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PREFACE

Experimental measurements can be vexatious, and a textbook about experimental
methods cannot alleviate all the problems that are perplexing to the experimental
engineer. Engineering education has placed an increased emphasis on the ability of
an individual to perform a theoretical analysis of a problem. Experimental methods
are not unimportant, but analytical studies have, at times, seemed to deserve more em-
phasis, particularly with the enormous computing power that is available. Laboratory
work has also become more sophisticated in the modern engineering curricula. Con-
ventional laboratory courses have consistently been changed to include experiments
with rather elaborate electronic instrumentation and microprocessor- or computer-
based data acquisition systems. Surprisingly enough, however, many engineering
graduates do not seem capable of performing simple engineering measurements with
acceptable precision. Furthermore, they are amazingly inept when asked the question:
How good is the measurement? They automatically assume the results are accurate
to the number of digits displayed in the computer printout.

This book represents a first survey of experimental methods for undergraduate
students. As such, it covers a broad range of topics and may be lacking in depth on
certain topics. In these instances, the reader is referred to more detailed treatments in
specialized monographs.

It is important that engineers be able to perform successful experiments, and
it is equally important that they know or be able to estimate the accuracy of their
measurements. This book discusses a rather broad range of instruments and experi-
mental measurement techniques. Strong emphasis is placed on problem solving, and
the importance of accuracy, error, and uncertainty in experimental measurements is
stressed throughout all the discussions. The book is generally suitable as an accompa-
niment to laboratory sessions oriented around the specific experiments available at a
particular institution. Portions of the text material may be covered in a lecture session.
The lectures would be concerned with the principles of instrumentation, whereas the
laboratory periods would afford the student an opportunity to use some of the devices
discussed in this text and laboratory manuals that may be available to faculty planning
the course. The particular experiments, or the instruments used in the laboratory peri-
ods, will depend on the facilities available and the objectives set by each curriculum. A
mathematical background through ordinary differential equations is assumed for the
text developments, and it is expected that basic courses in thermodynamics, engineer-
ing mechanics, and electric-circuit theory will precede a course based on this text.

Whatever the course arrangement for which this text is applied, it is strongly
recommended that the problems at the end of each chapter receive careful attention.
These problems force the student to examine several instruments to determine their
accuracy and the uncertainties that might result from faulty measurement techniques.
In many instances the problems are very similar to numerical examples in the text.
Other problems require the student to extend the text material through derivations,

xv
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PREFACE

design of experiments, and so on. The selection of problems for a typical course will
depend, naturally, on the types of experiments and laboratory facilities available for
use with the course.

A few remarks concerning the arrangement of the text material are in order. A
brief presentation of all topics was desired so that a rather broad range of experimen-
tal methods could be discussed within the framework of a book of modest length.
Chapters 1 and 2 provide initial motivation remarks and some brief definitions of
important terms common to all measurement systems. This discussion includes basic
concepts of dynamic response in zeroth-, first-, and second-order systems.

Next, a simple presentation of some of the principles of statistical data analysis
is given in Chapter 3. Some of the concepts in Chapter 3 are used in almost every
subsequent chapter in the book, particularly the concept of experimental uncertainty.

Chapter 4 presents several simple electrical-measurement and amplifier circuits
and the principles of operation of typical electric transducers. Many of these transduc-
ers are applicable to measurement problems described in later chapters. Chapters 5
and 6, concerning dimensional and pressure measurements, offer fairly conventional
presentations of their subject matter, except that numerical examples and problems
are included to emphasize the importance of experimental uncertainty in the various
devices. Flow measurement is discussed in Chapter 7 in a rather conventional man-
ner. A notable feature of this chapter is the section on flow-visualization techniques.
Again, the examples and problems illustrate some of the advantages and shortcomings
of the various experimental techniques. Chapter 8 is quite specific in its discussion of
temperature-measurement devices. Strong emphasis is placed on the errors that may
arise from conduction, convection, and heat transfer between the temperature-sensing
device and its thermal environment. Methods are presented for correcting these
errors. Chapter 9 is brief but gives the reader an insight into the problems associ-
ated with transport-property measurements. The material in this chapter is dependent
on the measurement techniques discussed in Chapters 6, 7, and 8. The material in
Chapter 9 could be dispersed through the three previous chapters and still achieve a
balanced presentation; however, it was believed best to bring transport properties and
thermal measurements into sharper focus by grouping them in one chapter.

Static force, torque, and strain measurements are discussed in Chapter 10. The
strain measurements are related to some elementary principles of experimental stress
analysis, and the operation of the electrical strain gage is emphasized.

Some of the elementary principles of motion- and vibration-measurement
devices are discussed in Chapter 11. Included in this presentation is a discussion
of sound waves, sound-pressure level, and acoustic measurements. The inclusion of
the acoustics material in Chapter 11 is somewhat arbitrary since this material would
be equally pertinent in Chapter 6.

Chapter 12 discusses thermal- and nuclear-radiation measurements. The presen-
tation is brief, but some of the more important detection techniques are examined,
and examples are given to illustrate the important principles. A short presentation of
the statistics of counting illustrates the importance of background activity in nuclear-
radiation detection. The thermal-radiation measurements are properly related to the
temperature measurement material in Chapter 8.



PREFACE

Chapter 13 presents some of the measurement techniques that are used in
air-pollution-control applications. Such measurements make use of the basic pressure,
flow, and temperature measurement techniques discussed in Chapters 6, 7, and 8. The
importance of electronic data processing and its relation to the basic electrical mea-
suring devices of Chapter 4 are discussed in a general way in Chapter 14. Because the
fields of electronic microprocessors and data acquisition systems change so rapidly,
the discussion follows a fairly general pattern. A glossary of terms is given that is
applicable to a number of acquisition systems.

Since all experimental work must be reported in some form, Chapter 15, on
reports and presentations, has been given in a general format that will apply to several
applications. This material includes information on graphical and oral presentations
as well.

Some remarks concerning units are in order. There is no question regarding
the desirability to move toward the adoption of SI (metric) units wherever possible.
Accordingly, the educational system must anticipate this movement and teach students
to operate in SI. Courses in analysis (fluid mechanics, heat transfer, mechanics, and
so on) can adopt SI as the primary system with appropriate conversions to the old
English system. The experimental engineer may have a more cumbersome task. One
does not buy new instruments, gages, or meters just to change to SI units. Unhappily, a
common practice is to operate in a mixed system of units that combines SI and non-SI
metric with English units, which are coupled to empirical design relationships at hand.
This means that the experimental engineer will be operating in a “bilingual” mode
for many years. In addition, many field engineers do not want to change to SI and
will not change until they are forced to do so. Of course, companies heavily involved
with export markets, like the auto industry, are already heavily into SI units. It is in
recognition of these facts that I have chosen to mix SI and English units throughout
the book, even though my personal desire is to change over to SI completely as soon
as possible. There is another problem that the engineer must deal with. Some work is
performed in metric units that are not in the SI system. Examples are the calorie unit
for energy and the kilogram force per square centimeter for pressure. Alas, these are
hazards to be encountered, and one must adapt as best as one can.

In this edition, pruning of comments and topics has been applied throughout.
Recognition is made of the fact that electronic instrumentation and computer-based
data acquisition systems change so rapidly that the experimental engineer is best
served by timely consultation with well-disposed manufacturers of the necessary
instrumentation for their particular application. There are some things that do not
change so rapidly though. Uncertainty analysis and data correlations are still
important. Increased computer power just makes the tasks easier to perform. The dis-
cussions in Chapter 3 concerning data correlations, regression analysis, and graphical
presentations have been expanded considerably, with emphasis on computer genera-
tion of trendlines and least-squares analysis for a number of functional relationships.
Particular attention is devoted to the type of graphical displays that should be used
for different data presentations. This emphasis on adaptation of computer-generated
graphs is carried through to the report writing discussions of Chapter 15 in which
specific examples of graph constructions are displayed that will be applicable to
reports and oral presentations.
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Chapter 16 on design of experiments remains intact and the author urges the
reader to consult the protocols contained in this chapter in conjunction with studies
of uncertainty propagation in Chapter 3 and the specific measurement techniques
discussed in later chapters. The information in Chapter 16 is quite general as illus-
trated by five diverse examples (case studies) which are offered as applications of the
protocol.

NEW TO THIS EDITION:

e A new section on Fourier analysis has been added to Chapter 2 to reflect the
importance of spectrum analysis of vibrating systems, and to emphasize the
importance of extended frequency response beyond the fundamental.

e A new section on causation, correlations, and curve fits has been added to
Chapter 3 to emphasize the distinction between the three terms, and the respective
utility of each.

¢ Anew section on radiation effects in humans has been added to Chapter 12 both to
indicate the specific physical impacts of different types of nuclear radiation and
the unit systems employed for measurement of these effects.

e A brief appendix (Appendix B) has been added describing the basics of digital
imaging (photographic) systems. This appendix is then referenced at several
relevant places in the measurement chapters.

e New Examples and 15 percent more problems have been added throughout.
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INTRODUCTION

There is no such thing as an easy experiment, nor is there any substitute for careful
experimentation in many areas of basic research and applied product development.
Because experimentation is so important in all phases of engineering, there is a very
definite need for the engineer to be familiar with methods of measurement as well as
analysis techniques for interpreting experimental data.

Experimental techniques have changed quite rapidly with the development of
electronic devices for sensing primary physical parameters and for controlling pro-
cess variables. In many instances more precision is now possible in the measurement
of basic physical quantities through the use of these new devices. Further develop-
ment in instrumentation techniques is certain because of the increasing demand for
measurement and control of physical variables in a wide variety of applications.

Obviously, a sound knowledge of many engineering principles is necessary to
perform successful experiments; it is for this reason that experimentation is so difficult.
To design the experiment, the engineer must be able to specify the physical variables
to be investigated and the role they will play in later analytical work. Then, to design or
procure the instrumentation for the experiment, the engineer must have a knowledge
of the governing principles of a broad range of instruments. Finally, to analyze the data,
the experimental engineer must have a combination of keen insight into the physical
principles of the processes being investigated and a knowledge of the limitations of
the data.

Research involves a combination of analytical and experimental work. The theo-
retician strives to explain or predict the results of experiments on the basis of analytical
models which are in accordance with fundamental physical principles that have been
well established over the years. When experimental data are encountered which do
not fit into the scheme of existing physical theories, a skeptical eye is cast first at
the experimental data and then at appropriate theories. In some cases the theories are
modified or revised to take into account the results of the new experimental data, after
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being sure that the validity of the data has been ascertained. In any event, all physical
theories must eventually rely upon experiment for verification.

Whether the research is of a basic or developmental character, the dominant role
of experimentation is still present. The nuclear physicist must always test theories in
the laboratory to be sure of their validity, just as the engineer who conducts research
on a new electronic circuit or a new type of hydraulic flow system certainly must
perform a significant number of experiments in order to establish the usefulness of
the device. Physical experimentation is the ultimate test of most theories.

In many engineering applications certain basic physical phenomena are well
known and experience with devices using these phenomena is already available. Ex-
amples are radiation detectors, solid-state electronics, flowmeters, and certain mech-
anisms. There will always arise, however, new uses for such devices in combination
with other devices, for example, a new type of amplifier or a new flow-control sys-
tem. In these cases the engineer must utilize all available experience with the previous
devices to design the apparatus for a new application. No matter how reliable the in-
formation on which the design is based, the engineer must insist on thorough experi-
mental tests of the new device before the design is finalized and production is initiated.

There is a whole spectrum of tests and experiments which an engineer may
be called upon to perform. These vary from a crude test to determine the weight
of a device to precise electronic measurements of nuclear radioactivity. Since the
range of experiments is so broad, the experimental background of the engineer must
be correspondingly diverse in order to function effectively in many experimental
situations. Obviously, it is quite hopeless to expect any one person to operate at a
high level of effectiveness in all areas of experimental work. The primary capability
of a particular individual will necessarily be developed in an area of experimentation
closely connected with that person’s analytical and theoretical capability and related
interests. The broader the interests of an individual, the more likely it is that that
individual will develop broad experimental interests and capabilities.

In the past there have been some engineers who were primarily experimentalists—
those individuals who designed devices by trial and error with very little analytical
work as a preliminary to the experimentation. There are some older areas of engi-
neering where this technique may still prevail, primarily where years of experience
have built up a background knowledge to rely upon. But, in new fields more emphasis
must be placed on a combination of theory and experimentation. To create a rather
absurd example, we cite the development of a rocket engine. It would be possible
to build different sizes of rockets and test them until a lucky combination of design
parameters was found; however, the cost would be prohibitive. The proper approach
is one of test and theoretical study where experimental data are constantly evaluated
and compared with theoretical estimates. New theories are formulated on the basis
of the experimental measurements, and these theories help to guide further tests and
the final design.

The engineer should know what to look for before beginning the experiments.
The objective of the experiments will dictate the accuracy required, expense justified,
and level of human effort necessary. A simple calibration check of a mercury-in-
glass thermometer would be a relatively simple matter requiring a limited amount
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of equipment and time: however, the accurate measurement of the temperature of a
high-speed gas stream at 1600°C (2912°F) would involve more thought and care. A
test of an amplifier for a home music system might be less exacting than a test of an
amplifier to be used as part of the electronic equipment in a satellite, and so on.

The engineer is not only interested in the measurement of physical variables but
also concerned with their control. The two functions are closely related, however,
because one must be able to measure a variable such as temperature or flow in order
to control it. The accuracy of control is necessarily dependent on the accuracy of
measurement. Hence, we see that a good knowledge of measurement techniques is
necessary for the design of control systems. A detailed consideration of control sys-
tems is beyond the scope of our discussion, but the applicability of specific instruments
and sensing devices to control systems will be indicated from time to time.

It is not enough for the engineer to be able to measure skillfully certain physical
variables. For the data to have maximum significance the engineer must be able to
specify the degree of accuracy with which a certain variable has been measured.
To specify this accuracy the limitations of the apparatus must be understood and full
account must be taken of certain random and/or regular errors which may occur in the
experimental data. Statistical techniques are available for analyzing data to determine
expected errors and deviations from the true measurements. The engineer must be
familiar with these techniques in order to analyze the data effectively.

All too frequently the engineer embarks on an experimental program in a stum-
bling blind-faith manner. Data are collected at random, many of which are not needed
for later analysis. Certain ranges of operation are not investigated thoroughly enough,
resulting in the collection of data which may have limited correlative value. The engi-
neer must be sure to take enough data but should not waste time and money by taking
too many. The obvious point is that experiments should be carefully planned. Most
experimentalists do indeed plan tests with respect to the range of certain variables that
they will want to investigate. But they often neglect the fact that more data points may
be necessary in certain ranges of operation than in others in order to ensure the same
degree of accuracy in the final data evaluation. In other words, the anticipated meth-
ods of data analysis, statistical or otherwise, should be taken into account in planning
the experiment, just as one would take into account certain variables in designing
the physical size of the experimental apparatus. The engineer should always ask the
question: How many data do I need to ensure that my data are not just the result of
luck? We will have more to say about experiment planning throughout the book, and
the reader should consider these opening remarks as only the initial motivation.

A few remarks concerning experimental research are in order at this point. It
is very difficult to describe the atmosphere and technique of performing research.
For, unlike standard performance testing where experiments are conducted according
to some well-established procedure, in research there is seldom a clear-cut way of
proceeding. Each problem is a different one, and if the research is worthwhile, it has
not been attacked extensively before. This means that the engineer engaged in research
must be prepared to face numerous experimental difficulties of varying complexities.
Some desirable objectives of the research may have to be relaxed because of the
unavailability of instrumentation to measure the variables involved. Many seemingly
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trivial details become significant problems before a new experimental apparatus is
functioning properly. One of the most basic problems is that the engineer seldom
gets to measure in a direct manner the variable he or she really wants. There are
always corrections to apply to the measurements, and seldom do they fall into the
category of “standard” corrections. One trivial detail piles on another until the whole
experimental problem takes on a complexity which is usually not anticipated at the
start of the research. Again, we state the truism: There is no such thing as an easy
experiment.

Neophyte experimentalists frequently assume that a certain experiment will be
easy to perform. All they need to do is hook up the apparatus and flip the switch, and
out will come reams of significant data which will startle colleagues (or supervisors).
They do not realize that one simple instrument may not work and thus spoil the
experiment. Once this instrument is functioning properly, another may go bad, and
so on. When the apparatus is functioning, neophytes are then tempted to take data at
random without giving much consideration to the results that they will want to derive
from the data. They try to solve all problems at once and vary many parameters at
the same time, so that little control is exerted on the data and it eventually becomes
necessary to go back and do some of the work over. The important point, once again,
is that careful planning is called for. In experimental research great care and patience
will usually produce the best results in the guickest possible way.

The above remarks may appear discouraging to beginners for whom this book
is written. On the contrary, they are intended to advise beginners so that they can
avoid some of the more obvious pitfalls. And, even more important, the intent is to let
the beginner know that some troubles combined with intelligent planning will almost
always lead to the desired results—accurate and meaningful data.

Certainly, not all experimental work is of a “research” nature. The majority of
measurements are performed in routine practical industrial applications. Such mea-
surements call for skill and communication ability as much as research because they
may be very directly related to the profit and loss of a company.

The objective of the presentation in this book is to impart a broad knowledge
of experimental methods and measurement techniques. To accomplish this object a
rather large number of instruments will be discussed from the standpoint of both
theory of operation and specific functional characteristics. Emphasis will be placed
on analytical calculations to familiarize the reader with important points in the theo-
retical development as well as in the descriptive information pertaining to operating
characteristics. As a further means of emphasizing the discussions, the uncertainties
which may arise in the various instruments are given particular attention.

The study of experimental methods is a necessary extension of all analytical
subjects. A knowledge of the methods of verifying analytical work injects new life and
vitality into the theories, and a clear understanding of the difficulties of experimental
measurements creates a careful attitude in the theoretician which cannot be generated
in any other way.
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BASIC CONCEPTS

2.1 INTRODUCTION

In this chapter we seek to explain some of the terminology used in experimental
methods and to show the generalized arrangement of an experimental system. We
shall also discuss briefly the standards which are available and the importance of
calibration in any experimental measurement. A major portion of the discussion on
experimental errors is deferred until Chap. 3, and only the definition of certain terms
is given here.

2.2 DEFINITION OF TERMS

We are frequently concerned with the readability of an instrument. This term indicates
the closeness with which the scale of the instrument may be read; an instrument with
a 12-in scale would have a higher readability than an instrument with a 6-in scale and
the same range. The least count is the smallest difference between two indications that
can be detected on the instrument scale. Both readability and least count are dependent
on scale length, spacing of graduations, size of pointer (or pen if a recorder is used),
and parallax effects.

For an instrument with a digital readout the terms “readability” and “least count”
have little meaning. Instead, one is concerned with the display of the particular
instrument.

The sensitivity of an instrument is the ratio of the linear movement of the pointer
on an analog instrument to the change in the measured variable causing this motion.
For example, a 1-mV recorder might have a 25-cm scale length. Its sensitivity would
be 25 cm/mV, assuming that the measurement was linear all across the scale. For
a digital instrument readout the term “sensitivity” does not have the same meaning
because different scale factors can be applied with the push of a button. However,
the manufacturer will usually specify the sensitivity for a certain scale setting, for
example, 100 nA on a 200-uA scale range for current measurement.
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An instrument is said to exhibit hysteresis when there is a difference in readings
depending on whether the value of the measured quantity is approached from above
or below. Hysteresis may be the result of mechanical friction, magnetic effects, elastic
deformation, or thermal effects.

The accuracy of an instrument indicates the deviation of the reading from a
known input. Accuracy is frequently expressed as a percentage of full-scale reading,
so that a 100-kPa pressure gage having an accuracy of 1 percent would be accurate
within £1 kPa over the entire range of the gage.

In other cases accuracy may be expressed as an absolute value, over all ranges
of the instrument.

The precision of an instrument indicates its ability to reproduce a certain reading
with a given accuracy. As an example of the distinction between precision and accu-
racy, consider the measurement of a known voltage of 100 volts (V) with a certain
meter. Four readings are taken, and the indicated values are 104, 103, 105, and 105 V.
From these values it is seen that the instrument could not be depended on for an accu-
racy of better than 5 percent (5 V), while a precision of =1 percent is indicated since
the maximum deviation from the mean reading of 104 V is only 1 V. It may be noted
that the instrument could be calibrated so that it could be used dependably to measure
voltages within £1 V. This simple example illustrates an important point. Accuracy
can be improved up to but not beyond the precision of the instrument by calibration.
The precision of an instrument is usually subject to many complicated factors and
requires special techniques of analysis, which will be discussed in Chap. 3.

We should alert the reader at this time to some data analysis terms which will
appear in Chap. 3. Accuracy has already been mentioned as relating the deviation
of an instrument reading from a known value. The deviation is called the error. In
many experimental situations we may not have a known value with which to compare
instrument readings, and yet we may feel fairly confident that the instrument is within a
certain plus or minus range of the true value. In such cases we say that the plus or minus
range expresses the uncertainty of the instrument readings. Many experimentalists
are not very careful in using the words “error” and “uncertainty.” As we shall see in
Chap. 3, uncertainty is the term that should be most often applied to instruments.

2.3 CALIBRATION

The calibration of all instruments is important, for it affords the opportunity to check
the instrument against a known standard and subsequently to reduce errors in accuracy.
Calibration procedures involve a comparison of the particular instrument with either
(1) a primary standard, (2) a secondary standard with a higher accuracy than the
instrument to be calibrated, or (3) a known input source. For example, a flowmeter
might be calibrated by (1) comparing it with a standard flow-measurement facility
of the National Institute for Standards and Technology (NIST), (2) comparing it
with another flowmeter of known accuracy, or (3) directly calibrating with a primary
measurement such as weighing a certain amount of water in a tank and recording
the time elapsed for this quantity to flow through the meter. In item 2 the keywords
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are “known accuracy.” The meaning here is that the accuracy of the meter must be
specified by a reputable source.

The importance of calibration cannot be overemphasized because it is calibration
that firmly establishes the accuracy of the instruments. Rather than accept the reading
of an instrument, it is usually best to make at least a simple calibration check to be sure
of the validity of the measurements. Not even manufacturers’ specifications or calibra-
tions can always be taken at face value. Most instrument manufacturers are reliable;
some, alas, are not. We shall be able to give more information on calibration methods
throughout the book as various instruments and their accuracies are discussed.

2.4 STANDARDS

In order that investigators in different parts of the country and different parts of
the world may compare the results of their experiments on a consistent basis, it is
necessary to establish certain standard units of length, weight, time, temperature,
and electrical quantities. NIST has the primary responsibility for maintaining these
standards in the United States.

The meter and the kilogram are considered fundamental units upon which,
through appropriate conversion factors, the English system of length and mass is
based. At one time, the standard meter was defined as the length of a platinum-
iridium bar maintained at very accurate conditions at the International Bureau of
Weights and Measures in Sevres, France. Similarly, the kilogram was defined in
terms of a platinum-iridium mass maintained at this same bureau. The conversion
factors for the English and metric systems in the United States are fixed by law as

1 meter = 39.37 inches
1 pound-mass = 453.59237 grams

Standards of length and mass are maintained at NIST for calibration purposes. In
1960 the General Conference on Weights and Measures defined the standard meter in
terms of the wavelength of the orange-red light of a krypton-86 lamp. The standard
meter is thus

1 meter = 1,650,763.73 wavelengths

In 1983 the definition of the meter was changed to the distance light travels in
1/299,792,458ths of a second. For the measurement, light from a helium-neon laser
illuminates iodine which fluoresces at a highly stable frequency.

The inch is exactly defined as

1 inch = 2.54 centimeters

Standard units of time are established in terms of known frequencies of oscillation
of certain devices. One of the simplest devices is a pendulum. A torsional vibrational
system may also be used as a standard of frequency. Prior to the introduction of
quartz oscillator-based mechanisms, torsional systems were widely used in clocks
and watches. Ordinary 60-hertz (Hz) line voltage may be used as a frequency standard
under certain circumstances. An electric clock uses this frequency as a standard
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because it operates from a synchronous electric motor whose speed depends on line
frequency. A tuning fork is a suitable frequency source, as are piezoelectric crystals.
Electronic oscillators may also be designed to serve as precise frequency sources.

The fundamental unit of time, the second(s), has been defined in the past as m
of a mean solar day. The solar day is measured as the time interval between two
successive transits of the sun across a meridian of the earth. The time interval varies
with location of the earth and time of year; however, the mean solar day for one year
is constant. The solar year is the time required for the earth to make one revolution
around the sun. The mean solar year is 365 days 5 h 48 min 48 s.

The above definition of the second is quite exact but is dependent on astronom-
ical observations in order to establish the standard. In October 1967 the Thirteenth
General Conference on Weights and Measures adopted a definition of the second as
the duration of 9,192,631,770 periods of the radiation corresponding to the transition
between the two hyperfine levels of the fundamental state of the atom of cesium-133,
Ref. [7]. This standard can be readily duplicated in standards laboratories throughout
the world. The estimated accuracy of this standard is 2 parts in 10°.

Standard units of electrical quantities are derivable from the mechanical units of
force, mass, length, and time. These units represent the absolute electrical units and
differ slightly from the international system of electrical units established in 1948.
A detailed description of the previous international system is given in Ref. [1]. The
main advantage of this sytem is that it affords the establishment of a standard cell, the
output of which may be directly related to the absolute electrical units. The conversion
from the international system was established by the following relations:

1 international ohm = 1.00049 absolute ohms
1 international volt = 1.000330 absolute volts

1 international ampere = 0.99835 absolute ampere

The standard for the volt was changed in 1990 to relate to a phenomenon called
the Josephson effect which occurs at liquid helium temperatures. At the same time
resistance standards were based on a quantum Hall effect. These standards, and a
historical perspective as well as the use of standard cells, are discussed in Refs. [15],
[16], and [17].

Laboratory calibration is usually made with the aid of secondary standards such
as standard cells for voltage sources and standard resistors as standards of comparison
for measurement of electrical resistance.

An absolute temperature scale was proposed by Lord Kelvin in 1854 and forms
the basis for thermodynamic calculations. This absolute scale is so defined that par-
ticular meaning is given to the second law of thermodynamics when this temperature
scale is used. The International Practical Temperature Scale of 1968 (IPTS-68) [2]
furnishes an experimental basis for a temperature scale which approximates as closely
as possible the absolute thermodynamic temperature scale. In the international scale
11 primary points are established as shown in Table 2.1. Secondary fixed points are
also established as given in Table 2.2. In addition to the fixed points, precise points
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Table 2.1 Primary points for the International Practical Temperature Scale of 1968
Point Temperature
Normal Pressure = 14.6959 psia = 1.0132 x 105 Pa °C °F
Triple point of equilibrium hydrogen —259.34 —434.81
Boiling point of equilibrium hydrogen at 25/76 normal pressure —256.108 —428.99
Normal boiling point (1 atm) of equilibrium hydrogen —252.87 —423.17
Normal boiling point of neon —246.048 —410.89
Triple point of oxygen —218.789 —361.82
Normal boiling point of oxygen —182.962 —297.33
Triple point of water 0.01 32.018
Normal boiling point of water 100 212.00
Normal freezing point of zinc 419.58 787.24
Normal freezing point of silver 961.93 1763.47
Normal freezing point of gold 1064.43 1947.97

Table 2.2  Secondary fixed points for the International
Practical Temperature Scale of 1968
Point Temperature, °C

Triple point, normal Hp
Boiling point, normal Hj
Triple point, Ne

Triple point, N,

Boiling point, Nj
Sublimation point, CO, (normal)
Freezing point, Hg

Ice point

Triple point, phenoxibenzene
Triple point, benzoic acid
Freezing point, In

Freezing point, Bi

Freezing point, Cd

Freezing point, Pb

Freezing point, Hg

Freezing point, S

Freezing point, Cu-Al eutectic
Freezing point, Sb

Freezing point, Al

Freezing point, Cu

Freezing point, Ni

Freezing point, Co

Freezing point, Pd

Freezing point, Pt

Freezing point, Rh

Freezing point, Ir

Freezing point, W

—259.194
—252.753
—248.595
—210.002
—195.802
—78.476
—38.862
0
26.87
122.37
156.634
271.442
321.108
327.502
356.66
444.674
548.23
630.74
660.74
1084.5
1455
1494
1554
1772
1963
2447
3387
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Table 2.3 Interpolation procedures for International Practical Temperature Scale of 1968
Range, °C Procedure
—259.34-0 Platinum resistance thermometer with cubic polynomial coefficients

determined from calibration at fixed points, using four ranges

0-630.74 Platinum resistance thermometer with second-degree polynomial
coefficients determined from calibration at three fixed points in the range
630.74-1064.43 Standard platinum—platinum rhodium (10%) thermocouple with second-
degree polynomial coefficients determined from calibration at antimony,
silver, and gold points
Above 1064.43 Temperature defined by:
J; eC2/MTau+To) _ |
Tae | CAT+Ty) _ |

Ji, Jau = radiant energy emitted per unit time, per unit area, and per unit
wavelength at wavelength A, at temperature 7', and gold-point
temperature Ty, respectively

C; =1438cm—K
To =273.16 K
A = wavelength

are also established for interpolating between these points. These interpolation pro-
cedures are given in Table 2.3.

More recently, the International Temperature Scale of 1990 (ITS-90) has been
adopted as described in Ref. [13].

The fixed points for ITS-90 that are shown in Table 2.4 differ only slightly from
IPTS-68. For ITS-90 a platinum resistance thermometer is used for interpolation be-
tween the triple point of hydrogen and the solid equilibrium for silver, while above
the silver point blackbody radiation is used for interpolation. Reference [14] gives
procedures for converting between ITPS-68 calibrations and those under ITS-90. In
many practical situations the errors or uncertainties in the primary sensing elements
will overshadow any differences in the calibration. According to Ref. [13] the dif-
ferences between IPTS-68 and ITS-90 are less than 0.12°C between —200°C and
900°C.

Both the Fahrenheit (°F) and Celsius (°C) temperature scales are in wide use, and
the experimentalist must be able to work in either. The absolute Fahrenheit scale is
called the Rankine (°R) scale, while absolute Celsius has been designated the Kelvin
(K) scale. The relationship between these scales is as follows:

K =°C+273.15
°R = °F + 459.67
°F=2"C+32.0

The absolute thermodynamic temperature scale is discussed in Ref. [4].
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Table 2.4 Fixed points for International Temperature Scale of 1990

Temperature
Defining State °C K
Triple point of hydrogen —259.3467 13.8033
Liquid/vapor equilibrium for hydrogen at % atm —256.15 ~17
Liquid/vapor equilibrium for hydrogen at 1 atm ~ —252.87 ~20.3
Triple point of neon —248.5939 24.5561
Triple point of oxygen —218.7916 54.3584
Triple point of argon —189.3442 83.8058
Triple point of water 0.01 273.16
Solid/liquid equilibrium for gallium at 1 atm 29.7646 302.9146
Solid/liquid equilibrium for tin at 1 atm 231.928 505.078
Solid/liquid equilibrium for zinc at 1 atm 419.527 692.677
Solid/liquid equilibrium for silver at 1 atm 961.78 1234.93
Solid/liquid equilibrium for gold at 1 atm 1064.18 1337.33
Solid/liquid equilibrium for copper at 1 atm 1084.62 1357.77

2.5 DIMENSIONS AND UNITS

Despite strong emphasis in the professional engineering community on standardizing
units with an international system, a variety of instruments will be in use for many
years, and an experimentalist must be conversant with the units which appear on the
gages and readout equipment. The main difficulties arise in mechanical and thermal
units because electrical units have been standardized for some time. It is hoped that
the SI (Systeme International d’Unités) set of units will eventually prevail, and we
shall express examples and problems in this system as well as in the English system
employed in the United States for many years.

Although the SI system is preferred, one must recognize that the English system
is still very popular.

One must be careful not to confuse the meaning of the term “units” and “di-
mensions.” A dimension is a physical variable used to specify the behavior or nature
of a particular system. For example, the length of a rod is a dimension of the rod.
In like manner, the temperature of a gas may be considered one of the thermody-
namic dimensions of the gas. When we say the rod is so many meters long, or the gas
has a temperature of so many degrees Celsius, we have given the units with which
we choose to measure the dimension. In our development we shall use the dimensions

L = length

M = mass
F = force
T =time

T = temperature



12

CHAPTER 2 o BaAsic CONCEPTS

All the physical quantities used may be expressed in terms of these fundamental
dimensions. The units to be used for certain dimensions are selected by somewhat
arbitrary definitions which usually relate to a physical phenomenon or law. For ex-
ample, Newton’s second law of motion may be written

Force ~ time rate of change of momentum
d(mv)

dr
where k is the proportionality constant. If the mass is constant,

F=k

F =kma [2.1]
where the acceleration is a = dv/dt. Equation (2.1) may also be written
1
F=—ma [2.2]
8¢

with 1/g. = k. Equation (2.2) is used to define our systems of units for mass, force,
length, and time. Some typical systems of units are:

1 pound-force will accelerate 1 pound-mass 32.174 feet per second squared.

1 pound-force will accelerate 1 slug-mass 1 foot per second squared.

1 dyne-force will accelerate 1 gram-mass 1 centimeter per second squared.

1 newton (N) force will accelerate 1 kilogram-mass 1 meter per second squared.

ook wh =

1 kilogram-force will accelerate 1 kilogram-mass 9.80665 meter per second
squared.

The kilogram-force is sometimes given the designation kilopond (kp).

Since Eq. (2.2) must be dimensionally homogeneous, we shall have a different
value of the constant g, for each of the unit systems in items 1 to 5 above. These
values are:
gc = 32.174 1bm - ft/Ibf - 52
gc = 1 slug - ft/lbf - s?
gc=1g-cm/dyn - s?
gc=lkg-m/N-s?
gc = 9.80665 kgm - m/kgf - s

A

It does not matter which system of units is used so long as it is consistent with the
above definitions.

Work has the dimensions of a product of force times a distance. Energy has the
same dimensions. Thus the units for work and energy may be chosen from any of the
systems used above as:

1. Ibf - ft
2. Ibf - ft
3.dyn-cm=1erg
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4. N-m =1 joule (J)
5. kgf - m = 9.80665 J

In addition, we may use the units of energy which are based on thermal phenomena:

1 British thermal unit (Btu) will raise 1 pound-mass of water 1 degree
Fahrenheit at 68°F.

1 calorie (cal) will raise 1 gram of water 1 degree Celsius at 20°C.

1 kilocalorie will raise 1 kilogram of water 1 degree Celsius at 20°C.

The conversion factors for the various units of work and energy are

1 Btu="778.16 Ibf - ft

1 Btu=10551]

1 kcal=4182]
11bf-ft=1.3561J

1 Btu =252 cal

Additional conversion factors are given in Appendix A.
The weight of a body is defined as the force exerted on the body as a result of
the acceleration of gravity. Thus

w=2m [2.3]
8c
where W is the weight and g is the acceleration of gravity. Note that the weight of
a body has the dimensions of a force. We now see why systems 1 and 5 above were
devised; 1 Ibm will weigh 1 Ibf at sea level, and 1 kgm will weigh 1 kgf.
Unfortunately, all the above unit systems are used in various places throughout
the world. While the foot-pound force, pound-mass, second, degree Fahrenheit, Btu
system is still widely used in the United States, there should be increasing impetus to
institute the SI units as a worldwide standard. In this system the fundamental units are
meter, newton, kilogram-mass, second, and degree Celsius; a “thermal” energy unit
is not used; that is, the joule (N - m) becomes the energy unit used throughout. The
watt (J/s) is the unit of power in this system. In SI the concept of g, is not normally
used, and the newton is defined as

1 newton = 1 kilogram-meter per second squared [2.4]

Even so, one should keep in mind the physical relation between force and mass as
expressed by Newton’s second law of motion.

Despite the present writer’s personal enthusiasm for complete changeover to the
SI system, the fact is that a large number of engineering practitioners still use English
units and will continue to do so for some time to come. Therefore, we shall use
both English and ST units in this text so that the reader can operate effectively in the
expected industrial environment.

Table 2.5 lists the basic and supplementary SI units, while Table 2.6 gives a
list of derived SI units for various physical quantities. The SI system also specifies
standard multiplier prefixes, as shown in Table 2.7. For example, 1 atm pressure is

13
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Table 2.5 Basic and supplemental S units

Quantity Unit Symbol

Basic units

Length meter m
Mass kilogram kg
Time second s
Electric current ampere A
Temperature kelvin K
Luminous intensity candela cd
Supplemental units

Plane angle radian rad
Solid angle steradian ST

1.0132 x 10°> N/m? (Pa), which could be written 1 atm = 0.10132 MN/m? (MPa).
Conversion factors are given in Appendix A as well as in sections of the text that
discuss specific measurement techniques for pressure, energy flux, and so forth.

2.6 THE GENERALIZED MEASUREMENT SYSTEM

Most measurement systems may be divided into three parts:

1. A detector-transducer stage, which detects the physical variable and performs
either a mechanical or an electrical transformation to convert the signal into a
more usable form. In the general sense, a transducer is a device that transforms
one physical effect into another. In most cases, however, the physical variable is
transformed into an electric signal because this is the form of signal that is most
easily measured. The signal may be in digital or analog form. Digital signals
offer the advantage of easy storage in memory devices, or manipulations with
computers.

2. Some intermediate stage, which modifies the direct signal by amplification,
filtering, or other means so that a desirable output is available.

3. Afinal or terminating stage, which acts to indicate, record, or control the variable
being measured. The output may also be digital or analog.

As an example of a measurement system, consider the measurement of a low-
voltage signal at a low frequency. The detector in this case may be just two wires
and possibly a resistance arrangement, which are attached to appropriate terminals.
Since we want to indicate or record the voltage, it may be necessary to perform some
amplification. The amplification stage is then stage 2, designated above. The final
stage of the measurement system may be either a voltmeter or a recorder that op-
erates in the range of the output voltage of the amplifier. In actuality, an electronic
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Table 2.6 Derived Sl units
Unit Symbol or Unit Expressed in
Abbreviation, Terms of Basic or
Where Differing Supplementary
Quantity Name(s) of Unit from Basic Form Units
Area square meter m?
Volume cubic meter m?
Frequency hertz, cycle per second Hz s7!
Density, concentration kilogram per cubic meter kg/m3
Velocity meter per second m/s
Angular velocity radian per second rad/s
Acceleration meter per second squared m/s?
Angular acceleration radian per second squared rad/s?
Volumetric flow rate cubic meter per second m3/s
Force newton N kg - m/s?
Surface tension newton per meter, joule per
square meter N/m, J/m? kg/s?
Pressure newton per square meter, pascal N/m?, Pa kg/m - s2
Viscosity, dynamic newton-second per square meter
poiseuille N - s/m?, Pl kg/m - s
Viscosity, kinematic; diffusivity;
mass conductivity meter square per second m?/s
Work, torque, energy, quantity
of heat joule, newton-meter, watt-second JJN-mW-s kg - m?/s?
Power, heat flux watt, joule per second W, I/s kg - m2/s3
Heat flux density watt per square meter W/m? kg/s’
Volumetric heat release rate watt per cubic meter W/m? kg/m - §°
Heat-transfer coefficient watt per square meter degree W/m? - deg kg/s® - deg
Latent heat, enthalpy (specific) joule per kilogram J/kg m?/s?
Heat capacity (specific) joule per kilogram degree J/kg - deg m?/s? - deg
Capacity rate watt per degree W/deg kg - m?/s - deg
Thermal conductivity watt per meter degree W/m - deg,
j-m/s-s?-deg kg - m/s? - deg
Mass flux, mass flow rate kilogram per second kg/s
Mass flux density, mass flow
rate per unit area kilogram per square meter-second kg/m? - s
Mass-transfer coefficient meter per second m/s
Quantity of electricity coulomb C A-s
Electromotive force volt V, W/A kg - m2/A - 3
Electric resistance ohm Q, V/IA kg - mZ/A - §3
Electric conductivity ampere per volt meter A/V -m A? . $3/kg - m?
Electric capacitance farad FA-s/V A3 . st/kg - m?
Magnetic flux weber Wb, V-5 kg - m?/A - s?
Inductance henry H,V-s/A kg - m?/A? - §2
Magnetic permeability henry per meter H/m kg - m/A? - s?
Magnetic flux density tesla, weber per square meter T, Wb/m? kg/A - 52
Magnetic field strength ampere per meter A/m
Magnetomotive force ampere A
Luminous flux lumen Im cd - sr
Luminance candela per square meter cd/m?
Illumination lux, lumen per square meter 1x, Im/m? cd - st/m?
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Table 2.7  Standard prefixes and multiples in Sl units

Multiples and

Submultiples Prefixes Symbols Pronunciations
10'2 tera T ter'a
10° giga G jga
109 mega M még'a
103 kilo k Kil'6
10 hecto h hek’to
10 deka da dek’a
107! deci d des'y
1072 centi c s&n’t
1073 milli m mil ¥
107 micro " mi’ kro
10~° nano n nin’o
1012 pico p pe’co
10-1 femto f fem'to
10-18 atto a it'to

voltmeter is a measurement system like the one described here. The amplifier and the
readout voltmeter are contained in one package, and various switches enable the user
to change the range of the instrument by varying the input conditions to the amplifier.

Consider the simple bourdon-tube pressure gage shown in Fig. 2.1. This gage
offers a mechanical example of the generalized measurement system. In this case the
bourdon tube is the detector-transducer stage because it converts the pressure signal
into a mechanical displacement of the tube. The intermediate stage consists of the
gearing arrangement, which amplifies the displacement of the end of the tube so that
a relatively small displacement at that point produces as much as three-quarters of
a revolution of the center gear. The final indicator stage consists of the pointer and
the dial arrangement, which, when calibrated with known pressure inputs, gives an
indication of the pressure signal impressed on the bourdon tube. A schematic diagram
of the generalized measurement system is shown in Fig. 2.2.

When a control device is used for the final measurement stage, it is necessary to
apply some feedback signal to the input signal to accomplish the control objectives.
The control stage compares the signal representing the measured variable with some
other signal in the same form representing the assigned value the measured variable
should have. The assigned value is given by a predetermined setting of the controller.
If the measured signal agrees with the predetermined setting, then the controller does
nothing. If the signals do not agree, the controller issues a signal to a device which
acts to alter the value of the measured variable. This device can be many things,
depending on the variable which is to be controlled. If the measured variable is the
flow rate of a fluid, the control device might be a motorized valve placed in the flow
system. If the measured flow rate is too high, then the controller would cause the
motorized valve to close, thereby reducing the flow rate. If the flow rate were too low,
the valve would be opened. Eventually the operation would cease when the desired
flow rate was achieved. The control feedback function is indicated in Fig. 2.2.
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Bourdon-tube (oval cross-section)
detector-transducer stage

Increased pressure
causes movement of
tube in this direction

Sector and pinion

Pointer and dial are modifying stage

are indicator stage

Pressure
source

Figure 2.1 Bourdon-tube pressure gage as the generalized measurement system.

Physical variable B Feedback signal for control

to be measured

| |

Input 1 |

signal | Controller | !

y e Transduced Modified : I:I :

Detector-transducer signal | [termediate signal U [ ndicator | !
—>|

stage stage | :

| |

A Calibration : :

| |

| |

signal

Calibration signal
source representing External
known value of power

physical variable

Figure 2.2 Schematic of the generalized measurement system.

Itis very important to realize that the accuracy of control cannot be any better than
the accuracy of the measurement of the control variable. Therefore, one must be able
to measure a physical variable accurately before one can hope to control the variable.
In the flow system mentioned above the most elaborate controller could not control
the flow rate any more closely than the accuracy with which the primary sensing
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element measures the flow. We shall have more to say about some simple control
systems in a later chapter. For the present we want to emphasize the importance of
the measurement system in any control setup.

The overall schematic of the generalized measurement system is quite simple,
and, as one might suspect, the difficult problems are encountered when suitable de-
vices are sought to fill the requirements for each of the “boxes” on the schematic
diagram. Most of the remaining chapters of the book are concerned with the types of
detectors, transducers, modifying stages, and so forth, that may be used to fill these
boxes.

2.7 BASIC CONCEPTS IN DYNAMIC MEASUREMENTS

A static measurement of a physical quantity is performed when the quantity is not
changing with time. The deflection of a beam under a constant load would be a static
deflection. However, if the beam were set in vibration, the deflection would vary with
time, and the measurement process might be more difficult. Measurements of flow
processes are much easier to perform when the fluid is in a nice steady state and become
progressively more difficult to perform when rapid changes with time are encountered.
Many experimental measurements are taken under such circumstances that ample
time is available for the measurement system to reach steady state, and hence one
need not be concerned with the behavior under non-steady-state conditions. In many
other situations, however, it may be desirable to determine the behavior of a physical
variable over a period of time. Sometimes the time interval is short, and sometimes
it may be rather extended. In any event, the measurement problem usually becomes
more complicated when the transient characteristics of a system need to be considered.
In this section we wish to discuss some of the more important characteristics and
parameters applicable to a measurement system under dynamic conditions.

ZEROTH-, FIRST-, AND SECOND-ORDER SYSTEMS

A system may be described in terms of a general variable x(f) written in differential
equation form as
L5 P b a® tagr = FO [2.5]
g T =1 g1 Mgy T = :
where F(¢) is some forcing function imposed on the system. The order of the system
is designated by the order of the differential equation.
A zeroth-order system would be governed by

apx = F(1) [2.6]

a first-order system by
dx

" + apx = F(1) [2.7]

aj
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and a second-order system by
d’x

dx
QZW + GIE + apx = F(9) [2.8]

We shall examine the behavior of these three types of systems to study some basic
concepts of dynamic response. We shall also give some concrete examples of physical
systems which exhibit the different orders of behavior.

The zeroth-order system described by Eq. (2.6) indicates that the system variable
x(#) will track the input forcing function instantly by some constant value: that is,

1
x = —F(1)
ap

The constant 1/ay is called the static sensitivity of the sytem. If a constant force were
applied to the beam mentioned above, the static deflection of the beam would be F/ay.
The first-order system described by Eq. (2.7) may be expressed as
d F(t
wdx _FO [2.9]
ap dt agp

The ratio a; /ap has the dimension of time and is usually called the time constant of the
system. If Eq. (2.9) is solved for the case of a sudden constant (step) input F(r) = A
at time zero, we express the condition as

Fi =0 atr =0

F=A fort >0

along with the initial condition
X = Xo atr =0

The solution to Eq. (2.9) is then

A AN .
x(H)=—+xg—— e [2.10]
ao ao
where, now, we set T = a; /ay. The steady-state response is the first term on the right,
or the value of x, which will be obtained for large values of time. The second term,
involving the exponential decay term, represents the transient response of the system.
Designating the steady-state value as X, Eq. (2.10) may be written in dimensionless

form as

x(f) — x
() 00267[/1—
X0 — Xoo

[2.11]

When ¢t = 7, the value of x(#) will have responded to 63.2 percent of the step input, so
the time constant is frequently called the time to achieve this value. The rise time is
the time required to achieve a response of 90 percent of the step input. This requires

et =0.1
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Figure 2.3 Capacity discharge through a resistance. (a) Schematic; (b) plot of voltage.

ort = 2.3037. Aresponse is usually assumed to be complete after 5t since 1 —e™> =

0.993.

Systems that exhibit first-order behavior usually involve storage and dissipation
capabilities such as an electric capacitor discharging through a resistor, as shown in
Fig. 2.3.

The voltage varies with time according to

E(t
E@ _ o [2.12]
Ey

In this system
T=RC

where R is the value of the external resistance and C is the capacitance. The voltage
across the capacitor as a function of time is E(¢), and the initial voltage is Ey. Some
types of thermal systems also display this same kind of response. The temperature of
a hot block of metal allowed to cool in a room varies with approximately the same
kind of relation as shown in Eq. (2.12).

For a thermal system we shall have analogous concepts of thermal capacity and
resistance. In the capacitance system we speak of voltage, in a thermal system we
speak of temperature, and in some mechanical systems we might speak of velocity
or displacement as the physical variables that change with time. The time constant
would then be related to the initial and steady-state values of these variables. A
plot of the voltage decay is shown in Fig. 2.3, illustrating the position of the time
constant.
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We could say that the term on the right-hand side of Eq. (2.11) represents the
error in achieving the steady-state value xo, = A/ay.
First-order systems may also be subjected to harmonic inputs. We may have

Initial condition:
X = Xo atr =0
F(t) = Asinwt fort >0

The solution to Eq. (2.9) is, then,

A/ao
[+ (@]
where T = aj/ay is the time constant as before. At this point we define the phase-shift
angle ¢ as

x(1) = Ce™ /" + sin(wt — tan~! wt) [2.13]

d(w) = —tan"! wr [2.14]

where ¢ is in radians. We see that the steady-state response [the last term of Eq. (2.13)]
lags by a time delay of
At = (@) [2.15]
1)
where w is the frequency of the input signal in rad/s. We may also see from the last
term of Eq. (2.13) that the steady-state amplitude response decreases with an increase
in input frequency through the term
1
[1+ (0?12

The net result is that a first-order system will respond to a harmonic input in a
harmonic fashion with the same frequency, but with a phase shift (time delay) and
reduced amplitude. The larger the time constant, the greater the phase lag and ampli-
tude decrease. In physical systems the constant @, is usually associated with storage
(electric or thermal capacitance) and the constant a is associated with dissipation
(electric or thermal resistance), so the most rapid response is obtained in systems of
low capacitance and high dissipation (low resistance). As an example, a small copper
bead (high conductivity, low resistance to heat flow) will cool faster than a large
ceramic body (high capacity, low conductivity).

In Chap. 8 we shall examine the response of thermal systems in terms of the sig-
nificant heat-transfer parameters and relate the response to temperature-measurement
applications.

21

STEP RESPONSE OF FIRST-ORDER SYSTEM. A certain thermometer has a time con-
stant of 15 s and an initial temperature of 20°C. It is suddenly exposed to a temperature of
100°C. Determine the rise time, that is, the time to attain 90 percent of the steady-state value,
and the temperature at this time.

Example 2.1
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The thermometer is a first-order system which will follow the behavior in Eq. (2.11). The
variable in this case is the temperature, and we have

To = 20°C = temperature at t = 0
T, = 100°C = temperature at steady state
T = 15 s = time constant

For the 90 percent rise time

e /" =0.1
d n©.1) = —
an =13
so that t=34.54s
Then, at this time Eq. (2.11) becomes
T() — 100
20— 100
and T(t) = 92°C

Example 2.2

PHASE LAG IN FIRST-ORDER SYSTEM.  Suppose the thermometer in Example (2.1)
was subjected to a very slow harmonic disturbance having a frequency of 0.01 Hz. The time
constant is still 15 s. What is the time delay in the response of the thermometer and how much
does the steady-state amplitude response decrease?

Solution

We have
w = 0.01 Hz = 0.06283 rad/s
T=15s

so that wt = (0.06283)(15) = 0.9425

From Eq. (2.14) the phase angle is

d(w) = —tan~'(0.9425)
= —43.3° = —0.756 rad

so that the time delay is

—0.756
ar=29 _ — 1203
w 0.06283
The amplitude response decreases according to
1 1
= =0.7277

[1 4+ (wp)?]/2  [14 (0.9425)2]'/2
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HARMONIC RESPONSE OF FIRST-ORDER SYSTEM. A first-order system experi- Example 2.3
ences a phase shift of —45° at a certain frequency w;. By what fraction has the amplitude
decreased from a frequency of one-half this value?

Solution
We have
d(w) = —45° = —tan Y (w7)
which requires that w; 7 = 1.0. The amplitude factor is thus
A/a() A
————— =0.707— a
[1+ D322 ao tel

The time constant T does not depend on frequency, so halving the frequency produces a value

of wt = 0.5, which gives an amplitude factor of
Alay A
———— =0.804— b
[1+(0.5)%]'/ ao b1

The value in Eq. (a) is 7.91 percent below this value.

Second-order systems described by Eq. (2.8) are those that have mass inertia or
electric inductance. There is no thermal analogy to inertia because of the second law of
thermodynamics. We shall illustrate second-order system behavior with a mechanical
example.

To initiate the discussion, let us consider a simple spring-mass damper system,
as shown in Fig. 2.4. We might consider this as a simple mechanical-measurement
system where x (¢) is the input displacement variable which acts through the spring-
mass damper arrangement to produce an output displacement x,(#). Both x; and x,
vary with time. Suppose we wish to find x; (), knowing x; (), m, k, and the damping
constant c. We assume that the damping force is proportional to velocity so that the
differential equation governing the system is obtained from Newton’s second law of
motion as

[2.16]

dx; dx; > d*x,

k(x) — - _ = )
(1 = x2) +C< dt dt "

Txl(t)

c ==

sz([)

Figure 2.4 Simple spring-mass damper system.
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Written in another form,

d2x2 d)CQ dxl
— — +kx,=c— +k 2.17
" +Cdt+x2 Cdt+x1 [ 1

Now, suppose that x; (¢) is the harmonic function
x1(t) = xgcoswt [2.18]

where x is the amplitude of the displacement and w, is the frequency.

We might imagine this simple vibrational system as being similar to a simple
spring scale. The mass of the scale is m, the spring inside the scale is represented by
the spring constant k, and whatever mechanical friction may be present is represented
by c¢. We are subjecting the scale to an oscillating-displacement function and wish to
know how the body of the scale will respond: that is, we want to know x, (). We might
imagine that the spring scale is shaken by hand. When the oscillation x () is very
slow, we would note that the scale body very nearly follows the applied oscillation.
When the frequency of the oscillation is increased, the scale body will react more
violently until, at a certain frequency called the natural frequency, the amplitude of
the displacement of the spring will take on its maximum value and could be greater
than the amplitude of the impressed oscillation x; (). The smaller the value of the
damping constant, the larger the maximum amplitude of the natural frequency. If
the impressed frequency is increased further, the amplitude of the displacement of
the spring body will decrease rather rapidly. The reader may conduct an experiment
to verify this behavior using a simple spring-mass system shaken by hand.

Clearly, the displacement function x,(#) depends on the frequency of the im-
pressed function x; (7). We say that the system responds differently depending on the
input frequency, and the overall behavior is designated as the frequency response of
the system.

A simple experiment with the spring-mass system will show that the displacement
of the mass is not in phase with the impressed displacement; that is, the maximum
displacement of the mass does not occur at the same time as the maximum displace-
ment of the impressed function. This phenomenon is described as phase shift. We
could solve Eq. (2.16) and determine the detailed characteristics of x, (), including
the frequency response and phase-shift behavior. However, we shall defer the solution
for this system until Chap. 11, where vibration measurements are discussed. At this
point in our discussion we have used this example because it is easy to visualize in a
physical sense. Now, we shall consider a practical application which involves a trans-
formation of a force-input function into a displacement function. We shall present
the solution to this problem because it shows very clearly the nature of frequency
response and phase shift in a second-order system, while emphasizing a practical
system that might be used for a transient force or pressure measurement.

This system is shown in Fig. 2.5. The forcing function

F(t) = Fycoswt [2.19]

is impressed on the spring-mass system, and we wish to determine the displacement
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T F(t) = F(cos wt

x(1)

Figure 2.5 Spring-mass damper system subjected to a force input.

of the mass x(#) as a function of time. The differential equation for the system is

x| A e R t [2.20]
m-—:- C— X = COoS w -
dr? dt 0 !

Equation (2.20) has the solution

o (Fo/ k) cos (@t — ¢)
([1 = @1/0n)P + [2(c/c) @1 /@) P}

[2.21]

_1 2(c/cc)(wi/wn)
1 — (wl/wn)2

k
w, =/ — [2.23]
m

ce =2 mk [2.24]

where ¢ = tan [2.22]

¢ is called the phase angle, w, is the natural frequency, and c, is called the critical
damping coefficient.

The ratio of output to input amplitude xy/(Fy/ k), where xg is the amplitude of
the motion given by

_ Fo/k
{[1 = (@1/@n)* + [2(c/co) (@1 /) P}/
is plotted in Fig. 2.6 to show the frequency response of the system, and the phase

angle ¢ is plotted in Fig. 2.7 to illustrate the phase-shift characteristics. From these
graphs we make the following observations:

Xo [2.25]

1. For low values of c¢/c, the amplitude is very nearly constant up to a frequency
ratio of about 0.3.

2. For large values of ¢/c. (overdamped systems) the amplitude is reduced substan-
tially.

3. The phase-shift characteristics are a strong function of the damping ratio for all
frequencies.

25
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Figure 2.7 Phase-shift characteristics of the system in Fig. 2.5.

We might say that the system has good linearity for low damping ratios and up to a
frequency ratio of 0.3 since the amplitude is essentially constant in this range.

The rise time for a second-order system is still defined as the time to attain a
value of 90 percent of a step input. It may be reduced by reducing the damping ratio
only for values of c¢/c. below about 0.7. In these cases a ringing phenomenon is



2.7 BASIC CONCEPTS IN DYNAMIC MEASUREMENTS

2 .
K] Step input
Time

3
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o Output response

——I '~ Rise time Time
Figure 2.8 Effect of rise time and ringing on output response to a step input.

experienced having a frequency of
o, = (1 = (¢/c)’]'? [2.26]

The rise time and ringing are illustrated in Fig. 2.8. The response time is usually stated
as the time for the system to settle to within £10 percent of the steady-state value.
The damping characteristics of a second-order system may be studied by examining
the solutions for Eq. (2.20) for the case of a step input instead of the harmonic forcing
function. With the initial conditions

x=0 atr =0

d 0 tt =20
_——= a =
dt
four solution forms may be obtained. Using the nomenclature
{=c/ce
and
X = X ast — 0o
we obtain:
For ¢ =0,
x(7)
=1 — cos(w,1) [2.27]
Xs
For0 < ¢ <1,
X(l) _ é- . 2¢1/2
T =1 —exp(—<¢wyt) x {{(1_42)1/2} sin[w,t(1 — ¢%)"/~]

+cos [w,t(1 — gz)l/z]} [2.28]

27
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For¢ =1,
x(1)
— =1 — (1 4+ w,?) exp(—wy?) [2.29]
Xs

For¢ > 1,

t K - K
& =1- §;_K x exp(—¢ + Kw,t) — £ x exp(—¢ — Kw,t) [2.301]
X

where K = (2 — 1)1/2.

We note that x; is the steady-state displacement obtained after a long period of
time. A plot of these equations is shown in Fig. 2.9a for several values of the damping
ratio. We observe that:

(a) Foranundamped system (¢ =0, { =0) the initial disturbance produces a harmonic
response which continues indefinitely.

(b) For an underdamped system (¢ < 1) the displacement response overshoots the
steady-state value initially, and then eventually decays to the value of x;. The
smaller the value of ¢, the larger the overshoot.

(c) For critical damping ({ =1, ¢ =c,) an exponential rise occurs to approach the
steady-state value without overshoot.

(d) For overdamping (¢ > 1) the system also approaches the steady-state value with-
out overshoot, but at a slower rate.

The damping action of Fig. 2.9a is shown over double the number of cycles in
the three-dimensional format of Fig. 2.9b. The latter format illustrates perhaps more
graphically the contrast between harmonic behavior for underdamped systems and
exponential approach to steady state for the overdamped situation.

While this brief discussion has been concerned with a simple mechanical system,
we may remark that similar frequency and phase-shift characteristics are exhibited
by electrical and thermal systems as well, and whenever time-varying measurements
are made, due consideration must be given to these characteristics. Ideally, we should
like to have a system with a linear frequency response over all ranges and with zero
phase shift, but this is never completely attainable, although a certain instrument
may be linear over a range of operation in which we are interested so that the be-
havior is good enough for the purposes intended. There are methods of providing
compensation for the adverse frequency-response characteristics of an instrument,
but these methods represent an extensive subject in themselves and cannot be dis-
cussed here. We shall have something to say about the dynamic characteristics of
specific instruments in subsequent chapters. For electrical systems and recording
of dynamic signals digital methods can eliminate most adverse frequency-response
problems.
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Example 2.4

SELECTION OF SECOND-ORDER SYSTEM.  Asecond-order system is to be subjected
to inputs below 75 Hz and is to operate with an amplitude response of 10 percent. Select
appropriate design parameters to accomplish this goal.

Solution

The problem statement implies that the amplitude ratio xok/F must remain between 0.9 and
1.10. There are many combinations of parameters which can be used. Examining Fig. 2.6, we
see that the curve for ¢/c, = 0.707 has a flat behavior and drops off at higher frequencies. If
we take the ordinate value of 1.0 as the mean value, then the maximum frequency limit will be
obtained from Eq. (2.25), where

1

0.9 =
{1 = (@1/@)* + [2(c/co) (@1 /wn) P2

This requires that

1 _ 0.696

Wy

We want to use the system up to 75 Hz = 471 rad/s so that the minimum value of w, is

. 471
wy (mln) = m = 677 rad/s

Example 2.5

RESPONSE OF PRESSURE TRANSDUCER. A certain pressure transducer has a natural
frequency of 5000 Hz and a damping ratio ¢/c. of 0.4. Estimate the resonance frequency and
amplitude response and phase shift at a frequency of 2000 Hz.

Solution
We have

w, = 5000 Hz
c/c. =04

From Fig. 2.6 we estimate that the maximum amplitude point for these conditions occurs at
2o
w}l
So, w; ~ (0.8)(5000) = 4000 Hz for resonance. At 2000 Hz we obtain
w2000

DT 04
o, 5000 0

which may be inserted into Eq. (2.23) to give the phase shift as
2)(0.4)(0.4
b ! | DO
1 —(0.4)?
= —20.9° = —0.364rad
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The amplitude ratio is obtained from Eq. (2.15) as
X0 _ 1
Fo/k — {[1 = (0.4 + [(2)(0.4)(0.4)]}/2
=1.112

The dynamic error in this case would be

1.112 -1 =0.112 = £11.2%
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RISE TIME FOR DIFFERENT NATURAL FREQUENCIES.  Determine the rise time for
a critically damped second-order system subjected to a step input when the natural frequency
of the system is (a) 10 Hz, (b) 100 kHz, (c) 50 MHz.

Solution
We have the natural frequencies of

w, = 10 Hz = 62.832 rad/s
w, = 100 kHz = 6.2832 x 10° rad/s
w, = 50 MHz = 3.1416 x 10°® rad/s

For a critically damped system subjected to a step input, { = ¢/c, = 1.0 and Eq. (2.29) applies
x(O)/xs =1 — (1 + wu1) exp(—w,1) Lal
The rise time is obtained when x(¢)/x, = 0.9 so that Eq. (a) becomes
0.1 = (1 + w, 1) exp(—w,1) [b]
which has the solution
w,t = 3.8901
Solving for the rise time at each of the given natural frequencies

tise = 3.8901/w,
tion, = 0.06191s
tioo ki, = 6.191 s

tso maz = 0.01238 s

Example 2.6

2.8 SYSTEM RESPONSE

We have already discussed the meaning of frequency response and observed that in
order for a system to have good response, it must treat all frequencies the same within
the range of application so that the ratio of output-to-input amplitude remains the
same over the frequency range desired. We say that the system has linear frequency
response if it follows this behavior.
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Amplitude response pertains to the ability of the system to react in a linear way to
various input amplitudes. In order for the system to have linear amplitude response,
the ratio of output-to-input amplitude should remain constant over some specified
range of input amplitudes. When this linear range is exceeded, the system is said to
be overdriven, as in the case of a voltage amplifier where too high an input voltage is
used. Overdriving may occur with both analog and digital systems.

We have already noted the significance of phase-shift response and its relation to
frequency response. Phase shift is particularly important where complex waveforms
are concerned because severe distortion may result if the system has poor phase-shift
response.

2.9 DISTORTION

Suppose a harmonic function of a complicated nature, that is, composed of many
frequencies, is transmitted through the mechanical system of Figs. 2.4 and 2.5. If
the frequency spectrum of the incoming waveform were sufficiently broad, there
would be different amplitude and phase-shift characteristics for each of the input-
frequency components, and the output waveform might bear little resemblance to
the input. Thus, as a result of the frequency-response characteristics of the system,
distortion in the waveform would be experienced. Distortion is a very general term
that may be used to describe the variation of a signal from its true form. Depend-
ing on the system, the distortion may result from either poor frequency response or
poor phase-shift response. In electronic devices various circuits are employed to re-
duce distortion to very small values. For pure electrical measurements distortion is
easily controlled by analog or digital means. For mechanical systems the dynamic
response characteristics are not as easily controlled and remain a subject for further
development. For example, the process of sound recording may involve very so-
phisticated methods to eliminate distortion in the electronic signal processing; how-
ever at the origin of the recording process, complex room acoustics and microphone
placement can alter the reproduction process beyond the capabilities of electronic
correction. Finally, at the terminal stage, the loudspeaker and its interaction with
the room acoustics can introduce distortions and unwanted effects. The effects of
poor frequency and phase-shift response on a complex waveform are illustrated in
Fig. 2.10.

2.10 IMPEDANCE MATCHING

In many experimental setups it is necessary to connect various items of electrical
equipment in order to perform the overall measurement objective. When connections
are made between electrical devices, proper care must be taken to avoid impedance
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I
= === Phase distorted
= = Frequency distorted

True signal

Signal amplitude

~,
0 60 120 180 240 300 360
Harmonic angle, deg
Figure 2.10 Effects of frequency response and phase-shift response on complex

waveform.

mismatching. The input impedance of a two-terminal device may be illustrated as
in Fig. 2.11. The device behaves as if the internal resistance R; were connected in
series with the internal voltage source E. The connecting terminals for the instrument
are designated as A and B, and the open-circuit voltage presented at these terminals
is the internal voltage E. Now, if an external load R is connected to the device and
the internal voltage E remains constant, the voltage presented at the output terminals
A and B will be dependent on the value of R. The potential presented at the output

Load
r——=—1
T [T i
o

Figure 2.11 Two-terminal device with internal impedance R;.
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terminals is
R
R+ R;

The larger the value of R, the more closely the terminal voltage approaches the in-
ternal voltage E. Thus, if the device is used as a voltage source with some internal
impedance, the external impedance (or load) should be large enough that the volt-
age is essentially preserved at the terminals. Or, if we wish to measure the internal
voltage E, the impedance of the measuring device connected to the terminals should
be large compared with the internal impedance.

Now, suppose that we wish to deliver power from the device to the external
load R. The power is given by

Eap=FE [2.31]

Eis
R

We ask for the value of the external load that will give the maximum power for a
constant internal voltage E and internal impedance R;. Equation (2.32) is rewritten

P= [2.32]

E2( R Y
P=— [2.33]
R \R+R;
and the maximizing condition
b =0 [2.34]
dR )
is applied. There results
R =R, [2.35]

That is, the maximum amount of power may be drawn from the device when the
impedance of the external load just matches the internal impedance. This is the es-
sential principle of impedance matching in electric circuits.

Example 2.7

POWER SUPPLY. A power supply has an internal impedance of 10 €2 and an internal
voltage of 50 V. Calculate the power which will be delivered to external loads of 5 and 20 €.

Solution
For this problem we apply Eq. (2.33) with E =50V, R; = 10 ©, and R = 5 or 20 2.

) 2
R=5Q: P= (59) (5> =55.55W

5 \15
502 (15"

R=1sa: p=O0 (1) _cow
15 \25

For maximum power delivery R = R; and

Prax = 62.5W
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Clearly, the internal impedance and external load of a complicated electronic
device may contain inductive and capacitative components that will be important
in alternating current transmission and dissipation. Nevertheless, the basic idea is
the same. The general principles of matching, then, are that the external impedance
should match the internal impedance for maximum energy transmission (minimum
attenuation), and the external impedance should be large compared with the inter-
nal impedance when a measurement of internal voltage of the device is desired. It
is this latter principle that makes an electronic voltmeter essential for measurement
of voltages in electronic circuits. The electronic voltmeter has a very high internal
impedance so that little current is drawn and the voltage presented to the terminals of
the instrument is not altered appreciably by the measurement process. Many such
voltmeters today operate on digital principles but all have the capacity of very
high-input impedance.

Impedance-matching problems are usually encountered in electrical systems
but can be important in mechanical systems as well. We might imagine the simple
spring-mass system of the previous section as a mechanical transmission system.
From the curves describing the system behavior it is seen that frequencies below a
certain value are transmitted through the system; that is, the force is converted to
displacement with little attenuation. Near the natural frequency undesirable ampli-
fication of the signal is performed, and above this frequency severe attenuation is
present. We might say that this system exhibits a behavior characteristic of a vari-
able impedance that is frequency-dependent. When it is desired to transmit mechan-
ical motion through a system, the natural-frequency and dampling characteristics
must be taken into account so that good “matching” is present. The problem is an
impedance-matching situation, although it is usually treated as a subject in mechanical
vibrations.
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In the early 19th century Joseph Fourier introduced the notion that a piecewise con-
tinuous function that is periodic may be represented by a series of sine and cosine
functions [19]. Thus

y(x) = ap + a,cos x + acos 2x + - - - + a,Ccos nx
+b;sin x + bysin 2x + - - - + b,sin nx

or, more compactly,

o0
y(x) =ap + Z(ancos nx + b,sin nx) [2.36]

n=1

The values of the constants ay, a,, and b,, may be determined by integrating Eq. (2.36)
over the period from —7m < x < 7.
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First,

/ y(x)dx = 2mag + 0+ 0 = 2may
-7

since the integrals of the sine and cosine functions over the interval — to 7 are both
zero. We thus have,

ap = (1/27t)/ y(x)dx [2.37]

To determine b, we multiply both sides of Eq. (2.36) by sin mx where m is an integer
that may or may not be equal to the summation index n. We have

T
/ sin mxdx =0

'

T
/ cos nxsin mxdx = 0 form =n

—7T
T
/ bnsinznxdx = b, form =n
-7

so that,
T
b, = (1/7r)/ y(x)sin nxdx [2.38]
—IT

In a similar manner, we can determine the coefficients a, by multiplying Eq. (2.36)
by cos mx and integrating over the interval. This results in

a, = (1/71)/ y(x)cos nx dx [2.39]

Note that when y(x) is an even function, that is, f(x) = f(—x), the function is
represented by cosines alone, and if the function is odd, that is, f(x) = — f(—x), itis
represented by sines alone. If the function is neither even nor odd, all terms must be
employed.

The interval for expansion of the function may be expressed in a more general
sense by making a variable substitution. Let

u = (mw/L)x [2.40]
Then the coefficients a, and b,, become
L
a, = (1/L)/ y(x) cos (nmx/L) dx [2.41]
—L
L
b, = (1/L)/ y(x) sin (nx/L) dx [2.42]
—L

L
ap = (1/2L)/ y(x) dx [2.43]
-L
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If the function repeats over a period T, then L becomes the half period. The Fourier
representation may be further generalized by replacing the integral limits in Egs.
(2.41), (2.42), (2.43) by p and p 4+ T where p is an arbitrary value for the start of the
repeating function. Of course, one may just consider that a single sample is taken and
obtain the function over the range 7.

Fourier series representations of functions are useful in experimental measure-
ments in those applications where oscillatory phenomena are observed, as for the
vibrating spring mass of Fig. 2.4, in a resonant electric circuit, or in applications
concerned with propagation of sound waves and their absorption. The measurement
that is usually made is one of the amplitude of vibration as a function of time. The
independent variable in the Fourier series would then be time. We may rearrange the
Fourier series in terms of a circular frequency w related to the period T through

w=2r/T =2nf [2.44]

where w is expressed in radian/sec and f is expressed in cycles/sec or Hertz.

The summation index 7 is then said to determine the harmonics of the wave:
n = 1 represents the fundamental value or the lowest frequency, n = 2 the second
harmonic, n = 3 the third harmonic, and so on.

We may also introduce the concept of the phase angle presented in Eq. (2.14) to
combine the sine and cosine terms into the following form

oo
y(t) = ag + Z(a,, cos nwt + b, sin nwt)

n=1

o0
=ay+ Y _ C,cos (nwt — ¢,) [2.45]

n=1

where the new constant C,, is determined from
Cp=(a’+b>"? [2.46]
and the phase angle is determined from
tan ¢, = b, /a, [2.47]

If one were to apply Eqgs. (2.41), (2.42), and (2.43) for the constants ay, a,, and b, to
the trigonometric function

y(x) = 3.5+ 2 sin x 4+ 6.3 cox 5x

the simple result

ap = 3.5

a, =2forn =1
=0forn #1

b, =63forn=>5
=0forn #5

would be obtained.
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y(x) y(x) y(x)
A
A
A
x x X
w w w
(a) (b) ()
Figure 2.12 (a) Square wave function. (b) Sawtooth function. (c) Ramp function.

Now let us consider three waveforms as examples of Fourier series. In Fig. 2.12
we have (a) a square wave of amplitude A and width W, (b) a sawtooth wave of
amplitude A and width W, and (c) a ramp function having amplitude A and duration
W. In an experiment the amplitude might be displacement in a mechanical system,
voltage in an electric circuit, or sound pressure level in an acoustic system. The
duration of the wave would be some unit of time.

The square wave is described by

yx)=AforO<x < W [2.48]
=0forx <0
=0forx>W

Later we will substitute wf for the displacement function x. This is an odd function so
we expect only sine terms in the series. Inserting the constant amplitude in Eq. (2.42)
we obtain

b, = 2A/nm)[1 — cos(nmx/ W)] [2.49]
which reduces to
b, =4A/nmw  forn = odd [2.50]
=0 for n = even

The final series representation for the square wave is thus

o0
Y@ = QA/m) > AI(=1)"*" + 11/n}sin(nmx/ W) [2.51]
n=1
This series may be summed as indicated or an alternate index, which automatically
leaves out the zero terms, may be used to obtain

o0
y(x) = (4A/m) Y [sin@N — Dmx/ W1/ 2N — 1) [2.52]
N=1
Note that the index n, and not N, represents the harmonics: n = 1 (N = 1) represents
the fundamental, n = 3 (N = 2) represents the third harmonic, n = S(N = 3)
represents the fifth harmonic, and so on.
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Figure 2.13 shows the summation represented by Eq. (2.52) for N = 1to 50 (n =
1t0 99). In Fig. 2.13a the lines become quite cluttered, but are shown more clearly in
Fig. 2.13b. A three-dimensional diagram is shown in Fig. 2.13¢ that illustrates how

the bumps in the square wave are smoothed out as the number of terms in the series
is increased.

Now, let us examine the other two cases in Fig. 2.12.
The sawtooth wave is described by

yx) = A/ Wyx for0 < x < W/2 [2.53d]

=—QA/Wx+2A for W2 <x<W [2.53b]
Applying Eq. (2.43) for the Fourier coefficient aq as before gives

w w
ay = (4/W)/ (2A/ W)xdx +/ [(=2A/W)x + 2Aldx = A/2 [2.54]
0 0

1.4

Y(x)IA

0.4
0.2
O T T T T T T T T T T 1
0 01 02 03 04 05 06 07 08 09 1
xIW
(a)
Figure 2.13 (a) Square wave for n = 1 to 99; (b) Square wave for five values of

index n; (c) Three-dimensional view of square wave Fourier series.
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Figure 2.13 (Continued)
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Using Eq. (2.41) for a, and Eq. (2.42) for b, results in

a, = (2A/n27r2)(cos nw—1) [2.55]
= 0 for n even
= —(4A/n*7%) for n odd [2.56]
and
b, =0

Making the same index substitution as before to automatically omit the zero terms
gives for the final series

y(x) = A/2 — (4A/7%) Z cos[2N — 1)2nx/W]/(2N — 1)*>  [2.57]

N=1
For the ramp function shown in Fig. 2.13¢ the Fourier series becomes

Y0 = QA/m) Yy (=) [sin(umx/ W)1/n [2.58]

n=1

The index # in this series does represent the harmonics. Equations (2.57) and (2.58)
are plotted in Figs. 2.14 and 2.15.

1.2
1
0.8
= / \
= 0.6
<
0.4 / \
0.2
0 T T T T T T T T T
0 01 02 03 04 05 06 07 08 09 1
xIW
(a)
Figure 2.14 (a) Fourier representation for Sawtooth for n = 1 to 30;

(b) Three-dimensional representation for sawtooth n = 1 to 30.
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Figure 2.14 (Continued)

THE DECIBEL

As we shall see in later sections, one is frequently interested in the value of a cer-
tain parameter as related to a reference value of that parameter. The electric power
dissipated in a resistor is

P=E?/R



43

FOURIER ANALYSIS

2.11

(a) Ramp function; (b) Three-dimensional representation of ramp function.

Figure 2.15
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The decibel is defined in terms of some reference Power Pt as
decibel = dB = 101°g(P/Pref) [2.59]
In terms of the voltage the decibel level would be
dB = 20log(E/Eef) [2.60]

since the power varies as the square of the voltage.

If we identify the square wave of Fig. 2.13 with a voltage pulse and the Fourier
series as arepresentation of that pulse over a certain frequency range, we could express
the accuracy of the representation in terms of decibel units by choosing the reference
value as [y(x)]ef = 1.0. Then the decibel response would appear as in Fig. 2.16. We
could say that the square wave is faithfully reproduced within

40.4 dB for a frequency response up to the 99th harmonic
40.6 dB for a frequency response up to the 59th harmonic
+1.4 dB for a frequency response up to the 19th harmonic
+4.1 dB for a frequency response up to the 9th harmonic.

All of these values are within the range 0.02 < x/ W < 0.98.

This means that an electronic amplifier to reproduce step or square wave pulse
functions must have frequency-response capabilities that far exceed the fundamental
frequency of the basic wave.

2
) X e @ KXV =50
¢ o 4— n=99
+— n=19
24
r“\g “— n=9
g 4
0
o
=
=6 A
<)
=
8 4
-12 T T T T
0 0.2 0.4 0.6 0.8 1

xIW

Figure 2.16 Decibel representation of square wave.
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THE FOURIER TRANSFORM

We have already noted that a Fourier series representation of a function breaks down
the function into harmonic components. For the case of the square wave the Fourier
coefficients are shown in Fig. 2.17 as a function of the harmonic index n. Thus, an os-
cillatory displacement behavior of a spring-mass damper system could be represented
as a summation of frequency components. Or, we might say that the physical represen-
tation in the displacement-time domain could be transformed into a frequency-time
domain through the use of Fourier series.

In practice, a signal may be sampled in discrete time increments At and stored
in a digital computer. If N increments in Af are taken over the signal, the period T
becomes

T = NAt

To evaluate the integrals in Eqs. (2.41), (2.42), and (2.43) the integration must be
performed numerically.
The signal is y(#;) where k is a new index indicating the time increment so that

tr =kAtfork=1,2,---,N [2.611]
14
1.2 -
1 .
I 08 |
~
0.6
0.4 4
0.2 4
0 , . , ssssssssssssasss
0 10 20 30 40 50
N=m+1)2

Figure 2.17 Fourier coefficients for square wave.
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The Fourier coefficients thus are expressed in terms of summations instead of
integrals to give

N
a, = (2/N) Z y(kAf)cos(2mkn/N) forn =0to N/2 [2.62]
k=1

N
by = (2/N) Y y(kApsinQ2mkn/N) forn=1t0N/2—1 [2.63]
k=1
where N, the number of time increments, is selected as an even number.

The coefficient a, is obtained by performing a numerical integration of the dis-
crete function by the most appropriate method. (See Sect. 5.8.)

The operations performed in the foregoing summations are called a Discrete
Fourier transform (DFT) and may be performed either with separate software pack-
ages or with built-in computation algorithms in the particular device employed for
the data collection. Hardware dedicated to specific applications may have integrated
circuits that output information in the exact format needed by the user.

As the number of samples increases, the number of computations required for
the discrete Fourier transform increases by N2. The fast Fourier transform (FFT)
employs a special algorithm to speed the calculation for large data samples so that the
number of computations varies as N log, N instead of N2. For samples with N about
1000 the FFT is about 100 times faster than the DFT scheme. The reader may consult
Refs. [19], [20], [21] for further information on the development of the DFT and FFT,
and Ref. [22] for specific calculation techniques and examples. In Sect. 14.5 we shall
see that it is necessary to sample at a frequency at least twice the anticipated frequency
content of the signal to avoid the problem of aliasing. The highest frequency that may
be resolved is called the Nyquist frequency and is given by

fayg = fo/2 = 1/2At [2.64]

where f; is the sampling frequency and At, as before, is the sampling time increment.

2.12 EXPERIMENT PLANNING

The key to success in experimental work is to ask continually: What am I looking for?
Why am I measuring this—does the measurement really answer any of my questions?
What does the measurement tell me? These questions may seem rather elementary,
but they should be asked frequently throughout the progress of any experimental
program. Some particular questions that should be asked in the initial phases of
experiment planning are:

1. What primary variables shall be investigated?

2. What control must be exerted on the experiment?

3. What ranges of the primary variables will be necessary to describe the phenom-
ena under study?
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4. How many data points should be taken in the various ranges of operation to
ensure good sampling of data considering instrument accuracy and other factors?
(See Chap. 3.)

5. What instrument accuracy is required for each measurement?

6. If a dynamic measurement is involved, what frequency response must the in-
struments have?

7. Are the instruments available commercially, or must they be constructed espe-
cially for the particular experiment?

8. What safety precautions are necessary if some kind of hazardous operation is
involved in the experiment?

9. What financial resources are available to perform the experiment, and how do
the various instrument requirements fit into the proposed budget?

10. What provisions have been made for recording the data?

11. What provisions have been made for either on-line or subsequent computer
reduction of data?

12. If the data reduction is not of a “research” nature where manipulation and calcu-
lations depend somewhat on the results of measurements, what provisions are
made to have direct output of a data acquisition system available for the final
report? In many cases appropriate graphical results may be obtained with digital
data acquisition systems as the experiment progresses or shortly thereafter.

The importance of control in any experiment should always be recognized. The
physical principle, apparatus, or device under investigation will dictate the variables
which must be controlled carefully. For example, a heat-transfer test of a particu-
lar apparatus might involve some heat loss to the surrounding air in the laboratory
where the test equipment is located. Consequently, it would be wise to maintain (con-
trol) the surrounding temperature at a reasonably constant value. If one run is made
with the room temperature at 90°C and another at 50°F, large unwanted effects may
occur in the measurements. Or, suppose a test is to be made of the effect of cigarette
smoke on the eating habits of mice. Clearly, we would want to control the con-
centration of smoke inhaled by the mice and also observe another group of mice
which were not exposed to cigarette smoke at all. All other environmental variables
should be the same if we are to establish the effect of the cigarette smoke on eating
habits.

In the case of the heat-transfer test we make a series of measurements of the char-
acteristics of a device under certain specified operating conditions—no comparison
with other devices is made. For the smoke test with mice it is necessary to measure the
performance of the mice under specified conditions and also to compare this perfor-
mance with the performance of another group under different controlled conditions.
For the heat-transfer test we establish an absolute measurement of performance, but
for the mice a relative performance is all that can be ascertained. We have chosen
two diverse examples of absolute and relative experiments, but the lesson is clear.
Whenever a comparison test is performed to establish relative performance, control
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must be exerted over more than one experimental setup in order for the comparison
to be significant.

It would seem obvious that very careful provisions should be made to record the
data and all ideas and observations concerned with the experiment. Yet, many experi-
menters record data and important sketches on pieces of scratch paper or in such a dis-
organized manner that they may be lost or thrown away. In some experiments the read-
out instrument is a recording type so that a record is automatically obtained and there
is little chance for loss. For many experiments, however, visual observations must be
made and values recorded on an appropriate data sheet. This data sheet should be very
carefully planned so that it may subsequently be used, if desired, for data reduction.
Frequently, much time may be saved in the reduction process by eliminating unnec-
essary transferal of data from one sheet to another. If a computer is to be used for data
reduction, then the primary data sheet should be so designed that the data may be eas-
ily transferred to the input device of the computer. Even with digital readout systems
the printout must be carefully labeled, either in the machine programming or by hand.

A bound notebook should be maintained to record sketches and significant
observations of an unusual character which may occur during both the planning
and the execution stages of the experiment. The notebook is also used for recording
thoughts and observations of a theoretical nature as the experiment progresses. Upon
the completion of the experimental program the well-kept notebook forms a clear and
sequential record of the experiment planning, observations during the experiment,
and, where applicable, correspondence of important observations with theoretical
predictions. Every experimenter should get into the habit of keeping a good notebook.
In some cases the output of various instrument transducers will be fed directly to
a data acquisition system and computer which processes the data and furnishes a
printed output of the desired results. Then, the notebook becomes the repository of
important sketches and listings of computer programs, as well as documentation which
may be needed later to analyze the data or repeat the experiment. Sample printouts
or computer-generated graphs may be taped in the notebook along with program
documentation.

For those engineers conducting tests or experiments that are an essential part of
product development, which may lead to patent application, the bound notebook is
an essential legal element in the documentation that may be required in securing and
defending the patent. The well-documented bound notebook is an obvious advantage
to the person(s) who may be called upon to continue the work. One may suggest that
computer records and documentation substitute for the notebook and offer the ability
for rapid transfer of information to other interested parties. For confidential informa-
tion the need for stringent security measures in any electronic transmission is obvious.

As a summary of our remarks on experimental planning we present the gen-
eralized experimental procedure given in Table 2.8. This procedure is, of course, a
flexible one, and the reader should consider the importance of each item in relation
to the entire experimental program. Notice particularly item la. The engineer should
give careful thought to the need for the experiment. Perhaps after some sober thinking
the engineer will decide that a previously planned experiment is really not necessary
at all and that the desired information could be found from an analytical study or from



2.12 EXPERIMENT PLANNING

Table 2.8 Generalized experimental procedure

1. a. Establish the need for the experiment.

b. Establish the optimum budgetary, manpower, and time requirements, including time
sequencing of the project. Modify scope of the experiment to actual budget, manpower, and
time schedule which are allowable.

2. Begin detail planning for the experiment; clearly establish objectives of experiment (verify
performance of production model, verify theoretical analysis of particular physical
phenomenon, etc.). If experiments are similar to those of previous investigators, be sure to
make use of experience of the previous workers. Never overlook the possibility that the work
may have been done before and reported in the literature.

3. Continue planning by performing the following steps:

a. Establish the primary variables which must be measured (force, strain, flow, pressure,
temperature, etc.).

b. Determine as nearly as possible the accuracy which may be required in the primary
measurements and the number of such measurements which will be required for proper data
analysis.

c. Set up date reduction calculations before conducting the experiments to be sure that
adequate data are being collected to meet the objectives of the experiment.

d. Analyze the possible errors in the anticipated results before the experiments are conducted
so that modifications in accuracy requirements on the various measurements may be
changed if necessary.

4. Select instrumentation for the various measurements to match the anticipated accuracy
requirements. Modify the instrumentation to match budgetary limitations if necessary.

5. Collect a few data points and conduct a preliminary analysis of these data to be sure that the
experiment is going as planned.

6. Modify the experimental apparatus and/or procedure in accordance with the findings in item 5.

. Collect the bulk of experimental data and analyze the results.

8. Organize, discuss, and publish the findings and results of the experiments, being sure to include
information pertaining to all items 1 to 7, above.

=

the results of experiments already conducted. Do not take this item lightly. A great
amount of money is wasted by individuals who rush into a program only to discover
later that the experiments were unnecessary for their own particular purposes.

THE ROLE OF UNCERTAINTY ANALYSIS
IN EXPERIMENT PLANNING

Items 3b and d in Table 2.8 note the need to perform preliminary analyses of experi-
mental uncertainties in order to effect a proper selection of instruments and to design
the apparatus to meet the overall goals of the experiment. These items are worthy of
further amplification.

Recall our previous comments about the terms accuracy, error, and uncertainty.
We noted that many persons use the term “error” when “uncertainty” is the proper
nomenclature. As promised before, we shall clarify this matter in Chap. 3.

In Chap. 3 we shall see how one goes about estimating uncertainty in an ex-
perimental measurement. For now, let us consider how these estimates can aid our
experiment planning. It is clear that certain variables we wish to measure are set by
the particular experimental objectives, but there may be several choices open in the
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method we use to measure these variables. An electric-power measurement could be
performed by measuring current and voltage and taking the product of these variables.
The power might also be calculated by measuring the voltage drop across a known re-
sistor, or possibly through some calorimetric determination of the heat dissipated from
a resistor. The choice of the method used can be made on the basis of an uncertainty
analysis, which indicates the relative accuracy of each method. A flow measurement
might be performed by sensing the pressure drop across an obstruction meter, or possi-
bly by counting the number of revolutions of a turbine placed in the flow (see Chap. 7).
In the first case the overall uncertainty depends on the accuracy of a measurement of
pressure differential and other variables, such as flow area, while in the second case
the overall uncertainty depends on the accuracy of counting and a time determination.

The point is that a careful uncertainty analysis during the experiment planning
period may enable the investigator to make a better selection of instruments for the
program. Briefly, then, an uncertainty analysis enters into the planning phase with the
following approximate steps:

1. Several alternative measurement techniques are selected once the variables to
be measured have been established.

2. An uncertainty analysis is performed on each measurement technique, taking
into account the estimated accuracies of the instruments that will actually be
used.

3. The different measurement techniques are then compared on the basis of cost,
availability of instrumentation, ease of data collection, and calculated uncer-
tainty. The technique with the least uncertainty is clearly the most desirable
from an experimental-accuracy standpoint, but it may be too expensive. Fre-
quently, however, the investigator will find the cost is not a strong factor and
that the technique with the smallest uncertainty (within reason) is as easy to
perform as some other less accurate method.

Figure 2.18 divides the procedure of Table 2.8 into a graphical pattern of pre-
liminary, intermediate, and final stages of an experimental program. The feedback
blocks in these diagrams are very important because they illustrate the need to retrace
continuously one’s steps and modify the program in accordance with the most current
information that is available.

In Chap. 16 we will return to the notions of experiment planning by examining
a reasonable design protocol for experiments. This procedure will build upon the
information pertaining to uncertainty analysis contained in Chap. 3, which we have
already mentioned several times, as well as specific measurement techniques which
will be explored in other chapters.

2.13 REVIEW QUESTIONS

2.1. What is meant by sensitivity; accuracy; precision?
2.2. Why is instrument calibration necessary?
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Figure 2.18 (a) Preliminary stages of experiment planning; (b) intermediate stages of
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2.3.
24.
2.5.
2.6.
2.7.

2.8.

2.9.

2.10.

2.11.
2.12.
2.13.
2.14.

Why are standards necessary?

What is meant by frequency response?
Describe the meaning of phase shift.
Define time constant.

What kind of impedance matching is desired for (¢) maximum power trans-
mission and (b) minimum influence on the output of the system?

Why is a literature survey important in the preliminary stages of experiment
planning?

Why is an uncertainty analysis important in the preliminary stages of experi-
ment planning?

How can an uncertainty analysis help to reduce overall experimental uncer-
tainty?

What is rise time?

What is meant by zeroth-, first-, and second-order systems?

What is meant by steady-state response?

What factors influence the time constant in first-order systems?

2.14 PROBLEMS

2.1. Consider an ordinary mercury-in-glass thermometer as a measurement system

and indicate which parts of the thermometer correspond to the boxes in the
diagram of Fig. 2.2.
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24.

2.5.

2.6.

2.7.

2.8.

2.9.

2.10.

2.11.

2.12.

2.13.

2.14.

2.15.

2.14 PROBLEMS

A thermometer is used for the range of 200 to 400°F, and it is stated that its
accuracy is one-quarter of 1 percent. What does this mean in terms of temperature?

A sinusoidal forcing function is impressed on the system in Fig. 2.5. The natural
frequency is 100 Hz, and the damping ratio c/c, is 0.7. Calculate the amplitude
ratio and time lag of the system for an input frequency of 40 Hz. (The time lag is
the time interval between the maximum force input and maximum displacement
output.)

For a natural frequency of 100 Hz and a damping ratio of 0.7, compute the input-
frequency range for which the system in Fig. 2.5 will have an amplitude ratio of
1.00 £ 0.01.

A thermometer is initially at a temperature of 70°F and is suddenly placed in a
liquid which is maintained at 300°F. The thermometer indicates 200 and 270°F
after time intervals of 3 and 5 s, respectively. Estimate the time constant for the
thermometer.

Plot the power output of the circuit in Fig. 2.11 as a function of R/R;. Assume R;
and E as constants and show the plot in dimensionless form; that is, use PR;/E 2
as the ordinate for the curve.

A steel scale is graduated in increments of % in. What is the readability and least
count of such a scale?

A 10-uF capacitor is charged to a potential of 100 V. At time zero it is discharged
through a 1-M€2 resistor. What is the time constant for this sytem?

The two-terminal device shown in Fig. 2.11 has an internal resistance of 5000 2.
A meter with an impedance of 20,000 €2 is connected to the output to perform a
voltage measurement. What is the percent error in determination of the internal
voltage?

The device in Prob. 2.9 has an internal voltage of 100 V. Calculate the power
output for the loading conditions indicated. What would be the maximum power
output? What power output would result for a load resistance of 1000 ©?

A 2-g mass is suspended from a simple spring. The deflection caused by this mass
is 0.5 cm. What is the natural frequency of the system?

A 10-1bm turntable is placed on rubber supports such that a deflection of 0.25 in
results from the weight. Calculate the natural frequency of such a system.

A resistance-capacitance system is to be designed with a time constant of 1 ms.
Specify several combinations of R and C to accomplish this, and based on com-
mercially available items, obtain the cost of each combination.

What is the minimum amplitude reduction to be expected for the system in Prob.
2.12 for frequencies greater than 20, 40, and 60 Hz?

A small tank contains 10 liters of water at 20°C which is allowed to discharge
from an opening in the side at the initial rate of 6 liters/h. The discharge rate is
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2.16.

2.17.

2.18.

2.19.

2.20.
2.21.

2.22.

2.23.

2.24.

2.25.

2.26.

2.27.
2.28.
2.29.

2.30.

2.31.

2.32.

directly proportional to the volume of water remaining in the tank. Calculate an
equivalent time constant for this system.

Pressure is measured in units of 1bf/in? in the English system of units. Derive
factors to convert to units of N/m? (Pa) and kilopond/cmz.

One gallon equals 231 in®. Derive a conversion factor to convert automobile fuel
economy from mi/gal to km/liter.

A unit for viscosity in the English system is Ibf - s/ft>. Determine a factor to
convert this to kg/m - s.

A unit for specific heat in the SI system is kJ/kg - °C. Derive a factor to convert
this to Btu/Ibm - °F, and to kcal/g - °C.

Derive a factor to convert density from g/m? to slugs/ft*.

An English unit for thermal conductivity is Btu/h - ft - °F. Derive a factor to
convert to ergs/cm - °C.

A unit of kinematic viscosity in the metric system is the Stoke (St), defined as
1.0 cm?/s. Derive a factor to convert to ft>/s.

The SI unit for heat generation is W/m?3. Derive a factor to convert to Btu/h -
ft3.

A unit for dynamic viscosity in the metric system is the poise (P) = 1.0 dyn -
s/cm?. Derive a factor to convert to Ibm/h - ft.

Heat flux may be expressed in units of W/cm?. Derive a factor to convert to
Btu/h - ft2.

The universal gas constant has a value of 1545 ft - 1bf/lbm mol - °R. By applying
appropriate conversion factors, obtain its value in SI units.

Derive a factor to convert volume flow rate from cm?/s to gal/min.
How do you convert degrees Kelvin to degrees Rankine?

A thermometer has a time constant of 10 s and behaves as a first-order system. It
is initially at a temperature 30°C and then suddenly subjected to a surrounding
temperature of 120°C. Calculate the 90 percent rise time and the time to attain
99 percent of the steady-state temperature.

The thermometer in Prob. 2.29 is subjected to a harmonic temperature variation
having an amplitude of 20°C and a frequency of 0.01 Hz. Determine the phase
lag of the thermometer and the amplitude attenuation. The time constant is still
taken as 10 s.

A pressure transducer operates as a second-order system having a natural fre-
quency of 10,000 Hz. For damping ratios c¢/c. of 0.3 and 0.4, determine the
resonance frequencies.

For the transducer in Prob. 2.31, determine the amplitude response and dynamic
error for frequencies of 2000 and 4000 Hz. Also, determine the phase lag for
these frequencies.
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2.39.

2.40.

2.41.

2.42.

2.43.

2.44.
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2.14 PROBLEMS

A second-order system is to be designed for damping the amplitude response
by 40 percent for input frequencies from 10 to 50 Hz. Select suitable natural
frequencies and damping ratios c/c. to accomplish this objective.

A first-order system has a phase shift of —50° at a certain frequency. What will
be the phase lag at a frequency of twice this value? What will be the relative
amplitude responses at the two frequencies?

Afirst-order system is subjected to a harmonic input of 3 Hz. The system has a time
constant of 0.5 s. Calculate the error of the amplitude response and the phase lag.

A thermometer acting as a first-order system is initially at a temperature of 35°C
and is then suddenly subjected to a temperature of 110°C. After 8 s the ther-
mometer indicates a temperature of 75°C. Calculate the time constant and the
90 percent rise time for the thermometer.

A first-order system has a time constant of 0.05 s. Over what frequency range
will the amplitude response be within 10 percent?

A force transducer is connected such that the output registers a static sensitivity
of 1.0 V/kgf input. What is the output for a force input of 10 kgf?

The rise time for a certain RC circuit is to be 0.003 ms. Determine suitable values
of R and C to accomplish this.

A dynamic measurement device operating as a second-order system is to be de-
signed to measure an input frequency of 60 Hz with an amplitude error of no
greater than 5 percent. Determine appropriate design parameters which would
accomplish this objective. Many answers are possible, so discuss what factors
influenced your selection.

A pressure transducer has a damping ratio of 0.3 and a natural frequency of
12,000 Hz. Determine the frequency range for which the amplitude dynamic
error will be less than 10 percent.

A small temperature sensor operates as a first-order system and is stated to have
a time constant of 0.1 s. If it is initially at a temperature of 100°C and suddenly
exposed to an environment temperature of 15°C, how long will it take to indicate
a temperature of 17°C?

If the temperature sensor of Prob. 2.42 is exposed to a harmonic temperature
source, for what frequency range will its amplitude response be within 10 per-
cent? What will be the time delay under these circumstances?

A pressure transducer operating as a second-order system is to be used to measure
a signal at 500 Hz. To select the transducer, we shall choose one with a natural
frequency of 1500 Hz. What damping ratio c¢/c, must be selected so that the
dynamic error of the amplitude response is less than 2 percent?

An RC electric circuit is to have a rise time of one microsecond (1 us). Select
appropriate values of R and C to accomplish this objective.
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2.46.

247.

2.48.

2.49.

2.50.

2.51.

2.52.

2.53.

2.54.

2.55.

2.56.

A large building mass behaves approximately like a first-order system when re-
sponding to a harmonic thermal input. If the harmonic input follows the pattern
of daily heating and cooling, that is, one cycle occurs over a 24-h period, and the
time delay is 2 h, estimate the time constant for the system. Also, estimate how
much the amplitude response decreases at this frequency.

A platform weighing 1.3 kg (force) is attached to a spring damper system with a
spring constant of 100 N/m. The damper is adjustable. If the damper is adjusted
to the critical value, how long will it take for the system to recover 90 percent of
the displaced value of a step input?

The system of Prob. 2.47 is subjected to a step input and the damper is adjusted
so that a damping ratio of 0.1 is obtained. Using the results of Fig. 2.9 or the
appropriate equation, estimate the time required for the system to reach the first
maximum point in overshoot.

Estimate the rise time for the system in Prob. 2.47 for an overdamped condition
with ¢/c. = 1.5.

Calculate the relative displacement from steady-state value for the system in
Prob.2.47 att = 1 sand c = 5.7 kg/s.

A special oscilloscope used in high-power laser systems is stated to have a rise
time of 1 picosecond for a step input. What does this imply in terms of frequency
response?

Assume that the weight of a 3000-Ib automobile is distributed evenly over
the four wheels and associated spring shock absorber system. Also assume
that the springs will be deflected 1.5 in when the auto is loaded with 1000 1b.
What is the natural frequency of such a system? What is the rise time for critical
damping and a step input to the system?

A temperature-sensing element is stated to behave as a first-order system with a
rise time of 0.1 s. If the element is initially at a temperature of 20°C and suddenly
subjected to a temperature of 125°C, what temperature will the element indicate
after a time of 0.05 s?

A metric unit for dynamic viscosity is kg/m-s. Determine a conversion factor to
convert to Ibf-s/ft>.

A dimensionless group used in fluid mechanics is the Reynolds number defined
as

Re = pux/n

where p is fluid density, u is velocity, x is a dimension, and wu is the dynamic
viscosity. Determine sets of units for these four parameters in SI and English
systems that will make Re dimensionless.

A dimensionless group used in free-convection heat-transfer problems is the
Grashof number defined by

2ATY?
Gr= S AT
"
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2.14 PROBLEMS

where g is the acceleration of gravity, g is rate of change of fluid volume per unit
change in temperature per unit volume, AT is a temperature difference, x is a
distance parameter, and 1 is the fluid dynamic viscosity having units of N-s/m?
in the SI system. Determine suitable units for all parameters in the SI system
which will cause Gr to be dimensionless. Repeat for the English system.

At a certain electronics company the units employed for thermal conductiv-
ity are W-cm/in?-°F. Determine a factor to convert to the standard SI unit of
W/m-°C. In the thermal conductivity parameter °C or °F represents a tempera-
ture difference.

A temperature measurement device is believed to behave as a first-order system
with a rise time of 0.2. At time zero the device is at a temperature of 45°C. What
temperature will be indicated by the device 0.1 s after it is suddenly exposed to
a temperature of 100°C? Assume that the rise time remains constant.

An empty pickup truck weighs 4500 Ibf with the weight distributed about equally
to the four wheels. When the truck is loaded with 1500 Ib distributed uniformly
to all four wheels, the suspension springs deflect by 1 in. Calculate the natural
frequency for the system. Assuming a step input, what would be the rise time for
the system?

A pressure transducer is to be selected to measure a varying pressure at a fre-
quency of 400 Hz. The device selected has a natural frequency of 1200 Hz. It
is desired that the dynamic error of the amplitude response of the transducer not
exceed 2 percent. What damping ratio is necessary to achieve this response?

Determine the Fourier sine series for the function f(x) = x> for0 < x < =&
Ans. X3 = 22(=1)""Y{[(nm)? — 6]/n3}sin nx

The thermal response of buildings behaves approximately as a first-order system
when subjected to a harmonic temperature variation. Without imposition of a
sudden “cold front” a single cycle is executed over a 24-h period. If the time
delay for maximum and minimum points in the temperature wave lags by 1.5 h,
calculate the time constant for the system.

A thermocouple behaves approximately as a first-order system. The element is
initially at a temperature of 45°C and suddenly subjected to a temperature of
100°C. After a period of 6 s the thermocouple indicates a temperature of 70°C.
Calculate the 90 percent rise time for the thermocouple.

Determine the Fourier series for the function f(x) = x for —m < x < 7@
Ans. x = 22[(=1)"*!/n]sin nx

A thermocouple has a time constant of 8 s and may be approximated as a first-
order system. If it is initially at a temperature of 40°C and suddenly exposed to
a surrounding temperature of 100°C, calculate the 90 percent rise time and the
time to attain 99 percent of the steady-state temperature.

A certain first-order system is subjected to a harmonic input of 5 Hz, producing
a time constant of 0.6 s. Calculate the error for the amplitude response and the
phase lag.
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2.67.

2.68.

The thermocouple of Prob. 2.65 is subjected to a harmonic temperature variation
having an amplitude of 15°C and frequency of 0.01 Hz. Determine the phase lag
of the thermocouple and the amplitude attenuation. Assume the time constant
does not change.

Determine the Fourier series for the function f(x) = x + x*/3 for 0 < x < 7.
Hint: Combine solutions to Probs. 2.61 and 2.64.
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ANALYSIS OF EXPERIMENTAL DATA

‘ 3.1 INTRODUCTION

Some form of analysis must be performed on all experimental data. The analysis
may be a simple verbal appraisal of the test results, or it may take the form of a
complex theoretical analysis of the errors involved in the experiment and matching of
the data with fundamental physical principles. Even new principles may be developed
in order to explain some unusual phenomenon. Our discussion in this chapter will
consider the analysis of data to determine errors, precision, and general validity of
experimental measurements. The correspondence of the measurements with physical
principles is another matter, quite beyond the scope of our discussion. Some methods
of graphical data presentation will also be discussed. The interested reader should
consult the monograph by Wilson [4] for many interesting observations concerning
correspondence of physical theory and experiment.

The experimentalist should always know the validity of data. The automobile test
engineer must know the accuracy of the speedometer and gas gage in order to express
the fuel-economy performance with confidence. A nuclear engineer must know the
accuracy and precision of many instruments just to make some simple radioactivity
measurements with confidence. In order to specify the performance of an amplifier, an
electrical engineer must know the accuracy with which the appropriate measurements
of voltage, distortion, and so forth, have been conducted. Many considerations enter
into a final determination of the validity of the results of experimental data, and we
wish to present some of these considerations in this chapter.

Errors will creep into all experiments regardless of the care exerted. Some of these
errors are of a random nature, and some will be due to gross blunders on the part of the
experimenter. Bad data due to obvious blunders may be discarded immediately. But
what of the data points that just “look” bad? We cannot throw out data because they
do not conform with our hopes and expectations unless we see something obviously
wrong. If such “bad” points fall outside the range of normally expected random devi-
ations, they may be discarded on the basis of some consistent statistical data analysis.
The keyword here is “consistent.” The elimination of data points must be consistent




3.2 CAUSES AND TYPES OF EXPERIMENTAL ERRORS

and should not be dependent on human whims and bias based on what “ought
to be.” In many instances it is very difficult for the individual to be consistent and
unbiased. The pressure of a deadline, disgust with previous experimental failures, and
normal impatience all can influence rational thinking processes. However, the compe-
tent experimentalist will strive to maintain consistency in the primary data analysis.
Our objective in this chapter is to show how one may go about maintaining this
consistency.
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In this section we present a discussion of some of the types of errors that may be
present in experimental data and begin to indicate the way these data may be handled.
First, let us distinguish between single-sample and multisample data.

Single-sample data are those in which some uncertainties may not be discovered
by repetition. Multisample data are obtained in those instances where enough exper-
iments are performed so that the reliability of the results can be assured by statistics.
Frequently, cost will prohibit the collection of multisample data, and the experimenter
must be content with single-sample data and prepared to extract as much information
as possible from such experiments. The reader should consult Refs. [1] and [4] for
further discussions on this subject, but we state a simple example at this time. If one
measures pressure with a pressure gage and a single instrument is the only one used
for the entire set of observations, then some of the error that is present in the measure-
ment will be sampled only once no matter how many times the reading is repeated.
Consequently, such an experiment is a single-sample experiment. On the other hand,
if more than one pressure gage is used for the same total set of observations, then we
might say that a multisample experiment has been performed. The number of obser-
vations will then determine the success of this multisample experiment in accordance
with accepted statistical principles.

An experimental error is an experimental error. If the experimenter knew what
the error was, he or she would correct it and it would no longer be an error. In other
words, the real errors in experimental data are those factors that are always vague
to some extent and carry some amount of uncertainty. Our task is to determine just
how uncertain a particular observation may be and to devise a consistent way of
specifying the uncertainty in analytical form. A reasonable definition of experimental
uncertainty may be taken as the possible value the error may have. This uncertainty
may vary a great deal depending on the circumstances of the experiment. Perhaps it is
better to speak of experimental uncertainty instead of experimental error because the
magnitude of an error is always uncertain. Both terms are used in practice, however,
so the reader should be familiar with the meaning attached to the terms and the ways
that they relate to each other.

It is very common for people to speak of experimental errors when the correct
terminology should be “uncertainty.” Because of this common usage, we ask that the
reader accept the faulty semantics when they occur and view each term in its proper
context.
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TYPES OF ERRORS

At this point we mention some types of errors that may cause uncertainty in an exper-
imental measurement. First, there can always be those gross blunders in apparatus or
instrument construction which may invalidate the data. Hopefully, the careful exper-
imenter will be able to eliminate most of these errors. Second, there may be certain
fixed errors which will cause repeated readings to be in error by roughly the same
amount but for some unknown reason. These fixed errors are sometimes called sys-
tematic errors, or bias errors. Third, there are the random errors, which may be
caused by personal fluctuations, random electronic fluctuations in the apparatus or
instruments, various influences of friction, and so forth. These random errors usually
follow a certain statistical distribution, but not always. In many instances it is very
difficult to distinguish between fixed errors and random errors.

The experimentalist may sometimes use theoretical methods to estimate the mag-
nitude of a fixed error. For example, consider the measurement of the temperature
of a hot gas stream flowing in a duct with a mercury-in-glass thermometer. It is well
known that heat may be conducted from the stem of the thermometer, out of the body,
and into the surroundings. In other words, the fact that part of the thermometer is
exposed to the surroundings at a temperature different from the gas temperature to be
measured may influence the temperature of the stem of the thermometer. There is a
heat flow from the gas to the stem of the thermometer, and, consequently, the temper-
ature of the stem must be lower than that of the hot gas. Therefore, the temperature
we read on the thermometer is not the true temperature of the gas, and it will not
make any difference how many readings are taken—we shall always have an error
resulting from the heat-transfer condition of the stem of the thermometer. This is a
fixed error, and its magnitude may be estimated with theoretical calculations based
on known thermal properties of the gas and the glass thermometer.

3.3 ERROR ANALYSIS ON A COMMONSENSE BASIS

We have already noted that it is somewhat more explicit to speak of experimental
uncertainty than experimental error. Suppose that we have satisfied ourselves with
the uncertainty in some basic experimental measurements, taking into consideration
such factors as instrument accuracy, competence of the people using the instruments,
and so forth. Eventually, the primary measurements must be combined to calculate
a particular result that is desired. We shall be interested in knowing the uncertainty
in the final result due to the uncertainties in the primary measurements. This may be
done by a commonsense analysis of the data which may take many forms. One rule
of thumb that could be used is that the error in the result is equal to the maximum
error in any parameter used to calculate the result. Another commonsense analysis
would combine all the errors in the most detrimental way in order to determine the
maximum error in the final result. Consider the calculation of electric power from

P=FEI
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where E and [ are measured as

E=100VX2V
I=10A+02A

The nominal value of the power is 100 x 10 = 1000 W. By taking the worst possible
variations in voltage and current, we could calculate

Pmax = (100 + 2)(10 + 02) = 10404 W
Poin = (100 — 2)(10 — 0.2) = 960.4 W

Thus, using this method of calculation, the uncertainty in the power is +4.04
percent, —3.96 percent. It is quite unlikely that the power would be in error by these
amounts because the voltmeter variations would probably not correspond with the
ammeter variations. When the voltmeter reads an extreme “high,” there is no reason
that the ammeter must also read an extreme “high” at that particular instant; indeed,
this combination is most unlikely.

The simple calculation applied to the electric-power equation above is a useful
way of inspecting experimental data to determine what errors could result in a final
calculation; however, the test is too severe and should be used only for rough inspec-
tions of data. It is significant to note, however, that if the results of the experiments
appear to be in error by more than the amounts indicated by the above calculation,
then the experimenter had better examine the data more closely. In particular, the
experimenter should look for certain fixed errors in the instrumentation, which may
be eliminated by applying either theoretical or empirical corrections.

As another example we might conduct an experiment where heat is added to
a container of water. If our temperature instrumentation should indicate a drop in
temperature of the water, our good sense would tell us that something is wrong and
the data point(s) should be thrown out. No sophisticated analysis procedures are
necessary to discover this kind of error.

The term “common sense” has many connotations and means different things to
different people. In the brief example given above it is intended as a quick and expe-
dient vehicle, which may be used to examine experimental data and results for gross
errors and variations. In subsequent sections we shall present methods for determining
experimental uncertainties in a more precise manner.
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A more precise method of estimating uncertainty in experimental results has been
presented by Kline and McClintock [1]. The method is based on a careful specification
of the uncertainties in the various primary experimental measurements. For example,
a certain pressure reading might be expressed as

p = 100 kPa + 1 kPa
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When the plus or minus notation is used to designate the uncertainty, the person
making this designation is stating the degree of accuracy with which he or she believes
the measurement has been made. We may note that this specification is in itself
uncertain because the experimenter is naturally uncertain about the accuracy of these
measurements.

If a very careful calibration of an instrument has been performed recently with
standards of very high precision, then the experimentalist will be justified in assigning
a much lower uncertainty to measurements than if they were performed with a gage
or instrument of unknown calibration history.

To add a further specification of the uncertainty of a particular measurement,
Kline and McClintock propose that the experimenter specify certain odds for the
uncertainty. The above equation for pressure might thus be written

p = 100 kPa &= 1 kPa (20 to 1)

In other words, the experimenter is willing to bet with 20 to 1 odds that the
pressure measurement is within &1 kPa. It is important to note that the specification
of such odds can only be made by the experimenter based on the total laboratory
experience.

Suppose a set of measurements is made and the uncertainty in each measurement
may be expressed with the same odds. These measurements are then used to calculate
some desired result of the experiments. We wish to estimate the uncertainty in the
calculated result on the basis of the uncertainties in the primary measurements. The

result R is a given function of the independent variables x1, x, x3, ..., x,. Thus,
R:R(XI,XQ,)C3,...,X,,) [3’11
Let wg be the uncertainty in the result and wy, w, ..., w, be the uncertainties in the

independent variables. If the uncertainties in the independent variables are all given
with the same odds, then the uncertainty in the result having these odds is given in
Ref. [1] as

R \> [OR \? s \?]"
wr = —w ) +(=w) +- 4+ —w, [3.2]
0x1 0x2 09X,

If this relation is applied to the electric-power relation of the previous section, the
expected uncertainty is 2.83 percent instead of 4.04 percent.

We should call the reader’s attention to the requirement that all the uncertainties
in Eq. (3.2) should be expressed with the same odds. As a practical matter, the relation
is most often used without regard to a specification of the odds of the uncertainties
w,. The experimentalist conducting the experiments is the person best qualified to
estimate such odds, so it not unreasonable to assign responsibility for relaxation of
the equal-odds to him or her. Further information is given in Ref. [1].
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UNCERTAINTIES FOR PRODUCT FUNCTIONS

In many cases the result function of Eq. (3.2) takes the form of a product of the
respective primary variables raised to exponents and expressed as

a1 a2 a,
R=x\"xy"---x, [3.1d]

When the partial differentiations are performed, we obtain

o= g )
Dividing by R from Eq. (3.1a)
1dR a
Ry x

Inserting this relation in Eq. (3.2) gives
1/2

3 <axuj">2] [3.24]

The reader should note that this relation for the fractional uncertainty in the result
may only be employed when the result function takes the product form indicated in
Eq. (3.1a).

WR
R

UNCERTAINTIES FOR ADDITIVE FUNCTIONS

When the result function has an additive form, R will be expressed as

R=axi+ax+ - -+a,x, = Za,-xi [3.1b]
and the partial derivatives for use in Eq. (3.2) are then
oR
— =y
ax,‘

The uncertainty in the result may then be expressed as

el

=3 ()] [3.25]

Equations (3.2a) and (3.2b) may be used in combination when the result function
involves both product and additive terms.
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UNCERTAINTY OF RESISTANCE OF A COPPER WIRE. The resistance of a certain
size of copper wire is given as

R = Ro[1 + (T —20)]

Example 3.1
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where Ry = 6 © £ 0.3 percent is the resistance at 20°C, o = 0.004°C~' £ 1 percent is
the temperature coefficient of resistance, and the temperature of the wire is 7 = 30+ 1°C.
Calculate the resistance of the wire and its uncertainty.

The nominal resistance is
R = (6)[1 + (0.004)(30 — 20)] = 6.24 @

The uncertainty in this value is calculated by applying Eq. (3.2). The various terms are

oR
g = 1T —20) =1+ (0.004)(30 - 20) = 1.04
0
R
ol Ro(T —20) = (6)(30 — 20) = 60
o
oR
— = Roax = (6)(0.004) = 0.024
oT
wg, = (6)(0.003) = 0.018 Q2
we = (0.004)(0.01) =4 x 1073°C"!
wr = 1°C

Thus, the uncertainty in the resistance is

Wx = [(1.04)2(0.018)% + (60)%(4 x 107°)% + (0.024)%(1)%1"/?
=0.0305Q or 0.49%

Example 3.2

UNCERTAINTY IN POWER MEASUREMENT. The two resistors R and R, are con-
nected in series as shown in the accompanying figure. The voltage drops across each resistor
are measured as

E=10V£0.1V (1%)

E;, =12V £0.005V (0.467%)

along with a value of
R, = 0.0066 Q2 £ 1/4%

From these measurements determine the power dissipated in resistor R and its uncertainty.

f— e, —
A —o—AW—o0
R R

Figure Example 3.2

Solution
The power dissipated in resistor R is
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The current through both resistors is I = E;/R; so that
P=— [d]

The nominal value of the power is therefore
P = (10)(1.2)/(0.0066) = 1818.2 W

The relationship for the power given in Eq. (@) is a product function, so the fractional uncertainty
in the power may be determined from Eq. (3.2a). We have

ag =1 ag, =1 and ag, = —1
so that
2 2 27172
Fol) () ()
0.1\’ 0.005 "
= [(1)2(10) +(1)? (12) +(—1)2(0.0025)2] =0.0111
Then

wp = (0.0111)(1818.2) = 20.18 W
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Particular notice should be given to the fact that the uncertainty propagation in
the result wg predicted by Eq. (3.2) depends on the squares of the uncertainties in
the independent variables w,. This means that if the uncertainty in one variable is
significantly larger than the uncertainties in the other variables, say, by a factor of 5
or 10, then it is the largest uncertainty that predominates and the others may probably
be neglected.

To illustrate, suppose there are three variables with a product of sensitivity and
uncertainty [(dR/dx)w,] of magnitude 1, and one variable with a magnitude of 5. The
uncertainty in the result would be

>4+ 124+174+1)2 = /28 =5.29

The importance of this brief remark concerning the relative magnitude of uncertainties
is evident when one considers the design of an experiment, procurement of instrumen-
tation, and so forth. Very little is gained by trying to reduce the “small” uncertainties.
Because of the square propagation it is the “large” ones that predominate, and any
improvement in the overall experimental result must be achieved by improving the in-
strumentation or technique connected with these relatively large uncertainties. In the
examples and problems that follow, both in this chapter and throughout the book, the
reader should always note the relative effect of uncertainties in primary measurements
on the final result.

In Sec. 2.12 (Table 2.8) the reader was cautioned to examine possible experi-
mental errors before the experiment is conducted. Equation (3.2) may be used very
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effectively for such analysis, as we shall see in the sections and chapters that follow.
A further word of caution may be added here. It is just as unfortunate to overestimate
uncertainty as to underestimate it. An underestimate gives false security, while an
overestimate may make one discard important results, miss a real effect, or buy much
too expensive instruments. The purpose of this chapter is to indicate some of the
methods for obtaining reasonable estimates of experimental uncertainty.

In the previous discussion of experimental planning we noted that an uncertainty
analysis may aid the investigator in selecting alternative methods to measure a par-
ticular experimental variable. It may also indicate how one may improve the overall
accuracy of a measurement by attacking certain critical variables in the measurement
process. The next three examples illustrate these points.

Example 3.3

SELECTION OF MEASUREMENT METHOD. A resistor has a nominal stated value of
10 % 1 percent. A voltage is impressed on the resistor, and the power dissipation is to be
calculated in two different ways: (1) from P = E?/R and (2) from P = EI. In (1) only a
voltage measurement will be made, while both current and voltage will be measured in (2).
Calculate the uncertainty in the power determination in each case when the measured values
of E and [ are

E=100V £ 1% (for both cases)

I=10A%£1%
R
—(D e
Figure Example 3.3 Power measurement across a resistor.

Solution

The schematic is shown in the accompanying figure. For the first case we have
oP 2F oP E?
9E_ R OR R

and we apply Eq. (3.2) to give

2 2\ 2
I EE

Dividing by P = E?/R gives

IONG]

Inserting the numerical values for uncertainty gives
wp

- = [4(0.01)? 4 (0.01)*]"/? = 2.236%
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For the second case we have
P P
PR T
and after similar algebraic manipulation we obtain

2 2] /2
wp WEg wy
(o))

Inserting the numerical values of uncertainty yields

w

?P = [(0.01)* + (0.01)*]"/? = 1.414%
Comment
The second method of power determination provides considerably less uncertainty than the first
method, even though the primary uncertainties in each quantity are the same. In this example
the utility of the uncertainty analysis is that it affords the individual a basis for selection of a
measurement method to produce a result with less uncertainty.
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INSTRUMENT SELECTION. The power measurement in Example 3.2 is to be conducted
by measuring voltage and current across the resistor with the circuit shown in the accompa-
nying figure. The voltmeter has an internal resistance R,,, and the value of R is known only
approximately. Calculate the nominal value of the power dissipated in R and the uncertainty
for the following conditions:

R =100 (not known exactly)
R, = 1000 Q2 £+ 5%

I=5A%+1%
E =500V £1%

Figure Example 3.4 Effect of meter impedance on measurement.

Solution
A current balance on the circuit yields

L+bL=1
E+ E _;
R R,
and
E
L=1-— [a]l

Example 3.4



CHAPTER 3 o ANALYSIS OF EXPERIMENTAL DATA

The power dissipated in the resistor is

E2

m
The nominal value of the power is thus calculated as

2

500
P = (500)(5) — 1000

In terms of known quantities the power has the functional form P = f(E, I, R,), and so we
form the derivatives

= 2250 W

P 2F P

— =1- — =E
oE R, a1

oP _ E?
dR, R

The uncertainty for the power is now written as

2E\’ E*\’ "
wp = [(1 - R> wy + E*w] + (Rz) wim] []

Inserting the appropriate numerical values gives

1/2
5 1000 252+(25 10925 x 1074 + ( 25 1o 2(2500)

wWp = _— X X X —
g 1000 106

= [16 4+ 25 4 6.25]'/2(5)

=344W

or we _ 344 g
P 2250

In order of influence on the final uncertainty in the power we have

1. Uncertainty of current determination
2. Uncertainty of voltage measurement

3. Uncertainty of knowledge of internal resistance of voltmeter

Comment

There are other conclusions we can draw from this example. The relative influence of the
experimental quantities on the overall power determination is noted above. But this listing
may be a bit misleading in that it implies that the uncertainty of the meter impedance does not
have a large effect on the final uncertainty in the power determination. This results from the
fact that R,, > R (R,, = 10R). If the meter impedance were lower, say, 200 2, we would find
that it was a dominant factor in the overall uncertainty. For a very high meter impedance there
would be little influence, even with a very inaccurate knowledge of the exact value of R,,.
Thus, we are led to the simple conclusion that we need not worry too much about the precise
value of the internal impedance of the meter as long as it is very large compared with the
resistance we are measuring the voltage across. This fact should influence instrument selection
for a particular application.
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WAYS TO REDUCE UNCERTAINTIES. A certain obstruction-type flowmeter (orifice,
venturi, nozzle), shown in the accompanying figure, is used to measure the flow of air at low
velocities. The relation describing the flow rate is

2ch|
RT,

172
= CA { (p1 — Pz):| Lal

Flow

o &

Figure Example 3.5 Uncertfainty in a flowmeter.
where C = empirical-discharge coefficient
A = flow area
p1 and p, = upstream and downstream pressures, respectively

T, = upstream temperature
R = gas constant for air
Calculate the percent uncertainty in the mass flow rate for the following conditions:
C = 0.92 £0.005 (from calibration data)
p1 = 25 psia £ 0.5 psia
T, = 70°F £ 2°F T, = 530°R
Ap = p; — p» = 1.4 psia £ 0.005 psia (measured directly)
A = 1.0in* £0.001 in®
Solution
In this example the flow rate is a function of several variables, each subject to an uncertainty.
m = f(C, A, pi, Ap, Ty) [b]

Thus, we form the derivatives

. 12
a 2g.
m:A( 8cP1 Ap)

ac RT,
. 12
0l 28,
i _ o (28epr
0A RT,
. 12
om 28, —12
— =0.5CA A c
8p1 <RT1 p) pl [ ]
. 12
) 28,
I _oscA S8LL) pp1
aAp RT,

i 2 i
o oscA( BLUAp) 1
oT R

Example 3.5
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The uncertainty in the mass flow rate may now be calculated by assembling these derivatives
in accordance with Eq. (3.2). Designating this assembly as Eq. (c) and then dividing by Eq. (a)
gives

2 > 2 > 27172
Wi _ | ®e Wa b s 2 Yar 2 ¥n
m_[(c)+<A)+4<m>+4<Ap) +4<T1>] e
We may now insert the numerical values for the quantities to obtain the percent uncertainty in
the mass flow rate.

wi | {0.005 2+ 0.001 2+1 0.5 2+1 0.005 2+1 2\’
w |\ 092 1.0 4\25) T4\ 14 4\ 530

=[295x10°+1.0x 107°4+1.0 x 107*+3.19 x 107 +3.57 x 107%]'/2
=[1.373 x 10792 = 1.172% el

172

Comment

The main contribution to uncertainty is the p; measurement with its basic uncertainty of
2 percent. Thus, to improve the overall situation the accuracy of this measurement should be
attacked first. In order of influence on the flow-rate uncertainty we have:

. Uncertainty in p; measurement (£2 percent)

. Uncertainty in value of C

. Uncertainty in determination of 7}

. Uncertainty in determination of Ap

wn A W N =

. Uncertainty in determination of A

By inspecting Eq. (¢) we see that the first and third items make practically the whole contri-
bution to uncertainty. The value of the uncertainty analysis in this example is that it shows the
investigator how to improve the overall measurement accuracy of this technique. First, obtain a
more precise measurement of p;. Then, try to obtain a better calibration of the device, that is, a
better value of C. In Chap. 7 we shall see how values of the discharge coefficient C are obtained.

3.5 EVALUATION OF UNCERTAINTIES
FOR COMPLICATED DATA REDUCTION

We have seen in the preceding discussion and examples how uncertainty analysis can
be a useful tool to examine experimental data. In many cases data reduction is a rather
complicated affair and is often performed with a computer routine written specifically
for the task. An adaptation of the routine can provide for direct calculation of uncer-
tainties without resorting to an analytical determination of the partial derivatives in
Eq. (3.2). We still assume that this equation applies, although it could involve several
computational steps. We also assume that we are able to obtain estimates by some
means of the uncertainties in the primary measurements, that is, w;, w,, etc.
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Suppose a set of data is collected in the variables x1, x, ..., x, and a result is
calculated. At the same time one may perturb the variables by Ax;, Ax,, etc., and
calculate new results. We would have

R(x1) = R(x1, X2, ..., Xn)
R(x1 + Axy) = R(x1 + Axy, x2, ..., Xp)
R('xz) = R(.XI, x25 M) xn)
R(xz + Axz) = R(xp, x2 + Axz, ..., Xn)
For small enough values of Ax the partial derivatives can be approximated by

oR R(x1 + Ax1) — R(xy)

E Axl
OR _ R(x;+ Axy) — R(xp)
3)62 - sz

and these values could be inserted in Eq. (3.2) to calculate the uncertainty in the result.

At this point we must again alert the reader to the ways uncertainties or errors
of instruments are normally specified. Suppose a pressure gage is available and the
manufacturer states that it is accurate within 1.0 percent. This statement normally
refers to percent of full scale. So a gage with a range of 0 to 100 kPa would have an
uncertainty of =10 percent when reading a pressure of only 10 kPa. Of course, this
means that the uncertainty in the calculated result, as either an absolute value or a
percentage, can vary widely depending on the range of operation of instruments used
to make the primary measurements. The above procedure can be used to advantage
in complicated data-reduction schemes.

Evaluation of the partial derivatives in Eq. (3.2) in terms of finite differences is
not as cumbersome as it might appear. A computer will normally be employed for
data reduction and calculation of intermediate and final results from the primary ex-
perimental measurements. In other words, one will usually have a procedure in place
for calculating R(xy, x3, ..., x,). The procedure may be executed with a spreadsheet
or other software packages. It is a simple matter to modify the procedure to calculate
perturbed values R(x; + Axy, ...), etc., and then obtain the finite difference approx-
imations to dR/dx;. Furthermore, the procedure may be extended to evaluate the

influence coefficients
aR 2
—w
ax,

at various points in the data reduction process. A study of the relative values of these
coefficients can then indicate the data points in the experiment which contribute most
to the overall uncertainty in the results. An example of a spreadsheet procedure using
Microsoft Excel is given in Ref. [28].

A very full description of this technique and many other considerations of uncer-
tainty analysis are given by Moffat [7, 14]. An example of an industry standard on
uncertainty analysis is given in Ref. [8].



74

CHAPTER 3 o ANALYSIS OF EXPERIMENTAL DATA

Example 3.6

UNCERTAINTY CALCULATION BY RESULT PERTURBATION.  Calculate the uncer-
tainty of the wire resistance in Example 3.1 using the result-perturbation technique.

In Example 3.1 we have already calculated the nominal resistance as 6.24 Q. We now perturb
the three variables Ry, o, and 7 by small amounts to evaluate the partial derivatives. We shall
take

ARy = 0.01 Aa=1x1073 AT =0.1

Then R(Ro + ARy) = (6.01)[1 + (0.004) (30 — 20)] = 6.2504

and the derivative is approximated as

R _ R(Ro+ARy) —R 62504 —6.24

_ = =1.04
Ry ARy 0.01

or the same result as in Example 3.1. Similarly,

R(a + Aa) = (6.0)[1 + (0.00401)(30 — 20)] = 6.2406
OR  Ra+Ao)—R _ 62406624 _
da Aa T 1x 1005

R(T + AT) = (6)[1 + (0.004)(30.1 — 20)] = 6.2424

R R(T+AT)—R 62424-624

Zx =0.24
aT AT 0.1

All the derivatives are the same as in Example 3.1, so the uncertainty in R would be the same,
or 0.0305 €.

3.6 STATISTICAL ANALYSIS OF EXPERIMENTAL DATA

We shall not be able to give an extensive presentation of the methods of statistical
analysis of experimental data; we may only indicate some of the more important
methods currently employed. First, it is important to define some pertinent terms.

When a set of readings of an instrument is taken, the individual readings will
vary somewhat from each other, and the experimenter may be concerned with the
mean of all the readings. If each reading is denoted by x; and there are n readings,
the arithmetic mean is given by

1 n
m = _ i 3.3
The deviation d; for each reading is defined by

d,‘ =X;i — X [3.4]
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We may note that the average of the deviations of all the readings is zero since
1 n 1 n
di = - Edi = Z}:(xi — Xm)
= =

=Xm — l(nxm) =0 [3.5]
n

The average of the absolute values of the deviations is given by

_ 1< 1<
|d;| = ;; \d;| = ;; xi — X [3.6]

Note that this quantity is not necessarily zero.
The standard deviation or root-mean-square deviation is defined by

n 1/2
_|! IR
o= ln;(x, Xm) ] [3.7]

and the square of the standard deviation o is called the variance. This is sometimes
called the population or biased standard deviation because it strictly applies only
when a large number of samples is taken to describe the population.

In many circumstances the engineer will not be able to collect as many data
points as necessary to describe the underlying population. Generally speaking, it is
desired to have at least 20 measurements in order to obtain reliable estimates of
standard deviation and general validity of the data. For small sets of data an unbiased
or sample standard deviation is defined by

n o 211/2
o — |:Z,‘—](x: Xm) ]

1 [3.8]

Note that the factor n — 1 is used instead of n as in Eq. (3.7). The sample or unbiased
standard deviation should be used when the underlying population is not known. How-
ever, when comparisons are made against a known population or standard, Eq. (3.7)
is the proper one to use for standard deviation. An example would be the calibration
of a voltmeter against a known voltage source.

There are other kinds of mean values of interest from time to time in statistical
analysis. The median is the value that divides the data points in half. For example, if
measurements made on five production resistors give 10, 12, 13, 14, and 15 k€2, the
median value would be 13 k2. The arithmetic mean, however, would be

10+ 12413+ 14+ 15
m — 5

In some instances it may be appropriate to divide data into quartiles and deciles also.
So, when we say that a student is in the upper quartile of the class, we mean that that
student’s grade is among the top 25 percent of all students in the class.

Sometimes it is appropriate to use a geometric mean when studying phenomena
which grow in proportion to their size. This would apply to certain biological processes

= 12.8 k2

75
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and to growth rates in financial resources. The geometric mean is defined by
Xg = [x1 %2 x5 x,]"" [3.9]

As an example of the use of this concept, consider the 5-year record of a mutual fund
investment:

Asset Rate of Increase
Year Value over Previous Year
1 1000
2 890 0.89
3 990 1.1124
4 1100 1.1111
5 1250 1.1364

The average growth rate is therefore

Average growth = [(0.89)(1.1124)(1.1111)(1.1364)]'/4
= 1.0574

To see that this is indeed a valid average growth rate, we can observe that

(1000)(1.0574)* = 1250

Example 3.7

CALCULATION OF POPULATION VARIABLES. The following readings are taken of
a certain physical length. Compute the mean reading, standard deviation, variance, and average
of the absolute value of the deviation, using the “biased” basis:

Reading X, cm

5.30
5.73
6.77
5.26
433
5.45
6.09
5.64
5.81
5.75

S O 0NN R W=

—_

The mean value is given by

l 1
Xy = ;;xi = ;5613 = 5613 cm
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The other quantities are computed with the aid of the following table:

Reading di=x; —xm (i —xm)? x 10%
1 —0.313 9.797
2 0.117 1.369
3 1.157 133.865
4 —0.353 12.461
5 —1.283 164.609
6 —0.163 2.657
7 0.477 22.753
8 0.027 0.0729
9 0.197 3.881

10 0.137 1.877

172

n 1/2
1 2 1
o= lnz;(x,._xm)] = {10(3.533)} = 0.5944 cm

0? = 0.3533 cm?

1 n | n
; E |dl| = ; § |X,‘ — Xm
i=1 i=1

75(4.224) = 0.4224 cm

|di|
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SAMPLE STANDARD DEVIATION. Calculate the best estimate of standard deviation
for the data of Example 3.7 based on the “sample” or unbiased basis.

Solution
The calculation gives

1/2
1
’" {101(3.53@] =(0.3929)"% = 0.627 cm

Example 3.8

SIMPLE PROBABILITY CONCEPTS

Suppose an “honest” coin is flipped a large number of times. It will be noted that after
a large number of tosses heads will be observed about the same number of times as
tails. If one were to bet consistently on either heads or tails the best one could hope
for would be a break-even proposition over a long period of time. In other words, the
frequency of occurrence is the same for both heads or tails for a very large number
of tosses. It is common knowledge that a few tosses of a coin, say, 5 or 10, may not
be a break-even proposition, as a large number of tosses would be. This observation
illustrates the fact that frequency of occurrence of an event may be dependent on the
total number of events which are observed.
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The probability that one will get a head when flipping an unweighted coin is 2,

regardless of the number of times the coin is tossed. The probability that a tail will
occur is also % The probability that either a head or a tail will occur is % + % or
unity. (We ignore the possibility that the coin will stand on edge.) Probability is a
mathematical quantity thatis linked to the frequency with which a certain phenomenon
occurs after a large number of tries. In the case of the coin, it is the number of times
heads would be expected to result in a large number of tosses divided by the total
number of tosses. Similarly, the toss of an unloaded die results in the occurrence of
each side one-sixth of the time. Probabilities are expressed in values of less than one,
and a probability of unity corresponds to certainty. In other words, if the probabilities
for all possible events are added, the result must be unity. For separate events the
probability that one of the events will occur is the sum of the individual probabilities
for the events. For a die the probability that any one side will occur is % The probability
for one of three given sides is é + % + %, or %, etc.

Suppose two dice are thrown and we wish to know the probability that both will
display a 6. The probability for a 6 on a single die is é By ashort listing of the possible
arrangements that the dice may have, it can be seen that there can be 36 possibilities
and that the desired result of two 6s represents only one of these possibilities. Thus,
the probability is %. For a throw of 7 or 11 there are 6 possible ways of getting a
7; thus, the probability of getting a 7 is % or é. There are only 2 ways of getting an
11; thus, the probability is % or % The probability of getting either a 7 or an 11 is
%+ 3%

If several independent events occur at the same time such that each event has
a probability p;, the probability that all events will occur is given as the product of
the probabilities of the individual events. Thus, p = I1p;, where the IT designates a
product. This rule could be applied to the problem of determining the probability of a
double 6 in the throw of two dice. The probability of getting a 6 on each die is &, and
the total probability is therefore (%) (%), or 31—6 This reasoning could not be applied to
the problem of obtaining a 7 on the two dice because the number on each die is not
independent of the number on the other die, since a 7 can be obtained in more than
one way.

As a final example we ask what the chances are of getting a royal flush in the first
five cards drawn off the top of the deck. There are 20 suitable possibilities for the first
draw (4 suits, 5 possible cards per suit) out of a total of 52 cards. On the second draw
we have fixed the suit so that there are only 4 suitable cards out of the 51 remaining.
There are three suitable cards on the third draw, two on the fourth, and only one on
the fifth draw. The total probability of drawing the royal flush is thus the product of

the probabilities of each draw, or
20 4 3 2 1 1
— X — X — X — X — =
52 51 50 49 48 649,740
In the above discussion we have seen that the probability is related to the number
of ways a certain event may occur. In this case we are assuming that all events are

equally likely, and hence the probability that an event will occur is the number of ways
the event may occur divided by the number of possible events. Our primary concern
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is the application of probability and statistics to the analysis of experimental data. For
this purpose we need to discuss next the meaning and use of probability distributions.
We shall be concerned with a few particular distributions that are directly applicable
to experimental data analysis.
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Suppose we toss a horseshoe some distance x. Even though we make an effort to toss
the horseshoe the same distance each time, we would not always meet with success.
On the first toss the horseshoe might travel a distance x|, on the second toss a distance
of x,, and so forth. If one is a good player of the game, there would be more tosses
which have an x distance equal to that of the objective. Also, we would expect fewer
and fewer tosses for those x distances which are farther and farther away from the
target. For a large number of tosses the probability that it will travel a distance is
obtained by dividing the number traveling this distance by the total number of tosses.
Since each x distance will vary somewhat from other x distances, we might find it
advantageous to calculate the probability of a toss landing in a certain increment of
x between x and x + Ax. When this calculation is made, we might get something
like the situation shown in Fig. 3.1. For a good player the maximum probability is
expected to surround the distance x,, designating the position of the target.

Xm

p(x)

x x+ Ax x

Xm

Figure 3.1 Distribution of throws for a “good” horseshoes player.
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The curve shown in Fig. 3.1 is called a probability distribution. It shows how the
probability of success in a certain event is distributed over the distance x. Each value
of the ordinate p(x) gives the probability that the horseshoe will land between x and
x+ Ax, where Ax is allowed to approach zero. We might consider the deviation from
Xp, as the error in the throw. If the horseshoe player has good aim, large errors are
less likely than small errors. The area under the curve is unity since it is certain that
the horseshoe will land somewhere.

We should note that more than one variable may be present in a probability
distribution. In the case of the horseshoes player a person might throw the object an
exact distance of x,, and yet to one side of the target. The sideways distance is another
variable, and a large number of throws would have some distribution in this variable
as well.

A particular probability distribution is the binomial distribution. This distribution
gives the number of successes n out of N possible independent events when each event
has a probability of success p. The probability that n events will succeed is given in
Ref. [2] as

p(n) = pra—ph [3.10]

N!

(N —n)!n!
It will be noted that the quantity (1— p) is the probability of failure of each independent
event. Now, suppose that the number of possible independent events N is very large
and the probability of occurrence of each p is very small. The calculation of the
probability of n successes out of the N possible events using Eq. (3.10) would be
most cumbersome because of the size of the numbers. The limit of the binomial
distribution as N — oo and p — 0 such that

Np = a = const
is called the Poisson distribution and is given by

—a

a'e
n!

Pa(n) = [3.111

The Poisson distribution is applicable to the calculation of the decay of radioactive
nuclei, as we shall see in a subsequent chapter. It may be shown that the standard
deviation of the Poisson distribution is

o=4+a [3.12]

Example 3.9

TOSSING A COIN—BINOMIAL DISTRIBUTION. Anunweighted coinis flipped three
times. Calculate the probability of getting zero, one, two, or three heads in these tosses.
Solution

The binomial distribution applies in this case since the probability of each flip of the coin is
independent of previous or successive flips. The probability of getting a head on each throw is
p= % and N = 3, while n takes on the values 0, 1, 2, and 3. The probabilities are calculated
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as

o= ([ _ 1
PO =Gnon\2) \2) T3
b 3L (1Y (1\ 3
PO =5ra\2) \2) =3
2 1

3 1\’ /1 3
P@ =T 2) (2) =3
@ (LY (1Y !
PRI ="onan\2) \2) T3

Comment

Note that the sum of the four probabilities, that is,  + 2 + 2 + 1 is unity or certainty because
there are no other possibilities. Heads must come up zero, one, two, or three times in three
flips. Of course, one would obtain the same result for probabilities of obtaining zero, one, two,
or three tails in three flips.

HISTOGRAMS

We have noted that a probability distribution like Fig. 3.1 is obtained when we observe
frequency of occurrence over a large number of observations. When a limited number
of observations is made and the raw data are plotted, we call the plot a histogram.
For example, the following distribution of throws might be observed for a horseshoes
player:

Distance from Number
Target, cm of Throws
0-10 5
10-20 15
20-30 13
30-40 11
40-50 9
50-60 8
60-70 10
70-80 6
80-90 7
90-100 5
100-110 5
110-120 3
Over 120 2
Total 99

These data are plotted in Fig. 3.2 using increments of 10 cm in Ax. The same
data are plotted in Fig. 3.3 using a Ax of 20 cm. The relative frequency, or fraction of
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Number of throws

20 40 60 80 100 120 X
Distance from target, cm

Figure 3.2 Histogram with Ax = 10 em.

30

3]
(=]

Number of throws

—_
=]

1]

20 40 60 80 100 120 X
Distance from target, cm

Figure 3.3 Histogram with Ax = 20 cm.

throws in each Ax increment, could also be used to convey the same information. A
cumulative frequency diagram could be employed for these data, as shown in Fig. 3.4.
If this figure had been constructed on the basis of a very large number of throws, then
we could appropriately refer to the ordinate as the probability that the horseshoe will
land within a distance x of the target.



3.8 THE GAUSSIAN OR NORMAL ERROR DISTRIBUTION

1.0 /__

o
o0

o
o)}
\

S

o
~
N

Fraction of throws less than x
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20 40 60 80 100 120 x
Distance from target, cm

Figure 3.4 Cumulative frequency diagram.

83

3.8 THE GAUSSIAN OR NORMAL
ERROR DISTRIBUTION

Suppose an experimental observation is made and some particular result is recorded.
We know (or would strongly suspect) that the observation has been subjected to many
random errors. These random errors may make the final reading either too large or
too small, depending on many circumstances which are unknown to us. Assuming
that there are many small errors that contribute to the final error and that each small
error is of equal magnitude and equally likely to be positive or negative, the gaussian
or normal error distribution may be derived. If the measurement is designated by x,
the gaussian distribution gives the probability that the measurement will lie between
x and x 4 dx and is written

_ 1 —(x—xp)%/20?
P(x) Ume [3.13]
In this expression x,, is the mean reading and o is the standard deviation. Some may
prefer to call P(x) the probability density. The units of P(x) are those of 1/x since
these are the units of 1/0. A plot of Eq. (3.13) is given in Fig. 3.5. Note that the
most probable reading is x,,. The standard deviation is a measure of the width of the
distribution curve; the larger the value of o, the flatter the curve and hence the larger
the expected error of all the measurements. Equation (3.13) is normalized so that the
total area under the curve is unity. Thus,

+00
/ Px)dx=1.0 [3.14]

oo
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2.0

m |

P(x)\2m

0.8 ‘\
0.6

/ o =|1.0
0.4

e/ AN

i

Figure 3.5 The gaussian or normal error distribution for two values
of the standard deviation.

At this point we may note the similarity between the shape of the normal error
curve and the expected experimental distribution for tossing horseshoes, as shown in
Fig. 3.1. This is what we would expect because the good horseshoes player’s throws
will be bunched around the target. The better the player is at the game, the more
closely the throws will be grouped around the mean and the more probable will be
the mean distance x,,. Thus, in the case of the horseshoes player a smaller standard
deviation would mean a larger percentage of “ringers.”

We may quickly anticipate the next step in the analysis as one of trying to deter-
mine the precision of a set of experimental measurements through an application of the
normal error distribution. One may ask: But how do you know that the assumptions
pertaining to the derivation of the normal error distribution apply to experimental
data? The answer is that for sets of data where a large number of measurements is
taken, experiments indicate that the measurements do indeed follow a distribution
like that shown in Fig. 3.5 when the experiment is under control. If an important
parameter is not controlled, one gets just scatter, that is, no sensible distribution at all.
Thus, as a matter of experimental verification, the gaussian distribution is believed
to represent the random errors in an adequate manner for a properly controlled
experiment.
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By inspection of the gaussian distribution function of Eq. (3.13) we see that the
maximum probability occurs at x = x,,, and the value of this probability is

1
o2

Itis seen from Eq. (3.15) that smaller values of the standard deviation produce larger
values of the maximum probability, as would be expected in an intuitive sense. P(x,,)
is sometimes called a measure of precision of the data because it has a larger value
for smaller values of the standard deviation.

We next wish to examine the gaussian distribution to determine the likelihood
that certain data points will fall within a specified deviation from the mean of all the
data points. The probability that a measurement will fall within a certain range x; of
the mean reading is

P(xm) = [3- 1 5]

Xm X1 1 ( 12202
P / e I gy [3.16]
Xm—x1 O 2T

Making the variable substitution

X — Xy
77 =
o
Eq. (3.16) becomes
1 /er ?72/2
P=— e dn [3.17]
V2w —M
where
X1
n=— [3.18]
o

Values of the gaussian normal error function
L rn

V2m

and integrals of the gaussian function corresponding to Eq. (3.17) are given in Tables
3.1 and 3.2.

If we have a sufficiently large number of data points, the error for each point
should follow the gaussian distribution and we can determine the probability that
certain data fall within a specified deviation from the mean value. Example 3.10
illustrates the method of computing the chances of finding data points within one
or two standard deviations from the mean. Table 3.3 gives the chances for certain
deviations from the mean value of the normal distribution curve.
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Table 3.1 Values of the gaussian normal error distribution

Values of the function (1/+/ 2n)e”72/ 2 for different values of the argument ;. Each figure in the body of
the table is preceded by a decimal point.

n 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 39894 39892 39886 39876 39862 39844 39822 39797 39767 39733
0.1 39695 39654 39608 39559 39505 39448 39387 39322 39253 39181
0.2 39104 39024 38940 38853 38762 38667 38568 38466 38361 38251
0.3 38139 38023 37903 37780 37654 37524 37391 37255 37115 36973
0.4 36827 36678 36526 36371 36213 36053 35889 35723 35553 35381
0.5 35207 35029 34849 34667 34482 34294 34105 33912 33718 33521
0.6 33322 33121 32918 32713 32506 32297 32086 31875 31659 31443
0.7 31225 31006 30785 30563 30339 30114 29887 29658 29430 29200
0.8 28969 28737 28504 28269 28034 27798 27562 27324 27086 26848
0.9 26609 26369 36129 25888 25647 25406 25164 24923 24681 24439
1.0 24197 23955 23713 23471 23230 22988 22747 22506 22265 22025
1.1 21785 21546 21307 21069 20831 20594 20357 20121 19886 19652
1.2 19419 19186 18954 18724 18494 18265 18037 17810 17585 17360
1.3 17137 16915 16694 16474 16256 16038 15822 15608 15395 15183
1.4 14973 14764 14556 14350 14146 13943 13742 13542 13344 13147
1.5 12952 12758 12566 12376 12188 12001 11816 11632 11450 11270
1.6 11092 10915 10741 10567 10396 10226 10059 09893 09728 (09566
1.7 09405 09246 09089 08933 08780 08628 08478 08329 08183 08038
1.8 07895 07754 07614 07477 07341 07206 07074 06943 06814 06687
1.9 06562 06438 06316 06195 06077 05959 05844 05730 05618 05508
2.0 05399 05292 05186 05082 04980 04879 04780 04682 04586 04491
2.1 04398 04307 04217 04128 04041 03955 03871 03788 03706 03626
22 03547 03470 03394 03319 03246 03174 03103 03034 02965 02898
2.3 02833 02768 02705 02643 02582 02522 02463 02406 02349 02294
2.4 02239 02186 02134 02083 02033 01984 01936 01888 01842 01797
25 01753 01709 01667 01625 01585 01545 01506 01468 01431 01394
2.6 01358 01323 01289 01256 01223 01191 01160 01130 01100 01071
2.7 01042 01014 00987 00961 00935 00909 00885 00861 00837 00814
2.8 00792 00770 00748 00727 00707 00687 00668 00649 00631 00613
2.9 00595 00578 00562 00545 00530 00514 00499 00485 00470 00457
3.0 00443

3.5 008727

4.0 0001338

4.5 0000160

5.0 000001487




3.8 THE GAUSSIAN OR NORMAL ERROR DISTRIBUTION

Table 3.2 Integrals of the gaussian normal error function

Values of the integral (1/+/27) fom e 2dy are given for different values of the argument 7;. It may be

1 o 2 1 m 2/
— e Tdn =2—— e T/%dn
V2 /,“ «/27r/0

observed that

The values are related to the error function since

1 o 2
erf ) = ﬁ/ e Tdn
-

so that the tabular values are equal to % erf (71 /+/2). Each figure in the body of the table is preceded by a

decimal point.

m 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0000 00399 00798 01197 01595 01994 02392 02790 03188 03586
0.1 03983 04380 04776 05172 05567 05962 06356 06749 07142 07355
0.2 07926 08317 08706 09095 09483 09871 10257 10642 11026 11409
0.3 11791 12172 12552 12930 13307 13683 14058 14431 14803 15173
04 15554 15910 16276 16640 17003 17364 17724 18082 18439 18793
0.5 19146 19497 19847 20194 20450 20884 21226 21566 21904 22240
0.6 22575 22907 23237 23565 23891 24215 24537 24857 25175 25490
0.7 25084 26115 26424 26730 27035 27337 27637 27935 28230 28524
0.8 28814 29103 29389 29673 29955 30234 30511 30785 31057 31327
09 31594 31859 32121 32381 32639 32894 33147 33398 33646 33891
1.0 34134 34375 34614 34850 35083 35313 35543 35769 35993 36214
1.1 36433 36650 36864 37076 37286 37493 37698 37900 38100 38298
1.2 38493 38686 38877 39065 39251 39435 39617 39796 39973 40147
1.3 40320 40490 40658 40824 40988 41198 41308 41466 41621 41774
1.4 41924 42073 42220 42364 42507 42647 42786 42922 43056 43189
1.5 43319 43448 43574 43699 43822 43943 44062 44179 44295 44408
1.6 44520 44630 44738 44845 44950 45053 45154 45254 45352 45449
1.7 45543 45637 45728 45818 45907 45994 46080 46164 46246 46327
1.8 46407 46485 46562 46638 46712 46784 46856 46926 46995 47062
1.9 47128 47193 47257 47320 47381 47441 47500 47558 47615 47670
2.0 47725 47778 47831 47882 47932 47962 48030 48077 48124 48169
2.1 48214 48257 48300 48341 48382 48422 48461 48500 48537 48574
2.2 48610 48645 48679 48713 48745 48778 48809 48840 48870 48899
23 48928 48956 48983 49010 49036 49061 49086 49111 49134 49158
24 49180 49202 49224 49245 49266 49286 49305 49324 49343 49361
2.5 49379 49296 49413 49430 49446 49461 49477 49492 49506 49520
2.6 49534 49547 49560 49573 49585 49598 49609 49621 49632 49643
2.7 49653 49664 49674 49683 49693 49702 49711 49720 49728 49736
2.8 49744 49752 49760 49767 49774 49781 49788 49795 49801 49807
29 49813 49819 49825 49831 49836 49841 49846 49851 49856 49861
3.0 49865

3.5 4997674

4.0 4999683

4.5 4999966

5.0 4999997133
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Table 3.3 Chances for deviations
from mean value of normal
distribution curve

Chances of Results Falling

Deviation within Specified Deviation
+0.67450 1-1

o 2.15-1

20 21-1

30 369-1

Example 3.10

PROBABILITY FOR DEVIATION FROM MEAN VALUE. Calculate the probabilities
that a measurement will fall within one, two, and three standard deviations of the mean value
and compare them with the values in Table 3.3.

We perform the calculation using Eq. (3.17) with n; = 1, 2, and 3. The values of the integral
may be obtained from Table 3.2. We observe that

+m ) n )
/ e dp = 2/ e dp
—-m 0

P(1) = (2)(0.34134) = 0.6827
P(2) = (2)(0.47725) = 0.9545
P(3) = (2)(0.49865) = 0.9973

so that

Using the odds given in Table 3.3, we would calculate the probabilities as

2.15
P(1) = —— = 0.6827
2.15+1
21
PQ2) = —— =0.9545
2141
369
P(3) = = 0.9973
) 369 + 1
Comment

This example shows how the concept of probability in the gaussian distribution is related to
the “odds” concept mentioned in the previous discussion of uncertainty specifications.

CONFIDENCE INTERVAL AND LEVEL OF SIGNIFICANCE

The confidence interval expresses the probability that the mean value will lie within
a certain number of ¢ values and is given by the symbol z. Thus,

X=Xx+*zo (% confidence level)
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Table 3.4
Confidence Level, Level of Significance,

Confidence Interval % %

3.30 99.9 0.1

3.0 99.7 0.3

2.57 99.0 1.0

2.0 954 4.6

1.96 95.0 5.0

1.65 90.0 10.0

1.0 68.3 31.7

and using the procedure of Example 3.10, the confidence level in percent could be
expressed as in Table 3.4. For small data samples z should be replaced by

A= [3.19]
= .
We thus expect that the mean value will lie within £2.570 with less than 1 percent error
(confidence level of 99 percent). The level of significance is 1 minus the confidence
level. Thus, for z = 2.57 the level of significance is 1 percent.

DETERMINATION OF NUMBER OF MEASUREMENTS TO ASSURE A SIGNIFI-
CANCE LEVEL. A certain steel bar is measured with a device which has a known precision
of £0.5 mm when a large number of measurements is taken. How many measurements are
necessary to establish the mean length X with a 5 percent level of significance such that

X =Xx=x0.2mm

Solution

For a large number of measurements the 5 percent level of significance is obtained at z = 1.96
and for the population here

1. .
A= _02mm= 12905mm)
Jn N
which yields

n = 24.01

So, for 25 measurements or more we could state with a confidence level of 95 percent that the
population mean value will be within £0.2 mm of the sample mean value.

Example 3.11

POWER SUPPLY. A certain power supply is stated to provide a constant voltage output
of 10.0 V within 0.1 V. The output is assumed to have a normal distribution. Calculate the
probability that a single measurement of voltage will lie between 10.1 and 10.2 V.

Example 3.12
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For this problem o = 0.1 V. The probability that the voltage will lie between 10.0 and
10.1 V (+10) is, from Table 3.2,

P(+0.1) = 0.34134
while the probability it will lie between 10.0 and 10.2 V (420) is
P(+0.2) = 0.47725
The probability that it will lie between 10.1 and 10.2 V is therefore
P(10.1 t0 10.2) = 0.47725 — 0.34134 = 0.13591

CHAUVENET’S CRITERION

It is a rare circumstance indeed when an experimenter does not find that some of
the data points look bad and out of place in comparison with the bulk of the data.
The experimenter is therefore faced with the task of deciding if these points are
the result of some gross experimental blunder and hence may be neglected or if
they represent some new type of physical phenomenon that is peculiar to a certain
operating condition. The engineer cannot just throw out those points that do not fit
with expectations—there must be some consistent basis for elimination.

Suppose n measurements of a quantity are taken and » is large enough that we
may expect the results to follow the gaussian error distribution. This distribution may
be used to compute the probability that a given reading will deviate a certain amount
from the mean. We would not expect a probability much smaller than 1/n because
this would be unlikely to occur in the set of » measurements. Thus, if the probability
for the observed deviation of a certain point is less than 1/n, a suspicious eye would
be cast at that point with an idea toward eliminating it from the data. Actually, a more
restrictive test is usually applied to eliminate data points. It is known as Chauvenet’s
criterion' and specifies that a reading may be rejected if the probability of obtaining
the particular deviation from the mean is less than 1/2n. Table 3.5 lists values of
the ratio of deviation to standard deviation for various values of n according to this
criterion with Fig. 3.6 furnishing a graphical representation.

In applying Chauvenet’s criterion to eliminate dubious data points, one first cal-
culates the mean value and standard deviation using all data points. The deviations
of the individual points are then compared with the standard deviation in accordance
with the information in Table 3.5 (or by a direct application of the criterion), and
the dubious points are eliminated. For the final data presentation a new mean value
and standard deviation are computed with the dubious points eliminated from the

History is not clear on the matter, but it appears [29] that the criterion stated in the foregoing paragraph
and Table 3.5 is really due to Pierce [30], as confirmed by Chauvenet [32] and early tables were presented
by Gould [31] that are not exactly in agreement with Table 3.5. However, the term Chauvenet's criterion
as described herein has become so ubiquitous in various applications that it would not seem appropriate to
change the name at this time.
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Table 3.5  Chauvenet's criterion for rejecting a reading

Number of Readings, Ratio of Maximum Acceptable Deviation
n to Standard Deviation, dyax/ o
3 1.38
4 1.54
5 1.65
6 1.73
7 1.80
10 1.96
15 2.13
25 2.33
50 2.57
100 2.81
300 3.14
500 3.29
1000 3.48
4
35 >
L~
3 —
A
2.5 A
pd
pd
£
~
pd
7
1.5 v
1
0.5
0
1 10 100 1000

n = number of readings

Figure 3.6 Chauvenet's criterion.
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calculation. Note that Chauvenet’s criterion might be applied a second or third time
to eliminate additional points; but this practice is unacceptable, and only the first
application may be used.

Example 3.13 APPLICATION OF CHAUVENET’S CRITERION.  Using Chauvenet’s criterion, test the
data points of Example 3.7 for possible inconsistency. Eliminate the questionable points and
calculate a new standard deviation for the adjusted data.

The best estimate of the standard deviation is given in Example 3.8 as 0.627 cm. We first
calculate the ratio d; /o and eliminate data points in accordance with Table 3.5.

Reading di/ o

0.499
0.187
1.845
0.563
2.046
0.260
0.761
0.043
0.314
0.219

O O 00NN R W =

In accordance with Table 3.5, we may eliminate only point number 5. When this point is
eliminated, the new mean value is

Xn = §(51.80) = 5.756 cm

The new value of the standard deviation is now calculated with the following table:

Reading d; =x; — xp, (o — x,,,)2 x 102
1 —0.456 20.7936
2 —0.026 0.0676
3 1.014 102.8196
4 —0.496 24.602
6 —0.306 9.364
7 0.334 11.156
8 —0.116 1.346
9 0.054 0.292
10 —0.006 0.0036
n 1/2
! 1/2
7= n—1 Z(xi — )’ = [%(1'7044)] = (0.213)"/* = 0.4615 cm
i=1

Thus, by the elimination of the one point the standard deviation has been reduced from 0.627
to 0.462 cm. This is a 26.5 percent reduction.
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Comment

Please note that for the revised calculation of standard deviation a new mean value must be
computed leaving out the excluded data point.
The Chauvenet’s criterion we have applied in this example is

dmax /0 = 1.96 forn = 10

This value may be calculated directly from the gaussian distribution shown in Table 3.2 in
the following way. The criterion is that the probability of a point lying outside the normal
distribution should not exceed 1/2n or 1/20. The probability of the point lying inside the
normal distribution would then be

P(n) =1-1/20=0.95
The entry point for Table 3.2 is half this value or 0.475. We obtain
n=1.96

which agrees, of course, with Table 3.5 and Fig. 3.6.
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3.9 COMPARISON OF DATA WITH
NORMAL DISTRIBUTION

We have seen that the normal error distribution offers a means for examining ex-
perimental data for statistical consistency. In particular, it enables us to eliminate
questionable readings with the Chauvenet criterion and thus obtain a better estimate
of the standard deviation and mean reading. If the distribution of random errors is not
normal, then this elimination technique will not apply. It is to our advantage, there-
fore, to determine if the data are following a normal distribution before making too
many conclusions about the mean value, variances, and so forth. Specially constructed
probability graph paper is available for this purpose and may be purchased from a
technical drawing shop. The paper uses the coordinate system shown in Fig. 3.7. The
ordinate has the percent of readings at or below the value of the abscissa, and the
abscissa is the value of a particular reading. The ordinate spacings are arranged so
that the gaussian-distribution curve will plot as a straight line on the graph. In addi-
tion, this straight line will intersect the 50 percent ordinate at an abscissa equal to the
arithmetic mean of the data.

Thus, to determine if a set of data points is distributed normally, we plot the data
on probability paper and see how well they match with the theoretical straight line. Itis
to be noted that the largest reading cannot be plotted on the graph because the ordinate
does not extend to 100 percent. In assessing the validity of the data, we should not place
as much reliance on the points near the upper and lower ends of the curve since they are
closer to the “tails” of the probability distribution and are thus less likely to be valid.

An alternative approach is to plot the cumulative frequencies for the normal
distribution using the tabular values from Table 3.2 or computer software. This plot
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Percent of readings at or
below value of abscissa

Reading x

Figure 3.7 Probability graph paper.

is then displayed and compared with the actual frequency distribution to make an
evaluation of the “normality” of the data.

Example 3.14

USE OF PROBABILITY GRAPH PAPER AND COMPUTER COMPARISON. The
following data are collected for a certain measurement. Plot the data on probability paper and
comment on the normality of the distribution: Make the same comparison with a computer-
generated display.

Reading X, cm

4.62
4.69
4.86
453
4.60
4.65
459
470
458
4.63
> xi = 46.45

S O 0NN R W=

—_

From these data the mean value is calculated as

X, = Tlo X = %(46.45) = 4.645 cm

The population standard deviation is

1/2
1 2

= |- E P — Xm = 0.0864
o [n (x; — xm) ]

The data are plotted in the example figure (a) indicating a reasonably normal distribution. It
should be noted that the straight line crosses the 50 percent ordinate at a value of approximately
x = 4.62, which is not in agreement with the calculated value of x,,. Note that point 3, x = 4.86,
does not appear on the plot since it would represent the 100 percent ordinate.
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Percent of readings at or below the abscissa

10

Xi

Figure Example 3.14(a)

A computer-generated comparison may be made by listing the values of x in ascending order
as shown in the table below.

x Actual Frequency Normal Distribution Frequency
4.3 0.00 0.00003
4.35 0.00 0.00032
4.4 0.00 0.00229
445 0.00 0.01201
4.5 0.00 0.04665
4.53 0.10 0.09159
4.58 0.20 0.22593
4.59 0.30 0.26220
4.6 0.40 0.30124
4.62 0.50 0.38616
4.63 0.60 0.43109
4.65 0.70 0.52307
4.69 0.80 0.69876
4.7 0.90 0.73780
475 0.90 0.88787
4.8 0.90 0.96359
4.85 0.90 0.99117
4.86 1.00 0.99358
49 1.00 0.99842
4.95 1.00 0.99979

5 1.00 0.99998
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The values of x are extended below and above the minimum and maximum value of 4.53
and 4.86 in order to pick up the tails of the normal distribution. Next, the actual cumulative
frequencies are listed in the second column of the table. Note that there are no data points
below x = 4.53 so these entries for the actual frequencies are zero. Likewise, all points have
been observed at x = 4.86 or greater, so the actual frequencies are 1.0 at this point and above.
The values for the normal distribution frequencies are computed with

X = Xm

]7 =

o

and Table 3.2, or a computer function. In this case the values were obtained with the probability

functions in Microsoft Excel. Note the behavior of the normal distribution at large deviations
from the mean value of x,,.

A graphical display of the actual and normal distribution frequencies is shown in example
figure (b). The 50 percent value for the normal distribution occurs at x = x,, = 4.645. The
actual frequency curve deviates substantially from the normal distribution in some regions of
the chart.

//
- + —e— Actual Frequency
42 43 44 45 46 47 48 49 5 | ——Nommal Dist Frequency
b ¢

Figure Example 3.14(b)
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3.10 THE CHI-SQUARE TEST OF GOODNESS OF FIT

In the previous discussion we have noted that random experimental errors would be
expected to follow the gaussian distribution, and the examples illustrated the method
of calculating the probability of occurrence of a particular experimental determination.
We might ask how it is known that the random errors or deviations do approximate a
gaussian distribution. In general, we may ask how we can determine if experimental
observations match some particular expected distribution for the data. As a simple
example, consider the tossing of a coin. We would like to know if a certain coin is
“honest,” that is, unweighted toward either heads or tails. If the coin is unweighted,
then heads should occur half the time and tails should occur half the time. But suppose
we do not want to take the time to make thousands of tosses to get a frequency
distribution of heads and tails for a large number of tosses. Instead, we toss the coin
a few times and wish to infer from these few tosses whether the coin is unweighted
or weighted. Common sense tells us not to expect exactly six heads and six tails out
of, say, 12 tosses. But how much deviation from this arrangement could we tolerate
and still expect the coin to be unweighted? The chi-square test of goodness of fit is
a suitable way of answering this question. It is based on a calculation of the quantity
chi squared, defined by
n

observed value); — (expected value).]?

(expected value),

i=1
where n is the number of cells or groups of observations. The expected value is the
value which would be obtained if the measurements matched the expected distribution
perfectly.

The chi-square test may be applied to check the validity of various distributions.
Calculations have been made [2] of the probability that the actual measurements
match the expected distribution, and these probabilities are given in Table 3.6. In
this table F represents the number of degrees of freedom in the measurements and is
given by

F=n—-k [3.21]

where n is the number of cells and k is the number of imposed conditions on the
expected distribution. A plot of the chi-square function is given in Fig. 3.8.

While we initiated the discussion on the chi-square test in terms of random er-
rors following the gaussian distribution, the test is an important tool for testing any
expected experimental distribution. In other words, we might use the test to analyze
random errors or to check the adherence of certain data to an expected distribution.
We interpret the test by calculating the number of degrees of freedom and x? from the
experimental data. Then, consulting Table 3.6, we obtain the probability P that this
value of x? or higher value could occur by chance. If x> = 0, then the assumed or
expected distribution and measured distribution match exactly. The larger the value
of x2, the larger is the disagreement between the assumed distribution and the ob-
served values, or the smaller the probability that the observed distribution matches the
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Figure 3.8 The chi-square function.

expected distribution. The reader should consult Refs. [2] and [4] for more specific
information on the chi-square test and the derivation of the probabilities associated
with it.

One may note that the heading of this section includes the term “goodness of
fit.” We see that the chi-square test may be used to determine how well a set of ex-
perimental observations fits an assumed distribution. In connection with this test we
may remark that data may sometimes be “too good” or “too consistent.” For exam-
ple, we would be quite surprised if in the conduct of an experimental test, the results
were found to check with theory exactly or to follow some well-defined relationship
exactly. We might find, for instance, that a temperature controller maintained a set
point temperature exactly, with no measurable deviation whatsoever. Experienced
laboratory people know that controllers usually do not operate this way and would
immediately suspect that the temperature recorder might be stuck or otherwise defec-
tive. The point of this brief remark is that one must be suspicious of high values of P
as well as of low values. A good rule of thumb is that if P lies between 0.1 and 0.9, the
observed distribution may be considered to follow the assumed distribution. If P is
either less than 0.02 or greater than 0.98, the assumed distribution may be considered
unlikely.

Let us return for a moment to the tossing of a coin. Suppose a coin is tossed
twice, resulting in one head and one tail. This observation certainly matches exactly
with what would be expected for an unweighted coin; however, our common sense
tells us not to believe the coin is unweighted on the basis of only two tosses. In other
words, we must have a certain minimum number of samples for statistics to apply.
For the chi-square test the generally accepted minimum number of expected values
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for each ith cell is 5. If some frequencies fall below 35, it is recommended that the
cells or groups be redefined to alleviate the problem.

Example 3.15 DEFECTS IN PLASTIC CUPS.  Anplastics company produces two types of styrofoam cups
(call them A and B) which can experience eight kinds of defects. One hundred defective samples
of each cup are collected and the number of each type of defect is determined. The following
table results:

Type Defect Cup A Cup B
1 1 5
2 2 3
3 3 3
4 25 23
5 10 12
6 15 16
7 38 30
8 6 8
Total 100 100

We would like to know if the two cups have the same pattern of defects. To do this, we could
compute chi-squared for cup B assuming cup A has the expected distribution. But we encounter
a problem. Defects 1, 2, and 3 do not meet our criterion of a minimum of five expected values
in each cell. So, we must reconstruct the cells by combining 1, 2, and 3 to obtain:

Type Defect Cup A Cup B
1,2,3 6 11
4 25 23
5 10 12
6 15 16
7 38 30
8 6 8
Total 100 100

For the former case we had eight cells or groups and one imposed condition (total observations
=100), so F =8 —1=7. After grouping defects 1, 2, and 3, we have FF =6 —1=35. Using
this new tabulation the value of chi-squared is calculated as 7.145. Consulting Table 3.6, we
obtain the value of P as 0.43. Thus, we might expect that the two cups have approximately the
same pattern of defects.
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ROLLING THE DICE. Two dice are rolled 300 times and the following results are

noted:

Number

Number of Occurrences

00 N AN W kW

11
12

6

9
27
36
39
57
45
39
24
12

6

Calculate the probability that the dice are unloaded.

Eleven cells have been observed with only one restriction: the number of rolls of the dice is
fixed. Thus, F = 11 — 1 = 10. If the dice are unloaded, a short listing of the combinations of
the dice will give the probability of occurrence for each number. The expected value of each
number is then the probability multiplied by 300, the total number of throws. The values of

interest are tabulated as follows:

Number Observed Probability Expected
2 6 1/36 8.333
3 9 1/18 16.667
4 27 1/12 25.0
5 36 1/9 33.333
6 39 5/36 41.667
7 57 1/6 50.0
8 45 5/36 41.667
9 39 1/9 33.333

10 24 1/12 25.0

11 12 1/18 16.667

12 6 1/36 8.333

From these data the value of chi-squared is calculated as 8.034. If Table 3.6 is consulted, the

probability is given as P = 0.626.

Comment

The value of P = 0.626 lies between our acceptable limits of 0.1 and 0.9, so we might conclude,

based on these observations, that the dice are honest or unweighted.

Example 3.16
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Example 3.17

TOSS OF COIN: INFLUENCE OF ADDITIONAL DATA POINTS. A coin is tossed
20 times, resulting in 6 heads and 14 tails. Using the chi-square test, estimate the probability
that the coin is unweighted. Suppose another set of tosses of the same coin is made and 8 heads
and 12 tails are obtained. What is the probability of having an unweighted coin based on the
information from both sets of data?

Solution

For each set of data we may make only two observations: the number of heads and the number
of tails. Thus, n = 2. Furthermore, we impose one restriction on the data: the number of tosses
is fixed. Thus, k = 1 and the number of degrees of freedom is

F=n—k=2-1=1

The values of interest are:

Observed Expected
Heads 6 10
Tails 14 10

For these values x? is calculated as

2 2
= 6 —10) n (14 —10)
10 10
Consulting Table 3.6, we find P = 0.078; that is, there is an 8 percent chance that this distri-
bution is just the result of random fluctuations and that the coin may be unweighted.

Now, consider the additional information we gain about the coin from the second set of
observations. We then have four observations: the number of heads and tails in each set. There
are only two restrictions on the data: the total number of tosses is fixed in each set. Thus, the
number of degrees of freedom is

=3.20

F=n—k=4-2=2

For the second set of data the values of interest are:

Observed Expected
Heads 8 10
Tails 12 10

Chi-squared is now calculated on the basis of all four observations:
£ = (6 — 10)? N (14 — 10)? n (8 — 10)? N (12 — 10)? _
10 10 10 10

Consulting Table 3.6 again, we find P = 0.15. So, with the additional information we find
a stronger likelihood that the tosses are following a random variation and that the coin is
unweighted.

4.0
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Comment

This example illustrates how the collection of additional data may strengthen a conclusion
which may have been previously viewed as marginal.
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EFFECT OF CIGARETTE SMOKE ON MICE.  Atestis conducted to determine the effect
of cigarette smoke on the eating habits and weight of mice. One group is fed a certain diet
while being exposed to a controlled atmosphere containing cigarette smoke. A control group
is fed the same diet but in the presence of clean air. The observations are given below. Does
the presence of smoke cause a loss in weight?

Gained Lost

Weight Weight Total
Exposed to smoke 61 89 150
Exposed to clean air 65 77 142
Total 126 166 292

Solution

Clearly, there are four observations in this experiment, but we are faced with the problem of
deciding on the expected values. We cannot just take the “clean-air” data as the expected values
because some of the behavior might be a result of the special diet that is fed to both groups of
mice. Consequently, about the best estimate we can make is one based on the total sample of
mice. Thus, the expected frequencies would be

126

292

166
292

Expected fraction to gain weight =
Expected fraction to lose weight =

The expected values for the groups would thus be:

Gained Weight Lost Weight
Exposed to smoke 12150 = 64.7 756150 = 85.3
Exposed to clean air 2142 =613 156142 = 80.7

We observe that there are three restrictions on the data: (1) the number exposed to smoke,
(2) the number exposed to clean air, and (3) the additional restriction involved in the calculation
of the expected fractions which gain and lose weight. The number of degrees of freedom is thus

F=4-3=1
The value of chi-squared is calculated from

, (61— 64.7)> (89 —85.3)* (65—61.3)> (77 —80.7)°

= e 85.3 613 o7 0767

Example 3.18
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From Table 3.6 we find P = 0.41, or there is a 41 percent chance that the difference in the
observations for the two groups is just the result of random fluctuations. One may not conclude
from this information that the presence of cigarette smoke causes a loss in weight for the mice.

3.11 METHOD OF LEAST SQUARES

Suppose we have a set of observations xy, x7, . .., X,. The sum of the squares of their
deviations from some mean value is

S = Z(xi — x)? [3.22]
i=1

Now, suppose we wish to minimize S with respect to the mean value x,,. We set

aS n n
M 0= Z —2(x; — xp) = —2 <Z X — nx,,,) [3.23]

i=1 i=1

where 7 is the number of observations. We find that
1 n
X = ;Zl X; [3.24]
=

or the mean value which minimizes the sum of the squares of the deviations is the
arithmetic mean. This example might be called the simplest application of the method
of least squares.

Suppose that the two variables x and y are measured over a range of values.
Suppose further that we wish to obtain a simple analytical expression for y as a
function of x. The simplest type of function is a linear one; hence, we might try to
establish y as a linear function of x. (Both x and y may be complicated functions of
other parameters so arranged that x and y vary approximately in a linear manner. This
matter will be discussed later.) The problem is one of finding the best linear function,
for the data may scatter a considerable amount. We could solve the problem rather
quickly by plotting the data points on graph paper and drawing a straight line through
them by eye. Indeed this is common practice, but the method of least squares gives
a more reliable way to obtain a better functional relationship than the guesswork of
plotting. We seek an equation of the form

y=ax+b [3.25]

We therefore wish to minimize the quantity
S= [y — (ax; + b [3.26]
i=1

This is accomplished by setting the derivatives with respect to a and b equal to zero.
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Performing these operations, there results

nb—+a Z X, = Z Vi
be[ +azxi2 = inyi
Solving Egs. (3.27) and (3.28) simultaneously gives
_ ny o xiyi— (in)(Zyi)
n> x}— (in)z
_ (20 (£2) — (Suw) ()
ndy x?— ( > x,~)2

Designating the computed value of y as y, we have

Yy=ax+D>b
and the standard error of estimate of y for the data is

S — y,)z} 1/2
n—2

B {Zm — ax; —b)z} 12

Standard error = [

n—2

[3.27]
[3.28]

[3.29]

[3.30]

[3.311

[3.32]

The method of least squares may also be used for determining higher-order polynomi-
als for fitting data. One only needs to perform additional differentiations to determine
additional constants. For example, if it were desired to obtain a least-squares fit ac-

cording to the quadratic function
y=ax’+bx+c

the quantity

n

S = Z [y,- — (axi2 + bx; +c)}2
i=1

would be minimized by setting the following derivatives equal to zero:

as
= 0= 2l - (w +bx+0))(— )

N
> _O_ZZ (ax; ~|—bx,+c)}(—xi)

A
5o =0=> 2[y— (axf + bxi + )] (- 1)

Expanding and collecting terms, we have

DILRTS ST gy pEN
aZx?+bei2+chi = inyi

[3.33]

[3.34]
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aZx%+bei+cn:Zy,- [3.35]

These equations may then be solved for the constants a, b, and c.

REGRESSION ANALYSIS

In the above discussion of the method of least squares no mention has been made
of the influence of experimental uncertainty on the calculation. We are considering
the method primarily for its utility in fitting an algebraic relationship to a set of data
points. Clearly, the various x; and y; could have different experimental uncertainties.
To take all these into account requires a rather tedious calculation procedure, which
we shall not present here; however, we may state the following rules:

1. If the values of x; and y; are taken as the data value in y and the value of x
on the fitted curve for the same value of y, then there is a presumption that the
uncertainty in x is large compared with that in y.

2. If the values of x; and y; are taken as the data value in y and the value on the
fitted curve for the same value of x, the presumption is that the uncertainty in y
dominates.

3. If the uncertainties in x; and y; are believed to be of approximately equal magni-
tude, a special averaging technique must be used.

In rule 1 we say we are taking a regression of x on y, and in rule 2 there is a
regression of y on x. In the second case we are minimizing the sum of the squares of
the deviations of the actual points from the assumed curve and also assuming that x
does not vary appreciably at each point. If we obtained

y=a-+bx
and then solved to get
1 a
X=-y——
b’ b

this second relation would not necessarily give a good calculation for x since the
minimization was carried out in the y direction and not in the x direction. In Example
3.19 rule 2 is assumed to apply.

Example 3.19

LEAST-SQUARES REGRESSION. From the following data obtain y as a linear function
of x using the method of least squares:

Yi Xi

1.2 1.0
2.0 1.6
2.4 3.4
35 4.0
35 52

Svi= 12,6 doxi= 152
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Solution
We seek an equation of the form

y=ax+b

We first calculate the quantities indicated in the following table:
2

Xi Yi x;
12 1.0
32 2.56
8.16 11.56
14.0 16.0
18.2 27.04
> xiyi =44.76 > x?=58.16

We calculate the value of a and b using Egs. (3.29) and (3.30) withn = 5:
(5)(44.76) — (15.2)(12.6)
a =
(5)(58.16) — (15.2)?

_ (12.6)(58.16) — (44.76)(15.2)
- (5)(58.16) — (15.2)2

= 0.540

= 0.879

Thus, the desired relation is
y = 0.540x + 0.879

A plot of this relation and the data points from which it was derived is shown in the accom-
panying figure.

4 /
gy
3
/ o
v 2 /'3710.54x+0‘879

1 //

0

0 1 2 3 4 5 6

Figure Example 3.19

The least-squares minimization process has been carried out assuming that the uncertainty in
y predominates, that is, x is known more exactly than y. If we write the correlating equation
in the form

x = (1/b)y — (a/b)
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and then performed a least-squares process we would obtain
x = 1.6353y — 1.0809
or
y = 0.6115x 4 0.66098

In this case it is presumed that the uncertainty in x predominates or y is known more accurately
than x. The difference in the two relations can be significant at the limits of the variables. When
the analysis is applied to actual experimental data, the experimentalist should select the most
appropriate one based on the total information available concerning the experiment.

3.12 THE CORRELATION COEFFICIENT

Let us assume that a suitable correlation between y and x has been obtained, by either
least-squares analysis or graphical curve fitting. We want to know how good this fit
is and the parameter which conveys this information is the correlation coefficient r

defined by
52 1/2
r= [1 — 2= [3.36]

where o, is the standard deviation of y given as

n o 211/2
oy = [Zi—l;yl_ 1 Ym) } [3.37]
n Y 1/2
and Oy = [Zf'(y' zy’“) ] [3.38]
—

The y; are the actual values of y, and the y;. are the values computed from the
correlation equation for the same value of x.

The division by n — 2 results from the fact that we have used the two derived
variables a and b in determining the value of y;.. We might say that this removes 2
degrees of freedom from the system of data. The correlation coefficient r may also
be written as

=L 2 [3.39]
where, now, 2 is called the coefficient of determination. We note that for a perfect fit
oy,x = 0 because there are no deviations between the data and the correlation. In this
caser = 1.0.If o, = o, ,, we obtain » = 0, indicating a poor fit or substantial scatter

around the fitted line. The reader must be cautioned about ascribing too much virtue
to values of r close to 1.0. These values may occur when the data do not fit the line.
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To be on the safe side, one should never accept a least-squares analysis based only
on calculations. One should always plot the data to obtain a visual observation of the
behavior. If the data points do indeed hug the least-squares line, then a high value
of r will be indicative of a very good correlation. If the data scatter but still appear
to follow the fitted relationship, then a small value of r will also be meaningful as a
measure of poorer correlation.

At this point we must stress the need for graphical displays of data for other
purposes. In our discussions of uncertainties and errors we noted that the experimen-
talist may be the best person to assess the uncertainties in the primary measurements.
Sometimes during the course of the experiment the experimenter may note that a
particular data point has an erratic behavior and so record the observation in the lab
notebook. When the data are plotted, such a point may be excluded if it appears
out of line with other data or retained if it appears satisfactory. If a least-squares
analysis was performed which included all the data, the correlation might not be
so good as could be obtained with exclusion of the questionable data point(s). For
these reasons seasoned experimentalists like to get an “eyeball” plot of the correlat-
ing straight line before actually performing a least-squares analysis. In Sec. 3.15 we
shall see how one may go about obtaining straight-line plots for different functional
relationships.

It may be noted that most scientific calculators have built-in routines which
calculate the correlation coefficient as well as other statistical functions. In addition,
there are many computer software packages which accomplish these calculations, for
example, those of Refs. [15], [16], and [28].

A relationship for the correlation coefficient which may be preferable to Eq.
(3.36) for computer calculations is

r— aniyi—(in)(Zy,-) [3.40]
[ = (Zx) ] 07 = (Zw)]

In Eqgs. (3.33) through (3.35) we noted the technique that one might apply for a
least-squares fit to a quadratic function. In this case the correlation coefficient is still
given by Eq. (3.36), but now

N2 1/2
- {(y,n _y:;c) } [3.41]
In general, for fit with a polynomial of order m one would obtain
T IRV
- (i = Yie) [3.42]
n—m+1)

Aside from the fact that one may anticipate the form of the functional data
relationship from theory, we may sometimes try to fit the data with a polynomial
through a least-squares analysis. For those who are computer inclined the tendency
is to assume that the higher the order of the polynomial, the better the correlation
will be. As a result, a certain overkill may be experienced. In some cases a higher-
order polynomial may actually provide a poorer correlation than the simple quadratic.
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Again, it is a good idea to plot the data first to get a visual idea of the behavior before
performing analyses.

3.13 MULTIVARIABLE REGRESSION

The least-squares method may be extended to perform a regression analysis for more
than one variable. In the linear case we would have the form

y=b+mix; +moxy + - +myx, [3.43]

where the x, are the independent variables. For only two variables we form the sum
of the squares

S = Z(yi —b—myx;; —max;)? [3.44]
and minimize this sum with the differentiations:

oS

i -2 Z(Yi —b—mx;; —myxy;) =0

a5
am = _zle,i(yi —b—mix1; —myx2;) =0

A
s = —szz,i()’i —b—mix1; —myx2;) =0

This set of linear equations may then be solved for the coefficients m, m,, and b.
A further extension of the multivariable regression method may be made to an
exponential form where

y= bm)flm’z‘2 N [3.45]

n

The equation may be modified by taking the logarithm of each side to give
logy =logb + x;logm| + x;logmy + - - - [3.46]

A least-squares analysis is then performed to determine values of the constants
b, my, my, etc. The calculation of correlation coefficients for multivariable regres-
sions is described in Ref. [12].

Computer software packages are available to perform the multivariable calcu-
lations indicated above. Microsoft Excel is one such package, and examples of its
use in multivariable linear and exponential regression analysis, including computa-
tion of correlation coefficients, are given in Ref. [28]. The standard deviation for
multivariable regression is computed with Eq. (3.42) with the term (m + 1) replaced
by the number of constants to be determined. For the two-variable linear relation in
Eq. (3.44) there are three constants to be determined so the denominator of Eq. (3.42)
would be n — 3.

Multivariable regression calculations can become rather involved and are best
performed with a computer. Some words of caution are in order though. It is very easy
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to accept the computer results as gospel truth without checking against the original
data points. As we have noted before, no correlation or regression analysis should be
accepted without a direct comparison with the original data, preferably a graphical
comparison which gives a visual feel for the data correlation independent of cal-
culated values of correlation coefficients. Constructing such plots may be difficult
for multivariable problems but is well worth the effort. The present writer has seen
computer-generated multivariable regression results presented with favorable corre-
lation coefficients. In some cases, these results, when graphed with the original data,
passed distinctly outside the range of the data. Obviously, when such disagreement
occurs, the results of the regression analysis must be discarded.

CORRELATION COEFFICIENT.  Calculate the correlation coefficient for the least-square
correlation of Example 3.19.

Solution

From Example 3.19

Dy _ 126,

n 5

Ym =

and from the correlating equation y;. = 0.5490x + 0.879:

i Yi Yie i — Yie)?

1 1.2 1.419 0.048

2 2.0 1.743 0.066

3 2.4 2715 0.0992

4 35 3.039 0.212

5 35 3.687 0.035

> =0.4607
2
0.4607\ "/

so that Oyx = 3 =0.3919

In addition, we have

Ym = (Eyi)/S =2.52
o, = [Z(i — ym)?/ (5 — D1* = 0.987

so that the correlation coefficient is

24172
0.3919
— |- =091
g [ (0.987)] 09178

Example 3.20
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REGRESSION, RESIDUAL, AND TOTAL SUM OF SQUARES

Let us define the following terms:

Stotal = Z(y; — ym)2
Sregression = z:(yic - ym)2
Sresidual = E(yi - yic)2

Because
(i = ym) = (i = Yie) + Oie = Ym)
it follows that
Stotal = Sresidual T+ Sregression
A perfect “goodness of fit” will be obtained when Siesiqual = 0, that is, the regression

curve passes through the data points. The measure of goodness of fit may then be
taken as

2
r= Sregression/Stolal = (Stotal — Sresidual)/Stotal

3.14 STANDARD DEVIATION OF THE MEAN

We have taken the arithmetic mean value as the best estimate of the true value of
a set of experimental measurements. Considerable discussion has been devoted to
data subjected to random uncertainties and to an examination of the various types
of errors and deviations that may occur in an experimental measurement. But one
very important question has not yet been answered: How good (or precise) is this
arithmetic mean value which is taken as the best estimate of the true value of a set
of readings? To obtain an experimental answer to this question it would be necessary
to repeat the set of measurements and to find a new arithmetic mean. In general, we
would find that this new arithmetic mean would differ from the previous value, and
thus we would not be able to resolve the problem until a large number of sets of
data was collected. We would then know how well the mean of a single set approx-
imated the mean which would be obtained with a large number of sets. The mean
value of a large number of sets is presumably the true value. Consequently, we wish
to know the standard deviation of the mean of a single set of data from this true
value.

It turns out that the problem may be resolved with a statistical analysis which we
shall not present here. The result is

Op = [3.47]

W
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where o, = standard deviation of the mean value
o = standard deviation of the set of measurements
n = number of measurements in the set
We should note that the calculation of statistical parameters like standard devia-

tion and least-square fits to data is easily performed with standard computer programs
which are available on even small hand calculators.

UNCERTAINTY IN MEAN VALUE. For the data of Example 3.7, estimate the uncer-
tainty in the calculated mean value of the readings.
Solution

We shall make this estimate for the original data and for the reduced data of Example 3.13. For
the original data the standard deviation of the mean is

o 0.627
o, = — =——=0.198 cm
"yn V10
The arithmetic mean value calculated in Example 3.7 was x,, = 5.613 cm. We could now

specify the uncertainty of this value by using the odds of Table 3.3:

Xn = 5.613+£0.198 cm (2.15t0 1)
= 5.756 £0.396 cm 21to 1)
=5.613£0.594 cm (369to 1)
Using the data of Example 3.13, where one point has been eliminated by Chauvenet’s criterion,
we may make a better estimate of the mean value with less uncertainty. The standard deviation

of the mean is calculated as
o 0.465

NZENG
for the mean value of 5.756 cm. Thus, we would estimate the uncertainty as
X, = 5.756 £0.155 cm 2.15t0 1)
= 5.756 £0.310 cm 2lto 1)
= 5.756 £ 0.465 cm (369to 1)

=0.155cm

Om =

Example 3.21

3.15 STUDENT’S £-DISTRIBUTION

In Sec. 3.14 we have used the relation

to determine the standard deviation of the mean in terms of the standard deviation
of the population. For small samples (n < 10) this relation has been shown to be
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Values of Student's t for use in Equation (3.48)

Subscript designates percent confidence level.

Degrees
of freedom
4 t50 180 t9o tos tog t99 t99.9
1 1.000 3.078 6.314 12.706 31.821 63.657 636.619
2 0.816 1.886 2.920 4.303 6.965 9.925 31.598
3 0.765 1.638 2.353 3.182 4.541 5.841 12.941
4 0.741 1.533 2.132 2.776 3.747 4.604 8.610
5 0.727 1.476 2.015 2.571 3.365 4.032 6.859
6 0.718 1.440 1.943 2.447 3.143 3.707 5.959
7 0.711 1.415 1.895 2.365 2.998 3.499 5.405
8 0.706 1.397 1.860 2.306 2.896 3.355 5.041
9 0.703 1.383 1.833 2.262 2.821 3.250 4.781
10 0.700 1.372 1.812 2.228 2.764 3.169 4.587
11 0.697 1.363 1.796 2.201 2.718 3.106 4.437
12 0.695 1.356 1.782 2.179 2.681 3.055 4.318
13 0.694 1.350 1.771 2.160 2.650 3.012 4.221
14 0.692 1.345 1.761 2.145 2.624 2.977 4.140
15 0.691 1.341 1.753 2.131 2.602 2.947 4.073
16 0.690 1.337 1.746 2.120 2.583 2.921 4.015
17 0.689 1.333 1.740 2.110 2.567 2.898 3.965
18 0.688 1.330 1.734 2.101 2.552 2.878 3.922
19 0.688 1.328 1.729 2.093 2.539 2.861 3.883
20 0.687 1.325 1.725 2.086 2.528 2.845 3.850
21 0.686 1.323 1.721 2.080 2.518 2.831 3.819
22 0.686 1.321 1.717 2.074 2.508 2.819 3.792
23 0.685 1.319 1.714 2.069 2.500 2.807 3.767
24 0.685 1.318 1.711 2.064 2.492 2.797 3.745
25 0.684 1.316 1.708 2.060 2.485 2.787 3.725
26 0.684 1.315 1.706 2.056 2.479 2.779 3.707
27 0.684 1.314 1.703 2.052 2473 2.771 3.690
28 0.683 1.313 1.701 2.048 2.467 2.763 3.674
29 0.683 1.311 1.699 2.045 2.462 2.756 3.659
30 0.683 1.310 1.697 2.042 2.457 2.750 3.646
40 0.681 1.303 1.684 2.021 2.423 2.704 3.551
60 0.679 1.296 1.671 2.000 2.390 2.660 3.460
120 0.677 1.289 1.658 1.980 2.358 2.617 3.373
00 0.674 1.282 1.645 1.960 2.326 2.576 3.291
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somewhat unreliable. A better method for estimating confidence intervals was
developed by Student® by introducing the variable ¢ such that

A= [3.48]
=7 .
where, now, ¢ replaces the z variable previously used. It can be shown that
x—-X
t= Jn [3.49]
o

where n = number of observations
X = mean of n observations
X = mean of normal population which the samples are taken from

Student then developed a distribution function f(¢) such that
Ko
2 n/2
(1+75)
n—i [3.501]

2

£ = Ko<1 + ’v)<v+ /2

[ =

where K| is a constant which depends on n and v is (n — 1) degrees of freedom. When
n — 00, the distribution function approaches the normal distribution. Table 3.7 gives
values of Student’s ¢ for different degrees of freedom and levels of confidence. fq
means a 90 percent confidence level. Note that for v — 00, tgg is 1.645, which agrees
with Table 3.4.

CONFIDENCE LEVEL FROM (-DISTRIBUTION. Ten observations of a voltage are
made with e = 15V and o = £0.1 V. Determine the 5 and 1 percent significance levels.

Solution

Forn = 10 we have v = 10 — 1 = 9. At the 5 percent significance level the probability is 95
percent and we find from Table 3.7

t=2.262

From Eq. (3.48)

Ao (2.262)(0.1)
V10

at the 1 percent significance level P = 0.99. v =9, and

=0.0715V

t =3.250

| 2Pen name of William S. Gosset {1876-1937), an Irish chemist.

Example 3.22
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_(3.25)(0.1)
- 10

We thus could state with a 95 percent confidence level that the voltage is 15 V & 0.0715 V or
with a 99 percent confidence level thatitis 15 V £ 0.1028 V.

so that A =0.1028 V

Example 3.23

ESTIMATE OF SAMPLE SIZE. For the steel bar in Example 3.11, obtain a new estimate
for the number of measurements required using the ¢-distribution.

From Example 3.10 we have

A = 0.2 mm

o = 0.5 mm

and from Eq. (3.44)

to

A=

or t= 0.4ﬁ [al

At this point we note that 7 is a function of n through Table 3.7 so that Eq. (a) must be solved
by iteration to obtain a value for n. Remembering that v = n — 1 = 24, the trials are for the 95
percent confidence level:

n to5 (from Table 3.7) t [Calculated, Eq. (a)]
25 2.064 2.000
26 2.060 2.040
27 2.056 2.078

Therefore, we shall require 27 measurements for the ¢-distribution in contrast to the 25 mea-
surements required in Example 3.11.

Example 3.24

CONFIDENCE LEVEL. Ten measurements are made of the thickness of a metal plate
which give 3.61, 3.62, 3.60, 3.63, 3.61, 3.62, 3.60, 3.62, 3.64, and 3.62 mm. Determine the
mean value and the tolerance limits for a 90 percent confidence level.

Solution
The mean value is calculated from

- 1
X, = ;Zx,- = 753617 =3.617 mm
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The sample standard deviation is calculated from

Y1
o = |:Z(x1 Xm) :|

n—1

_ [r41x 107
- 10—1

1/2
:| =0.0125 mm

Entering Table 3.7 with v = 10 — 1 = 9, we obtain fyy for a 90 percent confidence level:
too = 1.833

Thus, we have from Eq. (3.44)
_to (1.833)(0.0125)

10 10
= 0.00726 mm
or x =3.617 mm % 0.00726 mm (90 percent confidence)

CONFIDENCE LEVEL.  If the results of the measurements of Example 3.24 are stated as
X = 3.617 mm £ 0.01 mm

what confidence level should be assigned to this statement?

Solution
We still have o = 0.0125 mm and from Eq. (3.44)
to 1(0.0125)
A=—=001= ———
Jn 10
or t=12.53

Entering Table 3.7 with v = 10 — 1 = 9, we find by interpolation
t =2.53 =tog4

indicating a confidence level of 96.4 percent.

Example 3.25

LOWER CONFIDENCE LEVEL. Repeat Examples 3.24 and 3.25 for a confidence level
of 90 percent (10 percent level of significance).

Solution
We still have

A = 0.2 mm

o =0.5mm
For 90 percent confidence level we obtain from Table 3.7

z=1.65

Example 3.26
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and from

NG Jn
n =17.01, roundedton =18

For the ¢-distribution

and t=0.4n [al

and, again, an iterative procedure is required. This time we must use to from Table 3.7. The
trials are, withv =n — 1:

n tgg (from Table 3.7) t [Calculated, Eq. (a)]
17 1.746 1.649
18 1.740 1.697
19 1.734 1.743

and 19 measurements would be required by the 7-distribution.

Example 3.27

TRADE-OFF IN NUMBER OF MEASUREMENTS.  Inacertain pressure measurement
a known precision of +6 kPa can be obtained with a large number of measurements. This
significance level of the pressure determination is directly related to rejection of a certain
production part. The cost per part rejected is P and the cost per pressure measurement is C.
Determine the relative relationship between P and C for levels of significance of 5 and 10
percent such that the mean pressure measured will be -3 kPa.

For this problem the important parameter is the total cost of rejection and measurement for the
two levels of significance. For the 5 percent level we have z = 1.96, 0 = 6 kPa, and A = 3 kPa
applied to Eq. (3.19) to give
AT s (1.96)(6)
Jn Jn

and n = 15.37, or rounded off to
n = 16 measurements for 5 percent level of significance

For the 10 percent significance level we have z = 1.65, 0 = 6 kPa, and A = 3 kPa

_(1.65)(6)
N

so that 3

and n = 10.89, or rounded off to

n = 11 measurements for 10 percent level of significance
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The cost of the measurements is 7C and the cost of rejection is Px (significance level expressed
as a decimal).
The total cost T for each case is

T (5 percent level) = 0.05P + 16C
T (10 percent level) = 0.1P + 11C

If the total costs are to be the same for the 5 and 10 percent levels, we would have

0.05P+ 16C = 0.1P + 11C
and P =100C

t-TEST COMPARISON OF DIFFERENT SAMPLES

The t-test may also be used to compare two samples to determine if significant vari-
ations exist. In this case ¢ is calculated from

Xml — Xm2
91 | 9%
— 4+ =
n ny

where the subscripts 1 and 2 refer to the two sets of data. The degrees of freedom for
the two samples are approximated by

[0F/n1 + 03 /na]’

B (012/711)2 n (02/n2)?

I’l1—1 I’l2—1

[3.52]

where v is rounded down to an integer [13]. The procedure for comparing the samples
is as follows:

1. The values of x,,, o, and n are determined for each sample.

2. vis estimated from Eq. (3.52).
3. tis calculated from Eq. (3.51).
4

A level of significance is selected for comparison of the samples. (This may be
determined from 1 percent confidence level.)

5. Avalue of ¢ is determined from Table 3.7 for the calculated value of v in step 2
but a significance level of one-half the value in step 4.

6. If the value of 7 calculated in step 3 falls within the range of the value obtained
in step 5, the two samples may be assumed to be statistically the same, within
the confidence level selected in step 4.

COMPARISON OF TWO SAMPLES. In aproduction process a metal part is measured
in a sampling process with the following results:

Xm, = 2.84cm o1 =0.05cm n =12

Example 3.28
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A week later another set of measurements is made with the following results:

Xm, = 2.86 cm o, = 0.03cm n, =16
Do these tests indicate that the same results are obtained with a confidence level of 90 percent?
(significance level = 10 percent)

Following the procedure outlined above, we first compute the degrees of freedom from
Eq. (3.52):

[(0.05)2/12 + (0.03)2/16]
T 10.05)2/12F  [(0.03)%/16
12-1 16— 1
= 16.84

rounded down to 16.
We now enter Table 3.7 with v = 16 and a significance level of 5 percent (one-half of 10
percent) and obtain

l95 = 2 1 20 [a]

This figure is to be compared with that calculated from Eq. (3.47). We have

B 2.84 — 2.86
a {(0.05)2 R (0.03)2} '
2 16

— —1.230

This value is less than that obtained in (a) above; so we may conclude that the two metal
samples are the same within a confidence level of 90 percent.

3.16 GRAPHICAL ANALYSIS
AND CURVE FITTING

Engineers are well known for their ability to plot many curves of experimental data and
to extract all sorts of significant facts from these curves. The better one understands
the physical phenomena involved in a certain experiment, the better one is able to
extract a wide variety of information from graphical displays of experimental data.
Because these physical phenomena may encompass all engineering science, we cannot
discuss them here except to emphasize that the person who is usually most successful
in analyzing experimental data is the one who understands the physical processes
behind the data. Blind curve-plotting and cross-plotting usually generate an excess of
displays, which are confusing not only to the management or supervisory personnel
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who must pass on the experiments, but sometimes even to the experimenter. To be
blunt, the engineer should give considerable thought to the kind of information being
looked for before even taking the graph paper out of the package, or activating the
computer software.

Assuming that the engineer knows what is to be examined with graphical presen-
tations, the plots may be carefully prepared and checked against appropriate theories.
Frequently, a correlation of the experimental data is desired in terms of an analy-
tical expression between variables that were measured in the experiment. When the
data may be approximated by a straight line, the analytical relation is easy to ob-
tain; but when almost any other functional variation is present, difficulties are usually
encountered. This fact is easy to understand since a straight line is easily recog-
nizable on a graph, whereas the functional form of a curve is rather doubtful. The
curve could be a polynomial, exponential, or complicated logarithmic function and
still present roughly the same appearance to the eye. It is most convenient, then, to
try to plot the data in such a form that a straight line will be obtained for certain
types of functional relationships. If the experimenter has a good idea of the type of
function that will represent the data, then the type of plot is easily selected. It is
frequently possible to estimate the functional form that the data will take on the ba-
sis of theoretical considerations and the results of previous experiments of a similar
nature.

Table 3.8 summarizes several different types of functions and plotting methods
that may be used to produce straight lines on the graph. The graphical measurements
which may be made to determine the various constants are also shown. It may be
remarked that the method of least squares may be applied to all these relations to
obtain the best straight line to fit the experimental data. A number of computer software
packages are available to accomplish the functional plots illustrated in Table 3.8. See,
for example, Refs. [15], [16], [23], and [28].

Please note that when using logarithmic or semilog graph coordinates, it is un-
necessary to make log calculations; the scaling of the coordinate automatically ac-
complishes this.

Incorporation of graphics in reports and presentations is discussed in Chap. 15.
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The engineer has many graph formats available for presenting experimental data or
calculation results. While bar charts, column charts, pie charts, and similar types of
displays have some applications, by far the most frequently used display is the x-y
graph with choices of coordinates to match the situation. This basic graph has several
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Table 3.8 Methods of plotting various functions to obtain straight lines

Functional Graphical Determination
Relationship Method of Plot of Parameters
y=ax+b y vs. x on linear paper y

Slope = a

N

0 X
— b
y=ax log y vs. log x on loglog paper log y
: Slope = b
“ A
log a
Y
logx =10 log x
orx=1.0
y = aeb* log y vs. x on semilog paper
log y
Slope = bloge
7
log a
Y
0 X
X 1 1 . 1
y= — vs. — on linear paper +
a+ bx y X y
Slope = a
Extrapolated\ ////
R 'y
b
Y
0 1
X
y=a+ bx+cx? - vs. x on linear paper YN
X —x X —x;
Slope = ¢
b
b+ cxy
A
0 X

(Continued)
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Table 3.8 (Continued)
Functional Graphical Determination
Relationship Method of Plot of Parameters
X X —x _
y= +c L vs. x on linear paper TN
a+ bx y—y1 Y= Jx:
Slope = b + o x|
7
a+ bx;
Y
0
1/(x—x1) y\Vx—x))
y= aebxter log |:<y> :| Vs, x log [(7]) ]
M
on semilog paper ﬁ‘me =cloge
%
b+ cx;loge
Y
0
1
=1—e? log( —— | vs. log(7—5
. (1) RE
on semilog paper
Slope = b
0 X
b 1 . y
y=a+ - y vs. — on linear paper
x X
Slope = b
Ve
i
1
X
y=a-+byx ¥ vs. 4/x on linear paper Y
Slope = b
7
a
v
=
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variations in format that we shall illustrate by plotting the simple table of x-y data
shown below.

=

y

2

3.1
12
18
20
37
51
70
82
90

O O 00NN R W=

—_

Six formats for plotting the data are shown in Fig. 3.9a through f. The choice

of format depends on both the source and type of data as well as the eventual use to
be made of the display. The following paragraphs discuss the six alternatives. The
computer graphics were generated in Microsoft Excel.

a.

This display presents just the raw data points with a data marker for each point. It
might be selected as an initial type of display before deciding on a more suitable
alternative. It may be employed for either raw experimental data points or for
points calculated from an analytical relationship. With computer graphics a wide
selection of data marker styles is available.

This display presents the points with the same data markers connected by a
smooth curve drawn either by hand or by a computer graphics system; in this
case, by computer. This display should be used with caution. If employed for
presentation of experimental data, it implies that the smooth curve describes the
physical phenomena represented by the data points. The engineer may want to
avoid such an implication and choose not to use this format.

This display is the same as (b) but with the data markers removed. It would almost
never be employed for presentation of experimental data because the actual data
points are not displayed. It also has the same disadvantage as (») in the implication
that the physical phenomena are represented by the smooth connecting curve. In
contrast, this type of display is obviously quite suitable for presenting the results
of calculations. The calculated points could be designated with data markers as
in () or left off as in (c). The computer-generated curve offers the advantage of
a smooth curve with a minimum number of calculated points.

This display presents the data points connected with straight-line segments in-
stead of a smooth curve, and avoids the implication that the physical situation
behaves in a certain “smooth” fashion. The plot is typically employed for cali-
bration curves where linear interpolation will be used between points, or when
a numerical integration is to be performed based on the connecting straight-line
segments. If used for presentation of experimental data, the implication is the
same as in (b) and (c) that the physical system actually behaves as indicated, in
this case with a somewhat jerky pattern.



3.17 CHOICE OF GRAPH FORMATS

Figure 3.9
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Choices of xy graph formats. Points plotted (a) with data markers, but
without connecting line segments, (b) with data markers joined by a smooth
curve drawn by computer, (¢) without data markers joined by smooth curve
drawn by computer, (d) with data markers joined by straightline segments,
(e) without data markers joined by straightline segments, (f) with data
markers and correlation curve generated by computer.
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The format in (e) is the same as (d) without the data markers. It might be used
for calculation results where the engineer wants to avoid computer smoothing
between the calculated points.

Finally, the format presented in ( f) is one that is frequently selected to present ex-
perimental results where uncertainties in the measurements are expected to result
in scatter of the data points. A smooth curve is drawn through the data points as
the experimentalist’s best estimate of the behavior of the phenomena under study.
The smooth curve may be drawn by hand or generated through a least-squares pro-
cess executed by the computer. A trendline equation may or may not be displayed
along with the curve. When experimental uncertainties are expected to contribute
significantly to the scatter of data, as they do in many cases, a full discussion of
their nature should be offered in the accompanying narrative material. Examples
3.29 to 3.32 discuss the generation and display of correlation trendlines.

In some cases a display like that shown in (f) may be used to present calcu-
lated points along with a particular type of curve fit for the points which differs
from the calculation equation. The cubic polynomial fit shown in case (i) of
Example 3.30 illustrates such an application.

Example 3.29

CORRELATION OF DATA WITH POWER RELATION. The data for a series of ex-
periments are shown in the table below.

X y

70700 175
66600 168
51000 138
23000 81
30900 99
36242 109
52331 142
70000 168
84100 191
21810 76
33217 117
44000 144
56700 146
63000 157
87276 197
82200 201
83092 192
93800 208

In this case, the data were collected in two sets so the tabular listing is not in ascending values
of x. Because of the nature of the physical problem the data are expected to correlate in terms
of a power relation

y =ax® [a]
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A computer will be used to plot the data and obtain the values of the constants a and b. If the
data are plotted sequentially on a point-to-point linear graph, the result shown in Fig. Example
3.29a is obtained. The jagged nature of the lines results from data scatter and the fact that the
data are not tabulated with continuously increasing values of x. Obviously, such a graph is
inappropriate.

Taking the logarithm of both sides of Eq. (a) gives

logy =loga+ b logx [b]

which suggests that a straight line will be obtained when the data are plotted on logarithmic
coordinates. This arrangement is noted as the second entry of Table 3.8. When a loglog plot is
executed, the result is as shown in Fig. Example 3.29b. In this case, the plots were generated
in Microsoft Excel but may be accomplished with other software as well [15], [16], and [28].

A least-squares fit of the data to a power relation is given as the trendline and equa-
tion shown in Fig. Example 3.29b, along with the corresponding value of ? calculated from
Eq. (3.40). The trendline and value of r* are also calculated by Excel but may be computed
with other programs. The value of > = 0.9778 indicates a good correlation.

250
200 ?‘/
150 Z

’ 100 /////
/

50
0
0 20000 40000 60000 80000 100000
X
(a)
Figure Example 3.29 (a) Data plotted sequentially on linear coordinates. (b) Data

plotted on loglog coordinates and computer least-squares fit.

127



128

CHAPTER 3 o ANALYSIS OF EXPERIMENTAL DATA
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(b)
Figure Example 3.29 (Continued)

Note that the line in Fig. Example 3.29b does indeed fit the data. A knowledgeable en-
gineering person would obtain essentially the same result with a hand-drawn correlation line
on graph paper. With the computer, it is not necessary to make the graphical determinations
indicated in Table 3.8. Nevertheless, we emphasize once again that a computer-generated cor-
relation should never be accepted without visual confirmation using a graphical display like
that indicated above.

Example 3.30

ALTERNATIVE DISPLAYS AND CORRELATION TRENDLINES FOR EXPONENTIAL
FUNCTION. This example illustrates different ways of graphing and obtaining least-
squares correlations for data as applied to a calculated exponential function. First, the value of
the function

y =250
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is calculated for a number of values of x from 1 to 20 as shown in the accompanying table.

x y =25 exp(—0.2x)
1 2.046826883
2 1.675800115
3 1.37202909
4 1.12332241
5 0.919698603
6 0.75298553
7 0.61649241
8 0.504741295
9 0.413247221

10 0.338338208

13 0.185683946

17 0.083433175

20 0.045789097

We are dealing with a known exponential function, so some of the correlations that will be
examined are obviously designed for illustrative purposes only. In each case where a correlation
trendline is presented the corresponding equation will be displayed on the graph along with
a value of r? calculated from Eq. (3.40). The closer the value of r* to unity, the better the
correlation. The graphs and correlation trendlines have been generated in Microsoft Excel but
could be obtained from other software packages as well [15], [16], and [28]. The following

comments apply to the figures noted.

a. The calculated values of the exponential relation are displayed with data markers, but

without connecting line segments.

b.  The calculated values of the exponential relation are plotted with data markers along with

connecting line segments.

c. A smooth curve is plotted through the points with data markers omitted.

d. The data points are displayed without connecting line segments along with a least-squares
linear fit to the data points. The linear relation obviously does not work, and is evidenced

by a low value of 72.

e. As suggested from the third entry of Table 3.8, the exponential relation should plot as a
straight line on semilog coordinates. This figure gives such a display along with a least-
squares fit to an exponential relation and the corresponding value of r? calculated from
Eq. (3.40). A perfect fit is obtained, as should be expected from the exact calculations of
the exponential function. It should be noted that the line drawn through the data markers

is the correlation line, and not a line connecting the points. Note that 7> = 1.0.

f. Anexponential relation is again fitted to the data with a least-squares analysis but this time
on alinear plot. Again, a perfect fit is obtained. We note from this chart that the least-squares

calculation is independent of the type of coordinate system employed for the display.

g. This plot displays an attempt at a least-squares fit to a power relation like that in the second
entry of Table 3.8, along with the plot using linear coordinates. Note the poor fit and low

value of r2.
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Figure Example 3.30
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Figure Example 3.30 (Continued)

h.  This figure shows a second-order polynomial (quadratic) fit of the data on linear coor-
dinates. The results are fairly good, except at the larger values of x. The least-squares
analysis of this type of fit was described in Eqgs. (3.33) to (3.35).

i. A cubic polynomial fit is performed in this figure with very good results. Note the almost
perfect value of r2. In this example we know the functional form of the data points, but
with actual experimental results the functional form may be unknown. In such cases a
polynomial fit is sometimes tried and frequently works very well.
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J. This figure presents another failed attempt at a linear fit, this time with semilog coordinates.
Two general conclusions may be made from the above calculations and displays:

1. A least-squares analysis of a set of data points is independent of the type of coordinate
system used for the presentation, although the type of plot may suggest the functional
form or correlation to be attempted. In this regard, the information of Table 3.8 can be
quite helpful.

2. If one can anticipate the functional form of the data, the type of plot and presentation of
a correlation trendline is simplified.

Example 3.31 EVOLUTION OF A CORRELATION USING COMPUTER GRAPHICS.  Toillustrate
how a data correlation may evolve using computer graphics we consider the set of data shown
below.

x y y—2
1 2.2 0.2
3 2.6 0.6
5 2.7 0.7
10 2.65 0.65
30 3 1
50 3.1 1.1
100 3.15 1.15
500 3.7 1.7
1000 4.01 2.01
5000 4.96 2.96
10000 5.8 3.8
50000 7.7 5.7
100000 9.1 7.1

From the physical nature of the problem y is expected to behave according to
y=a-+bx‘ [al

where a, b, and ¢ are constants which must be determined from the experimental data. Normally,
one would insist upon more data points than shown in the table, but we are considering an
abbreviated set to keep the presentation simple.

We consider a sequence of graphics that may be used to correlate the data. Obviously, x
takes on a wide range of values and the linear plot of y vs. x shown in Fig. Example 3.31a
causes a compression of data markers for the lower range of x. Inspecting Eq. (a) we see that
y will approach the value of the constant a for very small values of x. Thus, we should expect
to be able to estimate the value of a by inspecting the behavior of the chart for small values of
x; however, the compression in Fig. (a) makes that a very difficult task.
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(a) to (f) Evolution of correlation. (g) Effect of elimination of first data point.
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Figure Example 3.31 (Continued)

The situation is helped considerably by replotting the x axis with a logarithmic scale as
shown in Fig. (b). Now, we see that y appears to be approaching a value of about 2 for very
small values of x. We therefore add a “y — 2” column to the data table and replot the data as
shown in Fig. (c). Equation (a) is now written as

y—2=bx‘ [b]

which should plot as a straight line when displayed as log(y — 2) vs. log x. Such a display is
shown in Fig. (d). We may suspect that the jagged or nonstraight line is the result of scatter
in the experimental data, and thus a point-to-point graph is not appropriate. The point-to-point
graph is dropped in Fig. (e), and a computer-generated trendline for a power relationship is
calculated and displayed on the chart along with a value of 72 calculated from Eq. (3.40). The
final data correlation is therefore

y =2+ 0.3536x%2% [c]

Finally, the cosmetics of the presentation is improved with addition of major and minor gridlines
along with enlarged data markers and a wider trendline. This results in the graph shown in (f).
The data point at x =1, y=2.2 appears out of line with the other points and suggests
examination of the experimental setup which produced that point. Perhaps there was more
experimental uncertainty for that point or a glitch in the measurements. If so, the point might
be discarded, thereby improving the correlation. As mentioned earlier in the discussion, we
would normally insist on more data points than the relatively small number presented here.
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All of the graphical displays shown can be generated easily and displayed on a computer
worksheet in a short period of time. If an examination of the experimental data indicates that
the point at x = 1 can be eliminated, a new correlation can be calculated and displayed almost
immediately. The result of such an elimination is shown in Fig. (g). Note the improved value
of r2.
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CORRELATION TRENDLINES USING OFFSET POINTS.  Several of the charts in
Table 3.8 employ offsets from one of the data points, that is, x — x;, y — yi, etc., to lin-
earize the presentation. The set (x;, y;) refers to one of the sets of data points. In this example
we first consider the x-y data shown in the table below.

x y X —x1 y—-n O =y (x —x1)
1 3 -1 —4 4

2 7 0 0

3 13 1 6 6

4 21 2 14 7

5 31 3 24 8

6 43 4 36 9

7 57 5 50 10

8 73 6 66 11

9 91 7 84 12

This is a contrived group of points which fits exactly to the relation
y=x+x+1 [al

The data are plotted in Fig. Example 3.32a and a least-squares trendline fit is performed for
a second-degree polynomial. The result is shown with a perfect value of r> = 1. The least-
squares analysis is performed as described in Eqgs. (3.33), (3.34), and (3.35) and executed here
in Microsoft Excel.

Next, the data are replotted by selecting the second data point as the offset with

X]=2 y1=7

and (y — y;)/(x — x;) versus x as suggested in Table 3.8 for a quadratic relation. The result
is shown in Fig. (b) and the data plot as a straight line on this coordinate system. A linear
least-squares fit is made to give

y=—n _y-1T7

X — X x—2

Solving for y gives
y=x4+x+1

the same relation as in Eq. (a).

Example 3.32
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Now, we modify the data slightly as shown in the following table so that the points do not
fit the relation of Eq. (a) exactly.

x y X —x1 y=y1 -y x—x1)
1 3 ~1 —4 4

2 7 0 0

3 14 1 7 7

4 22 2 15 7.5

5 30 3 23 7.666666667
6 44 4 37 9.25

7 56 5 49 9.8

8 74 6 67 11.16666667

9 90 7 83 11.85714286

These data are plotted in Fig. (¢) and fitted with a second-degree polynomial trendline to give
y = 0.9621x% 4+ 1.2955x + 0.8333 [c]

with a value of 2 = 0.9992. As before, we replot the data with x; = 2 and y; = 7 as displayed
in Fig. (d). A linear trendline fit is performed, giving the result

y—17

P 0.9361x + 3.4985 [d]

with 72 = 0.9751. Solving Eq. (d) for y,
y = 0.9361x> 4 1.6263x + 3.003 [el

or a somewhat different result from Eq. (c). The difference is the result of the two least-squares
analyses; one for a second-degree polynomial, and the other on a linear basis. Equation (c) is
more correct in that it is a direct fit to the quadratic relation.

Comment

The use of offset points for plotting data can be a convenient artifice for determining the func-
tional relationship between data, just as loglog and semilog plots are useful for establishing
power or exponential relations. Once the functional form is established, a direct least-squares
regression may be the most reliable representation of the data. The computer graphics and least-
squares fits are executed here in Microsoft Excel but could be generated with other software
packages.
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Let us consider the first term, causation, or cause and effect. As a homely and almost
absurd example, we might imagine that experiments are conducted in a large number
of barnyards around the country and observations made of the behavior of roosters in
the morning. Suppose that a large amount of data are collected that indicate roosters
crow at about the time the sun rises. Suppose then that a statistical analysis is made
of the data which indicate a very strong correlation between roosters crowing and the
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sun rising. Despite the strong correlation it would be grossly in error to conclude that
the rooster causes the sun to rise.’

Not all experimental results would be as simple to evaluate as the rooster-
sunrise hypothesis. Biomedical engineering applications are particularly interesting
and sometimes difficult to interpret. In such applications graphical displays may not
be as quantitative as in hardware-oriented experiments, and they are usually subject
to more conjecture. We will give two biomedical examples to emphasize the concepts
of correlation and causation further.

First, consider a set of observations and measurements that were conducted with
Parkinson’s disease (PD) patients [33]. These persons experience stiffness, involun-
tary motions, a characteristic tremor of hands, arms, and legs, speech problems, and
in some cases deterioration in mental/cognitive capabilities. Over the years it has
become possible to at least partially quantify these specific symptoms and to express
the overall progress of PD. In the course of examining the specific symptoms and
functional performance, investigators questioned whether some of the human per-
formance measures were more indicative of overall progression of PD than others.
After considerable study, investigators found that the behavior measures could be
plotted as shown in Fig. 3.10. It was found that mental/cognitive performance was
a primary factor in the overall evaluation of motor performance and that a threshold
level exists which apparently governs the maximum level that can be achieved in the
other human performance factors. In other words, the ability to achieve at some level
of mental/cognitive function seen as a limiting resource is a necessary but not a suffi-
cient condition in order to achieve at a minimum level of motor performance such as
speed of movement, or coordination. Due to the nonlinear relationship of the data, the
inverse is not true. High achievement of motor ability is not necessary for high mental/
cognitive achievement. Assignment of any quantitative degree of causation other than
a categorical one to this data presentation would be highly speculative. Still, the non-
quantitative relationship can be of clinical use in evaluation of PD behavior and
performance. The important point is that the threshold effects show up quite clearly
on a graphical display but would be difficult to discern from a corresponding tab-
ular presentation. The experimentalist involved with research efforts is encouraged
to construct plots of a speculative nature in the hope that some new or unanticipated
effect may be observed, even though they may not be quantifiable.

The second biomedical example we consider is concerned with human con-
sumption of alcohol. There has been statistical evidence for some time that moderate
consumption of alcohol results in a lower probability for heart attacks. But, as some-
one remarked, statistics does not cause or prevent heart attacks. In 1994, the results of
extensive experimental evidence were presented in Ref. [34] that showed a measured
increase in blood levels of t-plasminogen activator with an increase in consumption
of alcoholic beverages. Such an increase has been shown to be associated with a
reduction in the rate of myocardial infarction (heart attacks). In addition, convinc-
ing statistical evidence was given that excluded the possibility of smoking, blood

3Unless one wishes to go back in time for several centuries to some primitive culture where the crow of the
rooster supposedly summons the God of Roosters to ask the Sun God to cause the sun to rise.
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Figure 3.10 Typical scatter plot obtained when the measured performance capacity for

a given subsystem drawn upon in a higherlevel task is plotted against
performance in the more complex task.

pressure, obesity, or other contributing factors influencing the final results. The im-
portant point here is that a statistical correlation was available for years, which many
people believed reliable and therefore prompted appropriate action on their part. The
follow-up with corroborating laboratory measurements linked to specific biochemical
effects helped to remove remaining doubts. One could argue that a cause-and-effect
result still has not been established, because it is not known for sure that increase in
t-plasminogen activator levels reduces the risk of heart attacks. Such is the uncertainty
in biomedical science, and the reader is left to self-speculate on the matter.

Sometimes it is difficult to distinguish between correlations and curve-fitting.
Indeed, when one performs a least-squares analysis to obtain the best equation to fit a
set of experimental data, a correlation is obtained that expresses the result in terms of
the parameters that the experimentalist perceives (or knows) to be important. On the
other hand, the curve-fitting or forced-fit of a specific type of function to provide for
easy calculations, as illustrated in the polynomial expressions of Table 8.5, is strictly
an artifice of convenience.

Suppose experiments are conducted to measure the heat transfer to boil water at
atmospheric pressure in an open container. The actual boiling process is a complex
phenomenon, but it would come as no surprise to find that for a constant pressure of
1 atm the boiling heat-transfer rate increases with an increase in the surface temper-
ature in contact with the water. The heat flux per unit area could be plotted versus
the temperature difference between the surface and boiling temperature of the water
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(100°C at atmospheric pressure) and a curve-fit or correlation performed to obtain
the specific function

Heat flux = f(temperature difference)

The specific functional relation would be helpful to supply to other persons desir-
ing to calculate boiling heat-transfer rates for water. The correlation is quite useful,
although it does not explain the complex boiling phenomena involving bubble for-
mation, collapse, and eventual dissipation in the body of the fluid. In this example,
the terms correlation and curve-fit are almost synonymous, because the curve-fit is
constructed from the original experimental data points. The term causation is only
loosely applicable in this case because we certainly expect an increase in heat transfer
with an increase in temperature difference, but other factors such as surface tension
(which influences bubble size) and viscosity (which influences bubble motion) are
also important.

In conclusion, the important point of this discussion is that the experimentalist
should always be mindful of the difference between the terms causation, correlation,
and curve-fit and not attach more meaning to a correlation of data than is justified. At
the same time, one should not depreciate the utility that data correlations can afford,
or possible simplification of calculations with use of curve-fits.

Example 3.33

MORE (COMPLEX) IS NOT ALWAYS BETTER  As a final note to our discussion of
correlations we consider the set of data shown in Table Ex. 3.33(a), involving six data points. Let
us construct least-squares fits to these data points using first- through fifth-order polynomials.
The computer-generated correlations are shown in Fig. Ex. 3.33(a). The correlation equations
and corresponding values of the correlation coefficient r? are shown, as well as plots of the
correlation curves.

Clearly, the linear relation does not fit well, as illustrated by a visual inspection and
the relatively low value of the correlation coefficient. The second-, third-, and fourth-degree

Table Example 3.33(a)

X y Linear Fifth Fourth Third Second

0 -1 —3.8571 -1 —0.8294 —0.9365 —0.4643

1 2 1.4858 2.0006 1.1467 1.4683 0.8072

2 3 6.8287 3.0024 4.706 4.4921 4.1145

3 11 12.1716 11.0012 9.2929 9.0793 9.4576

4 15 17.5145 14.984 15.8518 16.1743 16.8365

5 27 22.8574 26.925 26.8271 26.7215 26.2512
0.5 —1.18565 3.269653 —0.132569 0.24755 —0.083025
1.5 4.15725 1.216297 2.798331 2.8438 2.206375
2.5 9.50015 6.850391 6.847131 6.53125 6.531575
35 14.84305 13.78883 12.20823 12.2543 12.89258

4.5 20.18595 17.13773 20.57603 20.95735 21.28938
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30 —¥ =353429x—3.8571— y = 1.0179x> +0.2536x — 0.4643

R*>=10.9124 R?=0.9831
25
y = 0.1574x* —0.1627x* + 2.4101x — 0.9365
R?=0.986
20 +—
y = 0.0625x* — 0.4676x" + 1.7569x* +0.6243x — 0.8294
15 +— R* = 0.9866

10

RP=1

y = 0.3583x° —4.4167x* + 19.042x* — 32.583x° +20.6x—1

Figure Example 3.33(a)

~

curves are almost identical in their visual match and the value of the corresponding correlation
coefficients. The fifth-order curve is problematical. It has a perfect correlation coefficient
(r* = 1.0), passes through the data points exactly, but snakes through the other values with an
oscillatory behavior. The values of the ordinate y calculated from the correlating equations at

off-data points x = 2.5, 3.5, 4.5, etc., illustrate this behavior.

If one were to merely inspect the correlating equations and their corresponding correlation
coefficients, it would be very easy to wrongfully select the fifth-order equation as the best
relation. But, as we have mentioned several times before, all correlations should be confirmed
with a visual comparison with the data. Thus, we reject the fifth-order correlation on the basis
of this comparison. The linear relation is also easily discarded; but the second-, third-, and
fourth-order relations appear equally satisfactory, in both a visual comparison and values of
the correlation coefficient. Which one shall we choose? All selections should be so easy. Choose

the simplest—the quadratic equation:

y = 1.0179x% + 0.2536x — 0.4643

Table Example 3.33(b)

"
-«

DN kW —=O
NO b~ = O

[a]l
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Figure Example 3.33(b)

Computer correlations are not always problematical. Sometimes they agree with the ob-
vious observation. Consider the set of data shown in Table Ex. 3.33(b). A quick inspection of
this set reveals the obvious result that the data follow the relation

y=x [b]

exactly. When a least-squares computer correlation is attempted to fit first-, second-, third-,
fourth-, and fifth-order formulas, the results are shown in Fig. Ex. 3.33(b). The linear relation
fails again, but the other relations fit rather well. Note, however, that the coefficients of all but
the x? term are very nearly equal to zero, and all the formulas reduce to Eq. (b). The coefficients
differ slightly from zero as a result of round-off error in the computer calculations. In this simple
example, the computer has given us the correct result, though in slightly disguised form.

3.19 GENERAL CONSIDERATIONS
IN DATA ANALYSIS

Our discussions in this chapter have considered a variety of topics: statistical analysis,
uncertainty analysis, curve plotting, least squares, among others. With these tools the
reader is equipped to handle a variety of circumstances that may occur in experimental
investigations. As a summary to this chapter let us now give an approximate outline
of the manner in which one would go about analyzing a set of experimental data:

1. Examine the data for consistency. No matter how hard one tries, there will always
be some data points that appear to be grossly in error. If we add heat to a container
of water, the temperature must rise, and so if a particular data point indicates a
drop in temperature for a heat input, that point might be eliminated. In other
words, the data should follow commonsense consistency, and points that do not
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appear proper should be eliminated. If very many data points fall in the category of
“inconsistent,” perhaps the entire experimental procedure should be investigated
for gross mistakes or miscalculation.

2. Perform a statistical analysis of data where appropriate. A statistical analysis
is only appropriate when measurements are repeated several times. If this is the
case, make estimates of such parameters as standard deviation, and so forth. In
those cases where the uncertainty of the data is to be prescribed by statistical
analysis, a calculation should be performed using the #-distribution. This may be
used to determine levels of confidence and levels of significance. The number
of measurements to be performed may be determined for different levels of
confidence.

3. Estimate the uncertainties in the results. We have discussed uncertainties at
length. Hopefully, these calculations will have been performed in advance, and
the investigator will already know the influence of different variables by the time
the final results are obtained.

4. Anticipate the results from theory. Before trying to obtain correlations of the
experimental data, the investigator should carefully review the theory appropriate
to the subject and try to glean some information that will indicate the trends the
results may take. Important dimensionless groups, pertinent functional relations,
and other information may lead to a fruitful interpretation of the data. This step is
particularly important in determining the graphical form(s) to be selected for pres-
entation of data. If, for example, measurements are made of a first-order system
subjected to a step input, we would expect exponential behavior in accordance
with Eq. (2.11) and a semilog plot like that shown in the third or eighth entries
of Table 3.8 should be selected for data presentation.

5. Correlate the data. The word “correlate” is subject to misinterpretation. In the
context here we mean that the experimental investigator should make sense of
the data in terms of physical theories or on the basis of previous experimental
work in the field. Certainly, the results of the experiments should be analyzed to
show how they conform to or differ from previous investigations or standards
that may be employed for such measurements.
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By now the reader will have sensed the central theme of this chapter as that of uncer-
tainty analysis and the use of this analysis to influence experiment design, instrument
selection, and evaluation of the results of experiments. At this point we must reiterate
statements we have made before. We still must recognize that uncertainty is not the
same as error, even though some people interchange the terms. As we saw in Chap. 2,
the determination of “error” is eventually related to a comparison with a standard.
Even then, there is still “uncertainty” in the error because the “standard” has its own
uncertainty.
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In the chapters that follow we shall examine a large number of instruments
and measurement devices and shall see how the concepts of error, uncertainty, and
calibration apply.

3.21 REVIEW QUESTIONS

3.1. How does an error differ from an uncertainty?

3.2. What is a fixed error; random error?

3.3. Define standard deviation and variance.

3.4. In the normal error distribution, what does P(x) represent?
3.5. What is meant by measure of precision?

3.6. What is Chauvenet’s criterion and how is it applied?

3.7. What are some purposes of uncertainty analyses?

3.8. Why is an uncertainty analysis important in the preliminary stages of experi-
ment planning?

3.9. How can an uncertainty analysis help to reduce overall experimental
uncertainty?

3.10. What is meant by standard deviation of the mean?

3.11. What is a least-squares analysis?

3.12. What is the correlation coefficient?

3.13. What is meant by a regression analysis?

3.14. What is meant by level of significance; level of confidence?

3.15. How can statistical analysis be used to estimate experimental uncertainty?
3.16. How is Student’s ¢-distribution used?

3.17. How is the chi-square test used?

3.18. How can statistical analysis be used to determine the number of measurements
needed for a required level of confidence?

3.19. What is the coefficient of determination?
3.20. Why should one always make a graphical plot of data?
3.21. What does it mean when the correlation coefficient is 1.0?

3.22 PROBLEMS

Note: Problems marked with [C] may be worked with any appropriate computer
software available to the reader. In some cases, graphing calculators with printout
capabilities may also be employed.



3.1.

3.2.

3.3.

34.

3.5.

[C] 3.6.

3.22 PROBLEMS

The resistance of aresistor is measured 10 times, and the values determined are
100.0, 100.9,99.3,99.9, 100.1, 100.2,99.9, 100.1, 100.0, and 100.5. Calculate
the uncertainty in the resistance.

A certain resistor draws 110.2 V and 5.3 A. The uncertainties in the measure-
ments are 0.2 V and £0.06 A, respectively. Calculate the power dissipated
in the resistor and the uncertainty in the power.

A small plot of land has measured dimensions of 50.0 by 150.0 ft. The uncer-
tainty in the 50-ft dimension is +0.01 ft. Calculate the uncertainty with which
the 150-ft dimension must be measured to ensure that the total uncertainty in
the area is not greater than 150 percent of that value it would have if the 150-ft
dimension were exact.

Two resistors R; and R, are connected in series and parallel. The values of
the resistances are

Ry =100.0£0.1 2

R, =50.0+0.03 2
Calculate the uncertainty in the combined resistance for both the series and
the parallel arrangements.

A resistance arrangement of 50 €2 is desired. Two resistances of 100.0+0.1 2
and two resistances of 25.0 +0.02 2 are available. Which should be used, a
series arrangement with the 25-€2 resistors or a parallel arrangement with the
100-€2 resistors? Calculate the uncertainty for each arrangement.

The following data are taken from a certain heat-transfer test. The expected
correlation equation is y = ax®. Plot the data in an appropriate manner and
use the method of least squares to obtain the best correlation.

| 2040 | 2580 | 2980 | 3220 | 3870 | 1690 | 2130 | 2420 | 2900 | 3310 | 1020 | 1240 | 1360 | 1710 | 2070

3.7.

[3327 320 [427 | 578 [ 1260 [ 174 [ 214 [ 278 | 520 [ 431 [ 188 [ 192 [ 151 | 129 [ 785

Calculate the mean deviation of these data from the best correlation.

A horseshoes player stands 30 ft from the target. The results of the tosses
are:

Deviation from Deviation from
Toss Target, ft Toss Target, ft
1 0 [§ +2.4
2 +3 7 -2.6
3 —4.2 8 +3.5
4 0 9 +2.7
5 +1.5 10 0
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3.8.

3.9.

3.10.

3.11.

[C] 3.12.

3.13.

On the basis of these data, would you say that this is a good player or a poor
player? What advice would you give this player in regard to improving at the
game?

Calculate the probability of drawing a full house (three of a kind and two of
a kind) in the first 5 cards from a 52-card deck.

Calculate the probability of filling an inside straight with one draw from the
remaining 48 cards of a 52-card deck.

A voltmeter is used to measure a known voltage of 100 V. Forty percent of the
readings are within 0.5 V of the true value. Estimate the standard deviation
for the meter. What is the probability of an error of 0.75 V?

In a certain mathematics course the instructor informs the class that grades
will be distributed according to the following scale provided that the average
class score is 75:

Gadle| A | B | ¢ | D | F
Score | 90-100 | 80-90 | 70-80 | 60-70 | Below 60

Estimate the percentage distribution of grades for 5, 10, and 15 percent failing.
Assume that there are just as many As as Fs.

For the following data points y is expected to be a quadratic function of x.
Obtain this quadratic function by means of a graphical plot and also by the
method of least squares:

x| 1] 2] 3| 4] 5
y|[ 1993215420 1157

It is suspected that the rejection rate for a plastic-cup-molding machine is
dependent on the temperature at which the cups are molded. A series of
short tests is conducted to examine this hypothesis with the following results:

Temperature Total Production Number Rejected
T 150 12
T> 75 8
Ts 120 10
T4 200 13

On the basis of these data, do you agree with the hypothesis?



3.14.

3.15.

3.22 PROBLEMS

A capacitor discharges through a resistor according to the relation E/Ey =
e 'RC where Ey = voltage at time zero, R = resistance, C = capacitance.
The value of the capacitance is to be measured by recording the time necessary
for the voltage to drop to a value E|. Assuming that the resistance is known
accurately, derive an expression for the percent uncertainty in the capacitance
as a function of the uncertainty in the measurements of E; and ¢.

In heat-exchanger applications a log mean temperature is defined by

(Thl - T, ) - (Thz - TCz)
AT, =
In [(Thl - TC‘l)/(Thz - Tcz)]

where the four temperatures are measured at appropriate inlet and outlet con-
ditions for the heat-exchanger fluids. Assuming that all four temperatures are
measured with the same absolute uncertainty wr, derive an expression for the
percentage uncertainty in AT, in terms of the four temperatures and the value
of wr. Recall that the percentage uncertainty is

WAT,

x 100

m

[C]3.16. A certain length measurement is made with the following results:

3.17.

3.18.

3.19.

Reading| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 ] 10
x,in [ 49.36 [ 50.12 | 48.98 | 49.24 | 49.26 | 50.56 | 49.18 | 49.89 | 49.33 | 49.39

Calculate the standard deviation, the mean reading, and the uncertainty. Apply
Chauvenet’s criterion as needed.

Devise a method for plotting the gaussian normal error distribution such that
a straight line will result. (Ans. (1/7) In [«/E P(n)] versus n.) Show how such
a plot may be labeled so that it can be used to estimate the fraction of points
which lie below a certain value of 1. Subsequently, show that this plot may be
used to investigate the normality of a set of data points. Apply this reasoning
to the data points of Example 3.7 and Probs. 3.6 and 3.7.

A citizens’ traffic committee decides to conduct its own survey and analysis
of the influence of drinking on car accidents. By some judicious estimates
the committee determines that in their community 30 percent of the drivers
on a Saturday evening between 10 P.M. and 2 A.M. have consumed some al-
cohol. During this same period there were 50 accidents, varying from minor
scratched fenders to fatalities. In these 50 accidents 50 of the drivers had
had something to drink (there are 100 drivers for 50 accidents). From these
data, what conclusions do you draw about the influence of drinking on car
accidents? Can you devise a better way to perform this analysis?

The grades for a certain class fall in the following ranges:

Number | 10 | 30 | 50 | 40 | 10 | 8
Score | 90-100 | 80-90 | 70-80 | 6070 | 50-60 | Below 50
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3.20.

3.21.

3.22.

3.23.

3.24.

3.25.

[C] 3.26.

[C]3.27.

[C] 3.28.

The arithmetic mean grade is 68. Devise your own grade distribution for this
class. Be sure to establish the criteria for the distribution.

A certain length measurement is performed 100 times. The arithmetic mean
reading is 6.823 ft, and the standard deviation is 0.01 ft. How many readings
fall within (a) £0.005 ft, (b) +0.02 ft, (¢) +0.05 ft, and (d) 0.001 ft of the
mean value?

A series of calibration tests is conducted on a pressure gage. At a known pres-
sure of 1000 psia it is found that 30 percent of the readings are within 1 psia
of the true value. At a known pressure of 500 psia, 40 percent of the readings
are within 1 psia. At a pressure of 200 psia, 45 percent of the readings are
within 1 psia. What conclusions do you draw from these readings? Can you
estimate a standard deviation for the pressure gage?

Two resistors are connected in series and have the following values:
R; =10,000 Q £ 5% R, =1MQ+£10%

Calculate the percent uncertainty for the series total resistance.

Apply Chauvenet’s criterion to the data of Example 3.14 and then replot the
data on probability paper, omitting any excluded points.

Plot the data of Example 3.7 on probability paper. Replot the data, taking into
account the point eliminated in Example 3.13. Comment on the normality of
these two sets of data.

Two groups of secretaries operate under the same manager. Both groups have
the same number of people, use the same equipment, and turn out about the
same amount of work. During one maintenance period group A had 10 ser-
vice calls on the equipment, while group B had only 6 calls. From these data,
would you conclude that group A was harder on the equipment?

Alaboratory experiment is conducted to measure the viscosity of a certain oil.
A series of tests gives the values as 0.040, 0.041, 0.041, 0.042, 0.039, 0.040,
0.043, 0.041, and 0.039 ft?/s. Calculate the mean reading, the variance, and
the standard deviation. Eliminate any data points as necessary.

The following data are expected to follow a linear relation of the form y =
ax—+b. Obtain the best linear relation in accordance with a least-squares analy-
sis. Calculate the standard deviation of the data from the predicted straight-line
relation:
x]|09]23]33|45|57]67
y|L1]16]26]32]40]50

The following data points are expected to follow a functional variation of
y = ax®. Obtain the values of a and b from a graphical analysis:

x| 121 135]240|275[450] 51 | 7.1 | 8.1
y|120]182] 50 880 19.5[32.5]55.0 [ 80.0




[C] 3.29.

[C] 3.30.

[C] 3.31.

3.22 PROBLEMS

The following data points are expected to follow a functional variation of
y = ae®™. Obtain the values of a and b from a graphical analysis:

x| 0 | 043]125]|140]260] 29 | 43
y| 94] 7.1 [535[420[260] 1.95] 1.15

The following heat-transfer data points are expected to follow a functional
form of N = aR". Obtain the values of a and b from a graphical analysis and
also by the method of least squares:

| 30 | 40 | 100 | 300 | 400 | 1000 | 3000
[ 3]33]s53] 101 | 17 | 30

What is the average deviation of the points from the correlating relation-
ship?

In a student laboratory experiment a measurement is made of a certain resis-
tance by different students. The values obtained were:

Reading | 1| 2] 3|45 |6 7] 8]9]1w0]I11] 12

Resistance, kQ | 12.0 | 12.1 | 25 [ 118136119 122|119 [ 120 | 123 ] 12.1 | 11.85

3.32.

3.33.

3.34.

3.35.

Calculate the standard deviation, the mean reading, and the uncertainty.

In a certain decade resistance box resistors are arranged so that four re-
sistances may be connected in series to obtain a desired result. The first
selector uses 10 resistances of 1000, 2000, ..., 9000, the second uses
10 of 100, 200, ..., 900, the third uses 10 of 20, ..., 90, and the fourth,
1,2, ..., 9 Q. Thus, the overall range is 0 to 9999 Q. If all the resistors have
an uncertainty of +1.0 percent, calculate the percent uncertainties for total
resistances of 9, 56, 148, 1252, and 9999 Q.

Calculate the chances and probabilities that data following a normal distribu-
tion curve will fall within 0.2, 1.2, and 2.2 standard deviations of the mean
value.

Suggest improvements in the measurement uncertainties for Example 3.5
which will result in reduction in the overall uncertainty of flow measurement
to £1.0 percent.

What uncertainty in the resistance for the first part of Example 3.3 is necessary
to produce the same uncertainty in power determination as results from the
current and voltage measurements?
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3.36.
3.37.
[C] 3.38.
[C] 3.39.
[C] 3.40.
[C] 3.41.
3.42.

3.43.
3.44.

3.45.

3.46.

3.47.

3.48.

3.49.

Use the technique of Sec. 3.5 with Example 3.5.

Use the technique of Sec. 3.5 with Examples 3.4 and 3.3.
Obtain the correlation coefficient for Prob. 3.27.

Obtain the correlation coefficient for Prob. 3.28.

Obtain the correlation coefficient for Probs. 3.29 and 3.30.
Obtain the correlation coefficient for Probs. 3.6 and 3.12.

For the heat exchanger of Prob. 3.15 the temperatures are measured as 7, =
100°C, T;,, = 80°C, T, = 75°C, and T,, = 55°C. All temperatures have an
uncertainty of £1°C. Calculate the uncertainty in AT, using the technique of
Sec. 3.5.

Repeat Prob. 3.42 but with 7;, = 90°C and 7., = 70°C.

Four resistors having nominal values of 1, 1.5, 3, and 2.5 k2 are connected
in parallel. The uncertainties are =10 percent. A voltage of 100 V &+ 1.0 V is
impressed on the combination. Calculate the power drawn and its uncertainty.
Use Sec. 3.5.

A radar speed-measurement device for state police is said to have an uncer-
tainty of 4 percent when directed straight at an oncoming vehicle. When
directed at some angle 6 from the straight-on position, the device measures
a component of the vehicle speed. The police officer can only obtain a value
for the angle & through a visual observation having an uncertainty of £10°,
Calculate the uncertainty of the speed measurement for 6 values of 0, 10, 20,
30, and 45°. Use the techniques of both Secs. 3.4 and 3.5.

An automobile is to be tested for its acceleration performance and fuel econ-
omy. Plan this project taking into account the measurements which must be
performed and expected uncertainties in these measurements. Assume that
three different drivers will be used for the tests. Make plans for the number
of runs which will be used to reduce the data. Also, prepare a detailed outline
with regard to form and content of the report which will be used to present
the results.

A thermocouple is used to measure the temperature of a known standard main-
tained at 100°C. After converting the electrical signal to temperature the read-
ings are: 101.1, 99.8, 99.9, 100.2, 100.5, 99.6, 100.9, 99.7, 100.1, and 100.3.
Using whatever criteria seem appropriate, make some statements about the
calibration of the thermocouple.

Seven students are asked to make a measurement of the thickness of a steel
block with a micrometer. The actual thickness of the block is known very
accurately as 2.000 cm. The seven measurements are: 2.002, 2.001, 1.999,
1.997, 1.998, 2.003, and 2.003 cm. Comment on these measurements using
whatever criteria you think appropriate.

A collection of 120 rock aggregate samples is taken and the volumes are mea-
sured for each. The mean volume is 6.8 cm® and the standard deviation is



[C] 3.50.

[C] 3.51.

3.52.

3.53.

3.54.

3.22 PROBLEMS

0.7 cm®. How many rocks would you expect to have volumes ranging from
6.5 t0 7.2 cm??

Plot the equation y = S5e"“* on semilog paper. Arbitrarily assign fictitious
data points on both sides of the line so that the line appears by eye as a
reasonable representation. Then, using these points, perform a least-squares
analysis to obtain the best fit to the points. What do you conclude from this
comparison?

1.2x

The following data are presumed to follow the relation y = ax”. Plot the
values of x and y on loglog graph paper and draw a straight line through the
points. Subsequently, obtain the values of a and b. Then, determine the values
of a and b by the method of least squares. Compute the standard deviation
for both cases. If a packaged computer routine for the least-squares analysis
is available, use it:

X y

4 105
53 155
11 320
21 580
30 1050

50 1900

The variables x and y are related by the quadratic equation
y=2-0.3x+0.01x*

for 0 < x < 2. Compute the percentage uncertainty in y for uncertainties in
x of £1, 2, and 3 percent. Use both an analytical technique and the numerical
technique discussed in Sec. 3.5.

For the relation given in Prob. 3.52, consider y as the primary variable with
uncertainties of +1, 2, and 3 percent. On this basis, compute the resulting
uncertainties in x. Use both the analytical and numerical techniques.

Reynolds numbers for pipe flow may be expressed as
_4m/nd
I

Re

where
m = mass flow, kg/s
d = pipe diameter, m
= viscosity, kg/m - s

In a certain system the flow rate is 12 lbm/min, £0.5 percent, through a
0.5-in-diameter (40.005-in) pipe. The viscosity is 4.64 x 10~* Ibm/h - ft,
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3.55.

3.56.

[C] 3.57.

41 percent. Calculate the value of the Reynolds number and its uncertainty.
Use both the analytical and numerical techniques.

The specific heat of a gas at constant volume is measured by determining the
temperature rise resulting from a known electrical heat input to a fixed mass
and volume. Then,

P=El=mc, AT =mc, (T, — T)
where the mass is calculated from the ideal-gas law and the volume, that is,

)204
m=-—
RT,

Suppose the gas is air with R = 287 J/kg - K and ¢, = 0.714 kl/kg - °C,
and the measurements are to be performed on a 1-liter volume (known accu-
rately) starting at p; = 150 kPa and 7; = 30°C. Determine suitable power
and temperature requirements, assign some uncertainties to the measured
variables, and estimate the uncertainty in the value of specific heat deter-
mined.

A model race car is placed on a tethered circular track having a diameter of
10 m &£ 1 cm. The speed of the car is determined by measuring the time
required for traveling each lap. A handheld stopwatch is used for the measure-
ment, and the estimated uncertainty in both starting and stopping the watch is
£0.2 s. For anominal speed of 100 mi/h, calculate the uncertainty in the speed
measurement when made over 1, 2, 3, and 4 laps.

In a cooling experiment the system is presumed to behave as a first-order
system following a relation like

y — Ce—at

The following data points are collected:

y t
0.9 0.1
0.8 0.5
0.4 0.9
0.3 1.2
0.2 1.7
0.1 2.3
0.01 4.6

Plot the data on an appropriate graph to obtain a straight line. Then perform
a least-squares analysis to obtain the best values of C and a. Calculate the
correlation coefficient for the least-squares fit.
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3.60.

3.61.

3.62.

3.63.

3.22 PROBLEMS
A certain experiment is presumed to behave according to the following
equation:
2
y=a-+cx

for -1 <y<+1and —1 < x < +1. The following data points are collected:

y x
0.01 -1.0
0.35 —-0.8
0.65 -0.6
0.82 —0.4
—0.01 0
0.83 0.4
0.64 0.6
0.34 0.8

0.01 1.0

Plot the data on appropriate graph paper to obtain a straight line. Then, per-
form a least-squares analysis to obtain the best values of a and C. Calculate
the correlation coefficient for the least-squares fit.

Using the data of Prob. 3.58, perform a least-squares analysis for a general
quadratic fit of the data: that is,

y=a+bx+cx?

to obtain the values of a, b, and c. Compare with the results of Prob. 3.58.

Ten measurements are made of a certain resistance giving the following val-
ues in k€2: 1.21, 1.24, 1.25, 1.21, 1.23, 1.22, 1.22, 1.21, 1.23, 1.24. Obtain the
value of the mean reading and calculate the tolerance limits for confidence
levels of 90 and 95 percent.

Nine students are asked to measure the length of a metal sample with a caliper.
The results of the measurements expressed in millimeters are: 85.9, 86.0, 86.2,
85.8, 85.9, 85.8, 86.0, 85.9, and 86.1. Calculate the mean measurement and
calculate the tolerance limits for 90 and 95 percent confidence levels.

Twelve pressure measurements are made of a certain source giving the follow-
ing results in kPa: 125, 128, 129, 122, 126, 125, 125, 130, 126, 127, 124, and
123. Obtain the mean value and set the limits for 90 and 95 percent confidence
levels.

Nine voltage measurements are made which give a mean value of 11 V with
an unbiased standard deviation of £0.03 V. Determine the 5 and 1 percent
significance levels for these measurements.
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3.64.

3.65.

3.66.

3.67.

3.68.

3.69.
3.70.

A resistor is measured with a device which has a known precision of +0.1 k2
when a large number of measurements is taken. How many measurements
are necessary to ensure that the resistance is within £0.05 k€2 with a 5 per-
cent level of significance? Make the calculation both with and without the
t-distribution. Repeat for a 5 percent level of significance of £0.1 k2.

A power supply is stated to provide a constant voltage output of 50.0 V £0.2
V where the tolerance is stated to be “one sigma.” Calculate the probability
that the voltage will lie between 50.2 and 50.4 V.

As part of the quality control process, samples of parts are periodically taken
for measurement to see if they conform to specifications. In one sample the
diameter of a part is measured with the following results:

Xy, = 3.56 mm, o1 = 0.06 mm, n; =20
A second sample is taken with the following results:
Xy, = 3.58 mm, o, = 0.03 mm, n, =23
Examine these data to determine if they yield the same results with a confi-

dence level of 90 percent. Repeat for a confidence level of 95 percent.

The length of a production part is sampled twice with the following results:

Xm, = 3.632 cm, o1 = 0.06 cm, ny =17
Xm, = 3.611 cm, oy = 0.02 cm, ny, = 24
Determine if the two samples yield the same results with a confidence level
of 90 percent.

In a production process there is a trade-off between the cost of quality control
sampling and rejection of the production parts. For a certain dimension mea-
surement the determination can be made with a known precision of 0.1 mm
with a large number of measurements. Suppose the parts are to be measured
within £0.05 mm with levels of significance of 5 and 10 percent. Determine
the relationship between the cost of measurement and the cost per part rejected
such that the total cost will be the same for both levels of significance.

Repeat Prob. 3.68 using 1 and 5 percent levels of significance.

The density of air is to be determined by measuring its pressure and temper-
ature for insertion in the ideal-gas equation of state; that is,

The value of R for air is 287.1 J/kg-K and may be assumed exact for this
calculation. The temperature and pressure are measured as

T =55404°C
p=125+05kPa

Determine the nominal value for the density in kg/m? and its uncertainty.
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3.22 PROBLEMS

Alength measurement is made with a metal scale having graduations of 1 mm.
Thirteen measurements are made of the length of a part giving the results in
centimeters of 8.55, 8.65, 8.7, 8.5, 8.5, 8.6, 8.65, 8.6, 8.65, 8.7, 8.55, 8.6,
and 8.65. Examine these data by whatever means are appropriate and state
conclusions regarding the accuracy or uncertainty of the measurement.

The variable y is expressed in terms of the variable x through the following
relations:

y = 5x°
y =5x°
y = 5x*

y="5x2+3x+2
A measurement of x is performed which yields x = 3 £ 0.1. Calculate the
magnitude and percent uncertainties in y for each of the above relations.

The variable y is given by the quadratic relation
y=3x>—-2x+5
To what precision must x be determined if y is to have a precision of 1 percent

at a nominal value of y = 13?

Folklore has it that in the early days of production of automobiles the num-
ber of orders was determined by measuring the height of the stack of paper!
Suppose the following data are obtained:

Height of Stack, Number of Sheets
mm in Stack
9.5 105
11.3 122
13.5 142
17.4 190
19.9 218

Perform a least-squares analysis to obtain the best linear relation between
the height of the stack and the number of sheets in the stack. Determine the
correlation coefficient for this relation.

The following data are expected to follow a second-degree polynomial
(quadratic) relationship for y as a function of x. Plot the data in such a man-
ner that the graphical display will be a straight line if a quadratic relation
exists. Using available computer software, obtain a least-squares fit for this
plot and the resulting y = f(x) along with a value for r>. Also plot the
data on linear coordinates with y vs. x and obtain a least-squares fit for a
quadratic relation for the data. Do the two relations agree? If not, why? For
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comparison purposes, also obtain a linear least-squares fit to the data, that is,

y=a-+ bx.
X Y
0 1.9
1 3.6
2 5.5
3 9.8
4 14.5
5 19
6 25
7 35
8 40
9 53
10 60

[C]3.76. The data for a certain experimental test are tabulated below. Examine the data
with multiple graphs using available computer software to arrive at a suit-
able correlation for the data y = f(x). Examine several functional forms and
perform least-squares analyses to arrive at the final conclusion.

x y
20000 60
25000 79
35000 90
45000 135
47000 110
50000 130
62000 160
65000 150
70000 180
75000 190
80000 191
90000 200

100000 210
105000 250
110000 240
120000 280
135000 300
140000 290
145000 330
150000 340

[C13.77. The tabulated values of x and y are expected to follow a functional form of
X
= ——— + C
Y co+c1x 2
Plot the following data in an appropriate way to obtain a straight line and
determine the values of the constants ¢y, ¢, and ¢;. Ans. y = x/(1 + 2x) + 3.
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AN AW = O | =

3.25
3.4
3.4286
3.4444
3.5455
3.4615

[C]13.78. The following data are expected to follow some type of exponential relation.
Plot the data in an appropriate way to determine if an exponential relation
exists. Determine a least-squares fit to the exponential relation, as needed.
Also obtain least-squares fits for a linear and quadratic relation to fit the data.

[C]3.79.

What conclusions can be drawn? Ans. y =1 —e

—0.1x

0
0.09516
0.1813
0.2592
0.3297
0.3935
0.4512
0.5034
0.6321
0.7769
0.8647

The tabulated data are expected to follow a functional form of y=
flexp (cox + c1x?)]. Plot the data in an appropriate manner to display as
a straight line. Obtain a least-squares fit to the line and use this fit to obtain
values of the constants ¢y and c¢;. Ans. y = 2 exp (0.1x + x2).

X y
0 2
0.1 2.0404
0.2 2.1237
0.3 2.255
0.4 2.4428
0.5 2.6997
0.6 3.0439
0.7 3.5103
1 6.0083
2 133.372
3 21876.04
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[C]3.80. A turbine flowmeter has an output reading of flow in terms of the rotational
speed of an internal turbine. The calibration data for a certain meter are given
below:

Flow Coefficient  Frequency Parameter

1070 33
1087 64
1088 71
1090 95
1092 185
1093 280
1093 350
1094 450
1095 550
1096 650

Plot the flow coefficient vs. log (frequency parameter) and determine the range
where the flow coefficient is constant within =1/2 percent. Then, using avail-
able computer software, obtain a polynomial relationship between the two
parameters that may be used for data analysis of the output of the flowmeter.

[C]3.81. A certain meter behaves according to the following table.

x(Input) y(Output)
40000 0.957
50000 0.962
60000 0.966
80000 0.973
100000 0.977
150000 0.982
200000 0.984
300000 0.984
1E+4-06 0.984

Using available computer software, plot y vs. log x and obtain an appropriate
relationship between y and x.
[C]3.82. The following calibration data are available for a certain temperature measure-

ment device. Using available computer software, plot y versus x and obtain
second-, third-, and fourth-order polynomial fits to the data.
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x(Input) y(Output)

—150 —4.648

—100 —-3.379

-50 —1.819
-25 —0.94

0 0

25 0.993

50 2.036

75 3.132

100 4.279

150 6.704

200 9.288

300 14.862

400 20.872

3.83. A certain result function has the form of
R = (ax3 + bxl)x2'75x2'25

Using suitable variable substitutions and manipulations of Egs. (3.2a) and
(3.2b) obtain a relationship for the uncertainty wg without resorting to partial
derivatives.

3.84. Repeat Prob. 3.83 using direct application of Eq. (3.2) and the partial deriva-
tives.

[C]3.85. Two resistance-capacitance filters are illustrated in the first two entries of
Table 4.2. Using available computer software, plot the ratio E,/E; for each
filter as a function of the variable wT using (a) linear coordinates, (b) semilog
coordinates, and (c) loglog coordinates. Extend the plots far enough to
approach the asymptotic values. Also plot the variable ¢ as a function of
T for each of these two filters.

[C]3.86. A certain instrument has the dynamic input-output response shown below

x (Input) y(Output)
0 0
1 0.2642
2 0.594
3 0.8009
4 0.9084
5 0.9596
6 0.9826
10 0.9995

Plot y and x on appropriate coordinates and determine a functional relationship
between the two variables. Ans. y =1 — (1 + x)e™.
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[C]3.87.

3.88.

[C] 3.89.

[C] 3.90.

The following input-output behavior is observed for an electronic circuit.

x(Input) y(Output)
0 2
0.1 2.7629
0.2 3.793
0.3 5.3825
0.5 11.5092
0.8 41.8105
1 109.1963
2 44052.9
3 1.31E+4-08

Plot y and x on appropriate coordinates and determine a functional relationship
between the two variables. Ans. y = 2 x exp(3x + x?).

In a certain dynamic measurement application the input(x) — output(y) rela-
tionship is given by

y=14+U+x)e™*

With what precision must x be determined to yield a precision of £1 percent
for y at a value of x = 57

The following test scores are recorded for a class:

22,35,99,87,717,78, 89, 100, 68, 84, 86,75, 69, 44, 56, 99, 95, 34, 73,
51, 100, 96, 21, 79, 87, 89, 69, 81, 100, 55, 89, 73, 75, 76, 59, 92

Determine the class average score and calculate the standard deviation. Fol-
lowing the method illustrated in Example 3.14, plot a histogram and cumula-
tive frequency distribution versus score using 10-point increments in grades.
Also plot a cumulative frequency distribution vs. score for a normal distri-
bution having the same mean and standard deviation as the test scores. What
do you conclude? Reconstruct the histograms using increments in standard
deviation of your own selection. Make at least two selections.

Numerical values of y as a function of the three variables xi, x;, and x3 are
shown in the accompanying table. Assuming a correlation of the form of the
linear relation in Eq. (3.43), use available computer software to determine the
values of the appropriate constants.

X1 X2 X3 y
1 3.2 3 9.5
2 4.5 4 15.6
3 4 5.6 21
4 5.7 6 31
5 6 7 32
6 7 8 41
7 8 9 45
8 9 10 53
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3.93.

3.22 PROBLEMS

The cooling performance of a certain air-conditioning unit, Q, is related to
the outdoor temperature 7; and the indoor temperature 7; through the values
in the accompanying table:

Q(kBtu/h) HG D) To(°F)
54.3 72 85
51.8 72 95
494 72 105
46.6 72 115
50.4 67 85
48 67 95
45.5 67 105
429 67 115
46.5 62 85
444 62 95
422 62 105
40 62 115
45.7 57 85
43.9 57 95
42 57 105
40 47 115

Using appropriate computer software determine a linear relation in the form
of Eq. (3.43) to fit these data, and calculate the resulting values of Sy, and

Sregression .

The experimental result y is a function of three parameters through the relation
Y = X1x2/x3

These variables have uncertainties of

Wy = =£1.0
Wy = £0.5
Wi =0.2

The variables are measured over the ranges:

5 < x; <100

5 < xp < 100

15 < x3 < 100
Calculate the percentage uncertainty in y at the upper and lower limits of the
measurement ranges.
An experimental result has the functional form of

y = x1 + (x2x3)'2

in terms of three measured variables, all of which have uncertainties of 1.0
over a Measurement range of 10 to 100 in each of the variables. Calculate the
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[C] 3.94.

[C] 3.95.

3.96.

3.97.
3.98.

3.99.

3.100.

3.101.

3.102.

3.103.

3.104.

percentage uncertainty in y for the upper and lower limits of the measured
variables.

Using the perturbation technique of Sec. 3.5, evaluate the derivatives dR/dx,
for each of the variables in Prob. 3.93.

Using appropriate computer software obtain a curve-fit formula for the dis-
charge coefficient for a 1 x % in venturi as a function of throat Reynolds
number Re,;. Obtain data points from the curve in Fig. 7.10.

Using the perturbation technique of Sec. 3.5, obtain values for the derivatives

d0R/0x, for each of the variables in Prob 3.92.
Using the perturbation method of Sec. 3.5, rework Example 3.4.

The polynomial relation of Eq. (8.12) [see Chap. 8] is used to fit the experimen-
tal data of Table 8.3a. Note that only a fifth-order polynomial is employed for
Iron-Constantan thermocouples, while a ninth-order polynomial is employed
for others. Using appropriate computer software attempt to fit a ninth-order
polynomial to the Iron-Constantan data of Table 8.3a. Discuss the result.

Consider the radiation temperature error which results from nonblackbody
conditions indicated in Fig. 8.27 [see Chap. 8]. What error would result from
assuming a linear variation of the error for 0.4 < ¢ < 1.0? Use a least-squares
analysis to obtain the linear relation.

Suppose the electric discharge behavior of Fig. 2.3¢ is wrongfully modeled
with a linear relation determined by a least-squares fit to the experimental
decay curve. Using the definition of time constant as the time required to
achieve a response of 63.2 percent, what error will result in determining the
time constant from the assumed linear relation?

The clustering of experimental data can suggest various analytic expressions
that may fit through the data. Occasionally, the data suggest a combination of
curves to be used for the representation. Consider a set of data that appears
to follow a straight-line relation from x = O up to a value of x = x;. The
slope of the line in this range appears to be m, and the y-intercept is b. Above
X = x1, the data appear to follow a second-order polynomial (parabola) shape
up to a position where x = x, and y = y,. Considering m, b, x1, x, and y, as
given values, determine the equation of the second-order polynomial. (Hint:
The slope of the straight line and parabola are equal at x = xy.)

Using the results of Prob. 3.101 plot the resultant straight-line polynomial
combinations for b = 0.25, x; = 0.5, x, = 1.0, y, = 1.0, and slope m taking
on the values 0.2, 0.5, and 1.0.

Suppose the straight-line polynomial combinations of Prob. 3.102 and the
lines y = y;, x = 0, and x = 1.0 form the boundaries of a set of data.
Determine the area enclosed by these boundaries.

Suppose that an uncertainty analysis is made of the experimental data pre-
sented in Prob. 3.30, and it is found that the variable R has a much smaller
uncertainty than the corresponding value for N. The method of least squares
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employed for the solution of Prob. 3.30 correctly assumes N = f(R). Sup-
pose further that an error is discovered in the uncertainty analysis such that the
uncertainty in determination of R is much larger than that for N, thereby sug-
gesting that the least-squares analysis should be conducted with an assumed
correlation relation of

R = (N/a)l/b — (l/a)l/le/b

Perform such a least-squares analysis and compare the values of a and b with
those determined in Prob. 3.30. How much deviation is there between the two
correlations at the upper and lower limits of the data, that is, at R = 12 and
30007

3.105. The data of Prob. 3.28 have an uncertainty in x much smaller than that in y.

Obtain a correlation that assumes the uncertainty in y is much smaller than
that in x and compare the values of the two correlations at the limits of the
data, that is, at x = 1.21 and 8.1.

3.106. Obtain a least-squares correlation for the data in Prob. 3.27 in a linear form of

x=(l/a)y—b/a

and compare with the result in Prob. 3.27.

3.107. Repeat Prob. 3.76 but express the correlation in the form x = f(y).
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BASIC ELECTRICAL MEASUREMENTS
AND SENSING DEVICES

‘ 4.1 INTRODUCTION

Many measuring devices depend on some basic electrical principle for their oper-
ation, and nearly all data-gathering, transmission, and analysis systems depend on
electronic devices. For example, the remote measurement and recording of tempera-
ture is ordinarily accomplished in the following way. A transducer is installed at the
location of interest, and this device converts the temperature at any given time to
an equivalent electric voltage. This voltage is then transmitted to a receiving station
where it is displayed in an appropriate fashion. Electrical devices are involved at
every stage of this process.

As a consequence of the pervasive nature of electronics in modern engineering,
itis desirable to discuss some electrical devices currently employed and to emphasize
their uses in the measurement process. We shall first consider the measurement of
the basic electrical quantities of current and voltage. Next, we shall examine some
simple circuits that may be used for modification and measurement of input signals.
Here we shall be concerned specifically with signal amplification and the techniques
used to minimize the effects of unwanted noise. Finally, the physical principles and
operating characteristics of important electrical transducers will be studied and their
applications surveyed.

| 4.2 FORCES OF ELECTROMAGNETIC ORIGIN

The operation of all electrical devices depends on two facts: charge exists and charged
entities interact. In terms of basic physics, there are two kinds of charge, positive
and negative; like charges repel and unlike charges attract. Such a crude statement
suffices to explain simple experiments but is inadequate to allow an understanding
of the operation of sophisticated devices. To provide such understanding, we must




4.2 FORCES OF ELECTROMAGNETIC ORIGIN

carefully model the interaction of charges. Once this is done, we shall be able to
understand basic electrical phenomena.

Consider a point charge of g coulombs (C). If such a charge were alone in the
universe, it would move in a straight line determined by its initial velocity. However,
if this charge is moving in a space in which other charges exist, it will “feel” the
presence of these other charges. In particular, we define an electric field intensity E
which exists as a result of the presence of charges other than the point charge g under
consideration. Also, we can define a magnetic flux density B which exists in the space
as a result of the motion of these other charges.

A careful specification of the interaction between the point charge of ¢ C and other
charges is expressed by Lorentz’ law. If the point charge is moving with a velocity v,
the resultant force on the charge is given by the equation

F=¢gE+vxB) newtons [4.1]

where E is in volts per meter, v is in meters per second, and B is in webers per square
meter [20].

In order to apply this equation to a useful case, consider a current-carrying con-
ductor placed in a magnetic field as shown in Fig. 4.1. No electric field is present in
this case. The electric current i in the conductor is defined as the ratio of the charge
dg passing a cross section of the conductor to the transit time dr.

dq
| = — 4.2
i=- [4.2]
We write
dq
jds = —ds =vd 4.3
ids e s =vdg [4.3]

where ds is an element of length along the conductor covered by the moving charge
in a time dt. The force exerted on the charge dq is given by Eq. (4.1) as

dF =dg (v x B) = i(ds x B) [4.4]

Remember that the electric field E is 0. This last equation gives the incremental
force dF exerted on a length ds of the conductor because of the interaction between
the charge moving through the conductor and the magnetic flux density in which the

i
l F = BiL

= Length of conductor

\ in magnetic field = L

INNNNNNNNNYi

bl

Figure 4.1 Current-carrying conductor in a magnetic field.
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conductor is immersed. Carefully observe that this force is perpendicular to the plane
defined by the conductor axis and the magnetic field B. To find the total force F acting
on a length L of the conductor, we integrate:

L
F = / i(ds x B) [4.5]
0

In order to simplify our results, we consider only the situation in which the
conductor axis is perpendicular to B. Then,

ds x B =dsBsin90° = dsB
and the total force F is given by the expression
F = BiL [4.6]

To integrate Eq. (4.5) and obtain Eq. (4.6), we assumed that the magnetic field
B is constant along the length L of the conductor.

Equation (4.6) is very important because it provides a bridge between a basic
electrical quantity i and a mechanical property F. In fact, this equation reduces
the problem of measuring a current to the more familiar problem of measuring a
force. Consider the apparatus shown in Fig. 4.2. With no current flowing through
the conductor, the spring will be at its unstretched length. As current flows through
the conductor, the spring will stretch and develop the force required to balance the
electromagnetic force. The total distance x moved by the spring is found by equating
the two forces.

Kx = BiL
where K is the spring constant. This equation can be solved for x,
BL
xX=—1i
K
and rearranged in the following way:
- (X [4.7]
i={z)* .
§FS = Kx
i i
B F = BiL

Figure 4.2 The primitive ammeter.
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As long as the quantities B, L, and K are known, this last equation offers a
direct method of determining the current i flowing in a conductor. We need only
measure the total deflection x and then calculate the current. As will be shown, actual
current meters are somewhat more complex geometrically, but they do use this basic
principle; the current i generates a Bi L force which is balanced by a restraining force
caused by the stretching or compressing of a spring. The distance the spring moves
from equilibrium is a direct measure of the current i.

We shall return to consideration of electrical measuring devices in Secs. 4.4 and
4.5. Before this, a few pages will be devoted to discussing the nature of electrical
signals and the various quantities which are commonly used to characterize such
signals. This discussion will allow a better appreciation of measuring instruments.

Consider the primitive current-measuring device shown in Fig. 4.2. If a time-
varying current i is applied to the conductor, the position x of the conductor will
also change with time. As long as the current changes slowly (so that the mechanical
system is in equilibrium at each instant of time) Eq. (4.7) remains valid, and a plot of
the current-time function could be obtained by recording the position at different times
(by means of a motion picture camera, for example) and applying Eq. (4.7). Figure 4.3
is a possible result of this process. Such a plot is an analog representation of the current
i as a function of time . In this context the phrase “analog representation” means that
the current is treated as a continuous variable. That is, we assume that we can measure
and plot the magnitude of the current with an arbitrarily high degree of precision. In
terms of the primitive meter this implies that quite sophisticated techniques must be
used to measure the spring-stretching distance x. A laser interferometer could be used,
for example. The key idea is that the current i can be treated as a continuous variable.
It can take any numerical value. This is the crux of the phrase “analog representation.”

i, Cls
1.50 -

1.00 -

0.50 -

—0.50

Figure 4.3 Analog waveform.
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i, Cls
1.50 |
1.00 |-
0.50 |
0 | | | | | | | >
1 2 3 LS
—0.50 |-

Figure 4.4 Digital waveform.

Such a representation is the most natural approach to physical quantities. We tend
to think of them as continuous in their magnitudes. On the other hand, there are many
situations, as we shall see, in which it is helpful to consider digital representations
of physical quantities. A digital representation allows only discrete values. Figure 4.4
shows a digital representation of the analog waveform sketched in Fig. 4.3. In this
example the current is considered in discrete “chunks” of 0.5 C/s.

Several features of digital representation are important. First, as the discrete
“chunks” are made smaller the fit between the digital representation and the analog
representation becomes closer. In some situations the digital representation is a more
accurate rendering of the physical reality. For example, if we were forced to measure
the deflection of the spring in the primitive instrument of Fig. 4.2 with a meter stick,
we could only measure position to, perhaps, the nearest millimeter, and the current i
could be found only in discrete pieces.

The concept of a digital representation may appear unfamiliar, but there are many
instances where the representation and processing of physical signals in digital form
is of significant value. A major portion of modern instruments process the signals in
digital form [17, 21]. Now, we shall briefly examine commonly used measures of
time-varying quantities.

4.3 WAVEFORM MEASURES

If ascalar physical quantity of interest is constant with respect to time, the specification
of this quantity involves only one number. For example, Fig. 4.5 shows a constant
current of 7 C/s; to specify this current, one needs only to state that a current of 7 A
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ts
Figure 4.5 A 7-A direct current.
i, A
0 1 t '
0.0167 0.0333 LS
_7 —

Figure 4.6 A sinusoidal current.

is flowing through the conductor.! There is no need in such a situation to display a
plot of current versus time. Engineers describe such a physical situation by simply
stating that a 7-A direct current is flowing. The symbol dc is shorthand for the two
words direct current.

In the case of time-varying physical quantities the situation is more complex.
Consider the current shown in Fig. 4.6 and given by the following equation:

i(f) = 7sin(3771) A

Is it possible to describe such a waveform meaningfully by a single number? The
answer to this question is yes, but in order to appreciate the correct single number,
let us examine some incorrect choices. The first possible method is to characterize a
time-varying periodic waveform by its average.

1 T
oy = — | i(t)dt
i T/Ol()

where T is the period of the wave. For the sample wave under consideration the av-
erage current which flows is zero, and this certainly does not constitute a meaningful

| 1One ampere equals one coulomb per second.
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measure of current i(f). Another measure is the peak-to-peak current; i.e., the dif-
ference between the maximum and minimum values of the current attained by the
waveform:

ipp=T7—(=7)=14A

This is a meaningful measure, but many other waveforms also display the same
peak-to-peak current. An example is given in Fig. 4.7. Clearly, the current shown in
Fig. 4.7 will be significantly different in its physical effects from the current shown
in Fig. 4.6.

Suppose that the current i(¢) of interest is flowing through a resistor. The power
dissipated in the resistor at each instant of time is given by the equation

p(H) = Ri*(1)

and the average power dissipated in the resistor is given by the expression

P—I/Ttdt—Rl/T'ztdt [4.8]
av—fop() = ?Ol() .

Note that we can write
Py = RI%;

as long as we define I%; by the equation

2 1 T2
I = ?/0 i“(¢) dt

The right-hand side of the last equation defines the root-mean-square (rms) value
of the periodic waveform i(#). We write

17 1/2
Lins = {T / 0 dt} [4.9]
0

and this single number is a meaningful representation of the time-varying current i (¢)
in that the average power dissipated in a resistor when this current flows is given by

8

_77 - b

Figure 4.7 Another 14-A peak-to-peak current.
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the expression

P,, = RI?

rms

The rms (root-mean-square) value associated with a periodic time-varying waveform
is a single number which meaningfully characterizes such a function [18]. It will be
very useful in the following sections.
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Equation (4.6) provided the basic foundation upon which we constructed the primitive
current-measuring meter in Fig. 4.2. In order to extend this concept to a more realistic
model of actual meters, we construct a coil, as shown in Fig. 4.8, place it in a magnetic
field, and measure the force exerted on the coil as a result of the electric current flowing
in the coil. If the coil has N turns and the length of each turn in the magnetic field is
L, the force on the coil is

F = NBiL [4.10]

The force is measured by observing the deflection of a spring. The above principles
form the basis of the construction of the mirror galvanometer shown in Fig. 4.9. A per-
manent magnet is used to produce the magnetic field, while the telescope arrangement
and expanded scale improve the readability of the instrument. The meter shown in
Fig. 4.9 is designated as the D’Arsonval moving-coil type. The metal ribbon furnishes
the torsional-spring restraining force in this case, while a filamentary suspension
would be used for a more sensitive instrument.

Instead of the mirror and light-beam arrangement shown in Fig. 4.9, the
D’Arsonval movement could be used as a pointer-type instrument, as shown in
Fig. 4.10; however, such an instrument has a lower sensitivity than the mirror galvono-
meter because of the additional mass of the pointer and decreased readability resulting
from the relatively shorter scale length.
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Current-carrying coil in a magnetic field.
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Figure 4.9 A typical galvanometer. (a) Optical system; (b) D’Arsonval movement.

Scale

Rotatable coil

Spring and
pivot

Indicating
pointer

iron core

Figure 4.10 D'Arsonval movement used as a pointer-type instrument.

Itis clear that D’ Arsonval movement, in one form or another, may be used for the
measurement of direct current. When this movement is connected to an alternating
current, the meter will either vibrate or, if the frequency is sufficiently high, indicate
zero. In either event, the D’ Arsonval movement is not directly applicable to the
measurement of alternating current.

Two common types of movements used for ac measurement are the iron-vane,
or moving-iron, and electrodynamometer arrangements. In the iron-vane instrument,
as shown in Fig. 4.11, the current is applied to a fixed coil. The iron vane is movable
and connected to a restraining spring as shown. The displacement of the vane is
then proportional to the inductive force exerted by the coil. The meter is subject to
eddy-current losses in the iron vane and various hysteresis effects which limit its
accuracy.
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Figure 4.11 Principle of operation of the iron-vane or moving-iron instrument.

The features of the electrodynamometer movement are shown in Fig. 4.12. This
movement is similar to the D’ Arsonval movement, except that the permanent magnet
isreplaced by an electromagnet, which may be actuated by an alternating current. Con-
sequently, the field in the electromagnet may be made to operate in synchronization
with an alternating current in the moving coil. In order to use the electrodynamo-
meter movement for ac measurements, it is necessary to connect the electromagnet
and moving coil in series as shown in Fig. 4.13.

Both the iron-vane and the electrodynamometer movements are normally used
for low-frequency applications with frequencies from 25 to 125 Hz. Special designs of
the electrodynamometer movement may be used to extend its range to about 2000 Hz.

Both the iron-vane and the electrodynamometer instruments indicate the rms
value to the alternating current, and the meter deflection varies with 12, .. The scale
of the instrument is not necessarily based on a square law because the proportionality
constant between the rms current and the meter deflection changes somewhat with
the current.

An important feature of the electrodynamometer instrument is that it may be
calibrated with direct current and that the calibration will hold for ac applications
within the frequency range of the instrument. The iron-vane instrument is not as
versatile because of the residual magnetism in the iron when direct current is used.

A rectifier arrangement may also be used for ac measurements. In this device an
ac waveform is modified by some type of rectifier such that current is obtained with
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Q
i(,'
i,
o o
Figure 4.12 Basic features of electrodynamometer movement.
c - c
i=i=i,
o
Figure 4.13 Electrodynamometer movement used as an ammeter.

a steady dc component. A dc instrument may be used to indicate the value of the ac
current applied to the rectifier.

For measurements of high-frequency alternating currents, a thermocouple meter
may be used. This type of meter is indicated in Fig. 4.14. The alternating current is
passed through a heater element, and the temperature of the element is indicated by
a thermocouple connected to an appropriator dc instrument.

The thermocouple indicates the rms value of the current because the average
power dissipated in the heater is equal to /2 ( R. The instrument reading is independent
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Figure 4.14 Schematic of a thermocouple meter.
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Figure 4.15 Direct current mefer used as a voltmeter.

of waveform because of this relationship between the thermal emf generated in the
thermocouple and the power dissipated in the heater. The thermal emf generated
in the thermocouple varies approximately with the square of current, although slight
deviations from the square law may be obtained because of change in heater resistance
with temperature and other side effects. Alternating currents with frequencies up to
100 MHz may be measured with thermocouple meters. One may also measure high-
frequency current by first rectifying the signal to direct current and then measuring
the direct current.

A dc voltmeter may be constructed very easily by modifying the basic dc sensing
device as shownin Fig. 4.15. In this arrangement a large resistor is placed in series with
the movement; thus, when the instrument is connected to a voltage source, the current
in the instrument is an indication of the voltage. The range of the voltmeter may be
altered by changing the internal series resistor. The voltmeter is usually rated in terms
of the input voltage for full-scale deflection or in terms of the ratio of internal resistance
to the voltage for full-scale deflection. A series-resistor arrangement may also be used
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Figure 4.16 Electrostatic-voltmeter movement.

with the iron-vane and electrodynamometer instruments for measurements of rms
values of ac voltages. For low frequencies up to about 125 Hz the electrodynamometer
meter may be calibrated with dc voltage and calibration used for ac measurements.

Electrostatic forces may also be used to indicate electric potential difference. For
this purpose two plates are arranged as shown in Fig. 4.16. One plate is fixed, and
the other is mounted in jeweled bearings so that it may move freely. A spiral spring
provides a restraining force on the two plates. If two complete disks were used instead
of the sectoral plate arrangement, the net torque would be zero; however, with the
arrangement shown, the fringe effects of the electric field produce a net force in the
indicated direction which is proportional to the square of the rms voltage. As the mov-
able plate changes position, the capacitance changes, and hence the proportionality
between the stored energy and the voltage varies with the impressed voltage.

The electrostatic voltmeter may be used for either ac or dc voltage measure-
ments, but potentials above 100 V are required in order to produce a sufficiently
strong torque in the system. The meter may be calibrated with direct current and then
used for measurement of rms values of ac voltages, regardless of the waveform. Elec-
trostatic voltmeters are generally applicable up to frequencies of 50 MHz. It may be
noted that the electrostatic voltmeter has an extremely high-input impedance for dc
applications but a much lower ac impedance as a result of the capacitance reactance.
The capacitance may be about 20 pF for a 5000-V meter.

In the preceding paragraphs we have discussed some of the more important analog
devices that are used for the measurement of electric current and voltage. Next, we
examine digital devices.
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4.5 BASIC DIGITAL METERS

We have already discussed analog and digital representations of time-varying signals.
Analog meters are reasonably simple in that they depend on balancing a spring force
with a force generated by the interaction between a current and a magnetic field.
However, the use of such analog meters necessarily is limited by the accuracy with
which the position of the indicator with respect to the scale can be read. Parallax is
also a problem, and many times two individuals can read the same meter and arrive
at different values of the quantity being measured.

With a digital meter, the value of the measured quantity is shown directly as
a series of digits. This means that parallax is no longer a problem and different
individuals will read the same values. In addition, the inherent accuracy of digital
meters is much greater than that of analog meters. For these reasons, we shall briefly
discuss the digital voltmeter and related instruments.

The heart of digital meters is an oscillator or “clock” which is often a quartz crys-
tal. When such a crystal is connected to proper electrical components, it establishes
an output voltage which is almost sinusoidal with a fixed frequency. This frequency
is controlled by the dimensions of the quartz crystal. A familiar example of an ap-
plication of such devices is the digital watch. All digital meters have such a device,
although not all have a quartz oscillator. In some, the timing function is carried out
by means of integrated circuits. The clock output is usually “shaped” electronically
into a series of pulses, one pulse for each cycle of clock oscillation.

The cornerstone of digital instrumentation is the digital voltmeter. Typical op-
eration is characterized by the following: (1) the capability to generate an internal
reference voltage and decrease it linearly from 10 V to 0 V at a rate of 0.1 V/s, (2) the
ability to compare the reference voltage to the voltage being measured and to generate
a signal when the two are equal, and (3) the ability to generate another signal when
the reference voltage has reached 0 V.

For simplicity, assume that the clock generates one pulse each second. Let us
see how voltage can be determined using this set of capabilities. All we need to
do is start counting the clock pulses when the reference voltage equals the voltage
being measured and stop the counting when the reference voltage reaches zero. If,
for example, a total count of 23 is obtained in a given measurement, this means that
23 s elapsed between the “start count” and the “stop count” times. Since the reference
voltage was decreasing at 0.1 V/s, the measured voltage is 2.3 V. Figure 4.17 illustrates
these concepts.

A digital voltmeter can be converted into an ammeter by including a precision
resistor within the instrument and measuring the voltage drop across this resistor
caused by an unknown current. In a similar fashion, unknown resistances can be
measured by incorporating an accurate current passing through the unknown resistor.
In both of these cases the instrument design is such that the digital readout is the
desired current or resistance value.

The simple example given above to illustrate digital meter operation serves its
purpose but is somewhat misleading in that we have specified a very slow clock. In
fact, the clocks used in available instrumentation emit pulses at much higher rates
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Figure 4.17 Digital voltage measurement.

than those specified above. The digital meter is, of course, naturally wedded to digital
display. Since pulses are available in the system, these are used to drive the display
circuits directly. In this way a set of light-emitting diodes, for example, can be used
with little additional circuit complexity.

It is worth mentioning one significant additional difference between analog and
digital instruments. The analog meters basically respond to, and measure, currents.
The amount of torque produced on a meter movement is directly related to the amount
of current flowing through the meter. The situation is complementary in the case of
digital instruments. These devices respond to and measure voltages directly. This is a
result of the physical behavior of the integrated circuits of which digital instruments
are composed.

4.6 BaAsic INPUT CIRCUITS

A block diagram of the general method of gathering, processing, and displaying
physical information is shown in Fig. 4.18. The first block represents the transducer,
which serves to convert the value of the physical property of interest into an electrical
signal in some “faithful” fashion. A later section of this chapter concerns itself with
such transducers, and we shall mention a few examples here. A microphone converts
pressure into an equivalent electric voltage. A thermocouple converts temperature
into an equivalent electric voltage. A solar cell converts incident light into an equiv-
alent electric current, and so forth.

The electrical output of a transducer must be connected to some additional cir-
cuitry if we are to use it for anything. Care must be taken to ensure that this input
circuit does not change the value of the transducer output.

The third block in Fig. 4.18 is labeled “a signal conditioning”’; this refers to various
techniques which are available to reduce the effects of noise. This term is used in a
general sense to mean any electrical signals which may be present in addition to the
output of the transducer. The next block is the transmission segment, which simply
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Figure 4.18 Block diagram of measurement and display.
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Figure 4.19 Currentsensitive input circuit.

indicates that we may in some instances need to make a measurement at one physical
location and transmit the signal to another place for further processing, display, and/or
storage.

The next-to-last step points out the need to process the signal after transmission.
We shall not go into detail here, but, for example, if you were to listen to the output
of an AM radio transmitter, you would hear nothing. That is because the frequency of
such transmissions is much higher than the response capabilities of the human ear. A
radio receiver provides the processing necessary to convert the signal to an audible
frequency.

The display block in Fig. 4.18 indicates the need ultimately to display the elec-
trical signals in some comprehensible form. Examples include cathode-ray screens,
floppy disks, magnetic tape, lines of printer output, and xy plotters. In this section,
we shall discuss a few representative types of input circuits.

Consider a gas sensor, the resistance of which changes as a function of the gas
concentration surrounding the sensor. A simple type of input circuit uses the current
flow through the sensor’s resistance as an indication of the value of the resistance. Let
the sensor be in series with a battery and represent the battery as a series combination
of an ideal voltage source E; and an internal resistance R;, as shown in Fig. 4.19. A
change in the gas concentration results in a change in the resistance, as indicated by
the movable contact. The current is given by

. E
1 =
R+ R;
The maximum resistance of the transducer is R, and the current may be written in
dimensionless form as

[4.11]

i 1

= [4.12]
Ei/Ri  (R/Ruy)(Rn/Ri) + 1
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Figure 4.20 Voltage-sensitive input circuit. Change in resistance R is indicated through
change in voltage indication.
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It would be desirable to have the current output vary linearly with the resistance of
the transducer. Unfortunately, this is not the case, as the last equation shows, although
the output may be approximately linear for some ranges of operation.

The circuit shown above may be modified by using a voltmeter, as shown in
Fig. 4.20. Let us assume that the internal impedance of the voltmeter is very large
compared with the resistance in the circuit, so that we may neglect the current drawn
by the meter. That is, the meter looks like an open circuit. The current flow is still
given by

P [4.13]
i= .
R+ R;
Let E be the voltage across the transducer, as indicated in Fig. 4.20. Then
E iR R Rm Rm Ri
E iR (R/RW)(Ru/R) (a.14]

E; i(R+R) 1+ (R/Rn)(Ru/R)

Now we have obtained a voltage indication as a measure of the resistance R, but a
nonlinear output is still obtained. The advantage of the circuit in Fig. 4.20 over the
one in Fig. 4.19 is that a voltage measurement is frequently easier to perform than
a current measurement, as we have noted for digital meters. The voltage-sensitive
circuit is called a ballast circuit.

We can define the sensitivity of the ballast circuit as the rate of change of the
transducer voltage with respect to the transducer resistance R. Thus,

dE E/R;
dR  (Ri+ R)?
We would like to design the circuit so that the sensitivity S is a maximum. The circuit-
design variable which is at our disposal is the fixed resistance R; so that we wish to
maximize the sensitivity with respect to this variable. The maximizing condition

ds _ _ E(R—R)

dR; (Ri + R)?
is applied. Thus, for maximum sensitivity we should take R; = R. But since R is a
variable, we may select the value of R; only for the range of R where the sensitivity
is to be a maximum.

In both of the above circuits a current measurement has been used as an indicator
of the value of the variable resistance of the transducer. In some instances it is more

[4.15]

[4.16]
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Figure 4.21 Simple voltage-divider circuit.

convenient to use a voltage-divider circuit as sketched in Fig. 4.21. In this arrange-
ment a fixed voltage E is impressed across the total transducer resistance R,,, while
the variable contact is connected to a voltmeter with internal resistance R;. If the
impedance of the meter is sufficiently high, the indicated voltage E will be directly
proportional to the variable resistance R; that is,

E R
— = for R; > R [4.17]
EO Rm
With a finite meter resistance, a current is drawn which affects the voltage measure-
ment. Considering the internal resistance of the meter, the current drawn from the
voltage source is
Ey

i= [4.18]
Ry, — R+ R;R/(R+ R))

The indicated voltage is therefore

E=Ey—i(Ry—R)
E _ R/R,
Eo  (R/Ru)(1 = R/Ry)(Ru/Ri) + 1
As a result of the loading action of the meter, the voltage does not vary in a linear
manner with the resistance R. If Eq. (4.19) is taken as the true relationship between
voltage and resistance, then an expression for the loading error may be written as
(E/Eo)we — (E/Ep)ind
(E/ EO)lrue

We wish to know how much the voltage ratio of Eq. (4.19) differs from the simple

linear relation of Eq. (4.17), which would be observed under open-circuit conditions

or for very large meter impedances. We thus use Eq. (4.19) for the true value and
Eq. (4.17) for an assumed linear indication and calculate the loading error as

. . R R\ /R,
Fractional loading error = —{ — |( 1 — — |{ — [4.20d]
Rm Rm Ri

We may note that the behavior of Eq. (4.20a) is such that the loading error becomes
zero at each end of the resistance scale, that is, for R/R,, = 0 and 1.0. Equation (4.20a)

[4.19]

or

Loading error =
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Figure 4.22 Simple voltage-balancing potentiometer circuit.

expresses the loading error as a fraction of the voltage reading obtained in Eq. (4.19).
The raw error or deviation from a linear indication is
2
Deviation from linear = —(R/Rp)"(1 = R/Ry) [4.20b]
(R/Rm)(l - R/Rm) + Ri/Rm
The voltage-divider circuit shown in Fig. 4.21 has the disadvantage that the
indicated voltage is affected by the loading of the meter. This difficulty may be
alleviated by utilizing a voltage-balancing potentiometer circuit, as shown in Fig. 4.22.
In this arrangement a known voltage Ej is impressed on the resistor R,,, while the
unknown voltage is impressed on the same resistor through the galvanometer with
internal resistance R; and the movable contact on the resistor R,,. At some position
of the movable contact the galvanometer will indicate zero current, and the unknown
voltage may be calculated from

E R

—_— = — [4.21]

EO Rm
Notice that the internal resistance of the galvanometer does not affect the reading
in this case; however, it does influence the sensitivity of the circuit. The voltage-
balancing potentiometer circuit is used for precise measurements of small electric
potentials, particularly those generated by thermocouples. In order to determine ac-
curately the unknown voltage E, the supply voltage Ey must be accurately known.
A battery is ordinarily used for the supply voltage, but this represents an unreliable
source because of aging characteristics. The aging problem is solved by using a
standard-cell arrangement to standardize periodically the battery voltage, as shown
schematically in Fig. 4.23. When switch S, is in position A and switch S is closed,
the circuit is the same as Fig. 4.22. Then, when switch S is opened and switch S,
is placed in position B, the standard cell E; is connected in the circuit. The variable
compensator resistance R, is adjusted until the galvanometer indicates balance con-
ditions. The protective resistor R; may then be bypassed by closing switch S; and
a fine adjustment of the compensator resistor effected. The protective resistor R; is
placed in the circuit to avoid excessive current drain on the standard cell and also to
protect the galvanometer. Note that the standard-cell voltage is impressed on a fixed
portion of the resistance R. Once the battery has been standardized, switch S, may
be placed in the A position and the unknown voltage E measured. The battery may
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Figure 4.23 Potentiometer circuit incorporating features for standardization
of battery voltage.

be standardized as often as necessary for the particular application. The standard cell
would only be used for laboratory applications. Solid-state voltage standards would
be used for most measurements.

VOLTAGE SENSITIVITY. The output of a transducer with a total resistance of 150
is to be measured with a voltage-sensitive circuit like that shown in Fig. 4.20. The sensitivity
is to be a maximum at the midpoint of the transducer. Calculate the sensitivity at the 25 and
775 percent positions, assuming a voltage source E; of 100 V.

Solution
For maximum sensitivity at the midpoint of the range, we take

Ri=R=1R, =752

At the 25 percent position R = (0.25)(150) = 37.5 Q, and the sensitivity is calculated from
Eq. (4.15):

E E;R; 1
S = e = — = (100)(75) =0.592 V/Q
dR (R +R? (75+437.5)?
At the 75 percent position the corresponding sensitivity is
100)(75
S = _10075) =0.213V/Q

T (75 + 112.5)2

Example 4.1

LOADING ERROR OF VOLTAGE-SENSITIVE CIRCUIT.  The voltage-divider circuit
is used to measure the output of the transducer in Example 4.1. A 100-V source is used
(Ey = 100 V), and the internal resistance of the meter R; is 10,000 2. Calculate the load-
ing error at the 25 and 75 percent positions on the transducer and the actual voltage readings
which will be observed at these points.

Example 4.2
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Solution
We have

R, 150
R, 10,000
At the 25 percent position R/ R, =0.25 and the fractional loading error is calculated from Eq.
(4.20a) as

1.5x 1072

Fractional loading error = —(0.25)(1 — 0.25)
= 0.281%

The deviation from linear is obtained from Eq. (4.20b)
—(0.25)%(1 — 0.25)
(0.25)(1 — 0.25) + 1/0.015
=-7.01 x107*

Deviation from linear =

The indicated voltage is therefore
E = (100)(0.25 — 7.01 x 107*) =24.93V
At the 75 percent position R/R,, = 0.75 and
Fractional loading error = —(0.75)(1 — 0.75)(0.015)
=281 x 107 =0.281%
The deviation from linear is
—(0.75)2(1 — 0.75)
(0.75)(1 = 0.75) + 1/0.015
=-2.103x 107

Deviation from linear =

and the indicated voltage is

E = (100)(0.75 — 2.103 x 107%) = 74.79V

Improvement in measurement and accuracy is provided by so-called bridge cir-
cuits, which are employed in a variety of applications for the measurement of re-
sistance, inductance, and capacitance under both steady-state and transient condi-
tions. The equivalent electric circuit of some transducers can be represented as an
impedance, and, as a consequence, the capability of measuring such electrical quan-
tities accurately is important. Many bridge circuits have been developed, but we shall
limit our discussion to some of the more prominent types and their applications to
various measurement and control problems.

The Wheatstone bridge is normally used for the comparison and measurement
of resistances in the range of 1 Q to 1 MQ. A schematic of the bridge is given in
Fig. 4.24. The cornerstone of the bridge consists of the four resistances (R, R;, R3,
R,), which are arranged in a diamond shape. R, and Rj3 are normally known resistors,
R, is a variable resistance, and R, is the unknown resistance value associated with
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Figure 4.24 Schematic of basic Wheatstone bridge.

the transducer output. The voltage E is applied to the bridge by closing the switch S,
and by adjusting the variable resistance R, the bridge may be balanced. This means
simply that the potential difference between points B and D is zero. This balanced
condition may be sensed by closing the switch S, and adjusting the value of R; until
the sensing device indicates no current flow. When this occurs, the voltage drop across
R, must equal the voltage drop across R; since this implies that the voltage difference
between B and D must be zero. Using the currents defined in Fig. 4.24, we obtain

ihRy =11 R,
Further,
h=i3= —— if balanced
R+ R3
and | =i,=— if balanced
Rl + Rx
If the currents are eliminated from these relations, the result is
R, R
_—= [4.22]
R3 Rx
RiR3
or R, = [4.23]
R,

This last equation allows the calculation of the value of R, in terms of the other three
resistors in the bridge.

If accurate measurements are to be made with a bridge circuit, the values of the
resistors (R, Ry, R3) must be precisely known, and the sensor must be sufficiently
sensitive to detect small degrees of imbalance. When the unknown resistance R is
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connected to the circuit, care must be taken to use connecting leads which have a
resistance that is small in comparison with the unknown.

The term “ratio arms” is frequently used in describing two known adjacent arms
in a Wheatstone bridge. The galvanometer is usually connected to the junction of
these two known resistors. In Fig. 4.24 R, and R3; would normally be called the ratio
arms.

In practice, the Wheatstone bridge is usually employed in an unbalanced mode
and the galvanometer is replaced with a digital voltmeter of high internal impedance.
The output voltage is a measure of the resistance, as we shall see in a later discussion.

Example 4.3

UNCERTAINTY IN WHEATSTONE BRIDGE. For the basic Wheatstone bridge in
Fig. 4.24, determine the uncertainty in the measured resistance R, as a result of an uncer-
tainty of 1 percent in the known resistances. Repeat for 0.05 percent.

Solution
We use Eq. (3.2) to estimate the uncertainty. We have

OR, Ry OR,  RiR; OR, R
9R, R, R, R} 9R; R,

For a 1 percent uncertainty in the known resistances this gives

% = (0.017 +0.01* + 0.01)"/> = 0.01732

1.732%

For a 0.05 percent uncertainty in the known resistances the corresponding uncertainty in R, is
0.0866 percent.

The basic Wheatstone bridge circuit may also be employed for the measurement
of ac impedances. The main problem is that two balance operations must be made
to obtain a null, the first for the real part of the waveforms and the second for the
imaginary part. There are some types of ac bridges that may be balanced with two
independent adjustments. Several of these types are shown in Table 4.1, along with
the balance conditions which may be used to determine the values of the unknown
quantities.

Since an alternating current is involved, the null conditions may not be sensed by
a galvanometer as in the case of the dc Wheatstone bridge; some type of ac instrument
must be used. This could be a rectifier meter, oscilloscope, or digital multimeter.

It may be noted from Table 4.1 that for some types of ac bridge circuits the
balanced condition is independent of frequency (types a, ¢, and e), while for others
the frequency must be known in order to apply the balanced conditions (types b, d,
and f). Thus, if the capitance and resistance values are known for a Wien bridge, the
bridge could be used as a frequency-measuring device.
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Table 4.1 Summary of bridge circuits
Circuit Balance Relations Name of Bridge and Remarks
(a) C3R; Basic Wheatstone bridge.
Ce= R Greatest sensitivity when
RyR bridge arms are equal.
R, =
Ry
Cx R R3 Wien bridge. May be used
G R R for frequency measurement
I with indicated relations.
c,C
3T W2RaR,
IfC3 =Cy
and R3 = R,
fe 1
T 7R3 C3
L, =CiRR, Owen bridge.
C1R,
R, = —R3
C

(Continued)
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Table 4.1 (Continued)

Name of Bridge
Circuit Balance Relations and Remarks
(d) WLC = 1 Resonance bridge. At
balance conditions may
R R3R;
1 R, = be used for frequency
R measurement with
1
f=—
q 2w/ LC
L, = RiR3C Maxwell bridge.
_RiRs
X R2
RiR3C Hay bridge.

140 C2R3

®?C*Ri Ry R3
1+ w?C?R}

x =
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As mentioned earlier, bridge circuits are useful for experimental measurements.
The Wheatstone bridge is widely used for measuring the output resistance of various
transducers, such as resistance thermometers, strain gages, and other devices that
register the change in the physical variable as a change in output resistance. The ac
bridges are used for inductance and capacitance measurements. Many transducers
produce a change in either of these quantities upon a change in the physical quantity
of interest. Bridge circuits are also useful in an unbalanced condition because a small
change in the impedance in one of the bridge arms can produce a relatively large
change in the detector signal, which can be used to control other circuits.

UNBALANCED BRIDGES

Bridge circuits may operate on either a null or a deflection principle. The null con-
dition has been described above as where the galvanometer or sensing device reads
zero at balance conditions. At any other condition the galvanometer reading will be
deflected from the null condition by a certain amount, which depends on the degree
of unbalance. Thus, the signal at the galvanometer or detector may be used as an
indication of the unbalance of the bridge and may indicate the deviation of one of
the arms from some specified balance condition. The use of the deflection bridge is
particularly important for the measurements of dynamic signals where insufficient
time is available for achieving balance conditions.

Consider the bridge circuit shown in Fig. 4.25. Ry, R, R3, and Ry are the four
arms of the bridge; R, is the galvanometer resistance; and i, and i, are the battery
and galvanometer currents, respectively. R, represents the resistance of the battery or
power-supply circuit. When the bridge is only slightly unbalanced, it can be shown that
the value of R;, does not appreciably influence the effective resistance of the bridge
circuit as presented to the galvanometer (see Ref. [2]). As a result, the following
relation for the galvanometer current may be derived:

E,

p = ——— 4.24
lg R+ R, [ 1

Figure 4.25 Schematic for analysis of unbalanced bridge.
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Figure 4.26 Equivalent circuit of bridge as presented to the galvanometer.

where R is the effective resistance of the bridge circuit presented to the galvanometer
and is given by
_ RiR4 RyR;
" RI+R, R+ R
This effective resistance R is indicated in Fig. 4.26. The voltage presented at the
terminals of the galvanometer E, is

R, R>
E,=E - [4.26]
) Ri+Ry Ry+R;

The voltage impressed on the bridge E depends on the battery or external circuit
resistance R;, and the resistance of the total bridge circuit as presented to the battery
circuit, which we shall designate as Ry. It can be shown that for small unbalances the
resistance Ry may be calculated by assuming that the galvanometer is not connected
in the circuit. Thus,

[4.25]

Ro— (R + Ry)(Ry + R3)

0 = [4.27]
Ri+Ry+ R+ R3
The voltage impressed on the bridge is then
Ry
E=FE—— [4.28]
Ro+ Ry

CURRENT-SENSITIVE AND VOLTAGE-SENSITIVE BRIDGES

Because the deflection described above and indicated by Eq. (4.24) is based on the
determination of the galvanometer or voltmeter current, the circuitis said to be current-
sensitive. If the deflection measurement were made with an electronic voltmeter,
oscilloscope, or other high-impedance device, the current flow in the detector circuit
would be essentially zero since as R, — 00, i, — 0in Eq. (4.24). Even so, there is
still an unbalanced condition at the galvanometer or detector terminals of the bridge.
This condition is represented by the voltage between terminals A and C for the
case of a high-impedance detector. Such an arrangement is called a voltage-sensitive
deflection-bridge circuit. The voltage indication for such a bridge may be determined
from Eq. (4.26).

For relatively large unbalances in a bridge circuit it may become necessary
to shunt the galvanometer to prevent damage. Such an arrangement is shown in
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(b)

Figure 4.27 (a) Galvanometer shunt arrangement for use with bridge of Fig. 4.26;
(b) galvanometer with series resistance for use with bridge in Fig. 4.26.

Fig. 4.27a. In this case the voltage across the galvanometer may still be given to a
sufficiently close approximation by Eq. (4.26), but the current through the galvanome-
ter must be computed by considering the shunt resistance R,. The total resistance of
the bridge and shunt combination as seen by the galvanometer circuit is given by

R,R
e = ———— [4.29]
Rp + R
and the galvanometer current is now given by
. E,
iy = e [4.30]
R.+ R,

The galvanometer current may also be reduced by using a series resistor, as shown in
Fig. 4.27b. For this case the galvanometer current becomes

Eq

fp= —— 5 [4.31]
£ R+ R, + R,

where R; is the value of the series resistor.

OUTPUT MEASUREMENTS OF BRIDGES

For static measurements with a Wheatstone bridge the output will most likely be mea-
sured with a digital voltmeter having a very high input impedance. The output may be
stored with various digital devices, including computers. For transient measurements
an oscilloscope may be employed with or without digital storage facilities. Various
levels of data acquisition systems are available for both indication and recording of
the outputs.

193

DEFLECTION BRIDGE. The Wheatstone bridge circuit of Fig. 4.24 has ratio arms (R,
and Rj3) of 6000 and 600 2. A galvanometer with a resistance of 70 €2 and a sensitivity of
0.04 uA/mm is connected between B and D, and the adjustable resistance R, reads 340 2. The
galvanometer deflection is 39 mm, and the battery voltage is 4 V. Assuming no internal battery
resistance, calculate the value of the unknown resistance R. Repeat for R, and R; having values
of 600 and 60 €2, respectively.

Example 4.4



194

CHAPTER 4 o BASIC ELECTRICAL MEASUREMENTS AND SENSING DEVICES

In this instance the bridge is operated on the deflection principle. For purposes of analyzing the
circuit we use Figs. 4.25 and 4.26. The galvanometer current is calculated from the deflection
and sensitivity as

ig = (39)(0.04 x 107%) = 1.56 uA
In the circuit of Fig. 4.25 the resistances are
R,=0 R, =340 R, = 6000 R; = 600 Ry =R, R, =170

We also have E = 4.0 V.
Combining Eqs. (4.24) to (4.26), we obtain
P E[R{/(Ry + Rs) — R2/(Ry + R3)]
* " Ry +[RiRs/(Ri + R) + RaR3/(Ry + R3)]

Solving for R4, we have

Ri— ER Ry — i,[R;Ri(Ry + R3) + RoR3 R, ]
¢ ig(1+ R+ R) (R, + R3) + ER,

Using numerical values for the various quantities, we obtain
Ry =3393Q
Taking R, = 600 and R; = 60, we have
R, =33.98Q

4.7 AMPLIFIERS

Experimental measurements occur in many forms: for example, the voltage output
of a bridge circuit, the frequency signal of a counting circuit, and voltage signals
representative of a change in capacitance. In many cases the signals are comparatively
weak and must be amplified before they can be used to “drive” an output device. In
other instances there is a serious mismatch between the impedance of the measurement
transducer and that of the output circuits so that some interface must be provided to
allow effective impedance matching. An example, in a familar setting, of the former
class of problems involves connecting a phonograph pickup cartridge directly to a
loudspeaker. The cartridge is a transducer which converts the force produced by
mechanical motions in the groove of a record directly into an electric voltage. This
voltage could be applied directly to a loudspeaker, but it is so small that no audible
sound will result. All sound systems provide a significant amount of amplification to
increase this voltage before it is applied to the speakers. As a parenthetical comment,
the buyer of such systems generally pays more when he or she insists that the voltage
have a low distortion as it undergoes this amplification process.

In another example, the output of an audio CD player is usually insufficient to
drive serious speaker systems and thus requires amplification.
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Most amplifiers today are based on solid-state devices or integrated circuits.
Vacuum tubes are employed in only a few specialized applications, but we shall be
mainly concerned with the overall operating characteristics of amplifiers and the ways
they can be used to accomplish a specific objective. We have already mentioned the
effects of frequency and amplitude distortion in Sec. 2.9. Such effects can certainly
be present in amplifiers if they are driven beyond the limits of their linear operation.
We shall examine some techniques to minimize such distortion.

EFFECT OF FEEDBACK

Consider the amplifier schematic, shown in Fig. 4.28, having an input voltage E and
an output voltage E, with a gain of A. Without the feedback-attenuator loop we would
have

a=Lo [4.32]

=T .
Now, we add the feedback loop which attenuates the output voltage by a factor k
and feeds it back into the input. The feedback voltage is Ef = kE,, which is negative
and subtracted from the input voltage, resulting in an input to the amplifier of E =
E; — E;. Now, the gain of the amplifier and feedback system is
E, E, A

A= — = = 4.33
'~ E. T E,JA+kE, 1+kA [4.33]

If the amplifier gain is very large, that is, kA > 1, then the gain is very nearly

AL [4.34]
T kA Tk )
Note that the gain of the overall system becomes constant so long as kA is sufficiently
large. We may define the input and output impedances for the feedback system as

Ay

Ei Eo
Z,')f:* and Zo'f:T
14

E=E-E
( ) y/ Amplifier
E; gain = A E,

E; = kE

Attenuator, k

Figure 4.28 Amplifier with feedback loop.
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respectively. The input impedance for the amplifier alone is
E K,

I, AZ

1
Ei=E,(k+—
()

Combining these relations, we obtain

_ E,(k+1/A)
 E,/AZ;

i

From Eq. (4.33)

Zi s =Z(1+kA) [4.35]

Thus, we find that by the use of feedback we can increase the input impedance by
a factor of 1 + kA, or by a very large factor when the amplifier gain is large. The
voltage appearing to drive the output impedance is A E and the output voltage is

E,=AE-1,Z,
For E; = 0 the input voltage to the amplifier will be E = —kE, and
E,=—AkE, - 1,Z,

1,Z, [4.36]
T kA+1
The effective output impedance for the system is then
Zy=22 = 20 [4.37]
’ 1, 1 +kA

So, the effect of feedback is to lower the output impedance by a factor of 1 +kA. We
have already mentioned that an amplifier will only be able to accept a limited range of
input voltages before it can be driven into nonlinear behavior. The effect of feedback
is to extend this range greatly because the feedback voltage lowers the voltage which
is presented to the input of the amplifier.

Now, consider a typical frequency-response curve for an amplifier, as shown in
Fig.4.29. The curve is flat up to a certain frequency and then drops off; that is, the gain
which can be delivered by the amplifier is reduced at higher frequencies. However,
when negative feedback is employed, lower gain is experienced (by a factor of k),
but this has the effect of extending the frequency response.

Negative feedback also has the effect of reducing amplifier noise which is present
in the output signal. Consider the two cases shown in Fig. 4.30. In (@) we have the open-
loop amplifier and the noise N is assumed to appear at the output terminal. In (b) we
have the negative feedback configuration. As before, we can write E = E; — kE, and
the output voltage is

E,=AE+ N = A(E; —kE,) + N [4.38]

_AEi+N

so that ) =
14+ kA

[4.39]
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Frequency limit, no feedback

E Frequency limit
Log with feedback

log f

Figure 4.29 Typical amplifier frequency-response curve.

E; o—O—»

E= kEU

A
k
(b)

Figure 4.30 Effect of feedback on noise.

For kA > 1 this reduces to
B =ty X [4.40]
Tk T kA :

where the + indicates that the noise is random.

EFFECT OF FEEDBACK ON SIGNAL-TO-NOISE RATIO.  Anamplifier has a gain of Example 4.5
1000 and a signal-to-noise (S/N) ratio of 1000 in the open-loop configuration. Calculate the
S/N ratio when negative feedback with k = 0.1 is used.

Solution
For E; = 1 the open-loop output would be AE; = E,,.

E, = 1000 % 1

that is, the noise is 1/1000 of the output signal.
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To produce this same output signal with the feedback arrangement, we would need an
input signal of E; = 100 because the gainis Ay = 1/k = 10. Then, from Eq. (4.40) the output
would be (N is still 1.0)

100 1
0.1 7 (0.1)(1000)
= 1000 + 0.01
Now, the S/N ratio is
1
S/IN = 1000 100,000
0.01

So, by the use of feedback we have increased the S/N ratio by a factor of 100.

4.8 DIFFERENTIAL AMPLIFIERS

A differential or balanced amplifier is a device that provides for two inputs and an
output proportional to the difference in the two input voltages. For good operation it
is necessary to have well-matched internal components and provisions for trimming
the system so that a zero differential voltage input will produce a zero output. The
differential amplifier is particularly useful for amplification and measurement of small
signals subjected to stray electric fields (typically line voltage at 60 Hz and 115 V).
Such stray fields can induce substantial voltages in the input lines unless stringent
efforts are made to provide shielding. However, the application of equal voltages
to the inputs or equal ac voltages of the same phase will cancel out. This feature is
called common mode rejection. The descriptive property of the amplifier is called the
common mode rejection ratio (CMRR), defined as the common mode signal at input
divided by the common mode signal at output.

CM;
CM,

CMRR = [4.41]

Values greater than 10° (120 dB) are not uncommon.

4.9 OPERATIONAL AMPLIFIERS

An operational amplifier (op-amp) is a dc differential amplifier incorporating many
solid-state elements in a compact package and shown schematically in Fig. 4.31. It
operates from dc to some upper frequency limit of the order of 1.0 MHz. The (+4)
input is called the noninverting input because the output from this source is in phase
with the input. The inverting input (—) has the opposite behavior; that is, the output
resulting from that source is 180° out of phase with the input. Op-amps using npn
transistors will have input impedances of greater than 1 M2, while those constructed
with field-effect transistors may have input impedances of the order of 10'? Q. Because
of these high impedances the input current for op-amps is essentially zero.
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The output impedance of op-amps is very low, typically less than 1.0 €2, and the
open-loop gain is very high, of the order of 10° (120 dB) [15].

In drawing the schematic diagrams for op-amps it is common practice to leave
off the power supply and null adjustment inputs. Of course, one recognizes that
these inputs must always be provided. With this brief description of the general
characteristics of operational amplifiers, we now examine some specific amplifier-
feedback configurations which are useful in experimental measurements. Figure 4.32
gives the schematics for the examples to be discussed.

Power supply
+

Inverting

input O———|
. p' Output
Noninverting o0———

input
Input for
null adjustments
Figure 4.31 Schematic for operational amplifier.

E,

0

S f _ R

Gain = R 2=RT 3
R, = RR;  For equal input ' R,
2 R, +R; impedance on (+)and (—) — Gain =1 + R
(c) (d) (Continued)

Figure 4.32 Operational amplifier configurations. (a) Open-loop, differential input;
(b) open-loop, single input; (c) inverting, differential input;
(d) noninverting; (e) noninverting voltage follower; (f) voltage follower
with gain greater than unity; (g) voltage follower with resistance in
feedback; (h) inverting summer or adder; (i) noninverting adder; (j) circuit
for high-input impedance and common mode rejection; (k) integrator;
() differentiator; (m) currentto-voltage converter; (n) charge amplifier.
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—oO E,
E;
nR
T -
R Gain=1+n
—o0E,
E, l
Gain = 1.0 ® o
(e) (f)
R,
Eo—MN— . _ (B, B &
R, ‘ I\ & Ry Ry
By o—AM—
Ry
£ o—AAN—
3 ' Ry
R
N »———oO E,
+
E,
E; °
Gain = 1.0
O
(9) (h)
N cR, R,
o 1 M
aR,
R,
bR,
M
y cR, R,
. E, l+a+b N
o Gain=f=g = ¢
(1))

Figure 4.32 (Continued)
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c
I N
R, E; o—{—
o—A\\N\, - ‘
L o E,
TR ,
= 1 Ec:RfC
Eﬂ:fklfcfEidtforE,»ZOatt:O o o

(k) (n

Current C
source

Figure 4.32 (Continued)

The open-loop configurations in (a) and (b) are not often used because even a
very small input will drive the output to full capacity of the power supply. Because the
input impedance is high, the current presented to the input of the inverting terminal
in (c) will be nearly zero. Designating the voltage present at the amplifier input as E;
requires that

Y T
But £, = —AE,,or E; = —FE,/A so that
Eo_ B _E (1 + 1) [4.42]
Ry Ri A\R; R

Because the gain is very large, the last term drops out and the gain of the negative
feedback arrangement becomes

E, Ry

E; R
The very high gain has the effect of causing E to be very nearly zero. A similar devia-
tion could be used to obtain the gain for the noninverting configuration in Fig. 4.324.
The voltage follower in (e) has a gain of unity and can serve as a power amplifier
to convert a high-impedance input into a low-impedance output. The potentiometer
arrangement in (f) can be used to produce a gain greater than unity through the split

[4.43]
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between n R and R. Addition of an arbitrary resistor as in (g) still produces unity gain
with the voltage follower.

Still further use of the zero-input current condition could be to derive the relations
shown for the inverting and noninverting adder configurations shown in (%) and (7).
A configuration for amplifying a high-impedance input with excellent common mode
rejection is shown in ().

In many experimental applications a transducer will be employed that gives a
signal proportional to a certain rate, such as a fluid flowmeter, which indicates the flow
rate of the fluid through the device. In addition to the rate of flow, the experimentalist
may also wish to know the total quantity of fluid flowing over a given length of
time. In other words, we need to integrate the input signal over a given time. The
configuration in (k) accomplishes this objective. For very high gain we again have
nearly zero-input voltage and sum the input currents to the amplifier as

By o
R; dt -
Th Ey=—— [Ea [4.44]
us, o= R.C i .

Normally, a switching process is installed across the capacitor to make the voltage
zero at the time the integration is to begin.

In a similar way, the op-amp can be used as a differentiator, as shown in Fig. 4.321.
If one has a constant current input as in (m), we would have

E,
L —=2=0 [4.45]
Ry
and we have a current-to-voltage convertor with E, = R/1;.

With some transducers the input signal is electric charge. Examples are
piezoelectric transducers which convert an impressed-force input to charge and con-
denser microphones used to measure acoustic phenomena. The configuration in
Fig. 4.32n is used for such measurements. The charge amplifier is also employed
to modify the output signals from charge-coupled devices (CCDs) in digital imaging
systems. It then becomes part of the integrated circuit for the image-sensing device.
See Appendix B for further information.

The particular amplifier configuration to be employed depends on the applica-
tion, and one must carefully observe the operating characteristics of the sensors or
transducers connected to the amplifier inputs. Impedance matching is quite important.
If the source impedance is large, the amplifier circuit might cause sufficient loading
so that most of the signal power is lost. In this case the input noise level in rela-
tion to the reduced signal may become excessive and reduce the overall accuracy of
measurement. One way to avoid this problem is to employ first a voltage follower to
reduce the impedance (the output impedance of an op-amp is low) and then follow
with whatever other amplification and signal processing are required.
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Transformers are also used to match impedance in many experimental situations. An
ideal n-turn transformer is shown in Fig. 4.33 along with the associated four terminal
variables, two voltages, and two currents. The equations relating the voltages and
currents are

Uy = nvp
) i [4.46]
I = —1

n

Dividing the first by the second results in the following:

Uy v

= nzfl

2 3t
and as long as the voltages and currents are single-frequency sinusoids, we may state
that the output impedance Z, is related to the input impedance Z; by the equation

Z, =n*Z, [4.47]

This equation states that the output impedance of an n-turn ideal transformer is
n? greater than the input impedance. As a concrete example, consider an experiment
in which we need to apply the 1000-Hz output voltage of an operational amplifier
to a loudspeaker to produce an audible sound. The op-amp has an output impedance
of 50 Q at this frequency, and the loudspeaker has an equivalent impedance of 3 .
For efficient power transfer we wish the loudspeaker impedance to “look™ as much
as possible like 50 €2. This can be accomplished by using a transformer, as shown in
Fig. 4.34. Here

Z,=3Q

and by the definition of an ideal transformer

Zz = l’l221
or 50 =n*(3)
and taking the closest integer value for n, we obtain
n=4
iy n:l iy
+ +
v v

Figure 4.33 Ideal transformer.
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n:l
50 Q)
30
v (O
Figure 4.34 Impedance matching via transformer.

The insertion of a four-turn transformer between the output of the operational
amplifier and the loudspeaker will ensure a close-to-optimum transfer of energy from
the amplifier to the speaker.

This completes our discussion of the basics of operational amplifiers, their uses
in measurement procedures, and impedance matching. We next turn to a condensed
examination of power supplies since they are needed if one is to use operational
amplifiers and other integrated circuits. They are also necessary for driving various
types of detectors and transducers.

4.11 POWER SUPPLIES

There are two commonly used sources of dc energy: batteries and electronic modules
which convert 60-Hz electric energy (available from power lines) to direct current.
These modules are called power supplies.

Batteries are constantly being improved in terms of both their cost per unit energy
and their weight and volume per unit energy. Despite this progress, they are still
relatively expensive and bulky; they are preferred only in situations where portability
is desired.

The specific details underlying the operation of dc power supplies are of minor
interest here, but some general features will be pointed out. In many cases combina-
tions of solid-state diodes are used to convert the pure 60-Hz sine wave available at
an electric outlet to the positive, “rectified” wave shown in Fig. 4.35. This voltage
contains a dc component as well as a series of sinusoids with frequencies which are
integer multiples of 60 Hz. The “ripple” caused by these harmonics is undesirable and
is reduced by further filtering, as will be discussed in the next section. The output of

Voltage Voltage Voltage

Many frequencies

60 Hz plus dc
de

Time Time Time

(a) (b) ()

Figure 4.35 Rectification.
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Voltage
Perfect
Better
0 Current

Figure 4.36 Power-supply voltage regulation.

a properly designed power supply is similar to that shown in Fig. 4.35 and is nearly
constant. There is, to be sure, a nonzero amount of residual ripple, and this is normally
specified by the manufacturer in percentage terms.

It is also important that the output voltage of a dc power supply remain constant
as the current supplied to the circuits it is driving increases. If we represent the power
supply as an ideal constant voltage source in series with some characteristic resis-
tance, the goal of the power-supply designer is to reduce the value of this resistance
as much as possible. Figure 4.36 illustrates various possible voltage-versus-current
characteristics for power supplies. The curve labeled “perfect” indicates a practically
unattainable ideal in that the voltage supplied is independent of the current drawn. The
degree to which the output voltage is independent of the current supplied is termed
voltage regulation. There are available integrated circuits which, using operational
amplifiers, do an excellent job of maintaining a constant output voltage. For example,
one such circuit will maintain an output voltage to within 0.05V of 5V for output
currents ranging from 5 to 500 mA. Such regulation is more than adequate for most
electronic circuits.
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Noise is present in all physical situations in which measurements are attempted or
information is conveyed, and noise is, in fact, a rather subtle ramification of the sec-
ond law of thermodynamics. Noise is fundamentally another manifestation of the
attempts of the physical universe to attain a state of randomness. Proper experimental
design and procedures can greatly reduce its effects in many situations, as we shall
now discuss.

A significant help to the experimenter is any a priori knowledge which may be
available concerning the frequency ranges in which the desired signal exists. For
example, if atmospheric temperatures are being measured, it is reasonable to expect
that such temperatures will not change significantly over times shorter than several
minutes. As a consequence, the meaningful output voltage of a thermocouple includes
only the low-frequency part. Higher-frequency components are noise due to random
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fluctuations and can be eliminated without loss of experimental information, if, in-
deed, such elimination is possible. Another example would be the investigation by
an electric utility company of the audible noise produced by an ultra-high-voltage
transmission line. Because the human ear responds to acoustic signals only in the
range of frequencies between 20 Hz and 18 kHz, the processing of sensor outputs can
be safely limited to this frequency range.

This discussion naturally leads to an examination of the possibility of filtering
electrical signals. This term means that we desire circuits which transmit or pass only
certain bands or ranges of frequencies of an input signal. The unwanted parts of the
signal can be characterized as noise, but in addition, there is also noise present in the
frequency band of interest. Filtering will not solve all the problems, but it does provide
a significant degree of experimental improvement. If a relatively narrow range of
frequencies is important, it is usually possible to operate with much simpler electronic
circuits for amplification and processing purposes than when a broad frequency range
must be examined.

Various arrangements may be used for filter circuits, but they all fall into three
categories: (1) lowpass, (2) highpass, and (3) bandpass circuits. Some filters are com-
posed only of passive elements, while others involve amplification to eliminate losses
and are termed active filters (discussed in Chap. 14). A lowpass filter permits the
transmission of signals with frequencies below a certain cutoff value with little or
no attenuation, while a highpass filter allows the transmission of signals with fre-
quencies above a cutoff value. The bandpass filter permits the transmission of signals
with frequencies in a certain range or band while attenuating signals with frequencies
both above and below the limits of this band. The approximate performance for the
three types of filters is shown in Fig. 4.37. The cutoff frequency is designated by f.
for both the highpass and lowpass filters, while the limits of frequency transmission
for the bandpass filter are given by the symbols f} and f,. Note carefully that the
filters do not provide discontinuities in attenuation at the transition frequencies;
that is, there is transmission of signals with frequencies above or below a given cutoff
value, although the signal attenuation becomes more pronounced as the frequency
moves away from the cutoff point.

Frequency Frequency Frequency

Highpass Lowpass Bandpass

Figure 4.37  Approximate performance curves for three types of filters.
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Table 4.2 Some simple RL and RC filter sections

Formula and

Asymptotic
Diagram Type Time Constant Approximation
E, 1 1
A lowpass RC T =RC —_— s = —

E; V14 0?T? oT
¢4 = —tan~  (RwC)

E, 1
B highpass RC T =RC A ~ wT
1
b+ w?T?
¢p = tan~! !
5= RoC
Cl RL T L Eo _ ! ~ L
owpass =% 5= i el
1 wlL
¢c = —tan”' —
D highpass RL r=t Eo ! T
= — o -~
ighpass R E, -
L+ w?T?
¢p = tan~! —

A summary of several types of passive filters is given in Fig. 4.38 on the next
page. The various filter sections may be used separately or in combination to produce
sharper cutoff performance. In the m-derived sections the quantity m is defined by

2
m=1/1-— (f) [4.48]

for a lowpass filter and

[4.49]

for a highpass filter, where f, is the desired cutoff frequency and f, is a frequency
having high attenuation. When only one m-derived section is used, a value of m = 0.6
is recommended. When a filter is designed for a particular application, it is usually
important that the impedance of the filter circuit be matched to the connecting circuit.
Consideration of the matching of impedances in such circuits is beyond the scope of
our discussions.

Table 4.2 presents some basic RL and RC filter sections. In a number of ex-
perimental situations these simple two-element filters offer significant improvement
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Lowpass filters Ly

LK
C C C C C
—K J 2 2 -2 =2
2 2 § 2 i 2 TS 2 T 2
e, O
Constant-k 7 section m-derived 7 section m-derived end sections for use
with intermediate 77 section

Ly Ly L 2L
2 ¢ 2 R 2 2
K
§ &
_1 2T 5
Constant-k T'section m-derived T section m-derived end sections for use
with intermediate T section
R 1 2 2
Ly==—r Cy=—7p _ _l=-m — _1l=—m
K ~af, K~aR Ly=mLy C =152 o Ly =mLy Cp =15 o
2 2
_l=m — _l=m -
L=1FM L Cy=mCy Ly="FM L, Cy=mCy
(a)
Ll Ll
Highpass filters L B 2
< — —
§ R 2L, 2L, 2C, 2L, 2L, 2C,
=1 o o
m-derived 7 section m-derived end sections for use

with intermediate 77 section

2, .26 oL, C, 2C1 oL
5 2
c

T2 o -

Constant-k T section m-derived T section m- derwed end section fnr use
with intermediate 7" section

I S 5
Lk =dmy, Sk~ IR L= L= amy o c =k
—m
L
G L=7 €=~ oy
1 —m
Bandpass filter
Constant-k 7r section Three-element 7 section Three-element 7 section
20, 20, 2¢, 20, 2¢, 2¢,
L T L e
2 I C’2 2 2 L'2 2

Constant-k 7' section Three-element 7 section Three-element T section

_ R _h-h L =L L _ AR _
k= w(f =) ik 4mf| LR b 1= 7T(f1 ) Tahh - ) C=Cig
L _UhhR o C,:fz_zfl L'ZZL@)R o _hth L
K T 4af, 1, 2K "7 (f, — )R 4af, "R 4af, L™ daif, R 2T MK

_ " 1 (fy TR f
C,=C C,= - R W)
2o ST AL R Y S =TT, R
(c)

Figure 4.38 Basic filter sections and design formulas. R is in ohms, Cis in farads, Lis in

henrys, and fis in hertz.
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in noise reduction. The filters in this table do, of course, attenuate signal levels
because they contain resistances. The designer often has to compensate for this resis-
tive attenuation by including some additional amplifying circuits.

Sharper roll-off characteristics may be achieved using multiple filter sections like
those shown in Table 4.2 placed in a series arrangement. In the lowpass RC filter with
n sections in series the output-input relation is

E, 1

E [+ @117 4.1

with a phase shift of

Poa = »_ i(@) [4.51]

i=1
where the ¢; are the phase shifts of the sections. A series of n highpass RC filters
produces the characteristic of

E, 1
— = [4.52]

Ei 1 nq1/2
(&) ]

The filter circuits shown in Fig. 4.38 are commonly employed and are reasonably
efficient passive-element types. It is possible to construct filters in RC and RL ar-
rangements instead of the L C designs given in Fig. 4.38; however, the circuits which
employ resistive elements are generally not as efficient because they remove energy
from the system. Some simple RL and RC filter sections are shown in Table 4.2,
along with the appropriate equation describing their input-output voltage character-
istics. The phase-lag angle ¢ is also given.

The topic of active filters has been significantly influenced by progress in con-
verting signals from analog to digital form before performing the filtering operations.
Numerous references are available on filter design, and the interested reader may wish
to consult Refs. [10] to [14] for more information.

DEGREE OF AMPLIFICATION AND ATTENUATION
A measurement of the degree of amplification or attenuation provided by a circuit is
given by its gain or amplification ratio. Gain is defined as

Output
Input

The output and input quantities may be voltage, current, or power, depending on the
application. Gain is a dimensionless quantity, but engineers speak of decibels of gain
or loss in terms of the following definition involving a logarithmic ratio:

P
Decibels = 10log FZ [4.53]
1
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where P and P; are the input and output powers, respectively. The voltage or current
gain may be defined in a similar manner.
Since power may be expressed as E?/R or IR, for a resistive load we would
have
P EI I
PCE R
Expressed in terms of voltages or current, the decibel notation would then be

. E,
Decibels = 20log —
E;

[4.54]

. I
Decibels = 201og A
1

For passive filters the ratio of output power to input power is less than 1, and, as
a consequence, the gain in decibels is negative. To characterize such circuits with a
positive quantity, engineers define an insertion loss by the following equation:

10log Li}

P,

One should note that the number of decibels of gain is simply the negative of the
decibels of insertion loss.

[4.55]

[4.56]

Example 4.6

VOLTAGE AMPLIFICATION. A 1.0-mV signal is applied to an amplifier such that an
output of 1.0 V is produced. The 1.0-V signal is then applied to a second amplification stage
to produce an output of 25 V. For the three voltage points indicated, calculate the voltage in
decibel notation referenced to (a) 1.0 mV and (b) 1.0 V. Also, calculate the overall voltage
amplification in decibels.

Solution

The schematic for the amplifiers is shown in Fig. Example 4.6.

° Gain Gain °
+ 1000 + 25 T
Ey=1mV E/ =1V E,=25V
o _i_ o
Figure Example 4.6
(a) For Ey = 1.0 mV we have
20log — = dB,
1.0 x 1073
201 = dB, dB, =0
1.0 x 1073
2010 0 =dB dB, = 60
Elox103 ~ 2 2=
5
20log dB; dB; = 87.92
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(b) For E) = 1.0 V we have

1.0 x 1073
20log —— o~ =dB,  dB, = —60

1.0
0log 5 =dB;  dBy=0

25
201log I dB; dB; =27.92

The overall amplification is calculated from

E 25
201log 53 = 20log 5~ = 87.92dB
1 .U X =

Notice that this result could have been obtained from the decibel calculations in (a) and () for
either reference level. In other words,

Gain13(dB) = dB3 — dBl

when all are expressed on the same reference basis.

RC LOWPASS FILTER. Asimple RC circuit is to be used as a lowpass filter. It is desired
that the output voltage be attenuated 3 dB at 100 Hz. Calculate the required value of time
constant T = RC.

Solution

Network A of Table 4.2 is the desired arrangement. We wish to have

E,
— = —3dB
E;
E,
so that —3 =20log —
E;
E,
or — =0.708
E;

Thus, & 1

E, = e =0.708

where w? = (21)? = [27(100)]°.
We find that T = 1.59 x 1073 s. The circuit might be constructed using a 1.0-uF capacitor
and a 1.59-k<2 resistor.

Example 4.7

RC HIGHPASS FILTER. A highpass RC filter is to be designed for an attenuation of
—3 dB at 150 Hz. Calculate the required value of the time constant and the attenuation of the
filter at 100, 200, and 400 Hz. What is the limiting insertion loss at higher frequencies?
Solution

Network B of Table 4.2 is the desired arrangement. As in Example 4.7, we find for 3-dB
attenuation

E,
—2=0.708
Z [al

i

Example 4.8



212

CHAPTER 4 o BASIC ELECTRICAL MEASUREMENTS AND SENSING DEVICES

and
0.708 = ! [b]
I (@T)) e
where w? = 2nf)? = [27(150)]* = 8.883 x 10°

Solving Eq. (b), we obtain
T=1064x107s

and the circuit could be constructed with a 1.0-uF capacitor and a 1.06-k2 resistor.
At 100 Hz

@*T? = [27(100)]*(1.064 x 107%)? = 0.4469
and at 200 Hz

@?T? = [27(200)]%(1.064 x 107%)> = 1.788
From Eq. () the attenuation for 100 Hz is

E, 1
E =5 = 0.5558
1 -
{ + 0.4469
At 200 Hz we have
E _ ! = 0.8008
E - 1 12 — Y
{ + 1.788
and at 400 Hz the result is
E,
— =0.9367
E

The corresponding decibel attenuations are obtained from Eq. (4.54):
dB (100Hz) = 201log (0.5558) = —5.1
dB (200Hz) = 201og (0.8008) = —1.93
dB (400Hz) = 201log (0.9367) = —0.57
At higher frequencies the attenuation approaches zero. At very low frequencies the attenuation

approaches wT, so for a low frequency of say, 10 Hz, we obtain w?T? = 0.4469 x 1072, oT =
0.06685, or an attenuation of —23.5 dB.

Example 4.9

TWO-STAGE RC HIGHPASS FILTER.  The single-stage highpass filter of Example 4.8
is to be replaced with two sections in series, still keeping the attenuation of —3 dB at 150 Hz.
Determine the performance at 100, 200, and 400 Hz for this arrangement.

For this problem we have n = 2 stages and E,/E; = 0.708 from Example 4.8 so that we may
use Eq. (4.52) to obtain

1
0.0708 = [a]

[+ (5m)]
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at w?> = 8.883 x 10° (150 Hz). We may solve to obtain
T2 =1.1284 x 107 §?

Then at 100 Hz

W*T? = 0.4455
at 200 Hz

@*T* =1.782
at 400 Hz

@*T* =17.128

From Eq. (4.52) the corresponding attenuations are at 100 Hz

E,
= 0.4069 = —7.81 dB

i

at 200 Hz

E,

— =0.8721 = —1.19dB
E

at 400 Hz

E,
y 0.9903 = —0.085 dB

i

At a much lower frequency of 10 Hz the attenuation would be —47 dB.

E,/E;, dB
S
W
—
|

-30 /

=35 /
l
|

0 100 200 300 400 500
Frequency, f, Hz

Figure Example 4.9
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Comment

The use of series filter sections can produce a much sharper roll-off of the frequency response
curve. The response curves for the single- and dual-stage filters are shown in Fig. Example 4.9.
Note that the two response curves cross at the design point of —3 dB and 150 Hz.

OTHER NOISE-REDUCTION METHODS

Passive filters, as discussed and characterized above, offer one possible strategy for
combating the effects of noise in experimental measurements. Remember that we
must have some knowledge of where we expect our signals to appear in the frequency
spectrum if filtering is to be of any value. We conclude this section by discussing a
few other methods which are useful for minimizing noise.

For these techniques to be effective it is necessary that the signals of interest
be repetitive. This may seem to be an exceptionally stringent requirement, but clever
experimental procedures can result in its satisfaction in many situations. For example,
to measure the vibration of a wall which results from an impulse of force, the proper
experimental procedure is to make the force repetitive. In this way the signal of interest
(the wall’s vibration) will also be repetitive. In addition, any dc signal can always be
converted into arepetitive form by “chopping” it by electrical or mechanical means. As
long as such steps have been taken to ensure that the signal to be measured is repetitive,
either of the following techniques may be used to reduce the effects of noise.

The first is based on the observation that the signal will be repetitive but the
associated noise will not be. Consider taking the output of the transducer for two
successive signals, adding them, dividing the resultant sum by 2, and then displaying
the output. What will have happened? The signal of interest will be present, but two
different noise components will have been added together and then divided by 2.
Since the noise will be different in each of the two successive times, it follows, as
long as the noise is uncorrelated, that the amount of noise present in the resultant
signal will decrease. This can be more clearly seen by considering the following two
sums which represent the first and second “pieces” of output from the transducer.

vs(?) +n1(2)
v (1) +n2(2)

After these are added together and divided by 2, the result is

ni (1) + na(t)
2
and this sum is the desired signal vy as well as an average of the noise present in

the two “pieces.” After N samples of the desired signal plus noise are added and
averaged, the result is

v (1) +

vs(t)_i_nl(t)+nz(t)]\-]l-~-~+nzv(t) [4.57]
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Voltage

Unfiltered
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Time

(a)

Voltage
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BAQL»

Time
(b)

Figure 4.39 CAT filtering.

This shows the output of such a noise-reduction system to be composed of the desired
signal v () as well as an average of various samples of the noise. One may wonder
what assurances can be offered that the average of noise samples will be smaller than
a given segment n(f). A detailed answer to that question involves a careful study of
stochastic processes and is not necessary for our purposes. In physical terms we can
be sure that this averaging process will reduce the effective level of noise as long as
the origins of the noise are truly unrelated to the processes giving rise to the signal
of interest v,. If such is the case, the noise and signal are said to be uncorrelated, and
averaging will improve the ratio of signal to noise in the system and, as a consequence,
improve the quality and accuracy of our measurements.

The averaging process clearly requires storing of “pieces” of the transducer out-
put in computer memory, followed by appropriate analysis techniques. Figure 4.39
indicates a sketch of the possible improvement that may be accomplished with such
operation.

PHASE-SENSITIVE DETECTOR OR LOCK-IN AMPLIFIER

We conclude this section with a discussion of the lock-in amplifier. This instrument
uses a principle different from that used by a CAT to reduce noise. An electronic
circuit known as a phase-sensitive detector is the key to understanding the lock-in
amplifier. Such a detector has two input terminals, and, assuming that the two input
signals are sinusoids with the same frequency, it produces an output which depends
on the cosine of the phase angle between the two signals. For the detector sketched



216

CHAPTER 4 o BASIC ELECTRICAL MEASUREMENTS AND SENSING DEVICES

U
PSD —

Figure 4.40 Phase-sensitive detector.

in Fig. 4.40 the input voltages are given by

v1(f) = Vi sin (wr)
V() = V, sin (wt + @)
and the output voltage is
v, = KV V,cos ¢ [4.58]

where K is a constant.

With an understanding of this element, the basic behavior of a lock-in amplifier
can be described quite simply. Recall that we have a repetitive signal of interest
accompanied by some inevitable noise. This entire transducer output is passed through
a narrow bandpass filter which has its pass frequency located at the frequency of
repetition of the input signal. The output of this filter constitutes one of the inputs to
the phase-sensitive detector. The other necessary input is a sinusoid with the same
frequency and a phase which is maintained constant with respect to the chopper used
to modulate the transducer’s output. This means that the desired signal (or, at least,
that part of it which survived the filtering operation) and the reference signal have a
fixed phase (¢ ) maintained between them. Any noise which is present in the filter
output will not maintain such a fixed phase, and the output of the phase-sensitive
detector can be written as

V(1) = KVVgcos s + KVy Vg cos ¢(2) [4.59]

The system is sketched in Fig. 4.41.

The phase between the reference voltage and the noise will change as time pro-
gresses, and the cosine of this angle will take on both positive and negative values. If
the noise is truly uncorrelated, the time average of the second term in the last equation
will be zero. The last part of a lock-in amplifier is a suitable integrator which serves
to time-average. The output of the system depends only on the amplitude and phase
of the signal of interest vy.

1T
0,0 = = / v, () dt = KV,Vgcos ¢y [4.60]
0
Input Bal?dpass v(1) + v, () PSD Time PG
ilter NG) average
Vg =~

Figure 4.41 Lock-in amplifier.
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Well-designed lock-in amplifiers result in significant S/N ratio improvements. In
fact, the degree of improvement made possible by their careful design and use is nearly
incredible. When we are faced with what appears to be a nearly hopeless situation in
terms of the desired signal being buried in noise, this is a method which should be
considered. Manufacturers of these instruments provide very helpful documentation
and application assistance.

4.13 THE ELECTRONIC VOLTMETER

The electronic voltmeter (EVM) employs either solid-state analog or digital elements
for operation. The EVM is one of the most useful laboratory devices for the measure-
ment of voltage. It may be used for both ac and dc measurements and is particularly
valuable because of its high-input-impedance characteristics, which make it applica-
ble to the measurement of voltages in electronic circuits.

A block-diagram schematic of a simple EVM is shown in Fig. 4.42. The input
voltage is connected through appropriate terminals to the function switch. If a dc
voltage is to be measured, the signal is fed directly to the range selector switch oper-
ating as a voltage-divider circuit where the signal is reduced to a suitable range for
the succeeding amplifier circuit. The voltage signal from the voltage divider is then
applied to the amplifier stage, whose voltage output is used to drive a conventional
D’ Arsonval movement or digital display for readout purposes. The output from the
amplifier stage could also be connected to a recorder, or oscilloscope, for the mea-
surement of transient voltages.

Function Voltage divider
switch for ac
ac ac i ircui
« o o ° Rectifier circuit
de de ~1® °© Q
Input o o o — o
- -
r\‘/
Common \ =
0 N
N\
— AN
= N\
\\
AN fo) .
» Range-selector switch
voltage-divider circuit
To input
grid circuit

T—F o
o
I_—O Voltmeter

Amplifier Readout

stage

Figure 4.42 Block-diagram schematic of an electronic voltmeter.
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For an ac voltage measurement the signal is fed through a voltage divider and then
to a rectifier circuit, which produces a dc voltage proportional to the input ac signal.
The dc voltage is then impressed on the voltage-divider network of the range-selector
switch. The remainder of the circuit is the same as in the case of the dc measurement.

Various modifications of the above arrangement may be used, depending on the
range of voltages to be measured. For very low-voltage ac signals an amplification
stage may be added to the input instead of the voltage-divider arrangement. For
very low dc signals a chopper device might be used at the input to produce an ac
signal, which is more easily amplified to the voltage levels that may be handled with
conventional circuitry.

The important point is that the input impedance of the EVM is very high, usually
greater than 100 M€2, so that the measured circuit is not loaded appreciably and indi-
cated voltage more closely represents the true voltage to be measured. Example 4.10
illustrates the influence that the meter can exert on a circuit and reduction in error of
measurement that can result when an EVM is used. It may be noted that a correction
may be made for the meter impedance when the impedance of the measured circuit
is known.

4.14 DIGITAL VOLTMETERS

As mentioned earlier in this chapter, a wide variety of voltmeters are now available
that provide a digital output instead of the pointer-scale arrangement. A wide choice
of input-signal modifiers, ac-dc converters, resistance dc converters, amplifiers, and
more, is available so that, in a real sense, the digital voltmeter now enables the
experimentalist to make precision measurements over a broad range of variables. Not
surprisingly, the cost of digital voltmeters is directly related to their accuracy and
versatility.

Example 4.10

ERROR IN VOLTAGE MEASUREMENT. The voltage at points A and B is to be mea-
sured. A constant 100 V is impressed on the circuit as shown. Two meters are available for the
measurement: a small volt-ohmmeter with an internal impedance of 100,000 €2 and a range of
100 V, and an EVM with an input impedance of 17 M.

0.5 MQ
100V A

0.5 MQ

OB
(a)

Figure Example 4.10(a)
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Compare the error in measurement with each of these devices.
Solution

The true voltage, by inspection, is 50 V. With the volt-ohmmeter connected in the circuit, there
results

0.5 MO
100V A
o 0.1 MQ
B B
(b)

Figure Example 4.10(b)

and the voltage at A and B is

1/[(1/0.5) + (1/0.1)]
1/[(1/0.5) + (1/0.1)] + 0.5

— 100 285 ) _ 45y
0.833+0.5

E 5 = 100

or an error of —71 percent.
With the EVM connected in the circuit, there results

0.5 MQ

100V A

0.5

MO 17 MQ

B
(<)

Figure Example 4.10(c¢)

and the voltage at A and B is
1/[(1/0.5) + (1/17)]
1/[(1/0.54+1/17)]14 0.5

0.4857
= 100( ————— | =4927V
<0.4857 + 0.5)

EAB = 100

or an error of —1.46 percent.




220

CHAPTER 4 o BASIC ELECTRICAL MEASUREMENTS AND SENSING DEVICES

4.15 THE OSCILLOSCOPE

We have seen that the EVM offers the advantage that it can be used to measure voltage
without a substantial “loading” of the transducer or other source supplying the signal.
The cathode-ray oscilloscope (CRO) is similar to the EVM in that it also has a high-
input impedance and is a voltage-measuring device. In addition, the CRO is capable
of displaying voltage signals as functions of time.

The heart of any oscilloscope is the cathode-ray tube (CRT), which is shown
schematically in Fig. 4.43. Electrons are released from the hot cathode and accelerated
toward the screen by the use of a positively charged anode. An appropriate grid
arrangement then governs the focus of the electron beam on the screen. The exact
position of the spot on the screen is controlled by the use of the horizontal and vertical
deflection plates. A voltage applied on one set of plates produces the x deflection, while
a voltage on the other set produces the y deflection. Thus, with appropriate voltages
on the two sets of plates, the electron beam may be made to fall on any particular spot
on the screen of the tube. The screen is coated with a phosphorescent material, which
emits light when struck by the electron beam. If the deflection of the beam against a
known voltage input is calibrated, the oscilloscope may serve as a voltmeter. Since
voltages of the order of several hundred volts are usually required to produce beam
deflections across the entire diameter of the screen, CRT is not directly applicable for
many low-level voltage measurements, and amplification must be provided to bring
the input signal up to the operating conditions for the CRT.

A schematic of the CRO is shown in Fig. 4.44. The main features are the CRT,
as described above, the horizontal and vertical amplifiers, and the sweep and syn-
chronization circuits. The sweep generator produces a sawtooth wave which may be
used to provide a periodic horizontal deflection of the electron beam, in accordance
with some desired frequency. This sweep then provides a time base for transient volt-
age measurements by means of the vertical deflection. Oscilloscopes provide internal
circuits to vary the horizontal sweep frequency over a rather wide range as well as
external connections for introducing other sweep frequencies. Internal switching is
also provided, which enables the operator of the scope to “lock™ the sweep frequency
onto the frequency impressed on the vertical input. Provisions are also made for

Vertical Horizontal
deflection plates deflection plates
Cathode Anode Fluorescent
= + screen
— [ i A L Electron beam
— | 45 P
Y input

Sawtooth sweep
or X input

Figure 4.43 Schematic diagram of a cathode-ray tube (CRT).
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External
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input | )
SYNC —~ S Horizontal Intensity
—e o circuit [~e— ger‘lgzg)r a(r)r:;)zl?ge? and
External focusing | High-voltage
SYNC + power supply
i Low-voltage
Input Vertical power supply
signal amplifier External
xterna
intensity modulation
Figure 4.44 Block-diagram schematic of an oscilloscope.

B A sin¢g = B/A
Oscillator N 1

\

\

\
\ .
Vertical AN \ Oscilloscope
input — N N \ Horizontal
\ N O input
o o' o o o

Network
under test

Figure 4.45 Schematic illustrating use of oscilloscope for phase measurements.

external modulation of the intensity of the electron beam. This is sometimes called
the z-axis input. This modulation may be used to cause the trace to appear on the
screen during certain portions of a waveform and to disappear during other portions.
It may also be used to produce traces of a specified time duration on the screen of the
CRT so that a time base is obtained along with the waveform under study.

Adual-beam oscilloscope provides for amplification and display of two signals at
the same time, thereby permitting direct comparison of the signals on the CRT screen.

The CRO may be used to measure phase shift in an approximate fashion, as
shown in Fig. 4.45. An oscillator is connected to the input of the circuit under test.
The output of the circuit is connected to the CRO vertical input, whereas the oscillator
signal is connected directly to the horizontal input. The phase-shift angle ¢ may be
determined from the relation

B
¢ =sin"' = [4.61]
A

where B and A are measured, as shown in Fig. 4.45. For zero phase shift the ellipse
will become a straight line with a slope of 45° to the right; for 90° phase shift it will
become a circle; and for 180° phase shift it will become a straight line with a slope
of 45° to the left.
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O @ 8 8 8 8 8 &

1:1 3:2 5:3 4:5
3:1 7:2 2:3 6:5 4:1 9:2 3:4 1:2
Figure 4.46 Lissajous diagrams for various frequency ratios as indicated.

The CRO offers a convenient means of comparing signal frequencies through
the use of Lissajous diagrams. Two frequencies are impressed on the CRO inputs,
one on the horizontal input and one on the vertical input. One of these frequencies
may be a known frequency as obtained from a variable frequency oscillator or signal
generator. If the two input frequencies are the same, the patterns that are displayed
on the CRT screen are called Lissajous diagrams. There is a distinct relationship that
governs the shape of these diagrams in accordance with the input frequencies:

Vertical input frequency

Horizontal input frequency
Number of vertical maxima on Lissajous diagram

= ; ; P ; [4.62]
Number of horizontal maxima on Lissajous diagram

Some typical shapes for the Lissajous diagrams are shown in Fig. 4.46. It may be

noted that these shapes can vary somewhat depending on the phase relation between

the input signals.

DIGITAL OSCILLOSCOPES

We have seenin Sec. 4.2 that analog signals may be converted to digital signals through
a sampling process. The digital oscilloscope operates according to this principle.
Instead of displaying the analog signal directly, it first performs an analog-to-digital
conversion and then stores the digital signals in a buffer memory. The signal may
then be displayed on the CRT screen as points. With 12-bit conversion, 4096 vertical
data locations are available.

Because the digital signal is stored, it may be recalled and reexamined on an
expanded scale. In addition, the signal may be stored on inexpensive auxiliary devices
for later study and manipulation with a computer.

SAMPLING OSCILLOSCOPES

Each oscilloscope is characterized by its manufacturer by a set of performance specifi-
cations. One of the most important is the maximum response frequency. This number
indicates the highest-frequency sinusoid which the instrument will be able to follow
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Figure 4.47 Waveforms in a sampling oscilloscope.

and display accurately. In terms of internal components, this maximum frequency
is primarily determined by the frequency response of the amplifiers used in the
oscilloscope.

A technique for examining higher frequencies, as long as they are repetitive, is
known as sampling and is the electronic equivalent of the stroboscope. Figure 4.47
illustrates the operation of a sampling oscilloscope. The first waveform shown is
repetitive and has a frequency which exceeds the maximum response rate of the oscil-
loscope amplifiers. In order to “‘slow” this waveform a series of electronic “snapshots”
are taken and displayed, as shown in the second waveform. This “sampling” occurs
at slightly later times in each cycle of the original waveform. As a consequence, the
oscilloscope is able to display a digital approximation of the original signal.
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Advances in digital oscilloscope technology have been staggering and offer so many
features as to be confusing even to an expert. In this section we shall outline a proce-
dure one might use for oscilloscope selection in the form of questions which should
be asked and some of the choices which may be available. This discussion is not to
imply that analog scopes do not have a valid place in the laboratory because they
have the advantage of immediate display of the signal as it occurs. Indeed, some
oscilloscopes are available which combine analog plus digital features.
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The discussion which follows is intended for coordination with the oscilloscope
manufacturer’s specifications.

1. The first step in selection of an oscilloscope is to determine the signal character-
istics which are to be studied.

a. The repetition rate of the signal should be determined: Is the signal a one-shot
occurrence or a repetitive waveform?

b. The frequency range of the signal should be determined along with the rise-
time characteristics which must be measured. The scope selection should be
based on the shortest rise time which is expected. The bandwidth is then
approximately 0.35 per rise time.

c. The vertical sensitivity required should be specified by the lowest voltage mea-
surement which will be performed. Obviously, the smaller the input voltage
the scope can accommodate, the higher the cost.

d. The dynamic range of the input signal should be established. This is commonly
expressed as zero to some upper voltage limit.

e. Set the requirements for dc offset. If a measurement is made of a signal with
a dynamic range of 1V at a level of 40V, then dc offset of 40V should be
available so that the full dynamic range can be displayed full-size on the
screen.

f- The horizontal scan should be specified to take into account the largest time
which needs to be viewed and the smallest increment of time for viewing.
These variables will determine the timing resolution required.

2. Inaddition to the above specification of the signal characteristics to be studied, one
must also specify the overall accuracy which is required for the measurements.
Is only a minimal visual observation required or must one make very precise
waveform measurements? One may also specify multiple signal displays at the
same time. It is possible to have a relatively simple two-channel scope or ones
with over 100 input channels. Finally, there should be a specification of the storage
requirements and whether digital storage, processing, and hard-copy output are
desirable.

3. Once the signal characteristics and features are selected, one may then begin
to select from among the technologies which are available. We outline some of
these technologies in the paragraphs below:

a. Real-time digital sampling oscilloscope (DSO). In this scope the digitizer
samples the entire input waveform in one pass with a single trigger. This type
of scope is appropriate for one-shot signal applications.

b. Random equivalent time DSO. Equivalent sampling operates on a repetitive
signal to obtain a very large number of samples of the signal. In random
equivalent time sampling several samples are taken for each trigger over a large
number of trigger events. Because of the sampling process, the bandwidth of
the scope can far exceed its sampling rate. Bandwidths as high as 1 GHz are
available.

c. Analog and digital sequential sampling. In this application a repetitive signal
is required as in the random sampling above, except that only one sample
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is acquired for each trigger, with a constant delay after the trigger. For each
subsequent sample the trigger to sample interval is increased by a fixed time.
The fixed-time interval can be made as short as femtoseconds (1 fs = 10~ s).
In these scopes the input is sampled prior to signal conditioning (amplification),
thus permitting very high bandwidths up to 14 GHz.

d. Analog scopes. The major advantage of an analog scope is that it gives a direct
representation of the signal and the fastest update possible. This results from
the fact that only beam retrace and trigger times are required between sweeps
and thus the scope operates thousands of times faster than the transferral of
data in and out of memory required in digital technology.

e. CRT storage. In a CRT storage oscilloscope the events are stored on the face
of the CRT screen itself. This storage technique is ideal for capturing transient
events.

f. Triggering capability. Several choices of triggering are available: auto-level-
triggering for “hands-off” operation; peak-to-peak auto triggering with
automatic-level limits; vertical mode triggering for stable viewing of two or
more signals unrelated in time; single-sweep operation to capture a transient
pulse for CRT photography; high- and low-frequency reject coupling for stable
triggering on noisy signals; and time-, level-, and event-qualified triggering to
capture a signal that is too high, too low, too wide, too narrow, too soon, too
late, missing, or extra.

To summarize the above three sections, we say that the scope will be selected
on the basis of bandwidth and rise time, sampling rate, horizontal resolution and
record rate, horizontal magnification, update rate to get ready for new triggering,
visual writing rate, the possibility of dual-time bases, vertical sensitivity, vertical
accuracy and resolution, and the triggering capability. Once these specifications are
met (which are quite formidable), we may then select one or more of the following
special features:

1. Automatic setup. With this feature, a single button optimizes settings to acquire
and display a signal. The proper sweep speed, vertical deflection, trigger level,
position, and intensity are automatically calculated for a usable display.

2. Store/recall. This feature allows the operator to store oscilloscope settings in
memory for later recall. This is very useful when certain operations are to be
repeated. It is akin to driver’s seat memory on luxury automobiles.

3. On-board countertime and digital multimeter (DMM). This feature may be built
into the scope to allow one to make frequency, period, width, rise-fall time, and
propagation delay determinations at the touch of a button. All of this can be
accomplished at the same time the operator is viewing the signal.

4. On-board waveform calculations. Depending on the scope selected (and cost),
this feature can provide elaborate waveform calculations, including differentia-
tion, integration, interpolation, smoothing, averaging, waveform passfail, stan-
dard waveform math, and fast Fourier transforms.
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5. Record capabilities. In addition, the various parameters may be recorded and
stored on floppy disks for later data processing or hard-copy printout.

From the above discussion it is obvious that the oscilloscope measurement capa-
bilities available to the experimentalist are almost boundless. Because of the rapid
development in this area of technology, an individual will be well advised to consult
appropriate manufacturer’s representatives for up-to-date information.

4.17 OuTPUT RECORDERS

The output of an electronic circuit or meter may be recorded in a number of ways. The
storage oscilloscope is useful for recording dynamic signals for later analysis. Any
number of connecting devices make it possible to store output in a desktop or laptop
computer, portable magnetic hard drives, recording CDs, digital tape recorders, and
video tape recorders for visual displays. Low-frequency signals may be recorded on
strip-chart recorders that employ self-balancing potentiometric circuits and mecha-
nisms. These devices are only applicable up to about 5 Hz but are very useful for
recording thermocouple outputs and other low-voltage signals, or in applications
where an immediate display is available for an extended time period of measurement.

The relatively low costs of digital storage of information suggest that this mode
of output recording will be even more prevalent in the future. Some relative values for
storage capability for digital media are digital flash memory “sticks” (approximately
13 x 50 mm); 256 GB, writable CD; 700 MB, writable DVD; 9 GB, and digital hard
drives in excess of 3 TB.

4.18 COUNTERS—TIME AND FREQUENCY
MEASUREMENTS

The engineer is called upon to perform counting-rate and frequency measurements
over an extremely broad range of time intervals. A determination of revolutions per
minute (rpm) on a slow-speed diesel engine might involve a simple mechanical rev-
olutions counter and a hand-operated stopwatch. In this case the accuracy of the
measurement would depend on the human-response time in starting and stopping
the watch (about 0.2 s). The same measurement performed on an automobile engine
might utilize an electric transducer which generates a pulse for each revolution of the
engine. The pulses could be fed to some type of counting device, which would estab-
lish the number of pulses produced for a given increment of time. The accuracy of
measurement would again depend on the accuracy of the specification of the time inter-
val. In both of these simple cases a circular frequency measurement is being performed
through the combination of a counting measurement and time-interval measurement.
Most frequency measurements are performed by some type of counting operation.
A large variety of electronic counters is available commercially. These instru-
ments have internal circuitry which enables them to be used for measurement of
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frequency, period, or time intervals over a very wide range. These instruments usu-
ally contain four sets of internal circuits:

1. Input-signal conditioning circuits, which transform the input signal into a series
of pulses for counting.

2. The time base, which provides precise time increments during which the pulses
are counted.

3. Asignal “gate,” which starts and stops the counting device.
4. A counter and display, which counts the pulses and provides a digital readout.

227

4.19 TRANSDUCERS

A large number of devices transform values of physical variables into equivalent
electrical signals. Such devices are called transducers and have been mentioned fre-
quently in the preceding sections of this chapter. We shall now discuss some of the
more widely used transducers and their principles of operation. Table 4.3 presents
a compact summary of transducer characteristics, and the reader should consult this
table throughout the following discussions to maintain an overall perspective. It may
be noted that the subsequent paragraphs will be primarily concerned with principles of
operation and will not cover much of the detailed information contained in Table 4.3.
Thus, the written discussion and tabular presentation are complementary and should
be used jointly.

The discussion that follows in this chapter is concerned primarily with electric
effects of transducers. Other transducers of a more specialized nature (thermocouples,
strain gages, pressure transducers, and nuclear radiation detectors) will be discussed
in subsequent chapters.

4.20 THE VARIABLE-RESISTANCE TRANSDUCER

The variable-resistance transducer is a very common device which may be constructed
in the form of a moving contact on a slide-wire or a moving contact that moves through
an angular displacement on a solid conductor like a piece of graphite. The device may
also be called a resistance potentiometer or rheostat and is available commercially
in many sizes, designs, and ranges. Costs can range from a few cents for a simple
potentiometer used as a volume control in a radio circuit to hundreds of dollars for a
precision device used for accurate laboratory work.

The variable-resistance transducer fundamentally is a device for converting either
linear or angular displacement into an electric signal; however, through mechanical
methods it is possible to convert force and pressure to a displacement so that the
device may also be useful in force and pressure measurements.
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Summary of transducer characteristics

Type of Transducer

and Principle of Input-Impedance Error and Noise

Operation Type of Input Input Range or Level Characteristics Input Sensitivity Characteristics

Variable resistance: Linear displ or level as low as Varies widely, depending Commercial Deviation from
Movement of contact on angular displacement 0.1% of total resistance on the total resi i can nonlinearity of the order

slide-wire; also called
resistance
potentiometers

Differential transformer:
See fig. and text
discussion; linear
variable differential
transformer most widely
used; converts
displacement to voltage

Capacitive

Linear displacement

Displ. or change

Variable distance
between plates
registered as a change in
capacitance

Piezoelectric effect: Force
impressed on crystals
with asymmetrical
charge distributions
produces a potential
difference at the surface
of the crystal

Photoelectric effect: Light
striking metal cathode
causes liberation of
electrons which may be
attracted to anode to
produce electric current

Photoconductive
transducer: Light
striking a semiconductor
material, such as
selenium, metallic
sulfides, or germanium,
produces a decrease in
resistance of the
material

Photovoltaic cell: Light
falling upon a
semiconducting material
in contact with a metal
plate produces a
potential

Tonization

in dielectric constant
between plates; also
change in area of
plates

Force or stress

Light

Light

Light

Di

Displacement converted
to voltage through a
capacitance change

Magnetometer search coil:
Changing magnetic field
impressed on coil
generates an emf
proportional to the time
rate of change of the
field

Hall-effect transducer:
Magnetic field impressed
on a plate carrying an
electric current
generates a potential
difference in a direction
perpendicular to both
the current and the
magnetic field

0.1-10 MHz excitation
frequency

Changing magnetic field

Magnetic field

Total range from +0.005
to+3in

Very broad; from
10~ 8cm to several
meters

Varies widely with crystal
material; see sensitivity

Wavelength range
depends on glass-tube
enclosure;
photoemissive
materials respond
between 0.2 and
0.8 um

Very broad; from thermal
radiation through the
X-ray region

Depends on material:
selenium 0.2-0.7 um
CuO 0.5-1.4 um
germanium 1.0-1.7 um

Less than 1 mm to several
inches

10~3 oersted to highest
values obtainable

1-20,000 gauss

characteristics and
physical size

Depends on size; forces
from0.1t003 g
usually required

The input force
requirements are very
small, of the order of a
few dynes

Input force requirements
are relatively large
compared with other
transducers

Not applicable

Not applicable

Not applicable

Small force required

Not applicable

Not applicable

have sensitivity of less
than 0.002 in, or 0.2° in
an angular
measurement

0.5% of total input range

Highly variable; can
obtain sensitivities of
the order of
1 pF/0.0001 in for
airgap measurements
of displacement

Varies with material:
Quartz 0.05 V - m/N
Rochelle salt
0.15V-m/N
Barium titanate
0.007 V- m/N

Vacuum tubes:
0.002-0.1 uA/W
Gas-filled tubes:
0.01-0.15 uA/W

About 300 £A/uW at
maximum sensitivity of
the device

1 mA/lm or
1077 Wiem? - 1m

1-10 V/mm

Depends on coil
dimensions but can be
of the order of 1075
oersted

Depends on plate
thickness and current;
of the order of
~1x1078V.cm/A- G
for bismuth

of 0.5% of total
resistance. Noise is
usually negligible of the
order of 10 .V at the
contact. Noise increases
with “chatter” of
contact

Deviation from linearity
about 0.5%; generally
accurate to +1%

Errors may result from
careless mechanical
construction, humidity
variations, noise, and
stray capacitance in
cable connections

Subject to hysteresis and
temperature effects

Depends on plate voltage
but of the order of
1078 A atroom
temperature

Very low noise, usually less
than associated circuit

Low noise

Can be accurate to
microinches

Accuracies of 0.05% have
been obtained

Can be calibrated
within 1%
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Frequency Output Range Output-Impedance
Response Temperature Effects Type of Output or Level Characteristics Application Remarks
Generally not above 0.002-0.15% °C~! Voltage or current Wide Variable Used for Simple, inexpensive,
3 Hz for commercial due to a change in depending on measurement of easy to use, many
potentiometers resistance; also, connecting circuit displacement types available
some commercially
thermoelectric
effects depending
on types of
contacts used
Frequency of applied Small influence of Voltage proportional 0.4-4.0 mV/ Mainly resistive; low Used for Simple, rugged,
voltage must be temperature may to input 0.001 in/V input to medium measurement of inexpensive, high
10 times desired be reduced by isp pending on impedance, as low displacement output, requires
response; using a thermistor frequency: lower as 20 ©, depends simple accessory
mechanical circuit frequency on size equipment. Care

limitations also

Depends strongly on
mechanical
construction but
may go to 50,000 Hz

Depends on external
circuitry and
mechanical
mounting:

20-20 kHz easily
obtained; no
response to
steady-state forces

Linear 0-500 Hz;
current response
drops off 15% at
10,000 Hz

Rise time varies widely
with material and
incident radiation
from 50 s to
minutes

Rise time of the order
of 1 s, response
into the megahertz
range

0-3000 Hz

0 to radiofrequency

High

Not strong if design
allows for effects

‘Wide variation in
crystals properties
with temperature

Generally not
operable above
75-100°C

Response to longer
wavelengths
increases with
reduction in
temperature

Variations of 10%
over 40°C, range
depending on
external resistance
load

Small

Small

Large but can be
calibrated

Capacitance

Voltage proportional
to input force

Current

Current drawn in the
external circuit

Voltage

Voltage

Voltage

Voltage

produces lower
output

Usually between
1073 and 103 pF
change in
capacitance over
output range

‘Wide, depends on
crystal size and
material; see
sensitivity; can
have output of
several volts

Of the order of 2 uA

Depends on incident
intensity; see input
sensitivity

100-250 mV in
normal room light;
selenium cells up
to 500 V at high
illumination

Depends on
excitation circuit;
see input
sensitivity

Depends on coil size:
see input
sensitivity

Millivolts and
microvolts

Usually 103107 @

High, of the order of
103 MQ

High, of the order of
10MQ

High, varies from
1-10% MQ; in
commercial
devices

3,000-10,000
capacitance of the
order of
0.05 puFlem? in
selenium cells

High, of the order of

1 MQ

Depends on coil size

Low, of the order of

100 €2 for a
bismuth detector

Displacement, area
liquid level,
pressure,
sound-level
measurements, and
others. Particularly
useful where small
forces are available
for driving the
transducer

Measurement of
force, pressure,
sound level
(microphone use)

Very useful for
counting purposes

Widely used for
radiant
measurements at
all wavelengths

Widely used for
exposure meters,
selenium cells,
responds to x-rays

Can be used where
accurate
measurement of
displacement is
needed

Measurement of
magnetic field

Measurement of
magnetic field

must be taken to
eliminate stray
magnetic fields

High-output
impedance may
require careful
construction of
output circuitry

Simple, inexpensive,
rugged

Inexpensive, high
output

Fairly expensive; calls
for precise circuitry
to utilize its full
potential

Inexpensive, nonlinear
behavior, some
aging effects

Relatively insensitive
to frequency of
excitation circuitry

Simple, although
accurate, coil
dimensions must be
maintained for high
accuracy

Each transducer
usually must be
calibrated because
of nonuniformity in
semiconductors used
for construction
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4.21 THE DIFFERENTIAL TRANSFORMER (LVDT)

A schematic diagram of the differential transformer is shown in Fig. 4.48 Three coils
are placed in a linear arrangement as shown with a magnetic core which may move
freely inside the coils. The construction of the device is indicated in Fig. 4.49. An
alternating input voltage is impressed in the center coil, and the output voltage from the
two end coils depends on the magnetic coupling between the core and the coils. This
coupling, in turn, is dependent on the position of the core. Thus, the output voltage of
the device is an indication of the displacement of the core. As long as the core remains
near the center of the coil arrangement, the output is very nearly linear, as indicated in
Fig.4.50. The linear range of commercial differential transformers is clearly specified,
and the devices are seldom operated outside this range. When operating in the linear
range, the device is called a linear variable differential transformer (LVDT). Near the
null position a slight nonlinearity condition is encountered, as illustrated in Fig. 4.51.
It will be noted that Fig. 4.50 considers the phase relationship of the output voltage,
while the “V” graph in Fig. 4.51 indicates the absolute magnitude of the output. There
is a 180° phase shift from one side of the null position to the other.

° Output
& voltage

:er Secondary coils
Displacement Y

D —— | Core

Primary coils

E.

i

Input voltage

Figure 4.48 Schematic diagram of a differential transformer.
Protective shield Insulating form
N\NANNVAN
% % Core
[ ] <—1
[ ]
- Cross
4 4 4
NN R NN

Primary coil /

Secondary coils

Figure 4.49 Construction of a commercial linear variable differential transformer
(LVDT). (Courtesy of Schaevitz Engineering Company.)
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Figure 4.50 Output characteristics of an LVDT, according to Ref. [5].
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Figure 4.51 V graph for an LVDT showing slight nonlinear behavior in the null region,
according to Ref. [5].
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The frequency response of LVDTs is primarily limited by the inertia characteris-
tics of the device. In general, the frequency of the applied voltage should be 10 times
the desired frequency response.

Commercial LVDTs are available in a broad range of sizes and are widely used
for displacement measurements in a variety of applications. Force and pressure mea-
surements may also be made after a mechanical conversion. Table 4.3 indicates the
general characteristics of the LVDT. The interested reader should consult Ref. [5] for
more detailed information.

4.22 CAPACITIVE TRANSDUCERS

Consider the capacitive transducer shown in Fig. 4.52. The capacitance (in picofarads)
of this arrangement is given by

A
C= 0.22563 [4.63]

where d = distance between the plates, in or cm
A = overlapping area, in? or cm?
€ = dielectric constant (¢ = 1 for air; € = 3 for plastics)

The constant 0.225 is 0.0885 when the area is in square centimeters and the separation
distance is in centimeters.

This plate arrangement may be used to measure a change in the distance d through
a change in capacitance. A change in capacitance may also be registered through a
change in the overlapping area A resulting from a relative movement of the plates in
a lateral direction or a change in the dielectric constant of the material between the
plates. The capacitance may be measured with bridge circuits. The output impedance

of a capacitor is given by
1
= — 4.64
2 fC [ 1

where Z = impedance, 2
f = frequency, Hz
C = capacitance, F

In general, the output impedance of a capacitive transducer is high; this fact may call
for careful design of the output circuitry to avoid loading.

/ Dielectric
|

[ Q=

\ Overlapping area, A

Figure 4.52 Schematic of a capacitive transducer.
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~

L — Liquid level

Figure 4.53 Use of a capacitive transducer for liquid-level measurement.

The capacitive transducer may be used for displacement measurements through
a variation of either the spacing distance d or the plate area. It is commonly used
for liquid-level measurements, as indicated in Fig. 4.53. Two electrodes are arranged
as shown, and the dielectric constant varies between the electrodes according to the
liquid level. Thus, the capacitance between the electrodes is a direct indication of
the liquid level. A charge amplifier may be used to increase the signal level before
transmission to readout circuits.
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SENSITIVITY OF CAPACITIVE TRANSDUCER. A capacitive transducer is constructed
of two 1-in? plates separated by a 0.01-in distance in air. Calculate the displacement sensitivity
of such an arrangement. The dielectric constant for air is 1.0006.

Solution
The sensitivity is found by differentiating Eq. (4.64).
S dC  0.225¢A

T d d?
0.225)(1.0006)(1
Thus, S = _0.25A.0006)1) _ —2.25 x 10° pF/in
(0.01)2

Example 4.11

UNCERTAINTY FOR CAPACITIVE TRANSDUCER. For the capacitive transducer in
Example 4.11 the allowable uncertainty in the spacing measurement is wy; = +0.0001 in, while
the estimated uncertainty in the plate area is £0.005 in?. Calculate the tolerable uncertainty
in the capacitance measurement in order to achieve the allowable uncertainty in the spacing
measurement.

Solution
Solving Eq. (4.64) for d, we have

€A
d=0.225—
c [al
Making use of Eq. (3.2), we obtain

i) ()]

Example 4.12
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We have
wg _ 0.0001 0.01 wa 0.005 — 0.005
d ~— 001 — 7 AT 10 7
wC
so that vel = 0.00866 = 0.866%

The nominal value of C is
C o (0.255)(1.0006)(1.0)
- 0.01

=22.513pF

so that the tolerable uncertainty in C is

we = (22.513)(0.00866) = =£0.195 pF

4.23 PIEZOELECTRIC TRANSDUCERS

Consider the arrangement shown in Fig. 4.54. A piezoelectric crystal is placed between
two plate electrodes. When a force is applied to the plates, a stress will be produced in
the crystal and a corresponding deformation. With certain crystals this deformation
will produce a potential difference at the surface of the crystal, and the effect is
called the piezoelectric effect. The induced charge on the crystal is proportional to
the impressed force and is given by

Q =dF [4.65]

where Q is in coulombs, F is in newtons, and the proportionality constant d is called
the piezoelectric constant. The output voltage of the crystal is given by

E =gtp [4.66]

where ¢ is the crystal thickness in meters, p is the impressed pressure in newtons per
square meter, and g is called voltage sensitivity and is given by

g=- [4.67]
€

l A

———E

T
Crystal

Figure 4.54 The piezoelectric effect.
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Table 4.4 Piezoelectric constants
Charge Voltage
Sensitivity d, Sensitivity g,
C/m? V/m
Material Orientation N/m? N/m?
Quartz X cut; length along Y 225 x 10712 0.055
length longitudinal
X cut; thickness —2.04 —0.050
longitudinal
Y cut; thickness shear 4.4 —0.108
Rochelle salt X cut 45°; length 435.0 0.098
longitudinal
Y cut 45°; length —78.4 —0.29
longitudinal
Ammonium dihydrogen Z cut 0°; face shear 48.0 0.354
phosphate Z cut 45°; length 24.0 0.177
longitudinal
Commercial barium titanate Parallel to polarization 86-130 0.011
Perpendicular to polarization —56 0.005
Lead zirconate titanate Parallel to polarization 190-580 0.02-0.03
Lead metaniobate Parallel 80 0.036

Values of the piezoelectric constant and voltage sensitivity for several common
piezoelectric materials are given in Table 4.4.

The voltage output depends on the direction in which the crystal slab is cut in
respect to the crystal axes. In Table 4.4 an X (or Y) cut means that a perpendicular to
the largest face of the cut is in the direction of the x axis (or y axis) of the crystal.

Piezoelectric crystals may also be subjected to various types of shear stresses
instead of the simple compression stress shown in Fig. 4.54, but the output voltage
is a complicated function of the exact crystal orientation. Piezoelectric crystals are
used as pressure transducers for dynamic measurements. General information on the
piezoelectric effect is given in Refs. [1], [23], and [24].

OUTPUT OF A PIEZOELECTRIC PRESSURE TRANSDUCER. A quartz piezoelectric
crystal having a thickness of 2 mm and a voltage sensitivity of 0.055 V - m/N is subjected to a
pressure of 200 psi. Calculate the voltage output.

Example 4.13

Solution
We calculate the voltage output with Eq. (4.66):

p = (200)(6.895 x 10%) = 1.38 x 10° N/m>
t=2x10"m

Thus, E = (0.055)(2 x 107%)(1.38 x 10®) = 151.8 V
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4.24 PHOTOELECTRIC EFFECTS

A photoelectric transducer converts a light beam into a usable electric signal. Consider
the circuit shown in Fig. 4.55. Light strikes the photoemissive cathode and releases
electrons, which are attracted toward the anode, thereby producing an electric current
in the external circuit. The cathode and anode are enclosed in a glass or quartz enve-
lope, which is either evacuated or filled with an inert gas. The photoelectric sensitivity
is defined by

I =S89 [4.68]

where I = photoelectric current
@ = illumination of the cathode
S = sensitivity
The sensitivity is usually expressed in units of amperes per watt or amperes per lumen.
Photoelectric-tube response to different wavelengths of light is influenced by
two factors: (1) the transmission characteristics of the glass-tube envelope and (2) the
photoemissive characteristics of the cathode material. Photoemissive materials are
available which will respond to light over a range of 0.2 to 0.8 um. Most glasses
transmit light in the upper portion of this range, but many do not transmit below
about 0.4 um. Quartz, however, transmits down to 0.2 ym. Various noise effects are
present in photoelectric tubes, and the interested reader should consult the discussion
by Lion [2] for more information, as well as Ref. [25].
Photoelectric tubes are quite useful for measurement of light intensity. Inexpen-
sive devices can be utilized for counting purposes through periodic interruption of a
light source.

4.25 PHOTOCONDUCTIVE TRANSDUCERS

The principle of the photoconductive transducer is shown in Fig. 4.56. A voltage
is impressed on the semiconductor material as shown. When light strikes the semi-
conductor material, there is a decrease in the resistance, thereby producing an increase

Light

Cathode — | | | |

Figure 4.55 The photoelectric effect.
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Semiconductor

Light material
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Y
<> Ammeter
E
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—1 | || +

Figure 4.56 Schematic of a photoconductive transducer.

in the current indicated by the meter. A variety of substances are used for photocon-
ductive materials, and a rather detailed discussion of the pertinent literature on the
subject is given in Refs. [2], [6], [23], and [25].

Photoconductive transducers enjoy a wide range of applications and are useful for
measurement of radiation at all wavelengths. It must be noted, however, that extreme
experimental difficulties may be encountered when operating with long-wavelength
radiation, and some of them are discussed in Chap. 12 concerning measurement of
thermal radiation.

The responsivity R, of a detector is defined as

rms output voltage
[4.69]

R, = —
" rms power incident upon the detector

The noise-equivalent power (NEP) is defined as the minimum-radiation input that
will produce a S/N ratio of unity. The detectivity D is defined as
R,

D= - [4.70]
rms noise-voltage output of cell

The detectivity is the reciprocal of NEP. A normalized detectivity D* is defined as
D* = (A AH'2D [4.71]

where A is the area of the detector and Af is a noise-equivalent bandwidth. The
units of D* are usually cm - Hz!'/?/W, and the term is used in describing the perfor-
mance of detectors so that the particular surface area and bandwidth will not affect the
results. Figures 4.57 and 4.58 illustrate the performance of several photoconductive
detectors over a range of wavelengths. In these figures the wavelength is expressed
in micrometers, where 1 um = 107® m. The symbols represent lead sulfide (PbS),
lead selenide (PbSe), lead telluride (PbTe), indium antimonide (InSb), and gold- and
antimony-doped germanium (Ge:Au, Sb). For these figures D* is a monochromatic
detectivity for an incident radiation, which is chopped at 900 Hz and a 1-Hz
bandwidth.

The lead-sulfide cell is very widely used for detection of thermal radiation in
the wavelength band of 1 to 3 um. By cooling the detector more favorable response
at higher wavelengths can be achieved up to about 4 or 5 um. For measurements at
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Figure 4.57 Absolute spectral response of typical detectors at room temperature,
according to Ref. [6].
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Figure 4.58 Absolute spectral response of typical detector cooled to liquid nitrogen
temperature, (—195°C) according to Ref. [7].
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longer wavelengths the indium-antimonide detector is preferred, but it has a lower
detectivity than lead sulfide. Some of the applications of these cells are discussed in
Chap. 12.
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DETECTIVITY OF PHOTOCONDUCTIVE TRANSDUCER.  Calculate the incident ra-
diation at 2 um that is necessary to produce a signal-to-noise (S/N) ratio of 40 dB with a

lead-sulfide detector at room temperature, having an area of 1 mm?.

Solution
We first insert Egs. (4.69) and (4.70) in Eq. (4.71) to express the detectivity in terms of voltages
and incident power. Thus,

E 1
D'=(AApP—2 — [al
Enoise Pincidem
From Fig. 4.57, D* = 1.5 x 10" cm - Hz"/%/W for Af = 1Hz. For a S/N ratio of 40 dB we
have

o

40 = 20log

noise

E,
=100

so that

Using A = 1072 cm?, Eq. (a) yields

(1072)"/2(1)(100)
Pincidem

Thus, Pincident = 6.7 x 1071 W

1.5%x 10" =

Example 4.14

4.26 PHOTOVOLTAIC CELLS

The photovoltaic-cell principle is illustrated in Fig. 4.59. The sandwich construc-
tion consists of a metal base plate, a semiconductor material, and a thin transparent

Light

Thin transparent -
metal layer —

SemlconduCtV R

material

O—-—0

A\ Metallic Jj
base plate

Figure 4.59 Schematic diagram of a photovoltaic cell.
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metallic layer. This transparent layer may be in the form of a sprayed, conducting
lacquer. When light strikes the barrier between the transparent metal layer and the
semiconductor material, a voltage is generated as shown. The output of the device is
strongly dependent on the load resistance R. The open-circuit voltage approximates
a logarithmic function, but more linear behavior may be approximated by decreasing
the load resistance.

Perhaps the most widely used application of the photovoltaic cell is the light ex-
posure meter in photographic work. The logarithmic behavior of the cell is a decided
advantage in such applications because of its sensitivity over a broad range of light
intensities. Further information concerning photovoltaic and photoconductive detec-
tors is available in Refs. [23], [24], and [25]. A discussion of CCD (charge-coupled-
device) and CMOS (complementary-metal-oxide-semiconductor) sensors employed
in digital photography systems is given in Appendix B.

4.27 10NIZATION TRANSDUCERS

A schematic of the ionization transducer is shown in Fig. 4.60. The tube contains a gas
at low pressure while the RF generator impresses a field on this gas. As a result of the
RF field, a glow discharge is created in the gas, and the two electrodes 1 and 2 detect
a potential difference in the gas plasma. The potential difference is dependent on the
electrode spacing and the capacitive coupling between the RF plates and the gas.
When the tube is located at the central position between the plates, the potentials on
the electrodes are the same; but when the tube is displaced from this central position,
a dc potential difference will be created. Thus, the ionization transducer is a useful
device for measuring displacement. Some of the basic operating characteristics are
given in Table 4.3, and a detailed description of the output characteristics is given by
Lion [2].

RF
Generator
(<)
/
}ﬁ? Plates
12

Gas-filled ~— Displacement, x

tube

O<— F —0

Figure 4.60 Schematic diagram of an ionization-displacement transducer.
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4.28 MAGNETOMETER SEARCH COIL

A schematic of the magnetometer search coil is shown in Fig. 4.61. A flat coil with
N turns is placed in the magnetic field as shown. The length of the coil is L, and the
cross-section area is A. The magnetic field strength H and the magnetic flux density
B are in the direction shown, where

B=uH [4.72]

and u is the magnetic permeability. The voltage ouput of the coil E is given by
dB
E = NA cos aE [4.73]

where « is the angle formed between the direction of the magnetic field and a line
drawn perpendicular to the plane of the coil. The total flux through the loop is

¢ = AcosaB [4.74]
d¢
so that E = NE [4.75]

Note that the voltage output of the device is dependent on the rate of change of the
magnetic field and that a stationary coil placed in a steady magnetic field will produce
a zero-voltage ouput. The search coil is thus a transducer that transforms a magnetic
field signal into a voltage.

In order to perform a measurement of a steady magnetic field it is necessary to
provide some movement of the search coil. A typical method is to use a rotating coil,
as shown in Fig. 4.62. The rms value of the output voltage for such a device is

1
Ems = — NABw [4.76]

V2

E

L Cross-sectional
area, A
~—|—o0
—

o
[
| W\ Length, L

H,B, ¢

Figure 4.61 Schematic of a magnetometer search coil.
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Figure 4.62 Use of a rotating search coil for measurement of steady-state

magnetic fields.

where w is the angular velocity of rotation. Oscillating coils are also used. The ac-
curacy of the search coil device depends on the accuracy with which the dimensions
of the coil are known. The coil should be small enough so that the magnetic field is
constant over its area.

In the above equations the magnetic flux density is expressed in webers per
square meter, the area is in square meters, the time is in seconds, the magnetic flux is
in webers, the magnetic field strength (magnetic intensity) is in amperes per meter,
and the magnetic permeability for free space is 47 x 10~7 H/m. An alternative set of
units uses B in gauss, H in oersteds, A in centimeters squared, and p in abhenrys per
centimeter. The magnetic permeability for free space in this instance is unity.

Example 4.15

ROTATING SEARCH COIL. A rotating search coil has 10 turns with a cross-sectional
area of 5 cm?. It rotates at a constant speed of 100 rpm. The output voltage is 40 mV. Calculate
the magnetic field strength.

Solution
According to Eq. (4.76)
5 Y2Ems _ V2(0.04)
T NAw  (10)(5 x 10~%)[(100)(27)/60]
= 1.08 Wb/m?
B 1.08
H = —-=
n 4w x 1077
= 8.6 x 10° A/m

4.29 HALL-EFFECT TRANSDUCERS

The principle of the Hall effect is indicated in Fig. 4.63. A semiconductor plate
of thickness ¢ is connected as shown so that an external current / passes through
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the material. When a magnetic field is impressed on a plate in a direction perpendicular
to the surface of the plate, there will be a potential Ey generated as shown. This
potential is called the Hall voltage and is given by

IB
En=Ky— [4.77]

where [ is in amperes, B is in gauss, and ¢ is in centimeters. The proportionality
constant is called the Hall coefficient and has the units of volt-centimeters per ampere-
gauss. Typical values of Ky for several materials are given in Table 4.5.

o
>

N

Figure 4.63 The Hall effect.

Table 4.5 Hall coefficients for different materials!

Ky,
V-

Material Field Strength, G Temp., °C A-G
AS 4,000-8,000 20 4.52 x 10711
C 4,000-11,000 Room —1.73 x 10710
Bi 1,130 20 —1x10°8
Cu 8,000-22,000 20 —-52 x 10713
Fe 17,000 22 1.1 x 1071
n-Ge 100-8,000 25 —8.0 x 1073
Si 20,000 23 4.1x1078
Sn 4,000 Room —2.0 x 1074
Te 3,000-9,000 20 5.3 %1077

| TAccording to Lion [2].
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Example 4.16

HALL-EFFECT VOLTAGE OUTPUT. A Hall-effect transducer is used for the measure-
ment of a magnetic field of 5000 G. A 2-mm slab of bismuth is used with a current of 3 A.
Calculate the voltage output of the device.
Solution
We use Eq. (4.77) and the data of Table 4.5:
IR

EH = KHT

(=1 x 1078)(3)(5000)
(2 x 1071

-75x 107"V

4.30 DIGITAL DISPLACEMENT TRANSDUCERS

A digital displacement transducer can be used for both angular and linear measure-
ments. In Fig. 4.64 an angular measurement device is shown. As the wheel rotates,
light from the source is alternately transmitted and stopped, thereby submitting a
digital signal to the photodetector. The signal is then amplified and sent to a counter.
The number of counts is proportional to angular displacement. The frequency of the
signal is proportional to angular velocity. Sensitivity of the device may be improved
by increasing the number of cutouts.

A linear transducer which operates on a reflection principle is shown in Fig. 4.65.
Small reflecting strips are installed on the motion device. Light from the source
is then alternately reflected and absorbed with linear motion, thereby presenting a
digital signal to the photodetector. Readout is the same as with the angular instrument.
Calibration with a known displacement standard must be performed.

Light
source

y I:'— > Photodetector
e

| Amplifier |—>| Counter |

Cutouts

Figure 4.64 Digital fransducer for angular displacement.
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Figure 4.65 Digital transducer for linear displacement.
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4.31 COMPARISON OF ANALOG AND
DIGITAL INSTRUMENTS

As most instrument circuits and readout devices employ digital techniques one might
automatically assume that everything should be converted to digital. But analog
instruments have their place too. For example, when balancing a circuit to obtain
a null condition, an analog instrument may be easier to use. When a panel of instru-
ments is used to indicate the operating condition of a complicated plant or process,
analog instruments may be preferable because a trained operator can visually sense
the position of all the indicators more quickly than with several digital readouts.
Most physical measurements, such as those of resistance, voltage, force, and
displacement, occur in the form of some analog signal. Certainly, if direct computer
processing of the data is to be performed, analog-to-digital conversion must be per-
formed, and a wide variety of commercial equipment is available for such conversion.

4.32 SUMMARY

This chapter began by considering the basic physical phenomena which underlie
electrical instruments and circuits. We then examined the meaningful measures which
can be used to characterize time-varying waveforms. The basic instrumentation, both
analog and digital, used to measure these waveforms was discussed.

This set the stage for an examination of the general experimental setting in which
measurements are made with the assistance of electronic systems. In general, the
value of the particular physical property of interest is converted to an electrical signal
by some suitable transducer, and the output of this transducer is fed into an input
circuit. This circuit is intended to couple efficiently the transducer’s signal to the
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additional equipment which is necessary to reduce the effects of noise upon the
signal’s distinguishability, transmit the signal, and display its form.

4.33 REVIEW QUESTIONS

4.1.
4.2.
4.3.
44.

4.5.

4.6.
4.7.
4.8.
4.9.
4.10.

4.11.

4.12.

4.13.
4.14.

4.15.

4.16.
4.17.
4.18.
4.19.
4.20.
4.21.
4.22.
4.23.
4.24.
4.25.

What is the “bridge” between electric current and mechanical force?
State the differences between analog and digital representations of signals.
Why is the root-mean-square value of a periodic waveform useful?

How does an electrodynamometer differ from a D’ Arsonval meter? What ad-
vantages does it have over the D’ Arsonval meter?

How do measurements of alternating currents differ from measurements of
direct currents?

How are very high-frequency currents measured?

What are the applications for an electrostatic voltmeter?

How can an ammeter be converted to a voltmeter?

What are the advantages of digital instruments?

How is the current-sensitive input circuit dependent on internal meter
impedance?

What is meant by a ballast circuit? How does it differ from a voltage-divider
circuit?

What are the advantages of a high-meter impedance when it is used with a
voltage-divider circuit?

What is meant by loading error?

Why does the internal resistance of the galvanometer not influence the reading
in a potentiometer circuit?

Differentiate between a bridge operated on the null principle and on the deflec-
tion principle.

What is meant by a voltage-sensitive deflection-bridge circuit?

How can an operational amplifier be used to average two inputs?

What purpose does a voltage follower serve?

How do transformers aid in matching impedances?

Why are dc power supplies needed?

How does the decibel notation for voltage level differ from that for power level?
What is the function of the phase-sensitive detector in a lock-in amplifier?
Why is an EVM useful for electrical measurements?

Why are sampling oscilloscopes used?

What are the advantages of digital oscilloscopes and digital recorders?
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4.

4.1.

4.2.

4.3.

44.

4.5.

4.6.

4.7.

4.8.

34 PROBLEMS

Expand Eq. (4.12) in series form and indicate the relation which may be used
to obtain a linear approximation for the current as a function of the transducer
resistance R. Also, show the error which results from this approximation.

A charged particle (¢ = 0.5 C) is moving with a velocity of 10 m/s in a magnetic
field of 10 Wb/m?.

(a) What is the magnitude of the largest force the charge can experience under

these conditions?
(b) What is a physical geometry in which the particle will experience no force?

The basic meter of Fig. 4.2 is designed so that

B = 1 Wb/m?
L=01m
K = 1N/m

(a) What deflection x results when a direct current of 4 A flows through the
meter?

(b) Find an expression for x(¢) if i(f) = 2 costA.

Calculate the rms values of the following periodic currents:

(@) i(t) = 10cos(t) A

(b) i(t) = 10cos(377t) A

(o) i(t)y =t 0<r<l1
=r—1 1<t<2
=t—-2 2<t<3 etc.

Expand Eq. (4.14) in series form and indicate the relation which may be used
to obtain a linear approximation for the current as a function of the transducer
resistance R. Also, show the error which results from this approximation.

Derive an expression for the sensitivity S of the circuit of Fig. 4.19 where
S di
~ dR

Find the condition for maximum sensitivity.

Obtain a linear approximation for the sensitivity of the ballast circuit of Fig. 4.20.
Under what conditions would this relation apply? Estimate the error in this
approximation.

Show that the output voltage v, of the following circuit is proportional to the
derivative of the input voltage v;.
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Figure Problem 4.8

If C = 10~ F, what value of R is required if

_ dl}i
Codt

Vo

Assume the operational amplifier is ideal.

4.9. A diode has a current-voltage relation of the form

i = el
where « and 8 are constants.
i
_D|_
+u—

Find the relation between input and output voltages for the following circuit.

R
N

(o 1 -
+ A ———O
+ +
v; v
o
o S)

Figure Problem 4.9

4.10. The transformer in the following circuit has a turns ratio of 10. A sinusoidal
voltage of 10 V rms is applied at terminals 11'.
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4.12.

4.13.

4.14.

4.15.

4.16.

4.34 PROBLEMS

V, 20 Q)

l'o
Figure Problem 4.10

What is I,?

A Wheatstone bridge circuit has resistance arms of 400, 40, 602, and 6000 €2 taken
sequentially around the bridge. The galvanometer has a resistance of 110 €2 and is
connected between the junction of the 40- and 602-2 resistors to the junction of
the 400- and 6000- resistors. The battery has an emf of 3 V and negligible internal
resistance. Calculate the voltage across the galvanometer and the galvanometer
current.

It is known that a certain resistor has a resistance of approximately 800 €2. This
resistor is placed in a Wheatstone bridge, the other three arms of which have
resistances of exactly 800 €2. A 4-V battery with negligible internal resistance
is used in the circuit. The galvanometer resistance is 100 €2, and the indicated
galvanometer current is 0.08 nA. Calculate the resistance of the unknown resistor.

Two galvanometers are available for use with a Wheatstone bridge having equal
ratio arms of 100 2. One galvanometer has a resistance of 100 €2 and a sensitivity
of 0.05 uA/mm, whereas the other has a resistance of 200 2 and a sensitivity
of 0.01 nA/mm. A 4-V battery is used in the circuit, and it has negligible inter-
nal resistance. An unknown resistance of approximately 500 €2 is to be measured
with the bridge. Calculate the deflection of each galvanometer. State assumptions
necessary to make this calculation.

Two known ratio arms of a Wheatstone bridge are 4000 and 400 2. The bridge
is to be used to measure a resistance of 100 2. Two galvanometers are available:
one with a resistance of 50 2 and a sensitivity of 0.05 uA/mm, and one with a
resistance of 500 €2 and a sensitivity of 0.2 pA/mm. Which galvanometer would
you prefer to use? Assume that the galvanometer is connected from the junction
of the ratio arms to the opposite corner of the bridge.

A Wheatstone bridge is constructed with ratio arms of 60 and 600 2. A4-V battery
with negligible internal resistance is used and connected from the junction of the
ratio arms to the opposite corner. A galvanometer having a resistance of 50 Q2
and a sensitivity of 0.05 uA/mm is connected between the other corners. When
the adjustable arm reads 200 €2, the galvanometer deflection is 30 mm. What is
the value of the unknown resistance?

The four arms of a Wheatstone bridge have resistances of 500, 1000, 600, and
290 €2 taken in sequence around the bridge. The battery of 3 V connects between
the 1000- and 600-€2 resistors and 500- and 290-2 resistors. A galvanometer
with a resistance of 50 €2 and a sensitivity of 0.05 wA/mm is connected across
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4.17.

4.18.

4.19.

4.20.

4.21.

4.22.
4.23.

the other two terminals. The galvanometer is shunted by a resistance of 30 2.
Calculate the galvanometer deflection. Repeat the calculation for a series
resistance of 30 2 connected in the galvanometer circuit instead of the shunt
arrangement.

Suppose an end resistor is added to the circuit of Fig. 4.21 so that there results

Voltmeter ? R; E

Figure Problem 4.17

where R is the end resistor. Derive an expression for the voltage output and
loading error of such an arrangement. What advantage does it offer over the cir-
cuit in Fig. 4.21? Suppose the end resistor were attached to the other end of the
variable resistance. What would be the advantage in this circumstance? What
would be the advantage if an end resistor were placed on each end of the variable
resistor?

Design a bandpass filter to operate between the limits of 500 and 2000 Hz, with
a load resistance of 16 €.

Design a lowpass filter with a cutoff frequency of 500 Hz with a load resistance
of 1000 €.

Design a highpass filter with a cutoff frequency of 1000 Hz with a load resistance
of 1000 €.

A voltage of 500V is impressed on a 150-k€2 resistor. The impedance of the
voltage source is 10 k€2. Two meters are used to measure the voltage across the
150-k€2 resistor: a volt-ohmmeter with an internal impedance of 1000 2/V and
an EVM with an impedance of 11 M. Calculate the voltage indicated by each
of these devices.

Plot the gain of the filter circuit of Example 4.7.

Five 1-in® plates are arranged as shown. The plate spacings are 0.01 in. The ar-
rangement is to be used for a displacement transducer by observing the change
in capacitance with the distance x.

>

Figure Problem 4.23
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4.25.

4.26.

4.27.

4.28.
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4.31.

4.32.
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4.34.

4.35.

4.34 PROBLEMS

Calculate the sensitivity of the device in picofarads per inch. Assume that the
plates are separated by air.

Calculate the voltage-displacement sensitivity for the LVDT whose characteris-
tics are shown in Fig. 4.51.

The piezoelectric crystal of Example 4.13 is used for a pressure measurement at
a nominal 100 psi. The uncertainty in the voltage measurement is £0.0003 in.
Estimate the uncertainty in the pressure measurement.

A rotating search coil like that shown in Fig. 4.62 has a nominal area of 1 cm?
with 50 turns of small-diameter wire. The rotational speed is nominally 180 rpm.
Calculate the voltage output when the coil is placed in a magnetic field of
1 Wb/m?.

An amplifier has a stated power bandwidth of 40, —1 dB over a frequency range
of 10 Hz to 30 kHz. If the 0-dB level is 35 W, what is the power that would occur
at the lower limit of this specification?

An amplifier is stated to produce a 35-W output into an 8-€2 load when driven with
an input voltage of 2.2 mV. The hum and noise is stated as —65 dB referenced to
10 mV at the input. What is the voltage output of the noise when operating into
the 8-€2 load?

Suppose the amplifier of Prob. 4.28 requires an input of 180 mV to produce the
35-W output and has a hum and noise level of —75 dB referenced to 0.25 V at the
input. What is the voltage output of the noise under these conditions? Calculate
the relative decibel level of this noise and the noise calculated in Prob. 4.28.

An emf of 100 V is connected across a load of 10,000 2. In order to measure this
voltage a meter having an internal impedance of 100 k€2 is connected across the
load. Calculate the percent error that will result from the loading by the meter.

In Prob. 4.30, calculate the number of decibels below the true voltage indicated
by the meter.

A certain transducer has an internal resistance of 10 k2. The output of the device
is to be measured with a voltage-divider circuit using a voltage source of 50 V
and a meter with an impedance of 100 k2. Calculate the maximum loading error
between the ranges of 10 and 90 percent of the measured variables.

A simple ballast circuit is used to measure the output of a pressure pickup. The
circuit is designed so that the internal resistance is six times the total transducer
resistance. A source of 100 V is used to energize the circuit. Calculate the voltage
output at 25, 50, 60, and 80 percent of full load on the transducer. What error
would result if the voltage output were assumed to vary linearly with the load?

A simple Wheatstone bridge has arms of Ry = 121 @, R, = 119 Q, and
R; = 121 Q. What is the value of R4 for balance? If R4 = 122 Q and the
bridge is driven with a source at 100 V, what is the open-circuit output voltage?

A lead-sulfide detector is used to measure a radiation signal at 3.5 um. What
reduction in incident power, measured in decibels, is afforded when the detector
is cooled to —196°C, assuming a constant S/N ratio?
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4.37.

4.38.

4.39.

4.40.

441.

4.42.

4.43.

4.44.

4.45.
4.46.

An indium antimonide detector is used to sense radiant energy at 5 um. What
incident flux on a 4-mm?” detector at room temperature is necessary to produce
an S/N ratio of 45 dB?

A current-sensitivity input circuit is used to measure the output of a transducer
having a total resistance of 500 2. A 12-V source is used, and the internal meter
impedance is 7000 2. What is the current indication for 25, 50, 75, and 100 per-
cent of full scale? What error would result at each of these readings if the current
output were assumed to vary linearly with the transducer resistance?

A simple voltage-divider circuit is used to measure the output of a transducer
whose total resistance is 1000 €2 & 1 percent. The internal resistance of the volt-
meter is 10,000 2+ 5 percent, and the meter is calibrated to read within % percent
of the true voltage at a full scale of 30 V. The source voltage is 24V £ 0.05 V.
Calculate the percent full-scale reading of the transducer for voltage readings of
6, 12, 18, and 24 V. Estimate the uncertainty for each of these readings.

Suppose the transducer of Prob. 4.38 is connected to an end resistor of 500 €2,
as shown in Prob. 4.17. Calculate the percent full-scale reading of the transducer
for voltage readings of 12, 15, 18, and 24 V. Estimate the uncertainty for each of
these readings, assuming the end resistor is accurate within 1 percent.

An amplifier has a power bandwidth of +0.5, —1.0 dB over a frequency range
of 20 to 100 kHz. The nominal power output at 0 dB is 0.1 W. Calculate the
power levels at the upper and lower limits of the specification for each end of the
frequency range.

A voltage divider circuit measures the output of a transducer having a resistance
of 800 2 & 2 percent. The internal resistance of the voltage measuring device is
15,000 2410 percent. Calibration is performed so that it reads within 0.5 percent
at a full-scale reading. The source voltage is 30 V 0.1 V. Calculate the percent
full-scale reading of the transducer and uncertainty for readings of 5, 10, 15 V.

The noise level of a certain amplifier is stated to be 80 dB below the power out-
put of 100 W, referenced to an input level of 1.0 mV. Calculate the noise-level
input.

A velocity measurement is to be performed by simultaneously photographing a
moving object and a “clock” composed of a rotating 10-cm-diameter disk driven
by a synchronous motor at 1800 rpm. The rotational speed of the motor is accu-
rate within £ 0.1 percent and the disk has markings in 1° increments. Estimate
the accuracy with which the velocity of an object moving at 20 m/s could be
measured with this arrangement if the displacement can be measured with an
uncertainty of £1 mm.

An operational amplifier has an open-loop gain of 99 dB and an input impedance
of 5 M. Specify suitable resistances for an inverting amplifier having a gain
of 25.

Repeat Prob. 4.44 for a noninverting amplifier.

Repeat Prob. 4.44 for a differential amplifier.
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4.34 PROBLEMS

Plot the output response of a highpass RC filter versus Q7. For what values of
RC will the attenuation be less than 2 percent for frequencies of 20, 200, and
2000 Hz?

Plot the output response of a lowpass RC filter versus Q7. For what values of RC
will the attenuation be less than 2 percent for frequencies of 20, 200, and 2000 Hz?

An operational amplifier is to be used to sum three input voltages such that the
output voltage is

E,=E|+2E, +3E;

Select the appropriate resistances and draw the circuit to accomplish this objective.

A voltage follower with a gain of 15 is to be designed using the op-amp of Prob.
4.44. Specify the necessary resistances.

Suppose an op-amp is to be used to integrate a signal over time of 1 ms, 0.5 s,
1.0's, and 10 s. Design circuits to accomplish these objectives.

Using available computer software, plot the values of E,/E; vs. T for the RC
lowpass filter of Table 4.2. What is the insertion loss in dB for this filter as a
function of wT?

Repeat Prob. 4.52 for the RC highpass filter of Table 4.2.

Using available computer software, plot the voltage ratio E,/E; vs. T for three
identical lowpass RC filter sections in series. Also plot the insertion loss in dB.

A simple RC filter is to be designed to pass frequencies below a nominal value
of 40 Hz. If the attenuation at 40 Hz is to be 5 dB, determine suitable values of
R and C for the filter.

A simple RC filter is to be designed to pass frequencies above a nominal value
of 40 Hz. If the attenuation at 40 Hz is to be 5 dB, determine suitable values of
R and C for the filter.

Suppose the two filters of Probs. 4.55 and 4.56 are connected in series. Plot the
output E,/E; for such an arrangement.

Estimate the linear voltage sensitivity for the LVDT having the characteristics
shown in Fig. 4.51 over the displacement range from 0 to 0.06. How much does
the sensitivity vary from this value in the null region?

Alead-sulfide detector is to be used to detect radiation at a wavelength of 1.0 um.
A signal-to-noise ratio of 30 dB is desired for the detection process and the de-
tector area is 1 mm by 1 mm. What is the minimum incident radiation in watts
that will be necessary for this detection process?

Negative feedback is added to an amplifier to increase the signal-to-noise ratio.
In the open-loop configuration the amplifier has a gain of 2000 and an S/N ra-
tio of 2000. A negative feedback loop with k = 0.05 is added to the amplifier.
Calculate the initial S/N ratio in dB and that which results from addition of the
feedback.
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4.67.

4.68.

4.69.

A noninverting configuration for an operational amplifier is arranged so that the
feedback resistance is 1 M2 while the noninverting resistance input is 100 k€2.
Calculate the gain.

Repeat Prob. 4.61 for an inverting, differential input configuration of the opera-
tional amplifier circuit.

Design a lowpass filter with a cutoff frequency of 40 Hz with a load resistance
of 8 Q.

Design a highpass filter with a cutoff frequency of 450 Hz and a load resistance
of 8 Q.

A lead-sulfide detector is employed to measure a light source at a wavelength
of 3.0 um. What reduction in incident power is possible when the detector is
cooled to liquid nitrogen temperature of 76 K? Assume that the S/N ratio remains
constant.

A power amplifier has a stated bandwidth of £1.0 dB from 10 to 50 kHz. The nom-
inal power output 0 dB point is specified at 100 W. Calculate the power (W) at the
limits of the +1.0 dB specification for each limit of the frequency specification.
The noise level of the amplifier in Prob. 4.66 is specihed as 90 dB below the rated
output for a input level of 5 mV. Calculate the noise level at input.

A LVDT has the operating characteristics shown in Fig. 4.51. Calculate the volt-
age sensitivity over the displacement range from 0 to 0.04.

A lead-sulfide detector has an area of 2 mm by 2 mm. It is exposed to a radia-
tion source of 2.0 um. If a minimum S/N ratio of 25 dB is to be achieved, what
minimum incident radiation is required? Express in watts.

| a.
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DISPLACEMENT AND AREA
MEASUREMENTS

‘ 5.1 INTRODUCTION

Many of the transducers discussed in Chap. 4 represent excellent devices for mea-
surement of displacement. In this chapter we wish to examine the general subject
of dimensional and displacement measurements and indicate some of the techniques
and instruments that may be utilized for such purposes, making use, where possible,
of the information in the preceding sections.

Dimensional measurements are categorized as determinations of the size of an
object, while a displacement measurement implies the measurement of the move-
ment of a point from one position to another. An area measurement on a standard
geometric figure is a combination of appropriate dimensional measurements through
a correct analytical relationship. The determination of areas of irregular geometric
shapes usually involves a mechanical, graphical, or numerical integration.

Displacement measurements may be made under both steady and transient con-
ditions. Transient measurements fall under the general class of subjects discussed in
Chap. 11. The present chapter is concerned only with static measurements.

‘ 5.2 DIMENSIONAL MEASUREMENTS

The standard units of length were discussed in Chap. 2. All dimensional measurements
are eventually related to these standards. Simple dimensional measurements with an
accuracy of £0.01 in (0.25 mm) may be made with graduated metal machinist scales
or wood scales which have accurate engraved markings. For large dimensional mea-
surements metal tapes are used to advantage. The primary errors in such measurement
devices, other than readability errors, are usually the result of thermal expansion or
contraction of the scale. On long metal tapes used for surveying purposes this can rep-
resent a substantial error, especially when used under extreme temperature conditions.
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0 j
i I
Vernier
Slider
\Fine—adjustment screw
Fixed jaw Movable jaw
Figure 5.1 Vernier caliper.
3
1 2 3 4 5 6 7 8 9 1 2
0 5 10 15 20 25
Index Vernier scale
Figure 5.2 Expanded view of vernier scale.

It may be noted, however, that thermal expansion effects represent fixed errors and
may easily be corrected when the measurement temperature is known.

Vernier calipers represent a convenient modification of the metal scale to improve
the readability of the device. The caliper construction is shown in Fig. 5.1, and an
expanded view of the vernier scale is shown in Fig. 5.2. The caliper is placed on the
object to be measured and the fine adjustment is rotated until the jaws fit tightly against
the workpiece. The increments along the primary scale are 0.025 in. The vernier scale
shownisused toreadto 0.001 in (0.025 mm) so that it has 25 equal increments (0.001 is
% of 0.025) and a total length of % times the length of the primary scale graduations.
Consequently, the vernier scale does not line up exactly with the primary scale, and
the ratio of the last coincident number on the vernier to the total vernier length will
equal the fraction of a whole primary scale division indicated by the index position. In
the example shown in Fig. 5.2 the reading would be 2.350 + (%)(0.025) = 2.364 in.

The micrometer calipers shown in Fig. 5.3 represent a more precise measurement
device than the vernier calipers. Instead of the vernier scale arrangement, a calibrated
screw thread and circumferential scale divisions are used to indicate the fractional
part of the primary scale divisions. In order to obtain the maximum effectiveness of
the micrometer care must be exerted to ensure that a consistent pressure is maintained
on the workpiece. The spring-loaded ratchet device on the handle enables the operator
to maintain such a condition. When properly used, the micrometer can be employed
for the measurement of dimensions within 0.0001 in (0.0025 mm).

Dial indicators are devices that perform a mechanical amplification of the dis-
placement of a pointer or follower in order to measure displacements within about
0.001 in. The construction of such indicators provides a gear rack, which is connected
to a displacement-sensing shaft. This rack engages a pinion which in turn is used to
provide a gear-train amplification of the movement. The output reading is made on a
circular dial.
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Main scale
0.025" divisions

Thimble scale
25 divisions

/

Ratchet

Figure 5.3 Micrometer calipers.

Example 5.1

ERROR DUE TO THERMAL EXPANSION. A 30-m (at 15°C) steel tape is used for
surveying work in the summer such that the tape temperature in the sun is 45°C. A measurement
indicates 24.567 £ 0.001 m. The linear thermal coefficient of expansion is 11.65 x 107¢/°C
at 15°C. Calculate the true distance measurement.

The indicated tape length would be the true value if the measurement were taken at 15°C. At
the elevated temperature the tape has expanded and consequently reads too small a distance.
The actual length of the 30-m tape at 45°C is

L(1+aAT) =[14 (11.65 x 107%)(45 — 15)](30) = 30.010485 m
Such a true length would be indicated as 30 m. The true reading for the above situation is thus

(24.567)[1 4 (11.65 x 107%)(45 — 15)] = 24.576 m

5.3 GAGE BLOCKS

Gage blocks represent industrial dimension standards. They are small steel blocks
about % x 1 % in with highly polished parallel surfaces. The thickness of the blocks is
specified in accordance with the following tolerances:

1

Grade of Block Tolerance, 1 in
AA 2
A 4
B 8

'Tolerances are for blocks less than 1 in
thick; for greater thickness the same
tolerances are per inch.

Gage blocks are available in a range of thicknesses that make it possible to stack
them in a manner such that with a set of 81 blocks any dimension between 0.100 and
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8.000 in can be obtained in increments of 0.0001 in. The blocks are stacked through
a process of wringing. With surfaces thoroughly clean, the metal surfaces are brought
together in a sliding fashion while a steady pressure is exerted. The surfaces are
sufficiently flat so that when the wringing process is correctly executed, they will
adhere as a result of molecular attraction. The adhesive force may be as great as
30 times atmospheric pressure.

Because of their high accuracy, gage blocks are frequently used for calibration
of other dimensional measurement devices. For very precise measurements they may
be used for direct dimensional comparison tests with a machined item. A discussion
of the methods of producing gage-block standards is given in Ref. [3]. The literature
of manufacturers of gage blocks furnishes an excellent source of information on the
measurement techniques which are employed in practice.
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An optical method for measuring dimensions very accurately is based on the principle
of light interference. The instrument based on this principle is called an interferometer
and is used for the calibration of gage blocks and other dimensional standards. Other
optical instruments in wide use are various types of microscopes and telescopes,
including the conventional surveyor’s transit, which is employed for measurement of
large distances.

Consider the two sets of light beams shown in Fig. 5.4. In Fig. 5.4a the two beams
are in phase so that the brightness at point P is augmented when they intersect.
In Fig. 5.4b the beams are out of phase by half a wavelength so that a cancellation
is observed, and the light waves are said to interfere with each other. This is the
essence of the interference principle. The effect of the cancellation is brought about
by allowing two light waves from a single source to travel along paths of different
lengths. When the difference in the distance is an integral multiple of wavelengths,

Beam 1 Beam 1 Beam 2

Beam 2
~
O
<\
P

(a) (b)

o[>

Figure 5.4 Interference principle. (a) Beams in phase; (b) beams out of phase.
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Figure 5.5 Application of interference principle.

there will be a reinforcement of the waves, while there will be a cancellation when
the difference in the distances is an odd multiple of half-wavelengths.

Now, let us apply the interference principle to dimensional measurements. Con-
sider the two parallel plates shown in Fig. 5.5. One plate is a transparent, strain-free
glass accurately polished flat within a few microinches. The other plate has a reflect-
ing metal surface. The glass plate is called an optical flat. Parallel light beams A
and B are projected on the plates from a suitable collimating source. The separation
distance between the plates d is assumed to be quite small. The reflected beam A
intersects the incoming beam B at point P. Since the reflected beam has traveled
farther than beam B by a distance of 2d, it will create an interference at point P if this
incremental distance is an odd multiple of A /2. If the distance 2d is an even multiple
of A/2, the reflected beam will augment beam B. Thus, for 2d = A/2, 31/2, etc.,
the screen S will detect no reflected light. Now, consider the same two plates, but let
them be tilted slightly so that the distance between the plates is a variable. Now, if
one views the reflected light beams, alternate light and dark regions will appear on
the screen, indicating the variation in the plate spacing. The dark lines or regions are
called fringes, and the change in the separation distance between the positions of two
fringes corresponds to

A

The interference principle offers a convenient means for measuring small surface
defects and for calibrating gage blocks. The use of a tilted optical flat as in Fig. 5.5
is an awkward method of utilizing the principle, however. For practical purposes the
interferometer, as indicated schematically in Fig. 5.6, is employed. Monochromatic
light from the source is collimated by the lens L onto the splitter plate S,, which is
a half-silvered mirror that reflects half of the light toward the optically flat mirror M
and allows transmission of the other half toward the workpiece W. Both beams are
reflected back and recombined at the splitter plate S, and then transmitted to the screen.
Fringes may appear on the screen resulting from differences in the optical path lengths
of the two beams. If the instrument is properly constructed, these differences will arise
from dimensional variations of the workpiece. The interferometer is primarily used for
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Figure 5.6 Schematic of interferometer.
Table 5.1 Monochromatic light sources
Half-wavelength
Wavelength, Fringe Interval,

Source pm pm
Helium 0.589 0.295
Krypton 86 0.606 0.303
Mercury 198 0.546 0.273
Sodium 0.598 0.299

calibration of gage blocks and other applications where extremely precise absolute
dimensional measurements are required. For detailed information on experimental
techniques used in interferometry the reader should consult Refs. [3] and [S]. The use
of the interferometer for fluid-flow measurements will be discussed in Chap. 7.

As shown in Eq. (5.1), the wavelength of the monochromatic light source will
influence the fringe spacing. Table 5.1 lists the wavelengths of some common light
sources and the corresponding half-wavelength fringe interval.
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INTERFERENCE MEASUREMENT. A mercury light source employs a green filter such
that the wavelength is 5460 A. This light is colliminated and directed onto two tilted surfaces
like those shown in Fig. 5.5. At one end the surfaces are in precise contact. Between the point of
contact and a distance of 3000 in five interference fringes are observed. Calculate the separation
distance between the two surfaces and the tilt angle at this position.
Solution
The five fringe lines correspond to A/2, 31/2, ..., 9A/2; that is, for the fifth fringe line

o

2d = —
2

Example 5.2
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We have A = 5460 x 1078 cm = 2.15 x 1072 in so that
d=3(2.15 x 107°) = 48.4 pin
The tilt angle is

_, 484 x107° _ 484 x 106

= =16.1x 107
3.000 3.000 0-1> 107" rad

¢ = tan

Mechanical displacement may also be measured with the aid of the electric trans-
ducers discussed in Chap. 4. The LVDT, for example, can be used to sense displace-
ments as small as 1 pin. Use of LVDT devices for displacement measurements is
described in Ref. [17]. Resistance transducers are primarily of value for measure-
ment of fairly large displacements because of their poor resolution. Capacitance and
piezoelectric transducers, on the other hand, provide high resolution and are suitable
for dynamic measurements.

5.5 PNEUMATIC DISPLACEMENT GAGE

Consider the system shown in Fig. 5.7. Air is supplied at a constant pressure pj.
The flow through the orifice and through the outlet of diameter d, is governed by
the separation distance x between the outlet and the workpiece. The change in flow
with x will be indicated by a change in the pressure downstream from the orifice p;.
Thus, a measurement of this pressure may be taken as an indication of the separation
distance x. For purposes of analysis we assume incompressible flow. (See Sec. 7.3
for a discussion of the validity of this assumption.) The volumetric flow through an
orifice may be represented by

0 = CA/Ap [5.2]

Ambient pressure = p,

\
Ll +—
Flow —— d, d,

Kl | !
® ® _Li=

Figure 5.7 Pneumatic displacement device.

Orifice

Workpiece
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where  C = discharge coefficient
A = flow area of the orifice
Ap = pressure differential across the orifice
There are two orifices in the situation depicted in Fig. 5.7, the obvious one and
the orifice formed by the flow restriction between the outlet and the workpiece. We

shall designate the area of the first orifice A; and that of the second A,. Then, Eq. (5.2)
becomes

0 =CiA 1/ p1 — p2 = CrAr/pr — pa [5.3]

where p, is the ambient pressure and is assumed constant. Equation (5.3) may be
rearranged to give

_P2=Pa _ 1

S pi—pa L4 (A/A)?
where it is assumed that the discharge coefficients C; and C, are equal. We may now
observe that

r

[5.4]

4, = i [5.5]
1= .
A2 = Jsz)C [5.6]

Thus, we see the relation between the pressure ratio r and the workpiece dis-
placement x. It has been shown experimentally [1] that the relation between r and the
area ratio A,/ A is very nearly linear for 0.4 < r < 0.9 and that

Ay

=1.10 —0.50—= 5.7
r A, [5.7]

for this range. Introducing Egs. (5.5) and (5.6), we have
— Py d

p=P27P o 2.00(§

P1 — Da d

The pneumatic displacement gage is mainly used for small displacement
measurements.

> X for04 <r<0.9 [5.8]
1
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UNCERTAINTY IN PNEUMATIC DISPLACEMENT GAGE. A pnecumatic displace-
ment gage like the one shown in Fig. 5.7 has d; = 0.030 in and d, = 0.062 in. The supply
pressure is 10.0 psig, and the differential pressure p, — p, is measured with a water manometer
which may be read with an uncertainty of 0.05 in H,O. Calculate the displacement range for
which Eq. (5.8) applies and the uncertainty in this measurement, assuming that the supply
pressure remains constant.
Solution
We have

dy 0.062

2~ (0.030)2

Example 5.3
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When r = 0.4, we have from Eq. (5.8)

_1L10-04
* = (2.00)(68.8)

When r = 0.9, x = 0.0145 in (0.0368 cm).
Utilizing Eq. (3.2) as applied to Eq. (5.8), we have

w,= (| — | wy ==+
ox

Wap

=0.0509 in (0.129 cm)

or

ox

Wy

Furthermore,

- X _(2.00)(68.8) = —137.6
Pt~ Pa ox

The uncertainty in the measurement of p, — p, is

wy

wa, = (0.05)(0.0361) = 1.805 x 1073 psig (12.44 N/m?)

Thus, the uncertainty in x is given by

1.805 x 1073
= ——"——— =1.313 x 107 in = 1.313 in (0.033
Yx = (137.6)(10.00) mem pin (0.033 jum)
Comment

From this example we see that the pneumatic gage can be quite sensitive, even with modest
pressure-measurement facilities at hand.

In addition to its application as a steady-state—displacement-measurement device,
the pneumatic gage may be employed as a dynamic sensor in conjunction with prop-
erly designed fluidic circuits. By periodically interrupting the discharge, the device
may serve as a periodic signal generator for fluidic circuits. Different interruption
techniques may be employed to generate square-, triangle-, or sine-wave signals [7].
The device may also be employed for fluidic reading of coded information on plates
or cards that pass under the outlet jet [8 and 9]. The rapidity with which such read-
ings may be made depends on the dynamic response of the gage and its associated
connecting lines and pressure transducers. Studies [11] have shown that the device
can produce good frequency response for signals up to 500 Hz.

5.6 AREA MEASUREMENTS

There are many applications that require a measurement of a plane area. Graphical
determinations of the area of the survey plots from maps, the integration of a function
to determine the area under a curve, and analyses of experimental data plots all
may rely on a measurement of a plane area. There are also many applications for the
measurement of surface areas, but such measurements are considerably more difficult
to perform.
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5.7 THE PLANIMETER, A DEVICE
OF HISTORICAL INTEREST

The planimeter is a mechanical integrating device that may be used for measure-
ment of plane areas. We consider it here as an illustration of a novel mechanical
device to perform area measurements. It is seldom used today. Consider the schematic
representation shown in Fig. 5.8. The point O is fixed, while the tracing point T
is moved around the periphery of the figure whose area is to be determined. The
wheel W is mounted on the arm BT so that it is free to rotate when the arm under-
goes an angular displacement. The wheel has engraved graduations and a vernier
scale so that its exact number of revolutions may be determined as the tracing
point moves around the curve. The planimeter and area are placed on a flat, rela-
tively smooth surface so that the wheel W will only slide when the arm BT under-
goes an axial translational movement. Thus, the wheel registers zero angular dis-
placement when an axial translational movement of arm BT is experienced. Let
the length of the tracing arm BT be L and the distance from point B to the wheel
be a. The diameter of the wheel is D. The distance OB is taken as R. Now, sup-
pose the arm BT is rotated an angle df and the arm OB through an angle d¢ as a
result of movement of the tracing point. The area swept out by the arms BT and
OB is

dA = 1L?d0+ LRcos Bd¢ + L R* dp [5.9]

where B is the angle between the two arms. Similarly, the distance traveled by the
rim of the wheel owing to rotation is

ds =adf + Rcos Bdo [5.10]

O . .
Pivot point, O Tracing point, 7}

Figure 5.8 Schematic of a polar planimeter.
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|
L !
Pivot
ux_\\jﬁ
Tracer
point, T
Figure 5.9 Construction of a polar planimeter.
We may now integrate these expressions and obtain
1 1
A:ELz/d9+LR/cosﬂd¢+§R2/d¢ [5.11]
s:a/d9+/Rcos,3d¢> [5.12]
Thus, /Rcosﬂd¢=s—ad0
15 12
and A= EL —alL d9+Ls+§R do [5.13]

If the pole is outside the area as shown in Fig. 5.8, we have both [df = 0 and
f d¢p = 0, and the area is obtained as

A=1Ls (pole outside area)

When the pole is inside the area, both f d¢ and f df are equal to 27 because both
arms make complete rotations. The area is then

A=Ls+ (R*+L*—2al)7 (pole inside area) [5.14]

The last term in Eq. (5.14) represents the area of the zero circle, which is the area the
tracing point would sweep out when the pivot point is inside the area and the wheel
reading is zero.

The instrument described above is called a polar planimeter, and its construction
is indicated in Fig. 5.9.

5.8 GRAPHICAL AND NUMERICAL METHODS
FOR AREA MEASUREMENT

A very simple method of plane-area measurement is to place the figure on coordinate
paper and to count the number of squares enclosed by the figure. An appropriate
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Yo
12 3 n=1 n x
| Ax | Ax

Figure 5.10 Plane-area defermination.

scale factor is then applied to determine the area. Numerical integration is commonly
applied to determine the area under an irregular curve. Perhaps the two most common
methods are the trapezoidal rule and Simpson’s rule. Consider the area shown in
Fig. 5.10. The area under the curve is

A:/ydx [5.15]

For relatively small increments of Ax the area is given approximately by the rectan-
gular rule, which calculates the area element AA; as

AA; = y; Ax = yi(Xiy1 — x;)

so that

A=) AA =) yilrig —x)

Equal or nonequal increments in Ax may be employed with this rule. The rectan-
gular rule will underestimate the area in regions where the curve has dy/dx > 0 and
overestimate when dy/dx < 0. The main advantage of the rule is its simplicity and
ease of calculation.

If the figure is divided into equal increments Ax along the x axis, the trapezoidal
rule gives for the area

n—1
o Yo + Yn
A= <2+Zy,~> Ax [5.16]

i=1

If nonuniform increments in x are involved, the elemental areas A; for the trapezoidal
rule are

Ax(Yip1 + yi)

> [5.171

A = yu(Xig1 — x;) =

267
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and the integral for the area under the curve is

A:/dA:ZA,- [5.18]

When the area is divided in an even number of increments, Simpson’s rule gives

n—1
A=A;{yoernJriZl:yiBJr(—l)’“]} [5.19]
The above equations give the area under the curve y = f(x) from y = 0 to the values
on the curve. If the area of an enclosed figure is the desired objective, the result may
be obtained from the same formulas by executing the summation; first through the
positive values of Ax, followed by a subtraction of the summation executed through
the negative values of Ax. For nonuniform values of Ax an application of the trape-
zoidal rule of Eq. (5.17) through the entire sequence of points will automatically take
account of positive and negative elemental areas.

The trapezoidal rule is obtained by joining the ordinates of the curve with straight
lines, while the result given by Eq. (5.19) is obtained by joining three points at a
time with a parabola. Both the above equations are special cases of a general class
of equations called the Newton-Cotes integration formulas. A derivation of these
formulas is based on an approximation of the actual curve with a polynomial which
agrees with it at n + 1 equally spaced points. The general form of the integration
formulas is derived in Refs. [2, 15] and may be written in the following way:

/ fdx = AxY Ciftn) [5.20]
X1 k=0
where Ax = L-h [5.21]
n
Xe = x1 +kAx [5.22]

and the coefficients Cy are given by

n D) (s—k+Ds—k—=1)--(s —
Ckz/ S6- D5kt DEs AA kS [5.23]
o k(k—=1)---(k—k+1Dk—k—-1)---(k—n)
The variable s is defined according to
X — X1
5§ = [5.24]
n

Note that the Newton-Cotes formulas use n increments in the independent variable
and that this requires a matching of a polynomial at n 4 1 points in the region that is
to be integrated. A discussion of the errors involved in the above formulas is given in
Ref. [15]. Because of the ready availability of computing power the simple trapezoidal
or Simpson’s rule with a large number of small increments may be preferred over the
more complex Newton-Cotes formulas.

A discussion of the various integration formulas is given in Ref. [15], including
computer routines and application examples.
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AREA OF SURVEY PLOT BY NUMERICAL INTEGRATION.  Asurveyor determines
the coordinates of an irregular hexagon-shaped parcel of land as shown in the accompanying
Fig. Example 5.4a and listed in the table as x; and y;. Notice that the coordinates are listed in
sequence with the final entry the same as the initial entry, indicating closure of the figure.

120 ‘ 3
o

100 " \

80
<
» 60 \
40 |
» /
N—

0 20 40 60 80 100

X

Figure Example 5.4a

x(i) y(@) y@)+y@i+1) x@+1)—x(@) A() Sum A(i)
0 70
14 100 170 14 1190 1190
58 106 206 44 4532 5722
96 64 170 38 3230 8952
74 20 84 —22 —-924 8028
30 10 30 —44 —660 7368
0 70 80 -30 —1200 6168

The area of the plot will be determined by an application of the trapezoidal rule for
numerical integration. The increments in x are not uniform, so the integration must be carried
out with the summation of Eq. (5.17). The values of Ax and the elemental areas A; are also
listed in the table along with a running sum of the area elements.

The first three area elements are positive because the corresponding values of Ax are
positive. Similarly, the last three area elements are negative because their values of Ax are
negative. The sum of the first three area elements, 8952, represents the area under the first
three points and the x axis (y =0), while the final entry, 6168, is the area under the first three
points, less the area under the last three points, or the enclosed area of the figure. Note that an
application of Eq. (5.17) for the sequence of points enclosing the figure automatically takes
account of the positive and negative area elements.

Since the area in question is a polygon, that is, a figure formed with straight-line segments
for each side, the trapezoidal rule will give an exact answer for the area. If some type of

Example 5.4
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higher-order polynomial connecting line segments were used to effect the integration, the
figure might look something like that shown in Fig. Example 5.4b. In this case, the outcome
of the numerical integration would be uncertain. Simpson’s rule, as expressed in Eq. (5.19),
could not be applied because the increments in x are not uniform. Moreover, the parabola fit of
Simpson’s rule would not match with the straight-line segments joining the data points. Again,
we note that the trapezoidal rule gives an exact answer in the example presented here.

120 T T

/2GS

80 !
<< |

> 60 \
40 [ I

20
N

0 20 40 60 80 100

X

Figure Example 5.4b

Example 5.5

UNCERTAINTY OF SURVEY AREA DETERMINATION. Determine the uncertainty
in the determination of the survey area of Example 5.4 assuming uncertainties in measurements
of x and y of £0.02. Assume the numerical integration calculation is exact.
Solution
The elemental areas are expressed in terms of the measured quantities as
i1 + ) (i1 — X4)
2

Performing the partial differentiations with respect to each of the four measured quantities and
inserting in Eq. (3.2) gives for the uncertainty in the elemental areas

Wyl (i1 — X2 + i1 + 30?12
2172

Ai:

[a]

Wai =

where it is understood that the uncertainties in x and y are equal.

‘We have
A= Z A

and 0A/0A; = 1 for all the A;. Applying Eq. (3.2) again gives

wa = {Z(wm)z} v [b]
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Performing the various calculations produces the table below.

A Sum 4; wa; W] (total) wa/A
1190 1190 2.412301805 2.412301805 0.002027144
4532 5722 2.978993118 3.833223187 0.00066991
3230 8952 2.463493454 4.556577663 0.000509001
—924 8028 1.228006515 4.719152466 0.000587837
—660 7368 0.753126815 4.778870159 0.000648598
—1200 6168 1.208304597 4.929259579 0.000799167

The uncertainties listed here are calculated with w,; = w,; = 0.02. From Eq. (a) we see that
the uncertainties in each elemental area are a linear function of w,;, so a value of w,; = 0.01
would produce area uncertainties just half the values in the table.
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5.9 SURFACE AREAS

Consider the general three-dimensional surface shown in Fig. 5.11. The surface is
described by the function

z= fx,y)

and the surface area is given in Ref. [4] as

G+ )
A= — ) +(— | +1|dxdy [5.25]
ox ay

If the function z is known and well behaved, the integral in Eq. (5.25) may be evaluated
directly. Let us consider the case where the function is not given but specific values

~<

Ax

v —

Figure 5.11 Surface-area determination.
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of z are known for incremental changes in x and y. The increments in x and y are
denoted by Ax and Ay, while the value of z is denoted by z”, where the subscript

n refers to the x increments and the superscript p refers to the y increment. We thus
have the approximations

0z Z;f+1 —z5

ox Ax
9z _ Pt —zP
ay Ay

The integral Eq. (5.25) is now replaced by the double sum

P p\?2 p+l _ p\ 2
Z Z Z Z
A § :2 : n+1 n n n 1
P ( Ax ) ( Ay >+

The surface area may be determined by performing this numerical summation.
Standard computer routines and calculator programs are available for performing
the numerical computations indicated above. See, for example, Refs. [12] to [16].

1/2
Ax Ay [5.26]

5.10 PROBLEMS

5.1. A12-insteel scale is graduated in increments of 0.01 in and is accurate when used
at a temperature of 60°F. Calculate the error in an 11-in measurement when the
ambient temperature is 100°F. Should the person using the scale be concerned
about this error? Why?

5.2. Calculate the temperature error in a 76-ft measurement with a steel surveyor’s
tape at —10°F when the tape is accurate at 60°F.

5.3. Show that the spacing distance d in Fig. 5.5 can be represented by
2n —1
A
4

where n is the number of fringe lines.

5.4. A pneumatic displacement gage is designed according to the arrangement in
Fig. 5.7. An air supply pressure of 20 psig is available, and displacements are to be
measured over a range of 0.050 in. The orifice diameter is 0.025 in. Calculate the
maximum displacement which may be measured in the linear range of operation
and the outlet tube diameter d,.

5.5. Plot the equation
y =3+ 4x — 6x> 4+ 2.8x> — 0.13x*
for the range 0 < x < 5. Determine the area under the curve by counting squares
and also by numerical integration using the trapezoidal relation and Simpson’s

rule. Calculate the error in each of these three cases by comparing the results
with those obtained analytically.
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5.6. Use the trapezoidal rule and Simpson’s method to perform the integration.

A =/ sin x dx
0

Use 4, 8, and 12 increments of x and calculate the error for each case.

5.7. Consider the sphere given by
¥y +72=25

Using the summation of Eq. (5.26), calculate the surface area bounded by x = +1
and y = £1. Use Ax = Ay = 0.5. Determine the error in the calculation by
comparing it with the true value as calculated from Eq. (5.25).

5.8. By suitable numerical integration determine the surface area and volume of a
right circular cone having a height of 12.5 cm and a base diameter of 15 cm.
Compare the result with that obtained by an exact calculation.

5.9. Asteel tape is used to measure a distance of 20 m at 10°C. Assuming that the tape
will measure the true distance when the temperature is 20°C, what would be the
indicated distance at 10°C? What would be the indicated distance at 40°C?

5.10. A mercury light source and green filter (5460 A) are used with an interferometer
to determine the distance between an optically flat glass plate and a metal plate,
as shown in Fig. 5.5. For this arrangement nine interference fringes are observed.
Calculate the separation distance between the two surfaces.

5.11. A pneumatic displacement gage is to be used to measure displacements between
0.1 and 0.2 mm. The output of the device is a hypodermic needle having a di-
ameter of 0.4 mm. The measurement is to be performed with an uncertainty of
25 nm. Specify values of the orifice diameter, upstream pressure, and allowable
uncertainty in the pressure measurement to accomplish this objective.

5.12. The pneumatic displacement gage of Example 5.3 is operated under the same
conditions as given, but it is discovered that the supply pressure has a random
fluctuation of +£0.07 psig during the measurements. Calculate the uncertainty
in the dimensional measurement under these new conditions, assuming that the
uncertainty in p, — p, remains at 0.05 in H,O.

5.13. The function y is given as
y=1+3+4x?

Perform the integration [ ydx between x = 0 and x = 4 using the trapezoidal
rule and Simpson’s rule. Use four increments in x and calculate the error for each
case. How many more increments would have to be taken for the trapezoidal rule
to equal the accuracy of Simpson’s rule?

5.14. Draw some kind of irregular figure on graph paper having small subdivisions.
Determine the area by (a) counting squares, (b) the trapezoidal rule, and
(c) Simpson’s rule. Repeat by drawing a 10-cm-diameter circle using a
sharp pencil and accurately measured radius from a metal scale. Discuss the
“uncertainties” in these two experiments.
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5.15.

5.16.

5.17.

5.18.

5.19.

5.20.

5.21.

5.22.

5.23.

5.24.

Plot the function y = 3xe%**. Determine the area under the curve between x = 1
and x = 3 using several methods. Estimate the uncertainties.

Assemble a group of at least five people. Have each person measure two objects
using a vernier caliper and a micrometer, with each person taking at least five
readings. Analyze the data on the basis of the information in Chap. 3. What
conclusions do you draw?

Determine values of the Newton-Cotes coefficients for cubic and quartic poly-
nomials.

Answer:
For four points

A =3 Ax(yo+3y1 4332+ y3)

For five points

2 Ax
A= ?(7)’0 + 32y + 12y, + 32y3 + Ty4)

Plot the equation

y = x2670.2x

on suitable graph paper for 0 < x < 1. Select increments of x and determine the
area under the curve using the trapezoidal and Simpson’s rule. Also, calculate
the true area.

For the curve y = sin x, perform the integration f ydx from x = 0 to 7 using
progressively smaller increments of x and both the trapezoid and Simpson’s rule.
Use a computer for the calculation and determine the number of increments for
which the area is in error by 1 percent for both rules.

Using the function

y= 36—2x

obtain the integral fozy dx using the trapezoidal and Simpson’s rule with incre-
ments of 0.2 and 0.5 for Ax. Also, calculate the error in these determinations.
Obtain the integral [,y dx of

y=Inx
using increments of 0.1 and 0.2 in Ax. Calculate the error of the determination.

Obtain a numerical integration fooo y dx of the function

X

y=e
using increments in x sufficiently small to obtain an accuracy of 99 percent.

A steel tape is used to measure a distance of 40 m at a temperature of 0°C. The
tape indicates a true length at 15°C. What will be the indication at 0°C?

Apply the rectangular rule to the area determination of Example 5.4. What percent
error results from use of this method?
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5.25. An irregular polygon-shaped area has the following coordinates for the vertices
of the polygon:

X y
0 50
10 72
20 84
30 93
40 60
30 33
20 41
10 45
0 50

Determine the area of the enclosed figure using rectangular, trapezoidal, and
Simpson’s methods of numerical integration. Calculate the percent error for each
determination.

5.26. Calculate the percent and absolute temperature error in a 30-m measurement with
a steel surveyor’s tape at 50°C when the tape is accurate at 15°C.

5.27. Divide a circle into two sets of even numbers of increments in the abscissa
coordinate. Calculate the enclosed area using the rectangular, trapezoidal, and
Simpson’s rules. Determine the percent error for each calculation.

5.28. A rectangular area can be represented by the coordinates:

=
O <

[\
Cooco0co0OoOo R~~~ —~O
W

W

Determine the area using the rectangular and trapezoidal rules. Would it be pos-
sible to use these data as is, or in an abbreviated form, to employ Simpson’s rule?
If so, what would be the result?



276

CHAPTER 5 o DISPLACEMENT AND AREA MEASUREMENTS

5.29.

5.30.

The following coordinates represent a set of data:

x y
0 1
1 1
2 4
3 7
4 13
5 21
6 31

Determine the integral f y dx using rectangular, trapezoidal, and Simpson’s rules.
What is the accuracy of each method? (Hint: Use the methods of Chap. 3 to de-
termine the functional form that fits the data, and use this functional form to
determine the exact value of the integral.)

Planck’s blackbody radiation formula is
Ep. = C117> [[exp(Co/AT ) — 1]

where C; = 3.743 x 108, C, = 14387, A isin um and T in K.

Perform a numerical integration of this formula from O to 10 um for temper-
atures of 1000 and 2000 K. Use any computer software that is available. Repeat
for A from O to 20 pm.

1.
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6

PRESSURE MEASUREMENT

‘ 6.1 INTRODUCTION

Pressure is represented as a force per unit area. As such, it has the same units as
stress and may, in a general sense, be considered as a type of stress. For our purposes
we shall designate the force per unit area exerted by a fluid on a containing wall as
the pressure. The forces that arise as a result of strains in solids are designated as
stresses and discussed in Chap. 10. Thus, our discussion of pressure measurement
is one restricted to fluid systems. Absolute pressure refers to the absolute value of
the force per unit area exerted on the containing wall by a fluid. Gage pressure
represents the difference between the absolute pressure and the local atmospheric
pressure. Vacuum represents the amount by which the atmospheric pressure exceeds
the absolute pressure. From these definitions we see that the absolute pressure may not
be negative and the vacuum may not be greater than the local atmospheric pressure.
The three terms are illustrated graphically in Fig. 6.1. It is worthwhile to mention
that local fluid pressure may be dependent on many variables; parameters such as
elevation, flow velocity, fluid density, and temperature are of frequent importance.

In the English system of units pressure is usually expressed in pounds per square
inch absolute (psia). Gage pressure carrying the same unit is designated with the
symbol psig. The standard ST unit for pressure is the newton per square meter (N/m?) or
pascal (Pa). Pressure is frequently expressed in terms of the height of a column of fluid
(viz., mercury) which it will support at a temperature of 20°C. At standard atmospheric
pressure this height is 760 mm of mercury having a density of 13.5951 g/cm®. Some
common units of pressure are

1 atmosphere (atm) = 14.696 pounds per square inch absolute
= 1.01325 x 10° newtons per square meter (Pa)
= 2116 pounds-force per square foot (Ibf/ft?)
1 N/m* = 1 pascal (Pa)
1 atmosphere (atm) = 760 millimeters of mercury (mmHg)
1 bar = 10° newtons per square meter (100 kPa)

278




6.1 INTRODUCTION

f

Positive gage
pressure

|

T Atmospheric pressure

p(absolute)

Negative gage
pressure or vacuum

|

0 Zero absolute pressure

Figure 6.1 Relationship between pressure terms.

1 bar = 10° Pa
1 microbar = 1 dyne per square centimeter
= 2.089 pounds-force per square foot
= 0.1 newton per square meter (0.1 Pa)
1 millimeter of mercury (mmHg) = 1333.22 microbar

= 133.322 newtons per square meter
(133.3 Pa)

1 micrometer = 10~° meters of mercury (um, microns)
= 10~ millimeters of mercury (mmHg)
= 0.133322 newtons per square meter

(0.133 Pa)
I torr = 1 millimeter of mercury (mmHg)
1 inch of mercury = 70.73 pounds-force per square foot
1 inch of water = 5.203 pounds-force per square foot
1 pound per square inch absolute = 6894.76 newtons per square meter
(6.894 kPa)
= 0.070307 kilograms-force per square
centimeter (kgf/cm?), [kilopounds
per square centimeter (kp/cm?)]

Fluid pressure results from a momentum exchange between the molecules of the
fluid and a containing wall. The total momentum exchange is dependent on the total
number of molecules striking the wall per unit time and the average velocity of the
molecules. For an ideal gas it may be shown that the pressure is given by

1 2
p= §nmvrms [6-11
where n = molecular density, molecules/unit volume
m = molecular mass
Urms = root-mean-square molecular velocity
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3kT
Urms = - [6.2]
m

where T is the absolute temperature of the gas, K, and k is 1.3803 x 10~23y/
molecule - K (Boltzmann’s constant). Equation (6.1) is a kinetic-theory interpretation
of the ideal-gas law. An expression for the pressure in a liquid would not be so simple.
The mean free path is defined as the average distance a molecule travels between
collisions. For an ideal gas whose molecules act approximately like billiard balls

V2

8nrin

It may also be shown that

[6.3]

where r is the effective radius of the molecule and A is the mean free path. It is clear that
the mean free path increases with a decrease in the gas density. At standard atmospheric
pressure and temperature the mean free path is quite small, of the order of 1073 cm. At
apressure of 1 um, however, the mean free path would be of the order of 1 cm. At very
low pressures the mean free path may be significantly greater than a characteristic
dimension of the containing vessel. For air the relation for mean free path reduces to

T
r=8.64 x 1077= ft T in °R and p in Ibf/ft? [6.3d]
p
T . .
A=227%x10""—m T inKand pin Pa [6.3b]
p

A variety of devices are available for pressure measurement, as we shall see in
the following sections. Static, that is, steady-state, pressure is not difficult to measure
with good accuracy. Dynamic measurements, however, are much more preplexing
because they are influenced strongly by the characteristics of the fluid being studied
as well as the construction of the measurement device. In many instances a pressure
instrument that gives very accurate results for a static measurement may be entirely
unsatisfactory for dynamic measurements. We shall discuss some of the factors that
are important for good dynamic response in conjunction with the exposition associated
with the different types of pressure-measurement devices.

Example 6.1

MEAN FREE PATH. Determine the mean free path for air at 20°C and pressures of 1 atm,
1 torr, 1 um, and 0.01 pm.

The calculation is performed using Eq. (6.3b) with T = 20°C = 293 K and the following
pressures in pascals:

1 atm = 1.0132 x 10° Pa
1 torr = 133.32 Pa
0.13332 Pa
1.332 x 1073 Pa

1 um
0.01 pm
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Inserting the values in Eq. (6.3b) gives

A(1 atm) = 6.564 x 108 m

A(1 torr) = 4.989 x 10> m

A(1 um) = 0.04989 m
2(0.01 um) = 4.989 m
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The transient response of pressure-measuring instruments is dependent on two fac-
tors: (1) the response of the transducer element that senses the pressure and (2) the
response of the pressure-transmitting fluid and the connecting tubing, etc. This lat-
ter factor is frequently the one that determines the overall frequency response of a
pressure-measurement system, and, eventually, direct calibration must be relied upon
for determining this response. An estimate of the behavior may be obtained with the
following analysis. Consider the system shown in Fig. 6.2. The fluctuating pressure
has a frequency of w and an amplitude of p( and is impressed on the tube of length L
and radius r. At the end of this tube is a chamber of volume V where the connection
to the pressure-sensitive transducer is made. The mass of fluid vibrates under the
influence of fluid friction in the tube, which tends to dampen the motion. If the con-
ventional formula for laminar friction resistance in the tube flow is used to represent
this friction, the resulting expression for the pressure-amplitude ratio is

P _ 1
ol [l = (/)2 + 4h2(0/w,)?}/?

In this equation p is the amplitude of the pressure signal impressed on the transducer.
The natural frequency w,, is given by

3mr2c?
w, = ALV [6.5]

[6.4]

and the damping ratio # is

2u  [3LV
h = N\ — [6.6]
ocr? E14
Pressure
Pressure transmitting tube Jl transducer
T |4 T
Po —> 2r
Y p

|
[ L |

Figure 6.2 Schematic of pressure-transmitting system.
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In the above formulas ¢ represents the velocity of sound in the fluid, u is the dynamic
viscosity of the fluid, and p is the fluid density. The phase angle for the pressure
signal is

—1 _Zh (a)/wn)
¢ = tan~! ——— L) [6.7]
1 — (o/w,)?
The velocity of sound for air may be calculated from
c=49.1T'/ fts with 7 in °R

¢ =20.04TY2% m/s with 7' in K

When the tube diameter is very small, as in a capillary, it is possible to produce a
very large damping ratio so that Eq. (6.4) will reduce to the following for frequencies
below the natural frequencies:

Pl 1
po| [+ 4h(w/w,)?]V/?

If the transmitting fluid is a gas, the entire system can act as a Helmholtz resonator
with a resonant frequency of

[6.8]

V(L + $3/72r?)

More complete information on the dynamic response of pressure-measurement sys-
tems is given in Refs. [1], [7], and [11].

From both Egs. (6.4) and (6.8) it is evident that a capillary tube may be used for
effective damping of pressure signals. The tube is then said to act as an acoustical
filter. The similarity of this system to that described in Sec. 2.7 and the discussion of
the seismic instrument in Sec. 11.3 are to be noted. It should be noted also that the
actual dynamic response for tube systems is strongly frequency-dependent, and the
preceding formulas must be accepted with possible modification in high-frequency
ranges. Tijdeman [18] and others [14 to 17] discuss experimental and analytical so-
lutions which are available for such problems. In a dynamic pressure-measurement
application one must also consider the frequency response of the pressure transducer
and its movement in the overall measurement system. In general, one should try
to design the system so that the natural frequency of the transducer is substantially
greater than the signal frequency to be measured. Dynamic pressure measurements are
particularly applicable to sound-level determinations, as discussed in Chap. 11. The
calibration of pressure transducers for dynamic measurement applications is rather
involved; it is discussed in detail in Ref. [19].

12
ar?c?
[6.9]

Example 6.2

NATURAL FREQUENCY FOR TUBE. A small tube, 0.5 mm in diameter, is connected
to a pressure transducer through a volume of 3.5 cm®. The tube has a length of 7.5 cm. Air
at 1 atm and 20°C is the pressure-transmitting fluid. Calculate the natural frequency for this
system and the damping ratio.
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Solution
We shall use Eq. (6.9) for this calculation. For air

p 10132 x 10

Y - = 1.205 kg/m’
RT . (287)(293) &m

P

¢ = (20.04)(293)"/? = 343 m/s
w = 1.91 x 107 kg/m - s (Table A.6, appendix)

Thus,

B 7(0.25 x 1073)2(343)? v
On = (3.5 x 10-6)[0.075 + (0.5)(7)(0.25 x 10-3)1/2]

=296 Hz

The damping ratio is calculated with Eq. (6.6):

(@091 x107) (3)(0.075)(3.5 x 101"
(1.205)(343)(0.25 x 1073)3 m

=2.96
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ATTENUATION IN TUBE. Calculate the attenuation of a 100-Hz pressure signal in the
system of Example 6.2.

Solution
For this calculation we employ Eq. (6.4). We have

1
o _ 10033
w, 296
that P ! 0.457
SO thal — | = = V.
po| ([l — (0.338)2]% + 4(2.96)2(0.338)2}1/2

Example 6.3

6.3 MECHANICAL PRESSURE-MEASUREMENT
DEVICES

Mechanical devices offer the simplest means for pressure measurement. In this section
we shall examine the principles of some of the more important arrangements.

The fluid manometer is a widely used device for measurement of fluid pressures
under steady-state and laboratory conditions. Consider first the U-tube manometer
shown in Fig. 6.3. The difference in pressure between the unknown pressure p and
the atmosphere is determined as a function of the differential height 4. The density
of the fluid transmitting the pressure p is p, and the density of the manometer fluid
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Pr§ssure J Pa
signal y
Ay
P-F1 - m T Pa
h
A l

Figure 6.3 U-tube manometer.

is designated as p,,. A pressure balance of the two columns dictates that

Pa+ gﬁhpm = p+Shpy [6.10]
g
or P— Da= ;h(pm—pf) [6.11]

Equation (6.11) gives the basic principle of the U-tube manometer. It is to be noted that
the distance % is measured parallel to the gravitational force and that the differential
pressure p — p, is measured at the location designated by the dashed line. If the
location of the pressure source is at a different elevation from this point, there could
be an appreciable error in the pressure determination, depending on the density of the
transmitting fluid.

The sensitivity of the U-tube manometer may be defined as

Sensitivity = h/(p — pa) = h/Ap = 1/(g/8)(om — py)

or for a manometer with p,, > py,

Sensitivity = 1/0,,(g/gc)

A well-type manometer operates in the same manner as the U-tube manometer,
except that the construction is as shown in Fig. 6.4. In this case the pressure balance
of Eq. (6.10) still yields

g
P—Pa= gh(p,n - py)

This equation is seldom used, however, because the height % is not the fluid displace-
ment which is normally measured. Typically, the well-type manometer is filled to a
certain level at zero-pressure differential conditions. A measurement is then made of
the displacement of the small column from this zero level. Designating this displace-
ment by /', we have

WA, =(h—-h)A [6.12]
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Jpa

-~ > —>
o
)

=/

Figure 6.4 Welltype manometer.

since the volume displacements are the same on both sides of the manometer. Inserting
Eq. (6.12) in (6.10) gives

_ 8 . (A2 )
P_Pa—*h —+1 (,Om—/)f) [6-‘3]
8c Ay
Commercial well-type manometers have the scale for the manometer column grad-
uated so that the user need not apply the area correction factor to the indicated dis-
placement 4’. Thus, for an area ratio of A,/A; = 0.03 a true reading of 10.0 in for A’
would be indicated as 10.3 as a result of the special scale graduation. The indicated
value is then substituted for 4 in Eq. (6.11).

Manometers may be oriented in an inclined position to lengthen the scale and
to improve readability, or special optical sightglasses and vernier scales may be em-
ployed to provide more accurate location and indication of the manometer-fluid height
than could be obtained with the naked eye. When mercury is the manometer fluid,
variable-reluctance pickups may be used to sense accurately the fluid height. Special
metal floats may also afford such a convenience with less dense fluids which are
nonconductive.

For amanometer inclined at an angle 6 with the horizontal the sensitivity becomes

Sensitivity = L/Ap = 1/(pm — pr) sin0(g/gc)

where L is the measured fluid displacement along the incline and 4 = L sin 0

Now consider a two-fluid manometer consisting of two reservoirs of diameter D
connected by a U-tube of smaller diameter d. Reservoir 1 contains a fluid with density
p1, while reservoir 2 contains a fluid having a density p,. The assembly is subjected
to a pressure differential A p. The sensitivity may be derived as

Sensitivity = h/Ap = {[(d/D)*(p2 + p1) + (p2 — p)1(g/8)} "
where

h = hinitial interface — hﬁnal interface

When D > d and the difference in the two fluid densities is small, a very large
sensitivity can result. This situation forms the basis for the micromanometer [24].
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Example 6.4

U-TUBE MANOMETER. A U-tube manometer employs a special oil having a specific
gravity of 0.82 for the manometer fluid. One side of the manometer is open to local atmospheric
pressure of 29.3 inHg and the difference in column heights is measured as 20 cm £ 1.0 mm
when exposed to an air source at 25°C. Standard acceleration of gravity is present. Calculate
the pressure of the air source in pascals and its uncertainty.

The manometer fluid has a density of 82 percent of that of water at 25°C; so,
om = 0.82p, = (0.82)(996 kg/m*) = 816.7 kg/m’
The local atmospheric pressure is
Pa =29.3 inHg = 9.922 x 10* Pa

The “fluid” in this problem is the air which has a density at the above pressure and 25°C (298 K)
of

D 9.922 x 10*
“T RT ~ (287)(298)
For this problem the density is negligible compared to that of the manometer fluid, but we shall
include it anyway. From Eq. (6.11)

pF=p = 1.16 kg/m®

g
P—DPa= g—h(pm —05)

9.807
= ——(0.2)(816.7 — 1.16)
1.0
= 1600 Pa
or p = 1600 + 9.922 x 10* = 1.0082 x 10° Pa

Comment

The uncertainty of the column height measurement is 1.0/200 = 0.5 percent. If all other terms
are exact, the uncertainty in the pressure measurement would be 0.5 percent of 1600 or 8 Pa. It
is unlikely that the local atmospheric pressure and temperature or specific gravity of the fluid
would be known exactly, so they too would make a contribution to the uncertainty. But no
information is given to determine their influence.

When a well-type manometer is arranged as in Fig. 6.5, it is commonly called a
barometer. The top of the column contains saturated mercury vapor at the local tem-
perature. This saturation pressure is negligible in comparison to atmospheric pressure.
The well is exposed to atmospheric pressure. The height % is thus a measure of the ab-
solute atmospheric pressure. When p, = 14.696 psia (1 atm), the height of a column
of mercury at 68°F (20°C) would be 760 mm.

The column has a graduated scale fixed in position which requires that the instru-
ment be zeroed for each reading because the level of the well will vary with height
of the mercury in the column. The zeroing is accomplished with a screw adjustment
which sets the level of the well at a reference position.
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Figure 6.5 Manometer used as a barometer.

At this point we should note that many pressure-measurement devices indicate
gage pressure, or the difference between the absolute and local atmospheric pressures.
To obtain the absolute pressure, one must, of course, calculate

p (absolute) = p (gage) + p (atm)

The local atmospheric pressure must be obtained from a local measurement near the
place where the gage pressure is measured. Such a measurement might be performed
with a mercury barometer. We must note that local atmospheric pressure can vary
between the inside and outside of a building because of the ventilation systems.

A common mistake made by novice experimentalists is to take the local atmo-
spheric pressure as the value given by the local weather bureau. Such practice can
produce major errors because the value stated by the weather bureau is corrected to
sea level, using the altitude at the weather station. In Denver, Colorado, for example,
at an altitude of about 5000 ft, when the weather station reports a barometric pressure
of 760 mm (29.92 in) of mercury, the true barometric pressure is only 632 mm, or
17 percent less than the 760-mm value. For altitudes between 0 and 36,000 ft the
standard atmosphere is expressed by

B7\ 526
P=PO(1_T> [6.14]
0

where po = standard atmospheric pressure at sea level
Z = altitude, m or ft
Tp = 518.69°R = 288.16 K = 15°C
B = 0.003566°R/ft = 0.00650 K/m
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INFLUENCE OF BAROMETER READING ON VACUUM MEASUREMENT.  Apres-
sure measurement is made in Denver, Colorado (elevation 5000 ft), indicating a vacuum of
775 kPa. The weather bureau reports a barometer reading of 29.92 inHg. The absolute pressure is

Example 6.5
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to be calculated from this information. What percent error would result if the above barometric
pressure were taken at face value?

Solution
The absolute pressure is given by
Pabsolute = Patm — Pvacuum [a]

If the barometer report is taken at face value,
Pam = (29.92)(25.4) = 760 mmHg = 101.32 kPa
and the absolute pressure is
Dabsolute = 101.32 — 75 = 26.32 kPa [bl

Assuming the correction for altitude is given by Eq. (6.14), the true atmospheric pressure at
the weather bureau is

Pam = (760)[1 — (0.003566)(5000)/518.69]°2° = 632.3 mmHg = 84.29 kPa

Assuming the local atmospheric pressure where the measurement is taken has this same value,
the true absolute pressure is therefore

Pipsolue = 84.29 — 75 = 9.29 kPa [c]

The percent error between the values in Egs. (b) and (c) is

26.32 —9.29
% error = o x 100 = 4183 percent

Obviously, the local barometric pressure must be used instead of the value reported by the
weather bureau.

6.4 DEAD-WEIGHT TESTER

The dead-weight tester is a device used for balancing a fluid pressure with a known
weight. Typically, it is a device used for static calibration of pressure gages and
is seldom employed for an actual pressure measurement. Our discussion will be
concerned only with the use of the dead-weight tester as a calibration device.
Consider the schematic in Fig. 6.6. The apparatus is set up for calibration of the
pressure gage G. The chamber and cylinder of the tester are filled with a clean oil by
first moving the plunger to its most forward position and then slowly withdrawing
it while the oil is poured in through the opening for the piston. The gage to be
tested is installed and the piston inserted in the cylinder. The pressure exerted on
the fluid by the piston is now transmitted to the gage when the valve is opened.
This pressure may be varied by adding weights to the piston or by using different
piston-cylinder combinations of varying areas. The viscous friction between the piston
and the cylinder in the axial direction may be substantially reduced by rotating the
piston-weight assembly while the measurement is taken. As the pressure is increased,
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Weights

Piston

Plunger

Figure 6.6 Schematic of a dead-weight tester.

it may be necessary to advance the plunger to account for the compression of the oil
and any entrapped gases in the apparatus. High-pressure—dead-weight testers have a
special lever system which is used to apply large forces to the piston.

The accuracies of dead-weight testers are limited by two factors: (1) the friction
between the cylinder and the piston and (2) the uncertainty in the area of the piston.
The friction is reduced by rotation of the piston and use of long enough surfaces to
ensure negligible flow of oil through the annular space between the piston and the
cylinder. The area upon which the weight force acts is not the area of the piston or the
area of the cylinder; it is some effective area between these two which depends on
the clearance spacing and the viscosity of the oil. The smaller the clearance, the more
closely the effective area will approximate the cross-sectional area of the piston. It
can be shown' that the percentage error due to the clearance varies according to

(0 Ap)'°b°

Percent error ~ ——— [6.15]
uDL

where  p = density of the oil
Ap = pressure differential on the cylinder
b = clearance spacing
W = viscosity
D = piston diameter
L = piston length

| 1See, e.g., Ref. [10], p. 105.
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At high pressures there can be an elastic deformation of the cylinder which increases
the clearance spacing and thereby increases the error of the tester.

6.5 BOURDON-TUBE PRESSURE GAGE

Bourdon-tube pressure gages enjoy a wide range of application where consistent, inex-
pensive measurements of static pressure are desired. They are commercially available
in many sizes (1- to 16-in diameter) and accuracies. The Heise gage? is an extremely
accurate bourdon-tube gage with an accuracy of 0.1 percent of full-scale reading; it
is frequently employed as a secondary pressure standard in laboratory work.

The construction of a bourdon-tube gage is shown in Fig. 6.7. The bourdon tube
itself is usually an elliptical cross-sectional tube having a C-shape configuration.
When the pressure is applied to the inside of the tube, an elastic deformation results,
which, ideally, is proportional to the pressure. The degree of linearity depends on the
quality of the gage. The end of the gage is connected to a spring-loaded linkage, which
amplifies the displacement and transforms it to an angular rotation of the pointer. The
linkage is constructed so that the mechanism may be adjusted for optimum linearity
and minimum hysteresis, as well as to compensate for wear which may develop over

Bourdon tube

Adjusting
screw

Adjusting
linkage

Figure 6.7 Schematic of a bourdon-tube pressure gage.

| 2Manufactured by Heise Gage Company, Newton, CT.
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a period of time. Electrical-resistance strain gages (Sec. 10.7) may also be installed
on the bourdon tube to sense the elastic deformation. A proprietary design of digital
pressure transducers based upon piezoresistance strain gage response claims an ac-
curacy of 0.02 percent of full scale and is available in full-scale ranges from 10 to
10,000 psia.?
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Diaphragm and bellows gages represent similar types of elastic deformation devices
useful for many pressure-measurement applications. Consider first the flat diaphragm
subjected to the differential pressure p; — p», as shown in Fig. 6.8. The diaphragm will
be deflected in accordance with this pressure differential and the deflection sensed by
an appropriate displacement transducer. Electrical-resistance strain gages may also be
installed on the diaphragm, as shown in Fig. 6.9. The output of these gages is a function
of the local strain, which, in turn, may be related to the diaphragm deflection and
pressure differential. Both semiconductor and foil grad strain gages are employed in
practice. Accuracies of +0.5 percent of full scale are typical. The deflection generally
follows a linear variation with Ap when the deflection is less than one-third the
diaphragm thickness. Figure 6.10 compares the deflection characteristics of three
diaphragm arrangements as given by Roark [9]. Note that the first two diaphragms
have uniform pressure loading over the entire surface of the disk, while the third type
has a load which is applied at the center boss. In all three cases it is assumed that the
outer edge of the disk is rigidly fixed and supported. To facilitate linear response over
a larger range of deflections than that imposed by the one-third-thickness restriction,
the diaphragm may be constructed from a corrugated disk, as shown in Fig. 6.11. This
type of diaphragm is most suitable for those applications where a mechanical device
is used for sensing the deflection of the diaphragm. Larger deflections are usually
necessary with a mechanical amplification device than for electric transducers. A
good summary of the properties of corrugated diaphragms is given in Ref. [12].

The bellows gage is depicted schematically in Fig. 6.12. A differential pressure
force causes a displacement of the bellows, which may be converted to an electrical
signal or undergo a mechanical amplification to permit display of the output on an
indicator dial. The bellows gage is generally unsuitable for transient measurements
because of the larger relative motion and mass involved. The diaphragm gage, on
the other hand, which may be quite stiff, involves rather small displacements and is
suitable for high-frequency pressure measurements.

The deflection of a diaphragm under pressure may be sensed by a capacitance
variation, as shown in Fig. 6.13. Such pressure pickups are well suited for dynamic
measurements since the natural frequency of diaphragms can be rather high. The ca-
pacitance pickup, however, involves low sensitivity, and special care must be exerted
in the construction of readout circuitry. A schematic diagram of a LVDT-diaphragm

| 3Heise Model DXD, Ashcroft Inc., Stratford, CT.
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Deflection characteristics of three diaphragm arrangements, according to
Ref. [9]. (a) Edges fixed, uniform load over entire surface; (b) outer edge
fixed and supported, inner edge fixed, uniform load over entire actual
surface; (c) outer edge fixed and supported, inner edge fixed, uniform
load along inner edge.
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Figure 6.11 Corrugated-disk diaphragm.
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Figure 6.12 Schematic of a bellows pressure gage.

Varying
gap spacing

p1 Diaphragm

Figure 6.13 Capacitance pressure gage.

differential pressure gage is shown in Fig. 6.14. Commercial models of this type of
gage permit measurement of pressures as low as 0.00035 psi (0.25 Pa).

The natural frequency of a circular diaphragm fixed at its perimeter is given by
Hetenyi [5] as

1021 | g.Erf

f= 2\ 30 = [6.16]

where E = modulus of elasticity, psi or Pa
t = thickness, in or m
a = radius of diaphragm, in or m
p = density of material, Ibm/in® or kg/m*
g. = dimensional conversion constant
= 385.9 Ibm - in/Ibf - s? or 1.0 kg - m/N - §?
u = Poisson’s ratio
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Figure 6.14 Schematic of diaphragm LVDT combination used as differential
pressure gage.

Equation (6.16) may be simplified to the following relation for steel diaphragms:
t
f=1.934x10°— (t and a in in) [6.174]
ma
t
=4912 x 10*— (t and a in m) [6.17b]
a?

Piezoresistive or semiconductor pressure transducers usually consist of a silicon
diaphragm with a semiconductor strain gage bonded to the diaphragm to measure
deflection.

Reference [21] gives the construction details of a number of commercial pressure
transducers and techniques for thermal compensation.

Example 6.6 NATURAL FREQUENCY OF A DIAPHRAGM GAGE. A diaphragm pressure gage
is to be constructed of spring steel (E = 200 GN/m?, u = 0.3) 5.0 cm in diameter and is
to be designed to measure a maximum pressure of 1.4 MPa. Calculate the thickness of the
gage required so that the maximum deflection is one-third this thickness. Calculate the natural
frequency of this diaphragm.
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Solution
Using the relation from Fig. 6.10, we have

1 3Ap

— 41_ 2
3= TeEp? 1)

4 (0)(1.4 x 109)(0.025)*[1 — (0.3)2]
- (16)(2 x 10')

t = 1.09 mm

We may calculate the natural frequency from Eq. (6.16)

1021 [(1.0)(2 x 10')(0.00109)2 ] "

- (0.025)2 | (12)[1 — (0.3)2](7800)

f

= 27,285 Hz
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It is known that resistance of fine wires changes with the pressure according to a
linear relationship.

R=R/(1+bAp) [6.18]

R, is the resistance at 1 atm, b is the pressure coefficient of resistance, and Ap is
the gage pressure. The effect may be used for measurement of pressures as high as
100,000 atm [4]. A pressure transducer based on this principle is called a Bridgman
gage. A typical gage employs a fine wire of Manganin (84% Cu, 12% Mn, 4% Ni)
wound in a coil and enclosed in a suitable pressure container. The pressure coefficient
of resistance for this material is about 1.7 x 1077 psi~' (2.5 x 10~!! Pa~!). The total
resistance of the wire is about 100 €2, and conventional bridge circuits are employed
for measuring the change in resistance. Such gages are subject to aging over a period
of time so that frequent calibration is required; however, when properly calibrated,
the gage can be used for high-pressure measurement with an accuracy of 0.1 percent.
The transient response of the gage is exceedingly good. The resistance wire itself
can respond to variations in the megahertz range. Of course, the overall frequency
response of the pressure-measurement system would be limited to much lower values
because of the acoustic response of the transmitting fluid. Many of the problems
associated with high-pressure measurement are discussed more fully in Refs. [2], [6],
and [13].

[ 4p.w. Bridgman, Proc. Natl. Acad. Sci., U.S., vol. 3, p. 10, 1917.
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6.8 LOW-PRESSURE MEASUREMENT

The science of low-pressure measurement is a rather specialized field which requires
considerable care on the part of the experimentalist. The purpose of our discussion is
to call attention to the more prominent types of vacuum instruments and to describe the
physical principles upon which they operate. For readers requiring more specialized
information we refer them to the excellent monograph by Dushman and Lafferty [3].
The reader may also consult this reference for information on the various techniques
for producing and maintaining a vacuum.

For moderate vacuum measurements the bourdon gage, manometers, and vari-
ous diaphragm gages may be employed. Our discussion in this section, however, is
concerned with the measurement of low pressures which are not usually accessible to
the conventional gages. In this sense we are primarily interested in absolute pressures
below 1 torr (1 mmHg, 133 Pa).

6.9 THE MCLEOD GAGE®

The McLeod gage is a modified mercury manometer which is constructed as shown
in Fig. 6.15. The movable reservoir is lowered until the mercury column drops below
the opening O. The bulb B and capillary C are then at the same pressure as the vacuum
source p. The reservoir is subsequently raised until the mercury fills the bulb and rises
in the capillary to a point where the level in the reference capillary is located at the
zero point. The volume of the capillary per unit length is denoted by a so that the
volume of the gas in the capillary is

V. =ay [6.19]

where y is the length of the capillary occupied by the gas.
We designate the volume of the capillary, bulb, and tube down to the opening as
V. If we assume isothermal compression of the gas in the capillary, we have
Vi

e =D— 6.20
p V. [ 1

Now, the pressure indicated by the capillary is
Pc—DP=Y [6.21]

where we are expressing the pressure in terms of the height of the mercury column.
Combining Eqgs. (6.19) to (6.21) gives

2
Ve
p=—2 7 [6.22]
Vg —ay Vg—ay

| 5H. McLeod, Phil. Mag., vol. 48, p. 110, 1874.
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Figure 6.15 The Mcleod gage.

For most cases ay <« Vp and

_

=

p [6.23]

Commercial McLeod gages have the capillary calibrated directly in micrometers.
The McLeod gage is sensitive to condensed vapors that may be present in the sample
because they can condense upon compression and invalidate Eq. (6.20). For dry gases
the gage is applicable from 1072 to 10% 4m (0.0013 to 13.3 Pa).
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ERROR IN MCLEOD GAGE. AMcLeod gage has Vz = 100 cm® and a capillary diameter
of 1 mm. Calculate the pressure indicated by a reading of 3.00 cm. What error would result if
Eq. (6.23) were used instead of Eq. (6.22)?

Solution

We have

1 2
V. = ”(4) (30.0) = 23.6 mm’

Vp = 10° mm®

Example 6.7
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From Eq. (6.22)

_(23.6)(30.0)

5 236 — 0.0071 torr = 7.1 um (0.94 Pa)

The fractional error in using Eq. (6.23) would be

Error = :/—y =236 x 1074

B

or a negligibly small value.

6.10 PIRANI THERMAL-CONDUCTIVITY GAGE®

At low pressures the effective thermal conductivity of gases decreases with pressure.
The Pirani gage is a device that measures the pressure through the change in thermal
conductance of the gas. The gage is constructed as shown in Fig. 6.16. An electrically
heated filament is placed inside the vacuum space. The heat loss from the filament
is dependent on the thermal conductivity of the gas and the filament temperature.
The lower the pressure, the lower the thermal conductivity and, consequently, the
higher the filament temperature for a given electric-energy input. The temperature
of the filament could be measured by a thermocouple, but in the Pirani-type gage
the measurement is made by observing the variation in resistance of the filament
material (tungsten, platinum, etc.). The resistance measurement may be performed
with an appropriate bridge circuit. The heat loss from the filament is also a function
of the ambient temperature, and, in practice, two gages are connected in series, as
shown in Fig. 6.17, to compensate for possible variations in the ambient conditions.
The measurement gage is evacuated, and both it and the sealed gage are exposed
to the same environment conditions. The bridge circuit is then adjusted (through
resistance R;) to produce a null condition. When the test gage is now exposed to the
particular pressure conditions, the deflection of the bridge from the null position will
be compensated for changes in environment temperature.

Pirani gages require an empirical calibration and are not generally suitable for
use at pressures much below 1 pum. The upper limit is about 1 torr (133 Pa), giving
an overall range of about 0.1 to 100 Pa. For higher pressures the thermal conductance
changes very little with pressure. It must be noted that the heat loss from the filament
is also a function of the conduction losses to the filament supports and radiation losses
to the surroundings. The lower limit of applicability of the gage is the point where
these effects overshadow the condition into the gas. The transient response of the
Pirani gage is poor. The time necessary for the establishment of thermal equilibrium
may be of the order of several minutes at low pressures.

| M. Pirani, Verhandl. deut. physik. Ges., vol. 8, p. 686, 1906.



6.11 THE KNUDSEN GAGE

To bridge
circuit

To vacuum
space

Figure 6.16 Schematic of Pirani gage.

R To vacuum
1
space
:—: R, ‘—®_' Sealed and
evacuated
Ry
Figure 6.17 Pirani-gage arrangement to compensate for change
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6.11 THE KNUDSEN GAGE’

Consider the arrangement shown in Fig. 6.18. Two vanes V along with the mirror M
are mounted on the thin-filament suspension. Near these vanes are two heated plates
P, each of which is maintained at a temperature 7. The separation distance between
the vanes and plates is less than the mean free path of the surrounding gas. Heaters
are installed so that the temperature of the plates is higher than that of the surrounding
gas. The vanes are at the temperature of the gas T,. The molecules striking the vanes
from the hot plates have a higher velocity than those leaving the vanes because of
the difference in temperature. Thus, there is a net momentum imparted to the vanes
which may be measured by observing the angular displacement of the mirror, similar
to the technique used in a lightbeam galvanometer. The total momentum exchange
with the vanes is a function of molecular density, which, in turn, is related to the
pressure and temperature of the gas. An expression for the gas pressure may thus be
derived in terms of the temperatures and the measured force. For small temperature
differences T — T, it may be shown that this relation is [3]

=4F i [6.24]
P="rrT, :

where the pressure is in dynes per square centimeter when the force is in dynes. The
temperatures are in degrees kelvin.

| 7M. Knudsen, Ann. Physik, vol. 32, p. 809,1910.
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Figure 6.18 Schematic of Knudsen gage.

The Knudsen gage furnishes an absolute measurement of the pressure which is
independent of the molecular weight of the gas. It is suitable for use between 107>
and 10 um (1076 to 1 Pa) and may be used as a calibration device for other gages in
this region.

| 6.12 THE IONIZATION GAGE

Consider the arrangement shown in Fig. 6.19, which is similar to the ordinary
triode vacuum tube. The heated cathode emits electrons, which are accelerated by the
positively charged grid. As the electrons move toward the grid, they produce ioniza-
tion of the gas molecules through collisions. The plate is maintained at a negative
potential so that the positive ions are collected there, producing the plate current i ,.
The electrons and negative ions are collected by the grid, producing the grid current
i. It is found that the pressure of the gas is proportional to the ratio of plate current
to grid current.

lz,,

=37 i\ [6.25]
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Figure 6.20 Schematic of Alphatron gage.

where the proportionality constant S is called the “sensitivity” of the gage. A typical
value for nitrogen is S = 20 torr~! (2.67 kPa~!), but the exact value must be
determined by calibration of the particular gage. The value of S is a function of
the tube geometry and the type of gas.

Conventional ionization gages are suitable for measurements between 1.0 and
107 4m (0.13 to 1.3 x 10~° Pa), and the current output is usually linear in this range.
At higher pressures there is the danger of burning out the cathode. Special types
of ionization gages are suitable for measurements of pressures as low as 1072 torr
(0.13 nPa). Very precise experimental techniques are required, however, in order to
perform measurements at these high vacuums. The interested reader should consult
Ref. [3] for additional information.
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6.13 THE ALPHATRONS

The Alphatron is a radioactive ionization gage, shown schematically in Fig. 6.20. A
small radium source serves as an alpha-particle emitter. These particles ionize the gas
inside the gage enclosure, and the degree of ionization is determined by measuring

| 8National Research Corp., Cambridge, MA.



302

CHAPTER 6 o PRESSURE MEASUREMENT

the voltage output E,. The degree of ionization is a direct linear function of pressure
for a rather wide range of pressures, from 1073 to 10? torr (0.1 to 103 Pa). The output
characteristics, however, are different for each type of gas used. The lower pressure
limit of the gage is determined by the length of the mean free path of the alpha particles
as compared with the enclosure dimensions. At very low pressures the mean free path
becomes so large that very few collisions are probable in the gage, and hence the
ionization level is very small. The Alphatron has the advantages that it may be used
at atmospheric pressure as well as high vacuum and that there is no heated filament
to contend with as in the conventional ionization gage. Consequently, there is no
problem of accidentally burning out a filament because of an inadvertent exposure of
the gage to high (above 10~ torr or 13 Pa) pressures.

6.14 SUMMARY

Figure 6.21 gives a convenient summary of the pressure ranges for which the gages
discussed are normally employed in practice.
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Figure 6.21 Summary of applicable range of pressure gages.
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Development of solid-state pressure transducers employing semiconductors,

quartz resonators, and integrated circuits is described in the survey article of Ref.
[22]. In some cases accuracies of 0.001 percent have been achieved.
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6.

15 REVIEW QUESTIONS

6.1. Distinguish among gage pressure, absolute pressure, and vacuum.

6.2. To transmit a high-frequency pressure signal, one should select

6.3.
6.4.
6.5.
6.6.
6.7.
6.8.
6.9.

(a) A short, small-diameter tube
(b) A short, large-diameter tube
(c) Along, small-diameter tube
(d) Along, large-diameter tube

What are the advantages of the manometer pressure-measurement device?
What is the advantage of a well-type manometer?

What are some advantages of the bourdon-tube, diaphragm, and bellows gages?
Describe the principle of operation of a McLeod gage.

Describe the Pirani gage.

When is the Knudsen gage used?

Describe the ionization gage. How does it differ from the Pirani gage? What
disadvantages does it have?

6.16 PROBLEMS

6.1.

6.2.

6.3.

6.4.

A mercury barometer is constructed like that shown in Fig. 6.5. The column is a
glass tube 0.250 in ID and 0.375 in OD, and the well is a glass dish 1.50 in ID.
Calculate the percent error which would result if an area correction factor were
not used.

Derive an expression for the radius of a simple diaphragm as shown in Fig. 6.10

using the following restrictions:

(@) The maximum deflection is one-third the thickness.

() The maximum deflection must be 100 times as great as the uncertainty in the
deflection measurement w,.

Assume that the maximum pressure differential Ap is given as well as wy.

Determine the factor to convert pressure in inches of water to pounds per square
foot.

The effective radius of an air molecule is about 1.85 x 1078 c¢cm. Calculate the
mean free path at 70°F and the following pressures: 1 atm, 1 torr, 1 um, 1 inH,O,
and 1073 um.
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6.5.

6.6.

6.7.
6.8.

6.9.

6.10.

6.11.
6.12.

6.13.

6.14.
6.15.

Reduce Eq. (6.3) to an expression for mean free path in terms of pressure in
micrometers, temperature in degrees kelvin, molecular weight of the gas, and
effective molecular diameter.

A dynamic pressure measurement is to be made with an apparatus similar to that
shown in Fig. 6.2. The appropriate dimensions are

L =250in
r = 0.005 in
vV =0.101in°

The fluid is air at 70°F and 14.7 psia. Plot the pressure-amplitude ratio versus
w/w, according to both Egs. (6.4) and (6.8).

Plot the error in Eq. (6.8) versus r*L/ V.

Calculate the resonant frequency of the system in Prob. 6.6, assuming that it acts
as a Helmholtz resonator.

A well-type manometer uses a special bromide fluid having a specific gravity of
2.95. The well has a diameter of 3.00 in and the tube has a diameter of 0.200 in.
The manometer is to be used to measure a differential pressure in a water-flow
system. The scale placed alongside the tube has no correction factor for the area
ratio of the manometer. Calculate the value of a factor that may be multiplied by
the manometer reading in inches to find the pressure differential in pounds per
square inch.

A vacuum gage is to use an LVDT-diaphragm combination like that shown in
Fig. 6.14. The LVDT has a sensitivity of 2.5 nm, and the diaphragm is to be con-
structed of steel (E =2 x 10" Pa, u =0.3) with a diameter of 15 cm. Calculate
the diaphragm thickness in accordance with the restriction that the maximum
deflection does not exceed one-third this thickness. What is the lowest pressure
which may be sensed by this instrument?

Calculate the natural frequency of the diaphragm in Prob. 6.10.

A Bridgman gage uses a coil of Manganin wire having a nominal resistance of
100 €2 at atmospheric pressure. The gage is to be used to measure a pressure of
1000 psig with an uncertainty of 0.1 percent. What is the allowable uncertainty
in the resistance measurement?

Suppose the Bridgman gage of Prob. 6.12 is connected to the bridge circuit of
Fig. 4.25 so that the gage is R; and all resistances are equal to 100 €2 at a pressure
of 1 atm. The battery voltage is 4.0 V, and the detector is a high-impedance
voltage-measuring device. The bridge is assumed to be in balance at p = 1 atm.
Calculate the voltage output of the bridge at p = 1000 psig.

Rework Example 6.2 assuming the diameter of the capillary to be 0.2 mm.

A Knudsen gage is to be designed to operate at a maximum pressure of 1.0 pum.
For this application the spacing of the vane and plate is to be less than 0.3 mean
free path at this pressure. Calculate the force on the vanes at pressures 1.0 and



6.16.

6.17.

6.18.

6.19.

6.20.

6.21.

6.22.

6.23.

6.24.

6.16 PROBLEMS

0.01 um when the gas temperature is 20°C and the temperature difference is
50.0 K.

A capacitance-diaphragm pressure gage as shown in Fig. 6.13 is to be used to mea-
sure pressure differentials as high as 1000 psi at frequencies as high as 15,000 Hz.
The diameter of the diaphragm is not to exceed 0.500 in. Calculate the thickness
and diameter of the diaphragm to accomplish this (the natural frequency should be
at least 30,000 Hz). Choose a suitable gap spacing, and estimate the capacitance-
pressure sensitivity of the device. Assume the dielectric constant is that of air.

A bourdon-tube pressure gage having an internal volume of 1.0 in® is used for
measuring pressure in a fluctuating air system having frequencies as high as
100 Hz. Design an acoustical filter which will attenuate all frequencies above
20 Hz by 99 percent. Plot the frequency response of this filter.

An acoustic filter is to be designed to attenuate sharp pressure transients in air
above 50 Hz. The volume of air contained in the pressure-transducer cavity is
0.6 in®, and a capillary tube connects the cavity to the pressure source. If the
50-Hz frequency is to be attenuated by 50 percent, determine the capillary length
and diameter for system natural frequencies of (a) 50 Hz, (b) 100 Hz, and
(¢) 500 Hz.

A U-tube manometer uses tubes of 0.250 and 0.500 in diameters for the two legs.
When subjected to a certain pressure, the difference in height of the two fluid
columns is 10.0 inHg. What would have been the reading if both tubes were the
same diameter? The measurement is performed on air.

A pressure signal is fed through a line having an inside diameter of 1.5 mm and a
length of 1.5 m. The line is connected to a pressure transducer having a volume of
approximately 5 cm3. Air at 690 kPa and 90°C is the transmitting fluid. Calculate
the natural frequency and damping ratio for this system.

The manometer of Prob. 6.19 uses a fluid having a specific gravity of 1.85. The
sensing fluid is water. What is the pressure difference when the difference in
heights of the columns is 5.0 in? Assume that both legs of the manometer are
filled with water.

A diaphragm-pressure gage is constructed of spring steel to measure a pressure
differential of 1000 psi. The diameter of the diaphragm is 0.5 in. Calculate the
diaphragm thickness so that the maximum deflection is one-third the thickness.
What is the natural frequency of this diaphragm?

A Bridgman gage is to be used to measure a pressure of 10,000 psi using a Man-
ganin element having a resistance of 100 2 at atmospheric pressure. Calculate
the resistance of the gage under high-pressure conditions. If the gage is one leg of
a bridge whose other legs all have values of exactly 100 €2, calculate the voltage
output of the bridge for a constant-voltage source of 24 V.

A McLeod gage is available which has a volume V3 of 150 cm® and a capillary
diameter of 0.3 mm. Calculate the gage reading for a pressure of 30 um.
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6.25.

6.26.

6.27.

6.28.

6.29.
6.30.

6.31.

6.32.

6.33.

6.34.

6.35.

6.36.

6.37.

What is the approximate range of mean free paths for air over the range of
pressures for which the Knudsen gage is applicable?

A special high-pressure U-tube manometer is constructed to measure pressure
differential in air at 13.8 MPa and 20°C. When an oil having a specific gravity of
0.83 is used as the fluid, calculate the differential pressure in pounds per square
inch absolute that would be indicated by a 135-mm reading.

A diaphragm like that shown in Fig. 6.10c has a = 1.0 in, » = 0.125 in, and
t = 0.048 in and is constructed of spring steel. It is subjected to a total loading
of 600 Ibf. Calculate the deflection.

A U-tube manometer is used to measure a differential air pressure with a fluid
having a specific gravity of 0.8. The air is at 400 kPa and 10°C. Calculate the
differential pressure for difference in heights of the manometer legs of 12 cm.
Express in units of both psia and pascals.

Calculate the mean free path for air at standard conditions of 1 atm and 20°C.

A diaphragm pressure gage is constructed as in Fig. 6.10b, with a = 2.5 cm,
b = 0.3 cm, and r = 0.122 cm. The material is spring steel. What pressure, in
pascals, will be necessary to cause a deflection of 0.04 cm?

Suppose the diaphragm of Prob. 6.30 is constructed as in Fig. 6.10a. What pres-
sure would cause the same deflection? What would be the natural frequency of
this diaphragm?

Prepare a matrix table for pressure conversions among the following units: psia,
Pa, mmHg, inH,0, atm, and kp/cm?.

In Laramie, Wyoming, the weather bureau reports the barometric pressure as
29.8 in of mercury. At the University of Wyoming (in Laramie) a group of stu-
dents measures the air pressure in a 100-liter tank as 10 kPa gage pressure. The
temperature of the air is 20°C. If the altitude for Laramie is 7200 ft, calculate the
mass of air in the tank. What error would result if the local atmospheric pressure
were taken as the value quoted by the weather bureau?

On the same day, at the same time, another group of students at the University
of Wyoming (as in Prob. 6.33) makes a vacuum measurement indicating 10 psig
vacuum. Calculate the percent error in determination of absolute pressure if the
atmospheric pressure were taken as the weather bureau value.

A U-tube manometer contains a fluid having a specific gravity of 1.75 and is used
to measure a differential pressure in water. What will be the differential pressure,
in pascals, for a reading of 10.5 cm?

The same manometer as in Prob. 6.35 is used to measure the same differen-
tial pressure in air at 1 atm and 20°C. What would be the reading under these
conditions?

A well-type manometer has the measurement leg inclined at 30° from the hori-
zontal. The diameter of the measurement column is 5 mm and the diameter of the
well is 5 cm. An oil having a specific gravity of 0.85 is used as the fluid. A differ-
ential pressure in air at 1 atm and 20°C is made which produces a displacement
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6.39.

6.40.

6.41.

6.42.

6.43.

6.44.

6.45.

6.46.

6.47.
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in the measurement column of 15 cm from the zero level. What is the differential
pressure in pascals?

A U-tube manometer uses mercury as the manometer fluid to measure a differ-
ential pressure in water at 80°F. Both sides of the manometer have diameters
of 5 mm. What differential pressure, in pascals, will result in a column height
measurement of 13 cm?

Suppose the manometer in Prob. 6.38 had unequal diameters of 5 and 10 mm.
What would be the differential pressure, in pascals, for a column height measure-
ment of 13 cm in this circumstance?

What pressure differential would be indicated for the manometer in Prob. 6.39
if the 13-cm measurement is the height of the small column from the zero level
instead of the difference in heights of the two columns?

A diaphragm gage constructed as in Fig. 6.10a is to be fabricated of spring steel
and used to measure a differential pressure of 10 kPa in air at 20°C. Assuming
that the maximum deflection is not to exceed one-third the thickness, calculate
the value of the thickness for a diaphragm diameter of 2.5 cm. Also, calculate the
natural frequency of this diaphragm.

A special U-tube manometer is used to make a differential pressure measure-
ment in air at 20°C and 65 atm. The manometer fluid has a specific gravity of
0.85. The differential column height is 15.3 cm =+ 1.0 mm. Calculate the pressure
differential in pascals and its uncertainty.

An air-pressure signal at 5 atm and 50°C is fed through a 1.0-mm-diameter line
having alength of 0.8 m, and is connected to a transducer volume of 3 cm?. Calcu-
late the natural frequency and damping ratio of this system. By how much will a
pressure signal having a frequency one-half the natural frequency be attenuated?

A McLeod gage has a capillary diameter of 0.2 mm and a volume V3 of 125 cm?.
What gage reading will result from an absolute pressure of 20 um?

A vacuum chamber stands outdoors at the airport in a Texas airbase in the summer.
The temperature of the chamber is 120°F. A vacuum gage indicates 13 psi of
vacuum and the weather station at the airport reports the barometric pressure as
29.83 inHg. The volume of the tank is 3.0 m® and the elevation of the airport is
600 ft above sea level. Calculate the mass of air in the tank. What percentage
error would result if the barometric pressure were not corrected for elevation?

A microphone operates on the principle of a diaphragm gage with a capacitance
pickup. Suppose a 140-dB sound-pressure source which produces a maximum
pressure fluctuation of 0.029 psia in air is to be imposed on the diaphragm at a
frequency of 5000 Hz. The diameter of the diaphragm is to be 1.0 cm. Determine
the thickness for the diaphragm such that the natural frequency is 10,000 Hz.
Assume spring-steel construction and a thickness of one-third the maximum
displacement.

Calculate the standard barometric pressure at the top of a 14,000-ft mountain.
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6.48.

6.49.

6.50.

6.51.

6.52.

6.53.

6.54.

6.55.

6.56.

6.57.

A well-type manometer uses mercury for measuring a differential pressure in
water at 90°F. The measuring column has a diameter of 4.0 mm and the well
diameter is 5 cm. Calculate the differential pressure for a column height reading
of 25 cm from the zero level.

A Bridgman gage is to be employed for measurement of a pressure of 700 atm
using a Manganin element which has a resistance of 90 €2 at 1 atm. Calculate the
resistance of the gage under the high-pressure condition.

A tube having a diameter of 1.2 mm and length of 10 cm is connected to a pressure
transducer which has a volume of 1.5 cm?. Calculate the natural frequency and
damping ratio for this system when operating with air at 500 kPa and 50°C.

Two U-tube manometers are connected in series using mercury as the manometer
fluids. The tube connecting the manometers is filled with water. A differential air
pressure is imposed on the system such that the sum of the differential column
heights in both manometers is 30 cm. Calculate the differential air pressure for a
temperature of 20°C.

Determine the following conversion factors:

1inH,O = ____ psi
1inH, O=___Pa
ImmHg=__ psi
1 mmHg = ___ kgf/em?

A measurement is made of air pressure in a tank. The gage indicates 825 kPa
while the local barometer reading is 750 mmHg. What is the absolute pressure
in the tank?

An experiment is conducted which requires the calculation of the mass of helium
in a 5-liter tank maintained at —10°C. The pressure in the tank is measured as
80 kPa vacuum and the location of the measurement is at an altitude of 600 ft above
sea level. Unfortunately the local barometric pressure was not taken so the local
weather bureau information is used for that day, which is reported as 29.85 inHg.
Calculate the mass of helium in the tank taking the weather barometer reading
at face value. Repeat the calculation with the reading corrected for elevation.
Comment on the results of these calculations.

A U-tube-type manometer uses mercury as the sensing fluid for measuring dif-
ferential pressure across an orifice which has water as the flow medium. The
difference in mercury column heights is measured as 45.2 £ 0.1 cm. Calculate
the difference in pressure in psi if the apparatus temperature is 20°C.

What error would result in Prob. 6.52 if the water were neglected in the calcula-
tion?

A manometer inclined at an angle of 20° with the horizontal employs a fluid
having a specific gravity of 0.82 and is used to measure a differential pressure
of 2 in H,O in air at 50 psi and 70°F. What displacement of fluid along the length
of the manometer tube will be registered?
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6.16 PROBLEMS

A diaphragm like that shown in Fig. 6.10a is to be designed to measure a differ-
ential pressure of 10 kPa in air at 1 atm and 20°C. Determine suitable dimensions
for the diaphragm to accomplish this objective.

Calculate the natural frequency for the diaphragm selected in Prob. 6.58.

A precision bourdon tube is stated to have an absolute accuracy of +0.1 percent
of full-scale reading of 1 MPa. What is the percent accuracy (uncertainty) when
the gage is employed for a differential pressure of 40 kPa in air at 3 atm and
20°C?

An assembly of two reservoirs and a small-diameter tube inclined at 30° with
the horizontal operates as a micromanometer using water and an oil of specific
gravity 0.85 as the two fluids. Calculate the sensitivity of the device expressed
in mm/Pa.

Suppose the manometer in Prob. 6.61 is used to measure the dynamic pressure
in an airflow system defined by

Ap = pu’/2g.

where p is the density of the flowing fluid (air) and u is the velocity. What velocity
would be indicated by a deflection of 1.0 mm?

Repeat Probs. 6.61 and 6.62 if the two fluids are water and a special oil having a
specific gravity of 0.9.

A U-tube manometer contains a special bromine fluid having a specific gravity of
2.95, and is used to measure a differential pressure in a water system. Calculate
the differential pressure in psi for a manometer reading of 15 cm.

The same manometer and fluid as in Prob. 6.64 is used to measure the same
differential pressure, but in air at 0.5 atm and 35°C. What would be the reading
(height of column) in this situation?

A diaphragm gage is to be constructed of spring steel and configured as illustrated
in Fig. 6.10a. The design is to accommodate a maximum differential pressure of
200 kPa with air at 30°C. The diameter of the diaphragm is specified as 4.0 cm.
Calculate the thickness of the diaphragm and its natural frequency.

A high-pressure U-tube manometer is to be employed for measurement of a
differential pressure in air at conditions of 75 atm and 35°C. Water is used as the
manometer fluid. Calculate the pressure differential indicated by a water column
height of 20 cm.

A 15-cm-long tube has an inside diameter of 1.0 mm and is connected to a
transducer which has a volume of 1.2 mL. If the system is to operate with air
at 2 atm and 20°C, calculate the natural frequency and damping ratio of the
tube-transducer system.

A novice experimentalist performs some vacuum measurements using a sensitive
instrument that records the difference between the local barometric pressure and
the absolute pressure in the vacuum system, that is, the so-called negative gage
pressure. At a location where the altitude from sea level is approximately 1520 m
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the experimentalist discovers that the calculated absolute pressure of the system
being measured becomes negative at sufficiently high vacuum readings, which
of course is impossible. You are asked to solve the problem. At approximately
what vacuum, or negative gage pressure reading, would you expect the anomaly
to occur?

| 6.17 REFERENCES

1.

10.

11.

12.

13.

14.

15.

16.

Arons, A. B., and R. H. Cole: “Design and Use of Piezo-Electric Gages for
Measurement of Large Transient Pressures,” Rev. Sci. Instr, vol. 21, pp. 31-38,
1950.

. Bridgman, P. W.: The Physics of High Pressure, Macmillan, New York, 1931.
. Dushman, S., and J. M. Lafferty: Scientific Foundations of Vacuum Technique,

2d ed., Wiley, New York, 1962.

. Hall, H. T.: “Some High Pressure—High Temperature Apparatus Design Consid-

erations,” Rev. Sci. Instr., vol. 29, p. 267, 1958.

. Hetenyi, M. (ed.): Handbook of Experimental Stress Analysis, Wiley, New York,

1950.

. Howe, W. H.: “The Present Status of High Pressure Measurements,” ISA J.,

vol. 2, pp. 77, 109, 1955.

. Iberall, A. S.: “Attenuation of Oscillatory Pressures in Instrument Lines,” Trans.

ASME, vol. 72, p. 689, 1950.

. Neubert, H. K. P.: Instrument Transducers, Oxford University Press, Fair Lawn,

NJ, 1963.

. Young, W. C.: Roark’s Formulas for Stress and Strain, 6th ed., McGraw-Hill,

New York, 1998.

Sweeney, R. J.: Measurement Techniques in Mechanical Engineering, Wiley,
New York, 1953.

Taback, I.: “The Response of Pressure Measuring Systems to Oscillating Pres-
sure,” NACA Tech. Note 1819, February 1949.

Wildhack, W. A., R. F. Dresslea, and E. C. Lloyd: “Investigation of the Properties
of Corrugated Diaphragms,” Trans. ASME, vol. 79, pp. 65-82, 1957.

Giardini, A. A. (ed.): High Pressure Measurements, Butterworth & Co., London,
1963.

Karam, J. T., and M. E. Franke: “The Frequency Response of Pneumatic Lines,”
J. Basic Eng., Trans. ASME, ser. D. vol. 90, pp. 371-378, 1967.

Nichols, N. B.: “The Linear Properties of Pneumatic Transmission Lines,” Trans.
Instr. Soc. Am., vol. 1, pp. 5-14, 1962.

Watts, G. P.. “The Response of Pressure Transmission Lines,” Preprint
No. 13.3-1.65, 20th Annual ISA Conf. and Exhibit, Los Angeles, Calif.,
October 4-7, 1965.



17.

18.

19.

20.

21.

22.

23.

24.

6.17 REFERENCES

Bergh, H., and H. Tijdeman: “Theoretical and Experimental Results for the Dy-
namic Response of Pressure Measuring Systems,” NLR Tech. Rept. F. 238, 1965.
Tijdeman, H.: “Remarks on the Frequency Response of Pneumatic Lines,”
J. Basic Eng., pp. 325-328, June 1969.

Schweppe, J. L., et al.: “Methods for the Dynamic Calibration of Pressure Trans-
ducers,” Natl. Bur. Std. (U.S.), Monograph 67, 1963.

Funk, J. E., D. J. Wood, and S. P. Chao: “The Transient Response of Orifices and
Very Short Lines,” ASME paper 71-WA/FE-14, December 1971.

Omega Engineering, Inc.: Pressure, Strain, and Force Measurement Handbook,
Omega Engineering, Stamford, CT, 1991.

——: “Inside Pressure Measurement,” Mech. Eng., vol. 109, no. 5, pp. 41-56,
May 1987.

Benedict, R. P.: Fundamentals of Temperature, Pressure and Flow Measurement,
3d ed., Wiley, New York, 1984.

Brombacher, W.G.: “Survey of Micromanometers,” NBS Monograph 114, Wash-
ington DC, 1970.



FLOW MEASUREMENT

7.1 INTRODUCTION

The measurement of fluid flow is important in applications ranging from measure-
ments of blood-flow rates in a human artery to the measurement of the flow of liquid
oxygen in arocket. Many research projects and industrial processes depend on a mea-
surement of fluid flow to furnish important data for analysis. In some cases extreme
precision is called for in the flow measurement, while in other instances only crude
measurements are necessary. The selection of the proper instrument for a particular
application is governed by many variables, including cost. For many industrial oper-
ations the accuracy of a fluid-flow measurement is directly related to profit. A simple
example is the gasoline pump at the neighborhood service station; another example
is the water meter at home. It is easy to see how a small error in flow measurement
on a large natural gas or oil pipeline could make a difference of thousands of dollars
over a period of time. Thus, the laboratory scientist is not the only person who is
concerned with accurate flow measurement; the engineer in industry is also vitally
interested because of the impact flow measurements may have on the profit-and-loss
statement of the company.

Flow-rate-measurement devices frequently require accurate pressure and tem-
perature measurements in order to calculate the output of the instrument. Chapters 6
and 8 consider these associated measurement topics in detail, and the reader should
consult the appropriate sections from time to time to relate specific pressure and tem-
perature measurement devices to the material in the present chapter. We may remark
at this time, however, that the overall accuracy of many of the most widely used
flow-measurement devices is governed primarily by the accuracy of some pressure or
temperature measurement. Commercial organizations' offer flowmeter calibrations
traceable to NIST standards.

| TFlow Dynamics, Scottsdale, AZ.
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7.2 POSITIVE-DISPLACEMENT METHODS

Flow rate is expressed in both volume and mass units of varying sizes. Some
commonly used terms are

1 gallon per minute (gpm)
=231 cubic inches per minute (in*/min)
=63.09 cubic centimeters per second (cm?/s)
1 liter
=0.26417 gallon = 1000 cubic centimeters
1 cubic foot per minute (cfm, or ft>/min)
=0.028317 cubic meter per minute
=471.95 cubic centimeters per second

1 standard cubic foot per minute of air at 20°C, 1 atm
=0.07513 pound-mass per minute
=0.54579 gram per second

We should alert the reader to the fact that commercial gas-flow meters typically
specify flow ratings in volume flow rate at standard conditions of 1 atm and 20°C.
The units employed are standard cubic feet per minute (scfm) and standard cubic
centimeters per minute (sccm).

Our objective in this chapter is to present a broad discussion of flow measurements
and to indicate the principles of operation of a number of devices that are commonly
used. We shall also give the calculation methods that are connected with some of these
devices and discuss some methods of flow visualization. In concluding the chapter a
tabular comparison of the various methods will be presented, pointing out their range
of applicability and expected accuracies.
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The flow rate of a nonvolatile liquid like water may be measured through a
direct-weighing technique. The time necessary to collect a quantity of the liquid in
a tank is measured, and an accurate measurement is then made of the weight of
liquid collected. The average flow rate is thus calculated very easily. Improved
accuracy may be obtained by using longer or more precise time intervals or more
precise weight measurements. The direct-weighing technique is frequently employed
for calibration of water and other liquid flowmeters, and thus may be taken as a stan-
dard calibration technique. Obviously, it is not suited for transient flow measurements.

Positive-displacement flowmeters are generally used for those applications
where consistently high accuracy is desired under steady-flow conditions. A typi-
cal positive-displacement device is the home water meter shown schematically in
Fig. 7.1. This meter operates on the nutating-disk principle. Water enters the left side
of the meter and strikes the disk, which is eccentrically mounted. In order for the
fluid to move through the meter the disk must “wobble” or nutate about the vertical
axis since both the top and bottom of the disk remain in contact with the mounting
chamber. A partition separates the inlet and outlet chambers of the disk. As the disk
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/— Driveshaft to
readout mechanism

Eccentric

Disk with
partition

—_—
Outlet

InletT

Figure 7.1 Schematic of a nutating-disk meter.

Inlet Outlet
—_— —_

Rotating
eccentric drum

Spring-loaded
vane

Figure 7.2 Schematic of rotary-vane flowmeter.

nutates, it gives direct indication of the volume of liquid which has passed through the
meter. The indication of the volumetric flow is given through a gearing and register
arrangement which is connected to the nutating disk. The nutating-disk meter may
give reliable flow measurements within 1 percent, over an extended period of time.

Another type of positive-displacement device is the rotary-vane meter shown
in Fig. 7.2. The vanes are spring-loaded so that they continuously maintain contact
with the casing of the meter. A fixed quantity of fluid is trapped in each section as
the eccentric drum rotates, and this fluid eventually finds its way out the exit. An
appropriate register is connected to the shaft of the eccentric drum to record the
volume of the displaced fluid. The uncertainties of rotary-vane meters are of the order
of 0.5 percent, and the meters are relatively insensitive to viscosity since the vanes
always maintain good contact with the inside of the casing.

The lobed-impeller meter shown in Fig. 7.3 may be used for either gas- or
liquid-flow measurements. The impellers and case are carefully machined so that
accurate fit is maintained. In this way the incoming fluid is always trapped between
the two rotors and is conveyed to the outlet as a result of their rotation. The number
of revolutions of the rotors is an indication of the volumetric flow rate.

Remote sensing of all the positive-displacement meters may be accomplished
with rotational transducers or sensors and with appropriate electronic counters.
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Inlet

Impellers

N

Chamber
Outlet

Figure 7.3 Schematic of lobed-impeller flowmeter.

UNCERTAINTY IN FLOW CAUSED BY UNCERTAINTIES IN TEMPERATURE AND
PRESSURE. A lobed-impeller flowmeter is used for measurement of the flow of nitrogen
at 20 psia and 100°F. The meter has been calibrated so that it indicates the volumetric flow with
an accuracy of £ one-half of 1 percent from 1000 to 3000 cfm. The uncertainties in the gas
pressure and temperature measurements are +0.025 psi and £1.0°F, respectively. Calculate
the uncertainty in a mass flow measurement at the given pressure and temperature conditions.
Solution

The mass flow is given by

m=pQ
where the density of nitrogen is given by

__»r
Ry, T

p

Using Eq. (3.2), we obtain the following equation for the uncertainty in the mass flow:

sl () ()

Using the given data, we obtain

172

) b3 1/2
Wi _ 00057 + (292 4 (L —5.05x 1073
mo | 20 560 o

or 0.505 percent. Thus, the uncertainties in the pressure and temperature measurements do not
appreciably influence the overall uncertainty in the mass flow measurements.

Example 7.1
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7.3 FLOW-OBSTRUCTION METHODS

Several types of flowmeters fall under the category of obstruction devices. Such
devices are sometimes called head meters because a head-loss or pressure-drop mea-
surement is taken as an indication of the flow rate. They are also called differential
pressure meters. Let us first consider some of the general relations for obstruction
meters. We shall then examine the applicability of these relations to specific devices.
Consider the one-dimensional flow system shown in Fig. 7.4. The continuity

relation for this situation is
m = p1Aju; = p2Asu; [7.1]

where u is the velocity. If the flow is adiabatic and frictionless and the fluid is incom-
pressible, the familiar Bernoulli equation may be written

P W _pr
Pt 28 P2 28
where now p; = p,. Solving Egs. (7.1) and (7.2) simultaneously gives for the pressure

[7.2]

drop
2 2
up Az

— = 1—(— 7.3
nem=g- () )

and the volumetric flow rate may be written
0=4 A 28 o1 — po) [7.4]

= Ay = ——————=\/ —(P1 — P2 .
1= (Ay/AD2\ P

where  Q = ft3/s or m’/s
A = ft? or m?
o = Ibm/ft® or kg/m?
p = Ibf/ft?> or N/m?
gc =32.17 1bm - ft/Ibf - s or 1.0 kg - m/N - s?

Thus, we see that a channel like the one shown in Fig. 7.4 could be used for a flow
measurement by simply measuring the pressure drop (p; — p») and calculating the
flow from Eq. (7.4). No such channel, however, is frictionless, and some losses are
always present in the flow. The volumetric flow rate calculated from Eq. (7.4) is
the ideal value, and it is usually related to the actual flow rate and an empirical

P T, P2 T,
P A P2, Ay

iy — o)
— Flow —_—

/—_

Figure 7.4 General one-dimensional flow system.
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discharge coefficient C by the following relation:

Qactual
Oideal

The discharge coefficient is not a constant and may depend strongly on the flow
Reynolds number and the channel geometry.

When the flow of an ideal gas is considered, the following equation of state
applies:

=C [7.5]

p = pRT [7.6]

where 7 is the absolute temperature and R is the gas constant for the particular gas,
which can be expressed in terms of the universal gas constant it and the molecular

weight by

R
R=>—
M

The value of N is 8314 kJ/kg - mol - K or 1545 ft - Ibf/Ibm - mol - °R. For reversible
adiabatic flow the steady-flow energy equation for an ideal gas is

2 2
uy U

CpTl + g = CpTz + 2g [7.7]
c C

where ¢, is the specific heat at constant pressure and is assumed constant for an ideal
gas. When Egs. (7.1), (7.6), and (7.7) are combined, there results

2 2/y y+D/y
i =g a2V P <pz> _ (m) [7.8]
]/ — 1 RT] pl p]

where the velocity of approach, that is, the velocity at section 1 of Fig. 7.4, is assumed
to be very small. This relationship may be simplified to

, 2g. 1.5 5 1/2

m = Ay ppAp— | — —1)(Ap)"+--- [7.9]
RT, 14

with Ap = p; — p> and y =c,/c, is the ratio of specific heats for the gas. Equation

(7.9)is valid for Ap < p;/4. When Ap < p;/10, a further simplification may be made

to give

28cP2
RT,

m= A (p1 — p2) [7.10]

where m = mass flow rate, Ibm/s or kg/s
A = area, ft? or m?
gc = 32.17 Ibm - ft/Ibf - s? or 1.0 kg - m/N - s?
p = pressure, 1bf/ft> or N/m?(Pa)
R = gas constant, Ibf - ft/lbm - °R or N - m/kg - K
T = absolute temperature, °R or K
Note that Eq. (7.10) reduces to Eq. (7.4) when the relation for density from Eq. (7.6) is
substituted. Thus, for small values of Ap compared with p; the flow of a compressible
fluid may be approximated by the flow of an incompressible fluid.
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Flow —>
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|
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(¢
Figure 7.5 Schematic of three typical obstruction meters. (a) Venturi; (b) flow nozzle;
(¢) orifice.

Three typical obstruction meters are shown in Fig. 7.5. The venturi offers the
advantages of high accuracy and small pressure drop, while the orifice is considerably
lower in cost. Both the flow nozzle and the orifice have a relatively high permanent
pressure drop. Flow-rate calculations for all three devices are made on the basis of
Eq. (7.4) with appropriate empirical constants defined as follows:

1

V1= (Ay/A))?

K = flow coefficient = CM [7.12]

. . d Aj
B = diameter ratio = ) = ™ [7.13]
1

When flow measurements of a compressible fluid are made, an additional parameter,
the expansion factor Y, is used. For venturis and nozzles this factor is given by

14

M = velocity of approach factor = [7.11]

14 —1  1—=(p2/p1) 1 —(A2/AD*(p2/p1)*Y
[7.14]

while for orifices an empirical expression for Y is given as

Ar\ 2 -
0.41 + 0.35<2> p=p [7.15]
Ay ¥P1

Yi=1-
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when either flange taps or vena contracta taps are used. For orifices with pipe taps the
following relation applies:

Yy =1 —[0.333 + 1.145(8% + 0.78° + 12813 2L — 22 [7.16]
YP1

The empirical expansion factors given by Egs. (7.15) and (7.16) are accurate within
£0.5 percent for 0.8 < p,»/p; < 1.0. Plots of the expansion factors Y, and Y; are given
in Figs. 7.14 and 7.15, respectively.

We thus have the following semiempirical equations, which are conventionally
applied to venturis, nozzles, or orifices:

VENTURIS, INCOMPRESSIBLE FLOW:

28,
Qacual = CMA; 7«/ P1— D2 [7.17]

NOZZLES AND ORIFICES, INCOMPRESSIBLE FLOW:

[28c
Qactual = KA> 7«/171 - D2 [7.18]

The use of the flow coefficient instead of the product CM is merely a matter of con-
vention. When compressible fluids are used, the above equations are modified by the
factor Y and the fluid density is evaluated at inlet conditions. We then have

VENTURIS, COMPRESSIBLE FLOW:

Macual = YCMA; V 2gc01(p1 — p2) [7.19]

NOZZLES AND ORIFICES, COMPRESSIBLE FLOW:

Macal = YKA, V 2g.01(p1 — p2) [7.20]

In Eqgs. (7.17) to (7.20) the appropriate units are

Q = volume flow rate, ft3/s or m3/s

A = area, ft?> or m2

gc =32.17 1bm - ft/Ibf - s? or 1.0 kg - m/N - 52
p = density, Ibm/ft® or kg/m?

p = pressure, 1bf/ft> or N/m?

Detailed tabulations of the various coefficients have been made in Ref. [1], some of
which are presented in Figs. 7.9 through 7.15. Examples 7.2 and 7.3 illustrate the use
of these charts for practical calculations.

INSERTION (PERMANENT) PRESSURE LOSSES

Because of the fluid friction and turbulence resulting from the insertion of the ob-
struction meters in the flow channel, there is a permanent pressure loss which must be
overcome by the flow system. Approximate values of these losses as a fraction of the
measured pressure differential are shown in Table 7.1. The venturi is clearly superior
to the orifice or flow nozzle in this regard.
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Table 7.1
Apioss/ (p1 — p2)
Square-edged Flow Venturi
B Orifice Nozzle az=17°
0.4 0.86 0.8 0.1
0.5 0.78 0.7 0.1
0.6 0.67 0.55 0.1

7.4 PRrRACTICAL CONSIDERATIONS
FOR OBSTRUCTION METERS

The construction of obstruction meters has been standardized by the American Society
of Mechanical Engineers [1 and 2]. The recommended proportions of venturi tubes
are shown in Fig. 7.6. Note that the pressure taps are connected to manifolds which
surround the upstream and throat portions of the tube. These manifolds receive a
sampling of the pressure all around the sections so that a good average value is
obtained. The discharge coefficients for such venturi tubes are shown in Fig. 7.9, with
the tolerance limits indicated by the dashed lines. In general, the discharge coefficient

| —

\ Direction
@

M

D = Pipe diameter inlet and outlet
d = Throat diameter as required
a = 0.25D t0 0.75D for 4" = D = 6", 0.25D to 0.50D for 6" = D = 32"
b=d
c=d/2
& =3/16/in to 1/2 in according to D. Annular pressure chamber
with at least four piezometer vents
ry = 3.5d to 3.75d
ry = 0to 1.375D
o = 2loeo & 200
ay = 50010 1500

<~ p >

Figure 7.6 Recommended proportions of venturi tubes, according to Ref. [1].
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Figure 7.7 Recommended proportions of the ASME long-radius flow nozzle, according
to Ref. [1].

Vena contracta connections: p2 at vena contracta }

1D and %D connections: P, at D/2 (See Fig. 7.12)
Outlet pressure
D | connection r
Inlet pressure P, ' ps
connection —>| | L | | |<-/ @
_1_|— 5 o0r 6D —>
—_— D d
‘ L — Orifice
T T
i i
1" > |<—
Flange connections \—;I, 1"
Figure 7.8 Recommended location of pressure taps for use with concentric, thin-plate,

square-edged orifices, according to Ref. [1].

is smaller for pipes less than 2 in diameter, and the approximate behavior is indicated
in Fig. 7.10. More precise values of the discharge coefficient for a venturi may be
obtained by direct calibration, in which cases accuracies of £0.5 percent may be
obtained fairly easily. The recommended dimensions for ASME flow nozzles are
shown in Fig. 7.7, and the discharge coefficients are shown in Fig. 7.11.
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Figure 7.9 Discharge coefficients for the venturi tube shown in Fig. 7.6, according to

Ref. [1]. Values are applicable for 0.25 < 3<0.75 and D > 2 in.
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Figure 7.10 Approximate venturi coefficients for various throat diameters, according to

Ref. [15].



7.4 PRACTICAL CONSIDERATIONS FOR OBSTRUCTION METERS 323

[ 1T ==F&
0.20
0.98 —0.25
g L
96 17098
1/ - ‘L, —=—-rr X (f
1094 L1170 96 T110.98 Lzs
// o mRifii
0.92_| £0.94 0.96 111098 0.40
/ //% Ll -
/090 £0.92 LA 0941|7096 LT 0.98
/i Ny austiy i 0.45
/AT Lo [ ] L=~
Jfos 7[0.9}[6.92 4,(‘),94%,(% T 0~TS o%o
A | T
: 0.99
K foss L0950 0280 _ATos L7098 055 L
© A Jw/ AT Sz | =090 - T
g L L0.88/60.50 A0 02 L1094 “) Ll 008 \)Lo
E Jw/ /‘m Jx// | ] l
g 080/ [ 1/03500 F0l92 A os A6 L—03s ors
: ]"l 7T/ [N | 1 af ‘ il =
S 08 /030900090 LN 0oa__KX 06 098
= 7‘ > 0.70
g ‘8! 7 1 /‘ﬂ pa | T T
ST AY0.00 /0.92 LA T0.04 {056 /olﬁ ods
é / | ‘ b ‘ 1 1] ‘ -t T
86 053/0 o0 szvgﬂ.m 961 L] 0.98 N {0
Vv,
050/ /0-88/5.90/(};9274:,0.944,,4 0.96 098
| / ‘ ‘ J{ v A ]
osefl/bss/l ,2697 10.94 ///,96
| , A A
0.8 0?/ 0.y{9ﬁP7,{094
0.88 /0 fJo // 5
AN
Ass ,/0 90
/o8
/4
102 2 5 1030 2 5 10% 2 5 100 2 5 10% 2 5 107
. pity D
Pipe Reynolds number, Rep = —;

Figure 7.11 Discharge coefficients for ASME long-radius nozzles shown in Fig. 7.7,
according to Ref. [1].

The recommended installations for concentric, thin-plate orifices are shown in
Fig. 7.8. Note that three standard sets of pressure-tap locations are used:

1. Both pressure taps are installed in the flanges as shown.

2. The inlet pressure tap is located one pipe diameter upstream, and the outlet
pressure tap is located one-half diameter downstream of the orifice as measured
from the upstream face of the orifice.

3. The inlet pressure tap is located one pipe diameter upstream, and the outlet
pressure tap is located at the vena contracta of the orifice, as given by Fig. 7.12.
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Figure 7.12 Location of outlet pressure connections for orifices with vena contracta
taps, according to Ref. [1].
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Figure 7.13 Flow coefficients for concentric orifices in pipes. Pressure taps one

diameter upstream and one-half diameter downstream. Applicable for

1.25 < D < 3.00 in. (From Ref. [15].)
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Figure 7.14 Adiabatic expansion factors for use with venturis and flow nozzles as

calculated from Eq. (7.14). (From Ref. [2].)

Figure 7.13 gives the values of the orifice flow coefficient for pipe sizes 1% to
3 in with pressure taps located according to case 2 above. Flow coefficients for other
cases are given in Ref. [1].

The various flow coefficients are plotted as a function of Reynolds number,
defined by

_ pupd
n

Re

[7.21]

where  p = fluid density
© = dynamic viscosity
u,, = mean flow velocity
d = diameter at the particular section for which the Reynolds number
is specified
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Figure 7.15 Expansion factors for square-edged orifices with pipe taps as calculated

from Eq. (7.16). (From Ref. [2].)

Note that some charts, viz., Fig. 7.13, base the Reynolds number on upstream condi-

tions, while others, viz., Fig. 7.10, base it on throat conditions. The product pu,, may
be calculated from the mass flow according to

M= pumAe [7.22]

where A, is the cross-sectional area for the flow where u,, is measured. For a cir-

cular cross section A, = nd? /4. Further information on orifice and venturi meters is
contained in Refs. [33] to [37].
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DESIGN OF VENTURI METER. A venturi tube is to be used to measure a maximum flow
rate of water of 50 gpm (gallons per minute) at 70°F. The throat Reynolds number is to be at
least 10° at these flow conditions. A differential pressure gage is selected which has an accuracy
of 0.25 percent of full scale, and the upper scale limit is to be selected to correspond to the
maximum flow rate. Determine the size of the venturi and the maximum range of the differential
pressure gage and estimate the uncertainty in the mass flow measurement at nominal flow rates
of 50 and 25 gpm. Use either Fig. 7.9 or Fig. 7.10 to determine the discharge coefficient.

Solution
The properties of water are

p = 62.41bm/f’ =833 Ibm/gal  p = 2.36 Ibm/h - ft

From the given maximum flow rate and throat Reynolds number we may calculate the maximum
allowable throat diameter:
pu,d md 4m 5

Red = = —_-— — =
(rd*/Hp wdp

The maximum flow rate is
m = (50)(8.33)(60) = 2.5 x 10* Ibm/h (3.027 kg/s)

(4)(2.5 x 10%) .
so that dnax = —————— =0.135ft = 1.62 in (4.11 cm)

7(105)(2.36)
We shall select a venturi with a 1.0-in throat diameter since we have a discharge coefficient
curve for this size in Fig. 7.10. The upstream pipe diameter is taken as 2.0 in. From Fig. 7.10
we estimate the discharge coefficient for this size venturi as 0.976 for 8 x 10* <Re; <3 x 10°.
The uncertainty in this coefficient will be taken as +0.002 since Fig. 7.10 is a general set of
curves. With this selection of venturi size, the maximum throat Reynolds number becomes

1.62

(Red)max = (105) <10> =1.62 x 105

The minimum Reynolds number is thus one-half this value, or 8.1 x 10*. The maximum pressure
differential may be calculated with Eq. (7.17).

/28,
Qi\ctual = CMA, f) \/A»P [7.‘ 7]

50)(231 0.976)7(1.0)* 2)(32.2
GO _ ( )7(1.0) ) )\/ATJ

(60)(1728) @)(144) /1 _ (%)2 62.4

Ap = 948 psf = 6.58 psi (45.4 kPa)

or

This yields

Let us assume that a differential pressure gage with a maximum range of 1000 psf is at our
disposal. In accordance with the problem statement the uncertainty in the pressure reading
would be

wap = £2.5 psf (119.7 Pa)

When the flow is reduced to 25 gpm, the pressure differential will be one-fourth of that at
50 gpm. To estimate the uncertainty in the flow measurement, we shall assume that the

Example 7.2
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dimensions of the venturi are known exactly, as well as the density of the water. For the
calculation we utilize Eq. (3.2). The quantities of interest are

a0 128,
— = MA VA
ac 2 P P

0Ap  2/Ap P
£0.002

We

r 2 27 1/2
Thus, wo _ | (1w, L(way
o |\cC 4\ Ap
For O = 50 gpm
1/2

wo _ [ (0002)* 1 (257
0o ~ [\0.976 4\ 948

= 0.002435 or 0.2435%

2 3 1/2
wo _ | (0.002 N 1/ 25
0  |\o0.976 4\ 984/4

= 0.00566 or 0.566%

For Q = 25 gpm

Example 7.3 UNCERTAINTY IN ORIFICE METER.  An orifice with pressure taps one diameter up-
stream and one-half diameter downstream is installed in a 2.00-in-diameter pipe and used to
measure the same flow of water as in Example 7.2. For this orifice, 8 = 0.50. The differential
pressure gage has an accuracy 0.25 percent of full scale, and the upper scale limit is selected
to correspond to the maximum flow rate. Determine the range of the pressure gage and the
uncertainty in the flow-rate measurements at nominal flow rates of 50 and 25 gpm. Assume
that the uncertainty in the flow coefficient is +0.002.

Solution
We first calculate the pipe Reynolds numbers. Using the properties from Example 7.2 we obtain

2.5 x 10 (4
Rey = 22 X100 g0 104 ar 50 gpm (5.26 cms)

= 1(2.0/12)(2.36)
Re,; = 4.05 x 10* at 25 gpm (2.63 cm?/s)
From Fig. 7.13 the flow coefficient is estimated as

K = 0.625 at 50 gpm
K =0.630 at 25 gpm
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The volumetric flow is

(50)(231)

= 22020 01115 16 £50
Q= 601723 s aooepm
Q = 0.0558 ft’/s at 25 gpm

The nominal values of the differential pressure are then calculated from Eq. (7.18) as

B x1)?  [2)(322)
0115 = (0.625) oy | S5 V/Ap  at50 gpm

Ap = 1307 psf = 7.21 psi (49.7 kPa) at 50 gpm
Ap = 255 psf = 1.77 psi (12.2 kPa) at 25 gpm
Asuitable differential pressure gage might be one with a maximum range of 1200 psf (57.5 kPa).

The same equation for uncertainty applies in this problem as in Example 7.2, except that the
flow coefficient K is used instead of the discharge coefficient. Thus,

2 27 1/2
w1 (v
K 4\ Ap

with wg = 0.002 and w,, = (0.0025)(1200) = 3.0 psf (143.6 Pa).

For O = 50 gpm
wo _ [(0002)" 1/ 30
0 |\0.625 4\ 1037

= 0.00351 or 0.351%

Wo

0=

172

For Q = 25 gpm

2 27172
we _ | (00023 1730 —=0.00669  or 0.669%
0 0.630 4\ 255
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7.5 THE SONIC NOZZLE

All the obstruction meters discussed above may be used with gases. When the flow rate
is sufficiently high, the pressure differential becomes quite large, and eventually sonic
flow conditions may be achieved at the minimum flow area. Under these conditions
the flow is said to be “choked,” and the flow rate takes on its maximum value for the
given inlet conditions. For an ideal gas with constant specific heats it may be shown
that the pressure ratio for this choked condition, assuming isentropic flow, is

/(y—1)
D2 2 )y
— = — [7.23]
<p1>critical <)/+ 1
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This ratio is called the critical pressure ratio. Inserting this ratio in Eq. (7.8) gives

for the mass flow rate
y 2 2/(y=1)
y+1 <y + 1 )

Equation (7.24) is frequently applied to a nozzle when it is known that the pressure
ratio p,/ p; is less than the critical value given by Eq. (7.23). Under these conditions
the ideal flow is dependent only on the inlet stagnation conditions p; and 7). These
conditions are usually easy to measure so that the sonic nozzle offers a convenient
method for measuring gas-flow rates. It may be noted, however, that a large pressure
drop must be tolerated with the method. Upstream stagnation conditions must be used
for p; and T in the calculation.

The ideal sonic-nozzle flow rate given by Eq. (7.24) must be modified by an
appropriate discharge coefficient which is a function of the geometry of the nozzle and
other factors. There may be several complicating conditions, but discharge coefficients
of about 0.97 are usually observed. A comprehensive survey of critical flow nozzles
is presented by Arnberg [3], and the interested reader should consult this discussion
for more information. More recent information is given in Refs. [32], [34], and [38].

The flow obstruction devices discussed above require the use of wall pressure
taps. (Other devices also require the use of such taps.) Measurements with wall pres-
sure taps can be subject to several influencing factors, which are discussed in detail
by Rayle [19]. In general, the diameter of the pressure tap should be small enough in
comparison with the diameter of the pipe.

12
28.

RT,

m = Ayp; [7.24]

Example 7.4

DESIGN OF SONIC NOZZLE. A sonic nozzle is to be used to measure a flow of air
at 300 psia (2.07 MPa) and 100°F (37.8°C) in a 3-in-diameter pipe. The nominal flow rate
is 1 Ibm/s (0.454 kg/s). Calculate the throat diameter (nozzle size) such that just critical flow
conditions are obtained.

Solution
We use Eq. (7.24) for this calculation with y = 1.4 for air. The only unknown in this equation

is A,. Thus, we have
Y 5\ 172
y+1\y+1

2.
I’i’l = 6‘14217]\/13f§~l
2/047 /2
_ _@G22) | (14 (2
1= 4000094/ 53735, 560) l<2-4> (2-4> ]

and A, = 0.001078 ft* = 0.1551 in® (1.0 cm?).
The diameter at the throat is

[4
d=14/—(0.1551) = 0.444 in (1.13 cm)
s

For the above calculations we have taken the given pressure and temperature as stagnation
properties. The temperature would most likely be measured with a stagnation probe so that
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100°F is probably the stagnation temperature. The pressure would probably be measured by a
static tap in the side of the pipe upstream from the nozzle so that a static-pressure measurement
is most likely the one which will be available. If the upstream pipe diameter is large enough,
the static pressure will be very nearly equal to the stagnation pressure, and the error in the
above calculation will be small. Let us examine the above situation, assuming that the 300 psia
is a static-pressure measurement. The mass flow upstream is

v Ajuy [a]

where the subscript s denotes static properties. The velocity upstream may be written in terms

of the stagnation temperature as
up = \/ zgccp(Tlo - Tlx) [b]

Combining Eqs. (a) and (b), we have

. Dis / X
m = RTISAI zgv(/p(Tlo - TIA') [C]

Taking p;, = 300 psia and T, = 100°F = 560°R, we may solve Eq. (c) for Tj,. The result is
Ts = 560°R [d]

or the upstream velocity is so small that the stagnation properties are very nearly equal to the
static properties. This result may be checked by calculating the upstream velocity from Eq. (a)
using the result from Eq. (d). We obtain

uy = 14.1 ft/s (4.3 m/s)

The pressure difference (p;, — pi,) corresponding to this velocity would be only 0.031 psia,
while the temperature difference (73, — 71,) would be 0.017°F. Both of these values are
negligible. It may be noted, however, that if the upstream pipe diameter were considerably
smaller, say, 1.0-in diameter, it might be necessary to correct for a difference between the
measured static pressure and the stagnation pressure that must be used in Eq. (7.24).
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ROTAMETER

The rotameter is a very commonly used flow-measurement device and is shown
schematically in Fig. 7.16. The flow enters the bottom of the tapered vertical tube and
causes the bob or “float” to move upward. The bob will rise to a point in the tube such
that the drag forces are just balanced by the weight and buoyancy forces. The position
of the bob in the tube is then taken as an indication of the flow rate. The device is
sometimes called an area meter because the elevation of the bob is dependent on the
annular area between it and the tapered glass tube; however, the meter operates on
the physical principle of drag so that we choose to classify it in this category. A force
balance on the bob gives

g
8e

Fy+ ,Obegé =V [7.25]
C
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Figure 7.16 Schematic of a rotameter.

where p; and p; are the densities of the fluid and bob, V; is the total volume of the
bob, g is the acceleration of gravity, and Fj is the drag force, which is given by
2
Fy = CyA,2Mm [7.26]
28
C, is a drag coefficient, A, is the frontal area of the bob, and u,, is the mean flow
velocity in the annular space between the bob and the tube.
Combining Egs. (7.25) and (7.26) gives

1 2gV, 12
- [ AL (pb - 1)} [7.27]
Ca Ap \py
1 2gV, 12
or Q= Au,=A [ 8% (’)b - 1>} [7.28]
Ca Ay \py

where A is the annular area and is given by
A=ZUD+ay? — &) [7.29]

D is the diameter of the tube at inlet, d is the maximum bob diameter, y is the vertical
distance from the entrance, and a is a constant indicating the tube taper.

The drag coefficient is dependent on the Reynolds number and hence on the fluid
viscosity; however, special bobs may be used that have an essentially constant drag
coefficient, and thus offer the advantage that the meter reading will be essentially
independent of viscosity. It may be noted that for many practical meters the quadratic
area relation given by Eq. (7.29) becomes nearly linear for actual dimensions of the
tube and bob that are used. Assuming such a linear relation, the equation for mass
flow would become

m = Ciy\/(po — pr)py [7.30]

where C; is now an appropriate meter constant.
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For flow of a gas

and for a bob density o, > py,

. —1/2 RT\"?
m=~ (pr) =|— [7.30d]
p

As noted before, it is common practice to rate gas flowmeters in terms of scfm or
sccm. For rotameters their rating is usually in scfm of full scale. To determine the
mass flow under inlet conditions other that 70°F and 1 atm, one must use a correction
to both the relation in Eq. (7.30a) as well as a conversion to mass flow from volume
flow, which is necessary to convert Eq. (7.28) to Eq. (7.30).
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AIRFLOW IN A ROTAMETER A rotameter is used for airflow measurement and has a
rating of 8 scfm for full scale. The bob density has p, > p;. Calculate the mass rate of flow
for inlet conditions of 80 psig and 100°F with a meter reading of 64 percent. The barometric
pressure is 750 mmHg.

Solution
For the barometric pressure 750 mmHg = 14.5 psia. The inlet conditions are therefore

T = 100°F = 560°R
p = 80 psig + 14.5 = 94.5 psia
If the inlet were at standard conditions, the volume flow would be
0 = (8)(64%) = 5.12 scfm [al
This value must be corrected because the measurement is made at other than standard
conditions.
(94.5)(530)
cor = (5.12) ————= = 31.15 scfi b
Qeorr = 5127727 560 seim [l
The corresponding mass flow at 70°F and 14.7 psia is
. pO (14.7)(144)(31.15)
nm=-—=-——
RT (53.35)(530)

In Eq. (7.30a) the meter constant C, takes into account a conversion of volume flow to mass
flow at standard conditions, but not an allowance for variation of o from standard conditions.
So, we multiply the value in (¢) by the pressure and temperature ratios to obtain

= 2.332 Ibm/min [c]

(560)(14.7)

Meor = (2.232) |:
(530)(94.5)

172
] = 0.9454 1bm/min

Example 7.5

It is frequently advantageous to have a rotameter that gives an indication that is
independent of fluid density; that is, we wish to have

om

s
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Performing the indicated differentiation, we obtain

o =2pf [7.31]
and the mass flow is given by
C
= =2 [7.32]

Thus, by special bob construction the meter may be used to compensate for density
changes in the fluid. The error in Eq. (7.32) is less than 0.2 percent for a fluid-density
deviation of 5 percent from that given in Eq. (7.31).

TURBINE METERS

A popular type of flow-measurement device is the turbine meter shown in Fig. 7.17.
As the fluid moves through the meter, it causes a rotation of the small turbine wheel.
In the turbine-wheel body a permanent magnet is enclosed so that it rotates with
the wheel. A reluctance pickup attached to the top of the meter detects a pulse for
each revolution of the turbine wheel. Since the volumetric flow is proportional to the

Figure 7.17 Schematic of turbine meter. (1) Inlet straightening vanes, (2) rotating
turbine blades with embedded magnet, (3) smooth afterbody to reduce
pressure drop, (4) reluctance pickup, (5) meter body for insert in pipe or
flow channel.

O]
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number of wheel revolutions, the total pulse output may be taken as an indication
of total flow. The pulse rate is proportional to flow rate, and the transient response
of the meter is very good. A flow coefficient K for the turbine meter is defined
so that

0= % [7.33]

where f is the pulse frequency. The flow coefficient is dependent on flow rate and
the kinematic viscosity of the fluid v. A calibration curve for a typical meter is given
in Fig. 7.18. It may be seen that this particular meter will indicate the flow accurately
within £0.5 percent over a rather wide range of flow rates. The use of the turbine
flowmeter in pulsating flow is discussed in Ref. [31].
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FLOW COEFFICIENT FOR TURBINE METER.  Calculate the range of mass flow rates of
liquid ammonia at 20°C for which the turbine meter of Fig. 7.18 would be within 0.5 percent.
Also, determine a flow coefficient for this fluid in terms of cycles per kilogram.

Solution
From Fig. 7.18 the range for the 0.5 percent calibration is approximately 55 to 700 cycles/
s - cSt. From the appendix the properties of ammonia at 20°C are

p = 612 kg/m®

v =10.036 x 107> m%/s

The centistoke is defined from

1 stoke (cSt) = 107* square meter per second (m>/s)

1 centistoke (cSt) = 107° square meter per second (m>/s)

1,100

glej
T — oo TO

1,090 +1a e
- na o
B /| K = 1,092
< 1,080 /
g /
) /

1,070 4

1,060

10 20 40 60 80100 200 400 600 800 1,000

Sfs
cSt

Figure 7.18 Calibration curve for 1-inturbine flowmeter of the type shown in Fig. 7.17.
Calibration was performed with water.

Example 7.6
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0.036 x 1073
V= ————

= 0.26 cSt
10-6

Therefore,

The frequency range is then

Jow = (55)(0.36) = 19.8 cycles/s
Shign = (700)(0.36) = 252 cycles/s

Also, 1 gal = 231 in® so that for ammonia

_ (231in%)(612 kg/m’)

| gal
ga (39.36 in/m)>

=2318kg

The flow coefficient would then be
K = 1092 cycles/gal = 471.1 cycles/kg

and the range of flow rates for the 0.50 percent calibration would be

19.8 cycles/s

] = — =0.042 kg/
Mow = 4911 cycles/kg &
7 _ 22 _ 0.535 kg/!

Mbigh = g q T OO0 e

VORTEX-SHEDDING FLOWMETERS

Vortex flowmeters operate on the principle illustrated in Fig. 7.19. When a bluff body
is placed in a flow stream, vortices are shed alternately from the back side.

The frequency of vortex shedding is directly proportional to the liquid velocity.
A piezoelectric sensor mounted inside the vortex shedder detects the vortices, and
subsequent amplification circuits can be used to indicate either the instantaneous
flow rate or a totalized flow over a selected time interval. The meter is precalibrated
by the manufacturer for a specific pipe size. It is generally unsuitable for use with
highly viscous liquids. A number of special installation requirements must be met and
are described in manufacturer’s literature; see, for example, Ref. [49].

/

( )

Pipe

Flow —/ D /\V /_\V
i \/A \/A \ Alternating

downstream vortices
C )

Bluff body

Figure 7.19 Vortex-shedding flowmeter.
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The fluid parameter which governs the operation of the vortex-shedding meter
is the Strouhal number S

_fd

u

S

where f; = shedding frequency
d = diameter or characteristic dimension of the bluff body
u = velocity

For the geometry shown in Fig. 7.19 the Strouhal number has an essentially constant
value of 0.88, within 1 percent, for Reynolds numbers from 10* to 10°.

The vortex-shedding principle can also be used to construct a velocity probe. The
bluff body can be mounted along with the sensors in its own small section of a short
tube and calibrated directly by the manufacturer. The assembly may then be inserted
at various locations in the flow field to measure the local velocity.

ULTRASONIC FLOWMETERS

The Doppler effect is the basis for operation of the ultrasonic flowmeter illustrated in
Fig. 7.20. A signal of known ultrasonic frequency is transmitted through the liquid.
Solids, bubbles, or any discontinuity in the liquid will reflect the signal back to the
receiving element. Because of the velocity of the liquid, there will be a frequency
shift at the receiver which is proportional to velocity. Accuracies of about &5 percent
of full scale may be achieved with the device over a flow range of about 10 to 1. Most
devices require that the liquid contain at least 25 parts per million (ppm) of particles
or bubbles having diameters of 30 wm or more.

A microprocessor-based ultrasonic flowmeter has been developed which employs
a Doppler signal reflected from turbulent eddies in the flow (Ref. [49]). As a result,
it is suitable for operation with clean low-viscosity liquids. Accuracy of 2 percent
of full scale may be achieved and the meter may be installed as few as three pipe
diameters downstream from a 90° elbow. The price is quite high.

Transmitter
Z
o
o o © °
Flow o o ©°

—_— ° o o .

o © o
o © o

o

]

Receiver to sense doppler Bubble or particulates
shift in frequency reflectors

Figure 7.20 Ultrasonic Doppler flowmeter.
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LAMINAR FLOWMETER

If the flow in a channel or tube is laminar, that is, the Reynolds number is less than
about 2000, the volumetric flow rate is related to pressure drop by
d*(p) —
0= md (pr — p2) [7.34]
128 uL

for Rey; = pu,,d/u < 2000.

The nomenclature for such a laminar flow element is indicated in Fig. 7.21. The
mass flow is, correspondingly,

m=pQ [7.35]

Thus, if laminar flow can be assured, the flow rate becomes a direct function of pressure
difference. A laminar flow meter may be constructed of a collection of small tube
elements as shown in Fig. 7.22. If the tubes are sufficiently small, laminar flow can be
maintained. There are entrance and exit losses that occur with the tube assembly. These
losses depend on the particular geometric configuration of the tube assembly, and its
installation in the pipe. Manufacturers of commercial laminar flowmeters furnish
calibration information that applies to their units. Uncertainties of £1/4 percent for
determination of flow rate are reported under careful operating conditions.

In contrast to the orifice, flow nozzle, and venturi, the laminar flowmeter has mass
flow directly proportional to Ap instead of (Ap)'/2. This fact allows for operation over
a wider range of flow rates for a particular differential pressure-measuring device.
Because of their relatively small size, the laminar tube elements are subject to clogging
when used with dirty fluids. The overall pressure loss for the devices is high, of the
order of 100 percent of the measured Ap.

We may note that

pu,d m d
Re = = ——
j Ac
_4m 40p
wdp  wdp
—_— d
Flow
2 A
| L |

Figure 7.21 Laminar flow element.
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Assembly
of
Laminar
> Tube
}.T]OW / Elements
n, Q
<—L—>
Figure 7.22 Laminar flowmeter.

Combining the latter relation with Eq. (7.34) gives
_ 128Re p’L
 4pd?

If acceptable pressure drop and Reynolds numbers are set, the proportions between
L and d may be established for design purposes.

[7.34d]

SIZING OF LAMINAR FLOWMETER  Size a laminar flowmeter used to measure the Example 7.7
flow of air at 2 atm and 20°C with a maximum Reynolds number of 1000 and a pressure drop
of 1000 Pa.

Solution

We employ Eq. (7.34a) to determine the relationship between the length and diameter of the
laminar flow elements. The properties of air are

p = (2)(1.18) = 2.36 kg/m’
w=1.84x 107 kg/m-s

Inserting these values in Eq. (7.34a) gives
L/d* = (1000)(2.36)/(32)(1000)(1.84 x 107%)*> = 2.18 x 10°
If a tube diameter of 1.0 mm is selected, the required length of tube would be
L = (2.18 x 10%)(0.001)’ = 0.218 m
The mass flow through each flow element would be

m = (Re)(rwdp) = (1000)72(0.001)(1.84 x 107%) = 5.78 x 107> kg/s
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7.7 HOT-WIRE AND HOT-FILM ANEMOMETERS

The hot-wire anemometer is a device that is often used in research applications to
study rapidly varying flow conditions. A fine wire is heated electrically and placed in
the flow stream, and the early work of King [5] has shown that the heat-transfer rate
from the wire can be expressed in the form

q=(a+bu®)(T, — Tx) [7.36]

where T, = wire temperature
T, = free-stream temperature of fluid
u = fluid velocity
a, b = constants obtained from a calibration of the device

The heat-transfer rate must also be given by
g =i’Ry, = i’Ro[1 + a(T,, — Tp)] [7.37]

where i = electric current
Ry = resistance of the wire at the reference temperature 7
« = temperature coefficient of resistance

For measurement purposes the hot wire is connected to a bridge circuit, as shown
in Fig. 7.23. The current is determined by measuring the voltage drop across the
standard resistance Ry, and the wire resistance is determined from the bridge circuit.
For steady-state measurements the null condition may be used, while an oscilloscope
output may be used for transient measurements. With i and R,, determined, the flow
velocity may be calculated with Eqs. (7.36) and (7.37). Hot-wire probes have been

Potentiometer or EVM
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Figure 7.23 Schematic of hotwire flow-measurement circuit.
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Figure 7.24 Schematic of hot-wire and hotfilm probes: (a) hot-wire, (b) cylindrical
hotfilm, (c) cooled hotfilm.

used extensively for measurement of transient flows, especially measurements of
turbulent fluctuations. Time constants of the order of 1 ms may be obtained with
0.0001-in-diameter platinum or tungsten wires operating in air.

When the hot wire is to be employed for measurement of rapidly changing flow
patterns, full account must be taken of the transient response of both the thermal and
electrical resistance characteristics of the wire. Two types of electrical compensation
are employed in practice: (1) a constant-current arrangement, where a large resistance
is connected in series with the hot wire and a thermal compensating circuit is then
applied to the output ac voltage, and (2) a constant-temperature arrangement, where
a feedback control circuit is added to vary the current so that the wire temperature
remains nearly constant. Response of the wire depends on the angle the flow velocity
makes with the wire axis, and techniques have been developed to take this effect
into account [6 and 44]. The length-to-diameter ratio of the wire (L/d) also has a
significant effect on the measurement performance. L/d has a value of about 50 for
typical hot wires.

A modification of the hot-wire method consists of a small insulating cylinder
that is coated with a thin metallic film. This device is appropriately called a hot-
film probe, and sketches of hot-wire and hot-film probes are shown in Fig. 7.24.
Figure 7.24c¢ shows a water-cooled probe which may be employed in high-temperature
applications. The nomenclature is:

a. Tungsten hot-wire with platinum surface coating; L ~ 1.2 mm, d ~ 4 um

b. Cylindrical hot-film sensor with platinum film on glass rod; L ~ 1.0 mm,
d ~ 50 um

c. Platinum film on hollow glass tube; L ~ 1.5 mm, d ~ 0.15 mm

d. Gold-plated sensor supports

Ceramic insulating core

Coatings for the hot-film probes are typically achieved with an electroplated gold
layer about 5 um thick.

Hot-film probes are extremely sensitive to fluctuations in the fluid velocity and
have been used for measurements involving frequencies as high as 50,000 Hz. So-
phisticated electronic instrumentation is required for such measurements, and the
interested reader is referred to Refs. [6] and [44] for additional information, as well
as to the literature of such manufacturers as Thermal Systems and DISA, Inc.
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Figure 7.25 Mass flowmeter based on thermal energy transfer.

THERMAL MASS FLOWMETERS

A direct measurement of mass flow of gases may be accomplished using the principle
illustrated in Fig. 7.25. A precision tube is constructed with upstream and downstream
externally wound resistance temperature detectors. Between the sensors is an electric
heater. The temperature difference 7| — 75 is directly proportional to the mass flow of
the gas and may be detected with an appropriate bridge circuit. The device is restricted
to use with very clean gases. Calibration is normally performed with nitrogen and a
factor applied for use with other gases.

Another thermal mass flowmeter for gases utilizes two platinum resistance tem-
perature detectors (RTDs; see Sec. 8.5). One sensor measures the temperature of the
gas flow at the point of immersion. A second sensor is heated to a temperature of 60°F
above the first sensor. As a result of the gas flow, the heating of the second sensor
is transferred to the gas by convection. The heat-transfer rate is proportional to the
mass velocity of the gas, defined as

Mass velocity = pu = density x velocity

The two sensors are connected to a Wheatstone bridge and the output voltage or
current is that required to maintain the 60°F temperature differential. This output is
a nonlinear function of pu, but special circuits may be used to produce a linearized
output for readout purposes.

We must note, of course, that the immersion-type meter measures mass velocity
at the point of immersion. For flow systems with varying velocities several measure-
ments may be necessary to obtain an integrated mass flow across the channel. The
probe containing both sensors is typically about 0.25 in in diameter. Velocities of
gases at standard conditions between 0.08 and 160 ft/s can be measured with the
device. Accuracies of about £2 percent of full scale may be achieved.
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Figure 7.26 Turbulent fluctuations in direction of flow.

TURBULENCE MEASUREMENTS

In turbulent fluid flow, whether in a channel or in a boundary layer, the fluid-velocity
components exhibit a random oscillatory character, which depends on the average
fluid velocity, fluid density, viscosity, and other variables. The instantaneous-velocity
components are expressed as

u=u+u (x component)
v=0+7 (y component)
w=w+w (z component)

where the bar quantities are the integrated average-velocity components and the
primed quantities represent the fluctuations from the average velocity. Figure 7.26
illustrates a typical plot of turbulent fluctuations. One measure of the intensity of
turbulence is the root mean square of the fluctuations. For the x component

o 1 /T 1/2
wlo= W) = {T/ u’zdt} [7.38]
0

where T is some time period that is large compared to the turbulence scale.
Turbulent fluctuations occur over an extremely broad range. Some typical
values are:

Background turbulence in well-designed wind tunnels 0.05%
Turbulence created by grids 0.02-2%
Turbulent wakes 2-5%
Turbulent boundary layers and pipe flows 3-20%

Turbulent jets 20-100%
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The average kinetic energy (KE) of turbulence per unit mass may be taken as a
measure of the total turbulence intensity of the flow stream. Thus,

Turbulence KE
Mass

The hot-wire or hot-film anemometer is very useful for turbulence measurements
because it can respond to very rapid changes in flow velocity. Two or more wires at one
pointin the flow can make simultaneous measurements of the fluctuating components.
Various mean values and energy spectra can then be computed from the voltage
outputs of the probes. In general, these operations can be performed electronically.

1 —
= E(u’2 +v2 + w?) [7.39]

7.8 MAGNETIC FLOWMETERS

Consider the flow of a conducting fluid through a magnetic field, as shown in Fig. 7.27.
Since the fluid represents a conductor moving in the field, there will be an induced
voltage according to

E=BLux 1078V [7.40]

where B = magnetic flux density, gauss
u = velocity of the conductor, cm/s
L = length of the conductor, cm

The length of the conductor is proportional to the tube diameter, and the velocity is
proportional to the mean flow velocity. The two electrodes detect the induced voltage,
which may be taken as a direct indication of flow velocity.

Two types of magnetic flowmeters are used commercially. One type has a
nonconducting pipe liner and is used for fluids with low conductivities, like water.
The electrodes are mounted so that they are flush with the nonconducting liner and
make contact with the fluid. Alternating magnetic fields are normally used with these
meters since the output is low and requires amplification. The second type of mag-
netic flowmeter is one which is used with high-conductivity fluids, principally liquid

Electrode

Magnetic BLu X 1078V
field
Flow, u

>

Electrode

Figure 7.27 Flow of conducting fluid through a magnetic field.
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metals. A stainless-steel pipe is employed in this case, with the electrodes attached
directly to the outside of the pipe and diametrically opposed to each other. The out-
put of this type of meter is sufficiently high that it may be used for direct readout
purposes.
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Fluid flow is a complicated subject with many areas that have not yet yielded to pre-
cise analytical techniques. Accordingly, flow-measurement problems are not always
simple and precise because of the lack of analytical relations to use for calculation
and reduction of experimental data. The interpretation of data involving turbulence
or measurements of complicated boundary layer, viscous, and shock-wave effects is
not easy. Frequently, the flow may be altered as a result of probes that are inserted to
measure the pressure, velocity, and temperature profiles so that the experimentalist
is uncertain about the effect that has been measured. Flow visualization by optical
methods offers the advantage that when properly executed it does not disturb the fluid
stream, and thus gives the experimentalist an extra tool to use in conjunction with
other measurement devices. In some instances flow-visualization techniques may be
employed for rather precise measurements of important flow parameters, while in
other cases they may serve only to furnish qualitative information regarding the over-
all flow behavior. In the following paragraphs we shall discuss the principles of some
of the basic flow-visualization schemes and indicate their applications. The interested
reader should consult Refs. [8] and [17] for a rather complete survey of the subject.
Additional advances are presented in Ref. [47].

Consider the gaseous flow field shown in Fig. 7.28. The flow is in a direction
perpendicular to the figure, that is, the z direction. An incoming light ray is deflected

Deﬂected
Flow field
Incoming L
light ray YN
~—— Windows —
L’ ’]

Figure 7.28 Basic optical effects used for flow visualization.
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through an angle € as a result of density gradients in the flow. It may be shown? that
the deflection angle for small-density gradients is given as

A L
ny \dy y=yi ps \dy y=yi

where L is the width of the flow field, p is the local fluid density, p;, is a reference
density which is usually taken at standard conditions, and # is the index of refraction,
which for gases may be written as

n= (1 + ,B'O)nl [7.42]
Bis a dimensionless constant having a value of about 0.000292 for air; n; is the index
of refraction outside the flow field and can be taken as very nearly unity in Eq. (7.41).

According to Eq. (7.41) the angular deflection of the light ray € is proportional
to the density gradient in the flow. This is the basic optical effect that is used for
flow-visualization work. It may be noted that the deflection of the light ray is a
measure of the average density gradient integrated over the x coordinate. Thus, the
effect is primarily useful for indicating density variations in two dimensions (in this
case the y and z dimensions) and will average the variations in the third dimension.

In the following sections we shall discuss several optical methods of flow visu-
alization for use in gas systems. For liquid-flow visualization a typical experimental
technique is to add a dye to the liquid in order to study the flow phenomena. Another
technique which has received considerable attention for use with liquids is the
so-called hydrogen-bubble method. The technique consists of using a fine wire, placed
in water, as one end of a dc circuit to electrolyze the water. Very small hydrogen
bubbles are generated in the liquid. The motion of the bubbles may be studied by
illuminating the flow. The application of this method has been given a very com-
plete description by Schraub et al. [16]. Figure 7.29 indicates the voltage-discharge

Potentiometer rectifier Charging R

Transformer 0-30 DlS(;?g.(f)g;;lg R
T To bubble
Line input | i—__S——l wire
| T1s0uE <
LY
Relay T

Polarity reversing
switch

Figure 7.29 Voltage pulse circuits for hydrogen-bubble method, according to
Ref. [16].

| 2See, e.g., Ref. [10].
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circuits employed in the technique. A variable-input voltage from 10 to 250 V is
provided and rectified in the diode circuit. A relay is used to charge and discharge the
capacitor periodically, and a variable resistor is provided in the charging circuit to
tune the system for optimum performance for each wire diameter and flow condition.
In some cases it is necessary to add a small amount of sodium sulfate to the water in
order to achieve a satisfactory electrolyte concentration.
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The shadow technique is a method for direct viewing of flow phenomena. Imagine the
flow field as shown in Fig. 7.30 with a density gradient in the y direction. The parallel
light rays enter the test section as shown. In the regions where there is no density
gradient, the light rays will pass straight through the test section with no deflection.
For the regions where a gradient exists the rays will be deflected. The net effect is
that the rays will bunch together after leaving the test section to form bright spots
and dark spots. The illumination will depend on the relative deflection of the light
rays de/dy, and hence on d?p/dy*. The illumination on a screen placed outside the
test section is thus dependent on the second derivative of the density at the particular
point.

The shadowgraph is a very simple optical tool, and its effect may be viewed in
several everyday phenomena using only the naked eye and local room lighting. The
free-convection boundary layer on a horizontal electric hot plate is clearly visible
when viewed from the edge. This phenomenon is visible because of the density
gradients that result from the heating of the air near the hot surface. It is almost
fruitless to try to evaluate local densities using shadow photography; however, the
shadowgraph is useful for viewing turbulent flow regions, and the method can be used

y
i i Screen
| | JDark
—T——4 Bright
e Dark
I Ry s
::Q Bright

;

Figure 7.30 Shadowgraph flow-visualization device.
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Figure 7.31 Shadowgraph of the free convection boundary layer on a 1.25-cm
diameter horizontal cylinder. The cylinder size is indicated by the white
circle placed on the photo. The dark area is the boundary layer and
heated wake above the cylinder. The “halo” results from the refraction of
the light pencils nearest the heated surface. The distance between the
cylinder surface and the halo at the same angular position is proportional
to the surface convection heat transfer coefficient. (See Sec. 9.7 for
measurement of convection coefficients.)

to establish the location of shock waves with high precision. Figure 7.31 illustrates
the free-convection boundary layer on a horizontal cylinder. Developments in digital
imaging systems whereby the illumination of individual pixels may be accessed in
the final image offer opportunities for further advances. (See Appendix B.)

7.11 THE SCHLIEREN

While the shadowgraph gives an indication of the second derivative of density in the
flow field, the schlieren is a device which indicates the density gradient. Consider
the schematic diagram shown in Fig. 7.32. Light from a slit source ab is collimated
by the lens L, and focused at plane 1 in the test section. After the light passes through
lens L,, an inverted image of the source at the focal plane 2 is produced. Lens L3 then
focuses the image of the test section on the screen at plane 3. Now, let us consider
the imaging process in more detail. The pencils of light originating at point a occupy
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a different portion of the various lenses from those originating from point b or any
other point in the slit source. The regions in which these pencils overlap are shown
in Fig. 7.32. Note that all pencils of light pass through the image plane cd in the test
section and the source image plane b'a’. An image of the test section at d’c¢’ is then
uniformly illuminated since the image at b'a’ is uniformly illuminated. This means
that all points in the plane b'a’ are affected in the same manner by whatever fluid
effects may take place in the test section.

If the test section is completely uniform in density, the pencils of light appear as
shown in Fig. 7.32; a pencil originating at point ¢ is deflected by the same amount as
a pencil originating at point d. This is consistent with the observation that all pencils
originating in plane cd completely fill the image plane b'a’. Now, consider the effect of
the introduction of an obstruction at plane &'a’ under these circumstances. We imme-
diately conclude that such an obstruction would uniformly decrease the illumination
on the screen by a factor proportional to the amount of the area b'a’ intercepted.

Suppose now that a density gradient exists at the test section focal plane cd. This
means that all pencils of light originating in this plane would no longer fill the image
plane b'a’ completely. If, then, an obstruction is placed at plane b'a’, it will intercept
more light from some points in the test section plane than from others, resulting in
light and dark regions on the screen at plane 3. The obstruction is called a knife edge,
and the resultant variation in illumination on the screen is called the schlieren effect.

Let us examine the variation in illumination in more detail. In Fig. 7.32b the total
height of the source image is y and the portion not intercepted by the knife edge is

Test section

Slit I I Screen
source v C / e d
b
a
b i ¢
VAR d Y
L [ | Ly Ly
1 2 3
(a)
b's Tf
M
a'
Knife
edge
(b)

Figure 7.32 (a) Schematic of schlieren flow visualization; (b) detail of knife edge.
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v1. Thus, the general illumination on the screen [ is proportional to y;. An angular
displacement of a pencil of light in plane 1 is €. This produces a vertical deflection at
plane 2 of

Ay = fre [7.43]

where f, is the focal length of lens L,. As a result of this deflection, there is a
fractional change in illumination on the screen. The contrast at any point on the
screen may be defined as the ratio of the fractional change in illumination to the
general illumination, or

Al A
c_AL_ by _ fe

[7.44]
1 yiooon
The angular deflection is given by Eq. (7.40), so that the expression for contrast may
be written
LB (4
c= 1L (p> [7.45]
Y1Ps dy cd

Thus, the contrast on the screen is directly proportional to the density gradient in
the flow. It may be observed that the contrast may be increased by reducing the
distance yj, that is, by intercepting more light at the source image plane. This also
reduces the general illumination so that the contrast may not be increased indefinitely
and a compromise must be accepted. Schlieren photographs are used extensively for
location of shock waves and complicated boundary-layer phenomena in supersonic
flow systems. A typical schlieren photograph is shown in Fig. 7.33. In actual practice
most schlieren systems use mirrors instead of lenses for reasons of economy. Again,
the development of digital imaging systems offers the possibility of pixel-by-pixel
measurement of illumination and contrast in the final image.

Figure 7.33 Schlieren photograph of the heated wake from an electric soldering iron.
Tip of iron is approximately 0.125 inch in diameter. Note turbulence
in wake.
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The Mach—Zehnder interferometer is the most precise instrument for flow visualiza-
tion. Consider the schematic representation in Fig. 7.34. The light source is collimated
through lens L; onto the splitter plate S;. This plate permits half of the light to be
transmitted to mirror M, while reflecting the other half toward mirror M;. Beam 1
passes through the test section, while beam 2 travels an alternative path of approx-
imately equal length. The two beams are brought together again by means of the
splitter plate S, and eventually focused on the screen. Now, if the two beams travel
paths of different optical lengths because of either the geometry of the system or the
refractive properties of any element of the optical paths, the two beams will be out
of phase and will interfere when they are joined together at S,. There will be alter-
nate bright and dark regions called fringes. The number of fringes will be a function
of the difference in optical path lengths for the two beams; for a difference in path
lengths of one wavelength there will be one fringe, two fringes for a difference of
two wavelengths, and so on.

The interferometer is used to obtain a direct measurement of density variations in
the test section. If the density in the test section (i.e., beam 1) is different from that in
beam 2, there will be a change in the refractive properties of the fluid medium. If the
medium in the test section has the same optical properties as the medium in beam 2,
there will be no fringe shifts except those resulting from the geometric arrangement
of the apparatus. These fringe shifts may be neutralized by appropriate movements
of the mirrors and splitter plates. Then, the appearance of fringes on the screen may
be directly related to changes in density in the flow field within the test section by
utilizing the following analysis.

Light o<€ ) M,
source
V
L
Beam 1 Beam 2
N =t
o
&
Ml\\ z (\/
2 S L,

Test section
Screen

Figure 7.34 Schematic of Mach-Zehnder interferometer.
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The change in optical path in the test section resulting from a change in refractive
index is
AL = L(n — ny) [7.46]

where L is the thickness of the flow field in the test section. Using Eq. (7.42) the
change in optical path may be related to change in density for gases by

P — Po

AL = AL [7.47]
Ps
The number of fringe shifts N is then given by
AL L p—
N=AL _PLr—m [7.48]

A Ao s

where X is the wavelength of the light. In Eq. (7.48) it is to be noted that p — pg
represents the change in the density from the zero-fringe condition. The subscript O
refers to the zero-fringe condition, that is, conditions in the path followed by beam 2
in Fig. 7.34. p; is the reference density at standard conditions.

The interferometer gives a direct quantitative indication of density changes in
the test section, but these changes are represented as integrated values over the entire
thickness of the flow field. It is applicable to a wide range of flow conditions ranging
from the low-speed (~30 cm/s) flow in free-convection boundary layers to shock-
wave phenomena in supersonic flow. Figure 7.35 shows a typical interferometer pho-
tograph. The caption explains the flow phenomena.

Figure 7.35 Interferometer photograph of the interaction of free-convection boundary
layers on three horizontal heated cylinders. Fluid is air, and each fringe
line represents a line of constant temperature. (Photograph courtesy of
E. Soehngen.)
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We have already given the frequency characteristics of some typical monochro-
matic light sources in Table 5.1. The mercury source is one commonly employed for
interferometer work.
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We have seen how optical flow-visualization methods offer the advantage that they
do not disturb the flow during the measurement process. The laser anemometer is a
device that offers the nondisturbance advantages of optical methods while affording
a very precise quantitative measurement of high-frequency turbulence fluctuations.

One possible schematic of an LDA is shown in Fig. 7.36a. The laser beam is
focused on a small-volume element in the flow through lens L. In order for the
device to function, the flow must contain some type of small particles to scatter the
light, but the particle concentration required is very small. Ordinary tap water con-
tains enough impurities to scatter the incident beam. Two additional lenses L, and
L are positioned to receive the laser beam that is transmitted through the fluid (lens
L3) and some portion of the beam that is scattered through the angle 6 (lens L,).
The scattered light experiences a Doppler shift in frequency that is directly propor-
tional to the flow velocity. The unscattered portion of the beam is reduced in intensity
by the neutral density filter and recombined with the scattered beam through the
beam splitter. The laser-anemometer device must be constructed so that the direct
and scattered beams travel the same optical path in order that an interference will be
observed at the photomultiplier tube that is proportional to frequency shift. This
shift then gives an indication of the flow velocity. To retrieve the velocity data
from the photomultiplier signal rather sophisticated electronic techniques must be
employed for signal processing. A spectrum analyzer may be used to determine
velocity in steady laminar flow as well as mean velocity and turbulence intensity
in turbulent flow.

Alternative schemes for accomplishing the scattering and measurement process
are shown in Fig. 7.36b and c. In (b) the laser beam is split outside the test section,
and the two beams can be focused on the exact point to be studied in the flow field.
The aperture acts as a shield for noncoherent scattered light and background light.
The system in Fig. 7.36¢ is a further modification of the system and allows for easy
adjustment of path length.

He—Ne gas lasers are most often employed for LDA work, although argon ion
lasers provide a more intense beam output. The He—Ne laser operates at a wavelength
of 632.8 nm (&5 x 10'* Hz) with a bandwidth of about 10 Hz. Although the Doppler
shift caused by the moving scattering centers is small compared to the laser source
frequency, it is very large compared to the bandwidth and can be detected by hetero-
dyne techniques. In this procedure the photocathode mixes the scattered beam with
the reference beam to generate a current with a frequency equal to the difference in
frequency of the two beams. The electronic processing requires a spectrum analysis



354 CHAPTER 7 o FLOW MEASUREMENT

Scattering
Lens centers Lens
Ly L
Mirror n /\ o /\ :ILa%er

Neutral
density
filter

Beam Fluid-flow system

splitter
Photomultiplier
tube

Electronic Readout
processing

(a)

Mirror

Photomultiplier
tube |

Aperture

Flow

(b)

Mirr
Filter

Aperture

splitter
Photomultiplier
tube

(<)

Figure 7.36 Schematic of laser-anemometer flow-measurement system.
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of the photomultiplier current to determine the Doppler frequency and subsequently
the flow velocity.

It is clear that the LDA measures the velocity of the scattering particles. If they
are sufficiently small, the slip velocity between particles and fluid will be small, and
thus an adequate indication of fluid velocity will be obtained. Laser anemometers
that measure more than one velocity will be obtained. Laser anemometers that mea-
sure more than one velocity component simultaneously have been developed [41],
but the optics and electronic-signal-processing techniques become quite complex
and expensive. Even so, the technique offers unusual promise for detailed investi-
gations of turbulence and other flow phenomena which may not be performed in
any other way. Welch and Hines [27] have noted that the sample volume of a fo-
cused laser beam can be as small as 1.6 x 107> mm?® with a spatial resolution of
the order of a few tens of micrometers. The interested reader should consult Refs.
[39] to [42] and [53] to [57] for additional information on the construction of laser
anemometers and the measurements that have been obtained. Goldstein [46] gives a
summary of LDA work. Progress in the development of LDA systems is very rapid,
and those persons interested in the latest hardware and software will be well advised
to consult current commercial suppliers® for information pertaining to their particular
application.
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INTERFEROMETER. An interferometer is used for visualization of a free-convection
boundary layer on a vertical flat plate in air. For this application the following data were
collected:

Plate temperature 7;, = 50°C
Free-stream air temperature T, = 20°C
B = 0.000293

Depth of test section L = 50 cm
Wavelength of light source A = 5460 A
Reference density = 20°C

Pressure = 1.0 atm

Calculate the number of fringes that will be viewed in the boundary layer.
Solution
We use Eq. (7.48) for this calculation. The reference density is the same as the zero-fringe

density so that
L[ puw
N BE( P,
A\ Poo

3Dantec Measurement Technology, Inc., Mahwah, NJ; TSI Incorporated, St. Paul, MN; Aerometrics, Inc.,
Sunnyvale, CA; La Vision GMBH, Goettingen, Germany.

Example 7.8
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For air the density is calculated from the ideal-gas equation of state:

p

RT

Thus, N = @ (TOO _ 1)
A \T,

_(0.000293)(50) (293 )
T (5460 x 10-8) \ 323

= 24.92 fringes

‘ 7.14 SMOKE METHODS

A very simple flow-visualization method utilizes the injection of smoke traces in a
gas stream to follow streamlines. The method is primarily of qualitative utility in
that direct measurements are difficult to obtain except for certain special phenomena.
Figure 7.37 shows an example of a flow system where smoke visualization was used
to verify an analytical calculation. In this case smoke is used to view the complicated
secondary flow patterns in a channel through which a forced flow is coupled with a
standing sound wave. The smoke patterns in Fig. 7.37a agree well with the analytical
predictions in Fig. 7.37b.

In order for the smoke filaments to represent streamlines of the flow it is necessary
that the individual smoke particles be of sufficiently small mass so that they are
carried along freely at the flow velocity. Filtered smoke from burning rotten wood
or cigars is generally suitable for smoke studies, as is smoke from the chemical
titanium tetrachloride when it reacts with moisture in air to form hydrochloric acid
and titanium oxide. This latter substance, however, is corrosive to many materials
used for the construction of containers. Reference [14] discusses the use of titanium
tetrachloride for low-speed flow measurements. One of the best fuels for producing
nontoxic, noncorrosive, dense smoke is a product called Type-1964 Fog Juice. This
fuel has a boiling temperature of approximately 530°F (276°C), contains petroleum
hydrocarbon, and may be obtained from most theatrical supply houses. Some smoke-
generation techniques are discussed in Ref. [28].

Particle image velocimetry (PIV) coupled with digital imaging systems offer the
ability to track individual particle motions [56].

‘ 7.15 PRESSURE PROBES

A majority of fluid dynamic applications involve measuring the total flow rate by
one or more of the methods discussed in the previous sections. These measurements
ignore the local variations of velocity and pressure in the flow channel and permit



7.15 PRESSURE PROBES 357

Figure 7.37 (a) Smoke photograph showing secondary flow effects resulting from a
standing sound wave in a tube: (b) flow streamlines for the system in (a) as
obtained from the theoretical analysis of Ref. [12]. (Photograph courtesy of
Dr. T. W. Jackson.)

an indication of only the total flow through a particular cross section. In applications
involving external flow situations, such as aircraft or wind-tunnel tests, an entirely
different type of measurement is required. In these instances probes must be in-
serted in the flow to measure the local static and stagnation pressures. From these
measurements the local flow velocity may be calculated. Several probes are avail-
able for such measurements, and summaries of characteristic behaviors are given in
Refs. [4], [7], [13], and [18]. We shall discuss some of the basic probe types in this
section.
The total pressure for isentropic stagnation of an ideal gas is given by

1 YIr=1)
Po _ <1 + VT Mgo) [7.49]
Poo

where py is the stagnation pressure po is the free-stream static pressure, and M, is
the free-stream Mach number given by

Ueco

My = -2 [7.50]
a
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a is the acoustic velocity and may be calculated with

a=/vg.RT [7.51]

for an ideal gas. It is convenient to express Eq. (7.49) in terms of dynamic pressure
q defined by

q = 3pus, = sypMZ, [7.52]
Equation (7.49) thus becomes
2 1 y/(y—1)
Po — Poo = W;Iz (1 +7 5 Mﬁo) -1 [7.53]
This relation may be simplified to
2 M2 22—
po—pm:w‘j2 (1+4°°+Z4VM;‘O+--~) [7.54]
oo
when > (v=1
M, )< 1.

For very small Mach numbers Eq. (7.54) reduces to the familiar incompressible
flow formula

PO — Poc = 5Pl [7.55]

We thus observe that a measurement of static and stagnation pressures permits a
determination of the flow velocity by either Eq. (7.55) or Eq. (7.53), depending on
the fluid medium.

A basic total pressure probe may be constructed in several different ways, as
shown in Fig. 7.38. In each instance the opening in the probe is oriented in a direc-
tion exactly parallel to the flow when a measurement of the total stream pressure is
desired. If the probe is inclined at an angle 6 to the free-stream velocity, a somewhat
lower pressure will be observed. This reduction in pressure is indicated in Fig. 7.38
according to Ref. [7]. Configuration a represents an open-ended tube placed in the
flow. Configuration b is called a shielded probe and consists of a venturi-shaped tube
placed in the flow with an open-ended tube at the throat of the section to sense the
stagnation pressure. It may be noted that this probe is rather insensitive to flow direc-
tion. Configuration c represents an open-ended tube with a chamfered opening. The
chamfer is about 15°, and the ratio of OD to ID of the tube is about 5. Configuration
d represents a tube having a small hole drilled in its side, which is placed normal to
the flow direction. This type of probe, as might be expected, is the most sensitive to
changes in a yaw angle. Also indicated in Fig. 7.38 is a portion of the curve for a
Kiel probe, which is similar in construction to configuration b, except that a smoother
venturi shape is used, as shown in Fig. 7.39. The Kiel probe is the least sensitive to
the yaw angle.
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Stagnation pressure response of various probes to changes in yaw angle.

(a) Open-ended tube; (b) channel tube; (c) chamfered tube; (d) tube with

orifice in side. (From Ref. [7].)
[<—0.160"—]
Usg
——
0.095"
x4
~y
=~ 0.079"

Figure 7.39

Kiel probe (Model 3696) for measurement of stagnation pressure.

(Courtesy of Airflow Instrument Co., Glastonbury, CT.)
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INFLUENCE OF YAW ANGLE.

80 ft/s. Calculate the pressure indicated by the probe.

An open-ended tube probe is yawed at an angle of 30°
from the flow direction in an airstream at 12 psia and 40°F having a free-stream velocity of

We consult Fig. 7.40 for an open-ended probe at a yaw angle of 30° and obtain

= —0.06
S,

[a]

We have p,, = 12 psia and T, = 40°F = 500°R, so the density is calculated as

b P
RT

(12)(144)

=— "7 —(.0648 lbr/ft’

"~ (53.35)(500)

Example 7.9
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From Eq. (7.55)
) (0.0648)(80)>
2T T3y [b]
= 6.446 pst

Po — Poo =

Note that g. = 32.17 Ibm - ft/Ibf - s> has been inserted to balance the units. Using Eq. (a), we
obtain

Po.ind — Po = (—0.06)(6.446) psf [c]
Adding (b) and (c), we have
Do,ind — Poo = (0.94)(6.446) = 6.059 psf

6.059 ,
and Pojind = 12+ Tar = 12.042 psia

The measurement of static pressure in a flowstream is considerably more difficult
than the measurement of stagnation pressure. A typical probe used for the measure-
ment of both static and stagnation pressures is the Pitot tube shown in Fig. 7.40. The
opening in the front of the probe senses the stagnation pressure, while the small holes
around the outer periphery of the tube sense the static pressure. The static-pressure
measurement with such a device is strongly dependent on the distance of the peripheral
openings from the front opening as well as on the yaw angle. Figure 7.41 indicates the
dependence of the static-pressure indication on the distance from the leading edge of
the probe for both blunt subsonic and conical supersonic configurations. To alleviate
this condition, the static-pressure holes are normally placed at least eight diameters
downstream from the front of the probe. The dependence of the static and stagnation
pressures on yaw angle for a conventional Pitot tube is indicated in Fig. 7.42. This
device is quite sensitive to flow direction. The probe in Fig. 7.40 is sometimes called
a Pitot static tube because it measures both static and stagnation pressure.

The static-pressure characteristics of three types of probes are shown in Figs. 7.43
and 7.44 as functions of Mach number and yaw angle. It may be noted that both the

8D i

Four to eight holes 0.04”
diameter equally spaced —

Figure 7.40 Schematic drawing of Pitot tube.
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wedge and Prandtl tube indicate static-pressure values that are too low, while the cone
indicates a value that is too high. The wedge is least sensitive to yaw angle. All three
probes have two static-pressure holes located 180° apart.
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VELOCITY MEASUREMENT WITH PITOT TUBE. A Pitot tube is inserted in a flow
stream of air at 30°C and 1.0 atm. The dynamic pressure is measured as 1.12 in water when
the tube is oriented parallel to the flow. Calculate the flow velocity at that point.

Solution

We use Eq. (7.55) for this calculation. The air density is calculated as

P 10132x10°
T RT. (281303

p = 1.165 kg/m®

We also have

Po — Poo = 1.121n water = 5.82 psf = 278.7 Pa

2 —po) _ [@e1D]"
e p | 1165

= 21.9m/s (71.8ft/s)

so that the velocity is

Example 7.10

DETERMINATION OF VOLUME FLOW RATE USING PITOT TUBE. A Pitot tube
is used to measure the dynamic pressure p, — po, for air in a 4-in-diameter duct. The air
conditions are 14.7 psia and 70°F (530°R). The readings are shown in the accompanying table
for five radial positions measured from the center of the duct. No measurement is taken at the
outside radius where the velocity is assumed zero. For the first reading at the center of the duct
the velocity is calculated from

ou’

Po = Po = TgL [d]
with the density of air calculated from
0= % = (14.7)(144) /(53.35)(530) = 0.0748 Ibm/ft> [b]
Then, with py — pee = 2.87 inH,0 = 14.92 Ibf/ft,
2)(32.17)(14.92) 1"
u=|—_""" = 113ft/s [c]
0.748

Example 7.11
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Velocities at the other radial positions are calculated in a similar manner and displayed in the
table.
‘We want to calculate the volume rate of flow in the duct using this information.

Table Example 7.11

P0 —Poos

Index, i ri,in inHO  u;, ft/s Ty in AA;L 2w AA; s

0 0 2.87 113 0.00136 0.15
0.25

1 0.5 272 110 0.0109 1.20
0.75

2 1.0 241 104 0.0218 2.27
1.25

3 1.5 1.90 92 0.0235 2.16
1.625

4 1.75 1.60 84 0.014 1.18
1.813

5 1.875 1.30 76 0.0102 0.78
1.9375

6 2.0 0 0 0.0054 0

Solution
A numerical approximation for the volume flow may be written as

0= /anu dr ~ Zu,-AA,- [dl

where the u; are the calculated values at the respective r; positions indicated in the table. An
arithmetic mean radius r,, between each set of r;’s is also shown. We assume that the flow area
AA; for each r; is

AA; = n<r2 — r,zn_l)

m+1
or, forr; = 1.0,

_ 7(1.252 — 0.75%)

= 0.0218 ft?
144

AA;

At r; = 0 the area is assumed to be 7(0.25)2/144 = 0.00136 ft*> while that at r; = 2 is
7(1.9375)% /144 = 0.0054 f>.
Performing the summation indicated in (d), we obtain

Q =17.7415/s
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The area of the duct is

2 2
a0 = "2 _ 0087382
144
so the mean flow velocity is calculated as
7.74
Umean = ———— = 89 ft/s
0.0873

Comment

This calculation illustrates how a rather simple set of measurements may be used to estimate
volumetric flow rate in a duct. The uncertainty in the final result will be a strong function of
the uncertainties in the readings of py — p.. Since these readings will likely be taken in a time
sequence, they are subject to flow variations over the total measurement time period. These
fluctuations may be considerable.

7.16 IMPACT PRESSURE IN SUPERSONIC FLOW

Consider the impact probe shown in Fig. 7.45 which is exposed to a free stream with
supersonic flow; that is, M| > 1. A shock wave will be formed in front of the probe
as shown, and the total pressure measured by the probe will not be the free-stream
total pressure before the shock wave. It is possible, however, to express the impact
pressure at the probe in terms of the free-stream static pressure and the free-stream
Mach number. The resulting expression as given in Refs. [10 and 51] is

Poo _ {2¢/(y + DIM — (v — D/ + ) [7.56]

po, {ly+1/21m3 )70

where po is the free-stream static pressure and Py, is the measured impact pressure
behind the normal shock wave. This equation is valid for Reynolds numbers based on

M,>1 M,
Po, —_—

P Poz

Shock wave —

Figure 7.45 Impact tube in supersonic flow.
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probe diameter greater than 400. Equation (7.56) is called the Rayleigh supersonic
Pitot formula. We see that in order to determine the value of the Mach number we
must make a measurement of the free-stream static pressure. It is possible to make
this measurement with special calibrated probes.

Example 7.12

IMPACT TUBE IN SUPERSONIC FLOW.  Aprobe like that shown in Fig. 7.45 is placed
in an airflow stream where M; = 2.5 and the free-stream static pressure is measured as 22 kPa.
Determine the stagnation pressure before and after the shock wave.

Solution
We employ Eq. (7.56) for this calculation of py, with M; = 2.5 and y = 1.4 for air. Thus,

P _ {I)(14/24]12.57 - (04)/ 2.4}/

Do, {[(2.4)(2)1(2.5)2}1 4/04
=0.1173
22
and = = 187.6kP
Po- = 51173 a

The stagnation pressure upstream of the shock wave is calculated from Eq. (7.49):

-1 /(=1
P (14X e
Poo 2

= [1+(0.2)(2.5)*]"*"*
= 17.086

and Ppo, = (22)(17.086) = 375.9kPa

7.17 SUMMARY

Comparisons of the operating range, characteristics, and advantages of several flow-
meters are presented in Table 7.2 and may be taken as a summary of our discussions
in this chapter. The reader should bear in mind that the stated accuracies for the
various flowmeters may be improved with suitable calibration. Of course, the overall
accuracy of a flow-rate determination is also dependent on the accuracy of the readout
equipment. As an example, a venturi might be carefully calibrated within 0.5 percent,
but if it were used with a crude instrument for differential pressure measurements, a
much poorer precision would result than that for which it was calibrated.
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Table 7.2  Operating characteristics of several types of flowmeters
Fluid Factors
Maximum
Maximum Flow Useful Maximum Temperature Viscosity,
Range Range Pressure, Range, cSt
Meter Type em¥/s x 1073 Ability Mpa °C (10~ m?/s)
Obstruction Orifice Liquid 0.012-220 5:1 42 —270-1100 4000
meters Gas 23-43,000
Flow nozzle Liquid 0.031-950 5:1 10 —50-800 4000
Gas 45-240,000
Venturi Liquid 0.03-950 5:1 10 —50-800 4000
Gas 45-240,000
Drag effects Glass-tube Liquid 10:1 2 —45-200 100
rotameter 0.1 x 1073-16
Gas 0.006-330
Metal-tube Liquid 0.03-250 10:1 35 —180-870 100
rotameter Gas 0.2-470
Turbine or Liquid 15:1 105 —270-540 30
propeller 0.2 x 1073-3100
Gas 0.2-140,000 10:1
Clean liquid 10:1 1.0 —15-150 2000
0.02-63
Magnetic flowmeter Conductive 20:1 4 —130-180 1000
liquid only
0.1 x 1073-3100

7.18 REVIEW QUESTIONS

7.1. What basic methods are used for calibration of flow-measurement devices?

7.2. What is meant by a positive-displacement flowmeter?

7.3. What are the relative advantages of the venturi, orifice, and flow-nozzle meters?

7.4. What type of flow-measurement accuracy would you expect with an orifice; a

venturi?
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Application Factors

Installation Factors

Standard Pressure  Line Typical
Accuracy, Construction  Loss, Size, Special Piping Power Relative
Scale Indication % Materials kPa cm Considerations Requirement Cost
Square Remote 1-2 full-scale ~ Most metals 0.7-200 4-30 Straight pipe: None 1.0
root rate differential differential 10 diameters
pressure pressure upstream,
3 downstream
Square Remote 1-2 full-scale ~ Bronze, iron, 0.7-140 2-60 Straight pipe: None 14
root rate differential differential steel, stain- 10 diameters
pressure pressure less steel upstream,
3 downstream
Square Remote 1-2 full-scale ~ Bronze, iron, 0.7-100 2-60 Straight pipe: None 1.5
root rate differential differential steel, stain- 10 diameters
pressure pressure less steel, upstream,
plastic 3 downstream
Linear Local or 1-2 full-scale ~ Most metals, 0.05-7 0.6-10 Vertical only None 1.0
rate remote plastics, and
electric or ceramics
pneumatic
Linear Local or 1-2 full-scale ~ Most metals, 0.3-70 1.2-30 Vertical only None 1.2
rate remote plastics, and
electric or ceramics
pneumatic
Linear Remote 0.5 reading Aluminum, 14-70 0.3-90 Any position 115, 5.0
total electric stainless 60 Hz,
steel 50 W
Linear Local or 1 reading Bronze, iron, 7-140 1.2-15 Horizontal None 1.0
total remote steel, stain- recommended
electric less steel
Linear Remote 0.5-1 full- Plastic, Very 0.2-200  Any position 115V, 6.0
rate electric scale stainless small 60 Hz,
steel with 200 W
nonconductive
liner
7.5. What is a sonic nozzle? How is it used? What are its advantages and disadvan-

tages?

7.6. Why is a rotameter called a drag meter? Could it also be called an area meter?

7.7. What is the utility of the hot-wire anemometer?

7.8

Distinguish among the shadowgraph, schlieren, and interferometer flow-

visualization techniques. What basic flow variable is measured in each
technique?

7.9. Upon what does the sensitivity of the schlieren depend?

7.10. What is the primary advantage of the laser anemometer?
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7.11. What is a Pitot tube?

7.12. Why must the tube be tapered in order for a rotameter to indicate flow rate?

7.13. What particular flow-measurement situations are adapted to the hot-wire

anemometer?

7.14. How would one go about calibrating a venturi for liquid measurement? Could

the calibration data be adapted to gas flow? If so, how?

369

7.19 PROBLEMS

7.1.

7.2.

7.3.

74.

7.5.
7.6.

7.7.

7.8.

Using Eq. (7.8) as a starting point, obtain Eqs. (7.9) and (7.10). Subsequently,
calculate the error in these equations when Ap = p;/4 for Eq. (7.9) and Ap =
p1/10 for Eq. (7.10).

In the compressible flow equation for a venturi the velocity of approach factor
M cancels with a like term in the expansion factor Y,. Construct a graphical
plot which will indicate the error that would result if the approach factor given
by Eq. (7.11) were used in conjunction with Eq. (7.8). Use the parameter Ap/yp;
as the abscissa for this plot.

A venturi is to be used for measuring the flow of air at 300 psia and 80°F. The
maximum flow rate is 1.0 Ibm/s. The minimum flow rate is 30 percent of this
value. Determine the size of the venturi such that the throat Reynolds number is
not less than 10°. Calculate the differential pressure across the venturi for mass
flows of 0.3, 0.5, 0.7, and 1.0 Ibm/s. Assume 8 = 0.5 for the venturi.

Work Prob. 7.3 for an orifice with pressure taps one diameter upstream and one-
half diameter downstream.

Work Prob. 7.3. for an ASME long-radius flow nozzle.

A sonic nozzle is to be used to measure a gas flow with an uncertainty of 1 per-
cent. Assuming that the nozzle throat area and discharge coefficients are known
exactly, derive an expression for the required relationship between the uncer-
tainties in the stagnation pressure and temperature measurements. Which of the
two measurements, pressure or temperature, is more likely to be the controlling
factor?

Calculate the throat area for the sonic nozzle in Example 7.4 if the stated pressure
is static pressure upstream, the temperature is total temperature upstream, and
the pipe diameter is 1.0 in.

Show that the parameter that governs the use of a linear relation for a rotameter
as in Eq. (7.30) is

ay

D

provided that d &~ D to the extent that

d\? ay
1—(= =
(5) <%



370

CHAPTER 7 o FLOW MEASUREMENT

7.9.

7.10.

7.11.

7.12.

7.13.

7.14.

7.15.

Under these restrictions, plot the error resulting from the linear approximation
as a function of the parameter ay/D. Discuss the physical significance of this
analysis and interpret its meaning in terms of specific design recommendations
for rotameters.

Verify that the error in flow rate for a rotameter calculated from Eq. (7.32) is less
than 0.2 percent for density variations of +5 percent when the float density is
designated according to Eq. (7.31).

The turbine flowmeter whose calibration is shown in Fig. 7.18 is to measure
a nominal flow rate of water of 2.5 gpm at 60°F. A single value of the meter
constant K is to be used in the data reduction. What deviations from the nominal
flow rate are allowable in order that the nominal value of K is accurate within
+0.25 percent?

A rotameter is to be designed to measure a maximum flow of 10 gpm of water
at 70°F. The bob has a 1-in diameter and a total volume of 1 in. The bob is
constructed so that the density is given in accordance with Eq. (7.31). The total
length of the rotameter tube is 13 in and the diameter of the tube at inlet is
1.0 in. Determine the tube taper for drag coefficients of 0.4, 0.8, and 1.20. Plot
the flow rate versus distance from the entrance of the tube for each of these drag
coefficients. Determine the meter constant for use in Eq. (7.32) and estimate the
error resulting from the use of this relation instead of the exact expression in
Eq. (7.28).

A rotameter is to be used for measurement of the flow of air at 100 psia and 70°F.
The maximum flow rate is 0.03 lbm/s, the inlet diameter of the meter is 1 in,
and the length of the meter is 12 in. The bob is constructed so that its density
is 5 times that of the air and its volume is 1 in®. Calculate the tube taper for
drag coefficients of 0.4, 0.8, and 1.2 and determine the meter constant for use
in Eq. (7.30). Plot the error resulting from the use of Eq. (7.30) as a function of
flow rate.

Derive an expression for the product of density and velocity across a hot-wire
anemometer in terms of the wire resistance, the current through the wire, and the
empirical constants a and b. Subsequently, obtain an expression for the uncer-
tainty in this product as a function of the measured quantities.

The sensitivity of a schlieren system is defined as the fractional deflection ob-
tained at the knife edge per unit angular deflection of a light ray at the test section.
Show that this sensitivity may be calculated with

_L
Y1

Derive an expression for the contrast in terms of the sensitivity, the density
gradient, and the test section width.

S

Show that the sensitivity of an interferometer, defined as the number of fringe
shifts per unit change of density, may be written as

L
s BL
Aps



7.16.

7.17.

7.18.

7.19.

7.20.

7.21.

7.19 PROBLEMS

Show that the maximum sensitivity of an interferometer, defined as the number of
fringe shifts per unit change in Mach number, will be about 30 when L = 15 cm,
A = 5400 A, B = 0.000293, and the stagnation density is that of air at standard
conditions.

Calculate the temperatures corresponding to the four fringes nearest to the plate
surface in Example 7.6.

The velocity in turbulent tube flows varies approximately as

u r 17
(1= =
Uc ro

where u, is the velocity at the center of the tube and ry is the tube radius. An
experimental setup using air in a 30-cm-diameter tube is used to check this
relation. The air temperature is 20°C and pressure is 1.0 atm. The maximum
flow velocity is 15 m/s and a Pitot tube is used to traverse the flow and to ob-
tain a measurement of the velocity distribution. Measurements are taken at radii
of 0, 5, 10, and 12 cm, and the uncertainty in the dynamic-pressure measurement
is +5 Pa. Using the above relation and Eq. (7.55), calculate the nominal velocity
and dynamic pressure at each radial location. Then, calculate the uncertainty in
the velocity measurement at each location based on the uncertainty in the pressure
measurement. Assuming that the above relation does represent the true velocity
profile, calculate the uncertainty which could result in a mass flow determined
from the experimental data. The mass flow would be obtained by performing the
integration

ro
11'1:/ 2mrpu dr
0

Calculate the dynamic pressure measured by a Pitot tube in a flow stream of water
at 20°C moving at a velocity of 3 m/s.

Using the supersonic Pitot-tube formula given by Eq. (7.56), obtain an expression
for the uncertainty in the Mach number as a function of the percent uncertainty
in the pressure ratio (po/po,) of 1 percent. Assume y = 1.4.

A venturi with throat and upstream diameters of 8 and 16 in is used to measure the
flow of water at 70°F. The flow rate is controlled by a motorized valve downstream
from the venturi. The valve is operated so that a constant differential pressure
of 12 inHg is maintained across the venturi. Suppose someone informs you that
this type of control scheme is not very effective because it does not account for
possible changes in temperature of the water. Reply to this criticism by plotting
the error in the flow rate as a function of water temperature, taking the flow at
70°F as the reference value.

An obstruction meter is used for the measurement of the flow of moist air at
low velocities. Suppose that the flow rate is calculated taking the density as
that of dry air at 90°F. Plot the error in this flow rate as a function of relative
humidity.
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7.22.

7.23.

7.24.

7.25.

7.26.

7.27.

7.28.

7.29.
7.30.

7.31.

7.32.

7.33.

A small venturi is used for measuring the flow of water in a %-in-diameter line.
The venturi has a throat diameter of % in and is constructed according to ASME
specifications. What minimum flow rate at 70°F should be used in order that
the discharge coefficient remains in the flat portion of the curve? What pressure

reading, in inches of mercury, would be experienced for this flow rate?

The venturi of Prob. 7.22 is used to measure the flow of air at 100 psia and 120°F
(upstream flow conditions). The throat pressure is measured as 80 psia. Calculate
the flow rate.

An orifice is to be used to indicate the flow rate of water in a 1.25-in-diameter
line. The orifice diameter is 0.50 in. What pressure reading will be experienced
on the orifice for a line-flow velocity of 10 ft/s? What would be the flow rate for
a pressure reading of twice this value?

A small sonic nozzle having a throat diameter of 0.8 mm is used to measure and
regulate the flow in a 7.5-cm-diameter line. The upstream pressure on the nozzle
is varied in accordance with the demand requirements. The downstream pressure
is always low enough to ensure sonic flow at the throat. What is the flow rate for
upstream conditions at 20°C and 1.0 MPa?

An impact tube is used to measure the Mach number of a certain airflow in a
wind tunnel. The static pressure is 3 psia, and the impact pressure at the probe is
116 kPa. What is the Mach number of the flow (y = 1.4 for air)? If the free-stream
air temperature is —40°C, what is the flow velocity?

A Pitot tube is used to measure the velocity of an airstream at 20°C and 1.0 atm. If
the velocity is 2.5 m/s, what is the dynamic pressure in newtons per square meter?
What is the uncertainty of the velocity measurement if the dynamic pressure is
measured with a manometer having an uncertainty of 5 Pa?

A venturi is used to measure the flow of liquid Freon-12 at 20°C. The throat
diameter is 1.2 cm and the inlet diameter is 2.4 cm. Calculate the pressure drop
reading if the throat Reynolds number is 10°.

Repeat Prob. 7.28 for a concentric orifice with the same diameter ratio.

A flow rate of 1 kg/s of air at 30 atm and 20°C is to be measured with a ven-
turi and an orifice. Select appropriate size devices and specify suitable pressure
instrumentation for each.

The flow rate in Prob. 7.30 is to be measured with a sonic nozzle. Calculate the
exit diameter of the nozzle.

A rotameter is to be used to measure the flow rate of liquid Freon-12 at 20°C.
You have at your disposal several specially constructed bobs of varying densities.
What density would you select?

A test is to be conducted of the fuel economy of a certain automobile. The test
is to be conducted under road conditions at varying speeds. The manufacturer
states that the car will get 8.0 km/liter of fuel at a steady speed of 80 km/h. Select
appropriate flow-measurement device(s) and specify the necessary pressure and
temperature-measurement devices for a speed range of 30 to 90 km/h. Analyze
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7.37.

7.38.

7.39.

7.40.

741.

7.42.

7.43.

7.44.

7.45.

7.46.
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your choice and estimate the uncertainties which may result in the final results of
fuel economy. Give alternate suggestions for the measurements and show what
result they would have on the uncertainty.

Water at 60°C flows in a 7.5-cm-diameter pipe at a mean flow velocity of 8 m/s.
Calculate the flow rate in units of kg/s, lbm/min, gal/min, and liters/s.

Repeat Prob. 7.34 for liquid ammonia at 20°C.

Air at 400 kPa and 40°C flows in a circular tube having a diameter of 5.0 cm at
a rate such that the Reynolds number is 50,000. Calculate the flow rate in units
of kg/s, Ibm/min, SCFM, cm?®/s, and SCCM.

A venturi is to be used to measure the airflow in Prob. 7.36. What size ven-
turi would you use, and what would be its discharge coefficient and pressure
differential?

A sonic flow nozzle is used to measure a nitrogen flow of 0.5 kg/s at conditions
of 1.0 MPa and 100°C. What area should be used? What upstream diameter pipe
would you recommend?

An open-ended stagnation pressure probe is inclined at a yaw angle of 20° with
the flow velocity. For airflow at 20 m/s, 1 atm, and 20°C, what would be the
indicated pressure?

A Pitot tube with a yaw angle of 10° is used for the airflow in Prob. 7.39. What
would be the indicated stagnation and dynamic pressures? Express in units of Pa,
1bf/in?, and inH,O.

Water flows in a 5-in-diameter pipe at 20°C with a mean flow velocity of 3 m/s. A
sharp-edged orifice with a diameter of 2.5 in is to be used to measure the flow rate.
What pressure differential would be indicated for a standard ASME installation?
Express in units of Pa, inH,O, and psia.

An impact tube is used with an airflow at 10°C, 40 kPa, and a velocity of 700 m/s.
What pressure will be indicated by the probe?

A vortex-shedding flowmeter has a characteristic dimension of 3 mm and is used
to measure velocity in a region where the Reynolds number is 10°. If a velocity
of 4 m/s is to be measured, what shedding frequency may be anticipated?

A venturi is constructed according to the specifications of Fig. 7.6 with throat
and upstream diameters of 1.0 and 0.5 in. What flow rates of water will be
measured when the performance of the meter lies in the flat portion of the curve
for discharge coefficient in Fig. 7.10? What will be the differential pressure for
a throat Reynolds number of 10°?

An open-ended tube probe is oriented at an angle of 30° with the flow direction in
an airflow at 200 kPa and 50°C. The air velocity is 20 m/s. Calculate the pressure
indicated by the probe.

A Pitot tube is exposed to the same flow stream as in Prob. 7.45 but is yawed
at an angle of 8° with the flow direction. What static, dynamic, and stagnation
pressures will be indicated by the probe? What error would result in the velocity
determination if these values were assumed to be at a zero yaw angle?
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7.54.

7.55.

7.56.

An impact probe is exposed to an airflow stream at 0°C, 20 kPa, and 600 m/s.
What pressure will be indicated by the probe at a zero yaw angle?

The venturi of Prob. 7.44 is calibrated by direct weighing of a quantity of water
over a 3-min interval. The time of weighing is accurate within 0.2 s and the
weight is accurate within 0.1 kg. For a throat Reynolds number of 10° with water
at 25°C, determine the allowable uncertainty of the differential pressure mea-
surement such that the uncertainty in the discharge coefficient is +0.75 percent.
Assume a nominal discharge coefficient in accordance with Fig. 7.10.

A positive-displacement meter is used to measure the flow of methane (CHy)
at 20°F and 0.95 atm. Temperature and pressure transducers are installed that
feed an electronic circuit, which then indicates the flow in standard cubic feet
per minute (ft’/min) for billing a customer. The meter itself senses actual vol-
ume flow. What factor must be multiplied by the actual volume flow to give
SCFM?

If the uncertainties in temperature and pressure for Prob. 7.49 are £1.5°F and
+2 kPa, respectively, what is the uncertainty of the billing if the actual volume
flow measurement is exact?

A sharp-edge orifice is used to measure the flow of water at 25°C in a 1.5-in-
diameter tube. The orifice diameter is 0.75 in. Pressure taps are 1 diameter up-
stream and % diameter downstream. What pressure differential will be indicated
for an upstream Reynolds number of 10,0007

A Pitot tube uses a manometer readout with a fluid having a specific gravity of
0.82. The tube is oriented parallel to an airstream at 1 atm, 25°C, having a velocity
of 30 m/s. The accuracy of the dynamic pressure measurement is 0.1 mm of the
height of the manometer fluid. The static pressure is assumed exact, but the static
temperature has an uncertainty of =1.2°C. Assuming that the nominal value of
the velocity is the value of 30 m/s, calculate the uncertainty in its determination.

A 10°-cone probe like that shown in Fig. 7.44 is used to measure the static pressure
in a flow at —40°C and M = 0.8. The pressure indicated by the probe is 22 kPa.
What is the true free-stream pressure?

What pressure would be indicated by an open-ended tube that is oriented parallel
with the flow in Prob. 7.53?

A positive-displacement flowmeter is used to measure the flow of liquid Freon-
12 at 20°C. A flow rate of 2.35 gal/min is indicated. What is the mass flow in
kg/s?

A sonic nozzle is to be used to measure the mass flow of nitrogen at low-velocity
upstream conditions of 50°C and 800 kPa. The discharge coefficient is
0.97 £ 0.5 percent. The upstream pressure is measured with a transducer having
an upper range of 1 MPa and an uncertainty of +1 percent of full scale. The
upstream temperature is measured with a thermocouple having an uncertainty
of £1°C. The nozzle has a throat diameter of 2 cm and discharges into a large
chamber maintained at a pressure of 100 kPa. Calculate the flow rate of nitrogen
in kg/s for these conditions and its uncertainty.
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7.19 PROBLEMS

Repeat Prob. 7.56 for upstream pressures of 220 and 400 kPa.

A Pitot tube is used to measure an airflow at 15 psia, 120°F, and 100 ft/s. If it
is yawed at an angle of 10° with the flow direction, what static, dynamic, and
stagnation pressures will be indicated? If these values are used for a velocity
determination assuming a zero yaw angle, what percent error would result?

What pressure ratio would be indicated by Eq. (7.56) for M; = 1.0? Is this what
would be expected?

An orifice is installed according to ASME specifications in a 5.0-cm-diameter
pipe. The diameter of the orifice is 2.5 cm and the pressure taps are one diameter
upstream and one-half diameter downstream. A manometer is used to measure the
orifice pressure differential as 1932 mmH,0O and the upstream pressure is mea-
sured as 400 kPa gage pressure with the local barometer reading as 750 mmHg.
The fluid is air at a temperature of 27°C. Calculate the airflow rate in kg/s.

The orifice in Prob. 7.60 is used to measure the same airstream and the differential
pressure reading is observed as 190 mm with all other readings the same. What
is the airflow under these conditions?

Suppose the flow system in Probs. 7.60 and 7.61 is fluctuating such that the
differential pressure varies over a range of =12 mmH,O while the inlet pressure
fluctuates by £10 kPa. The temperature measurement is within £2°C. Calculate
the resultant uncertainties in the flow rates expressed as a percent of the calculated
values.

The airflow system in Prob. 7.60 is measured with a venturi having like dimen-
sions as the orifice, i.e., the same pipe diameter and throat diameter. Calculate
the flow rate in kg/s for the same pressure and temperature measurements as in
Prob. 7.60.

Repeat Prob. 7.63 for the conditions of Prob. 7.60.

Estimate the permanent pressure loss for the systems in Probs. 7.60, 7.61, 7.63,
and 7.64.

Calculate the percent uncertainty in flow rate for the venturi measurements in
Prob. 7.63 using the same uncertainties in the pressure and temperature measure-
ments as in Prob. 7.62.

The uncertainty of the dynamic pressure measurement in Example 7.11 is es-
timated as +0.03 inH,O and the uncertainty of the radial position determi-
nation is estimated as +0.03 in. Calculate the resultant percent uncertainty in
the volumetric flow rate calculation for the flow element represented by index
i=3.

Repeat Prob. 7.67 for index i = 4. What do you conclude?

The calibration curve for the turbine flowmeter shown in Fig. 7.18 indicates linear
response within 0.5 percent over a rather wide range. A proposal is made to
improve the calibration and eventual flow readout by fitting a polynomial relation
to the calibration points and then inserting the resulting expression as a software
adjustment for the computer readout. Using data correlation software available to
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you, obtain second-, third-, and fourth-degree polynomial fits to the data points
shown and state recommendations for use.

Obtain a second-degree polynomial relationship between the orifice flow coeffi-
cient MC and Reynolds number for § = 0.5.

Fit a second-degree polynomial for the discharge coefficient C of Fig. 7.10 as
a function of Reynolds number for 1/2 x 1/4 and 1 x 1/2 in venturis. Perform
the fit for 5000 < Re < 100,000. Use available computer software to perform a
least-square calculation. Also calculate the value of > for both relations.

A laminar flowmeter is to be designed for use with air and the Reynolds number
in the flow channels is to be set at Re = 100. The permanent pressure drop is to
be the same as for the orifice of Probs. 7.60 and 7.61 for the corresponding mass
flow rates calculated in these problems. Obtain a relationship between L and d
for the laminar flowmeter for each of the flow rates.

Is it possible to accommodate both flow rates in Prob. 7.72 with one L /d relation?
What conditions would be necessary for such a design?

A rotameter is used for an airflow measurement at conditions of 10°C and 400 kPa
gage pressure. The local barometer reads 750 mmHg and the rotameter is rated
at 100 liters/min (full scale) at standard conditions of 1 atm and 20°C. Calculate
the mass flow of air for a reading of 50 percent of full scale.

A turbine flowmeter having a calibration curve that matches Fig. 7.18 is placed in
operation to measure a nominal flow rate of water of 3.0 gpm at 70°F. Determine
the allowable deviations from the nominal flow rate such that the value of the
flow constant K deviates £0.4 percent.

Calculate the dynamic pressure measured by a Pitot tube in an airflow at 2 atm,
20°C with a flow velocity of 10 m/s.

The small venturi of Prob. 7.22 is used to measure the flow rate of air at 10 atm
and 40°C. If the throat pressure is measured as 800 kPa, calculate the flow rate
in kg/s.

A rotameter is available with several bobs of variable densities. If the meter will
be used for measuring the flow of liquid ammonia at 20°C, what density of bob
would you select?

An airflow of about 1.5 kg/s at 20 atm and 50°C (stagnation conditions) is to be
measured using a sonic nozzle. What exit diameter should be designed for the
nozzle?

Air at 500 kPa and 50°C flows in a circular tube having a diameter of 5.0 cm.
The Reynolds number for the flow is 50,000. Suppose a venturi is to be used
to measure the flow rate. Determine the size of the venturi and the differential
pressure reading that may be expected.

The characteristic dimension for a vortex shedding flowmeter is 4.0 mm in a
region of the flow where the Reynolds number is 1.1 x 10°. What shedding
frequency may be anticipated for measurement of a velocity of 3.9 m/s?
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7.82. An open-ended tube-probe is installed in an airstream at M = 0.75 and —35°C.

The probe is oriented parallel to the flow stream. The pressure of the airstream
is 33 kPa. What pressure will be indicated by the probe?
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THE MEASUREMENT OF TEMPERATURE

8.1 INTRODUCTION

To most people, temperature is an intuitive concept that tells whether a body is “hot”
or “cold.” In the exposition of the second law of thermodynamics temperature is
related to heat, for it is known that heat flows only from a high temperature to a low
temperature, in the absence of other effects. In the kinetic theory of gases and statistical
thermodynamics it is shown that temperature is related to the average kinetic energy of
the molecules of an ideal gas. Further extensions of statistical thermodynamics show
the relationship between temperature and the energy levels in liquids and solids. We
shall not be able to discuss the many theoretical aspects of the concept of temperature
but may only note that it is important in every branch of physical science; hence, the
experimental engineer should be familiar with the methods employed in temperature
measurement. Detailed discussions of the thermodynamic meaning of temperature
are given in Refs. [8], [9], [10], [12], and [18].

Since pressure, volume, electrical resistance, expansion coefficients, and so forth,
are all related to temperature through the fundamental molecular structure, they
change with temperature, and these changes can be used to measure temperature.
Calibration may be achieved through comparison with established standards, as dis-
cussed in Chap. 2. The International Temperature Scale serves to define temperature
in terms of observable characteristics of materials. A discussion of standards and
calibration methods is given in Ref. [14].

8.2 TEMPERATURE SCALES

The two temperature scales are the Fahrenheit and Celsius scales. These scales are
based on a specification of the number of increments between the freezing point
and boiling point of water at standard atmospheric pressure. The Celsius scale has
100 units between these points, while the Fahrenheit scale has 180 units. The absolute
Celsius scale is called the Kelvin scale, while the absolute Fahrenheit scale is termed
the Rankine scale. Both absolute scales are so defined that they will correspond as
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K °C °F °R
2273.16 £} 2000 3632 {7} 4091.69
1773.16 +—+ 1500 2732+ 3191.69
1273.16 + 1000 1832 ++ 2291.69

773.16 +—+ 500 932  + 1391.69
673.16 +—+ 400 752+t 1211.69
573.16 +—+ 300 572 ++ 1031.69
473.16 +—+ 200 392 ++ 851.69
373.16 +—+ 100 212.0 +— 671.69
273.16 1+ 0 32.0 ++ 491.69
233.16 +—+ —40 —40 1t 419.69
173.16 9 —100 —148 H 31169
Figure 8.1 Relationship between Fahrenheit and Celsius temperature scales.

closely as possible with the absolute thermodynamic temperature scale. The zero
points on both absolute scales represent the same physical state, and the ratio of two
values is the same, regardless of the absolute scale used; i.e.,

T T
(7) = () e
T Rankine T Kelvin

The boiling point of water at 1 atm is arbitrarily taken as 100° on the Celsius scale
and 212° on the Fahrenheit scale. The relationship between the scales is indicated in
Fig. 8.1. It is evident that the following relations apply:

°F =320+ 3°C [8.24]
°R = 2K [8.2b]

8.3 THE IDEAL-GAS THERMOMETER

The behavior of an ideal gas at low pressures furnishes the basis for a temperature-
measurement device that may serve as a secondary experimental standard. The
ideal-gas equation of state is

pV = mRT [8.3]

where V is the volume occupied by the gas, m is the mass, and R is the gas constant
for the particular gas, given by
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Unknown
temperature

Pressure
gage
Figure 8.2 Schematic of ideal-gas thermometer.
T = T2
ref(pref)
0 Pret
Figure 8.3 Results of measurements with ideal-gas thermometer.

where N is the universal gas constant, having a value of 8314.5 J/kg - mol - K, and
M is the molecular weight of the gas. For the gas thermometer a fixed volume is filled
with gas and exposed to the temperature to be measured, as shown in Fig. 8.2. At
the temperature 7' the gas-system pressure is measured. Next, the volume is exposed
to a standard reference temperature (as discussed in Sec. 2.4), and the pressure is
measured under these conditions. According to Eq. (8.3), at constant volume

T = T (,;) [8.4]
Pref / const vol

Now, suppose that some of the gas is removed from the volume and the pressure
measurements are repeated. In general, there will be a slight difference in the pressure
ratio in Eq. (8.4) as the quantity of gas is varied. However, regardless of the gas used,
the series of measurements may be repeated and the results plotted as in Fig. 8.3.
When the curve is extrapolated to zero pressure, the true temperature as defined by
the ideal-gas equation of state will be obtained. A gas thermometer may be used to
measure temperatures as low as 1 K by extrapolation.
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8.4 TEMPERATURE MEASUREMENT
BY MECHANICAL EFFECTS

Several temperature-measurement devices may be classified as mechanically opera-
tive. In this sense we shall be concerned with those devices operating on the basis of
a change in mechanical dimension with a change in temperature.

The liquid-in-glass thermometer is one of the most common types of temperature-
measurement devices. The construction details of such an instrument are shown in
Fig. 8.4. A relatively large bulb at the lower portion of the thermometer holds the
major portion of the liquid, which expands when heated and rises in the capillary
tube, upon which are etched appropriate scale markings. At the top of the capillary
tube another bulb is placed to provide a safety feature in case the temperature range
of the thermometer is inadvertently exceeded. Alcohol and mercury are the most
commonly used liquids. Alcohol has the advantage that it has a higher coefficient of
expansion than mercury, but it is limited to low-temperature measurements because
it tends to boil away at high temperatures. Mercury cannot be used below its freezing
point of —38.78°F (—37.8°C). The size of the capillary depends on the size of the
sensing bulb, the liquid, and the desired temperature range for the thermometer.

In operation, the bulb of the liquid-in-glass thermometer is exposed to the envi-
ronment whose temperature is to be measured. A rise in temperature causes the liquid

(OY Safety bulb

=Ai

— Capillary tube

H<— Stem

+«— Temperature-
\) sensing bulb

Figure 8.4 Schematic of a mercury-in-glass thermometer.
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to expand in the bulb and rise in the capillary, thereby indicating the temperature. It is
important to note that the expansion registered by the thermometer is the difference
between the expansion of the liquid and the expansion of the glass. The difference is
a function not only of the heat transfer to the bulb from the environment, but also of
the heat conducted into the bulb from the stem; the more the stem conduction relative
to the heat transfer from the environment, the larger the error. To account for such
conduction effects the thermometer is usually calibrated for a certain specified depth
of immersion. High-grade mercury-in-glass thermometers have the temperature scale
markings engraved on the glass along with a mark which designates the proper depth
of immersion. Very precise mercury-in-glass thermometers may be obtained from
NIST with calibration information for each thermometer. With proper use these ther-
mometers may achieve accuracies of +0.05°C and can serve as calibration standards
for other temperature-measurement devices.

Mercury-in-glass thermometers are generally applicable up to about 600°F
(315°C), but their range may be extended to 1000°F (538°C) by filling the space
above the mercury with a gas like nitrogen. This increases the pressure on the mer-
cury, raises its boiling point, and thereby permits the use of the thermometer at higher
temperatures.

A very widely used method of temperature measurement is the bimetallic strip.
Two pieces of metal with different coefficients of thermal expansion are bonded
together to form the device shown in Fig. 8.5. When the strip is subjected to a tem-
perature higher than the bonding temperature, it will bend in one direction; when it
is subjected to a temperature lower than the bonding temperature, it will bend in the
other direction. Eskin and Fritze [3] have given calculation methods for bimetallic
strips. The radius of curvature r may be calculated as

L tH3(1 +m)? + (1 + mn)[m? + (1/mn)1}
B 6(cy — a)(T — To)(1 + m)>

[8.5]

where t = combined thickness of the bonded strip, m or ft
m = ratio of thicknesses of low- to high-expansion materials
n = ratio of moduli of elasticity of low- to high-expansion materials
o) = lower coefficient of expansion, per °C
o = higher coefficient of expansion, per °C
T = temperature, °C
Ty = initial bonding temperature, °C

[

Figure 8.5 The bimetallic strip.
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Table 8.1 Mechanical properties of some commonly used thermal
materials

Thermal Coefficient

fE X Modulus of Elasticity
() Xpansion

Material Per °C psi GN/m?
Invar 1.7x 1076 21.4 x 10° 147
Yellow brass 2.02x 107 14.0 x 10° 96.5
Monel 400 1.35x 107 26.0 x 10° 179
Inconel 702 1.25x 107 31.5x 10° 217
Stainless-steel type 316 1.6 x 1073 28 x 100 193

The thermal-expansion coefficients for some commonly used materials are given in
Table 8.1.

Bimetallic strips are frequently used in simple on-off temperature-control devices
(thermostats). Movement of the strip has sufficient force to trip control switches
for various devices. The bimetallic strip has the advantages of low-cost, negligible
maintenance expense, and stable operation over extended periods of time. Alternate
methods of construction can use a coiled strip to drive a dial indicator for temperatures.

Example 8.1

CURVATURE AND DEFLECTION OF BIMETALLIC STRIP.  Abimetallic strip is con-
structed of strips of yellow brass and Invar bonded together at 30°C. Each has a thickness of
0.3 mm. Calculate the radius of curvature when a 6.0-cm strip is subjected to a temperature of
100°C.

Solution

We use Eq. (8.5) with properties from Table 8.1.

T —T, = 100 — 30 = 70°C
m=1.0
147
n=——=152
96.5
o = 1.7 x 107%°C™! o =2.02 x 107°C™!

t=2)03x1073)=0.6x10"m
~ (0.6 x 107)[(3)()? + (1 + 1.52)(1 + 1/1.52)]
"= 6(2.02 — 0.17)(10-5)(70)(2)?
=0.132m

Thus,

From Fig. 8.5 we observe that the angle through which the strip is deflected is related to
the strip length L and radius of curvature by

L=1r0

where we assume the increase in length due to thermal expansion is small. Thus,

9= 29 _ 0454 rad = 26.04°
T o3 owrre=s
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I I
L

| |

Figure Example 8.1

as indicated in the accompanying figure; the straight-line segment joining the ends of the strip
has a length y of

y = 2rsin g = (2)(0.132) sin 13.02
= 0.0595m
The deflection d is related to y by
d = ysinf = (0.0595) sin 26.04 = 0.0261 m

or a very substantial deflection.
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Fluid-expansion thermometers represent one of the most economical, versatile, and
widely used devices for industrial temperature-measurement applications. The prin-
ciple of operation is indicated in Fig. 8.6. A bulb containing a liquid, gas, or vapor
is immersed in the environment. The bulb is connected by means of a capillary tube

Bourdon
pressure

gage

apillary tube

Vapor

Liquid

Figure 8.6 Fluid-expansion thermometer.
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to some type of pressure-measuring device, such as the bourdon gage shown. An
increase in temperature causes the liquid or gas to expand, thereby increasing the
pressure on the gage; the pressure is thus taken as an indication of the temperature.
The entire system consisting of the bulb, capillary, and gage may be calibrated di-
rectly. It is clear that the temperature of the capillary tube may influence the reading
of the device because some of the volume of fluid is contained therein. If an equilib-
rium mixture of liquid and vapor is used in the bulb, however, this problem may be
alleviated, provided that the bulb temperature is always higher than the capillary-tube
temperature. In this circumstance the fluid in the capillary will always be in a sub-
cooled liquid state, while the pressure will be uniquely specified for each temperature
in the equilibrium mixture contained in the bulb.

Capillary tubes as long as 200 ft (60 m) may be used with fluid-expansion ther-
mometers. The transient response is primarily dependent on the bulb size and the
thermal properties of the enclosed fluid. The highest response may be achieved by
using a small bulb connected to some type of electric-pressure transducer through
a short capillary. Fluid-expansion thermometers are usually low in cost, stable in
operation, and accurate within +1°C.

8.5 TEMPERATURE MEASUREMENT
BY ELECTRICAL EFFECTS

Electrical methods of temperature measurement are very convenient because they
furnish a signal that is easily detected, amplified, or used for control purposes. In
addition, they are usually quite accurate when properly calibrated and compensated.

ELECTRICAL-RESISTANCE THERMOMETER, OR RESISTANCE
TEMPERATURE DETECTOR (RTD)

One quite accurate method of temperature measurement is the electrical-resistance
thermometer. It consists of some type of resistive element, which is exposed to the
temperature to be measured. The temperature is indicated through a measurement
of the change in resistance of the element. Several types of materials may be used
as resistive elements, and their characteristics are given in Table 8.2. The linear
temperature coefficient of resistance « is defined by

R, — R,

= — [8.6]
“TR@m-T)

where R, and R are the resistances of the material at temperatures 7, and 77, respec-
tively. The relationship in Eq. (8.6) is usually applied over a narrow temperature range
such that the variation of resistance with temperature approximates a linear relation.
For wider temperature ranges the resistance of the material is usually expressed by a
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Table 8.2 Resistance-temperature coefficients and resistivity at 20°C!

Substance a(°C™h p (€2 - cm)
Nickel 0.0067 6.85
Iron (alloy) 0.002 to 0.006 10
Tungsten 0.0048 5.65
Aluminum 0.0045 2.65
Copper 0.0043 1.67
Lead 0.0042 20.6
Silver 0.0041 1.59
Gold 0.004 2.35
Platinum 0.00392 10.5
Mercury 0.00099 98.4
Manganin £0.00002 44
Carbon —0.0007 1400
Electrolytes —0.02 to —0.09 Variable
Semiconductor (thermistors) —0.068 to +0.14 10°

| "According to Lion [6].

quadratic relation

R = Ro(1 +aT + bT?) [8.71

where R = resistance at temperature 7'
Ro = resistance at reference temperature T
= experimentally determined constants

8
S
|

Various methods are employed for construction of resistance thermometers, de-
pending on the application. In all cases care must be taken to ensure that the resistance
wire is free of mechanical stresses and so mounted that moisture cannot come in con-
tact with the wire and influence the measurement.

One construction technique involves winding the platinum on a glass or ceramic
bobbin followed by sealing with molten glass. This technique protects the platinum
RTD element but is subject to stress variations over wide temperature ranges.
Stress-relief techniques can alleviate the problem so that the element may be used for
temperature measurements within £0.1°C.

RTD sensors may also be constructed by depositing a platinum or metal-glass
slurry on a ceramic substrate. The film can then be etched and sealed to form the resis-
tance element. This process is less expensive than the mechanical-winding ceramic
but is not as accurate. The thin-film sensor does offer the advantage of low mass and
therefore more rapid thermal response (see Sec. 8.8) and less chance of conduction
error (Sec. 8.7).

The resistance measurement may be performed with some type of bridge circuit,
as described in Chap. 4. For steady-state measurements a null condition will suffice,
while transient measurements will usually require the use of a deflection bridge.
One of the primary sources of error in the electrical-resistance thermometer is the
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Resistance Resistance
elements —> J element —-
442/\,.. .4;\/\,—4 4/\/\/\>ﬂ
(a) (b) ()
Figure 8.7 Methods of correcting for lead resistance with electrical-resistance

thermometer. (a) Siemen'’s three-lead arrangement; (b) Callender fourlead
arrangement; (c) floating-potential arrangement. Power connections made at
A and B.

effect of the resistance of the leads which connect the element to the bridge circuit.
Several arrangements may be used to correct for this effect, as shown in Fig. 8.7.
The Siemen’s three-lead arrangement is the simplest type of corrective circuit. At
balance conditions the center lead carries no current, and the effect of the resistance
of the other two leads is canceled out. The Callender four-lead arrangement solves
the problem by inserting two additional lead wires in the adjustable leg of the bridge
so that the effect of the lead wires on the resistance thermometer is canceled out. The
floating-potential arrangement in Fig. 8.7c¢ is the same as the Siemen’s connection,
but an extra lead is inserted. This extra lead may be used to check the equality of lead
resistance. The thermometer reading may be taken in the position shown, followed
by additional readings with the two right and left leads interchanged, respectively.
Through this interchange procedure the best average reading may be obtained and
the lead error minimized.

Practical problems which are encountered with RTDs involve lead error and rela-
tively bulky size which sometimes give rise to poor transient response and conduction
error discussed in Secs. 8.7 and 8.8. The RTD also has a relatively fragile construc-
tion. Because a current must be fed to the RTD for the bridge measurement, there is
the possibility of self-heating (>R in the element) which may alter the temperature
of the element. The importance one must assign to this effect depends on the thermal
communication between the RTD and the medium whose temperature is to be mea-
sured. For measurement of the temperature of a block of metal the communication is
good, while for an air temperature measurement the communication is poor. In still
air the error due to self-heating is about %QC per milliwatt.
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SENSITIVITY OF PLATINUM RESISTANCE THERMOMETER.  Aplatinumresistance Example 8.2
thermometer is used at room temperature. Assuming a linear temperature variation with resis-
tance, calculate the sensitivity of the thermometer in ohms per degrees Fahrenheit.

Solution
The meaning of a linear variation of resistance with temperature is

R = Ro[l + (T — To)]

where Ry is the resistance at the reference temperature 7j. The sensitivity is thus

dR
S = d7 = CYR()
Ry depends on the length and size of the resistance wire. At room temperature o=
0.00392°C~! = 0.00318°F~! for platinum.

THERMISTORS

The thermistor is a semiconductor device that has a negative temperature coefficient
of resistance, in contrast to the positive coefficient displayed by most metals. Fur-
thermore, the resistance follows an exponential variation with temperature instead of
a polynomial relation like Eq. (8.7). Thus, for a thermistor

R = Ryexp {ﬂ(; — 71,0)] [8.8]

where Ry is the resistance at the reference temperature T and § is an experimentally
determined constant. The numerical value of 8 varies between 3500 and 4600 K,
depending on the thermistor material and temperature. The resistivities of three ther-
mistor materials as compared with platinum are given in Fig. 8.8 according to Ref. [1].
A typical static voltage-current curve is shown in Fig. 8.9, while a typical set of tran-
sient voltage-current characteristics is illustrated in Fig. 8.10. The numbers on the
curve in Fig. 8.9 designate the degrees Celsius rise in temperature above ambient
temperature for the particular thermistor.

The thermistor is a very sensitive device, and consistent performance within
0.01°C may be anticipated with proper calibration. A rather nice feature of the ther-
mistor is that it may be used for temperature compensation of electric circuits. This is
possible because of the negative temperature characteristic that it exhibits so that it can
be used to counteract the increase in resistance of a circuit with a temperature increase.

We have noted that the thermistor is an extremely sensitive device because its
resistance changes so rapidly with temperature; however, it has the disadvantage of
highly nonlinear behavior. This is not a particularly severe problem because data
acquisition systems can employ firmware computing programs to provide a direct
temperature readout from the resistance measurement.

Because the resistance of the thermistor is so high, the error due to lead resistance
is small compared to that for the RTD, and four-wire leads are usually not required.
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Figure 8.8 Resistivity of three thermistor materials compared with
platinum, according to Ref. [1].
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Figure 8.9 Static voltage-current curve for a typical thermistor,

according to Ref. [1].
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Figure 8.10 Typical set of transient voltage-current curves for a thermistor, according to
Ref. [1]. Circuit for measurement is shown in insert.
Up
vs 0 M
Ry 2
A=1+22
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Rp § * v,
R
Ry R, 2
Ry =R, + AR
R;> R,

Figure 8.11 Bridge amplifier circuit, according to Ref. [24].

In addition, the high resistance of the thermistor means that smaller currents are
required for the measurement, and thus errors due to self-heating are very small.

The thermistor is a semiconductor device and therefore is subject to deterioration
at high temperatures; for this reason they are limited to temperature measurements
below about 300°C.

A bridge amplifier circuit which may be employed with resistance-thermometer
or thermistor devices is shown in Fig. 8.11. In this arrangement Ry is the resistance
of the thermometer and is expressed as

Rr =R, = AR
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For linear operation we must have Ry >> R; and Rp is approximately R;/10. The
amplifier voltage gainis A = 1 4+ R,/R;. If these conditions are satisfied, the output
voltage can be expressed as

Avba AT
Vo=~ [8.9]

where « is the temperature coefficient of resistance and AT is the temperature differ-
ence from balanced conditions, i.e., from AR = 0.

Example 8.3

THERMISTOR SENSITIVITY.  Calculate the temperature sensitivity for thermistor No. 1
inFig. 8.8 at 100°C. Express the result in ohm-centimeters per degree Celsius. Take 8 = 4120K
at 100°C.

Solution
The sensitivity is obtained by differentiating Eq. (8.8).

G_dR _ . 1 1\]/-8
=ar =ReelPlr o [\

We wish to express the result in resistivity units; thus, the resistivity at 100°C is inserted for
Ry. Also,

T=T,=100°C =373K

4120
(373)2
_ (110)(4120)

= W =-326Q-cm/°C

so that S = —piooec

THERMOELECTRIC EFFECTS (THERMOCOUPLES)

The most common electrical method of temperature measurement uses the thermo-
couple. When two dissimilar metals are joined together as in Fig. 8.12, an emf will
exist between the two points A and B, which is primarily a function of the junction

External
circuit

Material (1)

0 A

Junction C/
T

- B

Material (2)

Figure 8.12  Junction of two dissimilar metals indicating thermoelectric effect.
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temperature. This phenomenon is called the Seebeck effect. If the two materials are
connected to an external circuit in such a way that a current is drawn, the emf may
be altered slightly owing to a phenomenon called the Peltier effect. Further, if a
temperature gradient exists along either or both of the materials, the junction emf
may undergo an additional slight alteration. This is called the Thomson effect. There
are, then, three emfs present in a thermoelectric circuit: the Seebeck emf, caused
by the junction of dissimilar metals; the Peltier emf, caused by a current flow in
the circuit; and the Thomson emf, which results from a temperature gradient in the
materials. The Seebeck emf is of prime concern since it is dependent on junction
temperature. If the emf generated at the junction of two dissimilar metals is carefully
measured as a function of temperature, then such a junction may be utilized for the
measurement of temperature. The main problem arises when one attempts to measure
the potential. When the two dissimilar materials are connected to a measuring device,
there will be another thermal emf generated at the junction of the materials and the
connecting wires to the voltage-measuring instrument. This emf will be dependent
on the temperature of the connection, and provision must be made to take account of
this additional potential.
Two rules are available for analysis of thermoelectric circuits:

1. If a third metal is connected in the circuit as shown in Fig. 8.13, the net emf of the
circuit is not affected as long as the new connections are at the same temperature.
This statement may be proved with the aid of the second law of thermodynamics
and is known as the law of intermediate metals.

2. Consider the arrangements shown in Fig. 8.14. The simple thermocouple circuits
are constructed of the same materials but operate between different temperature

Material (1)

OA

TceC
Tc=Tp Material (3)

T,4D

Material (2)
Figure 8.13 Influence of a third metal in a thermoelectric circuit; law of intermediate
metals.

T, & 7, T« 7T, T,

E, E, Es=FE +E,

(a) (b) (c)

Figure 8.14 Circuits illustrating the law of intermediate temperatures.
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limits. The circuit in Fig. 8.14a develops an emf of E; between temperatures T}
and T>; the circuit in Fig. 8.14b develops an emf of E; between temperatures 7,
and T3. The law of intermediate temperatures states that this same circuit will
develop an emf of E3 = E| + E, when operating between temperatures 7} and
T3, as shown in Fig. 8.14c.

It may be observed that all thermocouple circuits must involve at least two junc-
tions. If the temperature of one junction is known, then the temperature of the other
junction may be easily calculated using the thermoelectric properties of the materials.
The known temperature is called the reference temperature. A common arrangement
for establishing the reference temperature is the ice bath shown in Fig. 8.15. An
equilibrium mixture of ice and air-saturated distilled water at standard atmospheric
pressure produces a known temperature of 32°F. When the mixture is contained in a
Dewar flask, it may be maintained for extended periods of time. Note that the arrange-
ment in Fig. 8.15a maintains both thermocouple wires at a reference temperature of
32°F, whereas the arrangement in Fig. 8.15b maintains only one at the reference

Constantan Copper
O
T
< Iron Copper
O
p Voltage-
measurement
device
— Ice-water
mixture
(a)
Constantan
O
T
Iron Constantan °
Voltage-
measurement
device
Ice-water
mixture
(b)
Figure 8.15 Conventional methods for establishing reference temperature in

thermocouple circuit. Iron-constantan thermocouple illustrated.
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temperature. The system in Fig. 8.15a would be necessary if the binding posts at the
voltage-measuring instrument were at different temperatures, while the connection
in Fig. 8.15b would be satisfactory if the binding posts were at the same temperature.
To be effective the measurement junctions in Fig. 8.15a must be of the same material.
Itis common to express the thermoelectric emf in terms of the potential generated
with a reference junction at 32°F (0°C). Standard thermocouple tables have been
prepared on this basis, and a summary of the output characteristics of the most common
thermocouple combinations is given in Table 8.3. These data are shown graphically
in Fig. 8.16. The output voltage E of a simple thermocouple circuit is usually written

in the form
E= AT+ 1BT*+ iCT’ [8.10]

where T is the temperature in degrees Celsius and E is based on a reference junction
temperature of 0°C. The constants A, B, and C are dependent on the thermocouple
material. Powell [19] gives an extensive discussion of the manufacture of materials

Table 8.3a  Thermal emf in absolute millivolts for commonly used thermocouple combinations, according to ITS(90)
(Reference junction of 0°C)'

Platinum vs.

Temperature, Copper vs. Chromel vs. Iron vs. Chromel vs. Platinum-10% Nicosil vs.
°C Constantan ()  Constantan (E) Constantan (J) Alumel (K) Rhodium (S) Nisil (N)
—150 —4.648 -7.279 —6.500 —4.913 —1.530
—100 —3.379 —5.237 —4.633 —3.554 —1.222
-50 —1.819 —2.787 —2.431 —1.889 —0.236 —0.698
—25 —0.940 —1.432 —1.239 —0.968 -0.127 —0.368
0 0 0 0 0 0 0
25 0.992 1.495 1.277 1.000 0.143 0.402
50 2.036 3.048 2.585 2.023 0.299 0.836
75 3.132 4.657 3918 3.059 0.467 1.297
100 4.279 6.319 5.269 4.096 0.646 1.785
150 6.704 9.789 8.010 6.138 1.029 2.826
200 9.288 13.421 10.779 8.139 1.441 3.943
300 14.862 21.036 16.327 12.209 2.323 6.348
400 20.872 28.946 21.848 16.397 3.259 8.919
500 37.005 27.393 20.644 4.233 11.603
600 45.093 33.102 24.906 5.239 14.370
300 61.017 45.494 33.275 7.345 20.094
1000 76.373 57.953 41.276 9.587 26.046
1200 69.553 48.838 11.951 32.144
1500 15.582
1750 18.503

Composition of Thermocouple Alloys:

Alumel: 94% nickel, 3% manganese, 2% aluminum, 1% silicon
Chromel: 90% nickel, 10% chromium

Constantan: 55% copper, 45% nickel

Nicosil: 84% nickel, 14% chromium, 1.5% silicon

Nisil: 95% nickel, 4.5% silicon, 0.1% Mg



Table 8.3b Error limits for commercial thermocouples

Type

Thermocouple Error, Standard Grade* Error, Special Grade*
E 1.7°C or 0.5% above 0°C 1.0°C or 0.4%

J 2.2°C or 0.75% above 0°C 1.1°C or 0.4%

K 2.2°C or 0.75% above 0°C 1.1°C or 0.4%

N 2.2°C or 0.75% above 0°C 1.1°C or 0.4%

R 1.5°C or 0.25 0.6°C or 0.1%

S 1.5°Cor 0.25% 0.6°Cor 0.1%

T 1.0°C or 0.75% above 0°C 0.5°C or 0.4%

| *Whichever is greater.

Table 8.3c  Properties of common thermocouple materials
Temperature
Thermal Electric Coefficient of
Conductivity, Specific Heat, Density, Resistivity, Expansion, Melting
Material W/M - °C kJ/kg - °C kgm®  uQ.cm °C~1 x 108 Point, °C
Alumel 29.8 0.52 8600 29 12 1400
Constantan 21.7 0.39 8900 49 —0.1 1220
Chromel 19.2 0.45 8700 70 13 1450
Copper 377 0.385 8900 1.56 17 1080
Iron 68 0.45 7900 8.6 12 1490
70 I —
Reference junction /1
60 at 0°C
—~
50 14
> 40 / =
g L --"
= 30 7 — s S g
el sa==t=-r A
20 / B S e )
-
/& z="1 5 455516
10 //,/ /________:Zi’_'_ﬁ_ -
—Z —====TT T
0 ==
0 2000 3000 4000
Temperature, °F
0 500 1000 1500 2000
L | | | 1 oc
Legend: A Rhenium-molybdenum

1 Chromel-constantan (type E)
2 Iron-constantan (type J)
3 Copper-constantan (type T)
4 Chromel-alumel (type K)
5 Platinum-platinum rhodium (type R)
6 Platinum-platinum rhodium (type S)
7 Nicosil-Nisil (type N)
Figure 8.16 Emf temperature relations for thermocouple material
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B Rhenium-tungsten

C Iridium-iridium rhodium

D Tungsten-tungsten rhenium

E Plat. thodium-plat. 10% rhodium

s, positive electrode listed first.
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Table 8.4 Thermoelectric sensitivity S = dE/dT of thermoelement made of
materials listed against platinum, pV°C—1*
(Reference junction kept at a temperature of 0°C)

Bismuth 72 Silver 6.5
Constantan =35 Copper 6.5
Nickel —15 Gold 6.5
Potassium -9 Tungsten 7.5
Sodium -2 Cadmium 7.5
Platinum 0 Iron 18.5
Mercury 0.6 Nichrome 25
Carbon 3 Antimony 47
Aluminum 3.5 Germanium 300
Lead 4 Silicon 440
Tantalum 4.5 Tellurium 550
Rhodium 6 Selenium 900

| *According to Lion [6].

for thermocouple use, inhomogeneity ranges, and power series relationships for ther-
moelectric voltages of various standard thermocouples. The NIST publication which
gives these data is Ref. [23].

The sensitivity, or thermoelectric power, of a thermocouple is given by

S—dE—A+BT+CT2 [8.11]
T dr )

Table 8.4 gives the approximate values of the sensitivity of various materials relative
to platinum at 0°C. A summary of the operating range and characteristics of the most
common thermocouple materials is given in Figs. 8.16 and 8.17.

If computer processing of thermocouple data is to be performed, the power-series
relations like Eq. (8.10) or the extensive collection in Refs. [14] and [23] will certainly
be of value. But a firm word of caution must be given here. When one buys a roll
of commercial thermocouple wire, there are different grades available (at different
prices, of course). Precision-grade wire will usually follow the NIST tables by +0.5°C.
A “commercial” grade might not be better than £2°F. Therefore, the experimentalist
should not be lulled into security by a 10-digit computer printout based on the NIST
equations. If better precision is required, samples of the thermocouple wire should be
calibrated directly against known temperature standards as discussed in Chap. 2. The
individual can then use this calibration data to determine the constants in Eq. (8.10).
For precise data analysis it is the specific calibration which must be employed for
calculations. The typical error limits for commercial grades of thermocouple wires
are given in Table 8.3b [25]. Table 8.3c¢ gives some of the physical properties of the
more common thermocouple materials. These properties are useful in calculation of
heat-transfer effects as described in Sec. 8.7.

The need for precise calibration is particularly acute when two thermocouples
are used for a small-differential temperature measurement. For example, suppose
two “precision” thermocouples having an uncertainty of +1°F each are used for
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Figure 8.17 Summary of operating range of thermocouples. See also Fig. 8.16.

a temperature difference measurement of 10°F. Using the uncertainty analysis of
Chap. 3 the uncertainty in the temperature difference would be

w(AT) = [(1)> 4 (1)*]"/? = 1.414°F

or /4 percent! We must note that if both thermocouples come from the same roll,
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Table 8.5 Polynomial coefficients for Eq. (8.12) for several standard thermocouple combinations
Type E Type J Type K Type R Type S Type T
Chromel(+) Iron(+) Chromel(+) Platinum-13 % Platinum-10% Copper(+)

vs. Constantan(—)

vs. Constantan(—)

vs. Nickel-5%(—)

(Aluminum Silicon)

Rhodium(+) vs.
Platinum(—)

Rhodium(+) vs.
Platinum(—)

vs. Constantan(—)

—100°C to 1000°C*  0°C to 760°C* 0°C to 1370°C* 0°C to 1000°C*  0°C to 1750°C* —160°C to 400°C*

+0.5°C +0.1°C +0.7°C +0.5°C +1°C +0.5°C

9th Order 5th Order 8th Order 8th Order 9th Order 7th Order
ag 0.104967248 —0.048868252 0.226584602 0.263632917 0.927763167 0.100860910
aj 17189.45282 19873.14503 24152.10900 179075.491 169526.5150 25727.94369
a —282639.0850 —218614.5353 67233.4248 —48840341.37 —31568363.94 —767345.8295
as 12695339.5 11569199.78 2210340.682 1.90002E + 10 8990730663 78025595.81
ay —448703084.6 —264917531.4 —860963914.9 —4.82704E+12 —1.63565E + 12 —9247486589
as 1.10866E + 10 2018441314 4.83506E + 10 7.62091E + 14 1.88027E + 14 6.97688E + 11
ag —1.76807E + 11 —1.18452E + 12 —7.20026E+16 —1.37241E+1 —2.66192E + 13
ay 1.71842E + 12 1.38690E + 13 3.71496E + 18 6.17501E+ 17 3.94078E + 14
ag —9.19278E + 12 —6.33708E + 13 —8.03104E+19 —1.56105E+ 19
ag 2.06132E + 13 1.69535E + 20

they should have essentially the same characteristics, and this result would be highly
unlikely. Also, the accuracy of the thermocouples for a direct temperature-difference
measurement will be much better than for an absolute temperature measurement.

For those persons wishing to design software to calculate temperatures from
thermocouple voltages, a ninth-order polynomial can be used in the form

where

T:ao+a1x+a2x2+-~-+a9x9

T = temperature, °C

x = thermocouple voltage, volts, reference junction at 0°C
a = polynomial coefficients given in Table 8.5 for various
thermocouple combinations

[8.12]

The accuracy with which each polynomial fits the NIST tables is indicated in Table 8.5.
From the standpoint of computer calculations the equations are usually written in a
nested polynomial form to minimize execution time. For example, the fifth-order
polynomial for iron-constantan would then be written

T =ap + x(a; + x(ar + x(az + x(as + asx)))) [8.13]

A number of commercial instruments are available which measure thermocouple
voltages and employ an internal microprocessor to calculate temperatures for a digital
readout, either visually or on a strip-chart printer.

The output of thermocouples is in the millivolt range and may be measured by a
digital millivoltmeter. The voltmeter is basically a current-sensitive device, and hence
the meter reading will be dependent on both the emf generated by the thermocou-
ple and the total circuit resistance, including the resistance of the connecting wires.
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The complete system, consisting of the thermocouple lead wires and millivoltmeter,
may be calibrated directly to furnish a reasonably accurate temperature determina-
tion. For precision measurements, the thermocouple output may be determined with
a potentiometer circuit similar to the one described in Sec. 4.4. For very precise
laboratory work a microvolt potentiometer is used, which can read potentials within
1 ©V. It may be noted that the resistance of the lead wires is of no consequence when
a potentiometer is used at balance conditions since the current flow is zero in the
thermocouple circuit.

Obviously, a large number of electronic voltmeters are suitable for thermocouple
measurements. Many provide a digital output which can be used for direct computer
processing of the data. These instruments typically have very high input impedance
and therefore do not draw an appreciable current in the thermocouple circuit.

The problem of the reference junction can be alleviated with the circuit shown
in Fig. 8.18. A thermistor is placed in thermal contact with the terminal strip to which
the thermocouple wires are attached. The voltage v, and temperature coefficient of
the thermistor must be adjusted so that V. will match the thermocouple temperature
coefficient in millivolts/degree. The value of R, is adjusted so that the voltage output
AV is zero at 0°C. A convenient value for R4 is about 1 k2.

The compensator shown in Fig. 8.18 is called a hardware-compensation device.
Others which may be employed can be based on RTD or other types of solid-state
temperature sensors. They are limited to a single type of thermocouple because, as
shown in Table 8.5, each thermocouple has its own emf-temperature characteristic. An
alternate technique is to provide firmware compensation in the data acquisition system.
In this technique the temperature of the measurement junction(s) is (are) measured
with a RTD or thermistor and compensation provided with a built-in microprocessor.
Direct digital readout of temperature is then provided. With appropriate switching
one can use the same junction(s) for several types of thermocouples. We must caution
the reader that such compensation assumes a polynomial relation like Eq. (8.12), and
if the thermocouple wires and/or junctions do not conform to the NIST standard,
then an error in measurement will result. To alleviate this difficulty, the wires and

Thermistor Ry
—— W\
2 1
Yp
Rx RA )
é AV Readout
—O0— o
Thermocouple \ 1A
bead Terminal .
strip Copper wires

Figure 8.18 Reference junction compensation using thermistor.
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junctions may be calibrated against known standards and a correction factor CF
determined as
CF = true temperature — indicated temperature
= fcn (indicated temperature) [8.14]
For some acquisition systems a simple polynomial expression for CF (perhaps a

quadratic) may be programmed to furnish a correct readout. In other cases the output
may be fed to a computer where the correction is performed.
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THERMOCOUPLE MEASUREMENT.  Aniron-constantan thermocouple is connected to
a potentiometer whose terminals are at 25°C. The potentiometer reading is 3.59 mV. What is
the temperature of the thermocouple junction?

The thermoelectric potential corresponding to 25°C is obtained from Table 8.3a as
E75 = 1277 mV
The emf of the thermocouple based on a 0°C reference temperature is thus
Er =1.27743.59 = 4.867 mV

From Table 8.3a, the corresponding temperature is 92.5°C.

Example 8.4

In order to provide a more sensitive circuit, thermocouples are occasionally con-
nected in a series arrangement as shown in Fig. 8.19. Such an arrangement is called a
thermopile, and for a three-junction situation the output would be three times that of a
single thermocouple arrangement provided the temperatures of the hot and cold junc-
tions are uniform. The thermopile arrangement is useful for obtaining a substantial
emf for measurement of a small temperature difference between the two junctions.
In this way a relatively insensitive instrument may be used for voltage measurement,
whereas a microvolt potentiometer might otherwise be required. When a thermopile
is installed, it is important to ensure that the junctions are electrically insulated from
one another. We have seen that the typical thermocouple measures the difference in
temperature between a certain unknown point and another point designated as the
reference temperature. The circuit could just as well be employed for the measure-
ment of a differential temperature. For small differentials the thermopile circuit is
frequently used to advantage. Now, consider the series thermocouple arrangement
shown in Fig. 8.20. The four junctions are all maintained at different temperatures
and connected in series. Since there are an even number of junctions, it is not nec-
essary to install a reference junction because the same type of metal is connected to
both terminals of the potentiometer. If we note that the current will flow from plus
to minus and assume that junction A produces a potential drop in this direction, then
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Figure 8.19 Thermopile connection.
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Figure 8.20 Series connection of thermocouples.

junctions B and D will produce a potential drop in the opposite direction and
junction C will generate a potential drop in the same direction as junction A. Thus,
the total emf measured at the potentiometer terminals is

E=e5s—ep+ec—ep [8.15]

The reading will be zero when all the junctions are at the same temperature and will
take on some other value at other conditions. Note, however, that the emf of this series
connection is not indicative of any particular temperature. It is not representative
of an average of the junction temperatures because the emf vs. T relationship is
nonlinear.
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Figure 8.21 Parallel connection of thermocouples.

The parallel connection in Fig. 8.21 may be used for obtaining the average tem-
perature of a number of points. Each of the four junctions may be at a different
temperature and hence will generate a different emf. The bucking potential furnished
by the potentiometer will be the average of the four junction potentials. There can
be a small error in this reading, however, because there is a small current flow in the
lead wires as a result of the difference in potential between the junctions. Thus, the
resistance of the lead wires will influence the reading to some extent.

A more suitable way of obtaining an average temperature is to use the thermopile
circuit in Fig. 8.19. Each of the “hot” junctions may be at a different temperature,
while all the “cold” junctions may be maintained at a fixed reference value. The
average emf is then given by

En = [8.16]

E
n
where n is the number of junction pairs and E is the total reading of the thermopile.

The average temperature corresponding to the average emf given in Eq. (8.13) may
then be determined.
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Example 8.5

EFFECT OF COLD JUNCTION LEVEL OF THERMOPILE. A thermopile consisting
of five junction pairs of Chromel-constantan is used to measure a temperature difference of
50°C with the cold junctions at 25°C. Determine the voltage output of the thermopile. Sup-
pose the cold-junction temperature is incorrectly stated as 75°C (in reality, the hot-junction
temperature). What error in temperature-difference measurement would result from this incor-
rect statement?

Solution
From Table 8.3a the data needed are:

Eys = 1.495 mV
E75 = 4.657 mV
E125 = 8.054 mV

all referenced to 0°C. For the correct statement of the cold junction at 25°C, with a hot-junction
temperature of 75°C, the voltage output reading of the thermopile would be

Ear = (5)(4.657 — 1.495) = 15.810 mV

By incorrectly stating the cold-junction temperature as 75°C, we have not changed the actual
reading value of 15.810 mV; however, the reading now indicates a different value of AT. To
obtain the new high temperature we would calculate a new high-temperature emf as

15.810

Er =4.657 + =7.819 mV

Interpolating, using the above data

(125 —75)(7.819 — 4.657)
8.054 — 4.657

Thor = 75 +

121.54°C
AT = 121.54 — 75 =46.54°C

Not only is the temperature leve! of the hot junction grossly in error (121.54°C instead of 75°C)
but the temperature difference is also off by a substantial amount—46.54°C instead of 50°C.

Comment

When using thermopiles for temperature-difference determinations, it is important that the
temperature level of either the hot or cold junction be expressed correctly.

Example 8.6

RESULT OF INSTALLATION MISTAKE. A heat-exchanger facility is designed to use
type J thermocouples to sense an outlet gas temperature. A safety device is installed to shut
down the flow heating system when the gas temperature reaches 800°C. During a periodic
maintenance inspection, the thermocouple is judged to need replacement because of oxidation.
By mistake, a type K thermocouple is installed as the replacement. What may be the results of
such an installation?
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Solution
The voltage output of a type J thermocouple at 800°C is

Eg()()(J) = 45.494 mV

Presumably, the measurement system is calibrated for this type of thermocouple and will
indicate a temperature of 800°C. For this same voltage output from a type K thermocouple the
corresponding temperature would be

Tys.404(K) = 1110°C

Thus, the safety device would not be activated until a temperature 310°C higher than the design
value is reached. This could easily result in material failure of parts of the equipment. Despite
such consequences, faulty installations do occur in practice, and sometimes result in equipment
breakdowns.
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From the above discussion it is clear that the thermocouple measures the temper-
ature at the last point of electric contact of the two dissimilar materials. Consider the
situations shown in Fig. 8.22. The thermocouple installation in Fig. 8.22a is made so
that only the junction bead makes contact with the metal plate whose temperature is
to be measured. The installation in Fig. 8.22b allows contact at two points. If there
is a temperature gradient in the metal plate, then the emf of the thermocouple will
be indicative of the average of the temperatures of these two points. In Fig. 8.22¢
only the junction bead contacts the metal plate, but the two thermocouple wires are
in electric contact a short distance away from the plate. The temperature indicated by
the thermocouple will be that temperature at the shorted electric contact.

The transient response of thermocouples depends on junction size; the smaller the
size, the faster the response. A number of commercial junctions are available which
provide rapid transient response. Preformed butt-bonded junctions of about 0.1 mm
thickness are encased in a polymer-glass laminate that can respond to temperature
changes within 5 ms [25].

Thermocouples are used in applications ranging from measurement of room-air
temperature to that of a liquid metal bath. Despite the simplicity, low cost, and ready
availability of these thermocouples, there are problems which may be encountered
such as:

Short
Y
(a) (b) (c)

Figure 8.22 Installation of thermocouples on a metal plate. (a) Only junction bead
contacts plate; (b) contact at two points: (c) contact at bead and along
wires.
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1. Junctions formed by users may involve excessive temperatures or faulty
soldering techniques such that the thermocouple does not conform to the standard
emf-temperature tables.

2. Thermocouples may be used outside their applicable range and become decali-
brated over a period of time.

3. Faulty reference junction compensation may be employed.
4. Installation faults, as shown in Fig. 8.22, may occur.

5. The user may install the wrong-type thermocouple for the readout equipment.
Gross errors can result.

QUARTZ-CRYSTAL THERMOMETER

A novel and highly accurate method of temperature measurement is based on the
sensitivity of the resonant frequency of a quartz crystal to temperature change. When
the proper angle of cut is used with the crystal, there is a very linear correspondence
between the resonant frequency and temperature. Commercial models for the device
utilize electronic counters and digital readout for the frequency measurement. For
absolute temperature measurements usable sensitivities of 0.001°C are claimed for
the device. Since the measurement process relies on a frequency measurement, the
device is particularly insensitive to noise pickup in connecting cables. The device has a
normal operating range of —40 to 230°C (—40 to 440°F) and a frequency-temperature
relationship of about 100 Hz/°C.

LIQUID-CRYSTAL THERMOGRAPHY

Cholesteric liquid crystals, formed from esters of cholesterol, exhibit an interesting
response to temperature. Over a reproducible temperature range the liquid crystal
will exhibit all colors of the visible spectrum. The phenomenon is reversible and
repeatable. By varying the particular formulation, one can make cholesteric liquid
crystals operate from just below 0°C to several hundred degrees Celsius. The event
temperature range, or temperature at which the color changes are displayed, can vary
from 1 to 50°C. Thus, the liquid crystals afford the opportunity for rather precise
temperature indication through observation of the color changes.

To prevent deterioration of the crystals, they can be coated with polyvinyl alco-
hol, producing encapsulated liquid crystals which are available either as a water-based
slurry or precoated on a blackened substrate of paper or Mylar. Resolution of the order
of 0.1°C is claimed for the technique. Digital imaging, whereby pixel-by-pixel read-
ings may be taken of color and illumination intensity across the image, are applicable
to the technique.

A description of the application of liquid crystals to heat-transfer measurements
is given in Refs. [21] and [22].
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THERMOELECTRIC POWER. The thermoelectric effect has been used for modest
electric-power generation. Calculate the thermoelectric sensitivity of a device using bismuth
and tellurium as the dissimilar materials and estimate the maximum voltage output for a 100°F
temperature difference at approximately room temperature using one junction.

Solution
The sensitivity is calculated from the data of Table 8.4 as

S = Stclturium — Sbismuth

=500 — (=72) =572 uV/°C
The voltage output for a 100°F temperature difference is calculated as

E =S AT = (572 x 107°)(3)(100)
=3.18x 1072V

Example 8.7

8.6 TEMPERATURE MEASUREMENT BY RADIATION

In addition to the methods described in the preceding sections, it is possible to
determine the temperature of a body through a measurement of the thermal radia-
tion emitted by the body. Two methods are commonly employed for measurement:
(1) optical pyrometry and (2) emittance determination. Before discussing these meth-
ods, we need to describe the nature of thermal radiation.

Thermal radiation is electromagnetic radiation emitted by a body as a result of
its temperature. This radiation is distinguished from other types of electromagnetic
radiation such as radio waves and X-rays, which are not propagated as a result of
temperature. Thermal radiation lies in the wavelength region from about 0.1 to 100 um
(1 wm = 10~° m). The total thermal radiation emitted by a blackbody (ideal radiation)
is given as

E, =oT* [8.17]

where o = Stefan-Boltzmann constant
=0.1714 x 10~% Btw/h - ft> - °R*
=5.669 x 1078 W/m? . K*
E;, = emissive power, Btu/h - ft> or W/m?>
T = absolute temperature,”R or K

The emissive power of the blackbody varies with wavelength according to the Planck
distribution equation

Cl)xis

Ep = oC/AT _ |

[8.18]
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where Ej;; = monochromatic blackbody emissive power
=Bt/h - > - um
=W/m? - um
A = wavelength, um
T = temperature, °R or K
C; = 1.187 x 108 Btu - um*/h - ft?
=3.743 x 108 W - um*/m>
C, =2.5896 x 10* um - °R
=1.4387 x 10* um - K

A plot of Eq. (8.18) is given in Fig. 8.23 for two temperatures.
When thermal radiation strikes a material surface, the following relation applies:

at+p+t=1 [8.19]

where o = absorptivity or the fraction of the incident radiation absorbed
p = reflectivity or the fraction reflected
T = transmissivity or the fraction transmitted

r 12
=
50 I /\
& 10
< \
=
00- & \
T
S 8
250 x
<
&} <
B 200 £ 6
= &
. 2
150~ 2
5 4 A\
Q
ol E 1922 K (3000°F)
:
ER) — A
or & / ~_| \\
1366 K (2000°F
‘( ) ~—
o 0
0 1 2 3 4 5 6

Wavelength A, um

Figure 8.23 Blackbody emissive power for two temperatures.
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For most solid materials T = 0 so that
at+p=1 [8.20]

The emissivity € is defined as

E
=z
where E is the emissive power of an actual surface and Ej, is the emissive power

of a blackbody at the same temperature. Kirchhoff’s identity furnishes the additional
relationship

€ [8.21]

ce=a [8.22]

under conditions of thermal equilibrium. A gray body is one for which the emissivity
is constant for all wavelengths; i.e.,

£ [8.23]
=——=¢€ .

Ep
Actual surfaces frequently exhibit highly variable emissivities over the wavelength
spectrum. Figure 8.24 illustrates the distinctive features of blackbody and gray-body
radiation. For purposes of analysis the real surface is frequently approximated by a

€
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Figure 8.24 Comparison of emissive powers of blackbody, ideal gray body, and
actual surfaces.
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gray body having an emissivity equal to the average total emissivity of the real surface
as defined by Eq. (8.21).

Let us now consider the measurement of temperature through the use of optical
pyrometry. This methods refers to the identification of the temperature of a surface
with the color of the radiation emitted. As a surface is heated, it becomes dark red,
orange, and finally white in color. The maximum points in the blackbody radiation
curves shift to shorter wavelengths with increase in temperature according to Wien’s
law.

Amac T = 5215.6 um - °R(2897.6 um - K) [8.24]

where Ap,x is the wavelength at which the maximum points in the curves in Fig. 8.23
occur. The shift in these maximum points explains the change in color as a body is
heated; that is, higher temperatures result in a concentration of the radiation in the
shorter-wavelength portion of the spectrum. The temperature-measurement problem
consists of a determination of the variation of temperature with color of the object.
For this purpose an instrument is constructed as shown schematically in Fig. 8.25.
The radiation from the source is viewed through the lens and filter arrangement.
An absorption filter at the front of the device reduces the intensity of the incoming
radiation so that the standard lamp may be operated at a lower level. The standard
lamp is placed in the optical path of the incoming radiation. By an adjustment of the
lamp current, the color of the filament may be made to match the color of the incoming
radiation. The red filter is installed in the eyepiece to ensure that comparisons are made
for essentially monochromatic radiation, thus eliminating some of the uncertainties
resulting from variation of radiation properties with wavelength.

Figure 8.26 illustrates the appearance of the lamp filament as viewed from the
eyepiece. When balance conditions are achieved, the filament will seem to disappear
in the total incoming radiation field. Temperature calibration is made in terms of the
lamp heating current.

Eyepiece

I o
ed Absorption filter L]

R
Lens — 4~ filter \ — Lens
Standard /@

| i lamp

|1 s

Ammeter

Slidewire calibrated T
directly in temperature

Figure 8.25 Schematic of optical pyrometer.
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Filament Null Filament
too cold condition too hot
Figure 8.26 Appearance of lamp filament in eyepiece of optical pyrometer.

The temperature of a body may also be measured by determining the total emitted
energy from the body and then calculating the temperature from

E =eoT*! [8.25]
In order to determine the temperature, the emissivity of the material must be known
so that
£\ /4
T = () [8.26]
€0
The apparent blackbody temperature is the value as calculated from Eq. (8.26) with
€e=1,or
E\ /4
T, = () [8.27]
o

If the apparent temperature is taken as the measured value, the error in temperature
due to nonblackbody conditions is thus
- T, T,

=1- 7" =1—¢l/* [8.28]

Error =

Figure 8.27 gives this error as a function of emissivity.

Regrettably, the emissivities of surfaces are subject to a great amount of uncer-
tainty because they depend on surface finish, color, oxidation, aging, and a number
of other factors. The uncertainty in the temperature of Eq. (8.26) resulting only from
the uncertainty in emissivity is thus

wr 1 we

T  4e
and the effect of absolute uncertainty in emissivity is more pronounced at low values
of €. For example,

Ate=024005 YT - 905 _ 665
T~ 302
wr 005
Ate=09+005 2L —0.0139

T ~ (4)(0.9)
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Figure 8.27 Temperature error due to nonblackbody surface conditions.

Several methods are available to measure the emitted thermal energy from a body, and
some of these methods will be discussed in Chap. 12. For now, it is important to realize
the temperature may be calculated from the above equations once this measurement
is made.

One way to employ the radiant flux measurement is to measure the actual surface
temperature at some modest temperature condition using a noninvasive thermocou-
ple and compare with the blackbody temperature indicated by the radiometer. The
emissivity may then be calculated from Eq. (8.28). Unless surface conditions change
appreciably with temperature (such as oxidation of a polished copper surface), the
calculated value of emissivity may be used over a modest range of temperatures.
Some radiometers (see Ref. [25]) provide internal electronic circuits for entering as-
sumed values of emissivity during the measurement process so that a direct readout
of temperature is given.

In practice, the optical pyrometer is the more widely used of the two radiation
temperature methods for high temperatures, since it is relatively inexpensive and
portable and the determination does not depend strongly on the surface properties of
the material. The measurement of radiant energy from a surface can be quite accurate,
however, when suitable instruments are employed. If the surface emissive properties
are accurately known, this measurement can result in a very accurate determination
of temperature.
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Close proximity devices are available (see Ref. [25]) to operate within 2 mm
of a surface and sense surface temperature by emitted radiation. Internal electronic
circuits convert the signals to a voltage output which corresponds to standard emf-
temperature relationships for thermocouples as given in Table 8.5. In this way standard
thermocouple data loggers may be employed for recording and manipulation of the
data.

The interested reader should consult Refs. [2], [4], and [7] for more information
on thermal radiation and temperature measurements by the above methods.

EFFECT OF EMISSIVITY ON TEMPERATURE MEASUREMENT. The energy emit-
ted from a piece of metal is measured, and the temperature is determined to be 1050°C, assuming
a surface emissivity of 0.82. It is later found that the true emissivity is 0.75. Calculate the error
in the temperature determination.
Solution

The emitted energy is given by

4 _ eoT*
A

when 7 = 1050°C = 1323 K, € = 0.82. We wish to calculate the value of the true temperature
T’, such that

q / NG
Z = T
4 =€ o(T"
where € = 0.75. Thus,
(0.82)(1323)* = (0.75)(T")*
T = (1323) 082" =1352K
and - 075)
so that the temperature error is
AT = 1352 — 1323 = 29°C

Comment

From this calculation we see that a relatively large error in estimation of emissivity (0.82 is
9.3 percent too high) causes a smaller error in temperature; i.e., 1323 K is 2.1 percent
below 1352 K. Considering the level of the temperature measurement, this is quite good.
For a measurement near room temperature of 300 K the error would be in the order of 6°C.

Example 8.8

UNCERTAINTY IN RADIOMETER TEMPERATURE MEASUREMENT. A radio-
meter is used for a temperature measurement at 400 K and 800 K. The emissivity of the
surface being measured is estimated as 0.02 £ 0.05 and the absolute uncertainty in the mea-
surement of the emitted energy is estimated as 1 percent of the value of E at 800 K. Determine
the uncertainty in the determination of the two temperatures.

Example 8.9
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Solution
The temperature is obtained from Eq. (8.26) as

<E>1/4
T=|—
€0

Using the uncertainty relation for a product grouping from Eq. (3.2a) we obtain

)T

We have
We 0.05
e 02
WEg = 0.0lEg()()

which is stated to be an absolute value.
Assuming that the emitted energy varies with T*,

400\
Es00 = Esno 300

4
800
PE _0on( =) =o0.16
Eao 400

and

At800 K Eq. (a) yields
- -2 12
0.05
D022 | 4007 =0.0633
T~ |40

and wy = (800)(0.0633) = 50.6°C.
In contrast, at 400 K the fractional uncertainty becomes

- -2 12
0.05
r_ 11 22 10162l =0.1718
402) |

and
wr = (400)(0.1718) = 68.7°C

The uncertainty that results from w, alone is 50°C at 800 K and 25°C at 400 K.

8.7 EFFECT OF HEAT TRANSFER
ON TEMPERATURE MEASUREMENT

A heat-transfer process is associated with all temperature measurements. When a
thermometer is exposed to an environment, the temperature indicated by the ther-
mometer is determined in accordance with the total heat-energy exchange with the



8.7 EFFECT OF HEAT TRANSFER ON TEMPERATURE MEASUREMENT

temperature-sensing element. In some instances the temperature of the thermometer
can be substantially different from the temperature which is to be measured. In this
section we discuss some of the methods that may be used to correct the temperature
readings. It may be noted that the errors involved are classified as fixed errors.

Heat transfer may take place as a result of one or more of three modes: conduction,
convection, or radiation. In general, all three modes must be taken into account in
analyzing a temperature-measurement problem. Conduction is described by Fourier’s
law:

q=—kA— [8.29]

where & = thermal conductivity, W/m - °C or Btu/h - ft - °F
A = area through which the heat transfer takes place, m? or ft>
q = heat-transfer rate in the direction of the decreasing temperature
gradient, W or Btu/h

If a temperature gradient exists along a thermometer, heat may be conducted into or
out of the sensing element in accordance with this relation.

Convection heat transfer is described in accordance with Newton’s law of
cooling:

q=hA(T; — Tw) [8.30]

where h = convention heat-transfer coefficient, W/m?2 - °C or Btu/h - ft2 - °F
A = surface area exchanging heat with the fluid, m? or ft?
T, = surface temperature, °C or °F
T, = fluid temperature, °C or °F

The radiation heat transfer between two surfaces is proportional to the difference in
absolute temperatures to the fourth power according to the Stefan-Boltzmann law of
thermal radiation:

Q12 = oFGF (T} — T5) [8.31]

where F is a geometric factor and F is a factor that describes the radiation properties
of the surfaces.

Consider the temperature-measurement problem illustrated in Fig. 8.28. A ther-
mocouple junction is installed in the flat plate whose temperature is to be measured.
The plate has a thickness §, is exposed to a convection environment on the top side,
and insulated on the back side. The thermocouple is exposed to the same environment.
The thermocouple wires are covered with insulating material as shown. If the plate
temperature is higher than the convection environment, heat will be conducted out
along the thermocouple wire and the temperature of the junction will be lower than
the true plate temperature.

A solution to a similar problem, neglecting radiation effects, has been given by
Schneider [11]. The effects of the thermocouple installation are shown in Fig. 8.29.
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Figure 8.28 Schematic of thermocouple installation in a finite-thickness flat plate.
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Figure 8.29 Temperature-compensation curves for installation in Fig. 8.28.

The nomenclature for the parameters in Fig. 8.29 is as follows:

h, = convection heat-transfer coefficient on the top side of the plate as
indicated, Btu/h - ft2 - °F or W/m? - °C

h, = convection heat-transfer coefficient from the thermocouple wires,
Btu/h - ft2 - °F or W/m? - °C
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k = thermal conductivity of the plate material, Btu/h - ft - °F or W/m - °C
6 = plate thickness, ft or m

Tt = fluid temperature surrounding the thermocouple wire, °F or °C

T; = temperature indicated by the thermocouple, °F or °C

T, = true plate temperature (temperature a large distance away from the
thermocouple junction), °F or °C

A = total cross-sectional area of the wires = 27r?

1S
K= Ak +kj?) (h + k_)/(zr,)”2 [8.32]
t 1

where r, is the radius of each thermocouple wire, k4 and kg are the thermal conduc-
tivities of the two thermocouple materials, §; is the thickness of the thermocouple
insulation, and k; is the thermal conductivity of the insulation.

If the solid is a relatively massive one, the temperature correction can be made in
accordance with calculations developed by Hennecke and Sparrow [16] and presented
in graphical form in Fig. 8.30. In this figure £ is the thermal conductivity of the solid,
r is the radius of the wire or +/2 times the radius for two wires, L is the length of the
thermocouple leads, h; is the convection heat-transfer coefficient between the solid
and the fluid, kA is the equivalent conductivity area product for axial conduction in
the wire, and R is the radial thermal resistance of the wire, insulation, and convection
to the fluid. For a wire of radius r,,, covered by a layer of insulation having an outside
radius r; and thermal conductivity k;, the value of R is calculated from

1 +ln(r,-/rw)
T W27 27k;

[8.33]

where £ is the convection heat-transfer coefficient from the outside of the insulation
to the fluid. We should note that the length L is sufficiently long in many applications
to make the hyperbolic tangent term unity in the equation for X in Fig. 8.30.

» T X - Bi

- T ~ X+ F(Bi)
VIAIR
TIrk

Bi = hyrlk

tanh (L/NVKAR )

>
I

Figure 8.30 Temperature correction for installation on a relatively massive plate.
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The term Bi = h,r/k is called the Biot number or Biot modulus and is im-
portant in heat-transfer applications which involve combined conduction-convection
systems like the thermocouple installations illustrated here. This parameter indicates
the relative magnitude of the resistance to heat transfer resulting from convection to
the resistance to heat transfer from conduction. Large values of Bi indicate a small
convection resistance in comparison to conduction while small values of Bi indicate
just the opposite. The function F(Bi) is given by

F(Bi) = 1.27 + 1.08Bi — 0.5Bi>  for Bi < 1.0 [8.34]

This is an approximation by the present writer to more complicated expressions in
Ref. [ 16]. It can be extended somewhat beyond the range of Bi < 1.0; however, larger
values of Bi would indicate a larger effect of convection and thus a larger temperature
error. In these cases, the installation should be modified.

The conduction lead error may be reduced by laying the wire along the solid to
reduce the temperature gradient. Obviously, the wire must be electrically insulated
from the solid if the solid is a metal.

Example 8.10

ERROR IN LOW-CONDUCTIVITY SOLID. A thermocouple wire having an effective
diameter of 1.5 mm is attached to a ceramic solid having the properties p = 2500 kg/m?,
¢ =0.7kl/kg - °C, and k = 0.9 W/m - °C. The thermocouple has an effective conductivity
of 80 W/m - °C. The wire is very long and essentially bare, with a convection coefficient of
250 W/m? - °C. The convection coefficient & is 20 W/m? - °C. Calculate the true plate temp-
erature when the thermocouple indicates 200°C and the fluid temperature is 90°C.

Solution

We make use of Fig. 8.30 and Eq. 8.33 and calculate the quantities

1 1
R = =
h2nrr; (250)(27)(0.75 x 1073)

kA = (80)7(0.75 x 107)2 = 1.414 x 10™*

=0.849

Because L — oo, tanh(oco) — 1.0, and

VKA/R  [(1.414 x 107*)/0.849]"/

X = - = 6.085
rk 7(0.75 x 102)(0.9)
20)(0.75 x 103
Bi = h}i’ - %;0) —0.0167  F(Bi) = 1.288

We then calculate
T,-T; _ 6.085 — 0.0167
T,—T;  6.085+1.288

=0.823

and, with T; = 200°C, Ty = 90°C, the true plate temperature is
T, =711°C

This installation results in a very large error.
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ERROR IN HIGH-CONDUCTIVITY SOLID. Repeat Example 8.10 for installation on
a block of aluminium with £ = 200 W/m - °C.

Solution
We recalculate the appropriate parameters as

VKA/R  [(1.414 x 107*)/0.849]'/2

- _ = 0.0274
Tk 7(0.75 x 10-3)(200)
ho (20)(0.75 x 1073
gi— 1 _ COOTS X0 o g 105 F@iy = 1.271
k 200
Then,
T,—T, 0.0274—936x 10-*
- =0.021
T, — 1, 0.0274 + 1.271
and
T, = 202.3°C

Of course, this indicates the extreme importance of the conductivity of the solid to the mea-
surement error.

Now, let us consider the general problem of the temperature measurement of
a gas stream and the influence of radiation on this measurement. The situation is
illustrated in Fig. 8.31. The temperature of the thermometer is designated as 7,
the true temperature of the gas is T, and the effective radiation temperature of the
surroundings is T. If it is assumed that the surroundings are very large, then the
following energy balance may be made:

hA(T, — T;) = oAe (T — T}) [8.35]

where & = convection heat-transfer coefficient from the gas to the thermometer
A = surface area of the thermometer
€ = surface emissivity of the thermometer

Equation (8.35) may be used to determine the true gas temperature.

Irad ~ (Te(Tt4 - Tx4)

v

_'> Surrounding, 7
T

Figure 8.31 Schematic illustrating influence of radiation on temperature of thermometer.
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Thermometer-sensing element

A T, A, h, ¢

Environment, 7, G

~— Shield, T, A, hy, €;

> L e e By

Gas, Tg

Figure 8.32 A simple radiation-shield arrangement for a thermometer.

In practice, the radiation error in a temperature measurement is reduced by
placing a radiation shield around the thermometer, which reflects most of the
radiant energy back to the thermometer. A simple radiation-shield arrangement is
shown in Fig. 8.32. The environment is assumed to be very large, and we wish to
find the true gas temperature knowing the indicated temperature 7; and the other
heat-transfer parameters, such as the heat-transfer coefficients and emissivities. The
thermometer size may vary considerably, from the rather substantial dimensions of
a mercury-in-glass thermometer to a tiny thermistor bead embedded in the tip of a
hypodermic needle. An energy balance that neglects conduction effects may be made
for both the thermometer and the shield using a radiation-network analysis to obtain
expressions for the radiation heat transfer.' The results of the analysis are

THERMOMETER
€
h(Ty = T) = = (Ep = J)) [8.36]
- &t
SHIELD
Ey — J E,, — Ep,
2h,(T, — T,) = . b [8.37]
(I/Fts)(As/Al)_’_l/es_ 1 l/es_ 1 + 1/Fse
where

_ {Eple:/(1 —€)] + FreEpe}Ar/As + Epg /[(1/ Fi)(As/Ap) + 1/e5 — 1]

J[ ==
(Ai/A)Fie + € /(1 =€)+ 1/[(1/ Fi) (As/ A1) + 1/ — 1]
[8.38]

€, and ¢, are the emissivities of the thermometer and shield, respectively, &, and k; are
the convection heat-transfer coefficients from the gas to the thermometer and shield,
respectively, A, is the surface area of the thermometer for convection and radiation,
Ay is the surface area of the radiation shield on each side, and the blackbody emissive

| 1 An explanation of the radiation-network method is given in Ref. [5].
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powers E}, are given by

Ey = oT} [8.39]
Eps = oT! [8.40]
Ep, = oT} [8.41]

The radiation-shape factors F are defined as

F,; = fraction of radiation that leaves the thermometer and arrives at the shield

F,, = fraction of radiation that leaves the outside surface of shield and gets to
the environment (this fraction is 1.0)

F,, = fraction of radiation that leaves the thermometer and gets to the
environment

The analysis that arrives at Egs. (8.36) and (8.37) has been simplified somewhat by
assuming that all the radiation exchange between the shield and environment may be
taken into account by adjusting the value of Fj, to include radiation from the inside
surface of the shield. Some type of convection heat-transfer analysis must be used to
determine the values of 4, and &, depending on whether natural or forced convection
is involved, etc. An iterative solution must usually be performed on Egs. (8.36) and
(8.37) except in special cases. Some useful charts are given in Ref. [15] for correcting
temperature measurements for the effects of conduction and radiation.

In all cases the radiation error will be reduced by using a radiation shield, which
is as reflective as possible (e very small).

When convection from the shield can be neglected, it can be shown that if the
shield placed around the thermometer essentially surrounds the sensing element, the
radiation term on the right-hand side of Eq. (8.35) should be multiplied by a factor Fj.

1
T 1+ (Ae/A) 2/ — 1)

where A = area of the thermometer element

[8.35d]

Fy

A, = surface area of the shield
€, = emissivity of the shield
€ = emissivity of the sensor

It should be noted again that the installation of any shiel