, Wes
Campbell, Michelle Cyrier, Alex Dahlen, Gary Feldman, Lukasz Fidkowski,
Jason Gallicchio, Doug Goodale, Bertrand Halperin, Matt Headrick, Jenny
Hoffman, Paul Horowitz, Alex Johnson, Yevgeny Kats, Can Kilic, Ben Krefetz,
Daniel Larson, Jaime Lush, Rakhi Mahbubani, Chris Montanaro, Theresa Morin,
Megha Padi, Dave Patterson, Konstantin Penanen, Courtney Peterson, Mala
Radhakrishnan, Esteban Real, Daniel Rosenberg, Wolfgang Rueckner, Aqil
Sajjad, Alexia Schulz, Daniel Sherman, Oleg Shpyrko, David Simmons-Duffin,
Steve Simon, Joe Swingle, Edwin Taylor, Sam Williams, Alex Wissner-Gross,
and Eric Zaslow. I’m sure that I have forgotten others, especially from the earlier
years where my memory fades, so please accept my apologies.

I am also grateful for the highly professional work done by the editorial and
production group at Cambridge University Press in transforming this into an
actual book. It has been a pleasure working with Lindsay Barnes, Simon Capelin,
Margaret Patterson, and Dawn Preston.

Finally, and perhaps most importantly, I would like to thank all the students
(both at Harvard and elsewhere) who provided input during the past decade.
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The names here are literally too numerous to write down, so let me simply say a
big thank you, and that I hope other students will enjoy what you helped create.

Despite the painstaking proofreading and all the eyes that have passed over
earlier versions, there is at most an exponentially small probability that the
book is error free. So if something looks amiss, please check the webpage
(www.cambridge.org/9780521876223) for a list of typos, updates, etc. And
please let me know if you discover something that isn’t already posted. I'm
sure that eventually I will post some new problems and supplementary material,
so be sure to check the webpage for additions. Information for instructors will
also be available on this site.

Happy problem solving — I hope you enjoy the book!
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Chapter 1
Strategies for solving problems

Physics involves a great deal of problem solving. Whether you are doing
cutting-edge research or reading a book on a well-known subject, you are going
to need to solve some problems. In the latter case (the presently relevant one,
given what is in your hand right now), it is fairly safe to say that the true test
of understanding something is the ability to solve problems on it. Reading about
a topic is often a necessary step in the learning process, but it is by no means
a sufficient one. The more important step is spending as much time as possible
solving problems (which is inevitably an active task) beyond the time you spend
reading (which is generally a more passive task). I have therefore included a very
large number of problems/exercises in this book.

However, if 'm going to throw all these problems at you, I should at least give
you some general strategies for solving them. These strategies are the subject of
the present chapter. They are things you should always keep in the back of your
mind when tackling a problem. Of course, they are generally not sufficient by
themselves; you won’t get too far without understanding the physical concepts
behind the subject at hand. But when you add these strategies to your physical
understanding, they can make your life a lot easier.

1.1 General strategies

There are a number of general strategies you should invoke without hesitation
when solving a problem. They are:

1. Draw a diagram, if appropriate.

In the diagram, be sure to label clearly all the relevant quantities (forces, lengths,
masses, etc.). Diagrams are absolutely critical in certain types of problems. For
example, in problems involving “free-body” diagrams (discussed in Chapter 3) or
relativistic kinematics (discussed in Chapter 11), drawing a diagram can change a
hopelessly complicated problem into a near-trivial one. And even in cases where
diagrams aren’t this crucial, they’re invariably very helpful. A picture is definitely

worth a thousand words (and even a few more, if you label things!).
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2. Write down what you know, and what you are trying to find.

In a simple problem, you may just do this in your head without realizing it. But in
more difficult problems, it is very useful to explicitly write things out. For example,
if there are three unknowns that you’re trying to find, but you’ve written down
only two facts, then you know there must be another fact you’re missing (assuming
that the problem is in fact solvable), so you can go searching for it. It might be a
conservation law, or an /' = ma equation, etc.

3. Solve things symbolically.

If you are solving a problem where the given quantities are specified numerically,

you should immediately change the numbers to letters and solve the problem in terms

of the letters. After you obtain an answer in terms of the letters, you can plug in the
actual numerical values to obtain a numerical answer. There are many advantages
to using letters:

e IT’s QUICKER. It’s much easier to multiply a g by an £ by writing them down on a
piece of paper next to each other, than it is to multiply them together on a calculator.
And with the latter strategy, you’d undoubtedly have to pick up your calculator at
least a few times during the course of a problem.

e YOU’RE LESS LIKELY TO MAKE A MISTAKE. It’s very easy to mistype an 8 for a 9 in
a calculator, but you’re probably not going to miswrite a ¢ for a g on a piece of
paper. But if you do, you’ll quickly realize that it should be a g. You certainly
won’t just give up on the problem and deem it unsolvable because no one gave
you the value of ¢!

e YOU CAN DO THE PROBLEM ONCE AND FOR ALL. If someone comes along and says,
oops, the value of £ is actually 2.4 m instead of 2.3 m, then you won’t have to do
the whole problem again. You can simply plug the new value of £ into your final
symbolic answer.

® YOU CAN SEE THE GENERAL DEPENDENCE OF YOUR ANSWER ON THE VARIOUS GIVEN QUAN-
TiTiEs. For example, you can see that it grows with quantities @ and b, decreases with
¢, and doesn’t depend on d. There is much, much more information contained in a
symbolic answer than in a numerical one. And besides, symbolic answers nearly
always look nice and pretty.

e YOU CAN CHECK UNITS AND SPECIAL CASES. These checks go hand-in-hand with the
previous “general dependence” advantage. But since they’re so important, we’ll
postpone their discussion and devote Sections 1.2 and 1.3 to them.

Having said all this, it should be noted that there are occasionally times when things

get a bit messy when working with letters. For example, solving a system of three

equations in three unknowns might be rather cumbersome unless you plug in the
actual numbers. But in the vast majority of problems, it is highly advantageous to
work entirely with letters.

4. Consider units/dimensions.

This is extremely important. See Section 1.2 for a detailed discussion.
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5. Check limiting/special cases.

This is also extremely important. See Section 1.3 for a detailed discussion.

6. Check order of magnitude if you end up getting a numerical answer.

If you end up with an actual numerical answer to a problem, be sure to do a san-
ity check to see if the number is reasonable. If you’ve calculated the distance
along the ground that a car skids before it comes to rest, and if you’ve gotten
an answer of a kilometer or a millimeter, then you know you’ve probably done
something wrong. Errors of this sort often come from forgetting some powers of
10 (say, when converting kilometers to meters) or from multiplying something
instead of dividing (although you should be able to catch this by checking your

units, t00).

You will inevitably encounter problems, physics ones or otherwise, where
you don’t end up obtaining a rigorous answer, cither because the calculation is
intractable, or because you just don’t feel like doing it. But in these cases it’s
usually still possible to make an educated guess, to the nearest power of 10. For
example, if you walk past a building and happen to wonder how many bricks
are in it, or what the labor cost was in constructing it, then you can probably
give a reasonable answer without doing any severe computations. The physicist
Enrico Fermi was known for his ability to estimate things quickly and produce
order-of-magnitude guesses with only minimal calculation. Hence, a problem
where the goal is to simply obtain the nearest power-of-10 estimate is known as a
“Fermi problem.” Of course, sometimes in life you need to know things to better
accuracy than the nearest power of 10. . .

How Fermi could estimate things!

Like the well-known Olympic ten rings,
And the one hundred states,

And weeks with ten dates,

And birds that all fly with one. . . wings.

In the following two sections, we’ll discuss the very important strategies of
checking units and special cases. Then in Section 1.4 we’ll discuss the technique
of solving problems numerically, which is what you need to do when you end up
with a set of equations you can’t figure out how to solve. Section 1.4 isn’t quite
analogous to Sections 1.2 and 1.3, in that these first two are relevant to basically
any problem you’ll ever do, whereas solving equations numerically is something
you’ll do only for occasional problems. But it’s nevertheless something that every
physics student should know.

In all three of these sections, we’ll invoke various results derived later in the
book. For the present purposes, the derivations of these results are completely
irrelevant, so don’t worry at all about the physics behind them — there will be
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plenty of opportunity for that later on! The main point here is to learn what to do
with the result of a problem once you’ve obtained it.

1.2 Units, dimensional analysis

The units, or dimensions, of a quantity are the powers of mass, length, and time
associated with it. For example, the units of a speed are length per time. The
consideration of units offers two main benefits. First, looking at units before
you start a problem can tell you roughly what the answer has to look like, up
to numerical factors. Second, checking units at the end of a calculation (which
is something you should always do) can tell you if your answer has a chance at
being correct. It won’t tell you that your answer is definitely correct, but it might
tell you that your answer is definitely incorrect. For example, if your goal in a
problem is to find a length, and if you end up with a mass, then you know it’s
time to look back over your work.

“Your units are wrong!” cried the teacher.

“Your church weighs six joules — what a feature!
And the people inside

Are four hours wide,

And eight gauss away from the preacher!”

In practice, the second of the above two benefits is what you will generally
make use of. But let’s do a few examples relating to the first benefit, because
these can be a little more exciting. To solve the three examples below exactly, we
would need to invoke results derived in later chapters. But let’s just see how far we
can get by using only dimensional analysis. We’ll use the “[ ]” notation for units,
and we’ll let M stand for mass, L for length, and T for time. For example, we’ll
write a speed as [v] = L/T and the gravitational constant as [G] = L’ /(MT 2)
(you can figure this out by noting that Gmm;/r> has the dimensions of force,
which in turn has dimensions ML/T?, from F = ma). Alternatively, you can just
use the mks units, kg, m, s, instead of M, L, T, respectively.'

Example (Pendulum): A mass m hangs from a massless string of length ¢
(see Fig. 1.1) and swings back and forth in the plane of the paper. The acceleration
due to gravity is g. What can we say about the frequency of oscillations?

Solution: The only dimensionful quantities given in the problem are [m] = M,
[¢] = L,and [g] = L/T 2. But there is one more quantity, the maximum angle 6,
which is dimensionless (and easy to forget). Our goal is to find the frequency, which

When you check units at the end of a calculation, you will invariably be working with the kg,m,s
notation. So that notation will inevitably get used more. But I’ll use the M, L, T notation here,
because I think it’s a little more instructive. At any rate, just remember that the letter m (or M)
stands for “meter” in one case, and “mass” in the other.
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has units of 1/7". The only combination of our given dimensionful quantities that has
units of 1/7 is \/g/¢. But we can’t rule out any 8y dependence, so the most general

o =f(90)\/% (L.1)

where /" is a dimensionless function of the dimensionless variable 6.

possible form of the frequency is’

REMARKS:

1. It just so happens that for small oscillations, () is essentially equal to 1, so the
frequency is essentially equal to /g/€. But there is no way to show this by using
only dimensional analysis; you actually have to solve the problem for real. For
larger values of 6y, the higher-order terms in the expansion of f* become important.
Exercise 4.23 deals with the leading correction, and the answer turns out to be ' (6y) =
1—02/16+---.

2. Since there is only one mass in the problem, there is no way that the frequency (with
units of 1/7) can depend on [m] = M. If it did, there would be nothing to cancel the
units of mass and produce a pure inverse-time.

3. We claimed above that the only combination of our given dimensionful quantities
that has units of 1/7 is 4/g/€. This is easy to see here, but in more complicated
problems where the correct combination isn’t so obvious, the following method will
always work. Write down a general product of the given dimensionful quantities
raised to arbitrary powers (m“£°g¢ in this problem), and then write out the units of
this product in terms of a, b, and c. If we want to obtain units of 1/7 here, then

we need
L\¢ 1
M“Lb<ﬁ> =_. 1.2)

Matching up the powers of the three kinds of units on each side of this equation gives
M:a=0, L:b+c=0, T:-2c=-1 (1.3)

The solution to this system of equations is a = 0, b = —1/2, and ¢ = 1/2, so we
have reproduced the \/g/¢ result. &

What can we say about the total energy of the pendulum (with the potential energy
measured relative to the lowest point)? We’ll talk about energy in Chapter 5, but
the only thing we need to know here is that energy has units of ML?/T2. The only
combination of the given dimensionful constants of this form is mg¢. But again, we
can’t rule out any 6y dependence, so the energy must take the form f'(6y)mg¢, where
f is some function. That’s as far as we can go with dimensional analysis. However,
if we actually invoke a little physics, we can say that the total energy equals the
potential energy at the highest point, which is mg€¢(1 — cos ). Using the Taylor
expansion for cos @ (see Appendix A for a discussion of Taylor series), we see that
f 6y = 93/2 — 93/24 + ---. So in contrast with the frequency result above, the
maximum angle 6 plays a critical role in the energy.

2 We’ll measure frequency here in radians per second, denoted by . So we’re actually talking about
the “angular frequency.” Just divide by 27 (which doesn’t affect the units) to obtain the “regular”
frequency in cycles per second (hertz), usually denoted by v. We’ll talk at great length about
oscillations in Chapter 4.
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Example (Spring): A spring with spring constant £ has a mass m on its end
(see Fig. 1.2). The spring force is F'(x) = —kx, where x is the displacement from the
equilibrium position. What can we say about the frequency of oscillations?

Solution: The only dimensionful quantities in this problem are [m] = M, [k] =
M|T 2 (obtained by noting that kx has the dimensions of force), and the maximum
displacement from the equilibrium, [xg] = L. (There is also the equilibrium length,
but the force doesn’t depend on this, so there is no way it can come into the answer.)
Our goal is to find the frequency, which has units of 1/7. The only combination of
our given dimensionful quantities with these units is

k

w=C=, (1.4)
m

where C is a dimensionless number. It just so happens that C is equal to 1 (assuming
that we’re measuring w in radians per second), but there is no way to show this by
using only dimensional analysis. Note that, in contrast with the pendulum above, the
frequency cannot have any dependence on the maximum displacement.

What can we say about the total energy of the spring? Energy has units of ML? /T2,
and the only combination of the given dimensionful constants of this form is Bkx2,
where B is a dimensionless number. It turns out that B = 1/2, so the total energy
equals kx% /2.

REMARK: A real spring doesn’t have a perfectly parabolic potential (that is, a perfectly
linear force), so the force actually looks something like F(x) = —kx + bx? + ---. If we
truncate the series at the second term, then we have one more dimensionful quantity to
work with, [b] = M /LT?. To form a quantity with the dimensions of frequency, 1/7, we
need xp and b to appear in the combination xob, because this is the only way to get rid
of the L. You can then see (by using the strategy of writing out a general product of the

variables, discussed in the third remark in the pendulum example above) that the frequency
must be of the form f (xob/k)\/k/m, where f is some function. We can therefore have xg

dependence in this case. This answer must reduce to C \/W for b = 0. Hence, f must be
ofthe formf(y) = C+ciy+cpp? +---. &

Example (Low-orbit satellite): A satellite of mass m travels in a circular orbit
just above the earth’s surface. What can we say about its speed?

Solution: The only dimensionful quantities in the problem are [m] = M, [g] =
L/T 2, and the radius of the earth [R] = L. 3 Our goal is to find the speed, which has
units of L /7. The only combination of our dimensionful quantities with these units is

v=CygR. (1.5)

It turns out that C = 1.

3 You might argue that the mass of the earth, Mg, and Newton’s gravitational constant, G, should

be also included here, because Newton’s gravitational force law for a particle on the surface of the
earth is F = GMgm /Rz. But since this force can be written as m(GMg /Rz) = mg, we can absorb
the effects of Mg and G into g.
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1.3 Approximations, limiting cases

As with units, the consideration of limiting cases (or perhaps we should say
special cases) offers two main benefits. First, it can help you get started on a
problem. If you’re having trouble figuring out how a given system behaves,
then you can imagine making, for example, a certain length become very large or
very small, and then you can see what happens to the behavior. Having convinced
yourself that the length actually affects the system in extreme cases (or perhaps
you will discover that the length doesn’t affect things at all), it will then be
easier to understand how it affects the system in general, which will then make
it easier to write down the relevant quantitative equations (conservation laws,
F = ma equations, etc.), which will allow you to fully solve the problem. In
short, modifying the various parameters and observing the effects on the system
can lead to an enormous amount of information.

Second, as with checking units, checking limiting cases (or special cases)
is something you should always do at the end of a calculation. But as with
checking units, it won’t tell you that your answer is definitely correct, but
it might tell you that your answer is definitely incorrect. It is generally true
that your intuition about limiting cases is much better than your intuition
about generic values of the parameters. You should use this fact to your
advantage.

Let’s do a few examples relating to the second benefit. The initial expressions
given in each example below are taken from various examples throughout the
book, so just accept them for now. For the most part, I’ll repeat here what I’ll
say later on when we work through the problems for real. A tool that comes up
often in checking limiting cases is the Taylor series approximations; the series
for many functions are given in Appendix A.

Example (Dropped ball): A beach ball is dropped from rest at height /. Assume
that the drag force from the air takes the form Fy = —mav. We’ll find in Section 3.3
that the ball’s velocity and position are given by

_ & —at _ ., & _l o —at
v == (1—e), and y()=h a(z (1 e )) (1.6)

o

These expressions are a bit complicated, so for all you know, I could have made a
typo in writing them down. Or worse, I could have completely botched the solu-
tion. So let’s look at some limiting cases. If these limiting cases yield expected
results, then we can feel a little more confident that the answers are actually
correct.

If ¢ is very small (more precisely, if et < 1; see the discussion following this exam-
ple), then we can use the Taylor series, e ™ ~ | —x + x? /2, to make approximations
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to leading order in ae¢. The v(¢) in Eq. (1.6) becomes

_ & ()
v(t)——a<l—<l—ozt+ > —))
~ —gt, (1.7)

plus terms of higher order in a¢. This answer is expected, because the drag force is
negligible at the start, so we essentially have a freely falling body with acceleration
g downward. For small ¢, Eq. (1.6) also gives

2
J/(t):h—g|:t—l(1—<l—at+(m) —))}
o o 2

2
gt
~h— 22—, 1.8
: (1:8)
plus terms of higher order in a¢. Again, this answer is expected, because we essentially
have a freely falling body at the start, so the distance fallen is the standard gr2 /2.

—at

We can also look at large ¢ (or rather, large «). In this case, e is essentially

zero, so the v(¢) in Eq. (1.6) becomes (there’s no need for a Taylor series in this case)
o) ~ —E. (1.9)
o

This is the “terminal velocity.” Its value makes sense, because it is the velocity for
which the total force, —mg — maw, vanishes. For large ¢, Eq. (1.6) also gives

y(t)%h—%t+ (1.10)

£

o’
Apparently for large 7, g/a? is the distance (and this does indeed have units of
length, because « has units of 7 I because mav has units of force) that our ball lags
behind another ball that started out already at the terminal velocity, —g/c.

Whenever you derive approximate answers as we just did, you gain something
and you lose something. You lose some truth, of course, because your new answer
is technically not correct. But you gain some aesthetics. Your new answer is
invariably much cleaner (sometimes involving only one term), and this makes it
a lot easier to see what’s going on.

In the above example, it actually makes no sense to look at the limit where
t is small or large, because ¢ has dimensions. Is a year a large or small time?
How about a hundredth of a second? There is no way to answer this without
knowing what problem you’re dealing with. A year is short on the time scale
of galactic evolution, but a hundredth of a second is long on the time scale of
a nuclear process. It makes sense only to look at the limit of a small (or large)
dimensionless quantity. In the above example, this quantity is «f. The given
constant o has units of 77!, so 1/« sets a typical time scale for the system. It
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therefore makes sense to look at the limit where ¢ << 1/« (that is, et < 1), or
where ¢ >> 1/« (that is, af > 1). In the limit of a small dimensionless quantity,
a Taylor series can be used to expand an answer in powers of the small quantity,
as we did above. We sometimes get sloppy and say things like, “In the limit
of small ¢.” But you know that we really mean, “In the limit of some small
dimensionless quantity that has a # in the numerator,” or, “In the limit where 7 is
much smaller that a certain quantity that has the dimensions of time.”

REMARK: As mentioned above, checking special cases tells you that either (1) your answer is
consistent with your intuition, or (2) it’s wrong. It never tells you that it’s definitely correct.
This is the same as what happens with the scientific method. In the real world, everything comes
down to experiment. If you have a theory that you think is correct, then you need to check that
its predictions are consistent with experiments. The specific experiments you do are the analog
of the special cases you check after solving a problem; these two things represent what you
know is true. If the results of the experiments are inconsistent with your theory, then you need
to go back and fix your theory, just as you would need to go back and fix your answer. If, on
the other hand, the results are consistent, then although this is good, the only thing it really
tells you is that your theory might be correct. And considering the way things usually turn out,
the odds are that it’s not actually correct, but rather the limiting case of a more correct theory
(just as Newtonian physics is a limiting case of relativistic physics, which is a limiting case of
quantum field theory, etc.). That’s how physics works. You can’t prove anything, so you learn
to settle for the things you can’t disprove.

Consider, when seeking gestalts,

The theories that physics exalts.

It’s not that they’re known

To be written in stone.

It’s just that we can’t say they’re false. &

When making approximations, how do you know how many terms in the
Taylor series to keep? In the example above, we used e ~ 1 — x + x%/2.
But why did we stop at the x> term? The honest (but slightly facetious) answer
is, “Because I had already done this problem before writing it up, so I knew
how many terms to keep.” But the more informative (although perhaps no more
helpful) answer is that before you do the calculation, there’s really no way of
knowing how many terms to keep. So you should just keep a few and see what
happens. If everything ends up canceling out, then this tells you that you need to
repeat the calculation with another term in the series. For example, in Eq. (1.8),
if we had stopped the Taylor series at e ™
y(t) = h— 0, which isn’t very useful, since the general goal is to get the leading-
order behavior in the parameter we’re looking at (which is ¢ here). So in this
case we’d know we’d have to go back and include the x?/2 term in the series.
If we were doing a problem in which there was still no # (or whatever variable)
dependence at that order, then we’d have to go back and include the —x° /6 term
in the series. Of course, you could just play it safe and keep terms up to, say,
fifth order. But that’s invariably a poor strategy, because you’ll probably never
in your life have to go out that far in a series. So just start with one or two terms
and see what it gives you. Note that in Eq. (1.7), we actually didn’t need the

~ | —x, then we would have obtained
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second-order term, so we in fact could have gotten by with only e™ ~ 1 — x.
But having the extra term here didn’t end up causing much heartache.

After you make an approximation, how do you know if it’s a “good” one? Well,
just as it makes no sense to ask if a dimensionful quantity is large or small without
comparing it to another quantity, it makes no sense to ask if an approximation is
“good” or “bad” without stating the accuracy you want. In the above example, if
you’re looking at a ¢ value for which «¢# = 1/100, then the term we ignored in
Eq. (1.7) is smaller than gt by a factor wz/2 ~ 1/200. So the error is on the order
of 1%. If this is enough accuracy for whatever purpose you have in mind, then
the approximation is a good one. If not, it’s a bad one, and you should add more
terms in the series until you get your desired accuracy.

The results of checking limits generally fall into two categories. Most of the
time you know what the result should be, so this provides a double-check on your
answer. But sometimes an interesting limit pops up that you might not expect.

Such is the case in the following examples.

Example (Two masses in 1-D): A mass m with speed v approaches a stationary
mass M (see Fig. 1.3). The masses bounce off each other elastically. Assume that
all motion takes place in one dimension. We’ll find in Section 5.6.1 that the final
velocities of the particles are

(m —M)v d 2mv
vy =———, and vy = .
" m+M M m+M

(1.11)

There are three special cases that beg to be checked:

e Ifm = M, then Eq. (1.11) tells us that m stops, and M picks up a speed v. This is
fairly believable (and even more so for pool players). And it becomes quite clear
once you realize that these final speeds certainly satisfy conservation of energy
and momentum with the initial conditions.

e If M > m, then m bounces backward with speed ~ v, and M hardly moves.
This makes sense, because M is basically a brick wall.

e If m > M, then m keeps plowing along at speed ~ v, and M picks up a speed
of &~ 2v. This 2v is an unexpected and interesting result (it’s easier to see if you
consider what’s happening in the reference frame of the heavy mass m), and it
leads to some neat effects, as in Problem 5.23.

Example (Circular pendulum): A mass hangs from a massless string of length £.
Conditions have been set up so that the mass swings around in a horizontal circle,
with the string making a constant angle 6 with the vertical (see Fig. 1.4). We’ll find
in Section 3.5 that the angular frequency, w, of this motion is

[ &
= . 1.12
@ £ cosf ( )
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As far as 0 is concerned, there are two limits we should definitely check:

e If6 — 90°, then @ — oo. This makes sense; the mass has to spin very quickly
to avoid flopping down.

e If6 — 0, then w — +/g/€, which is the same as the frequency of a standard
“plane” pendulum of length ¢ (for small oscillations). This is a cool result and
not at all obvious. (But once we get to /' = ma in Chapter 3, you can convince
yourself why this is true by looking at the projection of the force on a given
horizontal line.)

In the above examples, we checked limiting and special cases of answers
that were correct (I hope!). This whole process is more useful (and a bit more
fun, actually) when you check the limits of an answer that is incorrect. In this
case, you gain the unequivocal information that your answer is wrong. But
rather than leading you into despair, this information is in fact something you
should be quite happy about, considering that the alternative is to carry on in
a state of blissful ignorance. Once you know that your answer is wrong, you
can go back through your work and figure out where the error is (perhaps by
checking limits at various stages to narrow down where the error could be).
Personally, if there’s any way 1I’d like to discover that my answer is garbage,
this is it. At any rate, checking limiting cases can often save you a lot of trouble
in the long run...

The lemmings get set for their race.
With one step and two steps they pace.
They take three and four,

And then head on for more,

Without checking the limiting case.

1.4 Solving differential equations numerically

Solving a physics problem often involves solving a differential equation.
A differential equation is one that involves derivatives (usually with respect to
time, in our physics problems) of the variable you’re trying to solve for. The
differential equation invariably comes about from using /' = ma, and/or 7 = [,
or the Lagrangian technique we’ll discuss in Chapter 6. For example, consider a
falling body. F' = ma gives —mg = ma, which can be written as —g = ¥, where
a dot denotes a time derivative. This is a rather simple differential equation, and
you can quickly guess that y(¢) = —gt?/2 is a solution. Or, more generally with
the constants of integration thrown in, y(¢) = yo + vot — gt /2.

However, the differential equations produced in some problems can get rather
complicated, so sooner or later you will encounter one that you can’t solve exactly
(either because it’s in fact impossible to solve, or because you can’t think of the

11
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appropriate clever trick). Having resigned yourself'to not getting the exact answer,
you should ponder how to obtain a decent approximation to it. Fortunately, it’s
easy to write a short program that will give you a very good numerical answer to
your problem. Given enough computer time, you can obtain any desired accuracy
(assuming that the system isn’t chaotic, but we won’t have to worry about this
for the systems we’ll be dealing with).

We’ll demonstrate the procedure by considering a standard problem, one
that we’ll solve exactly and in great depth in Chapter 4. Consider the
equation,

¥ = —w’x. (1.13)

This is the equation for a mass on a spring, with v = /k/m. We’ll find in
Chapter 4 that the solution can be written, among other ways, as

x(t) = A cos(wt + ¢). (1.14)

But let’s pretend we don’t know this. If someone comes along and gives us the
values of x(0) and x(0), then it seems that somehow we should be able to find
x(¢) and x(¢) for any later ¢, just by using Eq. (1.13). Basically, if we’re told how
the system starts, and if we know how it evolves, via Eq. (1.13), then we should
know everything about it. So here’s how we find x(¢) and x (7).

The plan is to discretize time into intervals of some small unit (call it €), and
to then determine what happens at each successive point in time. If we know x(¢)
and x(¢), then we can easily find (approximately) the value of x at a slightly later
time, by using the definition of x. Similarly, if we know x(¢) and X(¢), then we
can easily find (approximately) the value of x at a slightly later time, by using the
definition of ¥. Using the definitions of the derivatives, the relations are simply

x(t +€) ~ x(t) + €x(2),
(1.15)
x(t+€) ~ x(t) + €X(?).
These two equations, combined with (1.13), which gives us X in terms of x, allow
us to march along in time, obtaining successive values for x, x, and 3.4

Here’s what a typical program might look like.” (This is a Maple program, but

even if you aren’t familiar with this, the general idea should be clear.) Let’s say

Of course, another expression for ¥ is the definitional one, analogous to Egs. (1.15), involving
the third derivative. But this would then require knowledge of the third derivative, and so on with
higher derivatives, and we would end up with an infinite chain of relations. An equation of motion
such as Eq. (1.13) (which in general could be an F' = ma, t = I, or Euler-Lagrange equation)
relates ¥ back to x (and possibly x), thereby creating an intertwined relation among x, x, and X, and
eliminating the need for an infinite and useless chain.

We’ve written the program in the most straightforward way, without any concern for efficiency,
because computing time isn’t an issue in this simple system. But in more complex systems that
require programs for which computing time is an issue, a major part of the problem-solving process
is developing a program that is as efficient as possible.
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that the particle starts from rest at position x = 2, and let’s pick w? = 5. We’ll
use the notation where x1 stands for x, and x2 stands for ¥. And e stands for €.
Let’s calculate x at, say, t = 3.

x:=2 # initial position

x1:=0: # initial velocity

e:=.01: # small time interval

for i to 300 do # do 300 steps (ie, up to 3 seconds)
xX2:=-5%*x: # the given equation

x:=x+e*x1l: # how x changes, by definition of x1
x1l:=x1+e*x2: # how x1 changes, by definition of x2
end do: # the Maple command to stop the do loop
X; # print the value of x

This procedure won’t give the exact value for x, because x and x don’t really
change according to Egs. (1.15). These equations are just first-order approxi-
mations to the full Taylor series with higher-order terms. Said differently, there
is no way the above procedure can be exactly correct, because there are ambi-
guities in how the program can be written. Should line 5 come before or after
line 7? That is, in determining x at time z + €, should we use the X at time ¢ or
t 4+ €? And should line 7 come before or after line 6? The point is that for very
small €, the order doesn’t matter much. And in the limit e — 0, the order doesn’t
matter at all.

If we want to obtain a better approximation, we can just shorten € down to
0.001 and increase the number of steps to 3000. If the result looks basically the
same as withe = 0.01, then we know we pretty much have the right answer. In the
present example, € = 0.01 yields x ~ 1.965 after 3 seconds. If we sete = 0.001,
then we obtain x ~ 1.836. And if we set € = 0.0001, then we get x ~ 1.823.
The correct answer must therefore be somewhere around x = 1.82. And indeed,
if we solve the problem exactly, we obtain x(r) = 2 cos(+v/5 #). Plugging in = 3
gives x &~ 1.822.

This is a wonderful procedure, but it shouldn’t be abused. It’s nice to know that
we can always obtain a decent numerical approximation if all else fails. But we
should set our initial goal on obtaining the correct algebraic expression, because
this allows us to see the overall behavior of the system. And besides, nothing
beats the truth. People tend to rely a bit too much on computers and calculators
nowadays, without pausing to think about what is actually going on in a problem.

The skill to do math on a page

Has declined to the point of outrage.
Equations quadratica

Are solved on Math’matica,

And on birthdays we don’t know our age.
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1.5

Problems

Section 1.2: Units, dimensional analysis

1.1.

1.2.

1.3.

1.4.

1.5.

Escape velocity «

As given below in Exercise 1.9, show that the escape velocity from the
earth is v = /2GMg/R, up to numerical factors. You can use the fact
that the form of Newton’s gravitation force law implies that the accel-
eration (and hence overall motion) of the particle doesn’t depend on
its mass.

Mass in a tube =

A tube of mass M and length £ is free to swing around a pivot at one end.
A mass m is positioned inside the (frictionless) tube at this end. The tube
is held horizontal and then released (see Fig. 1.5). Let n be the fraction of
the tube that the mass has traversed by the time the tube becomes vertical.
Does 1 depend on £?

Waves in a fluid =

How does the speed of waves in a fluid depend on its density, p, and
“bulk modulus,” B (which has units of pressure, which is force per area)?

Vibrating star =

Consider a vibrating star, whose frequency v depends (at most) on its
radius R, mass density p, and Newton’s gravitational constant G. How
does v depend on R, p, and G?

Damping =

A particle with mass m and initial speed V' is subject to a velocity-
dependent damping force of the form bv".

(a) Forn =0,1,2,..., determine how the stopping time depends on
m, V', and b.

(b) Forn=0,1,2,..., determine how the stopping distance depends
onm, V,and b.

Be careful! See if your answers make sense. Dimensional analysis gives
the answer only up to a numerical factor. This is a tricky problem, so don’t
let it discourage you from using dimensional analysis. Most applications
of dimensional analysis are quite straightforward.

Section 1.3: Approximations, limiting cases

1.6.

Projectile distance x

A person throws a ball (at an angle of her choosing, to achieve the maxi-
mum distance) with speed v from the edge of a cliff of height 4. Assuming



1.6 Exercises

that one of the following quantities is the maximum horizontal distance
the ball can travel, which one is it? (Don’t solve the problem from scratch,
just check special cases.)

2 v v2h 0? 20h 02 2gh v?
g_27 > — - 1+i9 _<1+i2>3 /Zgh
v g g g v g v -

Section 1.4: Solving differential equations numerically

1.7. Two masses, one swinging =

Two equal masses are connected by a string that hangs over two pulleys
(of negligible size), as shown in Fig. 1.6. The left mass moves in a vertical
line, but the right mass is free to swing back and forth in the plane of the
masses and pulleys. It can be shown (see Problem 6.4) that the equations
of motion for » and 6 (labeled in the figure) are

27 = r6? — g(1 — cos6),
j_ 20 gsing (1.16)
T ro

Assume that both masses start out at rest, with the right mass making an
initial angle of 10° = /18 with the vertical. If the initial value of r is
1 m, how much time does it take for it to reach a length of 2 m? Write a
program to solve this numerically. Use g = 9.8 m/s2.

1.6 Exercises

Section 1.2: Units, dimensional analysis

1.8. Pendulum on the moon

If a pendulum has a period of 3 s on the earth, what would its period be
if it were placed on the moon? Use gy /gr ~ 1/6.

1.9. Escape velocity =

The escape velocity on the surface of a planet is given by

[2GM
== 1.1
v 2 (1.17)

where M and R are the mass and radius of the planet, respectively, and G
is Newton’s gravitational constant. (The escape velocity is the velocity

Fig. 1.6
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needed to refute the “What goes up must come down” maxim, neglecting
air resistance.)

(a) Write v in terms of the average mass density p, instead of M.

(b) Assuming that the average density of the earth is four times that of
Jupiter, and that the radius of Jupiter is 11 times that of the earth,
what is vy /vg?

1.10. Downbhill projectile =

A hill is sloped downward at an angle 6 with respect to the horizontal.
A projectile of mass m is fired with speed vy perpendicular to the hill.
When it eventually lands on the hill, let its velocity make an angle 8 with
respect to the horizontal. Which of the quantities 6, m, vy, and g does
the angle 8 depend on?

1.11. Waves on a string =
How does the speed of waves on a string depend on its mass M, length
L, and tension (that is, force) T'?

1.12. Vibrating water drop =

Consider a vibrating water drop, whose frequency v depends on its radius
R, mass density p, and surface tension S. The units of surface tension
are (force)/(length). How does v depend on R, p, and S§?

Section 1.3: Approximations, limiting cases

1.13. Atwood’s machine =
Consider the “Atwood’s” machine shown in Fig. 1.7, consisting of three
masses and three frictionless pulleys. It can be shown that the acceleration
m, ms of my is given by (just accept this):

m, 4 3moymsz — my(4m3 + myp)
1 =

& mom3 + my (4mz + my) ’ (1.18)
Fig. 1.7
with upward taken to be positive. Find a; in the following special
cases:
(a) my =2my = 2m3.
(b) my much larger than both m; and mj3.
(¢) m; much smaller than both m, and m3.
(d) ma > my = ms.
() m;y = my = ms.

1.14. Cone frustum =

A cone frustum has base radius b, top radius a, and height /4, as shown
in Fig. 1.8. Assuming that one of the following quantities is the volume
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of the frustum, which one is it? (Don’t solve the problem from scratch,
just check special cases.)

wh wh wh
?(az + b, 7(a2 + b2, T(a2 +ab + b?),

th a*+b*
T . m, whab
1.15. Landing at the corner = Fig. 1.8
A ball is thrown at an angle 6 up to the top of a cliff of height L, from
a point a distance L from the base, as shown in Fig. 1.9. Assuming that RSN
one of the following quantities is the initial speed required to make the / | W
ball hit right at the edge of the cliff, which one is it? (Don’t solve the ‘

problem from scratch, just check special cases.)

] L
Vo
gL 1 gL 1 gL 0 I
2(tan@ — 1)° cos@\ 2(tand — 1)’ cos@\ 2(tan6 + 1)’ «
gltan 6 Fig. 1.9
2(tan6 + 1)

1.16. Projectile with drag =«

Consider a projectile subject to a drag force F = —mav. If it is fired
with speed vg at an angle 6, it can be shown that the height as a func-
tion of time is given by (just accept this here; it’s one of the tasks of
Exercise 3.53)

y(t):é(vo sin9+§) (1 —e—‘”) —%t. (1.19)

Show that this reduces to the usual projectile expression, y(z) =
(vg sin @)t — gt2 /2, in the limit of small . What exactly is meant by
“small o”?

Section 1.4: Solving differential equations numerically

1.17. Pendulum ==

A pendulum of length £ is released from the horizontal position. It can
be shown that the tangential F' = ma equation is (where 6 is measured
with respect to the vertical)

gsiné

=" (1.20)

If¢ = 1m, and g = 9.8 m/s?, write a program to show that the time
it takes the pendulum to swing down through the vertical position is
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1.18.

1.7

1.1.

1.2.

t ~ 0.592s. This happens to be about 1.18 times the (7/2)/€/g ~
0.502 s it would take the pendulum to swing down if it were released
from very close to the vertical (this is 1/4 of the standard period of
27 4/l]g for a pendulum). It also happens to be about 1.31 times the
V20/g ~ 0.452 s it would take a mass to simply freefall a height £.

Distance with damping «=x

A mass is subject to a damping force proportional to its velocity, which
means that the equation of motion takes the form X = —A4x, where 4 is
some constant. If the initial speed is 2m/s, and if 4 = 1s~!, how far has
the mass traveled at 1s? 10s? 100s? You should find that the distance
approaches a limiting value.

Now assume that the mass is subject to a damping force proportional
to the square of its velocity, which means that the equation of motion
now takes the form ¥ = —Ax2, where A is some constant. If the initial
speed is 2m/s, and if 4 = 1 m~!, how far has the mass traveled at 1 s?
10s? 100 s? How about some larger powers of 10? You should find that
the distance keeps growing, but slowly like the log of ¢. (The results
for these two forms of the damping are consistent with the results of
Problem 1.5.)

Solutions

Escape velocity

It is tempting to use the same reasoning as in the low-orbit satellite example in Section
1.2. This reasoning gives the same result, v = C/gR = C/GMg/R, where C is some
number (it turns out that C = +/2). Although this solution yields the correct answer, it
isn’t quite rigorous, in view of the footnote in the low-orbit satellite example. Because
the particle isn’t always at the same radius, the force changes, so it isn’t obvious that we
can absorb the Mg and G dependence into one quantity, g, as we did with the orbiting
satellite. Let us therefore be more rigorous with the following reasoning.

The dimensionful quantities in the problem are [m] = M, the radius of the earth
[R] = L, the mass of the earth [Mg] = M, and Newton’s gravitational con-
stant [G] = L3 /MT 2. These units for G follow from the gravitational force law,
F =Gmmy /rz. If we use no information other than these given quantities, then there
is no way to arrive at the speed of C/GME /R, because for all we know, there could be a
factor of (m/Mg)’ in the answer. This number is dimensionless, so it wouldn’t mess up
the units.

If we want to make any progress in this problem, we have to use the fact that the
gravitational force takes the form of GMgm /2. This then implies (as was stated in the
problem) that the acceleration is independent of m. And since the path of the particle is
determined by its acceleration, we see that the answer can’t depend on m. We are there-
fore left with the quantities G, R, and Mg, and you can show that the only combination
of these quantities that gives the units of speed is v = C/GME/R.

Mass in a tube

The dimensionful quantities are [g] = L/T 2. [0 =L, [m] =M, and [M] = M. We
want to produce a dimensionless number 7. Since g is the only constant involving time,
n cannot depend on g. This then implies that  cannot depend on ¢, which is the only



1.3.

1.5.

1.7 Solutions

length remaining. Therefore, n depends only on m and M (and furthermore only on the
ratio m/M , since we want a dimensionless number). So the answer to the stated problem
is, “No.”

It turns out that you have to solve the problem numerically if you actually want to
find 7 (see Problem 8.5). Some results are: If m < M, then n ~ 0.349. If m = M, then
n ~ 0.378. And if m = 2M, then n ~ 0.410.

Waves in a fluid

We want to make a speed, [v] = L/T, out of the quantities [p] = M/L3, and [B] =
[F/A] = (ML/T?)/(L*) = M /(LT?). We can play around with these quantities to find
the combination that has the correct units, but let’s do it the no-fail way. If v o 0B,
then we have

r=(5) () a2
ro\z3) \wrz) - '
Matching up the powers of the three kinds of units on each side of this equation gives
M:0=a+b, L:1=-3a—-b, T:—-1==2b (1.22)
The solution to this system of equations is a = —1/2 and b = 1/2. Therefore, our

answer is v & +/B/p. Fortunately, there was a solution to this system of three equations
in two unknowns.

. Vibrating star

We want to make a frequency, [v] = 1/7, out of the quantities [R] = L, [p] = M/L3,
and [G] = L3 /(MT 2). These units for G follow from the gravitational force law, F' =
Gmyimy/r?. As in the previous problem, we can play around with these quantities to find
the combination that has the correct units, but let’s do it the no-fail way. If v o< R¢ pPGe,
then we have

1 MN\" (PN
—=L—= — ] . 1.23
T <L3 ) (MT 2 ) (123)
Matching up the powers of the three kinds of units on each side of this equation gives
M:0=b—-c¢, L:0=a—-3b+3c, T:-1=-2c (1.24)

The solution to this system of equations is @ = 0, and b = ¢ = 1/2. Therefore, our
answer is v o« /pG. So it turns out that there is no R dependence.

ReMARK: Note the difference in the given quantities in this problem (R, p, and G)
and the ones in Exercise 1.12 (R, p, and S). In this problem with the star, the mass
is large enough so that we can ignore the surface tension, S. And in Exercise 1.12
with the drop, the mass is small enough so that we can ignore the gravitational force,
and hence G. &

Damping

(a) The constant b has units [b] = [Force][v™"] = (ML/T 2y /L™). The other
quantities are [m] = M and [V] = L/T. There is also n, which is dimen-
sionless. You can show that the only combination of these quantities that has

units of 7' is
m

t=fn) pyn—T’
where f'(n) is a dimensionless function of n.

Forn = 0, wehavet = f(0) mV /b. This increases with m and V', and decreases
with b, as it should.

Forn = 1, wehave t = f'(1) m/b. So we seem to have t ~ m/b. This, however,
cannot be correct, because ¢ should definitely grow with V. A large initial speed
V1 requires some nonzero time to slow down to a smaller speed V>, after which
time we simply have the same scenario with initial speed V5. So where did we go
wrong? After all, dimensional analysis tells us that the answer does have to look
like t = f'(1) m/b, where f (1) is a numerical factor. The resolution to this puzzle

(1.25)
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is that £'(1) is infinite. If we worked out the problem using F' = ma, we would
encounter an integral that diverges. So for any ¥, we would find an infinite 7. ©

Similarly, for n > 2, there is at least one power of /' in the denominator of 7.
This certainly cannot be correct, because ¢ should not decrease with V. So f'(n)
must likewise be infinite for all of these cases.

The moral of this exercise is that sometimes you have to be careful when
using dimensional analysis. The numerical factor in front of your answer
nearly always turns out to be of order 1, but in some strange cases it turns
out to be 0 or co.

ReEMARK: Forn > 1,theexpressionin Eq. (1.25)still has relevance. Forexample,
for n = 2, the m/(Vb) expression is relevant if you want to know how long it
takes to go from ' to some final speed V. The answer involves m/(Vb), which
divergesas V' — 0. &

(b) You can show that the only combination of the quantities that has units of L is
m
t=gn) pyn—2
where g(n) is a dimensionless function of .

For n = 0, we have £ = g(0) sz/b. This increases with ¥/, as it should.

For n = 1, we have £ = g(1) mV'/b. This increases with V', as it should.

For n = 2 we have £ = g(2) m/b. So we seem to have £ ~ m/b. But as in
part (a), this cannot be correct, because ¢ should definitely depend on V. A large
initial speed V7 requires some nonzero distance to slow down to a smaller speed
V>, after which point we simply have the same scenario with initial speed V5. So,
from the reasoning in part (a), the total distance is infinite for n > 2, because the
function g is infinite.

(1.26)

ReMARK: Note that for integral n # 1, ¢ and £ are either both finite or both
infinite. For n = 1, however, the total time is infinite, whereas the total distance
is finite. This situation actually holds for 1 < n < 2, if we want to consider
fractional n. &

1.6. Projectile distance

All of the possible answers have the correct units, so we’ll have to figure things out by
looking at special cases. Let’s look at each choice in turn:

h? .
g—z . Incorrect, because the answer shouldn’t be zero for 2 = 0. Also, it shouldn’t
v

grow with g. And even worse, it shouldn’t be infinite for v — 0.

2. Incorrect, because the answer should depend on 4.
g

2h
v . Incorrect, because the answer shouldn’t be zero for 4 = 0.
4
v? 2gh . .
—,/ 1+ —: Can’trule this out, and it happens to be the correct answer.
g v
v? 2gh .
— 1+ — ) Incorrect, because the answer should be zero for v — 0. But this
g v
expression goes to 24 for v — 0.
v'/g

e - Incorrect, because the answer shouldn’t be infinite for v? = 2gh.
1-%

v

® The total time  is actually undefined, because the particle never comes to rest. But ¢ does grow
with 7, in the sense that if 7 is defined to be the time to slow down to some certain small speed,
then ¢ grows with V.



1.7. Two masses, one swinging

1.7 Solutions

As in Section 1.4, we’ll write a Maple program. We’ll let g stand for 6, and we’ll use
the notation where gl stands for 6, and g2 stands for 6. Likewise for ». We’ll run the
program for as long as < 2. As soon as r exceeds 2, the program will stop and print

the value of the time.

qg:=3.14/18:
gl:=0:
e:=.001:
1i:=0:

while r<2 do
i:=1+1:

r2:=(r*ql”2-9.8*(1l-cos(q)))/2:

r:=r+e*rl:

rl:=rl+e*r2:
q2:=-2*rl*gl/r-9.8*sin(q) /r
qg:=g+e*qgl:

gl:=gl+e*q2:

end do:

i*e;

HH H H H H H H H H H H H H H H H

initial r value

initial r velocity

initial angle

initial angular velocity

small time interval

i counts the number of time steps
run the program until r=2

increase the counter by 1

the first of the given egs

how r changes, by definition of rl
how rl changes, by definition of r2
the second of the given egs

how g changes, by definition of gl
how gl changes, by definition of g2
the Maple command to stop the do loop
print the value of the time

This yields a time of # = 8.057 s. If we instead use a time interval of 0.0001 s, we obtain
t = 8.1377 s. And a time interval of 0.00001 s gives ¢t = 8.14591 s. So the correct time

must be somewhere around 8.15s.

21
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Chapter 2
Statics

The subject of statics often appears in later chapters in other books, after force
and torque have been discussed. However, the way that force and torque are
used in statics problems is fairly minimal, at least compared with what we’ll
be doing later in this book. Therefore, since we won’t be needing much of the
machinery that we’ll be developing later on, I’ll introduce here the bare min-
imum of force and torque concepts necessary for statics problems. This will
open up a whole class of problems for us. But even though the underlying
principles of statics are quick to state, statics problems can be unexpect-
edly tricky. So be sure to tackle a lot of them to make sure you understand
things.

2.1 Balancing forces

A “static” setup is one where all the objects are motionless. If an object remains
motionless, then Newton’s second law, F = ma (which we’ll discuss in great
detail in the next chapter), tells us that the total external force acting on the object
must be zero. The converse is not true, of course. The total external force on an
object is also zero if it moves with constant nonzero velocity. But we’ll deal only
with statics problems here. The whole goal in a statics problem is to find out what
the various forces have to be so that there is zero net force acting on each object
(and zero net torque, too, but that’s the topic of Section 2.2). Because a force is
a vector, this goal involves breaking the force up into its components. You can
pick Cartesian coordinates, polar coordinates, or another set. It is usually clear
from the problem which system will make your calculations easiest. Once you
pick a system, you simply have to demand that the total external force in each
direction is zero.

There are many different types of forces in the world, most of which are large-
scale effects of complicated things going on at smaller scales. For example, the
tension in a rope comes from the chemical bonds that hold the molecules in
the rope together, and these chemical forces are electrical forces. In doing a
mechanics problem involving a rope, there is certainly no need to analyze all the
details of the forces taking place at the molecular scale. You just call the force in
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the rope a “tension” and get on with the problem. Four types of forces come up
repeatedly:

Tension

Tension is the general name for a force that a rope, stick, etc., exerts when it
is pulled on. Every piece of the rope feels a tension force in both directions,
except the end points, which feel a tension on one side and a force on the other
side from whatever object is attached to the end. In some cases, the tension may
vary along the rope. The “Rope wrapped around a pole” example at the end of
this section is a good illustration of this. In other cases, the tension must be the
same everywhere. For example, in a hanging massless rope, or in a massless
rope hanging over a frictionless pulley, the tension must be the same at all points,
because otherwise there would be a net force on at least some part of the rope,
and then F' = ma would yield an infinite acceleration for this (massless) piece.

Normal force

This is the force perpendicular to a surface that the surface applies to an object.
The total force applied by a surface is usually a combination of the normal force
and the friction force (see below). But for frictionless surfaces such as greasy
ones or ice, only the normal force exists. The normal force comes about because
the surface actually compresses a tiny bit and acts like a very rigid spring. The
surface gets squashed until the restoring force equals the force necessary to keep
the object from squashing in any more.

For the most part, the only difference between a “tension” and a “normal
force” is the direction of the force. Both situations can be modeled by a spring.
In the case of a tension, the spring (a rope, a stick, or whatever) is stretched,
and the force on the given object is directed toward the spring. In the case of
a normal force, the spring is compressed, and the force on the given object is
directed away from the spring. Things like sticks can provide both normal forces
and tensions. But a rope, for example, has a hard time providing a normal force.
In practice, in the case of elongated objects such as sticks, a compressive force
is usually called a “compressive tension,” or a “negative tension,” instead of a
normal force. So by these definitions, a tension can point either way. At any rate,
it’s just semantics. If you use any of these descriptions for a compressed stick,
people will know what you mean.

Friction

Friction is the force parallel to a surface that a surface applies to an object.
Some surfaces, such as sandpaper, have a great deal of friction. Some, such as
greasy ones, have essentially no friction. There are two types of friction, called
“kinetic” friction and “static” friction. Kinetic friction (which we won’t cover in
this chapter) deals with two objects moving relative to each other. It is usually
a good approximation to say that the kinetic friction between two objects is
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Mg

Fig. 2.1

Statics

proportional to the normal force between them. The constant of proportionality
is called uy (the “coefficient of kinetic friction”), where ui depends on the two
surfaces involved. Thus, I = uN, where N is the normal force. The direction
of the force is opposite to the motion.

Static friction deals with two objects at rest relative to each other. In the static
case, we have F' < ugN (where ug is the “coefficient of static friction”). Note
the inequality sign. All we can say prior to solving a problem is that the static
friction force has a maximum value equal to Fax = usN. In a given problem,
it is most likely less than this. For example, if a block of large mass M sits on a
surface with coefficient of friction ps, and you give the block a tiny push to the
right (tiny enough so that it doesn’t move), then the friction force is of course not
equal to usN = usMg to the left. Such a force would send the block sailing off
to the left. The true friction force is simply equal and opposite to the tiny force
you apply. What the coefficient yi  tells us is that if you apply a force larger than
usMg (the maximum friction force on a horizontal table), then the block will end
up moving to the right.

Gravity

Consider two point objects, with masses M and m, separated by a distance R.
Newton’s gravitational force law says that the force between these objects is
attractive and has magnitude F = GMm/R?, where G = 6.67-10~!! m?/ (kg s?).
As we’ll show in Chapter 5, the same law also applies to spheres of nonzero size.
That is, a sphere may be treated like a point mass located at its center. Therefore,
an object on the surface of the earth feels a gravitational force equal to

GM
F=m<F> = mg, (2.1)
where M is the mass of the earth, and R is its radius. This equation defines g.
Plugging in the numerical values, we obtain g &~ 9.8 m/s?, as you can check.
Every object on the surface of the earth feels a force of mg downward (g varies
slightly over the surface of the earth, but let’s ignore this). If the object is not
accelerating, then there must be other forces present (normal forces, etc.) to make
the total force be equal to zero.

Another common force is the Hooke’s-law spring force, F = —kx. But we’ll
postpone the discussion of springs until Chapter 4, where we’ll spend a whole
chapter on them in depth.

Example (Block on a plane): A block of mass M rests on a fixed plane inclined
at an angle 6. You apply a horizontal force of Mg on the block, as shown in Fig. 2.1.
Assume that the friction force between the block and the plane is large enough to keep
the block at rest. What are the normal and friction forces (call them N and Fy) that
the plane exerts on the block? If the coefficient of static friction is u, for what range
of angles 6 will the block in fact remain at rest?
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Solution: Let’s break the forces up into components parallel and perpendicular
to the plane. (The horizontal and vertical components would also work, but the
calculation would be a little longer.) The forces are N, F¢, the applied Mg, and
the weight Mg, as shown in Fig. 2.2. Balancing the forces parallel and perpen-
dicular to the plane gives, respectively (with upward along the plane taken to be
positive),

Fp = Mgsin6 — Mg cos@,
2.2)
N = Mgcos0 + Mgsin0.

INTERMEDIATE REMARKS:

1. Iftan 6 > 1, then Fy is positive (that is, it points up the plane). And if tan 6 < 1, then
Fr is negative (that is, it points down the plane). There is no need to worry about
which way it points when drawing the diagram. Just pick a direction to be positive,
and if Fr comes out to be negative (as it does in the figure above, because 6 < 45°),
then it actually points in the other direction.

2. Ff ranges from —Mg to Mg as 6 ranges from 0 to 77 /2 (convince yourself that these
limiting values make sense). As an exercise, you can show that N is maximum when
tan @ = 1, in which case N = \/EMg and Fr = 0.

3. The sin 6 and cos 6 factors in Eq. (2.2) follow from the angles 6 drawn in Fig. 2.2.
However, when solving problems like this one, it’s easy to make a mistake in the
geometry and then label an angle as 6 when it really should be 90° — 0. So two
pieces of advice: (1) Never draw an angle close to 45° in a figure, because if you do,
you won’t be able to tell the 6 angles from the 90° — 6 ones. (2) Always check your
results by letting 6 go to 0 or 90° (in other words, does virtually all of a force, or
virtually none of it, act in a certain direction when the plane is, say, horizontal). Once
you do this a few times, you’ll realize that you probably don’t even need to work out
the geometry in the first place. Since you know that any given component is going
to involve either sin & or cos 6, you can just pick the one that works correctly in a
certain limit. &

The coefficient u tells us that |[F¢| < uN. Using Eq. (2.2), this inequality becomes
Mg|sinf — cos 6| < uMg(cos 6 + sin6). (2.3)
The absolute value here signifies that we must consider two cases:

e Iftan® > 1, then Eq. (2.3) becomes

. . 1+ n
sinf —cosf < u(cosf +sinf) =— tan6 < 1 .
—
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We divided by 1 — p, so this inequality is valid only if & < 1. Butif u > 1, we
see from the first inequality here that any value of 6 (subject to our assumption,
tan € > 1) works.

e Iftan® < 1, then Eq. (2.3) becomes

1—
—sin@ + cosf < u(cosd +sinf) = tanf > 1—}—7“ (2.5)
n
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Putting these two ranges for 6 together, we have

(2.6)

ReMARKS:  For very small p, these bounds both approach 1, which means that 6 must be
very close to 45°. This makes sense. If there is very little friction, then the components
along the plane of the horizontal and vertical Mg forces must nearly cancel; hence, 0 ~ 45°.
A special value for w is 1, because from Eq. (2.6), we see that u = 1 is the cutoff value
that allows 6 to reach both 0 and 7 /2. If © > 1, then any tilt of the plane is allowed. We’ve
been assuming throughout this example that 0 < 6 < /2. The task of Exercise 2.20 is to
deal with the case where 6 > /2, where the block is under an overhang. &

Let’s now do an example involving a rope in which the tension varies with
position. We’ll need to consider differential pieces of the rope to solve this
problem.

Example (Rope wrapped around a pole): A rope wraps an angle 6 around a
pole. You grab one end and pull with a tension 7. The other end is attached to a large
object, say, a boat. If the coefficient of static friction between the rope and the pole
is 1, what is the largest force the rope can exert on the boat, if the rope is not to slip
around the pole?

Solution: Consider a small piece of the rope that subtends an angle d6. Let the

2 tension in this piece be 7 (which varies slightly over the small length). As shown in

¢ Fig. 2.3, the pole exerts a small outward normal force, Ny, on the piece. This normal
force exists to balance the “inward” components of the tensions at the ends. These

Nyo inward components have magnitude 7 sin(d6 /2).1 Therefore, Njg = 27 sin(d0/2).
A \ The small-angle approximation, sinx & x, allows us to write this as Ny = T d6.
% The friction force on the little piece of rope satisfies Fyg < uNz9 = uT d6. This
T'sind6/2

friction force is what gives rise to the difference in tension between the two ends of

the piece. In other words, the tension, as a function of 0, satisfies
Fig. 2.3

T +do) < T(O) + nT do
= dT < puTdo

dar
= — =< | ndo
T
= InT<ub+C
= T < Toe’w, 2.7
! One of them actually has magnitude (7' + dT) sin(d6/2), where dT is the increase in tension along

the small piece. But the extra term this produces, (d7') sin(d6/2), is a second-order small quantity,
so it can be ignored.
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where we have used the fact that 7 = Ty when 6 = 0. The exponential behavior
here is quite strong (as exponential behaviors tend to be). If we let u = 1, then justa
quarter turn around the pole produces a factor of €™ /2 2 5. One full revolution yields
a factor of €™ 2 530, and two full revolutions yield a factor of e~ 300 000.
Needless to say, the limiting factor in such a case is not your strength, but rather the
structural integrity of the pole around which the rope winds.

2.2 Balancing torques

In addition to balancing forces in a statics problem, we must also balance torques.
We’ll have much more to say about torque in Chapters 8 and 9, but we’ll need
one important fact here. Consider the situation in Fig. 2.4, where three forces
are applied perpendicular to a stick, which is assumed to remain motionless. F
and F are the forces at the ends, and F3 is the force in the interior. We have, of
course, F3 = F| + F», because the stick is at rest. But we also have the following
relation:

Claim 2.1 [f'the system is motionless, then Fza = Fy(a + b). In other words,
the torques (force times distance) around the left end cancel.” And you can show
that they cancel around any other point, too.

We’ll prove this claim in Chapter 8 by using angular momentum, but let’s give a
short proof here.

Proof: We’ll make one reasonable assumption, namely, that the correct
relationship between the forces and distances is of the form,

Fif(a) = Faf (a+ D), (2.8)

where f(x) is a function to be determined.’ Applying this assumption with the
roles of “left” and “right” reversed in Fig. 2.4 gives

F3f (b) = Fif(a + b). (2.9)
Adding Egs. (2.8) and (2.9), and using F3 = F| + F>, yields
f(@ +f(b) =f(a+b). (2.10)

This equation implies that f'(rx) = rf(x) for any x and for any rational number
7, as you can show (see Exercise 2.28). Therefore, assuming f'(x) is continuous,

2 Another proof of this claim is given in Problem 2.11.
3 What we’re doing here is simply assuming linearity in F. That is, two forces of F applied at a point
should be the same as a force of 2F applied at that point. You can’t really argue with that.
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it must be a linear function, f'(x) = Ax, as we wanted to show. The constant 4 is
irrelevant, because it cancels in Eq. (2.8). H

Note that dividing Eq. (2.8) by Eq. (2.9) gives Ff (a) = F,f (b), and hence
Fia = F»b, which says that the torques cancel around the point where F3 is
applied. You can show that the torques cancel around any arbitrary pivot point.
When adding up all the torques in a given physical setup, it is of course required
that you use the same pivot point when calculating each torque.

In the case where the forces aren’t perpendicular to the stick, the above claim
applies to the components of the forces perpendicular to the stick. This makes
sense, because the components parallel to the stick have no effect on the rotation
of the stick around the pivot point. Therefore, referring to Figs. 2.5 and 2.6, the
equality of the torques can be written as

Faasin6, = Fpbsin 0. (2.11)

This equation can be viewed in two ways:

o (Fysinf,)a = (Fpsinfp)b. In other words, we effectively have smaller forces acting
on the given “lever arms,” as shown in Fig. 2.5.
e Fy(asinb,) = Fp(bsinbp). In other words, we effectively have the given forces acting

on smaller “lever arms,” as shown in Fig. 2.6.

Claim 2.1 shows that even if you apply only a tiny force, you can balance
the torque due to a very large force, provided that you make your lever arm
sufficiently long. This fact led a well-known mathematician of long ago to claim
that he could move the earth if given a long enough lever arm.

One morning while eating my Wheaties,
I felt the earth move ‘neath my feeties.
The cause for alarm

Was a long lever arm,

At the end of which grinned Archimedes!

One handy fact that comes up often is that the gravitational torque on a
stick of mass M is the same as the gravitational torque due to a point-mass
M located at the center of the stick. The truth of this statement relies on the fact
that torque is a linear function of the distance to the pivot point (see Exercise
2.27). More generally, the gravitational torque on an object of mass M may be
treated simply as the gravitational torque due to a force Mg located at the center
of mass.

We’ll talk more about torque in Chapters § and 9, but for now we’ll just
use the fact that in a statics problem the torques around any given point must
balance.



2.2 Balancing torques

Example (Leaning ladder): A ladder leans against a frictionless wall. If the
coefficient of friction with the ground is p, what is the smallest angle the ladder can
make with the ground and not slip?

Solution: Let the ladder have mass m and length €. As shown in Fig. 2.7, we have
three unknown forces: the friction force £, and the normal forces N1 and N>. And
to solve for these three forces we fortunately have three equations: X Fyert = O,
YFhoriz = 0, and ¥t = 0 (7 is the standard symbol for torque). Looking at the
vertical forces, we see that N1 = mg. And then looking at the horizontal forces, we
see that Np = F. So we have quickly reduced the unknowns from three to one.

We will now use X7 = 0 to find N, (or F'). But first we must pick the “pivot” point
around which we will calculate the torques. Any stationary point will work fine, but
certain choices make the calculation easier than others. The best choice for the pivot
is generally the point at which the most forces act, because then the ¥ 7 = 0 equation
will have the smallest number of terms in it (because a force provides no torque around
the point where it acts, since the lever arm is zero). In this problem, there are two
forces acting at the bottom end of the ladder, so this is the point we’ll choose for the
pivot (but you should verify that other choices for the pivot, for example, the middle
or top of the ladder, give the same result). Balancing the torques due to gravity and
N>, we have

mg
2tanf

Nylsin® =mg(€/2)cos =— Np= (2.12)

This is also the value of the friction force . The condition F < uNy = umg
therefore becomes

1
mg <umg = tanf > —. (2.13)
2tan 6 2un

RemArks: Note that the total force exerted on the ladder by the floor points up at an angle
given by tan 8 = N|/F = (mg)/(mg/2tan6) = 2tan 6. We see that this force does not
point along the ladder. There is simply no reason why it should. But there is a nice reason
why it should point upward with twice the slope of the ladder. This is the direction that
causes the lines of the three forces on the ladder to be concurrent (that is, pass through a
common point), as shown in Fig. 2.8. This concurrency is a neat little theorem for statics
problems involving three forces. The proof'is simple. If the three lines weren’t concurrent,
then one force would produce a nonzero torque around the intersection point of the other
two lines of force.*

This theorem provides a quick way to solve the ladder problem in the more general
case where the center of mass is a fraction f/* of the way up. In this case, the concurrency
theorem tells us that the slope of the total force from the floor is (1/f) tan 6, consistent
with the /' = 1/2 result from above. The vertical component is still mg, so the horizontal
(friction) component is now fing/tan 6. Demanding that this be less than or equal to
umg gives tan6 > f/u, consistent with the f = 1/2 result. Since this result depends

# The one exception to this reasoning is where no two of the lines intersect, that is, where all three
lines are parallel. Equilibrium is certainly possible in such a scenario, as we saw in Claim 2.1. But
you can hang on to the concurrency theorem in this case if you consider the parallel lines to meet
at infinity.
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only on the location of the center of mass, and not on the exact distribution of mass, a
corollary is that if you climb up a ladder (resting on a frictionless wall), your presence
makes the ladder more likely to slip if you are above the center of mass (because you have
raised the center of mass of the entire system and thus increased /'), and less likely if you
are below. &

The examples we’ve done in this chapter have consisted of only one object.
But many problems involve more than one object (as you’ll find in the problems
and exercises for this chapter), and there’s one additional fact you’ll often need to
invoke for these, namely Newton’s third law. This states that the force that object
A exerts on object B is equal and opposite to the force that B exerts on 4 (we’ll
talk more about Newton’s laws in Chapter 3). So if you want to find, say, the
normal force between two objects, you might be able to figure it out by looking
at forces and torques on either object, depending on how much you already know
about the other forces acting on each. Once you’ve found the force by dealing
with, say, object 4, you can then use the equal and opposite force to help figure
out things about B. Depending on the problem, one object is often more useful
than the other to use first.

Note, however, that if you pick your subsystem (on which you’re going to
consider forces and torques) to include both 4 and B, then this won’t tell you
anything at all about the normal force (or friction) between them. This is true
because the normal force is an internal force between the objects (when consid-
ered together as a system), whereas only external forces are relevant in calculating
the total force and torque on the system (because all the internal forces cancel in
pairs, by Newton’s third law). The only way to determine a given force is to deal
with it as an external force on some subsystem(s).

Statics problems often involve a number of decisions. If there are various parts
to the system, then you must decide which subsystems you want to balance the
external forces and torques on. And furthermore, you must decide which point to
use as the origin for calculating the torques. There are invariably many choices
that will give you the information you need, but some will make your calculations
much cleaner than others (Exercise 2.35 is a good example of this). The only way
to know how to choose wisely is to start solving problems, so you may as well
tackle some. . .

2.3 Problems

Section 2.1: Balancing forces

2.1. Hanging rope

A rope with length L and mass density per unit length p is suspended
vertically from one end. Find the tension as a function of height along
the rope.
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2.2. Block on a plane

A block sits on a plane that is inclined at an angle 8. Assume that
the friction force is large enough to keep the block at rest. What are the
horizontal components of the friction and normal forces acting on the
block? For what 6 are these horizontal components maximum?

2.3. Motionless chain «

A frictionless tube lies in the vertical plane and is in the shape of a func-
tion that has its endpoints at the same height but is otherwise arbitrary.
A chain with uniform mass per unit length lies in the tube from end to
end, as shown in Fig. 2.9. Show, by considering the net force of gravity
along the curve, that the chain doesn’t move. Fig. 2.9

2.4. Keeping a book up =

A book of mass M is positioned against a vertical wall. The coeffi-
cient of friction between the book and the wall is «. You wish to keep
the book from falling by pushing on it with a force F* applied at an
angle 6 with respect to the horizontal (—n/2 < 6 < m/2), as shown
in Fig. 2.10.

(a) For a given 6, what is the minimum F required?

(b) For what 6 is this minimum F the smallest? What is the Fig.2.10
corresponding minimum F'?

(c) What is the limiting value of 6, below which there does not exist
an F that keeps the book up?

2.5. Rope on a plane =

A rope with length L and mass density per unit length p lies on a plane M
inclined at an angle 6 (see Fig. 2.11). The top end is nailed to the plane,

and the coefficient of friction between the rope and the plane is u. What 0
are the possible values for the tension at the top of the rope?

Fig. 2.11
2.6. Supporting a disk «=
(a) Adisk of mass M and radius R is held up by a massless string, as
shown in Fig. 2.12. The surface of the disk is frictionless. What is
the tension in the string? What is the normal force per unit length
that the string applies to the disk?
(b) Let there now be friction between the disk and the string, with
coefficient ;. What is the smallest possible tension in the string
at its lowest point?

2.7. Objects between circles = Fig. 2.12

Each of the following planar objects is placed, as shown in Fig. 2.13,
between two frictionless circles of radius R. The mass density per unit
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2.8.

2.9.

2.10.

area of each object is o, and the radii to the points of contact make an
angle 6 with the horizontal. For each case, find the horizontal force that
must be applied to the circles to keep them together. For what 0 is this
force maximum or minimum?

(a) Anisosceles triangle with common side length L.
(b) Arectangle with height L.
(c) Acircle.

Hanging chain #xwx

(a) A chain with uniform mass density per unit length hangs between
two given points on two walls. Find the general shape of the chain.
Aside from an arbitrary additive constant, the function describing
the shape should contain one unknown constant. (The shape of a
hanging chain is known as a catenary.)

(b) The unknown constant in your answer depends on the horizontal
distance d between the walls, the vertical distance A between the
support points, and the length £ of the chain (see Fig. 2.14). Find
an equation involving these given quantities that determines the
unknown constant.

Hanging gently «x

A chain with uniform mass density per unit length hangs between two
supports located at the same height, a distance 2d apart (see Fig. 2.15).
What should the length of the chain be so that the magnitude of the
force at the supports is minimized? You may use the fact that a hanging
chain takes the form, y(x) = (1/«) cosh(ax). You will eventually need
to solve an equation numerically.

Mountain climber s

A mountain climber wishes to climb up a frictionless conical moun-
tain. He wants to do this by throwing a lasso (a rope with a loop) over
the top and climbing up along the rope. Assume that the climber is of
negligible height, so that the rope lies along the mountain, as shown
in Fig. 2.16. At the bottom of the mountain are two stores. One sells
“cheap” lassos (made of a segment of rope tied to a loop of fixed
length); see Fig. 2.17. The other sells “deluxe” lassos (made of one
piece of rope with a loop of variable length; the loop’s length may
change without any friction of the rope with itself). When viewed from
the side, the conical mountain has an angle « at its peak. For what
angles « can the climber climb up along the mountain if he uses a
“cheap” lasso? A “deluxe” lasso? (Hint: The answer in the “cheap” case
isn’ta < 90°))



2.3 Problems

Section 2.2: Balancing torques

2.11.

2.12.

2.13.

Equality of torques x=

This problem gives another way of demonstrating Claim 2.1, using an
inductive argument. We’ll get you started, and then you can do the
general case.

Consider the situation where forces F' are applied upward at the ends
ofastick of length ¢, and a force 2F is applied downward at the midpoint
(see Fig. 2.18). The stick doesn’t rotate (by symmetry), and it doesn’t
translate (because the net force is zero). If we wish, we may consider
the stick to have a pivot at the left end. If we then erase the force F on
the right end and replace it with a force 2F at the middle, then the two
2F forces in the middle cancel, so the stick remains at rest.” Therefore,
we see that a force F' applied at a distance £ from a pivot is equivalent
to a force 2F applied at a distance £/2 from the pivot, in the sense that
they both have the same effect in canceling out the rotational effect of
the downwards 2F force.

Now consider the situation where forces F are applied upward at the
ends, and forces F are applied downward at the £/3 and 2¢/3 marks
(see Fig. 2.19). The stick doesn’t rotate (by symmetry), and it doesn’t
translate (because the net force is zero). Consider the stick to have a
pivot at the left end. From the above paragraph, the force F' at 2¢/3
is equivalent to a force 2F at £/3. Making this replacement, we now
have a total force of 3F at the £/3 mark. Therefore, we see that a
force F applied at a distance £ is equivalent to a force 3F applied at a
distance £/3.

Your task is to now use induction to show that a force F" applied at a
distance £ is equivalent to a force nF applied at a distance ¢/n, and to
then argue why this demonstrates Claim 2.1.

Direction of the tension =

Show that the tension in a completely flexible rope, massive or massless,
points along the rope everywhere in the rope.

Find the force =«

A stick of mass M is held up by supports at each end, with each support
providing a force of Mg /2. Now put another support somewhere in the
middle, say, at a distance @ from one support and b from the other;
see Fig. 2.20. What forces do the three supports now provide? Is this
solvable?

5 There is now a different force applied at the pivot, namely zero, but the purpose of the pivot is to
simply apply whatever force is necessary to keep the left end motionless.

d
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2.14.
2.15.
Fig. 2.22 2.16.
l<—|—l
—
A
2.17.
Fig. 2.24
2.18.

Leaning sticks =

One stick leans on another as shown in Fig. 2.21. A right angle is formed
where they meet, and the right stick makes an angle 6 with the horizontal.
The left stick extends infinitesimally beyond the end of the right stick.
The coefficient of friction between the two sticks is . The sticks have
the same mass density per unit length and are both hinged at the ground.
What is the minimum angle 6 for which the sticks don’t fall?

Supporting a ladder =

A ladder of length L and mass M has its bottom end attached to the
ground by a pivot. It makes an angle 6 with the horizontal and is held
up by a massless stick of length £ that is also attached to the ground by a
pivot (see Fig. 2.22). The ladder and the stick are perpendicular to each
other. Find the force that the stick exerts on the ladder.

Balancing the stick «=

Given a semi-infinite stick (that is, one that goes off to infinity in one
direction), determine how its density should depend on position so that it
has the following property: If the stick is cut at an arbitrary location, the
remaining semi-infinite piece will balance on a support that is located a
distance ¢ from the end (see Fig. 2.23).

The spool

A spool consists of an axle of radius » and an outside circle of radius R
which rolls on the ground. A thread is wrapped around the axle and is
pulled with tension 7" at an angle 8 with the horizontal (see Fig. 2.24).

(a) Given R and r, what should 6 be so that the spool doesn’t move?
Assume that the friction between the spool and the ground is large
enough so that the spool doesn’t slip.

(b) Given R, r, and the coefficient of friction u between the spool
and the ground, what is the largest value of 7' for which the spool
remains at rest?

(¢) Given R and p, what should r be so that you can make the spool
slip from the static position with as small a 7" as possible? That
is, what should » be so that the upper bound on 7 in part (b) is as
small as possible? What is the resulting value of 7'?

Stick on a circle «x

A stick of mass density per unit length p rests on a circle of radius R (see
Fig. 2.25). The stick makes an angle 6 with the horizontal and is tangent
to the circle at its upper end. Friction exists at all points of contact, and
assume that it is large enough to keep the system at rest. Find the friction
force between the ground and the circle.



2.19.

2.4 Exercises

Leaning sticks and circles =xx

A large number of sticks (with mass density per unit length p) and
circles (with radius R) lean on each other, as shown in Fig. 2.26. Each
stick makes an angle 6 with the horizontal and is tangent to the next
circle at its upper end. The sticks are hinged to the ground, and every
other surface is frictionless (unlike in the previous problem). In the limit
of a very large number of sticks and circles, what is the normal force
between a stick and the circle it rests on, very far to the right? Assume
that the last circle leans against a wall, to keep it from moving.

2.4 Exercises

Section 2.1: Balancing forces

2.20.

2.21.

2.22.

2.23.

Block under an overhang «

Ablock of mass M is positioned underneath an overhang that makes an
angle B with the horizontal. You apply a horizontal force of Mg on the
block, as shown in Fig. 2.27. Assume that the friction force between the
block and the overhang is large enough to keep the block at rest. What
are the normal and friction forces (call them N and Fr) that the overhang
exerts on the block? If the coefficient of static friction is w, for what
range of angles 8 does the block in fact remain at rest?

Pulling a block =*

A person pulls on a block with a force ', at an angle 6 with respect to the
horizontal. The coefficient of friction between the block and the ground
is . For what 6 is the F required to make the block slip a minimum?
What is the corresponding F'?

Holding a cone =

With two fingers, you hold an ice cream cone motionless upside down,
as shown in Fig. 2.28. The mass of the cone is m, and the coefficient
of static friction between your fingers and the cone is . When viewed
from the side, the angle of the tip is 26. What is the minimum normal
force you must apply with each finger in order to hold up the cone? In
terms of 6, what is the minimum value of w that allows you to hold up
the cone? Assume that you can supply as large a normal force as needed.

Keeping a book up ==

The task of Problem 2.4 is to find the minimum force required to keep a
book up. What is the maximum allowable force, as a function of 6 and
w? Is there a special angle that arises? Given u, make a rough plot of
the allowed values of F' for —/2 < 6 < 7 /2.
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2.24. Bridges =x

(a) Consider the first bridge in Fig. 2.29, made of three equilateral

% triangles of beams. Assume that the seven beams are massless and
that the connection between any two of them is a hinge. If a car

of mass m is located at the middle of the bridge, find the forces

(and specify tension or compression) in the beams. Assume that
m the supports provide no horizontal forces on the bridge.
" (b) Same question, but now with the second bridge in Fig. 2.29, made

of seven equilateral triangles.
(c) Same question, but now with the general case of 4n— 1 equilateral
triangles.

2.25. Rope between inclines =+

A rope rests on two platforms that are both inclined at an angle 6 (which
you are free to pick), as shown in Fig. 2.30. The rope has uniform mass
density, and the coefficient of friction between it and the platforms is 1.
The system has left-right symmetry. What is the largest possible fraction
of the rope that does not touch the platforms? What angle 6 allows this
maximum fraction?

2.26. Hanging chain

A chain with mass M hangs between two walls, with its ends at the
same height. The chain makes an angle 6 with each wall, as shown in
Fig. 2.31. Find the tension in the chain at the lowest point. Solve this in
two different ways:

(a) Consider the forces on half of the chain. (This is the quick way.)
(b) Use the fact (see Problem 2.8) that the height of a hanging chain is
U given by y(x) = (1/«) cosh(wx), and consider the vertical forces
on an infinitesimal piece at the bottom. This will give you the
M tension in terms of . Then find an expression for o« in terms of

the given angle 6. (This is the long way.)

Fig. 2.31 , ,
Section 2.2: Balancing torques

2.27. Gravitational torque

Ahorizontal stick of mass M and length L is pivoted at one end. Integrate
the gravitational torque along the stick (relative to the pivot), and show
that the result is the same as the torque due to a mass M located at the
center of the stick.

2.28. Linear function =

Show that if a function satisfies (@) + f(b) = f(a + b), then f (rx) =
rf (x) for any x and for any rational number r.



2.29.

2.30.

2.31.

2.32.

2.33.

2.34.

2.4 Exercises

Direction of the force =

A stick is connected to other parts of a static system by hinges at its
ends. Show that (1) if the stick is massless, then the forces it feels at the
hinges are directed along the stick, but (2) if the stick is massive, then
the forces need not point along the stick.

Ball on a wall «

Aball is held up by a string, as shown in Fig. 2.32, with the string tangent
to the ball. If the angle between the string and the wall is 6, what is the
minimum coefficient of static friction between the ball and the wall that
keeps the ball from falling?

Cylinder and hanging mass =

A uniform cylinder of mass M sits on a fixed plane inclined at an
angle 6. A string is tied to the cylinder’s rightmost point, and a mass m
hangs from the string, as shown in Fig. 2.33. Assume that the coeffi-
cient of friction between the cylinder and the plane is sufficiently large
to prevent slipping. What is m, in terms of M and @, if the setup is
static?

Ladder on a corner =«

A ladder of mass M and length L leans against a frictionless wall, with
a quarter of its length hanging over a corner, as shown in Fig. 2.34. It
makes an angle 6 with the horizontal. What angle 6 requires the smallest
coefficient of friction at the corner to keep the ladder at rest? (Different
values of 6 require different ladder lengths, but assume that the mass is
M for any length.)

Stick on a corner =

You support one end of a stick of mass M and length L with the tip of
your finger. A quarter of the way up the stick, it rests on a frictionless
corner of a table, as shown in Fig. 2.35. The stick makes an angle 0
with the horizontal. What is the magnitude of the force your finger must
apply to keep the stick in this position? For what angle 6 does your force
point horizontally?

Stick and a cylinder =

A horizontal stick of mass m has its left end attached to a pivot on a plane
inclined at an angle 6, while its right end rests on the top of a cylinder
also of mass m which in turn rests on the plane, as shown in Fig. 2.36.
The coefficient of friction between the cylinder and both the stick and
the plane is x.

(a) Assuming that the system is at rest, what is the normal force from
the plane on the cylinder?

1/4 of the
length L

Fig. 2.35

Fig. 2.36
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(b) What is the smallest value of w (in terms of 6) for which the
system doesn’t slip anywhere?

2.35. Two sticks and a string ==

Two sticks, each of mass m and length ¢, are connected by a hinge at their
top ends. They each make an angle 6 with the vertical. A massless string
connects the bottom of the left stick to the right stick, perpendicularly
as shown in Fig. 2.37. The whole setup stands on a frictionless table.

(a) What is the tension in the string?
(b) What force does the left stick exert on the right stick at the hinge?
Hint: No messy calculations required!

2.36. Two sticks and a wall =«

Two sticks are connected, with hinges, to each other and to a wall. The
bottom stick is horizontal and has length L, and the sticks make an angle
of 6 with each other, as shown in Fig. 2.38. If both sticks have the same
mass per unit length, p, find the horizontal and vertical components
of the force that the wall exerts on the top hinge, and show that the
magnitude goes to infinity for both § — 0 and 6 — 7/2.°

2.37. Stick on a circle s«

Using the results from Problem 2.18 for the setup shown in Fig. 2.39,
show that if the system is to remain at rest, then the coefficient of friction:

(a) between the stick and the circle must satisfy

- sin 0 (2.14)
K= Ttcose '
(b) between the stick and the ground must satisfy’
sin 6 cos 6 2.15)

= .
(I +cosB)(2 —cosh)

2.38. Stacking blocks =

N blocks of length ¢ are stacked on top of each other at the edge of a
table, as shown in Fig. 2.40 for N = 4. What is the largest horizontal

The force must therefore achieve a minimum at some intermediate angle. If you want to go through
the algebra, you can show that this minimum occurs when cos = +/3 — 1, which gives 6 & 43°.
If you want to go through the algebra, you can show that the right-hand side achieves a maximum
when cosf = /3 — 1, which gives 8 = 43°. (Yes, I did just cut and paste this from the previous
footnote. But it’s still correct!) This is the angle for which the stick is most likely to slip on the
ground.



2.5 Solutions

distance the rightmost point on the top block can hang out beyond the
table? How does your answer behave for N — 00?®

2.5 Solutions

2.1.

2.2.

2.3.

2.4.

Hanging rope

Let 7'(y) be the tension as a function of height. Consider a small piece of the rope
between y and y + dy (0 < y < L). The forces on this piece are 7'(y + dy) upward,
T (y) downward, and the weight pg dy downward. Since the rope is at rest, we have
T(y +dy) = T(y) + pg dy. Expanding this to first order in dy gives T'(y) = pg. The
tension in the bottom of the rope is zero, so integrating from y = 0 up to a position
v gives

T(y) = pgy. (2.16)

As a double-check, at the top end we have T'(L) = pgL, which is the weight of the
entire rope, as it should be.

Alternatively, you can simply write down the answer, 7'(y) = pgy, by noting that
the tension at a given point in the rope is what supports the weight of all the rope
below it.

Block on a plane

Balancing the forces shown in Fig. 2.41, parallel and perpendicular to the plane, we
see that /¥ = mgsin® and N = mg cos 6. The horizontal components of these are
Fcosf = mgsinfcosé (to the right), and Nsind = mgcos6siné (to the left).
These are equal, as they must be, because the net horizontal force on the block is zero.
To maximize the value of mg sin 6 cos 6, we can either take the derivative, or we can
write it as (mg/2) sin 20, from which it is clear that the maximum occurs at 6 = /4.
The maximum value is mg /2.

Motionless chain

Let the curve be described by the function f'(x), and let it run from x = a to x = b.
Consider a little piece of the chain between x and x 4 dx (see Fig. 2.42). The length

of this piece is de, so its mass is p+/1 +f"2 dx, where p is the mass per unit
length. The component of the gravitational acceleration along the curve is —g sin6 =

—gf’/\/1+f'% (using tan @ = ), with positive corresponding to moving along the
curve from a to b. The total force along the curve is therefore

b b %
. —gf
F:/ (—gsin®)ydm = | —— . p\/1+f2dx
a a /1 +f/2

b
=—gp / f'dx
= —gp(f(@) — (b))
=0. 217
Keeping a book up

(a) The normal force from the wall is F cos@, so the friction force F¢ holding
the book up is at most uF cosf. The other vertical forces on the book are the

8 It turns out that the method of stacking shown in Fig. 2.40 (with the blocks simply stacked on top
of each other) doesn’t yield the optimal overhang. See Hall (2005) for an interesting discussion of
other methods.

0'\ mgcosb
“ mgsin®
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gravitational force, which is —Mg, and the vertical component of F', which is
F sin 6. If the book is to stay at rest, we must have Fsinf + Fy — Mg = 0.
Combining this with the condition Ff < uF cosf gives

F(sin6 + pcosf) > Mg. (2.18)
Therefore, F' must satisfy
M
Fo— (219
sinf + pcos6
assuming that sin 6+ cos 6 is positive. If it is negative, then there is no solution
for F.

(b) To minimize this lower bound, we must maximize the denominator. Taking the
derivative gives cosf — usin6 = 0, so tand = 1/u. Plugging this value of 6
back into Eq. (2.19) gives

mg

V14 u?
This is the smallest possible /' that keeps the book up, and the angle must be
0 = tan~"'(1/u) for it to work. We see that if iz is very small, then to minimize
your F', you should push essentially vertically with a force mg. But if u is very
large, you should push essentially horizontally with a force mg/ .

(c) There is no possible F that satisfies the condition in Eq. (2.19) if the right-hand
side is infinite (more precisely, there is no F' that satisfies Eq. (2.18) if the
coefficient of F' is zero or negative). This occurs when

tanf = —pu. (2.21)

If 6 is more negative than this, then it is impossible to keep the book up, no
matter how hard you push.

F> (with tan@ = 1/p). (2.20)

Rope on a plane

The component of the gravitational force along the plane is (pL)g sin 6, and the max-
imum value of the friction force is uN = p(pL)g cos 6. Therefore, you might think
that the tension at the top of the rope is pLgsinf — upLg cos6. However, this is
not necessarily the case. The tension at the top depends on how the rope is placed on
the plane. If, for example, the rope is placed on the plane without being stretched,
then the friction force points upwards, and the tension at the top does indeed equal
pLgsin® — ppLg cosh. Or it equals zero if upLgcosd > pLgsin@, in which case
the friction force need not achieve its maximum value.

If, on the other hand, the rope is placed on the plane after being stretched (or
equivalently, it is dragged up along the plane and then nailed down at its top end),
then the friction force points downwards, and the tension at the top equals pLg sin 6 +
upLg cos6.

Another special case occurs when the rope is placed on a frictionless plane, and then
the coefficient of friction is “turned on” to . The friction force is still zero. Changing
the plane from ice to sandpaper (somehow without moving the rope) doesn’t suddenly
cause there to be a friction force. Therefore, the tension at the top equals pLg sin 6.

In general, depending on how the rope is placed on the plane, the tension at the top
can take any value from a maximum of pLg sin 6 + upLg cos 6, down to a minimum
of pLgsin® — pupLg cos 6 (or zero, whichever is larger). If the rope is replaced by a
stick (which can support a compressive force), then the tension can achieve negative
values down to pLg sin® — upLg cos 6, if this happens to be negative.

Supporting a disk

(a) The gravitational force downward on the disk is Mg, and the force upward is
2T. These forces must balance, so

r=-x. (2.22)



2.5 Solutions

We can find the normal force per unit length that the string applies to the disk
in two ways.

FIrsT METHOD: Let N d6 be the normal force on an arc of the disk that subtends
an angle d6. Such an arc has length Rd6, so N/R is the desired normal force
per unit arclength. The tension in the string is the same throughout it, because
the string is massless. So all points are equivalent, and hence N is constant,
independent of 6. The upward component of the normal force is N d6 cos 0,
where 6 is measured from the vertical (that is, —7/2 < 6 < /2 here). Since
the total upward force is Mg, we must have
/2
N cosfdo = Mg. (2.23)
—n/2
The integral equals 2N, so we have N = Mg/2. The normal force per unit
length, N /R, therefore equals Mg /2R.

SeconD METHOD: Consider the normal force, N d6, on a small arc of the disk
that subtends an angle d6. The tension forces on each end of the corresponding
small piece of string almost cancel, but they don’t exactly, because they point
in slightly different directions. Their nonzero sum is what produces the normal ¢
force on the disk. From Fig. 2.43, we see that the two forces have a sum of
2T sin(d6/2), directed “inward”. Since d6 is small, we can use sinx ~ x to
approximate this as 7 d0. Therefore, N d0 = T d0, and so N = T. The normal

force per unit arclength, N /R, therefore equals 7'/R. Using T = Mg /2 from Eq. B
(2.22), we arrive at N/R = Mg /2R.
(b) Let T(6) be the tension, as a function of 0, for —n/2 < 6 < 7/2. T now Tsind06/2

depends on 6, because there is a tangential friction force. Most of the work for
this problem was alr.eady QOne in the “Rope Wr:app.ed around a pole” example irql Fig. 2.43
Section 2.1. We’ll simply invoke Eq. (2.7), which in the present language says

T©®) < T(0)e!. (2.24)

Letting 6 = /2, and using T'(/2) = Mg/2, gives Mg/2 < T(0)e"™/2. We
therefore see that the tension at the bottom point must satisfy

M
() = Tge*’“’/z. (2.25)

ReMARK: This minimum value of 7°(0) goes to Mg/2 as © — 0, as it should.
And it goes to zero as ;. — 00, as it should (imagine a very rough surface, so
that the friction force from the rope near & = 7 /2 accounts for essentially all the
weight). But interestingly, the tension at the bottom doesn’t exactly equal zero,
no matter now large u is. Basically, the smaller 7 is, the smaller N is. But the
smaller NV is, the smaller the change in 7 is (because N determines the friction

force). So 7' doesn’t decrease much when it’s small, and this results in it never
being able to reach zero. & %E;
2.7. Objects between circles Y

(a) Let N be the normal force between the circles and the triangle. The goal in
this problem is to find the horizontal component of N, that is, N cos6. From
Fig. 2.44, we see that the upward force on the triangle from the normal forces is
2N sin 6. This must equal the weight of the triangle, which is go times the area. Fig. 2.44
Since the bottom angle of the isosceles triangle is 26, the top side has length

® This holds for 6 > 0. There would be a minus sign on the right-hand side if & < 0. But since the
tension is symmetric around 6 = 0 in the case we’re concerned with, we’ll just deal with 6 > 0.
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2Lsin 6, and the altitude to this side is L cos6. So the area of the triangle is

L? sin 6 cos 0. The mass is therefore oL? sin @ cos 6. Equating the weight with

the upward component of the normal forces gives N = (goL?/2) cos . The

horizontal component of N is therefore

gol?cos’

2 .
This equals zero when 6 = /2, and it increases as 0 decreases, even though
the triangle is getting smaller. It has the interesting property of approaching the
finite value go L?/2, as 6 — 0.

(b) In Fig. 2.45, the base of the rectangle has length 2R(1 — cos0). Its mass is
therefore 20 RL(1 — cos 0). Equating the weight with the upward component of
the normal forces, 2N sin 6, gives N = o gRL(1 — cos6)/ sin 6. The horizontal
component of N is therefore

N cost = (2.26)

_ ogRL(1 — cos ) cos
- sin @ '

N cosf

(2.27)

This equals zero for both 6 = 7/2 and @ = 0 (because 1 — cos ~ 2/2 goes
to zero faster than sin 6 ~ 6, for small 6). Taking the derivative to find where it
reaches a maximum, we obtain (using sin” 6 = 1 — cos? §),

cos®6 —2cosf + 1 =0. (2.28)

Fortunately, there is an easy root of this cubic equation, namely cos6 = 1,
which we know is not the maximum. Dividing through by the factor (cos 6 — 1)
gives c0s? 0 + cos@ — 1 = 0. The roots of this quadratic equation are

cosf) = ——. (2.29)

We must choose the plus sign, because we need | cosf| < 1. So our answer is
cos O =~ 0.618, which is the inverse of the golden ratio. The angle 6 is &~ 51.8°.
(c) In Fig. 2.46, the length of the hypotenuse shown is R sec 6, so the radius of the
top circle is R(sec® — 1). Its mass is therefore owR?(sec® — 1)%. Equating
the weight with the upward component of the normal forces, 2N sin 6, gives
N = ogmR?*(secd — 1)2/(2sin §). The horizontal component of N is therefore

ogmR? cos 0 ( 1 1)2 B ogmR*(1 — cosh)?

N cosf = -
2sinf

(2.30)

cosf 2sin 6 cos 6

This equals zero when # = 0 (using cos® ~ 1 — #%/2 and sinf ~ 6, for
small 0). For & — /2, it behaves like 1/ cos 6, which goes to infinity. In this
limit, N points almost vertically, but its magnitude is so large that the horizontal
component still approaches infinity.

Fig. 2.46

2.8. Hanging chain

(a) The key fact to note is that the horizontal component, 7, of the tension is the
T(x+dx) same throughout the chain. This is true because the net horizontal force on any
subpart of the chain must be zero. Label the constant value as 7y = C.

Let the shape of the chain be described by the function y(x). Since the tension
points along the chain at all points (see Problem 2.12), its components satisfy
T,/T, = y', which gives T\, = Cy’. In other words, T}, is proportional to the
slope of the chain.

Now consider a little piece of the chain, with endpoints at x and x + dx, as
shown in Fig. 2.47. The difference in the 7 values at the endpoints is what
balances the weight of the little piece, (dm)g. The length of the piece is ds =

dx\/1 4y, so if p is the density, we have

dT,
dly = (pds)g = pgdn/1+y? = —==pg\/l+y2. (231
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Using the T}, = Cy’ result from above, this becomes Cy” = pg/1 + 3'2. Letting
z =/, we can separate variables and integrate to obtain

dz pg dx . pgx
= = sinh” 'z=—7-+4, (2.32)
f VT2 / c c

where 4 is a constant of integration. We can make this look a little cleaner if we
define constants « and a such that « = pg/C and a = A/«. We then obtain

sinh~'z=a(x+a) = z=sinha(k+a). (2.33)

Recalling that z = dy/dx, we can integrate again to obtain
1
y(x) = —cosha(x +a) + h. (2.34)
o

The shape of the chain is therefore a hyperbolic cosine function. The constant
h isn’t too important, because it depends simply on where we pick the y = 0
height. Furthermore, we can eliminate the need for the constant a if we pick
x = 0 to be where the lowest point of the chain is (or where it would be, in the
case where the slope is always nonzero). In this case, using Eq. (2.34), we see
that y’(0) = 0 implies a = 0, as desired. We then have (ignoring the constant /)
the nice simple result,

y(x) = écosh(ax). (2.35)

(b) The constant « can be determined from the locations of the endpoints and the

length of the chain. As stated in the problem, the position of the chain may be
described by giving (1) the horizontal distance d between the two endpoints,
(2) the vertical distance A between the two endpoints, and (3) the length ¢ of
the chain, as shown in Fig. 2.48. Note that it isn’t obvious what the horizontal
distances between the ends and the minimum point (which we have chosen as
the x = 0 point) are. If L = 0, then these distances are d/2, by symmetry. But
otherwise, they aren’t so clear.

If we let the left endpoint be located at x = —xg, then the first of the above
three facts says that the right endpoint is located at x = d — x¢. We now have
two unknowns, xo and «. The second fact tells us that (we’ll take the right end
to be higher than the left end, without loss of generality)

y(d —x0) — y(=x0) = %. (2.36)
And the third fact gives, using Eq. (2.35),

d—xo 1 d—xo
{= 1 +y?dx = — sinh(ax s 2.37
[ . V1+y " (orx) v (2.37)

where we have used (d/du) coshu = sinhu, and 1 + sinh? 4 = cosh? u, and
J coshu = sinhu. Writing out Egs. (2.36) and (2.37) explicitly, we have
cosh (a(d — x9)) — cosh(—axp) = ak,
(2.38)
sinh (a(d — xo)) — sinh(—axg) = al.

We can eliminate xo by taking the difference of the squares of these two

equations. Using the hyperbolic identities cosh’u — sinh’>z = 1 and
cosh u cosh v — sinh u sinh v = cosh(u — v), we obtain
2cosh(ad) — 2 = (62 — A2). (2.39)

This is the desired equation that determines «. Given d, A, and ¢, we can numer-
ically solve for «. Using a “half-angle” formula, you can show that Eq. (2.39)
may also be written as

2sinh(ad/2) = ay/€2 — A2 (2.40)

Fig. 2.48
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ReEMARK: Let’s check a couple limits. If . = 0 and ¢ = d (that is, the chain
forms a horizontal straight line), then Eq. (2.40) becomes 2 sinh(«d/2) = ad.
The solution to this is @« = 0, which does indeed correspond to a horizontal
straight line, because for small o, we can use cosh € & 1 + €2/2 to say that the
y(x) in Eq. (2.35) behaves like ex? /2 (up to an additive constant), which varies
slowly with x for small «. Another limit is where £ is much larger than both d
and A. In this case, Eq. (2.40) becomes 2 sinh(«d /2) =~ «£. The solution to this
is a large o (or more precisely, « > 1/d), which corresponds to a “droopy”
chain, because the y(x) in Eq. (2.35) varies rapidly with x for large «. &

Hanging gently

We must first find the mass of the chain by calculating its length. Then we must
determine the slope of the chain at the supports, so we can find the components of
the force there. Using the given information, y(x) = (1/a) cosh(ax), the slope of the
chain as a function of x is

y = i (é COSh(OlX)) = sinh(ax). (241)

The total length is therefore (using 1 + sinh? z = cosh? z)

d d
2
{= [ 14+y2dx = / cosh(ax) = = sinh(ad). 2.42
» V1i+y » " (2.42)

The weight of the rope is W = pfg, where p is the mass per unit length. Each support
applies a vertical force of W /2. So this equals F'sin6, where F is the magnitude
of the force at each support, and 6 is the angle it makes with the horizontal. Since
tan 6 = y’(d) = sinh(ad), we see from Fig. 2.49 that sin 0 = tanh(ad). Therefore,

L ! pgsinh(@d) _ pg. 1 wd) (2.43)
o

T sind 2 tanh(ad) ’ o

Taking the derivative of this (as a function of ), and setting the result equal to zero to
find the minimum, gives tanh(ad) = 1/(ad). This must be solved numerically. The
result is

ad ~ 1.1997 = 1. (2.44)
So « is given by & = n/d, and the shape of the chain that requires the minimum F' is

thus

_d nx
y@ = | cosh (7) . (2.45)

From Egs. (2.42) and (2.44), the length of the chain is £ = (2d/n) sinh(n) ~ (2.52)d.
To further get an idea of what the chain looks like, we can calculate the ratio of the
height, A, to the width, 2d.

h_ y(d)—y(0) _ cosh(n) —1
2d 2d - 21

~ 0.338. (2.46)

We can also calculate the angle of the rope at the supports, using tan & = sinh(ad).
This gives tan# = sinh 7, and so 6 ~ 56.5°.

ReEmMARK: We can also ask what shape the chain should take in order to minimize
the horizontal or vertical component of F'. The vertical component, Fy, is simply half
the weight, so we want the shortest possible chain, namely a horizontal one (which
requires an infinite /). This corresponds to @ = 0. The horizontal component, F,
equals F cos 0. From Fig. 2.49, we see that cos @ = 1/ cosh(ad). Therefore, Eq. (2.43)
gives Fy = pg/a. This goes to zero as « — 00, which corresponds to a chain with
infinite length, that is, a very “droopy” chain. &
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2.10. Mountain climber

CHEAP LAsso: We will take advantage of the fact that a cone is “flat,” in the sense
that we can make one out of a piece of paper, without crumpling the paper. Cut the
cone along a straight line emanating from the peak and passing through the knot of the
lasso, and roll the cone flat onto a plane. Call the resulting figure, which is a sector of
acircle, S (see Fig. 2.50). If the cone is very sharp, then S looks like a thin “pie piece.”
Ifthe cone is very wide, with a shallow slope, then S looks like a pie with a piece taken
out of it. Points on the straight-line boundaries of the sector S are identified with each
other. Let P be the location of the lasso’s knot. Then P appears on each straight-line
boundary, at equal distances from the tip of S. Let 8 be the angle of the sector S.

The key to this problem is to realize that the path of the lasso’s loop must be a
straight line on S, as shown by the dotted line in Fig. 2.50. This is true because the rope
takes the shortest distance between two points because there is no friction, and rolling
the cone onto a plane doesn’t change distances. But a straight line between the two
identified points P is possible if and only if the sector S is smaller than a semicircle.
The condition for a climbable mountain is therefore 8 < 180°.

What is this condition, in terms of the angle of the peak, «? Let C denote a cross-
sectional circle of the mountain, a distance d (measured along the cone) from the top.
(We are considering this circle for geometrical convenience. It is not the path of the
lasso; see the remark below.) A semicircular S implies that the circumference of C
equals wwd. This then implies that the radius of C equals d /2. Therefore,

. d/i2 1
sin(a/2) < 7 =3 = o <60°. (2.47)
This is the condition under which the mountain is climbable. In short, having « < 60°
guarantees that there is a loop around the cone with shorter length than the distance
straight to the peak and back.

ReEmMARK:  When viewed from the side, the rope will appear perpendicular to the side
of the mountain at the point opposite the lasso’s knot. A common mistake is to assume
that this implies that the climbable condition is @ < 90°. This is not the case, because
the loop does not lie in a plane. Lying in a plane, after all, would imply an elliptical
loop. But the loop must certainly have a kink in it where the knot is, because there
must exist a vertical component to the tension there to hold the climber up. If we had
posed the problem with a planar, triangular mountain, then the condition would have
beenw < 90°. &

DELUXE LAsso:  If'the mountain is very steep, the climber can slide down the mountain
by means of the loop growing larger. If the mountain has a shallow slope, the climber
can slide down by means of the loop growing smaller. The only situation in which the
climber doesn’t slide down is the one where the change in position of the knot along
the mountain is exactly compensated by the change in length of the loop.

Roll the cone onto a plane as we did in the cheap-lasso case. In terms of the sector S in
a plane, the above condition requires that if we move P a distance € up (or down) along
the mountain, the distance between the identified points P must decrease (or increase)
by £. In Fig. 2.50, we must therefore have an equilateral triangle, so 8 = 60°.

What peak-angle o does this correspond to? As in part the cheap-lasso case, let C be
a cross-sectional circle of the mountain, a distance d (measured along the cone) from
the top. Then B = 60° implies that the circumference of C equals (;r/3)d. This then
implies that the radius of C equals d/6. Therefore,

sin(a/2) = ﬁ = l = a~19° (2.48)
d 6

This is the condition under which the mountain is climbable. We see that there is
exactly one angle for which the climber can climb up along the mountain. The cheap

~

Fig. 2.50
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lasso is therefore much more useful than the fancy deluxe lasso, assuming, of course,
that you want to use it for climbing mountains, and not, say, for rounding up cattle.

REMARK: Another way to see the = 60° result is to note that the three directions
of rope emanating from the knot must all have the same tension, because the deluxe
lasso is one continuous piece of rope. They must therefore have 120° angles between
themselves (to provide zero net force on the massless knot). This implies that 8 = 60°
in Fig. 2.50. &

FURTHER REMARKS: For each type of lasso, we can also ask the question: For what
angles can the mountain be climbed if the lasso is looped N times around the top of
the mountain? The solution here is similar to that above.

For the cheap lasso, roll the cone N times onto a plane, as shown in Fig. 2.51 for
N = 4. The resulting figure, Sy, is a sector of a circle divided into N equal sectors,
each representing a copy of the cone. As above, Sy must be smaller than a semicircle.
The circumference of the circle C (defined above) must therefore be less than wd /N.
Hence, the radius of C must be less than d/2N. Thus,

. d/2N 1
sin(a/2) < 7 =N
For the deluxe lasso, again roll the cone N times onto a plane. From the original
reasoning above, we must have N 8 = 60°. The circumference of C must therefore be
wd /3N, and so its radius must be d/6/N. Therefore,

d/6N 1
d ~ 6N

— a< 2sin_l<%). (2.49)

sin(er/2) = — azzsin*‘<5). & (250

Equality of torques

The proof by induction is as follows. Assume that we have shown that a force F
applied at a distance d is equivalent to a force kF" applied at a distance d/k, for all
integers k up to n — 1. We now want to show that the statement holds for & = n.

Consider the situation in Fig. 2.52. Forces F are applied at the ends of a stick, and
forces 2F /(n — 1) are applied at the j¢/n marks (for | <; < n — 1). The stick doesn’t
rotate (by symmetry), and it doesn’t translate (because the net force is zero). Consider
the stick to have a pivot at the left end. Replacing the interior forces by their equivalent
ones at the £/n mark (see Fig. 2.52) gives a total force there equal to

27F<1+2+3+.,.+(n_1)>:27F<M):nF_
n—1 n

— 5 (2.51)

We therefore see that a force /' applied at a distance ¢ is equivalent to a force nF
applied at a distance £/n, as was to be shown.

We can now show that Claim 2.1 holds, for arbitrary distances a and b (see Fig. 2.53).
Consider the stick to be pivoted at its left end, and let € be a tiny distance (small
compared with a). Then a force £ at a distance a is equivalent to a force F3(a/e€) at
a distance €.!” But a force F3(a/€) at a distance € is equivalent to a force F3(a/€)
(e/(a+ b)) = Fza/(a+ b) at adistance (a + b). This equivalent force at the distance
(a + b) must cancel the force F, there, because the stick is motionless. Therefore, we
have F3za/(a + b) = F>, which proves the claim.

Direction of the tension

Consider an infinitesimal piece of the rope, and look at the torque around one end.
Any forces acting at this end provide no torque around it. If the tension at the other

10" Technically, we can use the reasoning in the previous paragraph to say this only if a/€ is an integer,

but since a/¢ is very large, we can simply pick the closest integer to it, and there will be negligible

€rror.
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end is directed at a finite angle away from the direction of the rope, then this produces
a certain torque. But this torque can’t be canceled by the much smaller torque from
the tiny gravitational force, because this force is proportional to the length of the tiny
piece. Therefore, the tension must point along the rope. It actually points along the
direction of the rope at the end of the little piece it acts on, which isn’t quite along the
direction of the rope at the end we’re considering torques around, because the rope
bends (assuming it’s not vertical). So the tension ends up producing a very small torque
which cancels the very small torque from gravity.

This argument doesn’t work for a rigid stick, because the stick can produce finite
torques around the end of a piece via forces at that end, because the end is really
a cross section of finite size. There is a shearing action in the stick, and the large
shearing forces act with tiny lever arms (relative to, say, a point at the middle of the
cross section) to produce finite torques.

Find the force

In Fig. 2.54, let the supports at the ends exert forces /] and F>, and let the support in
the interior exert a force F'. Then

Fy+F,+F = Mg. (2.52)
Balancing torques around the left and right ends gives, respectively,
b
Fa+Fy(a+b) = Mga;

(2.53)
a+b
Fb+ Fi(a+b) :MgT,

where we have used the fact that the stick can be treated like a point mass at its center.
Note that the equation for balancing the torques around the center of mass is redundant;
it is obtained by taking the difference of the two previous equations and then dividing
by 2. And balancing torques around the middle pivot also takes the form of a linear
combination of these equations, as you can show.

It appears as though we have three equations and three unknowns, but we really have
only two equations, because the sum of Egs. (2.53) gives Eq. (2.52). Therefore, since
we have two equations and three unknowns, the system is underdetermined. Solving
Egs. (2.53) for | and F in terms of /', we see that any forces of the form

(FLF.Fy) = <% _ Fb F Mg  Fa )
2 a+b 2 a+b
are possible. In retrospect, it makes sense that the forces are not determined. By
changing the height of the new support an infinitesimal distance, we can make F' be
anything from 0 up to Mg(a+ b)/2b, which is when the stick comes off the left support
(assuming b > a).

(2.54)

Leaning sticks

Let M be the mass of the left stick, and let M; be the mass of the right stick. Then
Mi/M; = tan6. Let N and Fr be the normal and friction forces between the sticks
(see Fig. 2.55). Fr has a maximum value of uN. Balancing the torques on the left
stick (around the contact point with the ground) gives N = (M;g/2) sin 6. Balancing
the torques on the right stick (around the contact point with the ground) gives Fy =
(M;g/2) cos 6. The condition Fy < uN is therefore

1
Mycosf < uMysind = tan’0 > —, (2.55)
w

where we have used M|/M; = tan 6. This answer checks in the two extremes: In the
limit © — 0, we see that & must be very close to 7r/2, which makes sense. And in the
limit u — oo (that is, very sticky sticks), we see that 6 can be very small, which also
makes sense.
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2.15.

2.16.

2.17.

1 For g

Supporting a ladder

Let F be the desired force. F' must be directed along the stick, because otherwise
there would be a net torque on the (massless) stick relative to the pivot at its right
end, and this would contradict the fact that it is at rest. Look at torques on the ladder
around the pivot at its bottom. The gravitational force provides a clockwise torque of
Mg(L/2) cos 0, and the force F' from the stick provides a counterclockwise torque of
F(¢£/ tan 0). Equating these two torques gives

Mgl
F=28

sin 6. (2.56)

REMARKS: F goes to zero as 8 — 0, as it should.!' And F increases to MgL/2¢
as & — /2, which isn’t so obvious (the required torque from the stick is very
small, but the lever arm is also very small). However, in the special case where
the ladder is exactly vertical, no force is required. You can see that our calcula-
tions above are not valid in this case, because we divided by cos @, which is zero
when 0 = 7 /2.

The normal force at the pivot of the stick (which equals the vertical component of
F', because the stick is massless) is equal to MgL sin 6 cos 6 /2. This has a maximum
value of MgL/40 at0 = /4. &

Balancing the stick

Let the stick go off to infinity in the positive x direction, and let it be cut at x = xo.
Then the pivot point is located at x = xo + £ (see Fig. 2.56). Let the density be p(x).
The condition that the total gravitational torque relative to xo + £ be zero is

T = / p(x)(x — (xo + Z))g dx = 0. (2.57)

0

We want this to equal zero for all xg, so the derivative of T with respect to xo must be
zero. T depends on xg through both the limits of integration and the integrand. In taking
the derivative, the former dependence requires finding the value of the integrand at
the x¢ limit, while the latter dependence requires taking the derivative of the integrand
with respect to x¢, and then integrating. (To derive these two contributions, just replace
xo with xg + dxp and expand things to first order in dx(.) We obtain

d [o¢]
0="" =glo(x) g / p@) dx. (2.58)

dxo o

Taking the derivative of this equation with respect to x¢ gives £p’(xo) = —p(xo). The
solution to this is (rewriting the arbitrary xg as x)

o(x) = de ™/t (2.59)

We therefore see that the density decreases exponentially with x. The smaller £ is, the
quicker it falls off. Note that the density at the pivot is 1/e times the density at the left
end. And you can show that 1 — 1 /e & 63 % of the mass is contained between the left
end and the pivot.

The spool

(a) Let Fr be the friction force the ground provides. Balancing the horizontal forces
on the spool gives (see Fig. 2.57)

T cos = Frs. (2.60)

— 0, we would need to lengthen the ladder with a massless extension, because the stick

would have to be very far to the right to remain perpendicular to the ladder.



2.5 Solutions

Balancing torques around the center of the spool gives

Tr = F¢R. (2.61)
These two equations imply
p
0=—. 2.62
cos ? (2.62)

The niceness of this result suggests that there is a quicker way to obtain it. And
indeed, we see from Fig. 2.58 that cos @ = /R is the angle that causes the line
of the tension to pass through the contact point on the ground. Since gravity
and friction provide no torque around this point, the total torque around it is
therefore zero, and the spool remains at rest.

(b) The normal force from the ground is

N = Mg — Tsiné. (2.63)
Using Eq. (2.60), the statement Fr < uN becomes
. nMg
Tcosd <uMg—Tsinf) — T<—"—— (2.64)

cos@ + pusing’

where 6 is given in Eq. (2.62).

(c) The maximum value of T is given in (2.64). This depends on 6, which in turn
depends on 7. We want to find the 7 that minimizes this maximum 7. Taking the
derivative with respect to 6, we find that the 6 that maximizes the denominator
in Eq. (2.64) is given by tan 6y = j. You can then show that the value of 7' for
this 6 is

M
Ty = H25 (2.65)

N
To find the corresponding r, we can use Eq. (2.62) to write tan 6 = ~/R% — 12 /r.
The relation tan 6y = p then yields
R
Ve
This is the r that yields the smallest upper bound on 7. In the limit © = 0, we

have 8y = 0, Tp = 0, and rp = R. And in the limit & = oo, we have 6y = /2,
To = Mg, and rg = 0.

ro = (2.66)

2.18. Stick on a circle

Let N be the normal force between the stick and the circle, and let Fr be the friction
force between the ground and the circle (see Fig. 2.59). Then we immediately see that
the friction force between the stick and the circle is also Fr, because the torques from
the two friction forces on the circle must cancel. We’ve drawn all forces as acting
on the circle. By Newton’s third law, N and Fr act in the opposite directions on the
stick at its top end.

Looking at torques on the stick around the point of contact with the ground, we
have Mg (€/2) cos® = N{, where M = pZ is the mass of the stick, and ¢ is its length.
Therefore, N = (pfg/2) cosf. Balancing the horizontal forces on the circle gives
N sin6 = Fr + Fr cos6, so we have

_ Nsin®  plgsinbcost
T 14cos®  2(1+cosb)

But from Fig. 2.59 we have £ = R/ tan(6/2). Using the identity tan(6/2) = sin6/(1+
cos 0), we finally obtain

Fe (2.67)

1
Fr = Epchose. (2.68)
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In the limit & — /2, F¢ approaches zero, which makes sense. In the limit &6 — 0
(which corresponds to a very long stick), the friction force approaches pgR/2, which
isn’t so obvious.

Leaning sticks and circles

Let S; be the ith stick, and let C; be the ith circle. The normal forces that C; feels
from S; and S;4 are equal in magnitude, because these two forces provide the only
horizontal forces on the frictionless circle, so they must cancel. Let N; be this normal
force.

Look at the torques on S;4, relative to the hinge on the ground. The torques come
from Nj;, Ni11, and the weight of S,y . From Fig. 2.60, we see that N; acts at a point
which is a distance Rtan(0/2) away from the hinge. Since the stick has a length
R/ tan(0/2), this point is a fraction tan? (6 /2) up along the stick. Therefore, balancing
the torques on S;1 gives

1 6
7 Mg cosd +N; tan? 7 = Nit1. (2.69)

Ny is by definition zero, so we have N1 = (Mg/2) cos 6 (as in the previous problem).
If we successively use Eq. (2.69), we see that N, equals (Mg /2) cos 9(1 + tan? (0/2)),
and N3 equals (Mg/2) cos 6(1 + tan?(6/2) + tan* (9/2)), and so on. In general,

M; 0 0 0 N
N; = Mg cosy 1 +tan® = +tan* = + -« + tan®=D = ) . (2.70)
2 2 2 2
In the limit i — oo, we may write this infinite geometric sum in closed form as
Mg cos 6 1
Noo = lim N; = . 2.71
o0 = 2 (1 - tan2(0/2)) @71

Note that this is the solution to Eq. (2.69), with N; = N, 1. So if a limit exists, it must
be this. Using M = pR/tan(6/2), we can rewrite Noo as

= pRg cos 6 ( 1 > @72)
2tan(6/2) \ 1 — tan(6,2)

The identity cos 6§ = cos2(6/2) — sin?(0 /2) may then be used to write this as

_ pRgcos’(0/2)

Noo = 25sin(6,/2) 2.73)

REMARKS: Ny goes to infinity for & — 0, which makes sense, because the sticks are
very long. All of the &V; are essentially equal to half the weight of a stick (in order to
cancel the torque from the weight relative to the pivot). For 8 — /2, we see from
Eq. (2.73) that N, approaches pRg/4, which is not at all obvious; the N; start off at
Ni = (Mg/2)cos0 =~ 0, but gradually increase to pRg/4, which is a quarter of the
weight of a stick. Note that the horizontal force that must be applied to the last circle
far to the right is Noo sin@ = pRg cos*(0/2). This ranges from pRg for 6 — 0, to
pRg/4 for6 — /2. &



Chapter 3
Using F = ma

The general goal of classical mechanics is to determine what happens to a given
set of objects in a given physical situation. In order to figure this out, we need to
know what makes the objects move the way they do. There are two main ways
of going about this task. The first one, which you are undoubtedly familiar with,
involves Newton’s laws. This is the subject of the present chapter. The second
one, which is more advanced, is the Lagrangian method. This is the subject of
Chapter 6. It should be noted that each of these methods is perfectly sufficient
for solving any problem, and they both produce the same information in the end.
But they are based on vastly different principles. We’ll talk more about this in
Chapter 6.

3.1 Newton’s laws

In 1687 Newton published his three laws in his Principia Mathematica. These
laws are fairly intuitive, although I suppose it’s questionable to attach the adjective
“Intuitive” to a set of statements that weren’t written down until a mere 300 years
ago. At any rate, the laws may be stated as follows.

e First law: A body moves with constant velocity (which may be zero) unless acted on
by a force.

e Second law: The time rate of change of the momentum of a body equals the force acting
on the body.

e Third law: For every force on one body, there is an equal and opposite force on another
body.

We could discuss for days on end the degree to which these statements are
physical laws, and the degree to which they are definitions. Sir Arthur Eddington
once made the unflattering remark that the first law essentially says that “every
particle continues in its state of rest or uniform motion in a straight line except
insofar as it doesn’t.” However, although the three laws might seem somewhat
light on content at first glance, there’s actually more to them than Eddington’s
comment implies. Let’s look at each in turn.’

! A disclaimer: This section represents my view on which parts of the laws are definitions and which
parts have content. But you should take all of this with a grain of salt. For further reading, see
Anderson (1990), Keller (1987), O’Sullivan (1980), and Eisenbud (1958).

51



52

Using F=ma

First law

One thing this law does is give a definition of zero force. Another thing it does
is give a definition of an inertial frame, which is defined simply as a frame of
reference in which the first law holds; since the term “velocity” is used, we have
to state what frame we’re measuring the velocity with respect to. The first law
does not hold in an arbitrary frame. For example, it fails in the frame of a rotating
turntable.” Intuitively, an inertial frame is one that moves with constant velocity.
But this is ambiguous, because we have to say what the frame is moving with
constant velocity with respect to. But all this aside, an inertial frame is defined
as the special type of frame in which the first law holds.

So, what we now have are two intertwined definitions of “force” and “inertial
frame.” Not much physical content here. But the important point is that the law
holds for all particles. So if we have a frame in which one free particle moves
with constant velocity, then a/l free particles move with constant velocity. This
is a statement with content. We can’t have a bunch of free particles moving with
constant velocity while another one is doing a fancy jig.

Second law
Momentum is defined® to be mv. If m is constant,* then the second law says that

F = ma, 3.1)

where a = dv/dt. This law holds only in an inertial frame, which is defined by
the first law.

For things moving free or at rest,
Observe what the first law does best.
It defines a key frame,

“Inertial” by name,

Where the second law then is expressed.

You might think that the second law merely gives a definition of force, but
there is more to it than that. There is a tacit implication in the law that this “force”
is something that has an existence that isn’t completely dependent on the particle
whose “m” appears in the law (more on this in the third law below). A spring
force, for example, doesn’t depend at all on the particle on which it acts. And
the gravitational force, GMm/r?, depends partly on the particle and partly on
something else (another mass).

2 1t’s possible to modify things so that Newton’s laws hold in such a frame, provided that we introduce
the so-called “fictitious” forces. But we’ll save this discussion for Chapter 10.

3 We’re doing everything nonrelativistically here, of course. Chapter 12 gives the relativistic
modification to the mv expression.

4 We’ll assume in this chapter that m is constant. But don’t worry, we’ll get plenty of practice with
changing mass (in rockets and such) in Chapter 5.



3.1 Newton’s laws

If you feel like just making up definitions, then you can define a new quantity,
G = m?a. This is a perfectly legal thing to do; you can’t really go wrong
in making a definition (well, unless you’ve already defined the quantity to be
something else). However, this definition is completely useless. You can define
it for every particle in the world, and for any acceleration, but the point is that
the definitions don’t have anything to do with each other. There is simply no
(uncontrived) quantity in this world that gives accelerations in the ratio of 4 to
1 when “acting” on masses m and 2m. The quantity G has nothing to do with
anything except the particle you defined it for. The main thing the second law
says is that there does indeed exist a quantity F that gives the same ma when
acting on different particles. The statement of the existence of such a thing is far
more than a definition.

Along this same line, note that the second law says that F = ma, and not,
for example, F = mv, or F = md>x/d>. In addition to being inconsistent with
the real world, these expressions are inconsistent with the first law. F = mv
would say that a nonzero velocity requires a force, in contrast with the first law.
And F = md>x/df’ would say that a particle moves with constant acceleration
(instead of constant velocity) unless acted on by a force, also in contrast with the
first law.

As with the first law, it is important to realize that the second law holds for
all particles. In other words, if the same force (for example, the same spring
stretched by the same amount) acts on two particles with masses m and m,, then
Eq. (3.1) says that their accelerations are related by

al my
—_=—. 32
o " m (3.2)

This relation holds regardless of what the common force is. Therefore, once
we’ve used one force to find the relative masses of two objects, then we know
what the ratio of their a’s will be when they are subjected to any other force. Of
course, we haven’t really defined mass yet. But Eq. (3.2) gives an experimental
method for determining an object’s mass in terms of a standard (say, 1 kg) mass.
All we have to do is compare its acceleration with that of the standard mass, when
acted on by the same force.

Note that F = ma is a vector equation, so it is really three equations in one.
In Cartesian coordinates, it says that Fy = may, F), = ma,, and F; = mas.

Third law

One thing this law says is that if we have two isolated particles interacting through
some force, then their accelerations are opposite in direction and inversely pro-
portional to their masses. Equivalently, the third law essentially postulates that
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the total momentum of an isolated system is conserved (that is, independent of
time). To see this, consider two particles, each of which interacts only with the
other particle and nothing else in the universe. Then we have

dProtal _ @ dﬁ
dt  dt dt

=F; +F,, (3.3)

where F; and F, are the forces acting on m and my, respectively. This demon-
strates that momentum conservation (that is, dpial/dt = 0) is equivalent to
Newton’s third law (that is, F| = —F,). Similar reasoning holds with more
than two particles, but we’ll save this more general case, along with many other
aspects of momentum, for Chapter 5.

There isn’t much left to be defined via this law, so this is a law of pure content.
It can’t be a definition, anyway, because it’s actually not always valid. It holds
for forces of the “pushing” and “pulling” type, but it fails for the magnetic force,
for example. In that case, momentum is carried off in the electromagnetic field
(so the total momentum of the particles and the field is conserved). But we won’t
deal with fields here. Just particles. So the third law will always hold in any
situation we’ll be concerned with.

The third law contains an extremely important piece of information. It says
that we will never find a particle accelerating unless there’s some other parti-
cle accelerating somewhere else. The other particle might be far away, as with
the earth—sun system, but it’s always out there somewhere. Note that if we were
given only the second law, then it would be perfectly possible for a given particle
to spontaneously accelerate with nothing else happening in the universe, as long
as a similar particle with twice the mass accelerated with half the acceleration
when placed in the same spot, etc. This would all be fine, as far as the second law
goes. We would say that a force with a certain value is acting at the point, and
everything would be consistent. But the third law says that this is simply not the
way the world (at least the one we live in) works. In a sense, a force without a
counterpart seems somewhat like magic, whereas a force with an equal and oppo-
site counterpart has a “cause and effect” nature, which seems (and apparently is)
more physical.

In the end, however, we shouldn’t attach too much significance to Newton’s
laws, because although they were a remarkable intellectual achievement and
work spectacularly for everyday physics, they are the laws of a theory that is only
approximate. Newtonian physics is a limiting case of the more correct theories
of relativity and quantum mechanics, which are in turn limiting cases of yet more
correct theories. The way in which particles (or waves, or strings, or whatever)
interact on the most fundamental level surely doesn’t bear any resemblance to
what we call forces.



3.2 Free-body diagrams

3.2 Free-body diagrams

The law that allows us to be quantitative is the second law. Given a force, we can
apply F = ma to find the acceleration. And knowing the acceleration, we can
determine the behavior of a given object (that is, the position and velocity), pro-
vided that we are given the initial position and velocity. This process sometimes
takes a bit of work, but there are two basic types of situations that commonly
arise.

e In many problems, all you are given is a physical situation (for example, a block
resting on a plane, strings connecting masses, etc.), and it is up to you to find all the
forces acting on all the objects, using F = ma. The forces generally point in various
directions, so it’s easy to lose track of them. It therefore proves useful to isolate the
objects and draw all the forces acting on each of them. This is the subject of the present
section.

e In other problems, you are given the force explicitly as a function of time, position,
or velocity, and the task immediately becomes the mathematical one of solving the
F = ma = mX equation (we’ll just deal with one dimension here). These differential
equations can be difficult (or impossible) to solve exactly. They are the subject of
Section 3.3.

Let’s consider here the first of these two types of scenarios, where we are pre-
sented with a physical situation and we must determine all the forces involved.
The term free-body diagram is used to denote a diagram with all the forces
drawn on a given object. After drawing such a diagram for each object in the
setup, we simply write down all the FF = ma equations they imply. The result
will be a system of linear equations in various unknown forces and accelera-
tions, for which we can then solve. This procedure is best understood through an
example.

Example (A plane and masses): Mass M is held on a plane with inclination
angle 6, and mass M» hangs over the side. The two masses are connected by a
massless string which runs over a massless pulley (see Fig. 3.1). The coefficient of
kinetic friction between M| and the plane is . M is released from rest. Assuming that
M, is sufficiently large so that M7 gets pulled up the plane, what is the acceleration
of the masses? What is the tension in the string?

Solution: The first thing to do is draw all the forces on the two masses. These are
shown in Fig. 3.2. The forces on M are gravity and the tension. The forces on M are
gravity, friction, the tension, and the normal force. Note that the friction force points
down the plane, because we are assuming that M| moves up the plane.

Having drawn all the forces, we can now write down all the ' = ma equations.
When dealing with M7, we could break things up into horizontal and vertical compo-
nents, but it is much cleaner to use the components parallel and perpendicular to the
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plane.” These two components of F = ma, along with the vertical F = ma equation
for M», give

T—f—Mgsind = Ma,
N — Mjgcos6 =0, 3.4)
Mprg — T = M»a,

where we have used the fact that the two masses accelerate at the same rate (and
we have defined the positive direction for M, to be downward). We have also used
the fact that the tension is the same at both ends of the string, because otherwise there
would be a net force on some part of the string which would then undergo infinite
acceleration, because it is massless.

There are four unknowns in Eq. (3.4) (namely T, a, N, and f), but only three
equations. Fortunately, we have a fourth equation: /' = uN, because we are assuming
that M is in fact moving, so we can use the expression for kinetic friction. Using this
in the second equation above gives f = uMjg cos 6. The first equation then becomes
T —uMigcos® —Migsin6 = Mja. Adding this to the third equation leaves us with
only a, so we find

g(My — uMj cosO — My sin0) 7 MiMpg(1 + pcosh + sin6)
a= = .
M\ + M, M| + M

3.5)

Note that in order for M) to in fact accelerate upward (that is, a > 0), we must have
M> > M7 (e cos + sin0). This is clear from looking at the forces along the plane.

Remark: If we instead assume that M) is sufficiently large so that it slides down the
plane, then the friction force points up the plane, and we find (as you can check),

g(My + uMj cos® — M sin @) d T M Mg(1 — pcos6 +sin6)
a= , an = .
My + M, My + M

(3.6)

In order for M| to in fact accelerate downward (that is, ¢ < 0), we must have M, <
M (sin6 — pcos@). Therefore, the range of M, for which the system doesn’t accelerate
(that is, it just sits there, assuming that it started at rest) is

Mi(sin@ — pcosf) < My < M;(sinf + pcosb). 3.7

If p is very small, then M> must essentially be equal to M) sin6 if the system is to
be static. Equation (3.7) also implies that if tan6® < g, then M| won’t slide down,
evenif My =0. &

In problems like the one above, it’s clear which things you should pick as the
objects you’re going to draw forces on. But in other problems, where there are

5> When dealing with inclined planes, it’s usually the case that one of these two coordinate systems
works much better than the other. Sometimes it isn’t clear which one, but if things get messy with
one system, you can always try the other.
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various different subsystems you can choose, you must be careful to include all
the relevant forces on a given subsystem. Which subsystems you want to pick
depends on what quantities you’re trying to find. Consider the following example.

Example (Platform and pulley): A person stands on a platform-and-pulley sys-
tem, as shown in Fig. 3.3. The masses of the platform, person, and pulley® are M, m,
and p, respectively.” The rope is massless. Let the person pull up on the rope so that
she has acceleration a upward. (Assume that the platform is somehow constrained to
stay level, perhaps by having the ends run along some rails.) Find the tension in the
rope, the normal force between the person and the platform, and the tension in the
rod connecting the pulley to the platform.

Solution: To find the tension in the rope, we simply want to let our subsystem be [

the whole system (except the ceiling). If we imagine putting the system in a black

box (to emphasize the fact that we don’t care about any internal forces within the

system), then the forces we see “protruding” from the box are the three weights (Mg, Fig. 3.3
mg, and pg) downward, and the tension 7 upward. Applying F' = ma to the whole

system gives

T—-M+m+uwg=M+m+pa = T=M+m+p)g+a).
(3.8)

To find the normal force N between the person and the platform, and also the tension
f in the rod connecting the pulley to the platform, it is not sufficient to consider the
system as a whole. This is true because these forces are internal forces to this system,
so they won’t show up in any F' = ma equations (which involve only external forces
to a system). So we must consider subsystems:

e Let’sapply F' = ma to the person. The forces acting on the person are gravity, the
normal force from the platform, and the tension from the rope (pulling downward
on her hand). So we have

N —T —mg = ma. 3.9)

e Now apply /' = ma to the platform. The forces acting on the platform are gravity,

the normal force from the person, and the force upward from the rod. So we have
f—N— Mg = Ma. (3.10)

e Now apply F' = ma to the pulley. The forces acting on the pulley are gravity, the
force downward from the rod, and twice the tension in the rope (because it pulls

% Assume that the pulley’s mass is concentrated at its center, so that we don’t have to worry about
any rotational dynamics (the subject of Chapter 8).

7 My apologies for using u as a mass here, since it usually denotes a coefficient of friction. Alas,
there are only so many symbols for “m.”
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up on both sides). So we have

2T —f — ng = pa. (3.11)

Note that if we add up the three previous equations, we obtain the F' = ma equation
in Eq. (3.8), as should be the case, because the whole system is the sum of the three
above subsystems. Equations (3.9)—(3.11) are three equations in the three unknowns,
T, N, and f. Their sum yields the 7 in (3.8), and then Egs. (3.9) and (3.11) give,
respectively, as you can show,

N=WM+2m+pn)(g+a), and f=QCM+2m+ n)(g+a). (3.12)

REMARKS:  You can also obtain these results by considering subsystems different from the
ones we chose above. For example, you can choose the pulley-plus-platform subsystem,
etc. But no matter how you choose to break up the system, you will need to produce three
independent /' = ma equations in order to solve for the three unknowns, 7, N, and f".

In problems like this one, it’s easy to forget to include certain forces, such as the second T’
in Eq. (3.11). The safest thing to do is to always isolate each subsystem, draw a box around
it, and then draw all the forces that “protrude” from the box. In other words, draw the
free-body diagram. Figure 3.4 shows the free-body diagram for the subsystem consisting
of only the pulley. &

Another class of problems, similar to the above example, goes by the name
of Atwood s machines. An Atwood’s machine is the name used for any system
consisting of a combination of masses, strings, and pulleys.® In general, the
pulleys and strings can have mass, but we’ll deal only with massless ones in
this chapter. As we’ll see in the following example, there are two basic steps in
solving an Atwood’s problem: (1) write down all the F = ma equations, and
(2) relate the accelerations of the various masses by noting that the length of the
string(s) doesn’t change, a fact that we call “conservation of string.”

Example (Atwood’s machine): Consider the pulley system in Fig. 3.5, with
masses m1 and my. The strings and pulleys are massless. What are the accelerations
of the masses? What is the tension in the string?

Solution: The first thing to note is that the tension 7 is the same everywhere
throughout the massless string, because otherwise there would be an infinite accel-
eration of some part of the string. It then follows that the tension in the short string
connected to my is 27 . This is true because there must be zero net force on the mass-
less right pulley, because otherwise it would have infinite acceleration. The F' = ma

8 George Atwood (1746-1807) was a tutor at Cambridge University. He published the description
of the first of his machines in Atwood (1784). For a history of Atwood’s machines, see Greenslade
(1985).
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equations for the two masses are therefore (with upward taken to be positive)

T —mg=may,
(3.13)
2T —mpg = myay.

We now have two equations in the three unknowns, ay, a, and 7. So we need one
more equation. This is the “conservation of string” fact, which relates a1 and as.
If we imagine moving my and the right pulley up a distance d, then a length 2d
of string has disappeared from the two parts of the string touching the right pulley.
This string has to go somewhere, so it ends up in the part of the string touching m
(see Fig. 3.6). Therefore, m| goes down by a distance 2d. In other words, y; =
—2y», where y| and y, are measured relative to the initial locations of the masses.
Taking two time derivatives of this statement gives our desired relation between

aj and ap, :
ap = —2ay. (3.14) 2d
Combining this with Eq. (3.13), we can now solve for a1, a, and T. The result is : My

RemMARKS:  There are all sorts of limits and special cases that we can check here. A couple
are: (1) If my = 2my, then Eq. (3.15) gives a; = a = 0, and T = m;g. Everything is
at rest. (2) If my > my, then Eq. (3.15) gives aj = 2g, a = —g, and T = 3mg. In
this case, m; is essentially in free fall, while m; gets yanked up with acceleration 2g. The
value of 7 is exactly what is needed to make the net force on m; equal to m;(2g), because
T —mig =3mg —mg = m(2g). You can check the case where m; > my.

For the more general case where there are N masses instead of two, the “conservation
of string” statement is a single equation that relates all N accelerations. It is most easily
obtained by imagining moving N — 1 of the masses, each by an arbitrary amount, and then
seeing what happens to the last mass. Note that these arbitrary motions undoubtedly do
not correspond to the actual motions of the masses. This is fine; the single “conservation
of string” equation has nothing to do with the N F' = ma equations. The combination of
all N + 1 equations is needed to constrain the motions down to a unique set. &

In the problems and exercises for this chapter, you will encounter some strange
Atwood’s setups. But no matter how complicated they get, there are only two
things you need to do to solve them, as mentioned above: write down the F' = ma
equations for all the masses (which may involve relating the tensions in various
strings), and then relate the accelerations of the masses, using “conservation of
string.”

It may seem, with the angst it can bring,
That an Atwood’s machine’s a cruel thing.
But you just need to say

That F is ma,

And use conservation of string!



60

Using F=ma

3.3 Solving differential equations

Let’s now consider the type of problem where we are given the force as a function
of time, position, or velocity, and our task is to solve the F = ma = mX differ-
ential equation to find the position, x(¢), as a function of time.” In what follows,
we will develop a few techniques for solving differential equations. The ability
to apply these techniques dramatically increases the number of systems we can
understand.

It’s also possible for the force F to be a function of higher derivatives of x,
in addition to the quantities 7, x, and v = x. But these cases don’t arise much, so
we won’t worry about them. The F' = ma differential equation we want to solve
is therefore (we’ll just work in one dimension here)

mx = F(t,x,v). (3.16)

In general, this equation cannot be solved exactly for x().'" But for most of
the problems we’ll deal with, it can be solved. The problems we’ll encounter
will often fall into one of three special cases, namely, where F is a function of ¢
only, or x only, or v only. In all of these cases, we must invoke the given initial
conditions, xg = x(zy) and vg = v(fp), to obtain our final solutions. These initial
conditions will appear in the limits of the integrals in the following discussion. "’

Note: You may want to just skim the following page and a half, and then refer
back as needed. Don’t try to memorize all the different steps. We present them
only for completeness. The whole point here can basically be summarized by
saying that sometimes you want to write X as dv/dt, and sometimes you want to
write it as v dv/dx (see Eq. (3.20)). Then you “simply” have to separate variables
and integrate. We’ll go through the three special cases, and then we’ll do some
examples.

e Fisa function of t only: F = F ().
Since a = dzx/dtz, we just need to integrate F' = ma twice to obtain x(¢). Let’s do this
in a very systematic way, to get used to the general procedure. First, write 7 = ma as

dv
m— = F(). (3.17)

° In some setups, such as in Problem 3.11, the force isn’t given, so you have to figure out what it is.
But the main part of the problem is still solving the resulting differential equation.

19 You can always solve for x(¢) numerically, to any desired accuracy. This topic is discussed in
Section 1.4.

1 It is no coincidence that we need rwo initial conditions to completely specify the solution to
our second-order (meaning the highest derivative of x that appears is the second one) F = miX
differential equation. It is a general result (which we’ll just accept here) that the solution to an
nth-order differential equation has n free parameters, which are determined by the initial conditions.
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Then separate variables and integrate both sides to obtain'?

v(t) t
m / dv' = / F()dr. (3.18)
V) 1

0 0

We have put primes on the integration variables so that we don’t confuse them with the
limits of integration, but in practice we usually don’t bother with them. The integral of
dv’ is just v/, so Eq. (3.18) yields v as a function of ¢, that is, v(¢). We can then separate
variables in dx/dt = v(¢) and integrate to obtain

x(1) t
/ dx' = f o) dt'. (3.19)
X I

0 0

This yields x as a function of #, that is, x(#). This procedure might seem like a cumber-
some way to simply integrate something twice. That’s because it is. But the technique
proves more useful in the following case.

F is a function of x only: F = F(x).

We will use

dv _ dx dv dv

== 2 _ = 3.20
T T da T Tax (3.20)
to write ' = ma as
dv
my— = F(x). (3.21)
dx
Now separate variables and integrate both sides to obtain
v(x) X
m/ vdv = / F('ydx'. (3.22)
) X0

The integral of v/ is v” 2 /2, so the left-hand side involves the square of v(x). Taking
the square root, this gives v as a function of x, that is, v(x). Separating variables in
dx/dt = v(x) then yields

() g/ t
/ [ (3.23)
X

0 v(x’) 0

Assuming that we can do the integral on the left-hand side, this equation gives ¢ as a
function of x. We can then (in principle) invert the result to obtain x as a function of ¢,
that is, x(#). The unfortunate thing about this case is that the integral in Eq. (3.23) might
not be doable. And even if it is, it might not be possible to invert #(x) to produce x(z).

12 If you haven’t seen such a thing before, the act of multiplying both sides by the infinitesimal
quantity df might make you feel a bit uneasy. But it is in fact quite legal. If you wish, you can
imagine working with the small (but not infinitesimal) quantities Av and At¢, for which it is
certainly legal to multiply both sides by Az. Then you can take a discrete sum over many At
intervals, and then finally take the limit Az — 0, which results in the integral in Eq. (3.18).
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e Fis a function of v only: F = F (v).
Write F' = ma as

dv
mE = F(v). (3.24)

Separate variables and integrate both sides to obtain

v(t) dv’ t
m/ Sl :/ dr. (3.25)
Vo F@') to

Assuming that we can do this integral, it yields ¢ as a function of v, and hence (in
principle) v as a function of z, that is, v(¢). We can then integrate dx/dt = v(t) to obtain
x(t) from

x(t) t
/ dx’' =/ (@) dt. (3.26)
X 1

0 0

Note: In this F = F(v) case, if we want to find v as a function of x, v(x), then we
should write a as v(dv/dx) and integrate

v(x) ' dv' X
m / L / a'. (3.27)
) F(U ) X0

We can then obtain x(¢) from Eq. (3.23), if desired.

When dealing with the initial conditions, we have chosen to put them in the
limits of integration above. If you wish, you can perform the integrals without
any limits, and just tack on a constant of integration to your result. The constant
is then determined by the initial conditions.

Again, as mentioned above, you do not have to memorize the above three
procedures, because there are variations, depending on what you’re given and
what you want to solve for. All you have to remember is that X can be written
as either dv/dt or vdv/dx. One of these will get the job done (namely, the one
that makes only two of the three variables, ¢, x, and v, appear in your differential
equation). And then be prepared to separate variables and integrate as many times
as needed.'”

ais dv by dt.

Is this useful? There’s no guarantee.

If it leads to “Oh, heck!”s,

Take dv by dx,

And then write down its product with v.

13 We want only two of the variables to appear in the differential equation because the goal is to
separate variables and integrate, and because equations have only two sides. If equations were
triangles, it would be a different story.
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Example (Gravitational force): A particle of mass m is subject to a constant
force FF = —mg. The particle starts at rest at height 4. Because this constant force
falls into all of the above three categories, we should be able to solve for y(¢) in two
ways:

(a) Find y(¢) by writing a as dv/dt.
(b) Find y(#) by writing a as vdv/dy.

Solution:

(a) F = ma gives dv/dt = —g. Multiplying by df and integrating yields v =
—gt + A, where 4 is a constant of integration. 14 The initial condition v(0) =0
gives A = 0. Therefore, dy/dt = —gt. Multiplying by df and integrating yields
y = —gt?/2 + B. The initial condition y(0) = & gives B = h. Therefore,

[
y=h= e (3.28)

(b) F = ma gives vdv/dy = —g. Separating variables and integrating yields
v2/2 = —gy + C. The initial condition v(h) = 0 gives v2/2 = —gy + gh.
Therefore, v = dy/dt = —\/2g(h——y) . We have chosen the negative square
root because the particle is falling. Separating variables gives

dy
=—/2 dt. 3.29
— Vig [ (3.29)

This yields 2,/h —y = 4/2g t, where we have used the initial condition y(0) =
h.Hence,y = h — gt2 /2, as in part (a). In part (b) here, we essentially derived

conservation of energy, as we’ll see in Chapter 5.

Example (Dropped ball): A beach ball is dropped from rest at height /. Assume
that the drag force!> from the air takes the form of Fq = —pv. Find the velocity and
height as a function of time.

Solution: For simplicity in future formulas, let’s write the drag force as Fg =
—pv = —mav (otherwise we’d have a bunch of 1/m’s floating around). Taking
upward to be the positive y direction, the force on the ball is

F = —mg — mav. (3.30)

14 We’ll do this example by adding on constants of integration which are then determined by the
initial conditions. We’ll do the following example by putting the initial conditions in the limits of
integration.

15 The drag force is roughly proportional to v as long as the speed is fairly small (say, less than
10m/s). For large speeds (say, greater than 100 m/s), the drag force is roughly proportional to
v2. But these approximate cutoffs depend on various things, and in any event there is a messy
transition region between the two cases.
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Note that v is negative here, because the ball is falling, so the drag force points
upward, as it should. Writing F' = m dv/dt and separating variables gives

IO R AY t
f - = —/ dr'. (3.31)
0o gtav 0
Integration yields In(1 + ov/g) = —at. Exponentiation then gives
g —at
o) =—=(1—e" ). (3.32)
o

Writing dy/dt = v(t), and then separating variables and integrating to obtain y(¢),
yields

(0 t ,
/ @ = _g/ (1 et ) dr'. (3.33)
h a Jo

Therefore,

_ g 1 —at
y(t)—h—;(t—a(l—e )) (3.34)

REMARKS:

1. Let’s look at some limiting cases. If ¢ is very small (more precisely, if az < 1), then
we can use e ~ 1 — x + x?/2 to make approximations to leading order in ¢. You
can show that Eq. (3.32) gives v(¢) &~ —gt. This makes sense, because the drag force
is negligible at the start, so the ball is essentially in freefall. And likewise you can
show that Eq. (3.34) gives y(¢) ~ h — gr*/2, which is again the freefall result.

We can also look at large . In this case, e~ is essentially equal to zero, so
Eq. (3.32) gives v(f) &~ —g/a. (This is the “terminal velocity.” Its value makes
sense, because it is the velocity for which the total force, —mg — mav, vanishes.)
And Eq. (3.34) gives y(t) = h — (g/a)t 4+ g/a?. Interestingly, we see that for large
t, g/a? is the distance our ball lags behind another ball that started out already at the
terminal velocity, —g/«.

2. You might think that the velocity in Eq. (3.32) doesn’t depend on m, since no m’s
appear. However, there is an m hidden in «. The quantity o (which we introduced
just to make our formulas look a little nicer) was defined by Fy = —pv = —maw.
But the quantity 8 = ma is roughly proportional to the cross-sectional area, 4, of
the ball. Therefore, o o< 4/m. Two balls of the same size, one made of lead and one
made of styrofoam, have the same 4 but different m’s. So their «’s are different, and
they fall at different rates.

If we have a solid ball with density p and radius r, then & &< 4/m o r?/(pr’) =
1/pr. For large dense objects in a thin medium such as air, the quantity « is small,
so the drag effects are not very noticeable over short times (because if we include
the next term in the expansion for v, we obtain v(f) ~ —gt + ozgt2 /2). Large dense
objects therefore all fall at roughly the same rate, with an acceleration essentially
equal to g. But if the air were much thicker, then all the «’s would be larger, and
maybe it would have taken Galileo a bit longer to come to his conclusions.

What would you have thought, Galileo,
If instead you dropped cows and did say, “Oh!
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To lessen the sound
Of the moos from the ground,
They should fall not through air, but through mayo!”'® &

3.4 Projectile motion

Consider a ball thrown through the air, not necessarily vertically. We will neglect
air resistance in the following discussion. Things get a bit more complicated
when this is included, as Exercise 3.53 demonstrates.

Let x and y be the horizontal and vertical positions, respectively. The force
in the x direction is Fy = 0, and the force in the y direction is F,, = —mg. So
F = ma gives

X=0, and y=-—g. (3.35)

Note that these two equations are “decoupled.” That is, there is no mention
of y in the equation for X, and vice versa. The motions in the x and y direc-
tions are therefore completely independent. The classic demonstration of the
independence of the x and y motions is the following. Fire a bullet horizon-
tally (or, preferably, just imagine firing a bullet horizontally), and at the same
time drop a bullet from the height of the gun. Which bullet will hit the ground
first? (Neglect air resistance, the curvature of the earth, etc.) The answer is that
they will hit the ground at the same time, because the effect of gravity on the
two y motions is exactly the same, independent of what is going on in the x
direction.

If the initial position and velocity are (X, Y) and (¥4, V), then we can easily
integrate Eq. (3.35) to obtain

x(0)="V,, and $(@) =V, — gt (3.36)

Integrating again gives
1 2
x()=X+Vyt, and y() =Y+ V)t — Egt . (3.37)

These equations for the speeds and positions are all you need to solve a projectile
problem.

16 1t’s actually much more likely that Galileo obtained his “all objects fall at the same rate in a
vacuum” result by rolling balls down planes than by dropping balls from the Tower of Pisa; see
Adler and Coulter (1978). So I suppose this limerick is relevant only in the approximation of the
proverbial spherical cow.
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Example (Throwing a ball):

(a) For a given initial speed, at what inclination angle should a ball be thrown
so that it travels the maximum horizontal distance by the time it returns to the
ground? Assume that the ground is horizontal, and that the ball is released from
ground level.

(b) What is the optimal angle if the ground is sloped upward at an angle g (or
downward, if B is negative)?

Solution:

(a) Letthe inclination angle be 0, and let the initial speed be V. Then the horizontal
speed is always Vy = V cos 6, and the initial vertical speed is V), = ¥V sin6.
The first thing we need to do is find the time ¢ in the air. We know that the
vertical speed is zero at time #/2, because the ball is moving horizontally at
the highest point. So the second of Egs. (3.36) gives V), = g(¢/2). Therefore,
t = 2V/g. 17 The first of Egs. (3.37) tells us that the horizontal distance
traveled is d = Vxt. Using ¢t = 2V}, /g in this gives

g Maly _ V2@singcos) _ ¥2sin20
g g g

(3.38)

The sin 20 factor has a maximum at & = /4. The maximum horizontal

distance traveled is then dpax = y2 /8.

ReMARK: For = /4, you can show that the maximum height achieved is 72 /4g.
This is half the maximum height of ¥'2/2g (as you can show) if the ball is thrown
straight up. Note that any possible distance you might want to find in this problem
must be proportional to /2 /g, by dimensional analysis. The only question is what
the numerical factor is. &

(b) As in part (a), the first thing we need to do is find the time # in the air. If the
ground is sloped at an angle §, then the equation for the line of the ground is
y = (tan B)x. The path of the ball is given in terms of 7 by

1
x=(VcosO), and y= (Vsinf)— Egtz, (3.39)

where 6 is the angle of the throw, as measured with respect to the horizontal
(not the ground). We must solve for the # that makes y = (tan 8)x, because this
gives the time when the path of the ball intersects the line of the ground. Using
Eq. (3.39), we find that y = (tan §)x when

2V .
t = —(sinf — tan B cos O). (3.40)
g

17" Alternatively, the time of flight can be found from the second of Eqs. (3.37), which says that the
ball returns to the ground when V¢t = gt2 /2. We will have to use this second strategy in part (b),
where the trajectory is not symmetric around the maximum.
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(There is, of course, also the solution ¢ = 0.) Plugging this into the expression
for x in Eq. (3.39) gives

202 5
x = ——(sin# cos 6§ — tan B cos“6H). (3.41)
g

We must now maximize this value for x, which is equivalent to maximizing
the distance along the slope. Setting the derivative with respect to 6 equal to
zero, and using the double-angle formulas, sin 26 = 2 sin 0 cos 6 and cos 26 =
cos20 — sin29, we find tan B = — cot 26. This can be rewritten as tan 8 =
—tan(sr/2 — 20). Therefore, B = — (/2 — 20), so we have

= % (/.‘5 + %) (3.42)

In other words, the throwing angle should bisect the angle between the ground
and the vertical.

REMARKS:

1. For B =~ m/2, we have & ~ /2, as should be the case. For 8 = 0, we have
0 = m/4, as we found in part (a). And for 8 &~ —x/2, we have 8 ~ 0, which makes
sense.

2. A quicker method of obtaining the time in Eq. (3.40) is the following. Consider the set
of tilted axes parallel and perpendicular to the ground; let these be the x’ and y” axes,
respectively. The initial velocity in they” directionis ¥ sin(6 —B), and the acceleration
in this direction is g cos . The time in the air is twice the time it takes the ball to reach
the maximum “height” above the ground (measured in the y’ direction), which occurs
when the velocity in the y” direction is instantaneously zero. The total time is therefore
2V sin(0 — B)/(g cos B), which you can show is equivalent to the time in Eq. (3.40).
Note that the g sin 8 acceleration in the x” direction is irrelevant in calculating this
time. In the present example, using these tilted axes doesn’t save a huge amount of
time, but in some situations (see Exercise 3.50) the tilted axes can save you a lot
of grief.

3. An interesting fact about the motion of the ball in the maximum-distance case is that
the initial and final velocities are perpendicular to each other. The demonstration of
this is the task of Problem 3.16.

4. Substituting the value of  from Eq. (3.42) into Eq. (3.41), you can show (after a bit
of algebra) that the maximum distance traveled along the tilted ground is

V2
- _ Vs (3.43)
cos 8 1+4sinp

Solving for ¥, we have 2 = g(d + d sin ). This can be interpreted as saying that
the minimum speed at which a ball must be thrown in order to pass over a wall of
height 4, at a distance L away on level ground, is given by V'? = g(v/L2 + h2 + h).
This checks in the limits of # — 0 and L — 0.

5. A compilation of many other projectile results can be found in Buckmaster
(1985). &



68

Fig. 3.7

Using F=ma

Along with the bullet example mentioned above, another classic example of
the independence of the x and y motions is the “hunter and monkey” problem.
In it, a hunter aims an arrow (a toy one, of course) at a monkey hanging from
a branch in a tree. The monkey, thinking he’s being clever, tries to avoid the
arrow by letting go of the branch right when he sees the arrow released. The
unfortunate consequence of this action is that he in fact will get hit, because
gravity acts on both him and the arrow in the same way; they both fall the same
distance relative to where they would have been if there were no gravity. And
the monkey would get hit in such a case, because the arrow is initially aimed at
him. You can work this out in Exercise 3.44, in a more peaceful setting involving
fruit.

If a monkey lets go of a tree,

The arrow will hit him, you see,
Because both heights are pared

By a half gr?

From what they would be with no g.

3.5 Motion in a plane, polar coordinates

When dealing with problems where the motion lies in a plane, it is often conve-
nient to work with polar coordinates, » and 6. These are related to the Cartesian
coordinates by (see Fig. 3.7)

x=rcosf, and y=rsind. (3.44)

Depending on the problem, either Cartesian or polar coordinates are easier to
use. It is usually clear from the setup which is better. For example, if the problem
involves circular motion, then polar coordinates are a good bet. But to use polar
coordinates, we need to know what Newton’s second law looks like when written
in terms of them. Therefore, the goal of the present section is to determine what
F = ma = mf¥ looks like when written in terms of polar coordinates.

At a given position r in the plane, the basis vectors in polar coordinates are
F, which is a unit vector pointing in the radial direction; and 9, which is a unit
vector pointing in the counterclockwise tangential direction. In polar coordinates,
a general vector may be written as

r = rf. (3.45)

Since the goal of this section is to find ¥, we must, in view of Eq. (3.45), get
a handle on the time derivative of . And we’ll eventually need the derivative
of é, too. In contrast with the fixed Cartesian basis vectors (X and ¥), the polar
basis vectors (f and (3) change as a point moves around in the plane. We can
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find t and 9 in the following way. In terms of the Cartesian basis, Fig. 3.8
shows that

F=cosOX+sinfy,

. (3.46)
0= —sinfX+cosdy.
Taking the time derivative of these equations gives
t = —sin6 6% + cos 6 6y,
. ) ) (3.47)
0 = —cosH Ox — sin 6 0y.
Using Eq. (3.46), we arrive at the nice clean expressions,
t =60, and 6= —6r. (3.48)

These relations are fairly evident if you look at what happens to the basis vectors
as r moves a tiny distance in the tangential direction. Note that the basis vectors
do not change as r moves in the radial direction. We can now start differentiating
Eq. (3.45). One derivative gives (yes, the product rule works fine here)

P = it 4t = it + r60. (3.49)
This makes sense, because 7 is the velocity in the radial direction, and 76 is the

velocity in the tangential direction, often written as 7w (where w = 6 is the
angular velocity, or “angular frequency”).'® Differentiating Eq. (3.49) then gives

¥ = Ff 4+ it 4 700 + 160 + 160
4 7(00) + 768 + rd0 + ro (—6t)

G — 1) + (76 + 2i6). (3.50)

Finally, equating m¥ with F = F,r + Fyb gives the radial and tangential
forces as
.. )
F,=m@ —ro"),

. . (3.51)
Fy = m@60 + 2i0).

(See Exercise 3.67 for a slightly different derivation of these equations.) Let’s
look at each of the four terms on the right-hand sides of Eqs. (3.51).

18 For r6 to be the tangential velocity, we must measure @ in radians and not degrees. Then 76 is by
definition the position along the circumference, so 76 is the velocity along the circumference.
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e The m¥# term is quite intuitive. For radial motion, it simply states that ' = ma along the

radial direction.

e The mrf term is also quite intuitive. For circular motion, it states that F = ma along

the tangential direction, because r4 is the second derivative of the distance 76 along the

circumference.

e The —mré” term is also fairly clear. For circular motion, it says that the radial force

is —m(r6)2 /r= —mv? /r, which is the familiar force that causes the centripetal accel-
eration, v2 /r. See Problem 3.20 for an alternate (and quicker) derivation of this v? /r
result.

e The 2mi0 term isn’t so obvious. It is associated with the Coriolis force. There are

various ways to look at this term. One is that it exists in order to keep angular momentum

conserved. We’ll have a great deal to say about the Coriolis force in Chapter 10.

Example (Circular pendulum): A mass hangs from a massless string of length
£. Conditions have been set up so that the mass swings around in a horizontal circle,
with the string making a constant angle § with the vertical (see Fig. 3.9). What is the
angular frequency, , of this motion?

Solution: The mass travels in a circle, so the horizontal radial force must be
Fr = mrd? = mro? (with » = £sin B), directed radially inward. The forces on
the mass are the tension in the string, 7, and gravity, mg (see Fig. 3.10). There is no
acceleration in the vertical direction, so F' = ma in the vertical and radial directions
gives, respectively,

Tcosp —mg =0,
(3.52)
Tsin B = m(€sin B)w?>.

[z
w= /(ZCOS/3 . (3.53)

If B &~ 90°, then w — o0, which makes sense. And if 8 ~ 0, then w ~ /g/¢, which
happens to equal the frequency of a plane pendulum of length £. The task of Exercise
3.60 is to explain why.

Solving for w gives

3.6 Problems
Section 3.2: Free-body diagrams

3.1. Atwood’s machine =

A massless pulley hangs from a fixed support. A massless string con-
necting two masses, m| and my, hangs over the pulley (see Fig. 3.11).
Find the acceleration of the masses and the tension in the string.



3.2

3.3.

3.4.

3.5.

3.6.

3.7.

3.8.

3.6 Problems

Double Atwood’s machine

A double Atwood’s machine is shown in Fig. 3.12, with masses m1, mo,
and mj3. Find the accelerations of the masses.

Infinite Atwood’s machine =

Consider the infinite Atwood’s machine shown in Fig. 3.13. A string
passes over each pulley, with one end attached to a mass and the other
end attached to another pulley. All the masses are equal to m, and all
the pulleys and strings are massless. The masses are held fixed and then
simultaneously released. What is the acceleration of the top mass? (You
may define this infinite system as follows. Consider it to be made of
N pulleys, with a nonzero mass replacing what would have been the
(N + 1)th pulley. Then take the limit as N — 00.)

Line of pulleys =

N +2 equal masses hang from a system of pulleys, as shown in Fig. 3.14.
What are the accelerations of all the masses?

Ring of pulleys =

Consider the system of pulleys shown in Fig. 3.15. The string (which
is a loop with no ends) hangs over N fixed pulleys that circle around
the underside of a ring. N masses, mp, my, ..., my, are attached to

N pulleys that hang on the string. What are the accelerations of all the
masses?

Sliding down a plane =

(a) Ablock starts at rest and slides down a frictionless plane inclined
at an angle #. What should 6 be so that the block travels a given
horizontal distance in the minimum amount of time?

(b) Same question, but now let there be a coefficient of kinetic friction
1 between the block and the plane.

Sliding sideways on a plane x=x

A block is placed on a plane inclined at an angle 8. The coefficient of
friction between the block and the plane is ;# = tan 6. The block is given
akick so that it initially moves with speed 7 horizontally along the plane
(that is, in the direction perpendicular to the direction pointing straight
down the plane). What is the speed of the block after a very long time?

Moving plane %

A block of mass m is held motionless on a frictionless plane of mass
M and angle of inclination 6 (see Fig. 3.16). The plane rests on a fric-
tionless horizontal surface. The block is released. What is the horizontal
acceleration of the plane?

Fig. 3.12

m; mg

Fig. 3.13
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Fig. 3.15

Fig. 3.16
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Using F=ma

Section 3.3: Solving differential equations

3.9.

3.10.

3.11.

3.12.

3.13.

Exponential force =

A particle of mass m is subject to a force F(f) = mage"". The initial
position and speed are zero. Find x(z).

—kx force ==«

A particle of mass m is subject to a force F'(x) = —kx, with k > 0. The
initial position is x¢, and the initial speed is zero. Find x(z).

Falling chain =«

A chain with length ¢ is held stretched out on a frictionless horizontal
table, with a length yg hanging down through a hole in the table. The
chain is released. As a function of time, find the length that hangs down
through the hole (don’t bother with ¢ after the chain loses contact with
the table). Also, find the speed of the chain right when it loses contact
with the table.'”

Throwing a beach ball ==

A beach ball is thrown upward with initial speed vg. Assume that the
drag force from the air is iy = —mawv. What is the speed of the ball,
vr, right before it hits the ground? (An implicit equation is sufficient.)
Does the ball spend more time or less time in the air than it would if it
were thrown in vacuum?

Balancing a pencil xx+

Consider a pencil that stands upright on its tip and then falls over. Let’s
idealize the pencil as a mass m sitting at the end of a massless rod of
length ¢.7°

(a) Assume that the pencil makes an initial (small) angle 6y with the
vertical, and that its initial angular speed is wg. The angle will
eventually become large, but while it is small (so that sin 6 = 0),
what is 0 as a function of time?

(b) You might think that it should be possible (theoretically, at least)
to make the pencil balance for an arbitrarily long time, by mak-
ing the initial 6y and wg sufficiently small. However, it turns out
that due to Heisenberg’s uncertainty principle (which puts a con-
straint on how well we can know the position and momentum of

19" Assume that the hole is actually a short frictionless tube bent into a gradual right angle, so that

the chain’s horizontal momentum doesn’t cause it to overshoot the hole. For a description of what
happens in a similar problem when this constraint is removed, see Calkin (1989).

20 1t actually involves only a trivial modification to do the problem correctly using the moment of

inertia and the torque. But the point-mass version is quite sufficient for the present purposes.



3.6 Problems

a particle), it is impossible to balance the pencil for more than a
certain amount of time. The point is that you can’t be sure that
the pencil is initially both at the top and at rest. The goal of this
problem is to be quantitative about this. The time limit is sure to
surprise you.

Without getting into quantum mechanics, let’s just say that
the uncertainty principle says (up to factors of order 1) that
AxAp > h, where h = 1.05 - 10734 Js is Planck’s constant.
The implications of this are somewhat vague, but we’ll just take
it to mean that the initial conditions satisfy (£6p)(mlwo) > h.
With this constraint, your task is to find the maximum time it
can take your 6(¢) solution in part (a) to become of order 1. In
other words, determine (roughly) the maximum time the pencil
can balance. Assume m = 0.01 kg, and £ = 0.1 m.

Section 3.4: Projectile motion

3.14.

3.15.

3.16.

3.17.

Maximum trajectory area =x

A ball is thrown at speed v from zero height on level ground. At
what angle should it be thrown so that the area under the trajectory
is maximum?

Bouncing ball =

A ball is thrown straight upward so that it reaches a height 4. It falls
down and bounces repeatedly. After each bounce, it returns to a certain
fraction f of its previous height