


HEAT 
AND

THERMODYNAMICS

FM.indd   1 6/4/2011   3:27:14 PM



FM.indd   2 6/4/2011   3:27:14 PM

This page is intentionally left blank.



Anandamoy Manna
Former Professor

Department of Physics
Jadavpur University

FM.indd   3 6/4/2011   3:27:15 PM



Copyright © 2011 Dorling Kindersley (India) Pvt. Ltd
Licensees of Pearson Education in South Asia

No part of this eBook may be used or reproduced in any manner whatsoever without the publisher’s prior written 
consent.

This eBook may or may not include all assets that were part of the print version. The publisher reserves the right to 
remove any material present in this eBook at any time.

ISBN 9788131754009
eISBN 9789332511804

Head Office: A-8(A), Sector 62, Knowledge Boulevard, 7th Floor, NOIDA 201 309, India
Registered Office: 11 Local Shopping Centre, Panchsheel Park, New Delhi 110 017, India

FM.indd   4 6/4/2011   3:27:15 PM



Dedicated to

The almighty GOD, the creator of all…

Ahamatma Gurhakesh Sarbavutashayasthito
Ahamadishcha Madhyancha Bhutanamanta Eba Cha (GITA)

FM.indd   5 6/4/2011   3:27:16 PM



FM.indd   6 6/4/2011   3:27:16 PM

This page is intentionally left blank.



		  Preface  xiii
		  About the Author  xiv

Chapter 1	 Mathematical Preliminaries� 1
	 1.1	 Partial Differentiation—1
	 1.2	 Definition of Mechanical Work—8
	 1.3	 Energy—9
	 1.4	 Conservative Field of Force—10
	 1.5	 Non-conservative System of Forces—14
	 1.6	 Gamma Functions and some Integrations—14

Chapter 2	 Thermometry� 17
	 2.1	 Introduction—17
	 2.2	 General Theory of Thermometry—18
	 2.3	 Liquid Thermometer—19
	 2.4	 Gas Thermometer—20
	 2.5	 Resistance Thermometer—22
	 2.6	 Thermocouple Thermometers—24
	 2.7	 Low and High Temperature Thermometry—26
		  Solved Problems  29
		  Problems  31
		  Questions  32

Chapter 3	 The Mechanical Equivalent of Heat� 33
	 3.1	 On the Nature of Heat: The Caloric Theory of Heat—33
	 3.2	 Friction Methods for Determining J. Joule’s Method—34
	 3.3	� Work Done During Expansion of a Gas at  

Constant Pressure—36
	 3.4	 Callendar and Barnes’ Steady Flow Method—37
	 3.5	 Newton’s Law of Cooling—38
	 3.6	� Specific Heat of a Gas by Joly's Differential  

Steam Caloriemeter—41

Contents

FM.indd   7 6/4/2011   3:27:16 PM



	 3.7	� Determination of Specific Heat of a Gas at  
Constant Pressure by Regnault’s Method—42

	 3.8	 Determination of g by Clement and Desorme’s Method—43
		  Solved Problems  44
		  Problems  52
		  Questions  53

Chapter 4	 Kinetic Theory of Gases� 54
	 4.1	 Macroscopic and Microscopic Points of View—54
	 4.2	 Derivation of the Pressure Exerted by a Perfect Gas—55
	 4.3	 Distribution Function of Velocities—57
	 4.4	 Elastic Collisions —64
	 4.5	 Energy of Gas Molecules—78
	 4.6	 Finite Volume of a Molecule, Mean Free Path—82
	 4.7	 The Transport Phenomena—95
	 4.8	 Viscosity of Gases at Low Pressures—107
	 4.9	� Collisions with a Solid Boundary: Pressure Exerted  

by a Gas Introducing Mean Free Path Concept—110
	 4.10	 Kinetic Theory of Conduction of Heat Through a Gas—116
	 4.11	 Theory of Self-Diffusion in a Gas—127
	 4.12	 Thermal Transpiration—129
	 4.13	 Evidences of Molecular Motion—130
		  Solved Problems  137
		  Problems  145
		  Questions  146

Chapter 5	 Equations of State� 149
	 5.1	 Equation of State of Perfect Gas—149
	 5.2	 Van der Waals’ Equation of State—152
	 5.3	 Determination of the Constants a and b—154
	 5.4	 Discussions on Van der Waals’ Equation—157
	 5.5	� Comparison of Van der Waals’ Equation with  

Andrews’ Experimental Curves—159
	 5.6	 Experimental Determination of Critical Constants—160
	 5.7	 Reduced Equation of State and Law of Corresponding States—162
	 5.8	 Merits and Demerits of Van der Waals’ Equation—162
	 5.9	 Boyle Temperature from Van der Waals’ Equation—163
	 5.10	 Other Equations of State—164
		  Solved Problems  167
		  Problems  170
		  Questions  170

viii    Contents

FM.indd   8 6/4/2011   3:27:16 PM



Contents    ix

Chapter 6	 Change of State� 171
	 6.1	 Deduction of Clausius–Clapeyron’s Equations—171
	 6.2	 Specific Heat of Saturated Vapours—175
	 6.3	 Internal and External Latent Heats—177
	 6.4	� Deduction of Clapeyron’s Equations from  

Thermodynamic Potential—178
	 6.5	 The Steam Line, the Hoar Frost Line and the Ice Line—179
	 6.6	 The Phase Rule—182
	 6.7	 Thermodynamics of Solutions—183
		  Solved Problems  194
		  Problems  197
		  Questions  197

Chapter 7	 The Joule–Thomson Cooling Effect� 198
	 7.1	 Introduction—198
	 7.2	 The Theory of The Experiment—199
	 7.3	 Calculation of Amount of Cooling—201
	 7.4	� Calculation of Cooling Co-efficient from  

Van Der Waals’ Equation—204
	 7.5	 Condition for Liquefaction of Gases—212
	 7.6	 Regenerative Cooling—215
	 7.7	 Method of Adiabatic Demagnetization—216
	 7.8	 Liquefaction of Air—220
	 7.9	 Liquefaction of Hydrogen—222
	 7.10	 Liquefaction of Helium—224
	 7.11	 Properties of Liquid Helium—227
	 7.12	 Measurement of Low Temperature—228
	 7.13	 Measurement of Specific Heat at Low Temperatures—231
	 7.14	 Refrigerating Mechanism—232
	 7.15	 Air Conditioning Machine—236
	 7.16	 Effects of Chlorofluoro Carbons (CFCS) on Ozone Layer—237
	 7.17	 Applications of Substances at Low Temperature—238
		  Solved Problems  239
		  Problems  242
		  Questions  243

Chapter 8	 First Law of Thermodynamics� 244
	 8.1	 Principle of Conservation of Energy—244
	 8.2	 The Thermodynamic State and Thermodynamic Co-ordinates—244
	 8.3	 Specific Heats and Latent Heats—246

FM.indd   9 6/4/2011   3:27:16 PM



	 8.4	 The Energy Equation—249
	 8.5	 Atmosphere in Convective Equilibrium—256
	 8.6	 The Isothermal and Adiabatic Curves—257
		  Solved Problems  261
		  Problems  267
		  Questions  268

Chapter 9	 The Second Law of Thermodynamics� 269
	 9.1	 Limitations of the First Law of Thermodynamics—269
	 9.2	 The Spontaneous Process—270
	 9.3	 The Heat Engine—271
	 9.4	 The Second Law of Thermodynamics—279
	 9.5	 Carnot’s Theorem—280
	 9.6	� Efficiency of a Carnot’s Engine is Independent of Nature of  

the Working Substance—282
	 9.7	 The Thermodynamic or Kelvin Scale of Temperature—283
	 9.8	 Centigrade Scale and Absolute Scale—286
	 9.9	� Conversion of Real-Gas Thermometer Scale to  

Perfect-Gas Thermometer Scale or Absolute  
Thermodynamic Scale—288

	 9.10	 Entropy—290
	 9.11	 Calculation of Efficiency of Rankine’s Cycle—302
	 9.12	 Efficiency of Diesel Cycle—304
	 9.13	 Efficiency of Otto Cycle—307
	 9.14	 Third Law of Thermodynamics—308
		  Solved Problems  308
		  Problems  313
		  Questions  315

Chapter 10	 Thermodynamic Relations� 316
	 10.1	 Maxwell’s Relations—316
	 10.2	 Relation Between the Thermodynamic Functions—321
	 10.3	 Specific Heat Equations—324
		  Solved Problems  329
		  Problems  337
		  Questions  338

Chapter 11	 Conduction of Heat� 339
	 11.1	 Introduction—339
	 11.2	 Rectilinear Flow of Heat—339
	 11.3	 Ingen-Hausz’s method—342

x    Contents

FM.indd   10 6/4/2011   3:27:16 PM



	 11.4	� Experiment of Despretz, Wiedemann and Franz for Comparison of 
Conductivities of Two Different Materials—343

	 11.5	 Forbes’ Method—344
	 11.6	 Conductivity of Poor Conductors—347
	 11.7	 Spherical Shell Method—349
	 11.8	 Cylindrical Shell Method—354
	 11.9	 Periodic Flow of Heat—359
	 11.10	 Angstrom’s Experiment—362
	 11.11	 Conductivity of Earth’s Crust—366
	 11.12	 Wiedemann–Franz Law—367
	 11.13	 Jaeger and Diesselhorst Method—370
		  Solved Problems  375
		  Problems  378
		  Questions  379

Chapter 12	 Radiation� 381
	 12.1	 Introduction—381
	 12.2	 Some Fundamental Concepts and Definitions—382
	 12.3	 Prevost’s Theory of Exchanges—386
	 12.4	 Kirchhoff’s Law of Radiation—390
	 12.5	 Analogy Between Black Body Radiation and Perfect Gas—395
	 12.6	 Boltzmann’s Ether Engine—395
	 12.7	 Thermodynamics of Radiation—398
	 12.8	 The Wavelength–Temperature Displacement Law—400
	 12.9	 Forms of the Distribution Function f(l)—403
	 12.10	 The Equipartition Principle—409
	 12.11	 The Rayleigh–Jeans Radiation Formula—412
	 12.12	 The Dynamical and Thermodynamical State of a System—415
	 12.13	 Planck’s Radiation Formula—417
	 12.14	 Jean’s Method of Deduction of Planck’s Radiation Formula—420
	 12.15	 Specific Heats of Substances—423
	 12.16	 Deviations from Dulong and Petit’s Laws—424
	 12.17	 Einstein’s Theory of Specific Heat—425
	 12.18	 Debye’s Theory of Specific Heat—428
	 12.19	 Specific Heat of Gases—432
	 12.20	 Experimental Determination of Stefan’s Constant—434
	 12.21	 Measurement of High Temperatures by Radiation—438
	 12.22	 Determination of Solar Constant—442
		  Solved Problems  445
		  Problems  448
		  Questions  448

Contents    xi

FM.indd   11 6/4/2011   3:27:16 PM



Chapter 13	 Introduction to Statistical Thermodynamics� 450
	 13.1	 Significance of Statistics—450
	 13.2	 Some Basic Concepts—451
	 13.3	 Stirling’s Theorem—453
	 13.4	 Mathematical Probability—454
	 13.5	 Statistical Methods of a Molecular System—456
	 13.6	 Liouville’s Theorem—457
	 13.7	 Boltzmann’s Relation Between Entropy and Probability—458
	 13.8	� Calculation of Statistical Probability and Number of Cells  

According to Quantum Statistics—459
	 13.9	 Bose–Einstein, Fermi–Dirac and Classical Statistics—460
	 13.10	 Distribution Law According to the Three Statistics —463
	 13.11	 Equilibrium State According to the Three Statistics—464
	 13.12	� Law of Distribution of Molecular Velocities According to  

Classical or Maxwell–Boltzmann Statistics—465
	 13.13	 Application of Bose–Einstein Distribution Law to Photon Gas—466
	 13.14	 Application of Fermi–Dirac Distribution Law to Electron Gas—468
	 13.15	 Comparison of the Three Statistics—474
	 13.16	 Criticism of the Three Statistics—474
		  Solved Problems  474
		  Problems  475
		  Questions  476

		  Index� 479

xii    Contents

FM.indd   12 6/4/2011   3:27:16 PM



Preface

The thought of writing a book originates from the meticulous involvement in the learning–teaching  
process. The opportunity of learning physics from dedicated teachers in the Ramakrishna Mission  
Residential College (RMRC), Narendrapur, in its excellent solitude, ashramik atmosphere devoted to 
magnificent educational environment stimulated our creative ability. Later, teaching physics in under-
graduate and postgraduate levels in RMRC and Jadavpur University over a period of four decades en-
riched my perception due to the inquisitiveness of our beloved students led me to write this course-book 
of Heat and Thermodynamics.

Heat and Thermodynamics is the basic and most important branch of science involving all the work-
ing in the universe and, hence, the need and importance of its clear conception is strong. The necessary 
mathematical and physical conceptions are presented here in a lucid and comprehensive way with suit-
able examples and solved problems. It is written with the purpose of providing fundamentals of thermal 
physics with rigorous treatment, wherever necessary, to quench the thirst of interested minds of under-
graduate and postgraduate levels of science and engineering students. I have consulted the best texts 
and most appropriate materials collected from the treasure of literature on thermal physics to make it 
comprehensive in all respects and I take the opportunity of expressing my gratitude to those authors. It 
would be a pleasure if the book receives attention of those for whom it is written. I welcome suggestions 
for the betterment of the book and will be happy to incorporate them in subsequent editions.

Anandamoy Manna
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Chapter 1

1.1 Partial Differentiation

Here we shall discuss differentiation of a function containg more than one independent variable. To 
start with, we shall consider the case of a function u which contains two independent variables x and y.
The derivative of u, when x varies and y remains constant, is called the partial derivative of u with 
respect to x. Similarly, the partial derivative of u with respect to y is the differential coefficient of u with 
respect to y, when x remains constant.

Notation: Partial derivatives of u with respect to x and y are denoted by ∂u/∂x and ∂u/∂y. Similar nota-
tions are used for higher derivatives. The formal definition of ∂u/∂x, when u f x y= ( , ), is

  ∂
∂

=
+ −

→

u
x

Lim f x x y f x y
xx∆

∆
∆0

( , ) ( , )  (1.1)

 Similarly, ∂
∂

=
+ −

→

u
y

Lim f x y y f x y
yy∆

∆
∆0

( , ) ( , )  (1.2)

Example 1: Find the partial derivative of u ax bxy cy= + +2 22 .

Solution: 
∂
∂

= +
u
x

ax by2 2  (regarding y as a constant)

  
∂
∂

= +
u
y

bx cy2 2  (regarding x as a constant)
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2  Heat and Thermodynamics

Example 2: Find the partial derivative of u ax by c= + +sin( )

 Putting v ax by c= + + ,  we have u v= sin

Solution: ∂
∂

=
∂
∂

= × = + +
u
x

du
dv

v
x

v a a ax by ccos cos ( )

  
∂
∂

=
∂
∂

= × = + +
u
y

du
dv

v
y

v b b ax by ccos cos ( )

Example 3: If  u f x ct f x ct= + + −1 2( ) ( ),

 prove that  ∂
∂

=
∂
∂

2

2
2

2

2

u
t

c u
x

Solution: Representing the first and the second derivatives by f ′ and f ′′,

  ∂
∂

= ′ + − ′ −
u
t

cf x ct cf x ct1 2( ) ( )  (regarding x as a constant)

  ∂
∂

= ′′ + + ′′ −
2

2
2

1
2

2
u
t

c f x ct c f x ct( ) ( )  (regarding x as a constant)

   ∂
∂

= ′ + + ′ −
u
x

f x ct f x ct1 2( ) ( )

  
∂
∂

= ′′ + + ′′ −
2

2 1 2
u
x

f x ct f x ct( ) ( )

 Hence, 
∂
∂

=
∂
∂

2

2
2

2

2

u
t

c u
x

1.1.1 Total Differential of a Function

Let the function be u f x y z= ( , , ), where x, y and z are three independent variables. The total change in 
u is ∆ ∆ ∆ ∆u f x x y y z z f x y z= + + + −( , , ) ( , , ), when the variables x, y and z change by ∆x, ∆y and ∆z 
respectively. This can be written as 

  ∆
∆ ∆ ∆ ∆ ∆ ∆

∆
u f x x y y z z f x y y z z x

x
=

+ + + − + +[ ( , , ) ( , , )]

  +
+ + − +[ ( , , ) ( , , )]f x y y z z f x y z z y

y
∆ ∆ ∆ ∆

∆

  +
+ −[ ( , , ) ( , , )]f x y z z f x y z z

z
∆ ∆

∆
 (1.3)

By the formal definition in Eqs 1.1 and 1.2, when in the limit ∆x alone is very small, the first part of 
Eq. 1.3 becomes 

  ∂
∂

= + +
x

f x y y z z dx[ ( , , )]∆ ∆  (1.4)
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Mathematical Preliminaries   3

The second part of Eq. 1.3, when ∆y alone is very small in the limit, becomes

  ∂
∂

= +
y

f x y z z dy[ ( , , )]∆
 

(1.5)

In the limit when ∆z alone is very small, the third part of Eq. 1.3 becomes 

  ∂
∂

=
z

f x y z dz[ ( , , )]  (1.6)

In the limit when ∆x, ∆y and ∆z are all infinitesimally small, each of the expressions (1.4), (1.5) and 
(1.6) reduce to ∂u/∂x, ∂u/∂y and ∂u/∂z so that in the limit

  du u
x
dx u

y
dy u

z
dz=

∂
∂

+
∂
∂

+
∂
∂

 (1.7)

1.1.2 Total Derivative of a Function
Let u be a function of x, y and z and let x, y and z be functions of a single variable t. We have to find an 
expression for du/dt. Dividing Eq. 1.3 by ∆t, we get 

  ∆
∆

∆ ∆ ∆ ∆ ∆
∆

∆u
t

f x x y y z z f x y y z z
x

x
=

+ + + − + +[ ( , , ) ( , , )]
∆∆t

  +
+ + − +[ ( , , ) ( , , )]f x y y z z f x y z z

y
y
t

∆ ∆ ∆
∆

∆
∆

  +
+ −[ ( , , ) ( , , )]f x y z z f x y z

z
z
t

∆
∆

∆
∆

In the limit when ∆t is infinitesimally small so that ∆x, ∆y and ∆z are all infinitesimally small, we 
have 

  
du
dt

u
x
dx
dt

u
y
dy
dt

u
z
dz
dt

=
∂
∂

+
∂
∂

+
∂
∂  (1.8)

 If u be a function of x and y, prove that

  
∂
∂

∂
∂











=
∂
∂

∂
∂











∂
y

u
x x

u
y

or
2uu
y x

u
x y∂ ∂

=
∂

∂ ∂

2

This means that in the case of a function of two variables, the order of differentiation may be inter-
changed.

We have seen that for a function u f x y u x= ∂ ∂( , ), / represents the limiting value of 

  ∆
∆

∆
∆

u
x

f x x y f x y
x

=
+ −( , ) ( , )  (1.9)

when ∆x is very small. In this expression only x changes, so that its limiting value is a function of y. 
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4  Heat and Thermodynamics

Now, let y change to y + ∆y, x remaining constant. Let us represent Eq. 1.9 as 

  ∆
∆

∆
∆

u
x

F x y f x x y f x y
x

= =
+ −( , ) ( , ) ( , )

 Then 
∆
∆

∆
∆ ∆ ∆

∆
∆

F
y

u
y x y

F x y y F x y
x

= =
+ −1 ( , ) ( , )

 or 
∆
∆ ∆

∆ ∆ ∆ ∆F
y y

f x x y y f x y y f x x y
=

+ + − + − +1 [ ( , ) ( , )] [ ( , )−− f x y
x

( , )]
∆

This expression can also be written as 

  ∆
∆ ∆

∆ ∆ ∆ ∆F
y x

f x x y y f x x y f x y y
=

+ + − + − +1 [ ( , ) ( , )] [ ( , )−− f x y
y

( , )]
∆

 =










1
∆

∆
∆x
u
y

 Thus, 
1 1

∆
∆
∆ ∆

∆
∆y

u
x x

u
y











=










In the limit when ∆x and ∆y are infinitesimally small, this becomes 

  
∂
∂

∂
∂











=
∂
∂

∂
∂









y

u
x x

u
y  (1.10)

1.1.3 The Perfect or Exact Differential
Given is a differential equation of the form 

  f x y dx f x y dy1 2 0( , ) ( , )+ =  (1.11)

The equation cannot be integrated unless the left-hand side of the equation is expressed as a total 
differential, so that 

  f x y dx f x y dy d f x y du1 2( , ) ( , ) [ ( , )]+ = =  (1.12)

In that case, u = f (x, y) + constant  (1.13)

 The total differential du is also called perfect or exact differential. In this section, we shall establish 
the condition under which the expression on the left-hand side of Eq. 1.11 may be a perfect differential. 
If u is a function of (x, y) as in Eq. 1.12,

 then du u
x
dx u

y
dy=

∂
∂

+
∂
∂
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Mathematical Preliminaries   5

Comparing this with Eq. 1.12, we get

  
∂
∂

=
u
x

f x y1( , )

  
∂
∂

=
u
y

f x y2 ( , )

 Now, 
∂
∂

=
∂

∂ ∂y
f x y u

y x
[ ( , )]1

2

 and  
∂
∂

=
∂

∂ ∂x
f x y u

x y
[ ( , )]2

2

Since u is a function of (x, y), we have from Eq. 1.10

  
∂
∂

=
∂
∂

f
y

f
x

1 2  (1.14)

Equation 1.14 is the condition which must be satisfied in order to make the expression on the left-
hand side of Eq. 1.11 a perfect differential, so that Eq. 1.11 may be integrated.

Example 4: If pv = RT, where R is a constant, show that 

  
∂
∂

∂
∂

∂
∂

= −
p
v
v
T

T
p

1

Solution: Keeping T constant, p v
v

v p
v

∂
∂

+
∂
∂

= 0

 or v p
v

p p
v

p
v

∂
∂

= −
∂
∂

= −or

 Keeping p constant, 

  p v
T

R v
T

R
p

∂
∂

=
∂
∂

=or

 Keeping v constant,

  v p
T

R p
T

R
v

∂
∂

=
∂
∂

=or

 Therefore,  
∂
∂

∂
∂

∂
∂

= − = −
p
v
v
T

T
p

p
v
R
p
v
R

1

Example 5: Given u = x3 + y3, where y = loge sin x, find du/dx

Solution: We have ∂
∂

=
∂
∂

=
u
x

x u
y

y3 32 2,
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6  Heat and Thermodynamics

  
dy
dx

d
d x

x d
dx

x
x

x x= = =
(sin )

[log sin ] (sin )
sin

cos cote
1

  
du
dx

u
x
dx
dx

u
y
dy
dx

x y x=
∂
∂

+
∂
∂

= +3 32 2 cot

Example 6: Find dy dx ax hxy by c/ if, 2 22 0+ + − =

Solution: Let u ax hxy by c= + + − =2 22 0

  
du
dx

u
x
dx
dx

u
y
dy
dx

=
∂
∂

+
∂
∂

= 0

  
∂
∂

= +
∂
∂

= +
u
x

ax hy u
y

by hx2 2 2 2,

  du
dx

ax hy by hx dy
dx

= + + + =( ) ( )2 2 2 2 0

 or 
dy
dx

ax hy
hx by

= −
+
+

Example 7: If u x y x y xy= + + +3 3 2 23 2 show that 
∂

∂ ∂
=

∂
∂ ∂

2 2u
y x

u
x y

Solution: ∂
∂

= + +
∂
∂

= + +
u
x

x xy y u
y

y x xy3 6 2 3 3 42 2 2 2,

  
∂
∂

∂
∂











= +
∂
∂

∂
∂











y
u
x

x y
x

u
y

6 4 , 
= +6 4x y

               \     ∴
∂

∂ ∂
=

∂
∂ ∂

2 2u
y x

u
x y

Example 8: Prove that the equation ( ) ( )2 2 2 2 02 2xy y x dx x xy y dy− + + − + = is exact.

Solution: Put f x y xy y x f x y x xy y1
2

2
22 2 2 2( , ) ( , )= − + = − +and

 Then 
∂
∂

= −
∂
∂

= −
f
y

x y
f
x

x y1 22 2 2 2and

 so that 
∂
∂

=
∂
∂

f
y

f
x

1 2

Hence, this equation is exact.
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Example 9: Examine whether the equation x y xy dy dx3 22 2 0− + =/ is exact.

Solution: The equation can be written as 

  ( )x y dx xydy3 22 2 0− + =

 Put f x y x y f x y xy1
3 2

22 2( , ) ( , )= − =and

 Then 
∂
∂

= −
∂
∂

=
f
y

y
f
x

y1 24 2and

Hence, this equation is not exact. It, however, becomes exact when multiplied by 1/x3.

 This gives 
x y
x

xy
x
dy
dx

3 2

3 3

2 2 0−
+ =

 or 1 2 2 0
2

3 2
−











+ =
y
x

dx y
x
dy

 Put F x y y
x

F x y y
x1

2

3 2 2
1 2 2( , ) ( , )= −











=and

 Then 
∂
∂

= −
∂
∂

= −
F
y

y
x

F
x

y
x

1
3

2
3

4 4and

Thus, the equation 

 x y xy dy
dx

3 22 2 0− + = becomes exact when it is multiplied by 1/x3.

1.1.4 The Integrating Factor
The above equation shows that an equation which is not exact can be made exact by multiplying with a factor.  
A factor which makes an equation an exact differential is called an integrating factor. 

Let µ be the integrating factor which makes the inexact differential expression (Xdx + Ydy) a perfect 
differential df, so that

  d Xdx Ydyφ µ µ= +

In that case,

  
∂
∂

=
∂
∂y

X
x

Y( ) ( )µ µ

 or µ
µ

µ
µ∂

∂
+

∂
∂

=
∂
∂

+
∂
∂

X
y

X
y

Y
x

Y
x

 or µ
µ µ∂

∂
−

∂
∂











=
∂
∂

−
∂
∂

X
y

Y
x

Y
x

X
y  (1.15)
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8  Heat and Thermodynamics

The integrating factor µ is required to satisfy Eq. 1.15.

 Thus, in Example 9, X f x y x y Y f x y xy
x

= = − = = =1
3 2

2 3
2 2 1( , ) ; ( , ) ; µ

 This gives 
∂
∂

= −
∂
∂

=
X
y

y Y
x

y4 2and

  
∂
∂

= −
∂
∂

=
µ µ
x x y

3 04

 so that µ
∂
∂

−
∂
∂











= − − = −
X
y

Y
x x

y y y
x

1 4 2 6
3 3

( )

  Y
x

X
y

xy
x

y
x

∂
∂

−
∂
∂

= −










= −
µ µ 2 3 6

4 3

Thus, the integrating factor 1/x3 satisfies the differential Eq. 1.15.

1.1.5 Geometrical Meaning of Perfect Differential
If a differential du represented by du = Xdx + Ydy be exact, then it can be integrated for a definite 
integral

  ( )Xdx Ydy du u u+ = = −∫ ∫
1

2

2
1

2

1

This means that the value of the integral depends on the initial and final values of u and is indepen-
dent of the path connecting the initial and final values.

1.2 Definition of Mechanical Work

Let a force acting on a particle displace it over a distance dr in a direction, making an angle θ with the 
direction of the force (Fig. 1.1). 

Then the mechanical work done by the force is 

 dw = F dr cosθ (1.16)

The work done is a scalar quantity. If X, Y and Z are the 
Cartesian components of force and if dx, dy and dz are the 
Cartesian components of displacement dr, then

      dW Xdx Ydy Zdz= + +  (1.17)
Equation 1.17 means that the work done by a force is 

equal to the work done by its components in their respec-
tive directions.

Direction of displacement

F

dr

Fig. 1.1 Schematic representation 
of mechanical work in translational 

motion
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1.2.1 Work Done in Rotational Motion
Figure 1.2 shows a flywheel which can be rotated about 
its axis by pulling one end of a rope wound round its 
circumference with a force F. If the end of the rope 
moves over a distance dr, the mechanical work done by 
the force is Fdr. This displacement dr causes the flywheel 
to rotate through an angle dθ so that dr = adθ, where a is 
the radius of the wheel. Hence, the mechanical work in 
rotation through angle dθ is 
  dw = Fdr = Fadθ

If G be the moment of the force F about the axis of the wheel, then G = aF, so that the work done 
in rotation is
  dw = Gdθ (1.18)

Hence, the work done in rotational motion is equal to the moment of the force multiplied by the 
angular displacement.

1.3 energy

Energy of a body is its capacity to work. The capacity of a body for doing work by virtue of its motion 
is called its kinetic energy. The capacity of a body for doing work by virtue of its position or change in 
configuration is called its potential energy.

1.3.1 Kinetic Energy
The kinetic energy of a body moving with velocity v is measured by the amount of work done by a force 
in generating the velocity v in the body at rest or by the amount of work required against a force to bring 
the body moving with velocity to rest. Thus, kinetic energy is 

  T
x

= ∫
0

Fdx where F is the applied force.

If m be the mass of the body and f the acceleration generated,

 then T
x

= ∫
0

mfdx
x

= ∫
0

m dv
dt
dx

x

= ∫
0
m dv
dx
dx
dt
dx

 or T
v

= ∫
0

mvdv mv=
1
2

2

Kinetic energy of a rotating body: The kinetic energy of a body rotating with angular velocity ω is 
measured by the amount of work done by a moment in generating the angular velocity in the body. Thus,

T Gd= ∫ θ
θ

0
where G is the moment of the force and dθ is the angular displacement. If I is the moment 

of inertia of the body about its axis of rotation, then G = I dw/dt, so that 

  T I d
dt
d I d

d
d
dt
d T I d I= = = =∫ ∫ ∫

ω
θ

ω
θ

θ
ω ω ω

θ θ

0 0 0

21
2

θ or
ω

Fig. 1.2 Schematic representation of 
work done in rotational motion

F  

a
dθ

dr
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10 Heat and Thermodynamics

1.3.2 Potential Energy
Potential energy due to position: When a body is raised above earth’s surface, the body possesses 
potential energy. Let m be the mass of the body, g be the acceleration due to gravity, h be the vertical 
height through which the body is raised, the work done in raising the body = mgh which remains stored 
as the potential energy in the body. This energy is independent of the path along which it is raised to 
vertical height h because mg acts vertically downwards.

Potential energy due to configuration: Coiled spring in a watch or a gramophone, a bent body, compressed 
spring or air etc. possess potential energy for they can do work while coming back to normal configuration.

1.4 conservative fielD of force

A field of force is the space throughout which force is experienced. Thus, the space surrounding the 
Earth is its gravitational field. Any piece of matter placed in this field is attracted towards the Earth. The 
field is said to be conservative if the work done in displacing a body from one position to another and 
back to the initial position is zero. This means that the work done in moving a body from one position A 
to another position B is independent of the path along which 
the body is carried. This can be proved as follows:

Let a particle be carried in a conservative field of force 
from A to B along the path ANB and back to A along the path 
BQA (Fig. 1.3). Let the same particle be carried from A to B 
along the path APB and back to A along the path BQA. Since 
the field is conservative, work done along the path ANB + 
work done along the path BQA = 0.

Hence, work done along the path ANB = work done along 
the path APB. The work done in a conservative field depends 
only on the initial and final positions of the body carried.

1.4.1 The Work Function
The condition that a field should be conservative in the sense as mentioned in Section 1.4 can be satis-
fied only when the work done in displacing a particle from one standard position (a, b, c) to another 
position (x, y, z) is a definite single-valued function of the coordinates of position which are independent of time 
and velocity of the particle. Let the single-valued function called the work function be represented by W. This 
is positive if the body moves in the direction of the force. In this case, the force is said to do work. If the body is 
made to move against the direction of the force, the work is negative. Here the work is done against the force.

1.4.2 The Potential Function
It is convenient to introduce a single-valued function V of coordinates of position (x, y, z) independent 
of time (independent of velocity also) so that (V + W) is constant at points of the path along which 
the body is carried. This function is called the potential function or the potential energy of the body 
in the conservative field.

Since  V + W = K , where K is a constant, 
δW = 2δV (1.19)

If δW is positive, that is, if work is done by a force, then the potential energy of the body diminishes 
and vice versa. 

Q

P

B

A 

N

Fig. 1.3  Schematic representation 
of conservative field of force
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Let F be the intensity of the field at a point (x, y, z) and let the Cartesian components of intensity at 
the point be X, Y and Z. 
 Then dW Xdx Ydy Zdz= + +  (1.20)

 By Eq. 1.19 Xdx Ydy Zdz dV+ + = −  (1.21)

Condition of existence of potential function: Since, in a conservative field, work done is indepen-
dent of the path and depends only on the initial and final positions, dv must be a perfect differential so 
that Xdx Ydy Zdz+ + is integrable. The condition for integrability can be deduced as follows:

Let the integral of the equation 

  Xdx Ydy Zdz+ + = 0  (1.22)
 Be f  (x, y, z) = a  where a is constant. (1.23)

In that case,

  df f
x
dx f

y
dy f

z
dz=

∂
∂

+
∂
∂

+
∂
∂

 (1.24)

Equations 1.22 and 1.23 are satisfied if ∂f/∂x, ∂f /∂y and ∂f/∂z, are proportional to X, Y and Z 
 respectively. Let the constant of proportionality be µ.

 Then µX f
x

=
∂
∂

 (1.25)

  µY f
y

=
∂
∂

 (1.26)

  µZ f
z

=
∂
∂

 (1.27)

Differentiating Eq. 1.25 by y, z, Eq. 1.26 by z, x and Eq. 1.27 by x, y, we get

  µ
µ

µ
µ∂

∂
+

∂
∂

=
∂
∂ ∂

∂
∂

+
∂
∂

=
∂
∂ ∂

X
y

X
y

f
y x

X
z

X
z

f
z x

2 2

;

  µ
µ

µ
µ∂

∂
+

∂
∂

=
∂
∂ ∂

∂
∂

+
∂
∂

=
∂
∂ ∂

Y
z

Y
z

f
z y

Y
x

Y
x

f
x y

2 2

;

  µ
µ

µ
µ∂

∂
+

∂
∂

=
∂
∂ ∂

∂
∂

+
∂
∂

=
∂
∂ ∂

Z
x

Z
x

f
x z

Z
y

Z
y

f
y z

2 2

;

 Hence, µ
µ

µ
µ∂

∂
+

∂
∂

=
∂
∂ ∂

=
∂
∂ ∂

=
∂
∂

+
∂
∂

X
y

X
y

f
y x

f
x y

Y
x

Y
x

2 2

  µ
µ

µ
µ∂

∂
+

∂
∂

=
∂
∂ ∂

=
∂
∂ ∂

=
∂
∂

+
∂
∂

Y
z

Y
z

f
z y

f
y z

Z
y

Z
y

2 2

  µ
µ

µ
µ∂

∂
+

∂
∂

=
∂
∂ ∂

=
∂
∂ ∂

=
∂
∂

+
∂
∂

Z
x

Z
x

f
x z

f
z x

X
z

X
z

2 2

On re-arranging, we get

  µ
µ µ∂

∂
−

∂
∂











=
∂
∂

−
∂
∂

X
y

Y
x

Y
x

X
y

 (1.28)
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  µ
µ µ∂

∂
−

∂
∂











=
∂
∂

−
∂
∂

Y
z

Z
y

Z
y

Y
z  (1.29)

  µ
µ µ∂

∂
−

∂
∂











=
∂
∂

−
∂
∂

Z
x

X
z

X
z

Z
x  (1.30)

Multiplying Eq. 1.28 by Z, Eq. 1.29 by X, Eq. 1.30 by Y, and adding them, we get

  X Y
z

Z
y

Y Z
x

X
z

∂
∂

−
∂
∂










+

∂
∂

−
∂
∂










+

∂
∂

−
∂
∂











=Z X
y

Y
x

0  (1.31)

Since Eq. 1.31 must be true for all values of X, Y and Z, the condition for existence of potential 
reduces to

  

∂
∂

−
∂
∂

=

∂
∂

−
∂
∂

=

∂
∂

−
∂
∂

=

Y
z

Z
y

Z
x

X
z

X
y

Y
x

0

0

0

 (1.32)

Example 10: Prove that the field due to inverse square law of force is conservative.

Solution:  Consider a point (x, y and z) at a distance r from the origin of coordinates, where the centre 
of force is placed.

 Then r x y z2 2 2 2= + +  
The intensity at the point (x, y and z) is

  F K
r

=
2

,

 where K is constant
The components of F in the directions of x, y and z are 

  X K
r
x
r

Y K
r
y
r

Z K
r
z
r

= = =
2 2 2  

 Then  
∂
∂

= −
∂
∂

= −
Y
z

Kyz
r r

Z
y

Kyz
r r

3 3
4 4

,  

 \ ∂
∂

−
∂
∂

=
Y
z

Z
y

0  

It can be similarly proved that 

  
∂
∂

−
∂
∂

=
∂
∂

−
∂
∂

=
Z
x

X
z

X
y

Y
x

0 0and  

It follows that the gravitational, magnetostatic and electrostatic fields, which vary inversely as square 
of distance, are conservative.
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Example 11: Prove that the field, which varies directly as distance, due to the force is conservative.
Solution:  This applies to elastic forces within the limit of elasticity. Consider a point (x, y and z) at a 

distance r from the origin of coordinates where the centre of force is placed. Then,

  r x y z= + +2 2 2

The intensity at the point (x, y, z) is F = Kr where K is constant.
The components of F in the directions of x, y and z are 

  X Kx Y Ky Z Kz= = =

 Then  
∂
∂

=
∂
∂

=
Y
z

Z
y

0 0

 \ 
∂
∂

−
∂
∂

=
Y
z

Z
y

0

It can be similarly proved that 

  
∂
∂

−
∂
∂

=
∂
∂

−
∂
∂

=
Z
x

X
z

X
y

Y
x

0 0and

From Eq. 1.21, since x, y and z are independent variables,

  X v
x
Y v

y
Z v

z
= −

∂
∂

= −
∂
∂

= −
∂
∂

 (1.33)

This means that the space rate of change of potential in any direction is equal to the component of the 
intensity of the field in that direction.

1.4.3 The Energy Equation (for conservative system)
Let (X, Y, Z) be three Cartesian components of force acting on a particle of mass m placed at the point 
(x, y, z). Let �� �� ��x y z,  and be the components of acceleration of the particle at time t, 

 then X mx Y my Z mz= = =�� �� ��, ,

 or Xx Yy Zz m xx yy zz� � � ��� ��� ���+ + = + +( )

 or 
1
2

2 2 2m d
dt
x d

dt
y d

dt
z Xx Yy Zz( ) ( ) ( )� � � � � �+ +







 = + +

 or 1
2

2 2 2m d
dt
x y z Xx Yy Zz( )� � � � � �+ + = + +

 or 1
2

2 2 2m d
dt
x y z dt X dx

dt
dt Y dy

dt
dt Z dz

dt
( )� � �+ + = + + ddt

  1
2

2 2 2md x y z Xdx Ydy Zdz( )� � �+ + = + +  (1.34)

Equation 1.34 is called the energy equation. It can be integrated only when the right-hand side of the 
equation is a perfect differential of some function of (x, y, z). We have seen that the right-hand side of Eq. 
1.34 is a perfect differential of the potential function when the force field is conservative. By Eq. 1.21,
  Xdx Ydy Zdz dV+ + = −
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where V is the potential function.

 Hence, 
1
2

2 2 2md x y z dV( )� � �+ + = −

 or                             dT = 2dV (1.35)
Equation 1.35 on integration yields 

  T + V = constant (1.36)
This is the principle of conservation of energy for mechanical forces. This means that the sum of 

kinetic energy and potential energy of an isolated conservative system remains constant for all times. 

1.5 non-conservative systeM of forces

A force is said to be non-conservative when work done against it is not conserved by the body which 
is moved by the force. A common example of non-conservative type of force is frictional force. 
When a body is moved against friction, work is required to overcome friction. Friction is always an  
opposing force, and the work done against friction depends not only on the initial and final positions of 
the body but also on the length of the path traversed.

What happens to the amount of work done against friction? This work evidently is not recover-
able. Work is energy and as such it cannot be lost. It is found that heat is generated when two bodies are 
rubbed against each other. It is a natural conclusion that heat must be a form of energy. When work is done 
against friction, it is converted into heat, which raises the temperature of the body. In nature, there is a 
tendency for equalization of temperature. This is done by three natural processes of transference of heat— 
conduction, convection and radiation. The heat within bodies ultimately passes into space. Once the heat 
passes into space it cannot be recovered and is, therefore, lost to all intents and purposes. Light is also a form 
of energy. Thus, a profuse quantity of sparks comes out of a grinding wheel when a hard body is rubbed 
against it. Electricity is also a form of energy. A dynamo converts mechanical work into electric energy and 
an electric motor converts electric energy into mechanical energy. Electric current flowing through a wire 
carries magnetic field with it. Thus, exchange of energy in nature is going on incessantly in different forms. 

1.5.1 Principle of Conservation of Energy
The principle of conservation of energy states that the sum total of energy in the universe is constant.  
It can, however, transform into different forms.

1.6 gaMMa functions anD soMe integrations

  Γ ( )l x e dxl x= − −
∞

∫ 1

0

  Γ Γ( ) ( ) ( )l l l= − −1 1

  Γ
1
2

1
2 1

0







 = =− −∞

∫ e x dxx π

Chapter 01.indd   14 4/5/2011   4:11:27 PM



Mathematical Preliminaries   15

1. e u dubu−
∞

∫
2 0

0

Putting bu2 = x, where b > 0, differentiating 2budu = dx,

 we get e u du e dx
b
b
x

bu x− −
∞∞

= ∫∫
2

200

�

  = −∞
−∫

1
2

1
2

0b
x e dxx

  = −∞
−∫

1
2

1
2 1

0b
x e dxx

  =






 =

1
2

1
2

1
2b b

Γ
π

2. e u dubu−
∞

∫
2

0

Putting bu2 = x and 2budu = dx,

 we get e u du e
dx

b
bu x− −

∞∞
= ∫∫

2

200

  = =
−











=−
−∞

∞

∫
1
2

1
2 1

1
20

0b
e dx

b
e

b
x

x

3. e u dubu−
∞

∫
2 2

0

Putting bu2 = x and 2budu = dx

  e u du e x
b
dx
b

b
x

bu x−
∞

−
∞

∫ ∫=










2 2

0 0 2

  = =








−
∞

∫
1

2

1

2

3
23

2

1
2

0 3
2b

e x dx
b

x Γ

  
=







 = =

1

2

1
2

1
2

1

2

1
2

1
43

2
33

2b b b
Γ π

π

4. e u dubu−
∞

∫
2 3

0

Putting bu2 = x, 2budu = dx

  e u du e x
b
dx
b b

e xdxbu x x− −
∞∞

−
∞

= =∫∫ ∫
2 3

00 2 02
1

2

  = − +





− −
∞

∫
1

2 2 0b
xe e dxx x

  = − −



 =− −
∞1

2
1

22 0 2b
x e e

b
x x
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2.1 IntroductIon

When we touch ice, we feel cold; when we stand in the sun, we feel hot. Our sense can perceive these 
conditions. To quantify the extent of hotness and coldness, we need to know the degree of hotness and 
coldness which is measured by a physical entity called temperature. The instrument by which tempera-
ture is measured is called a thermometer. A hotter body is at a higher temperature. If two bodies are at 
the same temperature, then they are in thermal equilibrium. If a third body is of the same temperature as 
the two bodies described earlier, then all the three bodies are in thermal equilibrium. This is the Zeroeth 
law of thermodynamics. Temperature of a body is measured based on this law.

When we heat a body, different changes are produced in it—its length, area and volume increases; 
if the body is a gas, its volume as well as pressure changes. Electrical as well as magnetic properties 
also change. The properties which change with temperature are called thermometric properties and the 
bodies are called thermometric bodies. An instrument utilizing any one of the thermometric properties 
is called a thermometer. Depending on the thermometric properties, different types of thermometers are 
designed and are discussed below:

Liquid thermometer: Here, expansion of liquid is chosen as the thermometric property. Common 
examples are mercury-in-glass thermometer and alcohol thermometer.

Gas thermometer: These thermometers use the property of expansion of gas, either at constant pres-
sure or at constant volume, giving rise to constant pressure and constant volume gas thermometer.

Resistance thermometer: The resistance of a conductor changes with the change in temperature. 
Thermometers based on this principle are called resistance thermometers, such as platinum resistance  
thermometer.

Thermoelectric thermometer: The thermoelectric property used here is the generation of thermo-
electromotive force, if the junctions of two dissimilar metals are maintained at two different temperatures; 
for example, copper constantan thermoelectric thermometer.

THERMOMETRY

2Chapter
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18  Heat and Thermodynamics

There are various other types of thermometers such as vapour pressure thermometer, radiation  
pyrometer and magnetic thermometer depending upon the different thermometric properties. They 
will be discussed at suitable places. We shall consider here the above-mentioned four types of ther-
mometers only.

Thermometers use different scales in different countries. Generally, Centigrade (Celsius), Fahren-
heit, Absolute (Kelvin) scale are in vogue. To build up a thermometric scale, we have to decide two fixed 
points which are taken as standards and are easily produced globally. These are ice point or lower fixed 
point which is 0 8C at one atmospheric pressure and the steam point or the upper fixed point which is 
the temperature of boiling water at one atmospheric pressure. The temperature interval between them is 
called the fundamental temperature interval. In Celsius scale, the ice point or lower fixed point is 0 8, in 
Fahrenheit scale it is 32 8 and in Celsius scale the steam point or upper fixed point is 100 8, in Fahrenheit 
it is 212 8; if c be the temperature as recorded in Celsius scale and f be the temperature as recorded in 
Fahrenheit scale, then 

  c f
5

32
9

=
−

If T be the temperature as recorded in absolute scale or Kelvin scale, then T = 273 + c.

2.2 General theory of thermometry

We have seen that the thermometric property depends on the temperature, and working of all types of 
thermometers is based on this principle.

Specifying the thermometric property by X, its variation with temperature (t) is generally repre-
sented by

  Xt = X0 (1 + αt + βt2 + γt3 + . . . . . . . . .) (2.1)

   where Xt = value of the thermometric property at t degree

  X0 = value of the thermometric property at zero degree

α, β and γ are constants of a thermometric substance which are of rapidly decreasing order of magni-
tude. So, we may take

  X X tt = +0 1( )α

 and X X100 0 1 100= +( )α

 or 
t X X

X X
t

100
0

100 0

=
−
−

 or t
X X
X X

t=
−
−

×0

100 0

100  (2.2)

By knowing the thermometric property at three temperatures, t can be determined. This is the funda-
mental equation in thermometry.

Chapter 02.indd   18 4/5/2011   7:57:38 PM



Thermometry   19

2.3 lIquId thermometer

The most common liquid thermometer is mercury-in-glass thermometer. This is very simple in con-
struction and is widely used in laboratories. Mercury is put in a bulb of thin-walled glass tube with a 
graduated stem of uniform cross section. Its lower fixed point is marked zero after keeping the bulb 
in ice for some time when the mercury thread in the stem becomes steady. The thermometer is then 
introduced in a boiler where water is made to boil at one atmospheric pressure. When the position of 
the mercury thread becomes steady, it is marked 100 8C and the length is divided into 100 equal parts.

Mercury has been chosen as the thermometric substance for the following reasons:
1. It is obtained easily in pure state; it remains liquid over a long range of temperature from 239 8C 

to 356 8C. Upper range can be extended to 500 8C by putting nitrogen under pressure in the tube.
2. Expansion of mercury is uniform.
3. Its specific heat is low and conductivity is high.
4. It is a shining liquid.

Mercury has some disadvantages also; they are as follows:
1. High specific gravity lowers its sensitivity.
2. Surface tension of mercury is high, which makes its motion in the stem a bit jerky.

Alcohol thermometers are used in the low-temperature region as it remains liquid up to 2112 8C. Its 
boiling point being 78 8C, its upper limit use is lowered. It is more sensitive as its coeff icient of expan-
sion is larger. Surface tension of alcohol is small; so, its motion in the stem is smooth.

Though mercury-in-glass thermometers were largely used at one time, they required a large number 
of corrections for precise measurement. So, the use of gas thermometers crept in. The main demerits of 
mercury-in-glass thermometers are:

1. While measuring temperature the bulb is introduced into the body whose temperature is to be mea-
sured, but the capillary tube (the stem) is more or less exposed outside the body. In order to make 
correction for the exposed stem, we proceed in the following way. 

    Let the reading of the mercury thermometer be t′  when introduced into a body whose tem-
perature is t and n (which is nearly t′ ) be the number of divisions of the thread being exposed 
outside the body where temperature is tm. Taking the volume corresponding to one degree divi-
sion as the unit of volume and γa as the coefficient of apparent expansion of mercury in glass, 
then foom the condition of measurement 

  t t t t t t t ta m a m− ′ = ′ − = ′ ′−γ γ( ) ( )  (2.3)
  as t and t′  are nearly equal.
2. External pressure due to the body surrounding the bulb will compress mercury and cause mercury 

to rise in the capillary, thereby increasing the actual reading.
3. When the thermometer is held in the horizontal position, mercury will exert hydrostatic pres-

sure and increase the volume of the bulb. Thus, the thermometer reading will be low in the 
vertical position than in the horizontal position.

4. Taking quick reading of widely varying temperature will introduce an error; because of peculiar elastic 
properties of glass, complete recovery to the original condition of the thermometer is not possible. 

5. Because of narrow bore nature of the thermometer, great care is to be taken to make the bore uniform.
6. Eye should be placed at right angles of the thread whose reading is taken.
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20  Heat and Thermodynamics

2.4 Gas thermometer

Liquid thermometers were later replaced by gas thermometers as their expansion is larger (≈ 20 times that of 
mercury thermometer) and thus the measurement is more accurate. The expansion of the container is small 
in comparison with the gas. Permanent gases can be obtained in pure state. Their expansion is uniform for 
equal changes of temperature at low and high temperatures. The upper limit of temperature measurement is 
much greater than liquid thermometer, limited to such temperature as the container can withstand.

Gas thermometers may be of two types: constant volume and constant pressure.

2.4.1 Constant Volume Hydrogen Thermometer
The bulb C (Fig. 2.1) containing hydrogen is 1m long and 3.6 cm in diameter and contains 1litre of hydrogen. 
The bulb communicates with the mercury in the manometer GDEB through a connecting tube A which is also 
1m long. Hydrogen gas introduced into C when 
surrounded by ice makes a pressure of 100 cm of 
mercury. When the bulb C is subjected to differ-
ent higher temperatures, its volume is increased; 
but it is kept constant by adjusting the position 
of the mercury reservoir F so that mercury in 
D touches the pointer R. The barometer I is so 
placed that its stem slips in BE and stands over 
the tube GD. The distance between the mercury 
column D and I measures the pressure of hydro-
gen in C and is measured by a cathetometer.

The bulb C is placed in a bath to measure un-
known temperature T of the bath. The pressure in 
C increases thereby forcing mercury in D to go 
down. By raising the bulb F, the level of mercury 
in D is made to touch the tip of the pointer R. In this 
adjusted position, the heights IG and GR are mea-
sured by cathetometer; IG gives the barometric 
pressure (say H) and GR (say h) is the excess pres-
sure due to pressure change in C. The total pressure p at T = H + h. The bulb C is surrounded by ice (temperature T0); 
let the pressure so measured (as in the previous way) be p. It is then surrounded by steam (temperature T0 + 100);
let the corresponding pressure be p100. Then, we can write 

  p
0v = nRT0

where v = the volume of hydrogen in C, A and small space in DG surrounded by mercury, n = number 
of gm mole of hydrogen gas, R = molar gas constant. 
 Similarly, we can write 
  p100 v = nR (T0 + 100)
  pv = nRT

 from which T p
p p

=
−

100

100 0

. (2.4)

 Knowing po, p, p100, T can be determined.

Fig. 2.1 Constant volume hydrogen 
themometer
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2.4.2 Callendar’s Compensated Constant Pressure Air Thermometer
The sketch of Callendar’s compensated constant pressure air thermometer is shown in Fig. 2.2. It consists of 
bulbs A and B full of air, and the pressures are kept equal as indicated by the mercury meniscus in the ma-
nometer tube. The bulb A is connected to another bulb 
C full of mercury having the provision of introduction 
and withdrawal of mercury. The bulbs are connected by 
narrow bore tubes in such a way that their volumes are 
same; the connecting tubes run side by side near each 
other so that they are at the same temperature. The bulb 
C is graduated in cc’s so that the volume of the gas, fill-
ing the space between mercury meniscus and the neck 
of the bulb, can be directly read.

To measure unknown temperature of a bath, the 
bulb A is immersed into it and the bulbs B and C are 
put in an ice bath. After a certain time when the air 
assumes the corresponding temperature, the equality of pressure is maintained by adjusting the mercury 
level in C when the two columns in the manometer are at the same level.

Let
   v = volume of bulb A = volume of bulb B
   u = volume of the connecting narrow bore tube
   v′ = volume read from the graduations in C 
   T = unknown temperature of the bath 
    t = room temperature in which the connecting tubes are placed
  T0 = ice bath temperature 
We know pv = nRT, where p is the pressure of air, v is the volume of n gm moles of air, R is the molar 

gas constant, T is the absolute temperature. Then, we can write

  p v
T

u
t

v
T

nR p v
T

u
t

+ +
′









= = +










0 0
 (2.5)

 or 
v
T

v
T

v
T

+
′

=
0 0

 or      
v
T

v v
T

=
− ′

0

        T
vT
v v

=
− ′

0  (2.6)

T can be calculated if the quantities on the right-hand side are known. From the practical point of 
view, volume measurement is difficult than pressure measurement which can be done more accurately 
so the constant volume hydrogen thermometer is more efficient.

2.4.3 Limitations of Gas Thermometers
Gas thermometers are not handy to use; their use is tedious in nature. The thermometers are based on 
ideal gas equation. But, no gas is ideal. Only hydrogen and helium may be taken as perfect gases at a 

CB A

Fig. 2.2 Callendar’s compensated 
constant pressure air themometer
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very low pressure and high temperature. The liquid and gas thermometers are called primary thermom-
eters. In laboratories, the primary thermometers are replaced by secondary thermometers such as resis-
tance thermometers and thermocouple thermometers. These are carefully standardized by comparison 
with a standard gas thermometer.

2.5 resIstance thermometer

Gas thermometers are primary thermometers; but they require many corrections. They are replaced by 
secondary thermometers such as resistance thermometers and thermocouple thermometers, which are 
standardized by standard gas thermometer. 

The resistances of pure metals increase with the increase in temperature. Resistance is treated as the 
thermometric property. 

2.5.1 Platinum Resistance Thermometer
Platinum is suitable as a thermometric substance because of its high temperature coefficient of resis-
tance, constancy of resistance at particular temperature and reproductivity. Platinum resistance ther-
mometer was first constructed by Sir William Siemens in 1871. 

Since then, several improvements have been made. The modern form 
of the platinum resistance thermometer was developed by E. H. Griffiths. 
Platinum—free from silicon, tin, carbon, etc.—is selected and is drawn in 
the form of a wire. It is then doubly wound to avoid induction effects on 
a thin mica frame (Fig. 2.3). 

The ends of the platinum wire are joined to either copper leads or platinum 
leads (at high temperatures) which pass through the bores of a series of thin, 
circular mica plates arranged over the mica frame; whole arrangement is kept 
inside the hard glass or porcelain tube. These leads are connected to PP at the 
mouth of the tube. To compensate for these leads, a pair of similar leads start-
ing right from the level of the end of platinum wire mounted over the mica 
frame passes through similar bores of thin, circular mica plates and are con-
nected to the leads CC at the mouth of the tube. Thus, the connection between 
the wires inside the tube is avoided.

The tube is sealed at the top and is evacuated to avoid disposition of 
moisture on the mica. The compensating leads are connected to the third arm of the Wheatstone bridge 
(Fig. 2.4); equal resistances are given in the ratio arm and PP terminals are connected to the fourth arm. 

The resistances of the compensating leads and platinum leads are same at all temperatures; then, the 
resistance of the platinum coil alone can be determined from the extra resistance included in the third 
arm for no deflection of the galvanometer.

On the basis of experimental observation of the resistance of platinum over a wide range of tempera-
ture, Callendar and Griffiths gave the relation 

  R Rθ αθ βθ= + +0
21( ) 

where Rθ and R0 are the resistances at θ 8C and 0 8C respectively, α and β are characteristic of platinum. 
The unknown temperature can be calculated by solving the above quadratic equation.

Callendar gave a simpler method to define a platinum temperature,

P  C C  P

Fig. 2.3 Platinum 
resistance thermometer
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  R R C ptθ θ= +0 1( )  (2.7)

  θ θ θ
pt

R R
R C

R R
R R

=
−

=
−

−
0

0

0

100 0

100( )
 (2.8)

where R0, R100, Rθ are the resistances at 0 8C, 100 8C and θ 8C, respectively.
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(2.9)

d is a constant and for pure platinum, d is 1.5.
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Fig. 2.4 Experimental arrangement for temperature measurement by 
platinum resistance thermometer
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In order to measure a temperature (say the boiling point of aniline), the experimental connection is as 
shown in Fig. 2.4. Here, P, Q and R are the arms of a post office box, C the commutator, E the battery, R′ 
the rheostat, G the galvanometer, LM the meter bridge, CC and PP are the compensating and platinum 
leads, respectively.

In the arrangement shown in Fig. 2.4, if L be the balance point on the meter bridge when platinum 
resistance thermometer is in melting ice and the resistance in the third arm is R1, then 

  R L y R L1 0 100+ + = + − + ′σ σ δ( )  (2.10)
where y and d′ are the constants of the bridge wire and denote the end resistances of the bridge wire, 
s being the mean resistance per unit length of the wire and Ro is the resistance of the thermometer at 0 8C.
If         R1 = R0 = 0, L = l0

Y 2 d′ = 2(50 2 l0 )s  where l0 in this condition is the balance point and is known as electric midpoint.

 Hence, R R L l0 1 02= + −s ( )  (2.11)
In order to find s, the resistance in the third arm is changed by an amount x, then null point L will 

be changed to L′.

 So, R R L l R x L l0 1 0 1 02 2= + − = + + ′−s s( ) ( )

 or 2 2s sL x L= + ′

  s =
− ′
x
L L2( )  (2.12)

We get Ro putting the value of s in Eq. 2.11. Similarly, R100 and Rθ are calculated by introducing the 
platinum resistance thermometers in steam and in boiling liquid. 

θpt is calculated by putting these values in Eq. 2.8. we can f ind the actual boiling point θ of the aniline 
by putting the values of θpt in place of θ in Eq. 2.9, and by successive approximation.

The platinum resistance thermometers have certain merits; they are:
1. they are useful over a wide range of temperature;
2. they are highly accurate;
3. they are reproducibile, etc.

But it has certain limitations also, such as;
1. it cannot measure the temperature of a point as its volume is large and 
2. it cannot measure the temperature of a body whose temperature varies rapidly.

2.6 thermocouple thermometers

These are another type of secondary thermometers, the theory of which depends on the fact that when 
the two junctions of two metals are at different temperatures, an electromotive force (emf) is generated 
in the circuit. This emf is a function of the temperature difference of the junctions. Hence, it is named 
as thermo emf. The emf here is the thermometric property.

The choice of the metals forming the couple depends on the temperature region at which it is used. 
The two pure metals are taken in the form of wire and are soldered at points at their ends. The two 
wires must not touch each other except at the point of soldering and hence, they are insulated. One of 
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the junctions is introduced in cold ice; it is called the cold junction and the other junction is introduced  
either in steam or in water at room temperature, this is called the hot junction. If the temperatures of 
these two junctions be 0 8C and θ 8C, then the thermo emf generated is given by

  ( )i e a b= +θ θ 2 e = aθ + bθ2 (2.13)

 ( )ii e a b= θ e = aθb (2.14)
at ordinary temperatures where a and b are constants characteristic of the couple. The relation of thermo 
emf with temperature is different at different temperature regions, but for general case of ordinary tem-
perature both the equations are used.

In order to measure a temperature (say the melting point of napthalene), the experimental arrange-
ment is as shown in the Fig. 2.5.

A couple is formed, the hot junction H is alternatively placed in water at room temperature, in 
steam and in test tube containing the solid whose melting point is to be determined. The test tube 
containing the solid and hot junction of the thermocouple is introduced in a beaker of water which 
is heated and continually stirred. The cold junction C is placed in a funnel containing ice. ABCD 
is the potentiometer whose resistance is r, R is the resistance box, E is the battery, K is the key and 
G is the galvanometer.

With the cold junction at ice and hot junction at water at room temperature t, the emf of the couple is 
measured by balancing over a length l1 of a potentiometer. If R be the resistance in the resistance box, 
r the resistance of the potentiometer wire and E the emf of the battery, then 

  e
Erl

R r1
1

1000
=

+( )
 (2.15)

In this way if l2 and l3 be the balance point when the hot junction is in steam and in melting point 
(θ 8C) of the liquid, then

  e
Erl

R r2
2

1000
=

+( )
 (2.16)

 and e
Erl

R r3
3

1000
=

+( )
 (2.17)
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Fig. 2.5 Experimental arrangement to measure the melting point of napthalene
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To find the melting point (q  8C), we may use any one of the above-mentioned two relations—2.13 
and 2.14. The constants a and b are determined from e1 and e2 as follows:
 (i) When relation 2.13 is used

  e at bt1 1 1
2= +  (2.18)

 and e at bt2 2 2
2= +  (2.19)

where t1 and t2 are the room temperature and steam temperature, respectively.
Then, by solving 

  a
e t e t
t t t t

=
−

−
1 2

2
2 1

2

1 2 2 1( )
 (2.20)

  b
e t e t
t t t t

=
−

−
2 1 1 2

1 2 2 1( )  (2.21)

Putting these value of a and b in e3 = aq + bq 2, q can be determined.
(ii) When relation 2.14 is used

  e at e atb b
1 1 2 2= =and  

 Solving it, we get     b
e e
t t

=
−
−

log log
log log

e e

e e

2 1

2 1
 (2.22)

Putting the value of b in e atb1 1= , the value of the constant a is determined. Finally, the melting point 
of the solid is determined from the relation e3 = αθb and from these values of the constants a and b.

The merits of this type of thermometers are:
1. they can measure temperature at a point;
2. they can measure changing temperature;
3. they are useful over the range 2200 8C to 1500 8C; 
4. they can easily be constructed and are cheap. Their main disadvantage is that the relationship  

between thermo emf and the temperature difference is different in different regions of temperature.
Thermometers based on other type of thermometric properties such as vapour pressure and adiabatic 

demagnetization are discussed in later chapters.

2.7 low and hIGh temperature thermometry

The low temperature range is bounded by a limit 0 8C, that is, 273 K and approach towards the limit of 
low temperature (see Fig. 2.6).

First, we take the case of mercury thermometers. The lower range of a mercury thermometer is 
limited by the fact that it freezes at 238.87 8C. So, temperature below 239 8C cannot be measured by 
mercury thermometer. With  alcohol thermometers which freeze at 2111.8 8C, temperature below the 
freezing point cannot be measured. But difficulty arises in the fact that the contractions of mercury 
and alcohol are not uniform towards the corresponding freezing point. A special liquid thermometer 
containing fractionally distilled petroleum ether can be used to measure the temperature as low as 
2190 8C. 
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The standard thermometer in the low tempera-
ture is the constant volume hydrogen and helium 
thermometer selected by the International Bureau 
Standards and Measures. Professor Dewar showed 
that the boiling point of hydrogen as registered by 
hydrogen thermometer was 2253.0 8C, but by heli-
um thermometer it was 2252.7 8C. From this, Dewar 
concluded that a gas thermometer can measure tem-
perature up to its boiling point. Thus, helium gas 
thermometer can be used to measure temperature as 
low as 4 K. But in the measurement of low tempera-
ture with gas thermometer, some difficulties or er-
rors arise. The first is that the gas liquefies and even 
solidifies at this low temperature. Second, we assume 
that the real gases follow the ideal gas equation on 
which the principles of gas thermometers are based, 
but the real gases follow the ideal gas equation only 
at high temperature and low pressures. So when we 
measure low temperature, the gas does not hold ideal 
gas equation. Correction due to this can be done by 
conversion of perfect gas scale to absolute scale.

Resistance thermometers are accurate in 
measuring low temperature to a certain extent. The 
substances of which the resistance thermometers  
are made must be absolutely pure because pure 
metals follow a regular decrease in resistance with 
decrease in temperature. It has been found that the 
occurrence of trace of impurity causes an appreciable increase in resistance at this region. With platinum 
resistance thermometer, temperature up to 2190 8C can be measured. Henning and Otto used platinum 
resistance thermometers for measurement below 2190 8C utilizing a complicated formula of variation 
of resistance with temperature. The formula is, however, not foolproof and cannot be used to calibrate 
the platinum resistance thermometer from fixed points. Onnes measured temperature as low as 2259 8C 
by using lead resistance thermometer. With lead resistance thermometer, temperature as low as 7 K 
can be measured, but the alloys constantan and unannealed phosphor bronze are best suited in this 
region due to their large temperature coefficients. But it has the disadvantage that external magnetic 
field increases their resistance. Thermometers of phosphor bronze are better in this region because it 
has large temperature coefficient of resistance and less affected by magnetic field. Carbon resistance 
thermometers are used in the range of 1 K. 

Copper constantan and iron constantan thermocouples are suitable in low temperature region as they 
develop a large emf, of about 40260 microvolts per degree. These thermocouples can be used to mea-
sure temperature as low as 2255 8C. Thermocouple thermometers made up of gold, silver and platinum 
silver are best suited below 2200 8C. At temperatures as low as 10 K, an alloy of gold with about 2 per 
cent cobalt against the standard silver alloy is most sensitive.

Vapour pressure thermometers have been used for low temperature measurement  
because of their extreme accuracy in certain range of temperature. Oxygen vapour pressure ther-
mometer is suitable in the range of 2150 8C to 2210 8C, neon in the range of 2246 8C to 2249 8C, 
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Fig. 2.6 Sketch showing low temperature 
measurement
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hydrogen in the range of 2253 8C to 2262 8C and helium below about 2268 8C because of moderate 
vapour pressure suited for measurement.

Helium vapour pressure thermometers have been used to measure as low as 0.75 K. 
But for temperatures lower than this, the paramagnetic susceptibility of certain salts has been utilized. 

For this, it is necessary to assume that paramagnetic susceptibility varies inversely as the absolute temper-
ature—a law which is known to fail near absolute zero.

1. Platinum resistance thermometer with a modified formula in the lower range (1000 K…….. 
75 K)

2.  (a) In the lower range, lead resistance thermometer (up to 7 K) 
(b) Helium gas thermometer (270 K up to below 10 K)

3. Hydrogen vapour pressure thermometer (from 20 K to 10 K)
4. Thermocouple thermometers (18 K up to 2–3 K)
5. Helium vapour pressure thermometer (8 K to below 1 K)
6. Phosphor bronze and constantan resistance thermometer (5 K up to below 1 K)
7. Paramagnetic susceptibility of certain salts below 0.1 K.

The high-temperature measurement has no limit, unlike the low temperature. The sun is at a tempera-
ture of two million degree Celsius. 

We shall discuss high-temperature measurement from 100 8C. 
Under normal pressure mercury boils at 357 8C, so ordinary mer-
cury thermometer can not be used for temperature higher than 
357 8C (Fig. 2.7).

With hydrogen gas thermometer, temperature up to 500 8C can be 
measured. At higher temperatures, hydrogen diffuses through plati-
num. With nitrogen gas thermometer and with proper modification, 
the range of gas thermometers can be extended up to 1600 8C.

Then comes the resistance thermometers. The range of platinum 
resistance thermometer is from 2200 8C to 1200 8C. If the metal is 
perfectly pure, the reading is accurate from 0.01 8C up to 500 8C and 
from 0.1 8C up to 1200 8C.

The thermocouples are important in measurement of high tem-
perature. Up to 300 8C, couples of base metals such as iron constan-
tan and copper constantan are satisfactory as they develop a large 
emf of about 40 to 60 microvolts per degree. For higher tempera-
ture, these base metals cannot be used as they oxidize and melt. 
Nickel iron couple may be used up to 600 8C and nickel nichrome 
up to 1000 8C. Above this, platinum and an alloy of platinum with 
iridium or rhodium must be used to measure up to 1600 8C. Above 
this, the thermocouple of iridium and 90 per cent iridium and  
10 per cent rhodium have been used for measuring up to 2100 8C, and tungsten-molybdenum 
between 2000 8C and 3000 8C. Above this, temperature radiation pyrometers are used as the instru-
ment need not be placed in contact with the hot body nor raised to the temperature of the body, so 
there is no upper limit of measurement of temperature.

50000°C 

10000°C 

1000°C 

100°C 

Fig. 2.7 Sketch showing high 
temperature measurement
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The thermometers most suitable for high temperature thermometry in different ranges of temperature 
are summarized as follows:

1. Hydrogen gas thermometers (100 8C to 500 8C)
2. Nitrogen gas thermometers (up to 1500 8C)
3. Platinum resistance thermometers (up to 1000 8C)
4. (a) Copper constantan and iron constantan (up to 300 8C)

(b) Nickel iron thermocouple (up to 600 8C)
(c) Platinum and platinum iridium or platinum rhodium thermocouple (up to 1600 8C)
(d) Couple of iridium and 10% rhodium and 90% iridium (up to 2100 8C)
(e) Nickel nichrome thermocouple (up to 1000 8C)
(f) Tungsten-molybdenum thermocouple (up to 3000 8C)

5. Radiation pyrometer (1600 8C to very high temperature)

solved problems

 Q 1. A travelling microscope was used to note the positions of the mercury meniscus of a mercury-
in-glass thermometer. The reading corresponding to melting ice was 1.23 mm. In steam at a 
pressure of 74.24 cm of mercury, the reading was 18.56 mm. What is the temperature in  8C 
when the reading is 10.75 mm? What will be the reading corresponding to 50 8C? Assume that 
the boiling point of water changes by 1 8C for a change of pressure of 27 mm of mercury.

Ans:  We know at a pressure of 76 cm of mercury, steam point is 100 8C; as boiling point changes by 
1 8C for a change of pressure of 27 mm of mercury, so at a pressure of 74.24 cm of mercury, the 
steam point will be 

  100 76 74 24
2 7

99 35−
−

= °
( . )

.
. C

 We also know t
l l
l l
t

s

=
−
−

0

0

 (steam point – melting point)

 where l stands for the length of mercury meniscus

 or, t =
−
−

− =
( . . )
( . . )

( . ) .
.

10 75 1 23
18 56 1 23

99 35 0 9 52
17 333

99 35 54 58. .= °C

 Again if lt be the reading corresponding to 50 8C, we have 

  50
1 23

18 56 1 23
99 35=

−
−

( . )
. .

.
lt

  lt − =
×

=1 23 50 17 33
99 35

8 72. ( . )
.

.

  lt = + =8 72 1 23 9 95. . .  mm of mercury
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30  Heat and Thermodynamics

 Q 2. The pressure indicated by a constant volume hydrogen thermometer are 3.5 cm, 75 cm and 
102.4 cm in a certain scale when the bulb is immersed in liquid air, ice and steam, respectively. 
What is the temperature of the liquid air on the constant volume hydrogen scale?

Ans: We know that t
p p
p p
t=
−
−

×0

100 0

100

    =
−
−

× = − °
23 5 75

102 4 75
100 187 95.

.
. C

 Q 3. If the difference of mercury level in a constant volume air thermometer is 22 cm when the 
temperature of the bulb is 10 8C and +22 cm when the bulb is at 100 8C, what is the height of 
the barometer?

Ans: Let H = height of barometer
 Pressure at 10 8C = H 2 2 cm of Hg
 Pressure at 100 8C = H + 22 cm of Hg
 Since it is a constant volume air thermometer, we can write

  
p p10 100

273 10 273 273+
=

+

 or, 
H H H−

=
+

∴ =
2

283
22

546
77 46. cm

 ∴           H H H−
=

+
∴ =

2
283

22
546

77 46. cm
 Q 4. A constant volume air thermometer is used to determine the temperature of a furnace and the 

excess pressure in the bulb is found to be equal to 152 cm of mercury. At 0 8C, the pressure in 
the bulb is equal to that of the atmosphere. If the barometric height throughout the experiment 
is 76 cm of mercury, calculate the temperature of the furnace.

Ans:  At 0 8C, pressure po = 76 cm of mercury. At furnace temperature, 
pt = 76 + 152 = 228 cm of mercury
As the volume is kept constant, we can write 

  
p
T

p
T
t0

0

=

  
76
273

228
=

T

 ∴     T =
×

=
228 273

76
819 K

 Q 5. The resistances of a platinum thermometer at 0 8C, 100 8C and 208 8C are found to be 3.5, 
5.2 and 6.9 ohms, respectively. Find the temperature of the bath in which the resistance is  
9.4 ohms.

Ans: We know t
R R
R Rpt
t=
−
−

×0

100 0

100

  =
−
−

× = × =
6 9 3 5
5 2 3 5

100 3 4
1 7

100 200. .
. .

.

.

  t t t t
pt− =







 −

















δ
100 100

2
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  208 200 2 08 1 08− = × ×δ . .

  δ =
×

=
8

2 08 1 08
3 56

. .
.

 The unknown temperature on the platinum scale is 

  tp =
−
−

× =
9 4 3 5
5 2 3 5

100 347 06. .
. .

.

 So, t − =






 −

















347 06 347 06
100

347 06
100

2

. . .
δ

  = × =3 5 3 4706 2 4706 30 01. . ( . ) .
 ∴       ∴ = °t 377 07. C
 Repeating the above-mentioned process,

  t − =






 −

















347 06 3 5 377 07
100

377 07
100

2

. . . .

  = × × =3 5 3 7707 2 7707 36 57. . . .
  t = 383.63  8C

Repeating again,

  t − =






 −

















347 06 3 5 383 63
100

383 63
100

2

. . . .

  = × × =3 5 3 8363 2 8363 38 08. . . .
  t = 385.14 8C
 Repeating again,

  t − =






 −

















347 06 3 5 385 14
100

385 14
100

2

. . . .

  = × × =3 5 3 8514 2 8514 38 44. . . .
  t = 385.50 8C

problems

1. The pressures of a gas in a constant volume gas thermometer are 100 cm and 137 cm of mercury 
at 0 8C and 100 8C, respectively. On introduction in to a bath the pressure is found to be 126 cm 
of mercury. Calculate its temperature.

Ans. 70 8C
2. When the bulb of a constant volume gas thermometer is placed in melting ice, the level of mer-

cury in the upper tube is 5 cm below the level in the closed limb. When the bulb is at 273 8C, the 
level in the open limb is 65 cm high. Calculate the barometric pressure.

Ans. 75 cm
3. The pressure of air in a constant volume gas thermometer is 8 cm and 109.3 cm at 0 8C and 

100 8C, respectively. When the bulb is placed in some hot water, the pressure is 100 cm. Calcu-
late the temperature of hot water.

Ans. 68.3 8C
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4. A constant mass of hydrogen maintained at constant pressure has a volume of 200 cc at 0 8C, 
273.2 cc at 100 8C and 525.1 cc at the boiling point of sulphur. At these temperatures a platinum 
wire has resistances of 2.00, 2.778 and 5.280 ohms, respectively. What will be the values of the 
boiling point of sulphur obtained by the two sets of observations?

Ans. 444.1 8C on constant pressure hydrogen gas thermometer, 
421.6 8C on platinum resistance thermometer.

5. A platinum wire has a resistance of 2 ohms at 0 8C, 2.778 ohms at 100 8C and 2.54 ohms at the 
boiling point of a liquid. Calculate the boiling point of the liquid in platinum scale.

Ans. tpt = 69.38 8C
6. If the resistances of a platinum thermometer at 0 8C, 100 8C and at the boiling point of sulphur 

(444.16 8C) are 3.60, 4.60 and 7.82 ohms, respectively. Calculate the true temperature at which 
the resistance of the thermometer is 6.60 ohms.

Ans. 308.7 8C
7. The resistance of a wire of platinum thermometer is 2.653 and 3.621 ohms at the lower and  

upper fixed points, respectively and 3.139 ohm at a temperature which is indicated by a constant 
volume hydrogen thermometer as 50 8C. Calculate the difference between the platinum and 
constant volume hydrogen scale at the last temperature.

Ans. 0.2 8C

questIons

1. Discuss the basic principle of thermometry. How many thermometric properties are used for 
measuring temperature? Discuss them along with their merits and demerits.

2. What are the disadvantages of liquid thermometers? Describe constant volume hydrogen ther-
mometer with a sketch and describe the principle of measuring temperature with this. Which is 
more efficient—constant volume and constant pressure gas thermometer and why?

3. Describe Callendar’s compensated air thermometer with a diagram. Discuss the theory of its 
use to determine unknown temperature.

4. Why platinum resistance thermometers called secondary thermometers? Describe its construc-
tion, deduce its working formula.

5. Describe how thermocouples are prepared and are used to measure unknown temperature.
6. What are the various methods used for the measurement of high temperatures? State the range 

of temperatures over which each method is suitable.
7. Give a short account of the different methods of thermometry that may be employed for the 

measurement of temperatures from the ice point down to the lowest attainable temperature.  
Assess in your answer the merits and demerits of different methods.
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Chapter

THE MECHANICAL 
EQUIVALENT OF HEAT

3

3.1 On the nature Of heat: the CalOriC theOry Of heat

According to caloric theory, heat is supposed to be an indestructible imaginary fluid called the caloric, 
which flows from a body at higher temperature to a body at lower temperature. The caloric can neither 
be created nor destroyed. Heating of a body means addition of caloric; a body is cooled by drawing out 
caloric from a body.

3.1.1 The Dynamical Theory of Heat
In 1798, while watching the boring of a cannon at the Munich arsenal, Count Rumford found that the 
supply of heat generated by friction was apparently inexhaustible. From this, he concluded that anything 
which an isolated system of material bodies could furnish without limitation must be of the nature of 
work. This idea led to the establishment of an intimate relation between mechanical work and heat, and 
to the recognition of heat as a form of energy.

In the investigations regarding the relation between heat and mechanical work, Rumford was fol-
lowed by many scientists such as Joule, Meyer, Davy, and others. 

The result of their researches can be stated as follows:
Whenever mechanical work is completely transformed into heat, the amount of heat produced is 

directly proportional to the amount of work spent.
Thus, if W amount of work transforms into H units of heat, then 

  W α H 
 or W = JH (3.1)

This constant of proportionality J is called the Joule’s equivalent or the mechanical equivalent 
of heat.
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34  Heat and Thermodynamics

If the work is expressed in ergs and heat in calories, then 

  J = 4.18 3 107 ergs per calorie 
  = 4.8 Joules per calorie 

since 1 Joule is equal to 107 ergs. 
If work is expressed in ft-lbs and heat is measured in pound degree centigrade unit, then
J = 1,400 ft-lb per pound degree centigrade
If work is expressed in ft-lbs and heat energy is expressed in B. Th. Unit., then

  J = 778 ft-lb per B. Th. Unit. 

3.2 friCtiOn MethOds fOr deterMining J. JOule’s MethOd

A sketch of Joule’s apparatus is given in Fig. 3.1.
Index of parts:
G is a wooden grating.
C, the calorimeter, is supported on G. A vertical section of the calorimeter is shown in Fig. 3.2. The 

calorimeter is divided into compartments by means of baff le plates fixed to the wall of the calorimeter. 
These are shown by white portions in Fig. 3.2. The baffle plates have spaces cut out in them which are 

Fig. 3.1 Joule's Apparatus

H

P

G
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R
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CC 

W1 W2
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Q
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just large enough to allow the rotating vanes to pass through. These 
vanes are shown by black portions in Fig. 3.2. P is the paddle to which 
the rotating vanes (Fig. 3.1) are attached. R is the roller which may be 
connected to the paddle by means of a pin Q. H is the handle by which 
the roller can be rotated. p and q are two pulleys over which cords c, c 
(bifilarly wound round the roller) pass.

From the axles of the wheels p and q, two loads W1 and W2 are sus-
pended by cords wound on these axles. T is a sensitive thermometer 
passing through a hole in the lid of the calorimeter. 

For carrying out the experiment, the calorimeter is filled with mea-
sured quantity of water. The roller R is then disconnected from the pad-
dle P by taking out the pin Q and weights W1 and W2 are raised to the 
desired height by turning the handle H.

The roller is then connected to the paddle by means of the pin and 
the weights are released. As the weights descend, the vanes rotate and 
the liquid is set in motion. The liquid is churned every time the vanes 
pass through the planes of the baffle plates. This causes the kinetic 
energy of the liquid to be converted into heat. By this process, the potential energy of the falling 
weights is converted into the kinetic energy of water particles which is again transformed into heat. 
After the weights have descended through the desired heights, the roller is again disconnected from 
the paddle axle and the weights are again raised to the same height as before. The weights are again 
released after connecting the roller to the paddle; this process is repeated several times and the 
temperature of the liquid is recorded by the thermometer T at regular intervals of time. The method 
of calculation is as follows: 

Let the water equivalent of the calorimeter and its contents be W gm 
The rise of temperature of water in the calorimeter and its contents = θ 8C 
Then, the heat absorbed by the calorimeter and its contents = Wθ cal
Let the mass of the weights = m gm and the height through which the weights descend = h cm. 
Let the number of the weights descended = n, then, the total work spent in n falls = mngh ergs 

Assuming that no heat is lost by radiation and other causes, the mechanical equivalent of heat is 

  J mngh
W

=
θ

ergs per calorie  (3.2)

The value of J obtained by Joule was 4.155 3107 ergs per calorie.
Sources of error in Joule’s experiment: The experiment of Joule as described earlier was subject to 

the following sources of error: 
1. Loss of heat due to radiation.
2. Loss of energy due to friction at the wheels: This was determined by noting the amount of work 

required to turn the vanes when there was no liquid inside the calorimeter.
3. The kinetic energy of the falling weights: The total work done in raising the weights to the 

desired heights is partly spent in overcoming the frictional resistance offered by the liquid to 
the rotating vanes and partly in generating kinetic energy of the falling weights. This was deter-
mined by measuring the velocity of falling weights on striking the ground. If v is this velocity, 
the loss of energy due to motion of the weights is 1/2 mv2.

Fig. 3.2 Vertical 
section of calorimeter
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3.2.1 Searle’s Method of Measuring J
The mechanical equivalent of heat can be deter-
mined by students in the laboratory by using Searle’s 
method. The apparatus shown in Fig. 3.3 consists of 
two truncated cones C of gunmetal which just fit into 
each other. The inner cone is filled with water into 
which the bulb of a delicate thermometer is dipped. 

The outer cone is fixed to a vertical spindle S 
which can be rotated by means of a cord passing 
round a large rotating wheel G. A wooden disc D 
is attached to the top of the inner cone. As the outer 
cone is rotated, the inner cone also tends to rotate 
with it in the same direction. It is kept stationary by 
means of an opposing couple exerted by the weight 
W attached to the end of a horizontal cord passing round 
the rim of the wooden disc D. 

When the weight W is at rest while the outer cone is rotating, the moment of the couple exerted by 
friction between the two cones is equal to the moment applied by the weight W. 

Let r be the radius of the wooden disc D; then the moment of the couple opposing rotation of the 
inner cone is Wr. Hence if the outer cone makes n revolutions, the work done is 2πnrW. Let m be the 
water equivalent of the calorimeter and its contents; if θ be the rise of temperature of water, the heat 
absorbed by the calorimeter and its contents is mθ. Hence, the mechanical equivalent of heat is 

  J nrW
m

=
2π

θ
 (3.3)

3.3 WOrk dOne during expansiOn Of a gas at COnstant pressure

Figure 3.4 shows some quantity of air enclosed in a cylinder under an airtight piston occupying the posi-
tion A1 B1. Let the volume of the gas under the piston be v1 and its pressure be p. Let the air expand at 
constant pressure forcing the piston to the position A2 B2. Let the mass of air now occupy the volume v2. 
Let s be the area of the piston. Then the total force on the piston is s p. If d be the distance between the 
two positions of the piston, the work done in the expansion is spd.

But, sd is the volume of the cylinder between the two positions 
of the piston and it is equal to (v2 − v1); hence, the work done 
by a gas in expanding at constant pressure from volume v1 to
volume v2 is 

  W p v v= −( )2 1  (3.4)

When the gas expands, it works against external pressure. The 
equivalent amount of energy must be drawn from somewhere. If 
all supply of energy from outside is cut off, the gas loses its own 
energy in the form of heat. It, therefore, cools down. The quantity 
of heat drawn from the gas to produce work W is 

W

D

C

C

S
G

Fig. 3.3 Searle's apparatus for 
determining J

B 2

B1A1

A 2

Fig. 3.4 Schematic diagram for 
work done during expansion at 

constant pressure
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  H
p v v

J
=

−( )2 1 calories (3.5)

where J is the mechanical equivalent of heat. Under the same condition if the gas is compressed, it 
develops heat.

3.3.1 Mayer’s Method of Determining J
The equation J = R/(Cp − Cv) was used by Mayer to determine the value of J.

1 cc of air at N. T. P. weighs 0.001293 gm. Therefore, the volume occupied by 1 gm of air at N. T. P. is

  v cc0
1

0 001293
=

.
 

Now, normal pressure is p0
276 13 6 981 1013000= × × =. dynes/cm

Hence, the specific gas constant for air is 

  R
p v

= =
×

0 0

273
1013000

0 001293 273.
From experiment,C Cp v= =0 238 0 17. .and

 Hence, J =
× ×

1013000
0 001293 0 068 273. .

  = 42 3 106 ergs per calorie

a result which agrees fairly well with the values obtained directly from experiments.

3.4 Callendar and Barnes’ steady flOW MethOd

The apparatus that Callendar and Barnes used is shown in the Fig. 3.5.
AB is a glass tube whose middle portion is very narrow. Through this narrow portion, a special 

platinum wire is passed which is fixed to two copper tubes of negligible resistance at its two ends. 

T

A 

M 

P

L

V 

N

B

T

P

L

Am

Fig. 3.5 Callendar and Barnes’ apparatus of determining J
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These copper tubes surround two platinum resistance thermometers, T. Due to the good conductivity 
of copper, the platinum resistance thermometers assume the temperature of the adjacent water very 
easily. These copper tubes have low resistance which prevents the generation of heat by the flow of 
current close to the thermometer. Water is passed through the tube by the inlet M and is allowed to 
flow outside by the outlet N. The platinum resistance thermometers (T, T) measure the temperature 
of the incoming and outgoing water. The tube AB is surrounded by a vacuum jacket which keeps the 
conduction and convection of heat minimum. This vacuum jacket is surrounded by a water jacket. 
The leads LL are used as the current leads and electrically connected with a series of battery and a 
rheostat. The current is measured by potentiometric arrangement. The leads PP are used as the poten-
tial leads and are connected to a voltmeter, which measures the potential difference across the wire.

Water is allowed to flow and current is passed through the coil. This raises the temperature of the outgo-
ing water; and after some time, the steady state is reached. Let θ1 and θ2 be the temperature of the incom-
ing and outgoing water, respectively, at the steady state, E be the potential difference across the wire and I 
be the current flowing through the wire, then the electrical energy spent per second = E I. If m be the 
mass of water flowing through the tube per second, then 

  EI J ms h= − +[ ( ) ]θ θ2 1

where h denotes heat lost per second due to radiation, etc. and s the specific heat of water. The tem-
perature difference was maintained at about 6 8 − 8/ 8C. The loss h may be eliminated by adjusting the 
current so as to maintain the same rise of temperature for two sets of experiments, that is, for different 
rates of flow of water. Then for two sets, we have 

  E I J m s h1 1 1 2 1= − +[ ( ) ]θ θ

  E I J m s h2 2 2 2 1= − +[ ( ) ]θ θ

 Subtracting, E I E I Js m m1 1 2 2 2 1 1 2− = − −( )( )θ θ

  J E I E I
s m m

=
−

− −
1 1 2 2

2 1 1 2( )( )θ θ  (3.6)

The specific heat s corresponds to the mean temperature (q2 + q1)/2. This method was also utilized to mea-
sure the specific heat of water at various temperatures. The temperature of the inflowing water is changed; 
hence, the mean temperature is changed. Thus, the variation of specific heat with temperature is obtained.

3.4.1 Other Methods of Determining J
There are other methods also for the determination of J. Some methods utilize the conversion of 
mechanical work into heat and others utilize the conversion of electrical work into heat. Works of  
Rowland (1880), Laby and Hercus (1927), Jaeger and Steinwehr (1921), and Osborne, Stimson and 
Ginning (1939) may be mentioned here.

3.5 neWtOn’s laW Of COOling

In article 3.1 we have discussed nature of heat. When a body is given a certain quantity of heat, its tem-
perature rise depends on the mass of the body and nature of the body. Amount of heat is measured by a 
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particular unit called calorie. It is defined as the amount of heat required to raise 1 gram of water through 
1 8C. As this amount depends upon the initial temperature of water so a standard has been chosen, it is 
the amount of heat required to raise 1 gram of water from 14.5 8C to 15.5 8C. There are other units of 
heat such as British Thermal Unit, Centigrade heat unit or pound calorie, calorie is universally accepted 
and used. The nature of the body is manifested by another physical property called specific heat c. It is 
defined as the quantity of heat required to raise the temperature of unit mass of a substance through one 
degree. It is also defined as the ratio of the quantity of heat required to raise any mass of a substance 
through any range of temperature to the quantity of heat required to raise an equal mass of water through 
the same range of temperature. It dQ heat is required to raise 1 gm of a substance through dT then

  dQ cdT c dQ
dT

= =1 or

This definition is applicable to solids and liquids. But in the case of gas, application of heat changes 
the pressure, volume and temperature. If pressure is kept constant, volume and temperature change with 
application of heat. This gives rise to two specific heats, specific heat at constant volume and specific 
heat at constant pressure.

3.5.1 Specific Heat at Constant Volume, Cu

Specific heat at constant volume, Cu is the amount of heat required to raise the temperature of 1 gm of 
gas through 1 8C, volume remaining constant. When we consider 1 gram molecule (molecular weight 
expressed in grams) of the gas, the corresponding specific heat is known as molar specific heat (Cu) 
related by Cu = M cu where M is the molecular weight of the gas. 

3.5.2 Specific Heat at Constant Pressure Cp
Specific heat at constant pressure cp is the amount of heat required to raise the temperature of 1 gm of 
the gas through 1 8C, pressure remaining constant. If we consider 1 gram molecule of the gas, the cor-
responding specific heat is known as molar specific heat (Cp) related by Cp = M cp.

3.5.3 Relation Between Cp and Cu

From the above fact, we see that when a gas is heated at constant volume, heat raises the temperature 
of the gas; but when a gas is heated at constant pressure a part of heat raises its temperature and another 
part is used to do external work to keep pressure constant, so Cp > Cu.

Let us suppose that 1 gm of gas at a constant pressure p, volume u and temperature T be given a 
certain amount of heat which raises the temperature through dT pressure remaining constant increasing 
the volume by dv (see Fig.3.4)
  Work done = p 3 dv

We know pv = rT where r is the gas constant for 1 gram of the gas.
Differentiating p dv + vdp = rdT

  dp being zero, pdv = rdT

 Work done in heat units = 
rdT
J

 Heat given = 1 1c dT c dT rdT
Jp = +υ
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 ∴ C C r
Jp − =υ

If we take 1gram molecule of the gas of molecular weight M then we can write

  MC MC Mr
Jp − =υ

C Cp
R
J− =υ , R being universal gas constant.

It is found that the ratio of the specific heat of a gas at constant pressure to that at constant volume 
is indicated by − =( )C C

C
p

υ
.

For monatomic gas its value is 1.67, for diatomic gas it is 1.41, for triatomic gas it is 1.33.

3.5.4 Principle of Calorimetry
When a hot body is made to exchange its heat with a cooler body or surrounding the heat given out by 
the hot body is equal to the heat taken by cold body or surrounding provided heat is not lost by other 
means.

3.5.5 Measurement of Specific Heat of Solids
Common methods for determination of specific heats of solids are (i) method of mixture (ii) Bunsen ice 
calorimeter (iii) Joly’s steam calorimeter (iv)Nernst and Lindermann’s vacuum calorimeter, these are 
common and general normal methods.

3.5.6 Measurement of Specific Heat of the Liquids
Specific heat of liquids can also be determined by the above methods in addition to Calendar and Barnes 
steady flow method which we have discussed earlier, J being known, specific heat can be calarlated.

We shall now discuss Newton’s low of cooling. It states that the rate of loss of heat by a body is 
proportional to the mean difference of temperature between the body and its surrounding provided 
the temperature difference is not too large. This rate depends on the temperature of the liquid with its 
container and the surrounding, nature of the liquid, area of the exposed liquid surface, the nature and 
extent of the surface of the containing vessel. If a liquid of mass m, specific heat c, temperature T is 
kept in a surrounding temperature To, then the amount of heat lost dQ in time dt can be written as −dQ/
dt − = −dQ
dt oa T T( ) where a is a constant. Again as the body cools through dT in the same time interval then 
dQ = mcdT

 ∴    ∴ − = −mc dT
dt

a T To( )

  
dT
T T

a
mc
dt Adt

o( )−
= − = −

Integrating loge (T − To ) = −At + B
If a graph is plotted t along x axis and loge (T − To) a long y axis, we get a straight line which verifies 

Newton’s low of cooling.
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3.6 speCifiC heat Of a gas By JOly’s differential steaM CalOrieMeter

The sketch of Joly’s differential steam caloriemeter is shown in Fig. 3.6 by which specific heat of a gas 
can be determined. The calorimeter consists of two parts, the upper part is a balance having two scale 
pans A and B from which two hollow copper spheres S and R of equal thermal capacities are suspended in 
lower steam chamber by fine platinum wires through narrow holes as shown in the figure. C is the pointer 
of the balance. D and E are the bases placed over the lower steam chamber or which balance stands. N 
and P are two catch pans of same mass to collect condensed steam from S and R. L and M are two shields 
to save S and R from any condensed steam from above. H and R are two electrical heater arrangements 
meant for prevention of any condensation of steam in the holes through which the suspension wires pass. 
I and O are inlet and outlet pipes which allow steam to get in and out of the steam chamber.

With no steam in the steam chamber spheres S and R are evacuated and the balance is counterpoised. 
The sphere S is filled with the experimental gas at high pressure and the balance is counterpoised again. 
The difference in weight gives the mass M of the enclosed gas. The initial temperature of the steam 
chamber q1 is noted, then dry steam is allowed to enter through I. As a result steam will condense on the 
spheres and their temperatures will be steady and let that temperature be q2. More steam will condense
on the sphere containing the gas than the empty sphere as heat is needed to heat up the gas also.  
The balance is counterpoised. The excess weight m gives the mass of excess steam condensed on the 
sphere containing the experimental gas. Then we can write.

M cu(q2 − q1) = mL where cu is the specific heat at constant volume and L is the latent heat of steam. 
So Cv is calculated as other quantities are known. This method of determination is very accurate as the 
effect of buoyancy and thermal capacity of the container is eliminated. However more corrections are 
necessary for betterment of result.
 (a) Corrections for any discrepancy of thermal capacities of the spheres. This can be taken into  

account by repeating the experiment interchanging the spheres and taking the average of the two. 
 (b) Corrections for the expansions of the sphere S owing to rise of temperature and increase of 

internal pressure, external work is done in such expansion. 

A BC

DF G

L

KH

I M

R

P

S

N

O

E

Fig. 3.6 Experimental arrangement to determine cu by Joly’s differential steam Caloriemeter
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 (c) Corrections for increased buoyancy due to increase in volume.
 (d) Corrections for the weight of the condensed steam. This weight is taken in a moving medium 

as steam was flowing so this weight must be reduced to its corresponding value in vacuum.

3.7  deterMinatiOn Of speCifiC heat Of a gas at  
COnstant pressure By regnault’s MethOd

Laplace and Lavoisier used this technique first. Then it was taken up by Regnault to measure the specific 
heat at constant pressure of a gas. The apparatus used by him is shown in Fig.3.7.

Dry, pure, compressed experimental gas is kept in container A which is kept immersed in a constant 
temperatures bath B. T1, T2, T3 are thermometers provided for recording the temperature of corresponding 
vessels. P1, P2, P3, P4 are taps to regulate the flow of experimental gas. M1, M2 are two manometers for 
recording pressures. C is a hot oil bath, S1, S2 are the stirrers, E is the condenser and D is the calorimeter. 

During the experiment the gas under a certain pressure recorded by M1 is allowed to flow at a con-
stant pressure to the hot oil bath. The constancy in pressure is maintained by a constant difference of 
level in M2 by opening tap P4 more and more as the gas flows out from the container A. The oil bath 
is constantly stirred and the temperature is recorded by T2. The hot gas from C passes through the spi-
ral tube and connecting tube to the condenser E and then comes out through the spiral tube which is  
immersed in water in calorimeter D. The oil bath C and the calorimeter D are separated by a thermally 
insulated shield Q. The readings of the thermometer are noted at regular intervals till the temperature be-
comes steady. Calculating the amount of gas escaping during the experiment in terms of gram molecule 
we can determine the molar specific heat at constant pressure. Let m gram molecules gas flow out during 
the experiment, M being the mass of water in the calorimeter whose water equivalent is W, q1 be the 
temperature of oil bath, qi and qf be the initial and final temperature of the calorimeter, then we can write 

mC M Wp
i f

f iθ
θ θ

θ θ1 2
−

+









= + −( )( )

As the gas flows for a certain time in which the temperature of the calorimeter increases from initial 
value qi to final steady value qf we may consider that the flow of gas has taken place at a constant tem-
perature qi + qf /2.

P1
P2

P3 P4

M1

M2

T1

T2S1

S2

T3

A

E

B

Q

C
D

E

Fig. 3.7 Regnault’s experimental arrangement to measure Cp
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Then if m is known, Cp can be found. m is calculated using the equation of a perfect gas involving 
pressure, volume and temperature. 
 If V = volume of the container A 
  Pi = initial pressure of the gas in container 
  Pf = final pressure of the same gas at the end of the experiment 
  T = temperature of the gas in the container recorded by thermometer T1
 Pi, Pf are measured from M1
 Then the initial volume of the gas at NTP, Vi is given by 

  
PV
T

Vi i=
76
273

  V
PV
Ti
i=

273
76

 After completion of the experiment the final volume of the gas at NTP, Vf is given by

  
P V
T

Vf f=
76
273

  V
P V
Tf
f=

273
76

 The volume of the gas that flows out is

V V V
T
P Pi f i f− = −

273
76

( )

and the mass of gas that flows out is

= − = −e e( ) ( )v v V
T

P Pi f i f
273
76

 where e = density of the gas at NTP
 If the molecular weight of the gas be F , then

m
V v
F

V
FT

P Pi f
i f=

−
= −

e e( )
( )273

76
This method requires some precautions. The calorimeter may lose some heat by radiation and convection 

and also receive heat by conduction through the connecting tube. Radiation correction should be applied.

3.8 deterMinatiOn Of g By CleMent and desOrMes’ MethOd

The principle of the method of determination of g by clement and Desormes is based on adiabatic expan-
sion of gas. The arrangement is as shown in Fig.3.8. A is a large flask of nearly 30 liters capacity closed by 
a rubber cork through which a manometer M, a tube provided with a stopcock C for filling with the experi-
mental gas and an arrangement D for adiabatic expansion of the gas are provided. A is kept inside a bowl 
B packed with insulating material such as cotton, wool, asbestos fiber etc, suitable for adiabatic expansion 
of gas in A. The manometer M is provided with sulphuric acid or suitable oil as manometer liquid. 

The experiment is performed in three stages.
1. With tap C open some gas is introduced at a slightly higher pressure than the atmospheric pres-

sure H which is manifested by the differences of level h1 in manometer M, the initial pressure 
of gas pi is H + h1 let the initial temperature be Ti , tap C is now closed.
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2. Then the gas is made to expand adiabatically by 
quickly operating D to atmospheric pressure, at 
this time the two levels in the manometer will be 
equal. The temperature will fall below room tem-
perature. Let the pressure be po = H and tempera-
ture To.

  then we have 
p
p

T
T

i

o

i

o











=










−γ γ1

3. The traped gas in A is allowed to come to the ini-
tial temperature Ti. Volume of the gas remaining 
same pressure will increase to pf there will be a 
difference of levels in the manometer, let that be 
h2 so pf = H + h2

  so we can write    
p
p

T
T

f

o

i

O

=

  From the two above equations, we can write

p
p

p
p

i

o

f

o











=










−γ γ1

  Taking log of both sides, we get
  (g − 1)(loge pi − loge po) = g(loge pf − loge po)
  or g(loge pi − loge po − loge pf + loge po) = loge pi − loge po

  or g(loge pi − loge pf ) = loge pi − loge po

  or  γ =
−
−

(log log )
(log log )

e e

e e

p p
p p
i o

i f

 Thus knowing po, pi, pf , g can be calculated. Here the main source of error lie in the fact that during 
adiabatic expansion by operating D the pressure does not assume atmospheric value as is evident from the 
oscillations of the two levels in the manometer M. It is very difficult to ascertain the exact pressure imme-
diately on adiabatic expansion. This was taken care of by Lummer, Pringsheim and Partington’s method.

sOlved prOBleMs

Q1. A calorimeter of water equivalent 20 gm contains 1030 gm of water. In it, a paddle wheel is 
made to rotate by means of two weights each weighing 10 kg falling a distance of 80 metres. 
Find the rise in temperature of the water, assuming g = 980 cm/sec2.

Ans. Potential energy in the raised position for both the weights
  = 2 3 10,000 3 980 3 8,000 dyne cm
  If the rise in temperature be θ, then the heat gained by the calorimeter and its contents 

is 1,050 θ. 

 So, J =
× × ×2 10000 980 8000

1050 θ

Fig. 3.8 Clement and Desormes 
method to measure g

A

B

D
C

R

M
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 ∴      
∴ =

× ×
× ×

= °θ
98 16 10

1050 4 18 10
3 58

8

7.
. C

Q2. A calorimeter of copper (specific heat 0.1) weighs 120 gm. It contains 1,400 gm of paraffin oil 
(specific heat 0.6). The oil is stirred by a rotating paddle which requires a couple of 108 dynes 
cm to drive it. If the temperature of the oil is raised by 16 8C after 900 revolutions, calculate the 
mechanical equivalent of heat.

Ans. Work done by rotating paddle per rotation = 2π108 
 The total work done = 2 3 3.14 3 900 3 108 dyne cm
 Heat gained by calorimeter = 120 3 0.1 3 16 calories
 Heat gained by paraffin oil  = 1,400 3 0.6 3 16 calories

 
∴

 
J =

× × ×
× × + × ×

= ×
2 3 14 900 10

120 0 1 16 1400 0 6 16
4 15 10

8
7.

. .
. erg/cal

Q3. The heat developed in drilling a hole in a block of iron (specific heat 0.12) of mass 25lb if 0.4 
horse power is supplied for 3 minutes would suffice to raise the temperature of the block by  
17 8F, calculate the mechanical equivalent of heat.

Ans. Total work done    = 0.4 3 33,000 3 3 ft-lb, 
 since one horse power    = 33,000 ft-lb per minute. 
 The amount of heat developed = 25 3 0.12 3 17 B. Th. U.

 Therefore,    J =
× × ×

× ×
=

0 4 33000 3 10
25 0 12 17

776 8
8.

.
. ft-lb/B. Th. U.

Q4. Two blocks of lead, each of mass 210 gm moving in opposite directions with velocity relative to 
earth of 200 metres per second, collide with one another and are reduced to rest. The mechani-
cal equivalent of heat being 4.2 3 107 ergs/calorie, calculate the kinetic energy of each block 
and the mean rise of temperature (specific heat of lead 0.03). 

Ans. Kinetic energy of each block =
1
2

2mv

  
= × × = ×

1
2

210 20000 4 2 102 10( ) .ergs ergs

  
Mean rise of temperature Total kinetic energy

M
=

eechanical equivalent of heat Mass Specific h
×

×
1

eeat

    
=

× ×
× × × ×

= =
2 4 2 10

4 2 10 2 210 0 03
10
0 63

158 7
10

7

2.
. . .

. °°C

Q5. Calculate the rise of temperature when a lead ball strikes the ground after falling 160 feet, 
assuming that all the heat produced remains in the lead (specific heat of lead 0.03, mechanical 
equivalent of heat = 778 ft lb/B. Th. U.).

Ans. Let m lb be the mass of lead ball 
 Work done in falling through 160 feet = 160 m ft-lb
 Heat absorbed by lead ball = m 3 0.03 3 θ where θ is the rise in temperature in 8F, 
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 Then,  160 m = 778 3 m 3 0.03 3 θ 

  
θ =

× ×
° =

× ×
× °

160
778 0 03

160
778 0 03

5
9

m
m

m
m. .

F C

  = ° ° = °










3 8 1 5
9

. C since F C

Q6. In one of Rumford’s experiments, the work done by one horse raised the temperature of 26.6 lb 
of water from 32 8F to 212 8F in 2.5 hours. If 25 per cent of heat generated was lost, find in ft-lb 
wt per min the rate at which the horse worked.

 [1lb. deg. F = 778 ft-lb wt]

Ans. Let x ft-lb wt per minute be the rate at which the horse worked, 
 then the total work done = x 3 150 ft-lb wt 
 the amount of heat generated = (x 3 150)/778 lb. deg. F.

  Only 75 percent of = (x 3 150)/778 lb. deg. F. is utilized to raise the temperature of 26.6 lb of 
water from 32 8F to 212 8F.

 Then,  x×
× = ×

150
778

75
100

26 6 180.

   x =
× × ×

×
=

26 6 180 778 100
150 75

33120. ft-lb wt/min

Q7. A vertical glass tube 1 metre long closed at both ends contains 500 gm of mercury. Find the 
rise in temperature of the mercury if the tube is inverted 20 times in succession (specific heat of 
mercury = 0.03 cal/gm/8C and Joule’s equivalent = 4.2 Joules per calorie).

Ans.  Mercury falls through 100 cm each time the tube is inverted; hence, the loss in potential energy 
for each time = 500 3 981 3 100 ergs

 ∴ The total loss = 500 3 981 3 100 3 20 ergs.
 If θ be the rise in temperature of the mercury, then the heat developed = 500 3 0.03 3 θ cal

 ∴            ∴ =
× × ×
× × ×

= °θ
500 981 100 20
500 0 03 4 2 10

1 56
7. .

. C

Q8. A copper wire 0.02 cm in diameter carrying a current of 1 ampere is found to reach a steady 
maximum temperature of 100 8C. Assuming the specific resistance of copper at 100 8C to be 
2.1 ohm cm and J = 4.2 Joules per calorie, find how many calories are emitted per second by 
1 sq cm of the copper surface at 100 8C.

Ans.  We know that if R is the resistance of a wire through which current I f lows, then the electrical 
energy spent = I2R (ampere)2 ohm per sec = I2R joules/sec

  Here, we are to consider a surface of 1 sq cm area. Let l be the length corresponding to this area, 
then 2π (0.01) l = 1 where 0.01 cm is the radius of the wire. 

 So, l = (2π 3 0.01)−1 

 Resistance of the copper wire of length l R l
A

, = ρ  

 where r = 2.1 ohm cm, A = π(0.01)2 
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∴

    
∴ =R 2 1

2 0 01 0 01 2

.
( . ) ( . )π π

 So, the work done   =1 2 1
2 0 01

2
2 3

.
( . )π

joule

 And the heat developed  =
×

=
2 1

2 0 01 4 2
25 3602 3

.
( . ) .

,
π

calories.

Q9. A waterfall whose vertical height is 100 metres discharges 5 litres of water per second. Calcu-
late (a) the quantity of heat produced per second, and (b) rise in temperature of water assuming 
that all the heat generated remains in the water. (J = 4.18 joules per calorie.)

Ans. (a) The mass of water = 5,000 gm

  Work done in falling through 100 metres = 5,000 3 10,000 3 981 erg

  The quantity of heat produced =
× ×

×
=

5 10 981
4 18 10

1132
7

7.
cal cal

 (b) If θ be the rise in temperature, then 1132 = 5,000 θ

 
∴

     
∴ = = °θ

1132
5000

0 23. .C

Q10. Taking specific heat of lead as 0.03, find the rise of temperature of a lead bullet if it remains 
embedded in a fixed badly conducting block. The initial velocity of the bullet was 100 metres 
per sec and 95 per cent of its kinetic energy is converted into heat. 

 [J = 4.2 3 107 ergs per calorie]

Ans. Let m be the mass of the lead bullet.

 The kinetic energy of the bullet =
1
2

100002m

 If θ be the rise in temperature, then heat produced = m 3 0.03 3 θ.
 Since 95 per cent of the kinetic energy is converted into heat, we have 

                       
m m× × × × =0 03 4 2 10 95

100
1
2

107 8. .θ

  
θ =

× ×
× × × × ×

= °
95 10

2 100 0 03 4 2 10
37 7

8

7

m
m . .

. .C

Q11. The height of the Niagara Falls is 50 metres. Calculate the difference in temperature of the 
water at the top and bottom of the fall if J = 4.2 3 107 ergs per calorie.

Ans. Let us consider m gm of water
 Work done in falling through 50 metres = m 3 5,000 3 981 ergs
 Heat produced = m θ where θ is the rise of temperature, then
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J m θ = m 3 5,000 3 981

                   
θ =

× ×
× ×

= °
m
m

5000 981
4 2 10

0 12
7.

. .C

Q12. In an experiment using Callendar and Barnes’ continuous flow method of measuring the 
mechanical equivalent of heat, the potential difference across the wire was 3 volts and the cur-
rent 2 amperes, the rise in temperature of the water 2.7 8C and the rate of flow of water 30 gm 
per minute. When the rate of flow was increased to 48 gm per minute, the potential difference 
to 3.75 volts, and the current to 2.5 amperes, the rise in temperature of the water was the same 
as before. Calculate the value of J.

Ans. We shall use equation (3.6)

  
J E I E I

s m m
=

−
− −

1 1 2 2

2 1 1 2( )( )θ θ
joules/calorie

 E1 = 3.75 volts E2 = 3 volts
 I1 = 2.5 amperes  I2 = 2 amperes

  
( ) .θ θ2 1 1 22 7 48

60
30
60

− = ° = =C gm/sec, gm/sec,m m

                                        

J =
× − ×

× −










=
3 75 2 5 3 2

1 2 7 48
60

30
60

9. .

.

( .. )
.

.375 6 60
2 7 18

4 167−
×

= joules/calorie

Q13. Given that the mean radius of the earth is 6,400 km and its mean specific heat 0.15, find the rise 
in temperature of the earth if its energy of rotation is suddenly transformed to heat.

Ans. The rotational kinetic energy =
1
2

2Iw

 where I = moment of inertia and w = angular velocity.
 If θ is the rise in temperature of the earth and M is the mass of the earth,
 then the heat produced = M 3 0.15 3 θ

 
∴

 
1
2

0 152Iw J M= ×. . θ

 Now

       I Mr=
2
5

2

 where M = mass of the earth and r = radius of the earth

  
w =

× ×
2

24 60 60
π

 
∴

             
∴ =

× × ×
=

× ×
× × ×

θ
πIw

J M
M2 7 2 2

72 0 15
2
5

64 10 4
2 4 2 10.

( )
. ×× × × ×

= °
M 0 15 24 60 60

68 7
2. ( )

. C
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Q14. The specific heat of helium at constant pressure is 1.25. Assuming the gas to be monatomic, 
calculate the mechanical equivalent of heat. One litre of the gas at N. T. P. weighs 0.1785 gm. 

Ans. Volume occupied by 1 gm of helium =
1000

0 1785.
cc

 Pressure of the gas = 76 3 13.6 3 981 dynes
 Since pv = rT

  
r pv

T
= =

× × ×
×

76 13 6 981 1000
0 1785 273

.
.

 Now 
c
c
p

v

= =γ 1 66. , since the gas is monatomic 

 
∴

 
c

c
v

p= =
γ

1 25
1 66

.

.

 Now   ( ) .

. . .
.

c c r
J

J r
c cp v
p v

− = =
−

=
× × ×

× −
or 76 13 6 981 1000

0 1785 273 1 25 1 25
1 666









  
=

× × × ×
× × ×

=
76 13 6 981 1000 1 66

0 1785 273 1 25 0 66
. .

. . .
44 18 107. × ergs/calorie

Q15. Assuming that for air at constant pressure the coefficient of expansion is 1/273, the density at 
0 8C and atmospheric pressure is 0.001293 gm/cc, cP = 0.2389 and cp/cv = 1.405, calculate the 
mechanical equivalent of heat. 

Ans.  For unit mass of the gas, J c c pvp v p( )− = α

 where p = one atmospheric pressure, v = volume of unit mass, 
 αp = the coefficient of expansion at constant pressure.

 
∴

 
J

pv
c c

p

p v

=
−

=
× ×

× −




α 76 13 6 981

0 001293 273 0 2389 0 2389
1 405

.

. . .
.





  =
× × ×

× × ×
76 13 6 981 1 405

0 001293 273 0 405 0 2389
. .

. . .
== ×4 16 107. ergs/calorie

Q16. The following data were obtained with a continuous flow calorimeter. Rate of flow of water =
120 gm/min; temperature of incoming water = 27.30 8C; temperature of outgoing water = 
33.75 8C; potential drop across the heating coil = 12.64 volts, current through the heating 
 element = 4.35 amp. Assuming that no heat is lost, calculate the value of J in joules per calorie.

Ans. We know EI = Jms (t2 − t1) where there is no loss of heat.

 
∴

      
∴ =

−
J EI

ms t t( )2 1

joules/calorie
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=
×

× −
=

×
×

12 64 4 35
120
60

33 75 27 30

12 64 4 35
2

. .

( . . )

. .
66 45

4 16
.

.= joules/calorie

Q17. Calculate the value of J, given that the gm molar specific heat of hydrogen at constant pressure 
= 6.865 calories, that at constant volume = 4.880 calories, atmospheric pressure 1.013 3 106 
dynes/cm2, gram molar volume = 22.4 litres.

Ans.  We know that  C C R
Jp v− =

 Again,  PV RT R PV
T

= ∴ =

 
∴

     
∴ =

−
=

−
J R

C C
PV

T C Cp v p v( )

  
=

× × ×
−

=
×1 013 10 22 4 10

273 6 865 4 880
1 013 26 3. .

( . . )
. 22 4 10

273 1 985
4 19 10

9
7.

.
.×

×
= × ergs/calorie.

Q18. One litre of hydrogen at 0 8C and 760 mm pressure weighs 0.0896 gm. The specific heats of 
hydrogen per gm at constant pressure and volume are 3.409 and 2.411, respectively. Calculate 
the value of J. Given: g = 981 cm/sec2 and density of mercury = 13.6 gm/cm3.

Ans.  We know that for 1 gm of gas,

c c R
MJ

r
Jp v− = =  

 where cp, cv are specific heats per gm, r is the gas constant per gm.
 Again pv = rT where v is the specific volume 

 So, J r
c c

pv
T c cp v p v

=
−

=
−( )

  
= × × × ×

×
= ×76 13 6 981 1000

0 0896
1

273 0 998
4 15 107.

. .
. eergs/calorie.

Q19. Calculate the specific heat at constant volume for air given that specific heat at constant pres-
sure = 0.23. Density of air at 2.7 8C and standard atmospheric pressure = 1.18 gm per litre and 
J = 4.2 3 107 ergs per calorie.

Ans.  We know    c c r
J

pv
TJp v− = =

 Here,   p = 73 3 13.6 3 981

  
v =

1000
1 18.

  T = 300 K
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 So,   c cp v− =
× × ×

× × ×
=

76 13 6 981 1000
300 4 2 10 1 18

0 068217

.
. .

.

 ∴      
c cv p= − = − =0 06821 0 23 0 06821 0 1618. . . . calorie

Q20. A block of ice is dropped into a well of water, both ice and water at 0 8C. From what height must 
the ice fall in order that one-fifteenth of it may be melted?

Ans. Let m be the mass of the ice block and h be the required height.

 Then, heat developed v mgh
J

m L= = ×
15

 
∴

                                     
h mLJ

mg
L J
g

= = =
× ×

×
= ×

15 15
80 4 18 10

15 981
2 2 10

7
5. . cm

Q21. A lead bullet fired from a gun hits a stone and 90 per cent of the kinetic energy is converted into 
heat. If the temperature rise of the bullet is 80 8C on sudden stoppage, calculate the velocity of 
the bullet just before hitting the stone. 

  Assume that all the heat generated remains in the bullet (specific heat of lead = 0.03 , J = 4.2 
Jules per calorie).

Ans.  Let the velocity of the bullet be v cm/sec.
 Kinetic energy of the bullet = 1

2
2mv

 where m is the mass of the bullet.
 Heat required to raise the temperature through 80 8C = m 3 0.03 3 80

 Therefore, 0 9 1
2

0 03 802. .mv J m= × ×

 or   v J2 0 03 80
0 9

=
× ×.

.
 or   v = 1.5 3 104 cm/sec
Q22. A 5.0 lb lead ball of specific heat 0.032 Btu/lb 8F is thrown downwards from a 50-ft  building with 

an initial vertical speed of 20 ft/sec. If half of its energy at the instant of impact with the ground is 
converted to heat and absorbed by the ball, what will be its rise of  temperature?

Ans. If the final velocity is v, then 

  v u fs2 2 2 400 2 32 50 3600= + = + × =. sq ft.

  
Energy ft poundal= = × ×

1
2

1
2

5 36002mv

      = 9,000 ft poundal
 Heat generated from half of the energy

  
=

×
1
2

9000
32 778

Btu

 Rise in temperature = ×
×

×
×

= °
1
2

9000
32 778

1
5 0 032

1 1
.

. F
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prOBleMs

Q1. A mass of 10 gm moving with a speed of 300 m/sec is suddenly brought to rest. If the whole of its 
kinetic energy is converted into internal energy, find (a) the number of calories added, and (b) the rise 
in temperature of the body assuming that 70 per cent of the energy is retained by it (sp. ht. =0.03). 

 Ans. (a) 107.1 cal (b) 249.9 8C 
Q2. From what height must a hailstone at 0 8C and at rest fall in order that 2 per cent of it may 

melt? Assume that 60 per cent of the energy converted is retained by it and that the temperature 
everywhere is 0 8C.

 Ans. 1.142 km
Q3. The Victoria Falls are 343 feet in height. Calculate the difference in temperature of the waters at 

the foot and at the top, assuming J = 778 ft-lb per B. Th. U. and that 50 per cent of the energy 
is retained by the water. 

 Ans. 0.22 8F
Q4. In an experiment to determine J, 800 gm of lead shots were placed in a long cardboard tube held verti-

cally, the length of which was such that on reversing the tube the shots fell through 100 cm. The origi-
nal temperature of the shots was 25 8C and after 50 inversions of the tube the temperature was found 
to have risen to 28.84 8C. Find J in ergs per calorie (specific heat of lead = 0.031, g = 980 cm/sec2).

 Ans. 4.12 3 107 ergs/cal
Q5. Calculate the specific heat of air at constant volume given that the value at constant pressure is 

0.2375, density of dry air at N.T.P. = 0.0807 lb per cuft. Normal atmospheric pressure = 14.7 
lb per sq inch, coefficient of expansion of air = 1/273 per 8C and J = 1,400 ft-lb per centigrade 
heat unit.

 Ans. 0.1688
Q6. A lead bullet at a temperature of 47 8C strikes against an obstacle. If the heat produced by the 

sudden stoppage is just sufficient to melt the bullet, with what velocity does the bullet strike the 
obstacle? It is assumed that all the heat is produced within the bullet. Melting point of lead = 
327 8C; specific heat of lead = 0.03 cal gm21 8C21; latent heat of fusion of lead = 6 cal gm21; 
mechanical equivalent of heat = 4.2 3 107 ergs per calorie.

 Ans. 3.48 3 104 cm/sec
Q7. In a continuous flow calorimeter of the Callendar and Barnes type, it is found that when the 

potential across the wire is 3 volts, the current passing is 2 amperes and the rate of flow of the 
water is 30 gm per minute and the rise in temperature of the water is 4 8C. Calculate the rate of 
flow necessary to show the same rise of temperature if the potential is increased to 4.5 volts and 
the current to 3 amperes (J = 4.18 joules per calorie).

 Ans. 57 gm per minute
Q8. Find the value of J from the following data for air, cp = 0.2375 cal per gm per 8C, cv = 0.1688 

cal per gm per 8C, density of air at N.T.P. = 0.001293 gm/cc, coefficient of expansion  = 1/273 
per 8C, normal atmospheric pressure = 1.013 3 106 dynes/cm2

 Ans. 4.177 3 107 ergs/cal
Q9. Calculate Cv for hydrogen, given Cp = 6.85 cal per gm molecule, density of hydrogen at 

N. T. P. = 0.0899 gm per litre and J = 4.18 3 107 ergs per calorie.
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 Ans. 4.87 calories per gm mol
Q10. A cylindrical tube 15 cm long made of a non-conducting material, closed at both ends, contains 500 

gm of lead shots, which when the tube is held vertically occupy 6 cm of the tube length. The tube is 
suddenly inverted so that the end originally above is now below, and the shots fall to the other end 
of the tube. The tube is then again quickly inverted and the process is repeated 200 times. At the end 
of this process, the temperature of the shots is found by means of a thermometer to be 1.4 8C higher 
than it was at the beginning of the experiment. Find the value of the mechanical equivalent of heat 
(specific heat of lead is 0.03. It is assumed that no heat is lost by radiation or conduction).

 Ans. 4.2 3 107 ergs/calorie
Q11. If a lead bullet is suddenly stopped and all its energy is employed to heat it, with what velocity must the 

bullet be fired in order to raise the temperature through 100 8C, the specific heat of lead being 0.0314? 
 Ans. 162 3 102 cm/sec

Q12. In an experiment by the continuous flow method for determination of J, when the rate of flow of 
water was 60 gm/min, the heating current 2 amperes and the potential difference was 5 volts, the 
rise of temperature of water was 2.3 8C. On increasing the rate of flow to 87.6 gm per minute, the 
heating current to 2.4 amperes and the potential difference to 6.01 volts, the rise of temperature was 
still 2.3 8C. Deduce the value of J.

 Ans. 4.18 3 107 ergs/cal
Q13. Compute a value for the mechanical equivalent of heat from the following data:
  Total mass allowed to fall = 2,600 gm
  Distance of fall = 160 cm
  Number of descents = 20
  The rise in temperature was 0.30 8C in the calorimeter which was thermally equivalent to 659 gm 

of water. 
 Ans. 4.13 Joules/cal

QuestiOns

1. Define mechanical equivalent of heat. Describe Joule’s method of its determination. Discuss the 
sources of error in Joule’s experiment.

2. Describe Searle’s method of measuring J. 
3. Give an account of Meyer’s method of determining J. 
4. Describe Callendar and Barnes’ steady flow method of determining J.
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KINETIC THEORY 
OF GASES

4Chapter

4.1 Macroscopic and Microscopic points of View

The aim and object of science is to describe the behaviour of a system under different physical condi-
tions. A system is a mass of matter which is isolated from its surroundings (in imagination). The system 
being chosen, the next step is to assign to the system certain physical quantities or parameters which 
suffer change when the system is interacted from outside. These parameters define the physical state of 
the system. By equation of state, we mean a mathematical relation which determines some parameters 
when others change.

In describing the physical state of a system, two points of view are generally adopted—(1) the mac-
roscopic view and (2) the microscopic view. Under macroscopic view, we describe the gross character-
istics of a quantity of matter in bulk by means of physical quantities which can be determined by our 
sense perception. In thermodynamics, where we consider the effect of heat on a system, the fundamental 
parameters are volume, pressure and temperature. There are also certain derived parameters such as 
entropy, enthalpy, free energy, etc. These are called the thermodynamic coordinates of the system. In 
describing the macroscopic state of a system, we make no assumption as to the internal structure of the 
system. Such description requires only few coordinates suggested by our sense perception and as such 
they may be directly measured.

From the microscopic point of view, we describe the physical behaviour of a system in terms of  
mechanical behaviour of the microscopic particles (such as atoms or molecules) constituting the system. 
To describe the behaviour of a microscopic particle, we require three coordinates of position (x, y, z) 
and three velocity coordinates (u, v, w). If there are N constituent particles in the system, we require 6N 
coordinates to describe the mechanical behaviour of the particles at any instant.

Thus from microscopic point of view, we require certain assumptions regarding the internal structure 
of the system. These may or may not be true and are, therefore, subject to change from time to time.  
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We also require a very large number of coordinates to describe the state of the system at an instant. 
These coordinates are not perceptible to our senses and are, therefore, not directly measurable. 

It will be proved in this chapter that the thermodynamical coordinates mentioned earlier are only 
statistical averages of the change of mechanical behaviour of the constituent particles. The best test of 
the correctness of our assumption is the agreement of results calculated, both from microscopic and 
macroscopic considerations.

Whatever is the nature of assumptions regarding the internal structure of a system, the macroscopic or 
the thermodynamic description of a state will always remain true so long as our senses are not changed.

4.1.1 The Growth of the Kinetic Theory
The famous experiments of Joule, Rumford and others on the relation between heat and mechanical 
energy conclusively proved that heat is a form of energy. In the meantime, the law of so-called perfect 
gases pv = RT was established on purely experimental basis by Boyle, Charles, Mariotte, Gay Lussac, 
and others. From the dimensional point of view, pressure multiplied by volume has the dimension of 
work. It follows that the idea of temperature is in some way connected with that of energy.

If a mass of gas enclosed in a fixed volume of space is heated, it does no external work by expan-
sion. But there is increase of pressure and temperature of the gas. This must necessarily be due to some 
change in the energy content of the enclosed gas. What is the nature of this internal energy? The answer 
to this question led to the development of the kinetic theory of gases. The answer to the question first 
came from Joule who was also the first to determine the mechanical equivalent of heat.

He supposed that the molecules of a gas (or any other substance) are never at rest but are moving with 
all possible velocities in all possible directions. They are bombarding the walls of the containing vessel 
at all instants of time and thereby exerting pressure on the wall in the same way that a stream of water 
issuing from a hosepipe exerts pressure, when it is directed against a wall. 

4.2 deriVation of the pressure exerted by a perfect Gas

In order to calculate the pressure exerted by a gas, we have to make some fundamental assumptions; 
they are as follows:

1. A gas consists of molecules which are identical and can be treated as small, hard elastic spheres 
moving at random in all directions with all possible velocities.

2. The molecules are treated as mass points, that is, their volume is negligible in comparison to 
the volume of the container.

3. During their motion, molecules collide with each other and with the walls of the container.
4. The collisions are considered to be perfectly elastic; there is no loss of kinetic energy when the 

collision occurs.
5. Though the molecules are incessantly colliding with each other, they do not affect the molecular 

density at the steady state.
6. The molecules are devoid of intermolecular force of attraction or repulsion, except when they 

actually collide.
7. The time of collision is very small in comparison with the time taken by the molecules in  

between the collisions.
8. Between two successive collisions, the molecules move in straight lines with uniform velocity.
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4.2.1 Calculation of Pressure Exerted by a Perfect Gas
The molecules of a gas are moving in all directions with velocities ranging from zero to infinity. Let 
us first consider a group of molecules which move with velocity c in different directions. We shall des-
ignate these molecules as belonging to group A. Let Nc be the 
number of molecules per unit volume belonging to group A.

To find the pressure exerted by the molecules of group A on 
an element of area ds placed inside the mass of gas contained in 
unit volume, we describe a sphere of radius c round the centre 
of ds (Fig. 4.1). 

From the centre of the sphere, we draw radii vectors in 
the directions of motions of molecules of group A. Since all 
directions of motion are equally probable, the end points of 
the radii vectors will be uniformly distributed on the sur-
face of the sphere. The number of end points lying on unit 
area of the sphere is Nc/4pc2. To find the number Ncq of 
molecules of group A moving in directions lying between 
q and q + dq with the normal to ds, we describe two cones 
of semi-vertical angles, q and q + dq, round the normal to ds. 
These cones intercept a belt of area on the surface of the sphere. The area of this belt is 2pc2 sinqdq. The 
number of end points of radii vectors lying within the range q and q + dq is

  N N c d
c

N dc ccθ
π θ

π
θ θ= =

2
4

1
2

2

2

sin sinθ

This is obviously equal to the number of molecules of group A in unit volume whose directions of 
motion lie between q and q + dq with the normal to ds.

To find the number of molecules of the class Ncq which strike the area ds from one side of ds per 
second, we describe a cylinder on ds with its axis inclined in the direction q and of length equal to c.
The volume of the cylinder is cds cosq. The number of molecules of class Ncq contained in the cylinder is

  d N cds N d cdsc c cυ θ θ θ θθ θ= =cos sin cos1
2

These molecules evidently strike the area ds in 1 second. Let us now suppose that ds is an element of 
area of the containing vessel. Since the colliding surface of the molecules (supposed to be a sphere) and 
the wall of the containing vessel are said to be perfectly smooth and rigid, the normal component of the 
momentum of the molecule is reversed at each collision. If m be the mass of the molecule, the change of 
momentum at each collision is 2mc cosθ. The total change of momentum in 1 second by collision with 
the Ncq class of molecules is 

  d mc N mc d dsc cυ θ θ θ θθ × =2 2 2cos cos sin

The total pressure exerted by molecules of group A striking ds from one side of ds is

  p N mc ds d N mc dc c c= = −∫ ∫2 2

0

2 2 2

0

2cos sin cos (
π π

θ θ θ θ ccos )θ

Fig. 4.1 Sketch of molecular 
motion

dθ

ds

c

ds

θθ

θ
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  =
1
3

2N mc dsc

Let N1, N2, N3 ……… etc. molecules of the whole group of molecules have velocities c1, c2, c3 ……… 
etc, then the total pressure exerted by all the molecules on unit area of the surface is 

  p p p p m N c N c N c= + + + = + + +1 2 3 1 1
2

2 2
2

3 3
21

3
…… ……( )

The mean square velocity is 

  c
N c N c
N N N

2 1 1
2

2 2
2

1 2 3

=
+ +

+ + +
……
……

 ∴ N c N c N c Nc1 1
2

2 2
2

3 3
2 2+ + + =……

where N is the total number of molecules per unit volume. The total pressure exerted by the gas is 

  p Nmc=
1
3

2

4.3 distribution function of Velocities

In the elementary kinetic theory of the so-called perfect gases discussed earlier, it was proved that the 
pressure and temperature of the gas depend on the mean square velocity of the molecules. There are 
phenomena which require for their proper description a knowledge of the distribution of velocities 
amongst the molecules. If we follow a particular molecule moving through the mass of the gas over a 
long interval of time, we shall find that both the direction of motion and the magnitude of velocity of the 
molecule changes from instant to instant. This is due to collision with other molecules which happen to 
lie in the path of the particular molecule. The molecules interact with each other only during collision. 

Accordingly, the path traversed by a molecule between two successive collisions is straight, and its 
velocity during the interval between two collisions is uniform. This is true for every other molecule. 
On account of frequent collisions between the molecules, the maximum velocity of a molecule cannot 
acquire infinite magnitude. It follows that molecules of a gas must be moving in all directions with dif-
ferent possible velocities.

The problem before us is to find an expression for the distribution of velocities amongst different 
molecules, that is, to find the number of molecules whose velocities lie within a given small range. If 
the molecules are moving according to certain dynamical laws, there is every likelihood that molecules 
with nearly equal velocities would flock together. Accordingly, the distribution of velocities would be a 
function of position. This means that pressure at different points in a mass of gas would be different, so 
that the gas can never acquire a stable condition.

4.3.1 Assumption of Molecular Chaos
To simplify the analysis, Boltzmann made the basic assumption known as assumption of molecular 
chaos. It states that in the case of a large group of molecules which do not interact with each other 
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except during collision, there is on an average no correlation between position and velocity of differ-
ent molecules. This means that any velocity can occur at any point inside a mass of gas, so that the 
distribution of velocities in a gas is homogeneous and isotropic. This is, however, only an assumption 
and cannot be accepted without proof. The assumption has nevertheless stood the test of vigorous 
mathematical analysis.

4.3.2 The Velocity Space
The state of motion of a molecule is defined by six coordinates: (a) three coordinates of position (x, y, z),
and (b) three velocity coordinates (u, v, w). To find the distribution of velocities in space at an instant 
we take an arbitrary point o as origin (Fig. 4.2) and draw 
three rectangular coordinates ou, ov, and ow parallel to the 
positional coordinates ox, oy and oz to represent the three 
component velocities (u, v, w).

From the origin, we draw radii vectors representing 
the velocity of each molecule at that instant. Then, the 
distribution of end points of these vectors gives the 
distribution of velocities in the velocity space. If we take 
a small element of volume dudvdw in this space, then 
the number of end points of the vectors lying within this 
volume gives the number of molecules whose velocity 
lies within the small range u to u + du, v to v + dv and 
w to w + dw. If t is the density of the end points at (u, 
v, w), then the number of molecules whose velocity 
lies within the above-mentioned range is t dudvdw. 
It is convenient to replace t by Nf  where N is the total 
number of molecules and f is a function of (u, v, w)
which we want to determine. When we want to specify 
the point, we write f (u, v, w) instead of f. In this definition, t and the element of volume dudvdw are 
not necessarily integers; but their product must be an integer, for it represents the number of end points 
lying within the volume. In describing an event where certain connected facts are known while others 
are unknown, we take recourse to the idea of probability. In the language of probability, t dudvdw would 
mean the expectation of the number of molecules in the given volume dudvdw at the point (u, v, w). 
Since there are N molecules in the group, it follows from the theory of probability that the probability of 
a molecule selected at random (out of a group of N molecules) having velocity components within the 
range u and u + du, v and v + dv, w and w + dw is f (u, v, w) dudvdw.

For the same reason the probability that a molecule selected at random out of a group of N molecules 
will occupy a volume element within the range x and x + dx, y and y + dy, z and z + dz is u (x, y, z) 
∆x∆y∆z where u (x, y, z) is the number density of the molecules at the point (x, y, z).

The number of molecules out of the total number N whose velocity components lie within the range 
u to u + du, v to v + dv and w to w + dw is

  N f (u, v, w)dudvdw (4.1)
The number of molecules out of number u per unit volume whose velocity components lie within the 

range u to u + du, u to v + dv and w to w + dw is

  u f (u, v, w)dudvdw (4.2)

Fig. 4.2 Sketch representig 
distribution of molecular velocities

dw

dv

du

w

o

v

u
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4.3.3 Maxwell’s Law of Distribution of Velocities
At this point, Maxwell starts with the assumption that the velocity components u, v and w are indepen-
dent of each other. The validity of this assumption is to be proved. Nevertheless, it leads to the correct 
law of distribution of velocities. This assumption stood the test of rigorous mathematical analysis by 
Boltzmann. For this reason, Boltzmann’s name is usually associated with the Maxwellian law of distri-
bution; and the law of distribution of velocities of molecules of a gas is known as Maxwell–Boltzmann’s 
distribution law. Since u, v and w are quantities of the same nature obeying the same mechanical laws, 
the distribution function of these components cannot be different from each other; so, we shall express 
them by the same function f.

Let the probability of molecule having velocity component u to u + du be f (u)du. Its probabilities of 
lying within the ranges v to v + dv and w to w + dw are, respectively, f (v)dv and f (w)dw. Then, the joint 
probability of a molecule having simultaneous velocity component lying within the range u to u + du,
v to v + dv and w to w + dw is

  f (u) f (v) f (w)dudvdw

Then, the number of molecules (out of the total number of N molecules) whose velocity components 
lie within the range u to u + du, v to v + dv and w to w + dw is

  Nf (u) f (v) f (w)dudvdw (4.3)

Since the resultant velocity of a molecule at a given instant is 

  c 2 = u 2 1 v 2 1 w 2 (4.4)

We must have 

  Nf u f v f w dudvdw n c dudvdw( ) ( ) ( ) ( )= φ 2

 so that f u f v f w c( ) ( ) ( ) ( )= φ 2  (4.5)

where f is a function different from f. For a f ixed value of c, f (c2  ) is constant, so that 

  d c[ ( )]φ 2 0=
 so that

f v f w f u du f u f w f v dv f u f v f( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (′ + ′ + ′ ww dw) = 0

 or                                                     
′

+
′

+
′

=
f u
f u

du f v
f v

dv f w
f w

dw( )
( )

( )
( )

( )
( )

0  (4.6)

Again for a constant value of c, d c( )2 0=

 or 2 2 2 0udu vdv wdw+ + =  (4.7)

Adding Eqs 4.6 and 4.7 by Laplace’s method of undetermined multipliers, we get

  
′

+








 +

′
+









 +

′f u
f u

u du f v
f v

v dv f( )
( )

( )
( )

2 2β β
(( )
( )
w

f w
w dw+









 =2 0β  (4.8)
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Since the velocity components are supposed to be independent, Eq. 4.8 is satisfied when each term 
of Eq. 4.8 is separately equal to zero so that 

   
′

= −
f u
f u

u( )
( )

2β

 or log ( ) log loge e ef u u e u= − + = −β α α β2 2

where loge α is the constant of integration

 or f u e u( ) = −α β 2

 Thus, f u f v f w e u v w( ) ( ) ( ) ( )= − + +α β3 2 2 2

 (4.9)

where α and b are constants. The number of molecules whose velocity components lie within the range 
u and u + du, v and v + dv, w and w + dw is

  dN N e dudvdwu v w= − + +α β3 2 2 2( )  (4.10)

4.3.4 Value of the Constants a and b
Since the total number of molecules is N

  N ∫∫∫ f (u) f(v) f (w)dudvdw = N

 or ∫∫∫ f (u) f(v) f (w)dudvdw = 1

 or α3 ∫∫∫ e2b(u2 1 v2 1 w2)dudvdw = 1

 This gives                             α
π
β

3

3
2

1










=

 or               α
β
π

=  (4.11)

Next, let us calculate the pressure exerted by the gas on a unit area perpendicular to the direction of 
the component u. The number of molecules striking unit area in 1 second is equal to the number of mol-
ecules lying within a cylinder of unit cross section and of length equal to u. The number of molecules 
having velocity within the range u to u + du per unit volume is 

  υα βe duu− 2

where u  is the number density. The number of molecules within the cylinder is, therefore, 
  υα βe uu− 2

du
The change of momentum suffered by a molecule at each collision is 2mu. Hence, the pressure 

exerted is 

p m e u duu= −
∞

∫2
2 2

0

υα β
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  =








2 1

4 3

1
2

αυ
π
β

m

  =
















 =

υ β
π

π
β

υ
β

m m
2 2

1
2

3

1
2

 But, p kT= υ  (4.12)

 ∴     ∴ =β
m
kT2

Hence, the dN of molecules out of N molecules having velocity components lying between u and 
u + du, v and v + dv, w and w + dw is

  dN N m
kT

e dudv
m
kT

u v w
=











− + +

2

3
2

2
2 2 2

π

( )
ddw  (4.13)

Equation 4.13 is the well-known Maxwell’s law of distribution of velocities of molecules of a gas. 
To find the number dNc of molecules having velocity lying between c and c + dc, we have c 2 =

u 2 + v 2 + w 2 and we have dudvdw in Eq. 4.10 to be replaced by c2 sinq dq df dc in spherical 
polar coordinates and integrated for all values of q and f between two spheres of radii c and 
c + dc. Thus,

  dN N e c dc d dc
c= − ∫∫α φ θ θβ

ππ
3 2

00

2
2

sin

 or dN N e c dcc
c= −4 3 22

π α β  (4.14)
Substituting the value of α and b in Eq. 4.14, we get

  dN N m
kT

e c dcc

mc
kT=











−
4

2

3
2

2 2
2

π
π

Now, the kinetic energy of a molecule moving with velocity c is E = 1/2mc2 and dE mcdc= . Hence, 
the number of molecules whose energy lies between the limits E and E 1 dE is 

  dN N m
kT

c
m
e dEE

E
kT=











−
4

2

3
2

π
π

 or dN N mc

kT
e dEE

E
kT=

−
4

2
3
2

π
π( )

  =
− −

2
3
2N Ee KT dE

E
kT

π
( )  (4.15)

  
dN
N

Ee KT dEE
E
kT=

− −
2

3
2

π
( )
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This is the fraction of molecules having kinetic energy between E and E + dE.
Putting βc x2 2= ,so that βcdc xdx= and substituting in Eq. 4.14, we get 

  dN N e x dxc
x=

− −4
1
2 22

( )π  (4.16)

Plotting the function y, where y N e xx=
− −4

1
2 22

( )π against x, we get a curve as shown in Fig. 4.3.
Then, the number dNc whose velocity lies between 

x and x + dx will be given by the shaded area of the 
curve. The curve shows a maximum at the point P 
where dy/dx = 0

 or                         
d
dx

N e xx=








=−4 0

2 2

π

 or             
4 2 2 0

2 22N e x x e xx x

π
( . . )− −− =

 or                                                   x2 = 1
Since bc 2 = x 2, bc 2 = 1, the most probable veloc-

ity is δ = =
1 2
β

kT
m

.

Hence, the most probable velocity is 2kT
m ; this is the velocity which the maximum number of mol-

ecules has. In term of most probable velocity d, the number of molecules having velocity between c and 
c + dc is 

  dN N c e dcc

c

=
−4

3
2

2

2

πδ
δ  (4.17)

Hence, the probability of a molecule lying between c and c + dc is

     p c e dcc

c

=
−4

3
2

2

2

πδ
δ  (4.18)

4.3.5  Graphical Representation of the Change of the Distribution of  
Velocity with Temperature

The number of molecules having velocity lying between c and c 1 dc is

  dN N m
kT

e c dcc

mc
kT=











−
4

2

3
2

2 2
2

π
π

If we put mN M R N k0 0= =,  where N0 is the Avogadro number and M is the molecular weight, 

 we get dN N M
RT

e c dcc

Mc
RT=











−4
2

3
2

2 2
2

π

Fig. 4.3 Maxwell’s velocity distribution 
curve

y

x

P

x
x + dx
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The Maxwell distribution curves are plotted for different temperatures T1, T2, T3, T4 such that 
T1 < T2 < T3 < T4 (Fig. 4.4). As the temperature rises, the distribution becomes more and more scattered. 
All the curves have the same area.

4.3.6 The Average Velocity of the Molecules
We distinguish between two types of average value: one is the root mean square (RMS) velocity and the 
other is the so-called mean value. The former is the squareroot of the mean square value, or

  C c
N

c dNc
2 2 2

0

1
= =

∞

∫

   =
∞

−∫
1 42

0

3 22

N
c N e c dccπ α β

   =
−

∞

∫4 3

0

42

πα βe c dcc

   = = =4 3
8

3
2

3
2

23
5

πα
π
β β

kT
m

 (4.19)

  C c kT
m

= =2 3  (4.20)

The mean or average velocity is 

  c
N

cdNc=
∞

∫
1

0

  =
∞

−∫
1 4

0

3 22

N
c N e c dccπ α β

  = −
∞

∫4 3

0

32

πα βe c dcc

Fig. 4.4 Maxwell’s velocity distribution curve for different temperatures

dNc

c

T1

T2

T3

T4
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  = = =4 1
2

2 4 23
2πα

β πβ π
. kT
m

  =
8kT
mπ

 (4.21)

 Thus, c
C

= =
8

3
0 921

π
.  (4.22)

 and 
δ
C

=
2
3

 (4.23)

 and 
δ π
c

=
2

 (4.24)

4.3.7 Maxwell’s Law
The pressure exerted by a gas on the wall of the containing vessel is 

  p mnc=
1
3

2

 we have c
C

2

2

8
3

=
π

Substituting the value of c2 in the expression for p, we get

  p mnc c= =
1
8

1
8

2 2π πρ  (4.25)

where ρ is the density
Equation 4.25 is known as Maxwell’s law.

4.4 elastic collisions 
We distinguish between two types of collisions: (a) linear (b) oblique. The collision is linear if at the 
moment of collision the line joining the centres of the two colliding spheres lies in the same direction 
as that of both the velocities before collision. The collision is oblique, if this condition is not satisfied.

4.4.1 The Mechanical Laws Obeyed by Collision
Let us consider two spheres designated 1 and 2 of equal mass m and of equal radius (Fig. 4.5). The 
spheres are supposed to be perfectly smooth. The mechanical laws obeyed by the colliding spheres 

1. The sum total of the kinetic energies before and after collision must remain constant.
2. The sum total of the linear momentum before and after collision must remain constant.

We shall first consider the case of linear collision. Let c1 and c2 be their velocities of approach and C1 
and C2 their velocities of retreat after collision.
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The law of conservation of translational kinetic energy gives

  c c C C1
2

2
2

1
2

2
2+ = +  (4.26)

The law of conservation of linear momentum gives

  c c C C1 2 1 2+ = +  (4.27)

Equations 4.26 and 4.27 can also be written as 

  c C C c1
2

1
2

2
2

2
2− = −

 and c C C c1 1 2 2− = −  (4.28)

 so that c C c C1 1 2 2+ = +  (4.29)

From Eqs 4.28 and 4.29

  c C c C2 1 1 2= =and

Thus by head on collision, the spheres simply interchange their velocities after collision.
We next consider the case of oblique collisions; let c1 and c2 be the velocities of approach of the 

spheres 1 and 2 in the directions shown in Fig. 4.6.
After collision, these spheres move away from each other with velocities C1 and C2 in the directions 

shown in Fig. 4.6. We resolve the velocities before collision in the direction AB of the line of centres. 
We shall represent these by subscript n. The components in the direction of their common tangent at the 
moment of collision will be represented by the subscript t. 

Fig. 4.6 Illustration of oblique collision

c1

A B

C1

Cr

C2 C2

c2

ct1

Ct1 ct2

Ct2

Cn1

cn1 cn2

Cn2

C1

Fig. 4.5 Illustration of linear collision

C1

c1 A B c2

C2

1 2
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Since the spheres are supposed to be perfectly smoth, there is no change in the tangential components 
after collision so that 

  
c C
c C
t t

t t

1 1

2 2

=

=






 (4.30)

The tangential components remaining constant, the normal components would only exchange their 
velocities after collision as in the case of linear collision so that

  
C c
C
n n

n n

1 2

2 1

=

=





c
 (4.31)

Writing in the vectorial way,

  
c c c C C
c c c C C

1 1 1 1 2

2 2 2 2 1

= + = +

= + = +







t n t n

t n t n

 (4.32)

Introducing the relative velocity (Cr) between the retreating spheres after collision,

  C C Cr = −2 1  (4.33)

 Again from Fig. 4.6,   C C C1 1 1= +t n  (4.34)

Substituting Eq. 4.34 in the first equation of Eq. 4.32, we get

  c C C C1 1 1 2= − +n n

 or c C C C1 1 1 2= − −( )n
 (4.35)

Using Eq. 4.33, Eq. 4.35 transforms to 

  c C C1 1= + ( )r n  (4.36)
where (Cr )n is the normal component of the relative velocity Cr that is the projection of Cr on the central 
line AB

 Similarly, c c c C C2 2 2 2 1= + = +t n t n

 or c C C C C2 2 1 2 2= + − +t n n n( )

  = + −C C Ct n r n2 2 ( )

 Since C C C2 2 2= +t n

  c C C2 2= −( )r n  (4.37)

We shall now write the vector equations 4.36 and 4.37 in terms of their cartesian components. For 
this purpose, we shall represent the component velocities before collision by u, v, w and after collision 
by U, V, W and the direction cosines of the normal component of the relative velocity or that of the 
central line AB by (l, m, n). Thus, we obtain from Eq. 4.36
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u U l C
v V m C
w W n C

r n

r n

r n

1 1

1 1

1 1

= +

= +

= +









( )
( )
( )



 (4.38)

Similarly Eq. 4.37 can be written in the following form 

  
u U l C
v V m C
w W n C

r n

r n

r n

2 2

2 2

2 2

= −

= −

= −









( )
( )
( )



 (4.39)

By definition, the components of the relative velocity of retreat after collision are

  

U U l C
V V m C
W W n C

r n

r n

r n

2 1

2 1

2 1

− =

− =

− =









( )
( )
( )



 (4.40)

Multiplying Eqs 4.38, 4.39 and 4.40 by l, m, n and adding them, we get

  l U U m V V n W W Cr n( ) ( ) ( ) ( )2 1 2 1 2 1− + − + − =  (4.41)

Substituting the value of (Cr)n from Eq. 4.41 in Eqs 4.38 and 4.39, we get

  

u U l U U lm V V W W
v V lm U U m V

1 1
2

2 1 2 1 2 1

1 1 2 1
2

= + − + − + −

= + − +

[ ( ) ( ) ( )]

[ ( ) (

ln

22 1 2 1

1 1 2 1 2 1
2

2 1

− + −

= + − + − + −






V mn W W

w W U U mn V V n W W
) ( )]

[ ( ) ( ) ( )]ln






 (4.42)

  

u U l U U lm V V W W
v V lm U U m V

2 2
2

1 2 1 2 1 2

2 2 1 2
2

= + − + − + −

= + − +

[ ( ) ( ) ( )]

[ ( ) (

ln

11 2 1 2

2 2 1 2 1 2
2

1 2

− + −

= + − + − + −






V mn W W

w W U U mn V V n W W
) ( )]

[ ( ) ( ) ( )]ln






 (4.43)

Equation 4.42 and 4.43 express the components (u1, v1, w1) and (u2, v2, w2) before collision in terms 
of the components (U1, V1, W1) and (U2, V2, W2) after collision.

4.4.2 Class-A Molecules
To avoid repetition, we shall represent the molecules whose velocity components lie within the range u1 
and u1 + du1, v1 and v1 + dv1, w1 and w1 + dw1, as belonging to class A. 

The total number of molecules of class A out of a group of N molecules is, therefore, 

  Nf u v w du dv dw( , , )1 1 1 1 1 1  (4.44)
The total number of molecules of class A in 1 cubic centimetre is 

  υ f u v w du dv dw( , , )1 1 1 1 1 1  (4.45)
The total number of molecules of class A per unit volume which occupy the element of volume dxdydz is 

  υ f u v w du dv dw dxdydz( , , )1 1 1 1 1 1  (4.46)
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4.4.3 Class-B Molecules
The number of molecules whose velocity components lie within the range u2 and u2 + du2, v2 and v2 + 
dv2, w2 and w2 + dw2 will be represented as belonging to class B. 

4.4.4 Proof of Maxwellian Law of Distribution of Velocities
The law of velocities as given by Maxwell was a guess work and was only partially established. 
Boltzmann proved by direct method that Maxwellian law of distribution is the only possible distribu-
tion in the stable state of equilibrium of the gas. By the steady state of equilibrium, we mean that the 
number of molecules whose velocity components lie within a prescribed range is the same at all times 
when the whole mass of the gas is examined. Further, starting from any state of distribution, the mass 
of the gas ultimately tends to acquire that state of stable equilibrium. 

Evidently, that state of stable equilibrium of the gas is reached only by the process of collision  
between different molecules. For the proof, we consider two classes of collisions.

(a) Collision of class α In class α, one of the two colliding molecules belongs to class A and the other 
to class B. At the moment of impact, the direction cosine of the line joining the centres lies within a 
small solid angle dw. We calculate the number of molecules which have class A after collision in time dt.

(b) Collision of class β Class β is the same as class α, only their roles are interchanged. After colli-
sion, one of the colliding molecules belongs to class A and the other class B. We calculate the number 
of molecules which enter class A after collision in time dt.

For steady condition, the number of molecules leaving class A and those entering class A in time dt 
would be equal. From this equation, the distribution function can be calculated. This is the summary of 
Boltzmann method of calculation.

4.4.5 Calculation of Collisions of Class a
Figure 4.7 represents the process of impact of molecules of class B with a molecule A of class A. Let 
s be the diameter of a molecule. With A as centre and radius equal to s, we describe a sphere. At the 
moment of impact, the centre of the colliding molecules must be on this sphere which will be called col-
lision sphere. As the molecule A moves through the gas, the collision sphere also moves with it but does 
not rotate with it. The B molecules approach the A molecule with relative velocity cr in the line B2B1
with direction cosines ( l, m, n  ). In the Fig. 4.7, B1 and B2 are the portions of the colliding molecule at 
the moment of impact and just before the impact, respectively.

Fig. 4.7 Illustration of general collision

B1 B2

l, m, n

A

λ, µ, ν
θ
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Let the direction cosines of the line joining the centre of the molecule A to the point of impact B1 be (l, m, 
n). In the α-class of collision, the line AB1 lies within a small solid angle dw. This intercepts on the collision 
sphere an area equal to s 2dw. The number of collision of class a in time dt is evidently equal to the number 
of centres of the B class molecules which lie within the cylinder of base area equal to s 2dw and of height cr 
cosq dt where q is the angle between the line of approach and the axis of the cone of solid angle dw so that 
  cos ( )θ λ µ ν= − + +l m n  (4.47)

The volume of this cylinder is 

  dk dwc dtr= σ θ2 cos  (4.48)

Substituting the value of dk from Eq. 4.48 for dxdydz in Eq. 4.46 and replacing u1, v1, w1 by 
u2, v2, w2, we get for the number of centres of B class molecules within the cylinder

  υ σ θf u v w du dv dw c dwdtr( , , ) cos2 2 2 2 2 2
2

This is true for every molecule of class A. The number of molecules of class A per unit volume is 
υ f u v w du dv dw( , , ) .1 1 1 1 1 1 Hence, the expectation of total number of collisions of class a per unit volume 
which occur in time dt is 

  υ υαdt f u v w f u v w du dv dw du dv dw= ×2
1 1 1 2 2 2 1 1 1 2 2 2( , , ) ( )

  σ θ2c dwdtr cos  (4.49)

Representing f (u1, v1, w1) and f (u2, v2, w2) simply by f1 and f2 and using Eq. 4.48, Eq. 4.49 is 
written as

  υ υ∝ dt f f du dv dw du dv dw dk= 2
1 2 1 1 1 2 2 2  (4.50)

This gives the number of molecules which leaves class A by a collisions in time dt. 
We have yet to determine the number of molecules which enters class A by β collision in time dt. 

β type of collisions have the following specifications:

1. After collision, one of the two molecules belongs to class A, that is, its velocity point falls 
within the volume element du1dv1dw1.

2. After collision, the second molecule belongs to class B, that is, its velocity point falls within the 
volume element du2dv2dw2.

3. At the moment of collision, the central line has the direction cosine (lmn), that is, it passes 
through the area dk of the collision sphere. 

For this purpose, we have to determine the velocities U1V1W1 and U2V2W2 before the collision of β 
class from Eqs 4.42 and 4.43 mentioned earlier. This is obtained simply by interchanging the capital 
letters and the small letters.

  
U u l u u lm v v w w
V v lm u u m v

1 1
2

1 2 1 2 1 2

1 1 1 2
2

= − − + − + −

= − − +

[ ( ) ( ) ( )]

[ ( ) (

ln

11 2 1 2

1 1 1 2 1 2
2

1 2

− + −

= − − + − + −






v mn w w

W w u u mn v v n w w
) ( )]

[ ( ) ( ) ( )]ln






 (4.51)

  
U u l u u lm v v w w
V v lm u u m v

2 2
2

1 2 1 2 1 2

2 2 1 2
2

= − − + − + −

= − − +

[ ( ) ( ) ( )]

[ ( ) (

ln

11 2 1 2

2 2 1 2 1 2
2

1 2

− + −

= − − + − + −






v mn w w

W w u u mn v v n w w
) ( )]

[ ( ) ( ) ( )]ln






 (4.52)
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In complete correspondence with the collisions of the a class, we get for the total number of colli-
sions per unit volume in time dt 

  υ2
1 1 1 2 2 2 1 1 1 2 2 2f U V W f U V W dU dV dW dU dV dW dk( , , ) ( )

Representing f (U1, V1, W1) and f (U2, V2, W2) simply by F1 and F2, we get

  υ2
1 2 1 1 1 2 2 2F F dU dV dW dU dV dW dk  (4.53)

This, however, cannot be the number of b collisions unless dv1 dv1 dw1 be so determined that U1 + 
dU1, V1 + dV1, W1 + dW1, U2 + dU2, V2 + dV2, W2 + dW2 transform into u1 + du1, v1 + dv1, w1 + dw1, 
u2 + du2, v2 + dv2 and w2 + dw2 after the collision. In order that Eq. 4.53 may represent the total number 
of β collisions per unit volume in time dt, the quantities dU1 ……. dW2 are to be determined by differ-
entiation of Eq. 4.51 and 4.52.

To satisfy the condition of complete correspondence, we must have using Jacobi’s theorem 

dU dV dW du dv dw1 1 2 1 1 2…… ……= ∆

where ∆ is the substitution determinant given by

  ∆ =

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

U
u

U
v

U
w

U
u

U
v

U
w

V
u

1

1

1

1

1

1

1

2

1

2

1

2

1

11

1

1

1

1

1

2

1

2

1

2

1

1

1

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

V
v

V
w

V
u

V
v

V
w

W
u

W
v11

1

1

1
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1

2

1

2

2

1

2

1

2

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

W
w

W
u

W
v

W
w

U
u

U
v

U
w11

2

2

2

2

2

2

2

1

2

1

2

1

2

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂
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u

U
v

U
w

V
u

V
v

V
w

V
u22

2

2
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From Eqs 4.51 and 4.52, we obtain by differentiation

  ∆ =

− − −
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2 2
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Since we are concerned here only with the numerical value of l, we obtain after simplification 
∆ = 1, so that
  dU dV dW dU dV d du dv dw du dv dw1 1 1 2 2 2 1 1 1 2 2 2W =  (4.54)

Hence, from Eq. 4.53 the number of β collisions per unit volume in time dt is

  υ υβdt F F du dv dw du dv dw dk= 2
1 2 1 1 1 2 2 2   (4.55)

This gives the increase in the number of A molecules after collision. The total increase in the number 
of A molecules after collision is 

  υ2
1 2 1 2 1 1 1 2 2 2( )F F f f du dw du dv dw dk− dv  (4.56)

By integration of all possible values of u2v2w2 and overall elementary volumes in the unit volume, we 
get the total increase of A molecules in cubic unit metre in time dt. This is equal to 
  u  2du1dv1dw1 ∫∫∫ ∫ (F1F2 2 f1  f2) du2dv2dw2dk (4.57)

Now, the number of A molecules in unit volume at time t is 

  υ f u v w du dv dw1 1 1 1 1 1 1( )
At instant (t + dt), this becomes

  
υ f f

t
dt du dv dw1

1
1 1 1+

∂
∂









so that the increase in the number of A molecules in time dt is 

  υ
∂
∂
f
t
dt du dv dw1

1 1 1  (4.58)

Equating Eqs 4.57 and 4.58, we get

  
∂
∂

= −∫∫∫∫
f
t

F F f f c du dv dw dwr
1

1 2 1 2
2

2 2 2υ σ θ( ) cos  (4.59)

substituting the value of dk from Eq. (4.48) 
The necessary condition for the steady state is ∂f/∂t = 0. This can be obtained by putting 

  F F f f1 2 1 2=

We have to prove that this is also the sufficient condition. For this purpose, we make use of the H-
theorem introduced by Boltzmann. 

4.4.6 Boltzmann’s H–Function
This is a logarithmic function
  H = ∫∫∫ f loge f dudvdw (4.60)

where f is a function of u, v, w and the integration extends from 2∞  to +∞  over all possible values 
of u, v, w. H is, thus, a pure number completely independent of u, v, w and dependent only on the 
analytical form of f or the law of distribution of velocities. It, therefore, remains unchanged so 
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long as the law of distribution does not change. Hence, a necessary condition to be satisfied at the 
steady state is that

  ∂
∂

=
H
t

0

To evaluate ∂H/∂t, we put f1 for f and u1v1w1 for u, v, w in Eq. 4.60; this gives 

  H f f du dv dw= ∫∫∫ 1 1 1 1 1loge  (4.61)

and differentiating within integration 

  
∂
∂

=
∂
∂

+∫∫∫
H
t

f
t

f du dv dw1
1 1 1 11( log )e  (4.62)

Substituting the value of ∂f1/∂t from Eq. 4.59, we get

  
∂
∂

= + −∫∫∫∫∫∫∫
H
t

f F F f f c dwrυ σ θ( log )( ) cos1 1 1 2 1 2
2

e

  ×du dv dw du dv dw1 1 1 2 2 2  (4.63)

Since the integration in Eq. 4.60 is to extend over all possible values of u, v, w, it represents a sum of 
contributions from each class of molecules.

In Eq. 4.60, we have considered only a particular type of molecules belonging to class A. If instead 
of class A the molecules chosen were of class B, then H would take the following form 

  H f f du dv dw= ∫∫∫ 2 2 2 2 2loge  (4.64)

and the rate of change of H would be 

  
∂
∂

= +
∂
∂∫∫∫

H
t

f f
t
du dv dw( log )1 2

2
2 2 2e  (4.65)

In an analogous manner, ∂f2/∂t would be 

  
∂
∂

= −∫∫∫∫
f
t

F F f f c du dv dw dwr
2

1 2 1 2
2

1 1 1υ σ θ( ) cos  (4.66)

Substituting Eq. 4.66 in Eq. 4.65, we get

  
∂
∂

= + −∫∫∫∫∫∫∫
H
t

f F F f fυ ( log )( )1 2 1 2 1 2e

  σ θ2
1 1 1 2 2 2c du dv dw du dv dw dwr cos ×  (4.67)

Addition of Eqs 4.63 and 4.67 yields a value which takes account of collisions between A and B class 
of molecules. Thus,

∂
∂

= + −∫∫∫∫∫∫∫
H
t

f f F F f fυ
2

2 1 2 1 2 1 2( log )( )e

  σ θ2
1 1 1 2 2 2c du dv dw du dv dw dwr cos ×  (4.68)

Up to this point, we have given preference to quantities with subscript 1, that is, we have considered 
only the α collision. We could equally well start with the β collisions. Then instead of Eqs 4.59 and 4.66 
we would get two equations distinguished by interchange of quantities with subscripts 1 and 2.
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Similarly, we could form another equation for H in analogy with Eqs 4.61 and 4.64 by interchange 
of quantities with subscripts 1 and 2. This yields

∂
∂

= + −∫∫∫∫∫∫∫
H
t

F F F F f fυ
2

2 1 2 1 2 1 2( log )( )e

  σ θ2
1 1 1 2 2 2c du dv dw du dv dw dwr cos ×  (4.69)

Adding Eqs 4.68 and 4.69
∂
∂

= − −∫∫∫∫∫∫∫
H
t

f f F F F F f fυ
4 1 2 1 2 1 2 1 2(log log )( )e e

  σ θ2
1 1 1 2 2 2c du dv dw du dv dw dwr cos ×  (4.70)

The integral represented by Eq. 4.70 is essentially a negative quantity since F1F2 - f1  f2 and loge 
f1 f2/F1F2 are of opposite signs while all the remaining quantities are positive. Since, ∂H/∂t = 0 in 
equilibrium state the necessary condition of equilibrium is 

  F F f f1 2 1 2=  (4.71)

This functional relation determines the law of distribution of velocities.
Since all directions in space are equally probable, the distribution can depend only on the magnitude 

of c and not on its direction. It is convenient to express Eq. 4.71 as
  log log log loge e e eF F f f1 2 1 2+ = +  (4.72)

We can, therefore, put

  f e f e F e F ec c C C
1 2 1 2

1
2

2
2

1
2

2
2

= = = =φ φ φ φ( ) ( ) ( ) ( ), , ,  (4.73)
where c1, c2 and C1, C2 are the velocities of the two colliding molecules before and after collision.

 Further c c C C1
2

2
2

1
2

2
2+ = +

  C c c C1
2

1
2

2
2

2
2= + −

From Eqs 4.72 and 4.73, we get

  φ φ φ φ( ) ( ) ( ) ( )c c C C1
2

2
2

1
2

2
2+ = +

Substituting Eq. 4.73 in Eq. 4.72, we get

  φ φ φ φ( ) ( ) ( ) ( )c c C c c C1
2

2
2

2
2

1
2

2
2

2
2+ = + + −

On differentiating partially with respect to c c C1
2

2
2

2
2, and , we obtain

  ′ = ′ + −φ φ( ) ( )c c c C1
2

1
2

2
2

2
2

  ′ = ′ + −φ φ( ) ( )c c c C2
2

1
2

2
2

2
2

  ′ = ′ + −φ φ( ) ( )C c c C2
2

1
2

2
2

2
2

This ′ = ′ = ′ = −φ φ φ β( ) ( ) ( )c c C1
2

2
2

2
2 2 = constant

  ′ = −∫ ∫φ β( )c dc dc1
2

1
2 2

1
2

 or, ′ = − +φ β α( )c c1
2 2 2 3loge
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Where loge a
3 is the constant of integration. On substitution in Eq. 4.73 this gives

  f u v w e u v w( , , ) ( )= − + +α β3 2 2 2

 (4.74)
This is the Maxwellian distribution which has already been deduced.

4.4.7 Experimental Verification of Maxwells’ Law
Before 1920, there was no direct experimental test of the law. The indirect test of the law was provided 
by the finite breadth of spectral lines. The finite breadth is due to the different velocities of the radiating 
atoms. The examination of the variation of the intensity along the breadth of the line gives an indirect 
proof of the Maxwell’s law. Another indirect test of the law was provided by the electrons coming 
from a hot filament. In the interior of a conductor, free electrons are moving in all directions and it is  
assumed that they behave as gas molecules. Those electrons whose velocities are large enough to over-
come the barrier at the surface come out of the surface. The investigation consists in measuring the electron  
current from the hot body to a neighbouring electrode against various opposing potential differences. It 
shows that the velocity distribution among the emitted electrons is in close agreement with Maxwell’s 
law of distribution for a gas. Different workers have done experiment using different metals.

The first direct experiment was made by Stern. The scheme of his experimental arrangement is 
shown in Fig. 4.8.

A is a platinum wire coated with silver so that when it is electrically heated it emits silver atoms. B is 
a cylindrical drum with slit S and pp1 is another cylindrical vessel having photographic plate bent into 
the inner surface of the cylinder. The system B, pp1 can be rotated about A as axis. The whole system 
is kept inside an enclosure which can be evacuated. At very low pressure, the silver atoms are emitted 
from the heated filament A. Some of these atoms pass through the slit S and form a depoit at p, a point in 
line with the slit S when the system is at rest. But if the whole apparatus is rotated in clockwise direction 
the silver atoms form deposit at points above p, the slow-moving atoms forming deposit at a greater dis-
tance from p than that formed by the fast-moving atoms. Thus, atoms of different speeds form deposit at 
different places and it is possible to test Maxwell’s law by measuring the position and density of deposit. 
Unfortunately, the results are not accurate due to various reasons.

The main difficulty of Stern laid in retaining the vacuum. Later, Costa, Smyth and Compton 
modified the system used by Stern by electromagnetic driving of the rotating device. The prin-
ciple of their method is to direct a beam of gas molecules through radial slits in two discs fixed on 

Fig. 4.8 Scheme of Stern’s experimental arrangement
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a common shaft. These discs are rotated in a highly evacuated 
enclosure. The molecules which pass through both the slits are 
allowed to fall on the vane of a sensitive radiometer. The varia-
tion of the radiometer deflection with the speed of the disc was 
in agreement with Maxwell’s law.

Eldridge used induction motor for the rotation of coaxial discs 
with radial slits on their edge. He worked with cadmium vapour. 
The cadmium vapour was allowed to pass through the slits of the 
disc which rotated at high speed and acted as a velocity filter for the 
molecules. From the speed of rotation of the disc and the density of 
deposit of the cadmium vapour, a velocity spectrum was obtained 
with a micro photometer which was found to agree with that of 
Maxwell within experimental error.

Zartman made an attempt to have a better resolution of the veloc-
ity spectrum. The principle of his experiment is as shown in Fig. 4.9.

A is an enclosure in which the experimental gas (bismuth 
vapour) was kept at a constant temperature. A has a small opening at S1. Parallel to S1, there is another 
slit S2 which helps to get a sharply defined beam of bismuth vapour.

The cylinder D, which can be rotated, is placed in the path of the beam. It has a small opening S3 
at the periphery. The inner wall of the cylinder is provided with glass plate where the beam would be 
deposited. If the cylinder is at rest, the beam will form a deposit at P at a point diametrically opposite 
to S3. If the cylinder is rotated in a clockwise direction, the molecules at the slit S3 will require a finite 
time to traverse the diameter and will form a deposit on the plate gg′ at a distance depending upon the 
velocity of the molecules and the speed of rotation. The molecules in the beam are moving with different 
velocities and, hence, a velocity spectrum will be formed at the glass plate gg′. The measurement of the 
density of deposit at different points and the speed of rotation of the cylinder agrees well with Maxwell’s 
law of distribution of velocities.

Lammert in 1929 developed a method of sorting out groups of atoms moving with a particular velocity.
The scheme of his experiment is shown in Fig. 4.10. O is a source of mercury vapour having a small 

opening at its end from which the mercury atoms emerge.
A slit S on a plate and two discs W1 and W2 are fixed to a shaft so that they can be rotated at the 

desired speed with the shaft as axis. The discs W1 and W2 are provided with slits. The slit at W1 is in line 
with S but the slit at W2 is set at an angle of 2 degrees behind that in W1. The molecules contained in a 
straight beam by the opening at O and slits S and at W1 impinge on the wheel W2 in each revolution of 
the system. Only those molecules whose velocity is such that they travel the distance W1W2 in the same 

Fig. 4.9 Zartman’s apparatus
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Fig. 4.10 Lammert’s apparatus
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time in which the disc system rotates through 2 degrees will pass through the slit in W2 and are allowed 
to form a deposit on a screen placed near W2. Other molecules will not be able to pass through the slit 
in W2. By rotating the system at different speeds it is possible to sort out the molecules moving at the 
desired velocity. It has been found that Maxwell’s law was satisfied to a considerable degree of accuracy.

4.4.8 Mixed Gases and Equipartition of Energy
Let us consider a mixture of two gases denoted by the subscript 1 and 2. Let m1 and m2 be the molecular 
masses of these gases. We have to consider here three types of collisions between 

1. molecules of gas 1,
2. molecules of gas 2, 
3. molecules of gases 1 and 2.
Types of collisions (1) and (2) have already been considered.
We consider here collision of type (3) (Fig. 4.11).
Since by collision the tangential components of momenta remain unchanged, we have 

  
m c mC
m c m C

t t

t t

1 1 1 1

2 2 2 2

=

=






 (4.75)

Since the normal components of momenta exchange their values,

  
mC m c
m C m c

n n

n n

1 1 2 2

2 2 1 1

=

=  (4.76)

Writing in vectorial notation,

  
m m m m m
m m m

t n t n

t n

1 1 1 1 1 1 1 1 2 2

2 2 2 2 2

c c c C C
c c c

= + = +

= + 22 2 2 1 1= +





m mt nC C  (4.77)

 Also, m m m
m m m

t n

t n

1 1 1 1 1 1

2 2 2 2 2 2

C C C
C C C

= +

= +







 (4.78)

Fig. 4.11 Illustration of collision of mixed gases
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Substituting first of Eq. 4.78 in the first of Eq. 4.77

  m m m mn n1 1 1 1 1 1 2 2c C C C= − +

  c C C C1 1
1

1 1 2 2
1

= − −
m

m mn n( )

 Similarly, 

c C C C

c C C C

1 1
1

1 1 2 2

2 2
2

1 1 2 2

1

1

= − −

= − −



m
m m

m
m m

n

n

( )

( )







 (4.79)

The components of the velocities before the collision are still linear functions of the velocity com-
ponents after collision.

Then, dU1dV1dW1du1dv1dw1 = dU2dV2dW2du2dv2dw2 forming the H function, we find that ∂H/∂t = 0 
when each of the following expression vanish separately 

  

F F f f
F

11 12 11 12 0− = for the collision of type 1

221 22 21 22 0F f f
F

− = for the collision of type 2

331 32 31 32 0F f f− =



for the collision of type 3







 (4.80)

In the notation used in Eq. 4.80, the first subscript (such as 1 in F12 ) represents the type of collision (1) 
and the second subscript (such as 2 in F12 ) represents the class of molecules (2) taking part in the collision. 
The letter f represents the distribution function before collision and the letter F represents the distribution 
function after collision. Thus, f32 represents the distribution function of the molecules of class 2 before col-
lision of type 3 and F32 represents the distribution function of molecules of class 2 after collision of type 3.
Referring to the last equation of 4.80, the distribution functions are

  

f e u v w
31

31

3
2

3131 31
2

31
2

31
2

=








 =











− + +β
π

β
π

β ( )

33
2

32
32

3
2

3

31
2

31
2

32 32
2

32
2

32
2

e

f e

c

u v w

−

− + +=








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β
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π
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3
2

32
32

3
2

32
2

32
2

32 32
2

π

β
π

β
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









=










−

− +

e

F e

c

U( VV e

F

32
2

32
2

32
2

32
232

3
2

31
31

+ −=









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








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π

β
π
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33
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3
2

31 31
2

31
2

31
2

31
2

31
2

e eU V− + + −=

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






β ββ
π

( )W C

 (4.81)

Substituting in the last equation of 4.80, we get

   e ec c C C− + − +=( ) ( )b b b b31
2

31
2

32
2

32
2

31
2

31
2

32
2

32
2

 so that     β β β β31
2

31
2

32
2

32
2

31
2

31
2

32
2

32
2c c C C+ = +
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 or  β β31
2

31
2

31
2

32
2

32
2

32
2( ) ( )c C C c− = −  (4.82)

By energy equation, m c m c m C mC2 32
2

1 31
2

2 32
2

1 31
2+ = +

 or m c C m C c1 31
2

31
2

2 32
2

32
2( ) ( )− = −  (4.83)

From Eqs 4.82 and 4.83

       
b b32

2

2

31
2

1m m
=  (4.84)

By Eq. 4.19, we have

       

c

c

31
2

31
2

32
2

32
2

3
2

3
2

=

=











β

β

 (4.85)

Substituting in Eq. 4.84, we get

m c m c1 1
2

2 2
2=

This proves the equipartition theorem. It means that in the equilibrium state, the mean translational  
kinetic energy of all molecules is the same irrespective of their difference of mass.

4.5 enerGy of Gas Molecules

We have proved that the temperature of a mass of gas is determined by the mean kinetic energy of the 
molecules. We now proceed to enquire about the nature of energy possessed by a molecule. In mechan-
ics, we are familiar with the following types of energies: 

1. The kinetic energy of translational motion: This is equal to 1/2 mc2

 
where m is the mass of the 

molecule moving with velocity c. 
2. The kinetic energy of rotation: This is equal to 1/2 Iw2 where I is the moment of inertia of the 

molecule rotating with angular velocity w. 
3. The vibrational energy: This is partly kinetic and partly potential. The average value of vibra-

tional kinetic energy is equal to the average value of vibrational potential energy.
4. The energy of a body placed in a conservative field of force: This energy is also partly kinetic 

and partly potential. The mass of a molecule being extremely small, the gravitational force on a 
molecule is negligible. Since the molecules react upon one another only at the moment of col-
lision, the field of interaction of the molecules throughout their motion need not be taken into 
consideration in calculating the energy of the molecules. So, the molecules can only possess 
energy of the types 1, 2 and 3.

4.5.1 Degrees of Freedom of a Molecule
These are the number of independent parameters (or coordinates) which completely specify the configura-
tion and motion of a molecule at an instant. The position of a complex material system is determined by the 
location of its centre of mass. In a space of three dimensions, this is determined by the cartesian coordinates 
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(x, y, z) or spherical polar coordinates (r, q, f ). To know the complete configuration of the system, we must 
also know its orientations in space. This is determined by the three Eulerian angles q, f and y. Thus, the 
configuration of a system is determined by six independent coordinates. This gives the body six degrees of 
freedom in respect of its configuration. Since the energy of a molecule is not a function of the coordinates 
defining its configuration, these six degrees of freedom contribute nothing to the energy of the molecule. 

Corresponding to each of these six coordinates of configuration, we have three velocity coordinates 
�� � � � �xyzθφψ which are necessarily independent of each other. The coordinates �� �xyz determine the translational 
energy of the centre of mass of the molecule giving three translational degrees of freedom, while � �θφ and ψ.  
determine rotational energy of the complex system giving three rotational degrees of freedom. The mol-
ecules in general are not rigid masses. The constituent atoms of a molecule can move relatively to each 
other subject to strong internal atomic forces. They can, therefore, vibrate about their mean positions. Each 
component vibration of an atom gives a corresponding vibrational degree of freedom.

An independent point mass can have only three degrees of translatory motion. The atoms of a com-
plex molecule may be regarded as a point mass. If the number of constituent atoms of a molecule be 
n then as a general rule, the maximum number of degrees of freedom of the molecule is 3n. Of these 
degrees of freedom three are due to component translatory motion of its centre of mass, three are due to 
rotational motion about the centre of mass, and the rest (3n 2 6) are the vibrational degrees of motion.

In whatever way we interpret these degrees of freedom, their total number would always be 3n where n 
is the total number of constituent atoms in the molecule. We shall illustrate this by the following examples: 

1. As already explained, a monatomic molecule regarded as a point mass can have only three 
translatory degrees of freedom.

2. A diatomic molecule: This is a dumbbell-shaped body as 
shown in Fig. 4.12. Its centre of mass has three translatory 
degrees of freedom in the directions of the coordinate axis 
CX, CY and CZ.
 It can also rotate about these three axes. But the rotation 
about CX does not contribute anything to the energy of the 
molecule because the moment of inertia of the molecule 
about this axis is zero. It has only two rotational degrees 
of freedom about the axes CY and CZ. In addition, it can 
vibrate along the line AB joining the centre. This gives the 
diatomic molecule altogether six degrees of freedom. 

3. A triatomic molecule: This consists of three point masses 
placed at the three corners of a triangle. Let C be the centre 
of mass of the molecule (Fig. 4.13).
 This centre of mass has three degrees of freedom of transla-
tory motion. It can have three rotational degrees of freedom 
about three perpendicular axes passing through its centre of 
gravity C. The atoms can also vibrate in their plane in the direc-
tion of their common centre of mass. These give the molecule 
altogether nine degrees of freedom.

4. A spherical molecule is not a point mass. If the mass of the 
molecule is uniformly distributed over the surface of the 
sphere, its centre of mass will be its centre. This has three 
translatory degrees of freedom. If the molecule rotates about 

Fig. 4.12 Diatomic molecule

Z

Y

X

BA
C

Fig. 4.13 Triatomic molecule

C
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its polar axis, it will have one degree of rotational motion. So, the maximum number of degrees of 
freedom of a spherical molecule is probably four.
 Frozen degrees of freedom: Under certain physical conditions such as at low temperatures, 
some of the degrees of freedom of a molecule become frozen or inoperative in the same way that 
a stiff joint of a human body loses its freedom of motion. In surgery, this defect of the human 
body is called ankylosis. Poincare used the term ankylosed to denote frozen degrees of freedom.

4.5.2 Equipartition of Energy Amongst Different Degrees of Freedom
In 1859, Maxwell showed that in a dynamical system in thermal equilibrium energy is equally distrib-
uted among the degrees of freedom and for each degree of freedom the energy is 1/2kT. This is called 
the principle of equipartition of energy. It holds not only for the translational energy but also, as was 
shown by Boltzmann, for the energy of rotation as well as for the energy of vibration. In the case of 
translation energy, it can be proved as follows: 

Let u, v and w be the velocity component along the axes of x, y, z respectively of a molecule of which there 
are n all together. The probability that a molecule possesses a velocity component lying between u and u + du is 

  α α
β
π π

ββe du m
kT

m
kT

u− = = =
2

2 2
where and

The mean energy of a molecule along the x axis is given by 

  
1 1

2
2 2

n
mu dn dn n e duu u

u

−∞

∞
−∫ =where α β

  = −

−∞

+∞

∫
1
2

2 2

m u e duuα β

  = =
1
2 2

1
2 2

2 2
23

2

m m m
kT

kT
m

kT
m

α

β

π
π

π

  =
1
2
kT

This is same if we consider y and z component of velocities. Therefore, the mean energy of transla-
tion per degree of freedom is 1/2 kT

4.5.3 Molecular Energy and Specific Heat
Each molecule of a monatomic gas possesses only three degrees of freedom. The energy of a gm-molecule 
of a gas is, therefore, E = 3/2 NkT where N is the Avogadro number. The molar specific heat of the 
monatomic gas at constant volume is 

  C dE
dT

Nk Rv = = =
3
2

3
2For perfect gases, we have 

  C C Rp v− =

  C Rp =
5
2
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Hence, the ratio of specific heats 

  γ = = = =
C
C

R
R

p

v

5 2
3 2

5
3

1 66/
/

.

For a diatomic gas whose vibrational degree of freedom is frozen or which is perfectly rigid, there 
can only be five degrees of freedom of which three are translational and two rotational. So, the total 
energy of a diatomic molecule is 

  E kT=
5
2

  c dE
dT

kv = =
5
2

For a gm-molecule of the diatomic gas,

  C Nk Rv = =
5
2

5
2

  C R R Rp = + =
5
2

7
2

    γ = = = =
C
C

R
R

p

v

7 2
5 2

7
5

1 4/
/

.

In the general case, let the molecule of a gas have n degree of freedom so that the total energy of the 
molecule is 

  E nkT=
1
2

  c dE
dT

nkv = =
1
2

  C Nnk Rnv = =
1
2

1
2

  C C R R Rn R n
p v= + = + = +









2

1
2

  γ = = +
C
C n
p

v

1 2

For monatomic gases, n = 3 so that g per mole = 1.66. For monatomic gases, n = 5 and g per mole 
is equal to 1.4. Thus knowing the value of g from experiment, the number of degrees of freedom and 
therewith the structure of a molecule can be determined.

4.5.4 Dulong and Petit’s Law of Specific Heat of a Monatomic Solid
The law states that the specific heat of a monatomic solid at ordinary temperature is nearly 6 calories. 
The kinetic theory applied to solid offers ready explanation of Dulong and Petit’s law.
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The molecules of a solid can have no translatory or rotational motion. It can only oscillate about its 
mean position. Such a molecule can have only three degrees of freedom of vibrational motion. Again, 
the average value of vibrational energy is equally divided between kinetic and potential forms. So  
vibrational energy of a solid monatomic molecule has only six degrees of freedom. The total energy of 
the solid per mole is 

  E NkT NkT RT= × = =6 1
2

3 3

  C dE
dT

R= = = × = ≈3 3 1 99 5 97 6. . calories.

4.5.5 Kinetic Theory and Variation of Specific Heat
The kinetic theory of specific heat as described earlier is unable to explain the variation of specific heat 
with temperature, particularly its marked decrease at extremely low temperatures. Further the decrease 
is gradual. So, it cannot be explained by the disappearance of any degree of freedom, because that 
would involve discontinuous changes by multiples of R/2. We cannot also assume fractional degrees of 
freedom. In fact in the matter of explanation of variation of specific heat with temperature, the classical 
or dynamical theory fails completely. The quantum theory of specific heat developed by Max Planck 
explains facts more satisfactorily. 

4.6 finite VoluMe of a Molecule, Mean free path

In connection with Boltzmann’s explanation of Maxwell’s law of distribution of velocities, it was tac-
itly assumed that the molecules are not point masses. They possess finite, though small, volumes. As 
a result, the molecules cannot move indefinitely in a rectilinear path in an uninterrupted manner. They 
suffer collisions with other molecules lying in their path; and 
at each collision, their velocity and direction of motion are 
changed. If we observe a molecule for some time, its path 
would be found to change discontinuously in a zigzag fash-
ion as shown in Fig. 4.14; otherwise, if the molecules were  
allowed to move indefinitely in a rectilinear path, a mass of 
gas contained in an open vessel would disappear in no time. 
On the contrary, the top of a cloud or smoke is found to hold 
together for a long time.

4.6.1 Definition of Mean Free Path
This is equal to the total length of paths described by a molecule between successive collisions over a 
long interval of time divided by the number of collisions during that interval. In the case of molecules 
regarded as spherical bodies, the mean free path is the average distance between the molecular centres 
between two successive collisions.

4.6.2 Calculation of Mean Free Path
The simplest method of calculation of mean free path is to suppose all molecules in the gaseous mass 
except one to be at rest relatively to each other and the single molecule to be projected into the mass 

Fig. 4.14 Illustration of molecular 
path
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with the mean velocity c. If we describe round the moving molecule a sphere of radius equal to the 
diameter s of the molecule (the so-called sphere of influence), then in 1 second the sphere of influence 
will describe a cylinder of length c and of base area equal to ps2 and then the number of collisions w per 
second is equal to the number of molecular centres lying inside this cylinder. If u is the number density 
of molecules, then the number of collisions per second is ps 2cu. Then, the mean free path is 

  λ
ω πσ υ

= =
c 1

2
 (4.86)

This gives only an approximate value of the mean free path because of the assumption that all mol-
ecules of the gaseous mass except one are at rest. 

4.6.3  Calculation of Mean Free Path on the Assumption of Uniform  
Molecular Velocity

Following Clausius, we shall here suppose that all the molecules 
are moving randomly in all possible directions with uniform aver-
age velocity c. For the purpose of calculation, we draw the velocity 
sphere. We take a fixed point o and from this point we draw ra-
dii vectors of the same length c representing the directions of mo-
tions of the different molecules contained in a unit volume of the 
gas. The sphere on which the end points of the radii vectors lie is 
the so-called velocity sphere. If u be the number density, then the 
number of end points lying on unit area of the velocity sphere is 
u/4pc2. The number of molecules out of a unit volume whose 
directions of motion lie between angles q and q + dq with a fixed 
direction (Fig. 4.15) is equal to the number of end points lying with-
in the belt BE on the velocity sphere. 

The area of this space 2pc2 sinq dq. The number of end points 
falling on belt BE is 

  d c d
c

dυ
π θ θυ

π
υ

θ θ= =
2

4 2

2

2

sin sin

To avoid repetition, we shall call the molecules whose velocity vectors lie between q and q + dq 
molecules of class A. The colliding molecule is also moving with velocity c.

To find the velocity of the colliding molecule relative to the molecules of class A, we add to the 
velocity of the colliding molecule and that of the molecule of class A a velocity equal and opposite to
that of the class A molecules. The molecules of class A are then brought to rest so that the relative 
velocity of the colliding molecule moving originally in the direction of the X axis (say) is given by 

  c c c cr
2 2 2 22= + − cosθ

  = −2 12c ( cos )θ

  = 4
2

2 2c sin θ

  c cr = 2
2

sin θ

Fig. 4.15 Sketch for molecular 
motion
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The volume of the cylinder described by the sphere of influence of the colliding molecule in 1 second 
is 2pcs2 sin θ/2. Number of molecular centres of class A lying inside this cylinder or the number of col-
lisions with molecules of class A per second is 

  d c dω π σ
θ

υ= 2
2

2 sin

  = ×2
2

1
2

2π σ
θ

υ θ θc dsin sin

  = π υσ
θ

θ θc d2

2
sin sin

Hence, the number of collisions with all classes of molecules per second 

  ω π υσ θ
θ

θ
π

= ∫c d2

0
2

sin sin

  = ∫2
2 2

2 2

0

π υσ
θ θ

θ
π

c dsin cos

  =








∫4

2 2
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π

c
sin

 or ω π υσ=
4
3

2c

Hence, the mean free path is 

  λ
ω πσ υ πυσ

= = =
c 1

4
3

0 75
2

2

.
 (4.87)

In deriving this equation, we have supposed that the colliding molecule is not deviated from its 
path by collision. No apprehension need be felt on this account; however, the normal components of 
the velocities of the colliding molecules after collision are interchanged with their normal components 
before collision. So when one molecule is knocked out of a given course by collision, another molecule 
is thrown into the same course after collision. The effect is the same as if it had continued to move  
undeviated in its original path.

Equation 4.87 can also be deduced more simply as follows:
The average value of the relative velocity is 

  c c d c d c
r r= = =∫ ∫

1
2

4
3

0
υ

υ θ
θ

θ
π

sin sin
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The volume of the cylinder described by the sphere of influence of a molecule moving within veloc-
ity cr is 4/3 cps2. The number of molecular centres lying in this volume is 4/3 pcus2. This is equal to the 
number of collisions per second. Hence, the mean free path is 

  λ
π υσ πυσ

= =
c

c4
3

3
42

2

4.6.4 Maxwell’s Mean Free Path
In the Clausius’ deduction of mean free path, as mentioned earlier, all molecules were supposed to 
be moving in all directions with the same average velocity c. Actually, however, the distribution of 
velocities is governed by Maxwell–Boltzmann’s law. If c1 and c2 are the velocities of the two molecules 
moving relatively to each other at angle q, then the relative velocity between them is given by 

  c c c c cr
2

1
2

2
2

1 22= + − cosθ

The mean value of relative velocity is 

  c c c c c dr = + −∫
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By Eq. 4.18, the probability of velocity c1 is 

  p c e dcc

c

1

1
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24
3 1

2
1=

−

δ π
δ

and the probability of velocity c2 is

  p c e dcc
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2

24
3 2

2
2=

−

δ π
δ

where d represents the most probable velocity. 
The average relative velocity of the molecule with velocity c1 relative to all other molecules moving 

with velocity c2 is

  c c c e dcr
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In this equation, c2 is the variable quantity and c1 is kept constant. Since the first integral extends 
from 0 to c1, c2 is less than c1. Since the second integral extends from c1 to ∞, c2 is greater than 
c1. Accordingly, corresponding values of cr for c1 > c2 and c1 < c2 have been used in the first and the 
second integral. So to obtain the average relative velocity for all values of c1, c2 is to be multiplied by 
the probability of the velocity c1 and integrated from 0 to ∞. The integration gives for the average rela-
tive velocity 

    c c c e dcr

c

=
∞

−

∫ 1
0

3 1
2

1
4 1

2

2

δ π
δ

  = =
2 2 2δ

π
c

Thus, the average value of the relative velocity is 2 times the average velocity of molecules.
We can now suppose that all molecules except one (the colliding molecule) are at rest and the col-

liding molecule is moving amongst them with average velocity c 2, then the volume swept out by its 
sphere of influence in 1 second is πσ2 2c . If u be number of molecules per cubic centimetre, then the 
number of collisions per second is 

  ω πυ σ= 2 2c

so that the mean free path is 

  λ
πυ σ πυσ πυσ

= = =
c

c2
1

2
0 707

2 2 2

.
 (4.88)
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4.6.5 Tait’s Mean Free Path
In Maxwell’s deduction described earlier, the mean free path has been obtained by dividing the aver-
age velocity by the mean number of collisions averaged over all molecules. Tait, on the other hand, 
follows a single molecule moving with velocity c which may have any value from 0 to ∞ and deter-
mines the number of collisions suffered by it in 1 second. From this, he determines the average mean 
free path appropriate to a single speed c. He then averages over all possible speed of molecules. The 
result obtained is 

  λ
πυσT =
0 677

2

.  (4.89)

4.6.6 Jean’s Mean Free Path 
Taking into account the persistence of velocity after molecular impact, Jeans obtained the following relation

  λ
πσ υ

=
1
2

1 319
2

.
 (4.90)

Considering the effect of intermolecular forces during collision, he obtained the Sutherland’s formula

  λ
πυσ

=
+









1 402

2 12

.
A
T

 (4.91)

where A is a constant depending on the nature of the gas and T is the absolute temperature.

4.6.7 Mean Free Path in a Mixture of Gases
Let the mixture consist of two types of molecules A and B of dimensions sA and sB and of masses mA and 
mB. It is easily seen that during an encounter of a molecule of class A with that of class B, the centres of 
the two molecules cannot approach closer than (sA + sB)/2. Further, it has been proved that 

  m c m cA A B B
2 2=

so the average velocities of the molecules A and B would be different. It can be proved by rigorous 
mathematical treatment that the average relative velocity of molecule A with respect to B is 

  c c cAB A B= +2 2

To find the mean free path of the molecule A in the mixture, we have to find (α) the number of collisions 
of a molecule of class A with other molecules of class A and (b) its number of collisions with molecules of 
class B in 1 second. Let uA and uB be the number densities of molecules of classes A and B, respectively.

Using Maxwell’s relation, c cr = 2

The number of collision of class (a) is 

  πσ υA A Ac2 2
and the number of collisions of class (b) is 

  πσ υA A B Bc c2 2 2+ ⋅uB
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Hence, the total number of collisions in 1 second is 

  ω πυ σ πυ σαβ = + +2 2 2 2 2
A A A B A A Bc c c

Therefore, the mean free path of the A molecules 

  λ
πυ σ πυ σ

A

A A B A A B Ac c c
=

+ +

1

2 2 2 2 2 /
 (4.92)

Similarly, the mean free path of the B molecules is 

  λ
πυ σ πυ σ

B

B B A B A B Bc c c
=

+ +

1

2 2 2 2 2 /
 (4.93)

4.6.8 Correction for Mean Free Path on Account of Finite Size of Molecules
In deducing Eq. 4.87, we have supposed that all molecules are moving with the same average  
velocity c and that number of collisions per second is equal to the number of molecular centres lying 
in the cylinder swept out by the sphere of influence of the colliding molecule in 1 second. We have, 
thus, considered the size of the colliding molecule but have neglected the size of the molecules with 
which it collides. We now proceed to make correction for the defect. In the following analysis, we 
shall again suppose that the molecules are moving with the same average velocity randomly in all 
possible directions. Let the diameters of the molecules be s.

Let there be N molecules enclosed in a space of volume v. Let the area of the containing vessel be S.
It will be seen that in the process of collision between two molecules, the centre of the colliding mole-
cules cannot approach closer than the diameter of the 
molecule. In collision with the wall of the containing 
vessel, the centre of the colliding molecule remains 
at a distance of s/2 from the wall. 

Figure 4.16 represents the instantaneous picture 
of the molecular configuration of the mass of gas  
enclosed in the volume v. Round each molecule, 
we describe its sphere of influence of radius s. In-
side surface S of the containing vessel, we describe 
another surface S′ parallel to S at a distance s/2 
from it.

Then, the space available for the colliding molecule 
move freely is the space inside S′ excluding the sum to-
tal of the spaces occupied by the spheres of influence of 
the (N – 1) molecules. We shall call this available space 
the exclusion space. We shall represent the volume available to the colliding molecule by U.

The surface for this exclusion space would, of course, be a discontinuous surface bounded by the 
surface S′ and the bounding surfaces of sphere of influence of the enclosed molecule. We shall call this 
surface the exclusion surface. In the process of collision, the centre of the colliding molecules evidently 
lies on the exclusion surface. Since the molecules are moving at random relatively to each other, the 
exclusion surface is constantly changing its shape but the size of the exclusion space remains constant 
for all times. In so far as collision with other molecules is concerned, the colliding molecule may be 
replaced by a point mass placed at its centre. 

Fig. 4.16 Instantaneous picture of 
molecular configuration of a mass of gas
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4.6.9 The Collision Rate
Let ds be a small element of the exclusion surface and let the 
colliding molecule approach ds with velocity c in a direc-
tion making an angle q with the normal to ds (Fig. 4.17). Since 
the chance of collision depends on the relative motion be-
tween ds and the colliding molecule, we can suppose the 
colliding molecule to be fixed and ds approaching the mol-
ecule in the opposite direction with the same velocity. Then, 
the chance of a collision in time dt is that the molecule must 
lie with the cylindrical space swept out by ds in time dt. The 
volume of this space is evidently equal to cdtdscosq. Since all 
positions of the colliding molecule are equally likely, the chance of a collision with ds in time dt in 
the direction q is 

  p dsdt cdtds
Uθ

θ
=

cos
 (4.94)

To find the total number of impacts on ds in time dt by molecules moving in directions lying between 
q and q + dq, we describe a hemisphere round the centre of ds of unit radius. Since all directions of 
motions are equally probable, the number of collisions will be proportional to the area of the belt in-
tercepted between cones of semi-vertical angles q and q + dq round the normal to ds as polar axis. The 
area of this belt is 2 p sin q dq. But the solid angle subtended at a point is 4p. Hence, the chance that q 
lies between q and q + dq is 

  2
4

1
2

π θ θ
π

θ θ
sin sind d=

But for a collision with ds, q must lie between 0 and p/2. Hence, the chance of a collision with ds is 

  pdtds cdtds
U

d c
U
dtds= =∫2 40

2

cos sinθ θ θ

π

But ds is any portion of the exclusion surface. Integrating it over the whole surface,

  p dt csdt
Us =

4
As the probability of a collision does not depend on the particular instant chosen, we can replace dt 

by a finite time ∆t. Choosing ∆t so that the probability is a certainty and then putting ps∆t = 1, we get

  ∆ =t U
cs
4

If the time interval of a collision is neglected, then the number of collisions in unit time is 

  n
t

cs
U1

1
4

=
∆

=  (4.95)

Evaluation of s and u: The quantity s has been called the area of the exclusion surface. This is made 
of two parts: (1) the total surface area of the molecules with which the colliding one comes into contact. 
If N be the number of molecules in volume v, then this is equal to 4p ( N 2 1)s2; since N is a very large 

Fig. 4.17 Illustrating collision
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number, the area of the molecules is equal to 4pNs 2; (2) The area of the surface S ′ parallel to S at a 
distance s/2 from the latter. Since the difference between S and S ′ being very small in comparison with 
the first, it can be neglected. Thus, s can be taken to be equal to S + 4pNs 2.

The quantity U has been taken to be the volume of the exclusion surface. It is necessarily less than v.
Let this difference be b so that 
  U = v 2 b (4.96)

Substituting the values of s and U in Eq. 4.95

  n c N
v b1

2

4
4

=
∑ +

−
π σ

 (4.97)

The mean free path is 

  λ
π σ

= =
−

∑ +
c
n

v b
N1

2

4
4

( )
 (4.98)

Neglecting S in comparison with 4pNs 2 and also neglecting b in comparison with v, we get for the 
mean free path the same value as obtained earlier 

  λ
π σ πυσ

= =
v
N 2 2

1
 (4.99)

where u is the number density of the molecules.

4.6.10 Correction for Relative Velocity
Equation 4.98 requires further correction for relative motion between the molecules. In computing the 
rate of collision as described earlier, the rate of approach of the colliding molecules to the surface ds 
was taken to be the average velocity c. Since the molecules are supposed to be moving in all directions 
with the assumed average velocity c, the velocity of approach should be the relative velocity. If two 
molecules are moving with the same velocity c relatively to each other at an angle q, then by vector ad-
dition the relative velocity is

  c cr = 2
2

sin θ

To find the average velocity of other molecules with respect to the colliding molecule, we draw the  
velocity sphere with its polar axis in the direction of motion of the colliding molecule. Then, the number 
of velocity points on a belt intercepted between cones of semi-vertical angles q and q + dq is1/2 sin qdq. 
The average value of relative velocity is obtained by integration 

  c c d c
r = × =∫

1
2

2
2

4
3

0

π

θ
θ

θsin sin  (4.100)

From Eq. 4.98

  n c
v b

c N
v b1

2

4
=

∑
−

+
−( )

π σ
 (4.101)

Chapter 04.indd   90 4/5/2011   8:09:26 PM



Kinetic Theory of Gases   91

Replacing c by 4/3c in the second term of Eq. 4.100, we get

  n c
v b

c N
v b1

2

4
4
3

=
∑
−

+
−

π σ

Since Σ is very small in comparison with pNs 2, we can write 

  n cN
v b1

24
3

=
−

π σ

 so that λ
π σ

= =
−c

n
v b

N1 24
3

 (4.102)

Neglecting b in Eq. 4.102, we get

  λ
πυσ

=
0 75

2

.

which is the same as Eq. 4.87.

4.6.11 Pressure-Volume Relation of Clausius
Following Clausius, we shall suppose that all molecules are moving with the same root mean square 
velocity c and that all directions of motion are equally probable. The probability of the number of colli-
sions per second which each molecule makes with the element ds of the exclusion surface in directions 
lying between q and q + dq with its normal is 

  
c
U

d ds
2

cos sinθ θ θ

Since ds is any part of this surface, the number of collisions with the whole surface is obtained by 
integration over the surface. This gives

  cs
U

d
2

cos sinθ θ θ

If N be the total number of molecules in the available volume U = v 2 b, then the number of colli-
sions per second with the surface s is 

  ω θ θ θθs
Ncs
v b

d=
−2( )

cos sin

Since the surfaces of collision are supposed to be perfectly small, the tangential component of veloc-
ity remains unaltered by impact so that the normal component is reversed in direction. At each impact, 
the momentum transferred is 2mc cosq. The impulse communicated to the surface per second is 

  F Nmsc d
v bθ

θ θ θ
=

−

2 2cos sin

Total impulse communicated per second from all directions is 

  F Nmsc
v b

d Nmsc
v b

d=
−

= −
−∫

2
2

0

2 2
2cos sin cos (cθ θ θ θ

π

oos )θ

π

0

2

∫  (4.103)

  =
−

1
3

2Nmsc
v b
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Pressure exerted on the wall is force per unit area. Hence, the pressure is 

  p Nmc
v b

=
−

2

3( )

 or p v b Nmc( )− =
1
3

2  (4.104)

This equation represents the volume correction by Clausius.

Evaluation of quantity b: The actual space b available to a molecule to move freely inside a mass 
of gas excludes (1) the thin layer inside the surface of the containing vessel of thickness equal to the 
radius of the molecule, and (2) the sum total of the volumes occupied by the spheres of influence of 
other molecules. The contribution, due to the first being negligible compared to the second, is left out of 
consideration. If s be the diameter of a molecule and if N be the total number of molecules in volume 
v, then the volume to be excluded is 

  ′ =b N4
3

3πσ  

Actually, however, the value of b should be only half of b′. This is because the integral in Eq. 4.103 
extends from 0 to p/2, that is, it covers only the hemisphere lying on one side of the element of surface of 
collision. Hence, the excluded space in the volume correction is 

  b N=
2
3

3πσ  (4.105)

The value b can be determined experimentally. Hence knowing N, the diameter s of a molecule can 
be calculated.

4.6.12 Number of Molecules Striking Unit Area of a Surface per Second 
We suppose that the molecules are moving randomly in all directions with root mean square velocity c. 
Let ds be an element of area of the collision surface. The chance that a molecule will strike the surface 
ds in a direction lying between q and q + dq with the normal to the surface has already been found to be 
equal to 1/2 sinqdq. To find the number of molecules striking the surface per second, we describe a cylin-
der of cross-sectional area dscosq and of length c with its axis inclined at an angle q with the normal to ds.
The molecules lying inside the cylinder ucdscosq where u is the number of molecules per cc. Hence, the 
number striking ds per second in the direction q is 

  N cds dθ υ θ θ θ= ×cos sin1
2

Total number of molecules striking the area ds in 1 second from all possible directions is 

  1
2 4

0

2

υ θ θ θ
υ

π

cds d c dssin cos∫ =

The number striking unit area per second 

  N c
1 4

=
υ  (4.106)
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4.6.13 The Probability of a Free Path
The mean free path has been defined to be an average path described by a molecule between two successive 
collisions in a large number of collisions. The actual path described between any two successive collisions may 
be greater or less than the average path. We have to determine the probability of a free path of given length.

To determine the law of distribution of free paths, we take a small volume of the gas containing 
q molecules. The molecules starting out from this volume move in different direction. As they pass 
through the gas, they collide with other molecules. We shall calculate the probability that a molecule of 
the group suffer no collision in traversing a distance x from the small element of volume.

Let the number of molecules which have not suffered any collision within a distance x be p. If w 
is the average number of collisions per second, then the probable number of collisions in 1 cm is w/c. 
The probable number of collisions in going a further distance dx is w (dx/c). This is equal to decrease in 
the number p, since p diminishes as x increases. We can, therefore, write

  dp
c
pdx= −

ω

 or  
dp
p c

dx= −
ω

Integrating, we get
 log loge ep

c
x A= − +

ω

 So that p Ae
x
c=

−
ω

The limiting condition is at x = 0, p = q, so that A = q

 Hence, p qe
x
c=

−
ω

 (4.107)

  dp q
c
e dx

x
c= −

−ω ω

 (4.108)

Here, dp means the number of molecules which have suffered collisions in traversing a small dis-
tance between x and x + dx. It depends on the number of molecules q traversing the distance x, ω

c
which 

is a constant called the scale factor and dx. The scale factor can be obtained in terms of the mean free 
path l. By definition of mean free path,

  λ

ω
ω

ω

ω= =
−

= −∫ ∫ ∫

−

∞

−

∞

xdp
q

q
c
e

q
xdx

c
e xdx

q

x
c

x c

0

0 0
( / )

Integrating by parts, we get

  λ
ω

ω ω

ω ω

= − −










 +













−

∞

−

∞
∫c

x c e c e dx
x
c

x
c

0 0

  = −






 =











=
−

∞

−

∞
∫

c e d x
c

c e cx
c

x
c

ω
ω

ω ω

ω ω0 0

Substituting in Eq. 4.107, we get

  p qe
x

=
−

λ  (4.109)

 and dp q e dx
x

=
−

λ
λ  (4.110)
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4.6.14 Experimental Determination of Mean Free Path
The mean free path can be determined indirectly from the viscosity measurements. It can also be evalu-
ated from the other measurements of molecular density and diameter. 

The first direct experimental determination of mean free path was due to H. Born in 1920.
The experimental arrangement he used is shown in Fig. 4.18. This consists of a quartz tube A having 

connection to a pump for evacuation to any desired pressure and to pressure measuring instruments such 
as McLeod gauge and Knudsen manometer.

Silver is heated at s electrically. c is a small hole through which evaporating silver stream out in the form 
of a narrow beam. P1, P2, P3 and P4 are brass discs with central hole separated by 1 cm from each other. These 
holes are provided with glass quadrant whose apex extends to the centre of the circular hole and the quad-
rants are arranged in such a manner that each would receive one-fourth of the beam; that is, they are rotated 
through 90o relative to each other. The discs are surrounded by freezing mixture which condenses the evapo-
rating silver atoms on to the quadrants. The relative amount of silver deposited on each quadrant is measured 
from photometric comparison of the density of deposit. If D and Do be the density of deposit on a quadrant 
and on the next lower quadrant, respectively, x be their distance apart and l be the mean free path, then 

  D D e
x

=
−

o
λ

But even at the lowest pressure, due to the geometrical spreading of the beam, the density changes 
on the different plates. To avoid the difficulty, a particular quadrant is chosen; if D10 be the density of 
deposit at this quadrant when the vessel is evacuated, the free path is equal to the length of the chamber; 
and if D1 be the density of deposit on the same quadrant when the gas is introduced producing free path 
l, x1 being the distance of the plate from c, then
  D D e

x

1 10

1

=
−

λ

Similarly for another quadrant, D D e
x

2 20

2

=
−

λ

 or  
x D

D
x D

D
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 or  
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Fig. 4.18 Born’s apparatus for determination of mean free path
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According to actual experiment, x2 2 x1 = 1, l = 1.7 cm for p = 5.8 × 1023 mm and l = 2.4 cm for 
p = 4.5 × 1023 mm. Hence, pl = constant as is predicted.

Later, Bielz repeated the experiment by improving the methods of introduction of glass quadrant and 
measurement of density of deposit. Similar results were obtained. 

4.7 the transport phenoMena

From the standpoint of kinetic theory, we have till now considered a mass of a gas to be in a steady 
state of homogeneity without any mass motion or motion as a whole. A moving molecule of the gas 
carries with it mass, momentum and kinetic energy from one region to another. In the steady state, an 
equal amount of these properties are carried in the opposite direction by another molecule so that on 
the average, the distribution of these properties is the same at every point in the volume of the gas. Any 
disturbance of the state of homogeneity due to variation of temperature, pressure and concentration, etc. 
is always accompanied by transport of the above-mentioned physical properties in a definite direction. 
We shall illustrate this by the following examples:

4.7.1 Experimental Definition of Viscosity of a Gas
Let us consider a mass of a gas contained between two parallel plates of infinite extent. Let one of the plates 
be fixed while the other be moving in its own plane in a given direction with uniform velocity. We can sup-
pose the moving plate to be a flat belt moving endlessly be-
tween parallel rollers as shown in Fig. 4.19. Let the plane 
of the belt be the plane of xy and let the normal to the plate 
point in the direction of z axis. As the belt moves, the layer 
of gas in immediate contact with it moves with the same 
velocity as the belt. This layer in its turn transmits a portion 
of its momentum to the next layer dragging it in the same 
direction. 

By Newton’s law of equality of action and reaction, 
the second layer exerts a retarding action on the first lay-
er. This property of a fluid by which it tends to stop the 
relative motion of its parts is called viscosity.

It follows that on every surface of contact between 
two contiguous layers in relative motion, there is a tangential stress. As each moving layer transmits 
only a portion of its momentum to the next layer, the momentum of the successive layers would gradu-
ally diminish in the direction of the z axis so as to be of zero value at the last layer in contact with the 
fixed plate.

Let ∆z be the thickness of two layers having a common surface of contact and moving relatively to each 
other with velocities u and u 1 ∆u. Then the average velocity gradient is ∆u/∆z in the neighbourhood
of the surface of contact at a distance z from the moving plate. Experiment shows that the tangential 
stress is proportional to the velocity gradient. If F be the tangential force over an area A, then the tan-
gential stress at a distance z is 

  
F
A

u
z
du
dzzα αlim∆ →

∆
∆0

 or F
A

du
dz

= −η  (4.111)

Fig. 4.19 Illustration of viscosity
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where h is the constant of proportionality called coefficient of viscosity or simply viscosity of the gas. 
The negative sign indicates that the velocity diminishes in the direction of z axis. In this chapter, we 
shall try to obtain physical significance of the constant h from the standpoint of the kinetic theory.

4.7.2 Experimental Definition of Heat Conductivity of a Gas
Let us consider a mass of gas contained in a vertical cylinder of non-
conducting walls. Let the gas be heated from above by hot water 
contained in a flat cylindrical vessel as shown in Fig. 4.20.

If the base of the gas cylinder is made of conducting  
material maintained at a low temperature, then there would be a gradient 
of temperature diminishing downwards in the direction z of the axis of 
the cylinder. As a result, heat energy would be conducted downwards 
through the gas. Experiment shows that the quantity Q of heat conduct-
ed through a layer of thickness ∆z in unit time through unit area of the 
layer is proportional to ∆q/∆z where ∆q is the difference of temperature 
of the two faces of the layer. This gives

     Q K
z

= −
∆
∆

θ

where K is the constant of proportionality known as thermal 
conductivity of the gas. The heat conducted through unit area of a 
layer at a depth z in unit time is

     Q K
Q

K d
dzz= −

∆
∆

= −→lim∆ 0
θ θ  (4.112)

4.7.3 Experimental Definition of Coefficient of Self-Diffusion
Diffusion is gradual passage of one gas into another by molecular movement whether there is partition 
or not. To fix our ideas, let us consider a mass of gas in a vertical cylinder. Let the concentration of 
the gas change from layer to layer diminishing downwards in the vertical z direction, the concentra-
tion remaining constant at every point in a horizontal plane. By molecular movement there would be 
transport of mass from the region of higher to lower concentration tending to equalize concentration 
at every point. By Fick’s experimental law, the number of molecules crossing unit area per second in 
the neighbourhood of a depth z is proportional to the average rate of change of concentration so that if 
D is the constant of proportionality, the number crossing unit area is 

  υ1 = −
∆
∆

D n
z

where n is the molecular concentration.
The number crossing unit area at a depth z in unit time is 

  υ1 0= −
∆
∆

= −→D n
z

D dn
dzzlim∆

 (4.113)

The constant of proportionality is called the coefficient of diffusion. The negative sign indicates that 
the concentration diminishes as the depth increases. Here, we shall try to interpret D from the viewpoint 
of the kinetic theory.

Fig. 4.20 Illustration of heat 
conductivity
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4.7.4 The Transport Theorem
It will be seen that the equations for viscous resistance, conduction and diffusion of a gas are of the same 
form. They can, therefore, be connected by a general equation. This is known as the transport theorem.

The deduction of this theorem is based on the following assumptions: 

1. The molecules of the gas are moving with the same average velocity c .
2. For the purpose of calculation, we require the number of molecules crossing unit area per sec-

ond in a definite direction. We take a cubical box inside the gas with sides parallel to the three 
rectangular axes ox, oy and oz.
Since there is no preferred direction of motion of molecules, we shall, following Joule’s classification, 
assuming that at any instant one-sixth of the total number of molecules inside the box are moving 
perpendicularly to each side of the box. If u is the number of molecules in unit volume, the number u1 
striking the surface ds of the box (which is parallel to the xy plane) in unit time is equal to the number 
of molecules contained in a cylinder of length c and of cross sectional area ds, that is

  υ
υ

1 6
= c ds (4.114)

3. Molecules coming from a particular plane  
acquire the physical properties appropriate to 
that plane which can only be changed abrupt-
ly by collision with other molecules.

4. We shall suppose that the molecules which 
are crossing the plane C from above are com-
ing from the plane A which is at a distance of 
mean free path l from C where the molecules 
are supposed to have suffered their last col-
lision. Similarly, molecules which cross the 
plane ds from below are coming from the 
plane B at distance l from C (Fig. 4.21).

Let the magnitude of the physical property (vis-
cosity, conductivity, diffusivity) of a molecule in the 
plane C be represented by G. Since the property is 
supposed to change uniformly in the direction of the 
z axis, its magnitude in the plane A is (G + l dG/dz). 
Its magnitude in the plane B is (G - l (dG/dz)). 
Hence, the net change in magnitude of the property 
G in the plane C per second is 

  ∆ = + − +






G cds G dG

dz
G dG

dz
1
6

υ λ λ

 or ∆ = −G c dG
dz
ds1

3
υ λ  (4.115)

The minus sign indicates that G diminishes as z increases. Equation 4.115 is known as the transport 
theorem.

Fig. 4.21 Illustration of transport theorem
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4.7.5 Evaluation of Viscosity Coefficient
Equation 4.115 can be used to evaluate the coefficient of viscosity of a gas. As already explained, the viscos-
ity of a gas is due to relative motion of different layers moving in a definite direction. Hence, the velocity and 
the momentum changes uniformly in the direction of the z axis diminishing downwards. It is evident that the 
momentum crossing the plane C from above (Fig. 4.21) is different from that carried from below in the same 
time. It is the net change of momentum in the plane C which accounts for the viscous resistance between lay-
ers separated by the surface C. If m is the mass of a molecule moving with velocity u, then the momentum is
  G = mu

Substituting the value of G in Eq. 4.115, we get 

  ∆ = − =G cds m du
dz

F1
3

υ λ (the viscous force)

 By Eq. 4.111, F du
dz
ds= −η

 So that  η υ λ ρ λ= =
1
3

1
3

cm c  (4.116)

Substituting the value of l from Eq. 4.87,

  η
πσ

=
mc

4 2
 (4.117)

4.7.6 Evaluation of Heat Conductivity of a Gas
In this case, the temperature of the gas changes from layer to layer downwards in the direction of the  
z axis. Accordingly, heat is conducted through the gas in the downward direction. In this case,
  G mc Tv=
where m is the mass of the molecule, cn is the specific heat at constant volume and T the absolute tem-
perature of the layer C. Substituting the value of G in Eq. 4.115,

      ∆ = − = ∆G c dsmc dT
dz

Qv
1
3

υ λ

 By Eq. 4.112, ∆ = −Q K dT
dz
ds

 so that K m c c c cv v= =
1
3

1
3

υ λ ρ λ  (4.118)

Using Eq. 4.116, the coefficient of heat conduction becomes 
  K cv= η  (4.119)

4.7.7 Evaluation of Coefficient of Self-Diffusion
In this case, the property that is being transported is the number density. Let u be the number density in 
the neighbourhood of the plane. Then, the number density at A is (u + du/dz l) and that in the plane B is 
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(u - (du/dz)l). Using Joule’s classification, the number crossing ds from above per second is
c d dz ds6 ( ( / ) )υ υ λ+  and that crossing ds per second from below is c d dz ds6 ( ( / ) )υ υ λ− . Hence, the net 

number of molecules crossing ds per second is

  ∆ = − = ∆G c d
dz
ds1

3
λ

υ
η

 By Fick’s law, ∆ = −η
υD d
dz
ds

 so that D c=
1
3

λ  (4.120)

Using Eq. 4.116, the coefficient of self-diffusion becomes

  D =
η
ρ

 (4.121)

4.7.8 Maxwell’s Method of Evaluation of h
The method of calculation of the coefficient of velocity of a gas suffers from the following defects: 

1. It assumes that all molecules are moving with the same velocity, which is its root mean square 
value. It takes no account of the Maxwell–Bolzmann law of distribution of velocities.

2. It assumes that one-sixth of the total number of molecules closed in a cubical box are mov-
ing perpendicularly to each side of the box. Actually, the molecules are moving in all possible 
directions. 

3. The calculation is based on the assumption of mean free path for all molecules. It takes no  
account of the law of distribution of free paths. 

4. The molecules have velocities appropriate to the layer in which it has suffered its last collision. 
It takes no account of persistence of velocities.

5. The question of intermolecular force has been totally neglected. 

In the following analysis given by Maxwell, the defects due to causes mentioned above have been 
considered. Consider a mass of gas in which velocity gradient has been set up between different layers 
in the direction of the Z-axis, the layers parallel to the XY plane moving in the direction of X axis as 
shown in Fig. 4.22.

Let the velocity of the molecules corresponding to the plane at z = 0 (which we shall call the zero plane) 
be u0. Then, the velocity at the plane z is u u du dz z= +0 ( / )  where du/dz is the velocity gradient, the velocity 
of the layers increasing in the positive direction of the Z axis. Consider a small element of volume dv of the 
gas at a height Z = r cosq from the zero plane. If duc be the number of molecules per cc of the gas having 
velocity between c and c + dc, then the number enclosed in dv is ducdv. Let a molecule on an average suf-
fer W collisions per second where w = c/l, where l is the mean free path. In time dt, there are duc dv wdt 
new paths starting out of volume dv along which the molecules come out. Since all directions are equally
probable, the number moving in the direction of the small area dxdy on the zero plane is the number in 
the direction of the solid angle subtended by the area dxdy at dv. The solid angle is equal to dxdycosq/r2

where r is the distance of dv from the origin and q is the angle between r and z axis. The number of 
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molecules moving in the direction of unit solid angle is ducdvwdt/4p. Hence, the number moving in the 
direction of dxdy is 

  ′ =N d dvdtw dxdy
rdtdv cθ υ

θ
π

cos
4 2  (4.122)

Out of these N′qdtdv molecules, the number traversing the length r without collision is by Eq. 4.109.

  N
d dvdtwdxdy

r
edtdv

c
r

θ
λ

υ θ

π
=

−cos
4 2

 (4.123)

We assume that a molecule, on an average, has the velocity appropriate to the same of its last colli-
sion. Then, the x component of the momentum of a molecule coming from dv is 

  m u r du
dz0 +











cosθ

The momentum transferred through dxdy in time dt is 

  − × +










N m u r du
dzdtdvθ θ0 cos

The negative sign means that the momentum is being transferred from higher to lower value of z. To 
find the total momentum transferred in this direction, we have to integrate for all values of dv; all values 
of c from 0 to ∞, and all values of r from 0 to ∞. For this purpose, we express dv in terms of spherical 
polar coordinates so that dv r d d dr= 2 sinθ θ φ . We then integrate f from 0 to 2p and q from 0 to p/2. So, 

Fig. 4.22 Maxwell’s analysis of evaluation of viscosity
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the total momentum transferred in this direction through dxdy in time dt from the position of the gas 
above the zero plane is

  M mdxdydt u d d cd e drc

r

↓= −






−∞∞

∫∫∫∫4 0
000

2

0

2

π
θ θ θ φ υ

λ

λπ
π

cos sin

  +







−∞∞

∫∫∫∫
du
dz

d d cd re drc

r

cos sin2

000

2

0

2

θ θ θ φ υ
λ

λπ
π

Similarly, the total momentum transferred through dxdy in the zero plane in time dt from the portion 
of the gas below the zero plane is 

  M mdxdydt u d d cd e drc

r

↑=







−∞∞

∫∫∫∫4 0
000

2

0

2

π
θ θ θ φ υ

λ

λπ
π

cos sin


  −







−∞∞

∫∫∫∫
du
dz

d d cd re drc

r

cos sin2

000

2

0

2

θ θ θ φ υ
λ

λπ
π

The net transfer of momentum through dxdy in time dt is

  M M M mdxdydt du
dz

d d cd re drc

r

= ↓ + ↑= −
−∞∞

∫∫∫
2

4
2

000
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π
θ θ θ φ υ
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2
π

∫












  = −2
4

1
3

2m dxdydt du
dz

c
π

π υ λ

  = −
1
3
m c du

dz
dxdydtυ λ

The viscous drag is equal to the change in momentum per unit area per second. It is equal to 

  M
dxdydt

m c du
dz

du
dz

= − = −
1
3

υ λ η

 so that η υ λ=
1
3
m c  (4.124)

4.7.9 Other Expressions for the Numerical
Using Taits free path, the coefficient of viscosity becomes

  η υ λ=










1 051 1
3

. mc  (4.125)
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Taking into account the persistence of velocities after collision in the impact of elastic spheres, Jeans 
obtained the following relation
  η υ λ= 0 461. mc  (4.126)

More powerful treatment of Chapman and Enskog yields the value 

  η υ λ= 0 499. m c  (4.127)

4.7.10 Agreement of the Approximate Theory with Observation

1. Substituting Maxwell’s value of mean free path

  λ
πυσ

M =
1

2 2

 in the approximate value of η υ λ=
1
3
mc M

 one obtains η
πσ

=
1

3 2 2

mc
 (4.128)

  Since c is inversely proportional to m, η varies directly as m. This is found to hold true for 
most gases. 

2. In Eq. 4.128,m c, ,σ and s are all independent of pressure. Hence, viscosity of a gas should be 
independent of pressure. This is actually true for pressures ranging from few millimetres of 
mercury to several atmospheres. At very low and very high pressures, the relation fails.

3. Substituting the value 

  c kT
m

R T
mN
M= =

8 8

0π π

  where k is Boltzmann’s constant, RM is the universal gas constant, and N0 is the Avogadro number 
in Eq. 4.128 for viscosity, we get

  η
π σ

=
2

3
3
2 2

mkT
 (4.129)

  According to Eq. 4.129, viscosity of a gas varies directly as the square root of the absolute tem-
perature. But experiment shows that h varies much more rapidly than T .

4.7.11 Sutherland’s Formula for Variation of Viscosity with Temperature
The reason for the discrepancy between the calculated and observed values of h in so far as its varia-
tion with temperature is concerned, may to some extent be traced to our neglect of the intermolecular 
forces in the process of collision when the molecules are close together. Further, we have supposed that 
the molecules are elastic spheres of fixed diameter s. If they are inelastic spheres, then their diameters 
would be a function of the energy and, therefore, of the temperature of the gas; for under high velocity 
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of approach, two molecular centres of the colliding molecule can move nearer than the diameter of the 
sphere of influence. 

The intermolecular force may either be a force of attraction or of repulsion. Sutherland based his 
calculation on the assumption that the molecules are rigid spheres and intermolecular force is of the 
nature of attractive force. The molecules were replaced by two attracting centres of force. Since nothing 
definite is known about the law of force, it was taken to be a function F(r) of the distance r separating 
the molecular centres. 

As the molecules are moving relatively to each other, we can suppose that one of the two colliding 
molecules A is fixed and the other B is moving relatively to A (Fig. 4.23). The force decreases very 
rapidly with distance. Accordingly at large distances compared with the diameter of the molecule, the 
velocity of a molecule is the same as the kinetic velocity appropriate to the temperature of the gas in a 
field-free space. As the molecule B approaches A, its path is curved and it describes a trajectory under 
a central force of attraction. Our problem is to find the distance of nearest approach of the molecular  
centres A and B. We take as our x axis the line Ax parallel to the original direction of motion RQS 
of B. The y axis is taken as the line Ay perpendicular to RQS. Let the radius AB (= r) be inclined to 
x axis at angle f at instant t. The x and y components of the force F(r) acting on B at instant t are 
F(r) cos f = F(r) x/r and F(r) sin f = F(r) y/r.

Let the mass of the molecule be taken as unity. Then by Newton’s second law of motion,

  
d x
dt

F r x
r

2

2
= − ( )  (4.130)

 and 
d y
dt

F r y
r

2

2
= − ( )  (4.131)

Multiplying Eq. 4.130 by y and Eq. 4.131 by x and subtracting them, we get

  y d x
dt

x d y
dt

2

2

2

2 0−










=

 or 
d
dt
y dx
dt

x dy
dt

−






 = 0  (4.132)

Fig. 4.23 Illustration of influence of intermolecular force on viscosity
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 Now, x = rcosf so that dx
dt

r d
dt

dr
dt

= − +sin cosφ
φ

φ

 and  y = rsinf so that dy
dt

r d
dt

dr
dt

= +cos sinφ
φ

φ

 so that y dx
dt

r d
dt

r dr
dt

= − +2 2sin sin cosφ
φ

φ φ

  x dy
dt

r d
dt

r dr
dt

= +2 2cos cos sinφ
φ

φ φ

 Substituting in Eq. 4.132,

  −










=
d
dt
r d
dt

2 0φ

 or r d
dt

h2 φ
=  (constant)

  
d
dt

h
r

φ
=

2  (4.133)

The constant h is the angular momentum or moment of momentum of the moving molecule B and is 
same for all values of r and f. When r = ∞, the velocity of B is c, parallel to the x axis, its momentum 
is c (since the mass is taken as unity) and the moment of this momentum about A is cb where b is the 
perpendicular distance from A on the original line of motion of B. Hence,
  h = cb (4.134)

Multiplying Eq. 4.130 by dx/dt and Eq. 4.131 by dy/dt and adding

  
dx
dt
d x
dt

dy
dt
d y
dt

F r
r

x dx
dt

y dy
dt

2

2

2

2+










= − +







( ) 

 or 
1
2

2 2
d
dt

dx
dt

dy
dt











+

























= − +( )F r

r
d
dt
x y( ) 1

2
2 2  (4.135)

But            
dx
dt

dy
dt

c










+










=
2 2

2

where c is the velocity of B at t 

Also x2 + y2 = r2

Substituting in Eq. 4.135, it reduces to

  d
dt
c F r

r
d
dt
r F r dr

dt
( ) ( ) ( ) ( )2 2 2= − = −  (4.136)

The velocity of the moving molecule B can also be expressed in terms of its radial component (dr/dt) 
and its transverse component (r dq/dt) = 2r dq/dt 




















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Since in Fig.4.23, θ = 90 8 2 f so that 

  c dr
dt

r d
dt

2
2 2

=










+










φ

 or c dr
dt

h
r

2
2

2

2

=










+  by Eq. 4.133

Substituting this value in Eq. 4.136, we get

  
d r
dt

h
r

F r
2

2 3

2

−











= − ( )  (4.137)

Substituting the value of h from Eq. 4.134, this becomes

  
d r
dt

c b
r

F r
2

2

2 2

3
−











= − ( )

To integrate this equation, multiply both sides by 2 (dr/dt)dt. This gives

  
d
dt
dr
dt

dt c b d
dt r











+










2
2 2

2

1


= −dt F r dr
dt
dt2 ( )

 or  d
dr
dt

c b d
r

F










+










= −
2

2 2
2

1 2 (( )r dr

Integrating from r = ∞ to r = r, since at r = ∞, dr
dt

c










=
2

2

  c dr
dt

c b
r

F r dr
r

2
2 2 2

2
2−











− = −
∞

∫ ( )  (4.138)

At the closest point P of the orbit, the radius vector r has the smallest value so that the radial compo-
nent of the velocity is the minimum (dr/dt = 0). Calling this smallest value r0, we have from Eq. 4.138

  c c b
r

F r dr
r

2
2 2

0
2

2− = −
∞

∫ ( )

 or  b r
c

F r dr
r

2
0

2
21 2

0

= +












∞

∫ ( )  (4.139)

The integral on the right hand side of Eq. 4.139 represents the potential energy at r0, since at
infinity the potential energy is zero. The second term inside the bracket gives the ratio of potential to the 
relative kinetic energy at r0 of the moving molecule.

If the molecule moves in a forceless field, then b = r0. From Eq. 4.139, we can obtain a measure of 
the effective collision cross section of a molecule. In order that two elastic spherical molecules may 
actually come in contact, the distance between their centres must be equal to s0 the diameter of the 
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spherical molecules, that is, the value of r0 in Eq. 4.139 must be equal to s. Denoting the corresponding 
value of b by s, we have 

  
σ σ

σ

2
0

2
21 2

0

= +












∞

∫c
F r dr( )

 (4.140)

Evidently, σ is greater than σ0. If we draw a plane perpendicular to the direction of projection of a 
beam moving parallel to the x axis, then all molecules whose original directions of motion pass through 
the circle of radius σ0 on this plane described round the centre of the fixed molecule would come into 
actual collision with the fixed molecule. The area of this circle is the collision cross section.

In the equation of mean path,

  λ
πυσ

M =
1

2 2

σ  here should be replaced by its value given by Eq. 4.140, so that 

  
λ

πυσ
σ

M

c
F r dr

=

+












∞

∫

1

2 1 2
0

2
2

0

( )  
(4.141)

The integral being definite is a constant quantity. Again, c 2 is proportional to the absolute temperature.
Hence, Eq. 4.141 can be written as 

  λ
πυσ

M k
T

=
+











1

2 10
2

 where k is a constant.  (4.142)

 Accordingly,                            η υ λ
ρ

πυσ
= =

+










0 499 0 499

2 10
2

. .mc c
k
T

M

Now, c is proportional to T . Let ηT0
and hT be the coefficient of viscosity at temperatures T0 and T, then 

  
η ηT T

T
T

k
T
k
T

=
+

+
0

0

0

1

1
 (4.143)

Equation 4.143 is known as Sutherland’s formula for viscosity at different temperatures. In the case 
of CO2 this agrees very closely with experimental results within the range of temperature from 18 8C 
to 224 8C, the value of k for CO2 being 277. It holds fairly for many other gases for limited range of 
temperature but fails hopelessly for hydrogen.

Reinganum supposed that on account of mutual attraction, the concentration of molecules in the 
neighbourhood of an attracting centre changes according to the following relation

  υ υ= −












∞

∫0 exp ( )F r dr kT
r

/
This leads to the result 

  η
ρ

πυ σ
=











0 499

2 0 0
2

.

exp

c
K
T

 (4.144)

On expanding the exponential factor and retaining the first two terms, we obtain the Sutherland’s formula.
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A formula which fits better with the experimental results was given by Trautz and Binkele. This is 

  η =
+

aT
c
T

n

1
 (4.145)

Hasse and Cook based their calculation on the simultaneous existence of the forces of attraction and 
repulsion of the form 
  φ( )r Dr Grm n= −− −

They obtained the relation

  η
π

=










− −

5
8 2

1
2

2 1

1
M
h

hG
n

D( )
/( )

 (4.146)

where h = (1/2) RT, R is the gas constant and D1 is a complicated function of D, G, m, n and k, with 
suitable values of m and n, this formula reduces to Sutherland’s and Lennard–Jones formula. The equa-
tion was applied to Ar, H2, N2, Air, CO2, Hg and Ne, and the results obtained were found to agree fairly 
well with the observed values.

Assuming the intermolecular force to be of repulsive nature F(r) = µe 2S, it can be proved that 
  η = AT n

where A is a constant and n = 1/2 + 2/(s - 1)
It agrees fairly well with the observed values in the case of hydrogen, helium, and some other gases 

but fails in many cases. 

4.8 Viscosity of Gases at low pressures 
The equations for the coefficient of viscosity of gases developed so far are found to be independent of pres-
sure. This conclusion is also verified by experiments over wide ranges of pressure. Every expression for h is 
found to involve the mean free path l. As the pressure of the gas is reduced, the collision between molecules 
becomes less frequent and the mean free path increases in length. When the value of l is comparable with the 
dimensions of the containing vessel, the mathematical method of derivation of the formula necessarily fails.

The experimental methods of determination of h are generally based on Poisseuille’s equation of 
flow of gas through a tube. In deriving this equation, it is assumed that the velocity of flow diminishes 
rapidly from the axis towards the inner wall of the tube, where the velocity is supposed to be zero. At 
very low pressures, the molecules collide directly with the wall of the tube and rebound with a definite 
velocity. This velocity can be resolved into a normal and a tangential component parallel to the wall of 
the tube. After collision the normal component is reversed, but the tangential component remains the 
same as before the collision (if the wall of the tube is supposed to be perfectly smooth). It follows that 
the velocity of flow at the inner wall is not zero and the molecules slip over the wall of the tube. This 
gives rise to the so-called coefficient of slip.

4.8.1 Evaluation of the Coefficient of Slip
Consider a long tube of length L and of uniform bore with internal radius R through which a gas is flowing 
under difference of pressures ( p1 2 p2) at the two ends of the tube (Fig. 4.24). In the steady state, the lines 
of flow are parallel to the axis of the tube. Let us consider cylindrical layer of the gas parallel to the axis of 
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the tube with inner and outer radii r and r + dr, 
respectively. The cross section of the layer is  
2prdr. In the steady state, the driving force on 
the cross section is 2pr dr ( p1 2 p2). This is 
balanced by the viscous drag on the outer and 
the inner surfaces of the cylindrical layer. The 
viscous drag on the inner surface is

Fr = 2prLη dv/dr
where v is the velocity of flow at distance r from the axis. The viscous force on the outer surface of the layer is

  F F
dF
dr

r rL dv
dr

L d
dr
r dv
drr r r

r
+ = + = +




δ δ π η π η2 2 





δr  (4.147)

Hence, the resultant viscous force on the cylindrical layer is 

  2π η δL d
dr
r dv
dr

r










For steady motion of the gas,

  2 21 2π δ π η δr r p p L d
dr
r dv
dr

r( )− = −








  (4.148)

 or −
−

= +
p p
L

d v
dr r

dv
dr

1 2
2

2

1
η

 (4.149)

The left hand side of Eq. 4.149 is constant. A particular solution of the differential equation may be 
taken to be 
  v = A + Br2 (4.150)
involving two constants A and B to be determined from the boundary conditions. From Eq. 4.150,

  

dv
dr

Br d v
dr

B

r
dv
dr

d v
dr

B
p p

= =

+ = = −
−

2 2

1 4

2

2

2

2
1 2

and

llη











 (4.151)

Substituting the value of B in Eq. (4.150), we get

  v A
p p
L

r= −
−1 2 2

4 η
 (4.152)

If v = 0 at r = R, then 

  A
p p
L

R=
−1 2 2

4 η

 so that v
p p
L

R r=
−

−1 2 2 2

4 η
( )

Fig. 4.24 Illustration of Poisseuille’s method

rr + δr
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The volume of the f luid f lowing out of the tube per second is 

  V rvdr p p
L

r R r dr
R R

= =
−

−∫ ∫2
20

1 2 2

0

2π
π

η
( ) ( )

 or V p p R
L

=
−π

η
( )1 2

4

8
 (4.153)

For a short tube, a correction term is to be added on account of turbulence at the edges of the tube.
Equation 4.153 evidently fails when the pressure difference ( p1 2 p2) is either too large or too small. 

To take account of the slip at the inner wall of the tube, we assume that at r = R, v = v0. This gives rise 
to frictional force at the wall which may be taken to be equal to f = ∈ Sv0 where S = 2pRL and ∈ is a 
numerical factor.

Thus, the total resisting force on a layer of thickness dr at the bounding wall is -(f + 2pRLη (dv/dr)) 
and the condition for uniform motion is 

  2 21 2π δ π ηR r p p f RL dv
dr

( )− = − −

If dr is of infinitesimal thickness, then the left hand side is zero. So that 

  2 2 0π η πRL dv
dr

f RL v= − = ∈

and v dv
dr0 = −

∈
η

 But from Eq. 4.151               dv
dr

r p p
L

= −
−

2
1 2

η

 so that   v
r p p

L0
1 2

2
=

∈
−

 (4.154)

Substituting the value of v0 in Eq. 4.152

  v A
p p
L

R R p p
L0

1 2 2 1 2

4 2
= −

−
=

∈
−

η
 from Eq. 4.154

 ∴ A p p
L

R R
=

−
+

∈









1 2 2

4
2

η
η

Substituting the value in Eq. 4.152

  v
p p
L

R r R
=

−
− +

∈











1 2 2 2

4
2

η
η

Volume of liquid flowing through the tube per second is 

  V
p p R
L R

=
−

+
∈











π
η

η( )1 2
4

8
1 4

 (4.155)

The quantity 4η/∈ is called the coefficient of slip. Denoting this by z, the volume flowing per second is 

  V V
R

= +








0 1 ζ

where V0 is the volume flowing in the absence of slip.
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4.9  collisions with a solid boundary: pressure exerted by a Gas  
introducinG Mean free path concept

In the kinetic theory of gases, it is supposed that the number density u of the molecules is constant 
throughout the mass of the gas in equilibrium at constant temperature and the directions of motion of 
molecules are uniformly distributed in space.

To find the number of collisions per second on an element of area ds of the wall and there from the 
pressure exerted by the gas, we take a small volume dv of the gas at a distance r from the centre of the 
element ds considered on the xy plane, the radius vector r to dv from the centre of ds making an angle q 
with the normal to ds (i.e., z axis) as shown in Figure 4.25.

The number of molecules within dv having velocity between c and c + dc is ducdv. Let a molecule suf-
fer w collisions per second on an average where w = c/λc, λc being the mean free path for these molecules.

In time dt, there are ducdvwdt new paths starting out of volume dv along which the molecules come 
out. Since all directions are equally probable, the number moving in the direction of ds is the number of 
molecules in the direction of the solid angle subtended by the area at dv. The solid angle dΩ = dscosq/r2.

The number of molecules moving in the direction of unit solid angle is ducdvwdt/4p. Hence, the 
number moving in the direction of ds is 

  ′ =N d dv dt ds
rd dt cθ υ ω

θ
πΩ

cos
4 2

out of these molecules, the number which reach ds without suffering any further collision after leaving dv is

  N d dv dt ds
r
ed dt c

r

θ
λυ ω

θ
πΩ =

−cos
4 2  (4.156)

To find the total number of molecules striking the area ds in time dt, we have to integrate for all val-
ues of dv, all values of c from 0 to ∞, and all values of r from 0 to ∞. For this purpose, we express dv in
terms of spherical polar coordinates so that dv = r2 sin θ dθ df dr. We then integrate f from 0 to 2p and 
q from 0 to p/2. The total number of molecules striking the area ds in time dt

  dsdt cd d d e drc

r

4
0 0

2

0

2

0
π

υ θ θ θ φ
λ

π
π λ∞ −∞

∫ ∫ ∫ ∫sin cos

Fig. 4.25 Illustration of the theory
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  =
dsdt c
4

1
2

2
π

υ π
λ
λ

  =
υc dsdt
4

 (4.157)

The number of molecules striking unit area in unit time = υc /4.
In each collision, the change in momentum for the molecules having velocity c and coming from dv 

is 2mc cosq, so that total change in momentum imparted by all the molecules per unit area per second is 

  p m c d d d e
c

r

=
∞ −∞

∫ ∫ ∫ ∫
2
4

2

0

2

0

2

0

2

0
π

υ θ θ θ φ
λ

π
π λ

cos sin ddr

  =
2
4

1
3

22m c
π

υ π

  =
1
3

2m cυ  where c is the root mean square velocity.

4.9.1 Knudsen’s Cosine Law 
The solid angle subtended by dv at the centre of ds is 

  d d d′ =Ω sinθ θ φ
From Eq. 4.156

  N
d dtds r d d dr e

rd dt
c

r

θ

λυ ω θ θ φ θ

π′

−

=Ω

( sin )cos2

24

  =
−d dtds d d
e drc

rυ ω θ θ φ θ
π

λ
(sin )cos

4

  =
′ −

d dtdsd e drc

r

υ ω
π

θ λΩ
4

cos

The total number of molecules reaching ds in the direction of the solid angle formed by dv is 

  
d

dtdsd e drc
rυ ω

π
θ λ

4
0

′
−

∞

∫Ω cos

  =
′

d dtdsd
cυ

ω λ θ
π

Ω cos
4

  =
′

cd dtdsd
cυ

θ
π

Ω cos
4

Number of molecules of all velocities reaching ds per second in the direction q of the solid angle dΩ′ is

  υ
υ θ

πθ =
′cdsdΩ cos

4
 (4.158)
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Equation 4.158 is known as Knudsen’s cosine law. This is similar to the cosine law in photometry 
for diffuse reflection from irregular surfaces. In order that all directions of velocities of molecules in the 
neighbourhood of the solid boundary may be equally probable, the same number uq of molecules must 
be leaving the same area ds per second in the same direction q of approach before collision. This means 
that the direction of reflection of molecules is independent of the direction of incidence (as in the case of 
diffuse reflection of light). This led Knudsen to the hypothesis that the molecules colliding with a solid 
boundary are first absorbed and then re-evaporated. 

Evidently, the probability of a molecule leaving a particular area ds in the direction q with the normal 
to the area at the point of incidence is 

  p c dsdθ π
θ= ′

4
Ω cos  (4.159)

Knudsen verified his hypothesis of the cosine law by the following 
experiment. A parallel beam of mercury vapour was let into a glass 
sphere through a small opening in its wall, impinging straight on a 
wall of area ds (Fig. 4.26).

This area ds was kept at room temperature while the rest of the 
surface was maintained at the temperature of the liquid air. The mol-
ecules reflected from the area ds were condensed on coming in con-
tact with the cooler part of the wall of the sphere and formed a layer 
of uniform thickness all over the inner wall.

In the case of reflection from a crystal surface where the molecules 
are regularly spaced and oriented the reflection was found to be spec-
ular or regular, that is, there was no diffuse reflection.

Knudsen’s theory of streaming: An immediate consequence of Knudsen’s theory is that the mol-
ecules diffusively scattered in all directions from the solid boundary impart no momentum to the wall 
in the tangential direction because on an average, the tangential components of velocities of molecules 
leaving the surface are as often positive as negative. Therefore, the tangential momentum transferred to 
the wall is only due to the colliding molecules. Let n be the number of molecules striking the surface 
in a given direction. Let m be the mass of the molecules and w their tangential component of velocity. 
Then, the momentum transferred to the wall by these molecules is nmw. 

Let u be the number of molecules per cubic centimetre. Out of these molecules the number which has 
velocities lying between c and c + dc is 

  d c e dc
c

υ
υ

πδ
δ=

−4
3

2

2

2  (4.160)

where d is the most probable velocity. The number of molecules of this group which strike unit area of 
the solid wall in unit time is given by Eq. 4.157, 1/4cdυ. The momentum transferred to the wall in unit 
time in the tangential direction of this group is 

  
1
4
cd mwυ  (4.161)

In the case of a gas streaming through a narrow tube (whose diameter is small compared to the mean 
free path) under a difference of pressure applied at the two ends, the flow of gas down the tube is not due 

Fig. 4.26 Knudsen’s 
experiment for verification  

of cosine law

ds
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to the streaming motion combined with random thermal motion of the molecules; it is due to the thermal 
motion and interdiffusion on account of variation of pressure along the length of the tube. Under this 
condition, the numbers of molecules moving through a cross section of the tube in opposite directions 
are not the same so that there is net balance of flow in the direction of fall of pressure.

Knudsen assumes that w in Eq. 4.161 depends on c and is proportional to it or w = kc where k is the 
constant of proportionality independent of c. Substituting the value of w in Eq. 4.161 the momentum 
transferred to the wall by collision of molecules moving with velocity c is 

  1
4

2kc mdυ

Substituting the value of du from Eq. 4.160, the momentum transferred by molecules moving with 
all possible velocities is 

  B km c e dc km
c

= =
−

∞

∫
υ

π δ
υ δδ

4

3
0

2

2

2 3
8

 (4.162)

Again,                      δ
π2

2

4
=

c

where c is the arithmetical average 

 ∴ B km c=
3
32

2π
υ  (4.163)

Also, c c
=

Σ
υ

so that        kc kc w v= = =
Σ Σ

υ υ
where v, is the velocity of mass of the gas parallel to the length of the tube. Substituting the value of
kc v=  in Eq. 4.163, see copy

  B mv c=
3
32
π

υ  (4.164)

Let O be the circumference of cross section of the cylindrical tube of uniform bore and dl be a small 
element of length of the tube. Then, the momentum transferred to the area O. dl in time dt is 

  
3
32
π

υO dl mv c dt  (4.165)

By Maxwell’s law c p= 8
πρ , substituting in Eq. 4.165, the momentum transferred to the element of 

area O dl in time dt is 

  
3
8 2

π
ρ

ρ
p v O dldt

The force exerted by the element of area on the streaming gas is the rate of change of momentum 
and is equal to 

  
3
8 2

π
ρ

ρ
pv O dl
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In the steady state of flow, this is balanced by pressure difference dp at the two end faces of the ele-
ment dl. If A be the area of cross section of the tube, then the condition of steady flow is 

  
3
8 2

π
ρ

ρ
pv O A dp

dl
= −

The quantity of gas which flows through the tube in unit time is 

  M A v
p
A
O

dp
dl

= = −ρ
π

ρ8
3

2 2

Let the density of the gas per unit pressure be r1 = r/p, then the volume V of gas flowing per second is M/ρ1

  V A
O

dp
dl

= −
8
3

2 1

1

2

π ρ  (4.166)

For steady flow, V has the same value all over the tube. For a cylindrical tube of circular cross section 
of radius R,

  
A
O

R
R

R dp
dl

p p
L

p p
2 2 2 3

1 2
1 22 2

= = − =
−

>
( )π

π
π and

Substituting the value of A2/O in Eq. (4.166), we get 

  V R
L
p p= −

4
3

2 1

1

3

1 2π
ρ

( )

This can be written as 

  V
p p

L
R

p p
W

=
−

=
−1 2

1 3

1 2

4
3

1
2π

ρ
 (4.167)

Representing the denominator of Eq. 4.167 by W, the equaltion is similar to the Ohm’s law in current 
electricity. Here, W is the resistance of the tube to the flow of the gas. This equation differs materially 
from Eq. 4.155 involving coefficient of slip. It will be seen that at very low pressures, the volume flow-
ing is proportional to R3 and not to R4. Also, V is independent of h and p.

4.9.2 Knudsen’s Experiment
The apparatus used by Knudsen is shown in the Figure 4.27.
G1 and G2 are the two Mcleod gauges which can measure the pressure of gas in the respective reservoirs V1 
and V2. The capillary tube under study is fixed between a1 and a2. u1 and u2 are the U tubes; u1 is graduated and 
the whole apparatus is connected to a pump through one arm of u2. g1, g2, g3 and g4 are connected to mercury 
reservoirs by rubber tubing. By changing the position of these reservoirs, the position of mercury column can 
be adjusted in each tube. Through H, the apparatus is connected to the reservoir of experimental gas.

The mercury in the tubes g1, g2, g3 and g4 are allowed to fall below the bends and the whole apparatus is 
evacuated by means of the pump. Then by adjusting the stop cock at H, the experimental gas is introduced in 
the apparatus at the desired pressure. The stop cock is closed and by raising the mercury reservoir connected 
to g3, the mercury column is brought to the position a1, a2; the two reservoirs, V1 and V2, are cut off from each 
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other. The pressure p1 of the gas at reservoir V1 is measured by G1. The pressure of the gas in V2 is further 
lowered by the pump and the corresponding pressure p2 is measured by G2. Then by lowering the mercury 
reservoir connected to g3, the mercury column is adjusted to a position at the U tube in u1 such that the two 
reservoirs V1 and V2 are connected to each other only through the capillary tube between a1 and a2. The gas 
is allowed to flow through the tube for a measured time and then the flow is cut off by raising the mercury 
column to the position a1, a2. The final pressures of the gas in V1 and V2 are measured. From the initial and 
final pressures and the volumes of reservoirs V1 and V2 together with the connecting tubes, the volume of the 
gas flowing from V1 and V2 through the capillary tube 
under study can be calculated. 

Knudsen studied the flow of carbon dioxide 
through 24 capillary tubes of different dimensions. 
His experimental results are shown in Fig. 4.28 which 
gives a plot of loge l/r versus loge T0 where

T R
L0

1

34
3

2
=

π
ρ  

represents the volume of the gas flowing through 
the capillary tube per unit difference of pressure mea-
sured at a pressure of 1 dyne. l is inversely propor-
tional to the pressure of the gas. 

From the curve, it is found that the volume of 
gas flowing out at ordinary pressure decreases  
rapidly with the decrease of pressure according to  

Fig. 4.27 Knudsen’s apparatus
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a1 a2

H

G1
G2
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g3 g2
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Fig. 4.28 Knudsen’s experimental 
results
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Poiseuille’s law (portion AB of the curve). After this, the decrease is not so rapid (portion BC of 
the curve). This is in agreement with the observation of Kundt and Warburg. As the pressure is de-
creased further, the volume of gas flowing out increases (portion CD of the curve) and, ultimately, 
it remains constant at very low pressure (portion DE of the curve) which represents molecular 
streaming. 

It has been found that the empirical relation T0 = ap + b(1 + c1p/1 + c2p) fits the entire experi-
mental results where a, b, c1 and c2 are the constants which can be determined by least square fit-
ting. The portion of the curve corresponding to different pressure region is considered. The expres-
sion for T0 is modified accordingly, and it has been found that the observed values of the constant 
found from least square fitting are in accordance with the calculated values of the constants. This 
confirms Knudsen’s theory.

4.10 Kinetic theory of conduction of heat throuGh a Gas 
In the simple calculation of heat conduction through a gas deduced from the transport theorem, it 
was assumed that out of the total number of molecules contained in a cubical box, one-sixth of the 
molecules move in a direction perpendicular to each face of the box. In the following deduction, we 
shall suppose that 

1. the temperature of the gas increases in the direction of the z axis.
2. the mean energy of a molecule in any layer perpendicular to the z axis is that appropriate to the 

temperature of that layer.
3. the molecules moving in all possible directions have the same average velocity c .

Let us fix our attention on the molecules which cross unit area of the plane z1 = z0. We shall call this 
plane the zero plane. Let molecule cross the zero plane in a direction q after suffering its last collision 
at a distance equal to its mean free path l, (Fig. 4.29). These molecules, therefore, come from a plane 
at a distance z2 = z0 2 lcosq below the zero plane. If the mean energy in the zero plane is E, then that 
in the plane z2 is E 2 lcosq (dE/dz).

Let uq be the number of molecules per unit volume which move in the direction q to q + dq with 
the z axis. Then, the number of molecules which cross the area ds in the zero plane in the direction 
q is equal to the number which lie inside a cylinder of 
cross section dscosq and of length equal to c , that is,

υ θθcdscos

If u be the total number of molecules per cc, then 
the number of molecules moving in the directions  
q to q + dq is 

                   υ
π υ θ θ

π
υ θ θθ = =

2
4

1
2

2

2

c d
c

dsin sin
Fig. 4.29 Illustrating molecular collision

z

z1 = z0

z2 = z0 − λ cosθ

ds

λθ
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The number crossing the area ds in the specified direction is 

  1
2

υ θ θ θsin cosd cds

The energy transferred across unit area of the zero plane in all possible directions is 

  
1
2

0

υ λ θ θ θ θ
π

c E dE
dz

d−








∫ cos sin cos

  = −∫ ∫
1
2

1
2

0

2

0

υ θ θ θ υ λ θ θ θ
π π

cE d c dE
dz

dsin cos cos sin

  = −
1
3

υ λc dE
dz

  = −
1
3

υ λc dE
dT
dT
dz

By experimental definition of conductivity, flow of energy through unit area per second is -JK (dT/dz)

 so that − = −JK dT
dz

c dE
dT
dT
dz

1
3

υ λ  (4.168)

 Now, c
Jm
dE
dTv =

1  (4.169)

 Also, η υ λ=
1
3

c  (4.170)

Substituting Eqs 4.169 and 4.170 in Eq. 4.168, we get

  K cv= η  (4.171)

In this calculation, we have not considered the variation of density of the gas and the change of  
velocity of molecules with temperature. Instead of supposing that all molecules move with same veloc-
ity, Maxwellian distribution should be used. Further, the mean free path should be replaced by all proba-
ble values of free paths. All these modifications introduce a correction factor ∈ whose value varies from 
1 to 2.57 depending on the method of mathematical analysis.

4.10.1 Evaluation of Coefficient of Heat Conduction Considering the  
Distribution of Free Path and Velocities

We consider a vertical column of gas in which uniform temperature gradient has been set up in the 
vertical direction of the z axis, the layers parallel to the xy planes being at uniform temperatures. Let 
the temperature of the xy plane through z = 0 (the zero plane) be T0. Then, the temperature of plane at 
height z is T = T + z dT/dz (Fig. 4.30).

Let us consider a small element of volume dv at a height z(= r cosq) above the zero plane. Let u be the 
number of molecules per cc of the gas. The number of molecules per cc having velocity lying between c and 
c + dc is duc. Then, the number of molecules in volume dv having velocity lying between c and c + dc 
is ducdv.
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Let the molecules in dv moving with velocity c suffer w = c/l collisions per second where l is the 
mean free path. In time dt, there are ducdvwdt new paths starting out of volume dv along which the 
molecules come out. Since all directions are equally probable, the number of new paths for molecules 
moving with velocity c is ducdvwdt/4p per unit solid angle. The number of molecules having velocity c 
and crossing the area dxdy at the zero plane is 

  N d dvwdtdxdy
rc1 24

= υ
θ

π
cos

as the solid angle subtended by area dxdy at dv is dxdy cos θ/r2 dxdy rcos /θ 2

Out of these N1 molecules, the number traversing the distance r without collision is 

  N d dvwdtdxdy
r

ec
r

2 24
=

−υ θ
π

λcos

 or N cd dvdtdxdy
r

ec
r

2 24
=

−υ θ
π λ

λcos

We assume that the molecules on an average have the temperature appropriate to the sum of its last 
collision. Each molecule of mass m coming from the height z above the zero plane will carry energy of 
amount

  Jmc T r dt
dzv 0 +







cosθ

Hence, energy transferred through dxdy from dv in time dt by the molecules having velocity between 
c and c + dc is

  Edv dt
cd dv dt dx dy

r
e Jmc T rc

r

v= − +
−υ θ

π λ
λ

cos
cos

4 2 0 θθ
dt
dz











The –ve sign indicates that the energy is transferred from high temperature to low temperature region.

Fig. 4.30 Illustration for evaluation of coefficient of heat conduction
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To find the total energy transferred through dxdy from all elements like dv above dxdy by molecules 
having all possible velocities, we express dv in terms of spherical polar coordinates
  dv r d d dr= 2 sinθ θ φ
and integrate for all possible values of r, q, f and c. This gives

  E Jm dxdydt c T cd d d e drv c

r

1 0
0

2

0 0

2

04
= −







∫∫ ∫ ∫
∞ −∞

π
υ θ θ θ φ

λ

π
π λ

cos sin


  +






∫∫ ∫ ∫

∞ −∞dT
dz

cd d d r e drc

r

υ θ θ θ φ
λ

π
π λ

cos sin2

0

2

0 0

2

0

Similarly, the amount of energy transferred through dxdy from the portion of the gas below the ele-
ment of area is 

  E Jm dxdydt c T cd d d e drv c

r

2 0
0

2

0 0

2

04
=






∫∫ ∫ ∫

∞ −∞

π
υ θ θ θ φ

λ

π
π λ

cos sin

  −






∫∫ ∫ ∫

∞ −∞dT
dz

cd d d r e drc

r

υ θ θ θ φ
λ

π
π λ

cos sin2

0

2

0 0

2

0

This is because at the plane,T T r dT
dz

= −0 cosθ .

The net transfer of energy through dxdy in time dt is 

  E E E
mc dxdydt

J dT
dz

cd dv
c= + = −1 2

2

0

2
4π

υ θ θ θ

π

cos sin
22

0 0

2

0
∫∫ ∫ ∫

∞ −∞

d re dr

r

φ
λ

π λ

  = −
2

4
1
3

2
mc dxdydt c J dT

dz
v

π
υ πλ

  = −
1
3
m c c dxdydt J dT

dzvυ λ  (4.172)

Therefore, the quantity of heat transferred through the zero plane per unit area per second is 

  dQ
dt

m c c dT
dzv= −

1
3

υ λ  (4.173)

By definition, the coefficient of heat conduction K is given by 

  dQ
dt

K dT
dz

= −

 Therefore,  K mc c cv v= − =
1
3

υ λ η  (4.174)

where h is the coefficient of viscosity.
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This method of derivation of the value of K is not general for the following reasons: 
Firstly, it assumes the validity of Maxwell’s distribution law of velocities which is only applicable to the 

equilibrium state. Secondly, on account of variation of temperature, the density of the gas must change in 
the direction of the z axis. Rigorous treatment of the problem introduces a coeff icient ∈ such that

  K cv= ∈ η
where the value of ∈ ranges from 1 to 2.57 depending on the method of mathematical analysis. 

Chapman and Enskog following Maxwell’s method discussed rigorously the transport of energy by 
spherically symmetric (monatomic) molecules and showed that K/ηcv = 5/2. This is in agreement with 
the experimental results. 

Polyatomic molecules have energy due to translational motion (Et) as well as due to internal 
motion (Er). Thus, transfer of both types of energy must be taken into account. Considering this, Eucken 
gave an expression for ∈. He assumed that the translational energy transfer is 5/2 times that given by 
Eq. 4.172, while the transfer of other forms of energy is given by Eq. 4.172. So, the total energy transfer 
per unit area per second is 

  − +










5
2

1
3

dE
dz

dE
dz

ct r υ λ  (4.175)

 ∴ − = − +








JK dT

dz
c dE

dT
dE
dT

dT
dz

t r1
3

5
2

υ λ

 ∴  K Jm
dE
dT

dE
dT

t r= +










η 5
2  (4.176)

Let the total number of degrees of freedom be 3 + 3b where 3 is due to translational motion and 3b 
is other than due to translational motion. So, the average energy of a molecule at temperature T is 

  E E E kT kTt r= + = +
3
2

3
2
β

  
dE
dT

k
dE
dT

kt r= =
3
2

3
2

and β

 ∴ 
K

Jm
k k k

Jmη
β β= +







 = +









1 5
2

3
2

3
2

15
4

3
2  (4.177)

Let M be the molecular weight of the gas and cp, cv be the specific heats at constant pressure and at 
constant volume, respectively, then 

  
c c R

JM
R

NJ M
N

k
Jmp v− = = =

Dividing by cv

  γ − =1 k
Jmcv

 Again, c
Jm
dE
dT Jm

kv = = +
1 1 3

2
1( )β  (4.178)
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  γ
β β

− =
+

=
+

1 2
3 1

2
3 1

k
Jm

Jm
k( ) ( )

 or ( )
( )

1 2
3 1

+ =
−

β
γ

From Eq. 4.177

  K k
Jmη γ

= +
−

−






















15
4

3
2

2
3 1

1
( )

    = +
−

−








 =

−
−











k
Jm

k
Jm

15
4

1
1

3
2

9 5
4 1γ

γ
γ( )

From Eq. 4.178

  c
Jm

k k
Jmv =

−
=

−
1 3

2
2

3 1
1

1( )γ γ

 ∴    
K cvη

γ
=

−( )9 5
4

 ∴    K
cvη

γ
=

−
= ∈

9 5
4

 (4.179)

This relation for ∈ is in fair agreement with experimental observation. 
Thus, K = ∈ ηcv; neglecting variation of ∈ and cv with pressure and temperature, it may be said that 

K varies with pressure and temperature in the same manner as does h. Thus, K should be independent of 
pressure. This was confirmed experimentally by Stefan and others. However at very high and low pres-
sure, K is not independent of pressure. At very low pressure where the mean free path is comparable to 
the dimension of the vessel, the mechanism of heat transfer is different from the one considered here. 
Again, K should be proportional to T , but it is found to vary much more rapidly. The reason is the 
same as in the case of viscosity. The nature of variation of K with temperature is, however, different in 
different experiments.

4.10.2 Conduction of Heat Through Rarefied Gases 
In the treatment mentioned earlier, we have considered (a) conduction of heat through gases at ordinary 
pressure. Like viscosity of gases, we have also to consider conduction of heat (b) at intermediate pres-
sure and (c) at very low pressures. 

Conduction of Heat at Intermediate Pressure 
It was suggested by Poisson that at intermediate pressure, there is a temperature discontinuity at a wall 
bounding a gas through which there is a temperature gradient like that of viscous slip. According to him, 
the discontinuity can be expressed by

  T T g dT
dnk w− =

where Tw is the wall temperature, dT/dn is the temperature gradient along the outward drawn normal 
to the wall, Tk is the temperature of the gas at the wall had there been no discontinuity of temperature 
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at the wall, g is the constant known as the temperature jump distance. Smoluchowski and Knudsen 
studied the temperature jump thoroughly and gave an expression for g in terms of the interaction of 
the molecule with the surface. It is mainly caused by the fact that the energy exchange between the 
wall and the colliding gas molecules is only partial.

Conduction of Heat at Very Low Pressure
We reproduce below Knudsen’s theory of conduction of heat through a gas at very low pressures. Here, 
the gas is supposed to be placed between a hot plate A1 at temperature T1 and a cold plate A2 at tempera-
ture T2. At very low pressures, the mean free path becomes comparable with the thickness of the air plate 
so that the collision between molecules becomes rare. Such conduction of heat is called free molecule 
or molecular heat conduction. It is supposed that the molecules leaving the surface of a plate acquire the 
temperature of that plate. This requires the surfaces of the plates to be absolutely rough. The molecules 
striking these surfaces rebound back and forth several times between their minute projections so as to 
acquire velocities corresponding to temperatures of these surfaces. 

Let du1 be the number of molecules with velocities lying within the range c1 and c1 + dc1 moving 
from the plate A1 in the direction of the plate A2. If du be the number of molecules per cc, then the 
number striking unit area of the plate A2 per second is given by Eq. 4.157 equal to 1/4 duc1 . Since the 
molecules concerned are only those lying on one side of the plate A1, du1 = du/2 so that the number of 
molecules striking unit area of the plate A2 in 1 second is 1/2 du1c1. If m be the mass of each molecule, 
the translational energy delivered to unit area of the plate A2 in 1 second is 

  dE d c mc m d c1 1 1 1
2

1 1
31

2
1
2 4

=










=υ υ  (4.180)

By Maxwell–Boltzmann law of distribution of velocities,

  d e c dccυ πυ α β
1 1

3
1
2

14 1
2

= −

Total energy delivered to unit area of plate A2 per second by molecules moving with all possible 
velocities is 

  E m e c dcc
1 1

3

0
1
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14
4 1

2

= −
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8

 (4.181)

Similarly, the amount of translational energy falling on unit area of A1 per second is 

  E kT c2 2 2 2= υ  (4.182)
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The amount of energy received by unit area of A2 from A1 per second is E1 and that received by unit 
area of A1 from A2 is E2. Since the mass of the plates A1 and A2 are equal, the net amount of energy 
received by unit area of A1 in 1 second is 

  E E E k c T c Tt = − = −1 2 1 1 1 2 2 2( )υ υ  (4.183)
The number of molecules that strike unit area of A2 per second is 1 2 1 1/ υ c  where u1 is the number of 

molecules per cc having average velocity c1
directed towards the plate A2. Similarly, the number striking 

unit area of plate A1 per second is 1 2 2 2/ υ c . In the equilibrium state the number of molecules arriving and 
leaving unit area of the plate A1 or A2 must be equal, so that  

  υ υ1 1 2 2c c=  (4.184)

Again in order that the pressure in the space between the plates may remain constant, the number 
of molecules entering the space from outside per second must be equal to the number leaving the 
space in the same time. If S be the area of the edges, then the number of molecules leaving the space is 
1 4 1 1 2 2/ ( )υ υc S c S+ . The number entering the space is 1 4/ υcS where u is the number density of molecules 
in the outside space having average velocity c.

 Then, 1
4

1
41 1 2 2( )υ υ υc S c S cS+ =

 or υ υ υ1 1 2 2c c c+ =

 By Eq. 4.184, 2 1 1υ υc c=

 so that υ υ υ1 1 2 2
1
2

c c c= =

Substituting these values in Eq. 4.183, we get 

  E E E k c T Tt = − = −1 2 1 2
1
2

υ ( )  (4.185)

If the molecule possesses energies other than translational (such as rotational and vibrational) and if 
Er1 and Er2 be their values at temperatures T1 and T2, then the loss of energy due to this is 

  E c E Er r r= −
1
4 1 2υ ( )

Hence, the total loss of energy due to conduction is 
  E E Et r= +

 or E ck T T c E Er r= − + −
1
2

1
41 2 1 2υ υ( ) ( )  (4.186)

It can be proved that

  γ = =
+ +

+
=

C
C

E E kT
E E

E kTp

v

t r

t r
tAlso 3

2

 Also, γ = =
+ +

+
=

C
C

E E kT
E E

E kTp

v

t r

t r
tAlso 3

2
Solving for Et, we get

  E kTr =
−
−

5 3
1

1
2

γ
γ
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 We have E E k T Tr r1 2 1 22
5 3

1
− =

−
−

−
γ

γ
( )

Substituting the value of (Er1 2 Er2) in Eq. 4.186, we get for the total loss of heat from the plate A1 

  E ck T T=
+
−

−
1
8

1
1 1 2υ

γ
γ

( ) ergs  (4.187)

 Now, c kT
m

RT
Nm

RT
M

= = =
8 8 8
π π π

where M is the molecular weight and N the Avogadro’s number.
Substituting the value of c in Eq. 4.187, we get

  E k kT
M

T T=
+
−

−
1
4

2 1
1 1 2υ

π
γ
γ

( ) ergs

Substituting the value of uK from equation p = ukT

  E R T T

MT
p=

+
−

−1
4

2 1
1

1 2

π
γ
γ

ergs  (4.188)

4.10.3 The Accommodation Coefficient
The quantity of heat transferred from the hot plate to the cold plate is thus proportional to the difference 
of temperature of the plates and to the pressure of the gas. Experimentally, it was found that the amount of 
heat transferred was less than that given by Eq. 4.188. To explain this Knudsen, following Smoluchowski, 
introduced what is known as accommodation coefficient represented by a. According to Smoluchowski, 
the surfaces of the plates are not molecularly rough, so that the molecules leaving a plate after collision do 
not acquire the temperature of the plate but only a fraction a of the difference of temperature of the plate 
and that of the molecules before collision. Let Einc and Eref denote the energies of the incident and reflected 
molecules, respectively and Eplate the energy corresponding to the temperature of a plate, then 
  Eref 2 Einc = a (Eplate 2 Einc )

Since energy E is proportional to absolute temperature, we have
  Tref 2 Tinc = a (Tplate 2 Tinc ) (4.189)

Let ′ ′T T1 2and be the temperatures of molecules reflected from the plates at temperatures T1 and T2, 
respectively. Referring to plate A1 at temperature T1, the molecules incident on A1 are those coming from 
A2 and have temperature T2 after reflection from A2. Hence from Eq. 4.189,

  ′− ′ = − ′T T a T T1 2 1 2( )  (4.190)

Referring to plate A2 at temperature T2, the molecules incident on A2 are coming from A1 and have 
temperature ′T1 after reflection from A1. Hence from Eq. 4.189,

  ′− ′= − ′T T a T T2 1 2 1( )  (4.191)
From Eqs 4.190 and 4.191,

  ′− ′ =
−

−T T a
a
T T1 2 1 22

( )  (4.192)
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Substituting ′− ′ −T T T T1 2 1 2for ( ) in Eq. 4.188, we get

  E p R T T

MT
=

+
−

′− ′

4
2 1

1
1 2

π
γ
γ

and from Eq. 4.192, we get for the energy transferred 

  E ap
a

R T T

MT
=

−
+
−

−1
4 2

2 1
1

1 2

π
γ
γ  (4.193)

For further discussion on accommodation coefficient, the student is referred to kinetic theory of 
gases by Leonard B. Loeb.

4.10.4 Knudsen’s Absolute Manometer
We have found that at extremely low pressure the quantity of heat flowing between two plates at tem-
peratures T1 and T2 is directly proportional to pressure of the gas enclosed and also to the difference 
of temperature (T1 2 T2). Based on this result, Knudsen developed a method of measurement of ex-
tremely low pressures. The instrument is known as 
Knudsen’s absolute manometer. It is absolute in the 
sense that it gives the pressure directly in dynes with-
out comparing the result with a standard gauge or 
calibration. It consists of two hot stationary plates B1 
and B2 of platinum heated electrically to temperature 
T1 (Fig. 4.31). Facing the hot plates, there are two 
movable plates A1 and A2 forming two sides of a rect-
angular frame suspended by a quartz fibre carrying a 
mirror M.

In this case, the molecules striking the surface of 
A1 facing B1 carries greater momentum than that car-
ried by molecules striking the other face of A1. This 
causes the frame A1A2 to rotate about the suspension. 
The deflection is measured with the help of lamp and 
scale arrangement. The controlling couple is exerted 
by the twist in the suspension.

Theory of Knudsen absolute manometer: It is supposed that the distance between the hot and cold 
plates is small compared to the mean path of the molecules in the gas; further, the area of the plates is 
supposed to be large compared to the distance between the plates. Let u1 and u2 be the number densities 
of molecules leaving the plates B and A, respectively.

Then, the number densities of molecules moving towards A1 and B are u1/2 u2/2. Let the average 
velocities of u1 and u2 molecules be c c c c1 2 1

2
2
2and and let and be their mean square velocities. The 

momentum transferred to unit area of the plate A by molecules coming from the plate B is 1/3 u1mc2
1 and 

the recoil momentum given to the plate A by molecules leaving A is1/3 u2mc2
2. Hence, the total momen-

tum transferred to the plate A causing it to move away from B is 

  1
3 1 1

2
2 2

2m c c( )υ υ+

Fig. 4.31 Knudsen’s absolute manometer

B2

M

B1

A1
A2
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Let u be the number density of molecules outside the plates and let c cand 2 be their average and 
mean square velocities. Then, the momentum given to A by outside molecules causing A to move 
towards B is p = 1/3 muc2.

The resultant force acting on the plate A causing it to move towards B is 

  F m c c p= + −
1
3 1 1

2
2 2

2( )υ υ  (4.194)

By Eq. 4.184, we have 

  1
2

1
2

1
41 1 2 2υ υ υc c c= =

 or since c is proportional to c

  υ υ υ1 1 2 2
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Substituting the value in Eq. 4.194, we get
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If T T T1 2= + δ where δt is very small

  p
FT
T

T F
T T

= =
−

4 42 2

1 2δ
dynes/sq cm  (4.195)

The temperature of the hot plate can be determined by measuring the resistance of the hot plate with 
the help of a wheatstone’s bridge. The value of F can be determined from the elastic constant of the 
suspension wire.
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4.11 theory of self-Diffusion in a Gas

We consider a vertical column of gas in which uniform concentration gradient has been set up in the ver-
tical direction of z axis. Let the concentration of gas in the xy plane through z = 0 (the zero plane) be u0.
Then, the concentration of gas in the plane a height z is u where 

  υ υ
υ

= +0 z d
dz

 (4.196)

 du/dz being the concentration gradient.
Let us consider a small element of volume dv at a height z(= r cos q ) above the zero plane (Fig. 4.32).

The number of molecules having velocity between c and c + dc within the volume dv is B where 

  B r d
dz

e c dcdvc= +








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−υ θ
υ

πα βcos 4 3 22

 (4.197)

Due to collision among the molecules themselves, the number of new paths along which the molecules 
come out of the volume in time dt is given by c/l Bdt, where l is the mean free path. Since all directions 
are equally probable, the number of molecules moving in the direction of elementary area dxdy is 

  
c Bdt dxdy

rλ
θ

π
cos

4 2  (4.198)

Of these molecules, those which strike the area dxdy coming from dv without making intermediate 
collision are given by 

  
c Bdt dxdy

r
e

r

λ
θ

π
λcos

4 2

−
 (4.199)

Then, the total number of molecules crossing the area dxdy in time dt downwards 

  N c Bdt dxdy
r

e
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4 2
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Fig. 4.32 Illustration for evaluation of diffusion coefficient
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The negative sign indicates that the molecules are coming from a region of higher concentration to 
a region of lower concentration.

Similarly, the total number of molecules crossing the area dxdy in time dt upwards
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The total number of molecules crossing through the area dxdy in time dt is
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By experiment,

  N N D d
dz
dxdydt↓ + ↑= −

υ  (4.203)

 ∴                         D c c= =
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 (4.204)

Thus, it is seen thatD D T
p

α
υ

α
1

3
2

and .

Diffusion coefficient is inversely proportional to pressure and this is confirmed by experiment. How-
ever, experiment shows that diffusion coefficient varies as T s where s = 1.75 to 2. This is explained by 
Sutherland in terms of attractive force between the molecules. 

For the mutual diffusion coefficient, we have

  D
c c

12
1 2 2 2 1 1

1 2

1
3

=
+
+

( )υ λ υ λ
υ υ  (4.205)

where suffixes 1 and 2 refer to two types of molecules involved and l, λ, c are their mean free path and 
average velocity, respectively.
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4.11.1 Pressure and Thermal Diffusion
In addition to the fact that diffusion arises when there is concentration gradient, diffusion occurs 
when pressure as well as temperature vary from layer to layer. Diffusion occurring from the cause 
of pressure gradient is referred to as pressure diffusion and that arising from the cause of tempera-
ture gradient is referred to as thermal diffusion. The experimental investigation of pressure diffu-
sion is difficult. The thermal diffusion is very important as it gives the nature of force between the 
molecules. The thermal diffusion experiments are also important from the point of view of separa-
tion of isotopes.

4.12 therMal Transpiration

Let us consider a gas enclosed in two vessels A and B at different temperatures T1 and T2, T1 > T2. The 
two vessels are separated by a heat-insulated porous plug (Fig. 4.33). Initially, the pressures are the 
same in both the vessels.

Let u1 and u2 be the densities of gas in the vessels. 
From the gas law p = ukT, we have u1/u2 = T2/T1.

The molecules from the vessel A moving to the 
vessel B are 1/4 υ1 1c  and the molecules moving from 
the vessel B to the vessel A are 1/4 υ2 2c . 

 Now,   
υ
υ

1 1

2 2

2

1

1
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2

1
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T
T

T
T

T
T

= =  (4.206)

As T1 > T2, ∴ >υ υ2 2 1 1c c ,; so, there will be a net transfer of molecules from the vessel B to vessel A,that 
is, from colder to hotter vessel. This will destroy the equality of pressure in the vessels and the pressure 
of the hotter vessel will be increased. The phenomenon in which the difference in temperature causes 
transfer of molecules is known as thermal effusion or thermal transpiration. This process will go on till 
a steady state is reached when the transfer from both sides will be equal which gives υ υ1 1 2 2c c= .The 
pressure in the two vessels will be p1 and p2 where p kT p kT1 1 1 2 2 2= =υ υand , so that 
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1

2

1 1

2 2

2

1

1

2

1

2

= = =
υ
υ  (4.207)

This phenomenon was experimentally investigated by Osborne Reynolds. He found that this relation 
holds true when the pressure is very low so that the free path is large in comparison with the dimensions 
of the pores. In the case of high pressure when the free path is not large compared to the dimensions of 
the vessel, deviation from the theory was observed.

4.12.1 Thermal Creep and the Radiometer
In 1925, Fresnel observed repulsion of a body when radiation falls on it. Later Crookes studied it thor-
oughly and devised an instrument by which the intensity of radiation falling on a vane can be measured 

Fig. 4.33 Illustrating thermal transpiration

A B

T1 T2
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from the rotation of the vane. The instrument named as Crookes’ 
radiometer consists of thin vertical mica vanes fixed at the ends of 
aluminium rods (Fig. 4.34). These rods are suspended from a tor-
sion fibre inside a partially evacuated glass vessel. The deflection 
of vanes can be read with mirror and telescope. The outer face of 
the vanes are blackened. When the radiation fall on these blackened 
vanes, the vanes rotate about the suspension. This is the radiometric 
effect.

There are different theories about the origin of radiometric force. Out 
of these theories, that due to Epstein is found to be most convincing.

The theories follow the ideas of Maxwell who suggested 
that the radiometric phenomenon is due to the thermal creep of 
the gas over unequally heated vane. This thermal creep is due to the following fact: Since front 
side of the vane is blackened, its temperature will be higher when radiation falls on it than the 
temperature of the back bright surface of the vane. The gas molecules striking obliquely upon 
the wall fall on it with higher average velocity when they come from the hotter part than when 
they come from the colder part and, hence, the wall will reflect them more strongly. As a result, 
the gas gains in tangential momentum towards the hotter side. We are giving here the results of  
Epstein for a thin circular disc. If a and d denote the radius and thickness of the disc respectively, 
then Kd and Kg denote the thermal conductivity of the disc and of the gas, I the intensity of radia-
tion falling on the disc, then the temperature difference between the centres of the two faces of the 
disc Δt is given by 

  ∆ =
+

T aI

K a
d
Kg d

2
2π
πThen, the force on the disc

  F R
Mp

T= − ∆3
2

π
η

 (4.208)

R is the molar gas constant, h the viscosity, M the molecular weight and p the pressure of the gas.
In the case of non-conducting disc, the force F is given by

  F R aI
MpK

K
g

d= − =
6 0

2η since  (4.209)

Thus, we see that the radiometric force F is proportional to the intensity of radiation.
Epstein’s formula for non-conducting disc had been put to experimental test by Gerlach and Schutz 

and was found to agree with the theory in view of so many uncertainties. 

4.13 eVidences of Molecular Motion

In the earlier part of this chapter we have developed the kinetic concept of matter on the basis of clas-
sical mechanics and deduced certain consequences which agree with observed facts. Untill 1908, no 
direct proof of the perpetual motion of molecules was available to give the kinetic theory a legitimate 
foundation.

In the year 1827, an English botanist Brown observed that fine colloidal suspensions in water 
seen under microscope were moving constantly in different directions in erratic manner apparently 

Fig. 4.34 Crookes’ radiometer
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without any rhyme and reason. The sizes of these particles were thousands of times larger than 
the size of molecules of the liquid medium. On the basis of the kinetic theory, Brown ventured 
the assumption that the motion of the suspended particles was due to unbalanced impacts of the 
surrounding molecules of the liquid medium. This led to violent controversies which terminated only 
after the quantitative experimental verification by the French physical chemist Jean Perrin in the year 
1908. Such movement of suspended particles in a fluid medium due to the molecular bombardment 
is known as Brownian motion. 

4.13.1 Characteristic Features of Brownian Motion

1. Brownian motions are completely irregular and occur in random manner. Two suspended par-
ticles in the same locality seldom move in the same direction. Further, their motions are inde-
pendent of their location in the liquid medium. Evidently, such motions are not due to eddies, 
convection or streaming motion of the liquid medium. 

2. Brownian motions are not disturbed by jerks or jarring motions of the vessel.
3. In less viscous liquids, Brownian motion is faster.
4. The smaller the size of the particle, the greater is its velocity at the same temperature.
5. Brownian motions are continuous and eternal. Colloidal suspensions of quartz in water 

trapped inside specimens of quartz thousands of years old show the same Brownian motion 
even to day. 

These facts definitely prove the validity of assumptions regarding Brownian motion. They also prove 
the fundamental assumptions of the kinetic theory that all molecules of a material medium are in per-
petual motion. 

4.13.2 Einstein and Smoluchowski’s Equation for Brownian Motion
The equation was deduced independently by Einstein and Smoluchowski about the year 1905. We shall 
here reproduce the simplified theory by Langevin. This equation gives the average value of displace-
ment of a Brownian particle in a given direction ox during a short time interval t. 

Let X be the component of the unbalanced force of impact at an instant t on a suspended particle 
acting in the direction ox. The retarding force on the particle is the viscous drag exerted by the liquid 
medium. This is proportional to the velocity of the particle and is equal to -au = -a (dx/dt) where α 
is the constant of proportionality. Let m′ be the mass of the suspended particle corrected for buoyancy. 

 Then, ′ = −m a D4
3

3π δ( )

where a is the radius of the particle, D is the density of the particle and d the density of the liquid 
medium. The equation of motion of the particle is 

  ′ = − +m d x
dt

dx
dt

X
2

2
α  (4.210)

To eliminate X, we multiply both sides of Eq. 4.210 by x so that 

  ′ = − +m x d x
dt

x dx
dt

Xx
2

2
α
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 or ′ +

























− ′m x d x

dt
dx
dt

m dx
d

2

2

2

tt
d
dt
x Xx











= − +
2

2

2
α ( )

 or ′









− ′











=m d
dt
x dx
dt

m dx
dt

2

−− +
α
2

2d
dt
x Xx( )

 or 
′

− ′










= −
m d
dt

x m dx
dt

d
dt
x

2 2

2

2
2

2
2( ) ( )α

++ Xx  (4.211)

In a large number of displacements of the particle, Xx is as often positive as negative. Hence, its 
average value is zero.

Applying equipartition principle to Brownian motion, the average kinetic energy of the particle is 

  1
2

1
2

1
2

2

KT RT
N

m dx
dt

= = ′










where N is the Avogadro’s number. 
Putting Xx= 0 in differential Eq. 4.211 the average value takes the form 

  
′

− = −
m d
dt

x RT
N

d
dt
x

2 2

2

2
2 2( ) ( )α

 (4.212)

where x2 is the average value of x2 over a long interval of time.

 Putting z d
dt
x= ( )2 ,

Eq. 4.212 becomes

  
′ 









= −
m dz

dt
RT
N

z
2 2

α

 or 
′ 









= −
m dz

dt
RT
N

z
α α

2

Putting           χ
α

χ
α

χ
χ= − =

′
= −z RT

N
d
dt

dz
dt

m d
dt

2 ,we have and

we have                          χ
α

χ
α

χ
χ= − =

′
= −z RT

N
d
dt

dz
dt

m d
dt

2 ,we have and

 or     d
m

dtχ
χ

α
∫ ∫= −

′

 or log loge eχ
α

= −
′
+
t
m

c
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where loge c is the constant of integration. Then,

  χ
α

α α

= = +
−

′
−

′ce z RT
N

ce
t

m
t

mor 2

 or 
d
dt
x RT

N
ce

t
m( )2 2

= +
−

′

α

α

 (4.213)

By Stokes’ law of terminal velocity of fall of a sphere of radius a through a liquid of viscosity h 
  α = 6pha (4.214)

 Neglecting buoyancy ′ =m a4
3

3π , putting D = 1

 and α
η

t
m

a t
′
= −4 5 2.

The radius of the suspended particles is of the order of 1024 cm and h for water is about 0.01, then 
the exponential factor in Eq. 4.213 is e-4.5 × 10-6 t which can be neglected. Restricting ourselves to finite 
intervals of 1024 sec, represented by t, Eq. 4.213 may be written as

  ∆
=

x RT
N

2 2
τ α

 (4.215)

Substituting the value of α from Eq. 4.214 we write

  ∆
=

x RT
N a

2 2 1
6τ πη

 (4.216)

N can be determined if h and a are known from Eq. 4.216. Now the validity of Stokes’ law in 
Eq. 4.214 is not unquestionable. Further there is some uncertainty in the experimentally determined 
value of a, the radius of the suspended particle. The radius a of the particles can be determined by 
the methods explained in connection with Perrin’s method of determination of Avogadro number. 

4.13.3 Brownian Motion in Gases
By strongly illuminating air charged with fine particles such as tobacco smoke and observing these par-
ticles through a microscope transversly to the direction of the illuminating beam, it has been possible to 
detect Brownian motion of the particles suspended in air. Millikan used this technique for determination 
of charge on the electron. For this purpose, fine drops of oil charged with electricity were suspended in 
air in the space between two plates of an electric condenser placed horizontally. These particles were 
subjected simultaneously to gravitational and electrical force in the vertical direction. If the electrical 
field was opposed to the gravitational field, the vertical motion of the particles was retarded; if they 
were in the same direction, their motion was accelerated. If the opposing electric field just neutralized 
the gravitational filed, there was no fall of the particle in the vertical direction. Under this condition, 
the Brownian motion of the suspended oil drops as the impact of the surrounding air molecules could 
be observed through a low power microscope when the line of sight was perpendicular to the direction 
of the illuminating beam and to the gravitational filed. The positions of the drops after successive equal 
intervals of time t were noted on a graph paper by the camera lucida method described in the next sec-
tion. From these observations, ∆x2 could be determined. To eliminate the uncertainty about the Stokes’ 
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law and the error in the measured value of a, the following method was applied. In the first step, an 
opposing electric field was applied. Let v1 and v2 be the terminal velocity in these two cases. The equa-
tion of motion in the first step is 

  ′ =m g vα 1  (4.217)

and in the second step, it is 

  Ene m g v− ′ = α 2  (4.218)

where E is the applied electric field and ne is the number of units of electronic charge captured by the 
oil drop. Adding Eqs 4.217 and 4.218,

  α =
+
Ene
v v1 2

Substituting the value of α in Eq. 4.215, we get 

  ∆
=

+x RT
N

v v
Ene

2
1 22

τ
 (4.219)

Equation 4.219 removes in one stroke the uncertainty in the assumption of validity of Stokes’ law as 
well as the error in the experimentally determined value of the radius of the oil drop. The measurement 
of Avogadro’s number N was carried out by this method with the help of Eq. 4.219 by Millikan and 
Fletcher in 1911.

Perrin’s experimental method of observation of Brownian motion: For this purpose, a colloidal 
suspension was prepared by dissolving a small quantity of powdered gum gamboge or mastic in alcohol 
and pouring a small quantity of this solution in large volume of water. This gave spherical molecules of 
different sizes. Perrin separated particles of one size from this group by fractional centrifuging. A thin 
glass plate having a thickness of about 0.1 mm was bored with a large hole and cemented to a glass slide 
thereby forming a shallow cylindrical vessel. A drop of the emulsion was placed inside the hole and 
then covered over by microscope cover glass. The emulsion spread in the form of a fine film. This was  
illuminated from one side by a powerful lamp. The rays passed through a water cell to absorb the heat 
rays to prevent convection current within the cell. The particles were seen through a microscope trans-
versely to the direction of the illuminating beam. Seen through the microscope, the colloidal particles 
appeared as fine specks of light moving hither and thither on account of unbalanced impacts of surround-
ing water molecules. The successive positions of a single particle after equal intervals of time t were 
indicated by pencil dots on a squared paper f ixed to a frame. This was viewed simultaneously with the 
Brownian particle by the camera lucida method illustrated in Fig. 4.35. This gave a number of zigzag 
paths. The successive displacements were projected on the axis ox. The mean square value ∆x2 were 
computed from the graph. 

From this value of ∆x2 , the Avogadro’s number can be determined with the help of Eq. 4.219.
Perrin verified Eq. 4.216 for different values of T, a, h and t, from the observed value of ∆x2  at 

different temperatures for different values of radii of the particles, with different liquid media and for 
different time interval t.
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Distribution of particles of emulsion in the gravitational field: The law of distribution of mol-
ecules of the atmosphere under the action of gravity was first deduced by Laplace. Perrin writes, “It 
appeared to me almost intuitively that the granules of the emulsion should distribute themselves as a 
function of the height in the same manner as the molecules of a gas under the influence of gravity.” This 
law of distribution was deduced by Perrin as follows. 

Let the emulsion be contained in a cylinder of uniform cross section S (Fig. 4.36). Under the action 
of gravity, the suspended particles of the emulsion move downwards. 

This is opposed by the viscous resistance of the liquid medium in which the particles are suspended. 
As a result, the number density of the particles increases downwards from the top towards the base of the 
cylinder. This gives rise to change in the osmotic pressure which also increases downwards from the top.

Let n be the number of particles per cc at height h from the base of the cylinder. Then, the number 
at height (h + dh) is (n 2 dn). The downward force on the particles due to gravity is opposed by the 
difference of osmotic pressure at these two heights. The law of osmosis is the same as the law of perfect 
gas, so that the osmotic pressure at height h is 

  P nW=
2
3

where W is the mean energy of a granule. The osmotic pressure at 
height (h + dh) is

  P dP n dn W+ = −
2
3

( )

Hence, the difference of osmotic force at the two heights is 

  −
2
3
dnSW

This must be equal to the weight of the granules between the two 
layers at heights h and (h + dh) corrected for buoyancy of the liquid 
medium. Let v be the volume of a single molecule, ρ its density and 

Fig. 4.35 Perrin’s apparatus and his experimental observation
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O
X
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Fig. 4.36 Perrin’s theory for 
distribution of particles 

of emulsion in the 
gravitational field

h
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let d be the density of the liquid medium. Then, the effective weight of the granules between the two 
layers is 

  nSv gdh( )ρ δ−

 Hence,   − = −
2
3
dnSW nSv gdh( )ρ δ

 or − = −
2
3
W dn
n

v gdh( )ρ δ

Integrating between 0 and h where the concentrations are n0 and n, we get

  
2
3

0W n
n

v ghlog ( )e = −ρ δ  (4.220)

 or n n
W
v gh= − −











0
3

2
exp ( )ρ δ

This gives the concentration n at the height h from the base of the cylinder. In deducing this equa-
tion, Perrin assumed that the mean energy of a granule of emulsion is the same as that of a molecule of 
a perfect gas at the same temperature. Thus, the law of perfect gas extended by Vant Hoff to solutions 
was extended to emulsions by Perrin. According to kinetic theory of gases,

  W KT RT
N

= =
3
2

3
2

Substituting the value of W in Eq. 4.220, we get

  2 303 4
3

0 3. log ( )RT
N

n
n

a g h= −π ρ δ  (4.221)

where a is the radius of the granule. From Eq. 4.221, the value of the Avogadro’s number N can be 
determined. At two different depths h1 and h2 measured from an arbitrary depth, Eq. 4.220 is reduced to 
the following form:

  2 303 4
32 1

3
1 2. (log log ) ( )( )RT

N
n n a g h h− = − −π ρ δ  (4.222)

where n1 and n2 are the number of particles per cc at depths h1 and h2. 

Determination of Avogadro’s number by Perrin’s method: This was determined from Eq. 4.222. 
The colloidal particles of gamboge or mastic all of the same size were obtained by centrifuging as al-
ready explained. These were placed in small cells maintained at constant temperature by water baths on 
the stage of a microscope of very small depth of focus. Starting from an arbitrary depth in the solution 
and by reducing the field of view, the numbers n1 and n2 of particles at different depths h1 and h2 were 
counted. The numbers n1 and n2 were also obtained from microscopic photographs of the particles at 
different depths.

To obtain the value of a, the radius of the particles, a small quantity of dilute suspension was evapo-
rated in a glass dish. The capillary forces of the liquid caused the particles to run together more or less 
in rows or sheets of one particle depth. The diameter of the particles was measured by determining 
the length covered by a number of particles lying side by side in a line and dividing this length by the 
number of particles counted.
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The density ρ of the suspended particles was determined by the pycnometer method. For this purpose, 
the pycnometer was first filled with distilled water and weighed; then, it was filled with the emulsion and 
reweighed. The emulsion was next evaporated to dryness and desiccated at 110 8C and weighed; from 
these measurements, the density of the gum was determined. The density was also determined directly 
from the fused dry gum. The two densities should be equal unless they were changed by suspension in 
water. 

The value of N obtained by Perrin by this method was N = 6.5 3 1023. 

solVed probleMs

Q1. Calculate the root mean square (RMS) velocity of an oxygen molecule at 0 8C given the gram 
molecular mass of the gas is 32 gm and the molar gas constant R is 8.32 3 107 ergs per mole 
per degree. At what temperature will the RMS velocity of the gas have the same magnitude as 
the velocity of sound in air, that is, 332 metres per sec? 

  
Ans. The RMS velocity  =

3RT
M

  =
× × ×3 8 32 10 273

32

7.

  = ×4 62 104. cm/sec
 Let the required temperature be T K, then 

  =
× × ×

=
3 8 32 10

32
33200

7. T

 ∴     T =
× ×

× ×
=

33200 33200 32
3 8 32 10

1417.
K

Q2. At what temperature will the average speed of hydrogen molecules be the same as that of 
nitrogen molecules kept at 35 8C? Molecular weight of nitrogen is 28 atomic unit and that of 
hydrogen is 2 atomic unit.

Ans. The average speed of nitrogen molecules at 35oC is 

  =
× ×

×
8 308

28
R

π
 Let the temperature of hydrogen molecules be T K, at which the average speed is 

  =
× ×

×
8

2
R T

π

  =
× ×

×
=

× ×
×

∴ =
8

2
8 308

28
22R T R T

π π
K
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Q3. The density of air at NTP is 0.00129 gm/cc. Calculate the RMS velocity at NTP.

Ans. We know, that c p
= =

× × ×3 3 76 981 13 6
0 00129ρ

.
.

  = ×4 86 104. cm/sec
Q4. The normal density of hydrogen at NTP is 0.000089 gm/cc. What is the RMS velocity of oxy-

gen at NTP?

Ans. Density of oxygen = 16 3 0.000089

   c
p

= =
× × ×

×
3 3 76 981 13 6

16 0 000089ρ
.

.

  = ×4 62 104. cm/sec

Q5. Calculate the kinetic energy of a molecule of hydrogen at 0 8C.

Ans. Taking 1 mole of the hydrogen

  PV RT mNc N mc NE= = = =
1
3

2
3

1
2

2
3

2 2 , where E is the energy of one molecule

 ∴      E
RT
N

= = ×
× ×

×
3
2

3
2

8 31 10 273
6 03 10

7

23

.
.

   = × −5 68 10 14. erg

Q6. Find the kinetic energy of 1 gm of oxygen at 47 8C.

Ans. For 1 gm-mole of oxygen, PV RT E= =
2
3

 Where E is the energy of 1 gm-mole 

  E RT=
3
2

 Then for 1 gm, the kinetic energy =
1

32
3
2
RT

  =
× × ×

= ×
3 8 31 10 320

64
1 24 10

7
9. . ergs

Q7. At what temperature will the RMS velocity of oxygen be one and half times its value at NTP?

Ans. We know PV = RT = 1/3 mNc2, for 1 gm-mole

  c T c T c
c

T
T

α αand 1 1
1 1∴ =

  c c T1
3
2

273= =and

 ∴ T T c
c1

1
2

2

9
4

273 614 3= = × = . K
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Q8. What is the kinetic energy of 2 gm-moles of an ideal gas occupying a volume of 5 litres under 
a pressure of 10 atmospheres?

Ans. For 1 gm-mole PV RT E= =
2
3

 where E is the energy of 1 gm-mole 

  E RT PV= =
3
2

3
2

 For 2 gm-moles, the energy = 3 PV

  = × × × × × ×3 10 5 76 981 13 6 1000. ergs

  = ×1 52 1011. ergs

Q9. Calculate the molecular energy of 1 gm of hydrogen at 50 8C, given that the molecular weight 
of hydrogen is 2 and the gas constant R is 8.3 3 107 ergs per degree per gm. mol. 

 
Ans.  Molecular energy per gm-mole =

3
2
RT

  = × × ×
3
2

8 3 10 3237.

  Again molecular weight of hydrogen being 2 gm, molecular energy of 1 gm of hydrogen is 

= × × × × = ×
1
2

3
2

8 3 10 323 2 107 10. ergs ergs.

Q10. At what temperature, pressure remaining constant, will the RMS velocity of hydrogen be dou-
ble of its value at NTP?

 
Ans. At NTP, RMS velocity of hydrogen =

×3 273R
M

 At temperature T K, the RMS velocity =
×3R T
M

 So, = = ×
×3 2 3 273RT

M
R
M

 ∴ 
3 4 3 273RT
M

R
M

= ×
×

  T = 1092 K
Q11. Calculate the RMS velocity of the molecules of hydrogen at 0oC and 100oC from the following 

data:
 Density of hydrogen at NTP = 0.0000896 gm/cc.

Ans. At NTP, RMS velocity = =
× × ×

= ×
3 3 76 13 6 981

0 0000896
1 84 105p

ρ
.

.
. cm/sec
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 If C0 and C100 be the RMS velocity at 0oC and 100oC respectively, then 

  
C
C

100

0

373
273

=

 ∴ C C100 0
5 5373

273
1 84 10 373

273
2 154 10= = × = ×. . cm/sec

Q12. Calculate the root mean square velocity of molecules of a gas for which the specific heat at 
constant pressure is 6.84 calories per gm-mole per degree celsius, the velocity of sound in the 
gas being 1,300 metres per sec. R = 8.31 3 107 ergs/gm.mole/ 8C

Ans. We know that C C R
Jp v− =

 or C C R
Jv p= − = −

×
×

=6 84 8 31 10
4 2 10

4 86
7

7
. .

.
.

 Again, γ = = =
C
C
p

v

6 84
4 86

1 408.
.

.

 The velocity of sound in a gas is given by 

  v p
=

γ
ρ

 ∴     
p v
ρ γ

= = = ×
130000

1 408
1 095 105

.
.

 RMS velocity = = × × = ×
3 3 1 095 10 1 898 105 5p
ρ

. . cm/sec

Q13. Calculate the average velocity of a molecule of oxygen at 27 8C in miles per hour, if Avogadro’s 
number is 6.02 3 1023 and Boltzmann’s constant k is 1.38 3 10216 erg/degree.

Ans. Mass of each molecule of oxygen =
×
32

6 02 1023.

 The average velocity = 8 8 1 38 10 300 6 02 10
3 14 32

16 23kT
mπ

=
× × × × ×

×

−. .
.

  = 44540 cm/sec = 997 miles/hour.
Q14. If three particles have velocities 2.4, 2.6, and 3.7 km per second respectively, calculate the ratio 

of the root mean square velocity to the mean velocity.

Ans. RMS velocity of the particles =
+ +

=
2 4 2 6 3 7

3
2 956

2 2 2. . . . km/sec

  Mean velocity km/sec=
+ +

=
2 4 2 6 3 7

3
2 9. . . .

  
RMS velocity 
Mean velocity  

= =
2 956
2 9

1 019.
.

.

Chapter 04.indd   140 4/5/2011   8:14:56 PM



Kinetic Theory of Gases   141

Q15. Calculate the mean free path in helium at 0oC and standard atmospheric pressure, being given 
that the number of molecules per cc is equal to 2.76 3 1019 and the diameter of a helium mol-
ecule is equal to 3.36 3 1028 cm.

Ans.  λ
πσ

= =
× × × × ×−

1
2

1
1 414 3 14 3 36 10 2 76 102 8 2 19n . . ( . ) .

  = × −7 23 10 6. cm.

Q16. Calculate the mean free path, collision rate, molecular diameter of hydrogen gas, given  
η = 85 3 1026 dynes per square centimetre per unit velocity gradient, c = 16 3 104 cm/ sec and 
ρ = 0.000089 gm/cc.

 
Ans. We know that  η ρ λ=

1
3

c

 ∴           λ η
ρ

= =
× ×

× ×
= ×

−
−3 3 85 10

0 000089 16 10
1 79 10

6

4
5

c .
. cm

 Collision rate     = c
λ

=
×
×

= ×
−

16 10
1 79 10

8 9 10
4

5
9

.
.

 Again,      λ
πσ

=
1

2 2n
 

 ∴          σ
π λ

=








 =

× ×
×

× ×



−

1
2

1

1 414 3 14 6 06 10
22400

1 79 10

1
2

23
5n . . . .











1
2

       = 2.2 3 1028 cm

Q17. The diameter of the molecule of a gas is 2 3 1028cm. Calculate the mean free path at NTP, 
given k = 1.38 3 1026 erg per degree.

Ans. We know that λ
πσ

=
1

2 2n
 Again,   p = nkT

 ∴         λ
πσ

= =
× ×

× × × × × ×
=

−

−

kT
p2

1 38 10 273
1 414 3 14 4 10 76 13 6 981

2 1
2

16

16

.
. . .

. ×× −10 5 cm.

Q18. The viscosity of oxygen at a temperature of 15 8C is 196 micropoise. Calculate the diameter of 
a molecule of the gas. Avogadro’s number is 6.02 3 1023 and molecular weight of oxygen is 32. 

 k = 1.38 3 10216 erg per degree.
Ans. We know that the average velocity, 

c kT
m

=
8
π
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 where m = mass of a molecule 

 =
×
32

6 02 1023.
gm.

 ∴ c =
× × × × ×

×

−8 1 38 10 288 6 02 10
3 14 32

16 23. .
.

 

  = 4.65 3 104 cm/sec

 Again, η ρ λ ρ
πσ πσ

= = =
1
3

1
3

1
2 3 22 2

c c
n

mc

 ∴     σ
π

=








 =

× ×
× × × × ×

mc
n3 2

32 4 65 10
6 02 10 3 1 414 3 14 19

1
2 4

23

.
. . . 66 10 6

1
2

×









−

  = × −3 08 10 8. cm.

Q19. At what pressure would an oxygen molecule have a mean free path equal to 15 cm? The tem-
perature of the gas can be taken to be equal to 27 8C and the diameter of the molecule equal to 
3 3 1028 cm. Avogadro’s number is 6.02 3 1023 and the gas constant R is 8.31 3 107 ergs per 
mole per degree. 

Ans. We know that λ
πσ

=
1

2 2n
 Again, p = nkT

  λ
πσ πσ

= =
kT

p
RT

N p2 22 2

 ∴  p
RT

N
=

2 2πσ λ

  =
× ×

× × × × × −

8 32 10 300
6 02 10 1 414 3 14 3 10

7

23 8 2

.
. . . ( ) ××15

                   = 0.692 dynes/sq.cm.

Q20. Calculate Avogadro’s number from the following data: 

  Kinetic energy of a molecule of hydrogen at 0 8C is 5.64 3 10214 ergs and molar gas constant = 
8.32 3 107 ergs.

Ans. We know that 
1
3

2mNc RT=

 
∴

                 
N RT

mc
RT

mc
= = =

× × ×
× ×

= ×−

3 3

2 1
2

3 8 32 10 273
2 5 64 10

6 08 102
2

7

14
23.

.
.
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Q21. A shower of 5,000 molecules, each originally moving with the same velocity, traverses a gas. 
Calculate the number which will be travelling undeflcted even after traversing distances equal 
to 0.5 and 1 time the mean free path.

Ans. We know that  p qe
x

=
−

λ

 where q = total number of molecules

  p = number of molecules having no collision in traversing a distance x.

 Then, p e e= = = =
−

5000 5000 5000
1 6487

3033
0 5

0 5
.

.

.

λ
λ /

 Again, p e
e

= = = =
−

5000 5000 5000
2 7183

1840
λ
λ

.
Q22. Prove that the mean kinetic energy of a monatomic molecule corresponding to a temperature 

38380 K is about 5 electron volts.

Ans. Mean kinetic energy per atom 

  =
3
2
kT

  = × × ×−3
2

1 38 10 3838016. ergs

  =
× × ×

× ×

−

−

3 1 38 10 38380
2 1 6 10

16

12

.
.

ev

  = 4.97 ev
Q23. Determine the mean free path and collision frequency for air molecules at NTP given that the 

viscosity is 1.7 3 1024 cgs unit and the density 1.29 gm per litre.

Ans. RMS velocity = =
× × ×

= ×
3 3 76 13 6 981

0 00129
4 86 104p

ρ
.

.
. cm/sec

 Mean free path = = =
× ×

× ×
= ×

−
−λ

η
ρ
3 3 1 7 10

0 00129 4 86 10
8 1 10

4

4
5

c
.

. .
. cm.

 Collision frequency = =
×

×
= ×

−

c
λ

4 86 10
8 1 10

6 10
4

5
9.

.
Q24. In an absolute manometer the temperature of the two plates are 23.4 8C and 31.7 8C, the sur-

rounding gas being maintained at the temperature of the cold plate. If the cold plate is repelled 
with a force of 1.6 3 1022 dynes/cm2, calculate the pressure of the gas.

Ans. Here, T2 273 23 4 296 4= + =. . K

  T1 273 31 7 304 7= + =. . K

 We know, pressure =
−

4 2

1 2

F
T

T T
dynes/cm2

  =
× × ×

=
−4 1 6 10 296 4

8 3
228 6

2
2. .

.
. dynes/cm
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Q25. Estimate the size of a helium atom assuming its mean free path to be 28.5 3 1026 cm at NTP 
given that the density of helium is 0.178 gm per litre at NTP and the mass of helium atom is  
6 3 10224 gm.

 
Ans. We know, λ

πσ
=

1
2 2n

 ∴    σ
π λ

=










1
2

1
2

n

  = 6 10
1 414 3 14 000178 28 5 10

24

6

×
× × × ×










−

−. . . .


1
2

  = 1 69 10 8. × − cm.

Q26. Observation of the Brownian movement in water showed that the horizontal displacement of 
a given particle in 11 successive intervals of 30 seconds were 0, 5.6, 24.7, 210.8, 6.6, 29.8, 
211.2, 24.0, 15.0, 19.1, 16.0 3 1024 cms. The temperature was 20 8C at which viscosity of 
water = 0.0100 cgs unit, radius of the particle is 1.15 3 1025 cm. 

 If R = 8.32 3 107, obtain the value of N.

Ans. We know that  x
RT
N a

2 1
3

=
πη

τ

 Now, x2
2 2 2 2 2 20 5 6 4 7 10 8 6 6 9 8

=
+ + + + + +[ ( . ) ( . ) ( . ) ( . ) ( . ) (( . ) ( ) ( ) ( . ) ( ) ]11 2 4 15 19 1 16 10

11

2 2 2 2 2 8+ + + + × −

  = × −1 18 10 6.

 ∴     N
RT
x a

=
2 3

τ
πη

   =
× × ×

× × × × × ×− −

8 32 10 293 30
1 18 10 3 3 14 0 01 1 15 10

7

6 5

.
. . . .

  = ×5 7 1023.

Q27. Calculate the fractional change in the number of helium atoms in the velocity range of 999.5 
to 1000.5 metres per second, when a given mass of the gas is heated from 100 K to 900 K at 
constant volume. Assume k = 1.38 3 10216 erg units and the mass of the helium atom = 6 3 
10224 gms.

Ans. Let n be the number of molecules per cc.

 c = 1000 metres/sec = 105 cm/sec

 dc = 1 metre/sec = 100 cm/sec

 The number of molecules per cc at temperature 100 K

  dn n m e
m

100

3
2 10

2 1004
2 100

1
10

=










−

π
πk

k 00 1010 2
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 The number of molecules per cc at temperature 900 K

  dn n m e
m

900

3
2 10

2 9004
2 900

1
10

=








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π
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k 00 1010 2
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=











−

π
πk

kk

k

k

900 12

3
2 10

2 1

10

4
2 100

10

π
π

n m e
m









−
000 1210

  =








−






m

m
e
m2 100

2 900

3
2

10 1
2

1
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×
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8
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e .
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1
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8
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probleMs

Q1. Calculate the RMS velocity of hydrogen at 300 K. The Boltzmann constant is 1.38 3 10216 ergs 
per degree and mass of the hydrogen molecule is 3.34 3 10224 gm.

Ans. 19.3 3 104 cm/sec
Q2. Calculate the RMS velocity of nitrogen at 0 8C. The density of nitrogen at NTP is 1.25 gm/litre.

Ans. 4.93 3 104 cm/sec
Q3. Calculate the RMS velocity of the molecules of a gas whose density is 1.4 gm/litre at a pressure 

of 76 cm of mercury. Density of mercury = 13.6 gm/cc and g = 980 cm/sec2.
Ans. 4.66 3 104 cm/sec

Q4. Calculate the molecular kinetic energy of 1 gm of hydrogen at 0 8C (R = 8.32 × 107 ergs /mole/
degree).

Ans. 17 3 109 ergs
Q5. One cc of oxygen weighs 0.00144 gm at NTP Find the RMS speed of an oxygen molecule  

at 100 8C.
Ans. 5.37 3 104 cm/sec

Q6.  The density of helium is 0.178 gm per litre at NTP. What is the RMS velocity of helium mol-
ecules under these conditions? Compare it with the velocity at 200 8C.

Ans. 1.306 3 105 cm/sec; 1:1.316
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Q7. Calculate the RMS velocity of a gas of molecular weight m at 0 8C and at 100 8C, given density 
of mercury = 13.6 gm/cc.

Ans. cm/sec, cm/sec2 6 10 3 105 5. × ×

m m

Q8. Find the mean free path, frequency of collision and the molecular diameter of nitrogen gas, 
given h = 166 × 1026 dynes per square centimetre per unit velocity gradient, c = ×4 5 104. cm 
per sec and ρ = × −1 25 10 3. gm per .cc

Ans. 9 3 1026 cm, 5 3 109 per sec, 3 3 1028 cm
Q9. Express in electron volt the mean kinetic energy per atom in a gas at a temperature 3940 K.

Ans. 0.5 ev
Q10. A shower of 1,000 molecules, each originally moving with the same velocity traverses a gas. 

Calculate the numbers which will be traveling undeflected even after traversing distances equal 
to 0.2, 0.5, 1 and 2 times the mean free path.

Ans. 819, 607, 368, 135

Q11. The density of oxygen at NTP is 1.423 gm per litre. Calculate the value of RMS velocity given 
that g = 981 cm/sec.

Ans. 4.624 3 104 cm/sec

Q12. The RMS velocity of a gas enclosed in a chamber is 5 3 104 cm/sec at 27 8C and standard at-
mosphere pressure. Calculate the density at NTP.

Ans. 0.00127 gm/cc
Q13. In a Knudsen manometer, the two plates are maintained at 22 8C and 32 8C and the surrounding 

gas is at a temperature of the cold plate. Calculate the pressure of the gas if the repelling force 
on the cold plate is 0.02 dyne/cm2.

Ans. 2.36 dynes/cm2 

Questions

1. State the basic assumptions of the kinetic theory of gases and prove that the pressure exerted by 
a perfect gas is two-thirds its kinetic energy per unit volume. 

2. Outline the essential features of the kinetic theory of gases. Find an expression for the pressure 
of a gas on the basis of kinetic theory.

3. Outline the essential features of the kinetic theory of gases and apply it to account for the simple 
gas laws. What is the interpretation of temperature on this theory? 

4. What are the fundamental assumptions on which the kinetic theory of gasses is based? 
   Explain what is meant by root mean square velocity of a gas. Deduce the relation connecting 

the root mean square velocity, pressure and density of a gas.
5. Explain (a) degree of freedom, and (b) equipartition of energy. Show that the average energy 

of translation of the molecules of an ideal gas is 3/n of their total energy. Deduce the formula 
you would use for the purpose. (The ratio of specific heats of a gas at constant pressure and at 
constant volume is (1+2/n) where n = number of degrees of freedom.)
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6. Deduce Maxwell–Boltzmann law of distribution of velocities of molecules for an ideal gas. 
Give a description of the method of verification of law.

7. State and explain the Maxwell–Boltzmann distribution law for the velocities of molecules in 
a gas. Deduce the value of the average and the RMS velocities of the molecules from the con-
stants of the distribution law. Describe an experiment for the verification of this law. 

8. State the law of equipartition of energy. Prove that for a monatomic gas, the value of g, the ratio 
between the specific heats, is 5/3 and for a diatomic gas it is 7/5.

9. Give a brief account of the law of equipartition of energy. Why is the average energy corre-
sponding to a vibrational degree of freedom double that of a translational degree of freedom?

10. State and deduce the law of equipartition of energy. Show how you can use the law to calculate 
the specific heat of gases, and hence find the value of g for diatomic and triatomic gasses. 

11. What is the meaning of mean free path of a molecule of a gas? Show that it is equal to 1/pns2 
where n is the number of molecules per cc and s is the diameter of a molecule. Show that the 
mean free path is inversely proportional to pressure. 

12. Explain what is meant by the ‘mean square velocity of the molecules of a gas’ and their ‘mean 
free path’. Show how these two quantities can be found.

13. State clearly what do you understand by the principle of equipartition of energy. Explain the 
term ‘degrees of freedom’ in this connection. How is energy partitioned, when the temperature 
is low? Show that there is no real contradiction between this and the principle of equipartition.

14. Explain from kinetic theory the concept of temperature. Derive an expression for the pressure 
of a gas introducing the concept of mean free path.

15. Deduce from the law of distribution of free path l = 1/ps2n the notations being usual. What is 
the value of l according to Maxwell’s law of distribution of molecular velocities?

  Describe a direct method of experimentally determining the value of l.
  Explain the physical interpretation of temperature in the light of kinetic theory of gases. 

16. Show, from the kinetic theory of gases, that K = h cv where K is the thermal conductivity, cv is 
the specific heat at constant volume and h coefficient of viscosity. Is the relation sufficiently 
confirmed by experiment? If not, what do you think are the reasons?

17. Explain what is meant by the degrees of freedom of a mechanical system. Show that if a mol-
ecule of a gas has n degrees of freedom, the ratio g of its principal specific heats is given by 
1+2/n.

18. Define coefficient of viscosity. Explain how kinetic theory accounts for the viscosity of a gas. 
Deduce and discuss the variation of viscosity with temperature. 

19. Explain the term ‘mean free path’; show that at constant temperature, the mean free path in a 
gas is inversely proportional to its density. Describe an experimental arrangement for the direct 
determination of the mean free path in a gaseous medium. Use the idea of free path to calculate 
the pressure exerted by a perfect gas. 

20. How will you explain the pressure and the viscosity of a gas on the basis of kinetic theory of 
gases? What do you mean by the average velocity and RMS velocity of the molecules of a gas 
at NTP? 

21. Explain clearly the origin of viscosity and thermal conductivity in a gaseous medium. Show 
that K/h cv = 1, where K is the thermal conductivity, h the coefficient of viscosity and cv the 
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specific heat at constant volume. Discuss the relation in the light of experimental results and 
indicate the manner in which one can obtain a better relation.

22. Explain the significance of the RMS, the mean and the most probable velocity and obtain ex-
pressions for them using Maxwell’s law. Indicate how some of the concepts have been used in 
deducing the theory of Knudsen’s absolute manometer. 

23. State the importance of Brownian motion in the development of the molecular theory of heat. 
Give the theory of the translational Brownian motion and describe how this has been used to 
determine Avogadro’s number. What are the possibilities of such measurements with gases?

24. (a)  State the fundamental postulates of the kinetic theory of matter. Discuss the basic concept 
of temperature.

 (b)  Deduce an expression for the thermal conductivity of a gas from the kinetic theory. Explain 
why thermal conductivity of a gas becomes pressure dependent at low as well as high 
pressures.

25. Write down Maxwell’s law of distribution of molecular velocities and explain the symbols you 
use. Indicate graphically how the distribution changes with rise of temperature and pressure.

26. Investigate the relation between the coefficient of thermal conductivity (K) and viscosity (h) of 
a gas and show that K = h cv, where cv is the specific heat at constant volume.

27. Deduce an expression for the thermal conductivity of a gas from kinetic theory. How would you 
actually proceed to determine the conductivity of any particular gas?

28. On the basis of kinetic theory, deduce an expression for the viscosity of a gas in terms of the 
mean free path of its molecules. Show that it is independent of pressure but depends upon the 
temperature of the gas.

29. Calculate the values of the two specific heats Cv and Cp of both monatomic and diatomic gases 
by applying Boltzmann’s law of equipartition of energy. 

30. Deduce an expression for the self-diffusion coefficient from the kinetic theory consideration. 
Discuss its variation with temperature and pressure.

31. What is Brownian motion? Describe a suitable arrangement for the demonstration of Brownian 
motion of the particles in a liquid, and give reasons for the conclusion that the motion is the result 
of irregular impacts on the particle by the molecules of liquid in heat motion. Give a brief survey 
of Perrin’s work on Brownian motion and his determination of N on the basis of his results.

32. Derive Einstein’s equation for Brownian motion of suspended particles assuming that the  
motion is due to series of impulses given by the surrounding molecules. Explain how N can be 
determined from it. 

33. Clearly explain the meaning of the term ‘mean free path’. Obtain an expression for the mean 
free path of a Maxwellian gas. Describe an experiment for measurement of mean free path of 
a gas.

34. Show with the help of the kinetic theory that the pressure of a perfect gas is directly propor-
tional to the translational kinetic energy per unit volume. Hence, deduce (i) Avogardro’s law 
and (ii) the law of partial pressures.

35. What is Brownian motion? Show how Avogadro’s number can be determined from the observa-
tion of this motion. Describe the experiment.
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Chapter 5

5.1 Equation of StatE of PErfEct GaS

A perfect gas (or ideal gas) can be defined as a gaseous mass which obeys the following relation

  
pv
T

R=  (5.1)

where p is the pressure (in dynes per square centimetre) exerted by a given mass of the gas occupy-
ing a volume v at absolute temperature T. R is a constant which depends on the mass of the gas and is 
independent of its pressure, volume and temperature. The mathematical relation connecting the three 
thermodynamic parameters p, v, and T of a substance is called its equation of state. The state of the gas 
represented by Eq. 5.1 holds approximately for the so-called permanent gases which cannot be lique-
fied under pressure however high the pressure is. We now know that all gases (including the so-called 
permanent gases) have been liquefied under the joint action of reduction of temperature and increase 
of pressure. 

This perfect gas equation was put to experimental test by scientists working with different gases, and 
it was found that deviation occurs for all gases. Works of Regnault, Andrews, Amagut, Holborn, Nat-
terer, Cailletet, K. Onnes, etc. in this field may be mentioned here. It was Regnault who showed that no 
gas in nature obeys Boyle’s law for all temperatures and pressures. We shall describe here in detail the 
experiment of Andrews. 

The apparatus used by him is shown in Fig. 5.1. ABCD is a capillary glass tube of which portion BC is 
wider, the end A is closed while the end D is open. This contains pure and dry CO2 gas trapped by a mer-
cury pellet M, the volume of which at N.T.P. is known. A1B1C1D1 is a similar tube but containing pure and 
dry air trapped by the mercury pellet M1. Both the tubes are calibrated; they are kept in two strong copper 
tubes, the ends of which are fixed by massive brass flanges and made air tight by leather washers.

Two steel screw plungers S and S1 are filled through the lower end of the copper tubes. The copper 
tubes contain water; they are interconnected through E. By screwing S and S1 into the water, pressure 
is produced and the applied pressure is calculated from the volume of air, the initial volume of which at 
N.T.P is known. For this, air is supposed to obey the law pv = RT. CO2 in the tube ABCD is surrounded 
by a bath, whose temperature can be varied at will. Starting from low temperature, CO2 is subjected 

EQUATIONS OF STATE
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150  Heat and Thermodynamics

to different pressures and the corresponding volumes are noted. 
Such observations are repeated at different temperatures. The re-
sults of the experiment were represented graphically by Andrews 
as shown in Fig. 5.2.

We see that the curves at lower temperatures are different from 
those at high temperatures. Considering the curve at 13.1 8C, we 
see that starting from low pressure if we increase the pressure of 
CO2 gas, its volume diminishes untill we reach the point B where 
the gas begins to liquefy. Within the range of liquefaction from B 
to C, the pressure is independent of volume so that its behaviour 
is that of a saturated vapour. After this we see that though the 
pressure is increased, there is a little change in volume which 
indicates that the liquid is highly incompressible.

Next, we consider the isothermal corresponding to 21.5 8C. At this 
temperature the gas behaves in the same way as that at 13.1 8C, the 
only difference being the straight portion B′C′ is shorter than that at 
13.1 8C. The state of affairs continues as the temperature is increased 
till we reach the isothermal at 31.1 8C where the horizontal portion 
just disappears and the two specific volumes become identical. This 
isothermal is known as the critical isothermal of CO2. At tempera-
tures higher than this the straight portion does not appear, which 
means that above this temperature the gas cannot be liquefied by the 
increase of pressure alone however high it may be. At still higher temperature (48.1 8C) the volume decreases 
with the increase of pressure as in the case of isothermals of air. 

Now we see that at isothermals higher than 31.1 8C, there is no formation of liquid however high the 
pressure is. The temperature 31.1 8C is the maximum temperature at which CO2 may be liquefied by the 
application of pressure alone. This temperature is called the critical temperature (Tc) of CO2. The criti-
cal pressure (pc) is the pressure just necessary to liquefy the gas at the critical temperature. The critical 

Fig. 5.1 Andrews apparatus
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Fig. 5.2 Andrews experimental results
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volume (vc) is the volume per unit mass of the gas or of the liquid at the critical temperature and pres-
sure. These three quantities are known as the critical constants of the gas. 

It is seen from Fig. 5.2 that below the isothermal at 31.1 8C, the isothermals can be divided into three 
different regions depending upon the gaseous state, mixture of gaseous and liquid state, and liquid state. 
Within the region enclosed by the dotted curve, gaseous and liquid states coexist. The right of PB rep-
resents the gaseous region while the left of PC and below the critical isothermal represents the liquid 
region. When the gas liquefies during the straight horizontal portion of the isothermal lower than the 
critical isothermal, there are two different phases bounded by a discontinuity. If we want to go directly 
from the gaseous to liquid state, that is, from the point A to the point D without any discontinuity between 
them, we must avoid the passage through the region bounded by the dotted curve. The gas whose state is 
represented by this point A is compressed, keeping the volume constant so that the temperature increases. 
Let the temperature be increased above the critical temperature and the compression be stopped. This is 
represented by AA′. Now, the temperature of the gas is decreased keeping the pressure constant so that 
the volume is decreased to D. Thus, the system which was in gaseous state will be liquid at the point D on 
the same isotherm. In this operation there is no discontinuity anywhere, that is, the system does not exist in 
two phases simultaneously. This is known as the continuity of the liquid and gaseous state. 

Experimental result of Amagut: Amagut worked with hydrogen, nitrogen, ethylene, etc. We shall 
consider his experimental results only. His observations are represented graphically as shown in Fig. 5.3 
for hydrogen, Fig. 5.4 for nitrogen and Fig. 5.5 for ethylene where the ordinates represent the product 
pv and the abscissa the pressure.

100.1°C

50.4°C

30.1°C

75.5°C

pν 

p

Fig. 5.4 Amagut's results for nitrogen

100°C

60°C

40°C 

80°C
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p

Fig. 5.5 Amagut's results for ethylene
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p

Fig. 5.3 Amagut's results for hydrogen
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In the case of hydrogen (Fig. 5.3), the lines are straight and are parallel to each other meaning that pv 
increases uniformly with pressure. The curve should be straight lines and parallel to the pressure axis if 
the gases would follow Boyle’s law and Charles’ law. 

The behaviour of nitrogen is shown in Fig. 5.4. In low pressure region, the product pv decreases with 
pressure and then increases as in the case of hydrogen.

Figure 5.5 gives the variation of pv with p for ethylene at different temperatures. At lower tempera-
tures the product pv decreases sharply with pressure, passes through a minimum, and then increases as 
in the case of hydrogen. As the temperature increases, the nature of the curves changes with the gradual 
flattening of the curves; and at high temperatures, there is always an increase of pv with p.

Gas and Vapour: A gaseous substance above the critical temperature is termed as a gas while the gaseous 
substance below the critical temperature is termed as vapour. Accordingly, any substance may be a gas or a 
vapour depending on its temperature. A vapour can be changed to its liquid state either partly or wholly by the 
application of pressure whereas a gas cannot be liquefied by the application of pressure alone. 

5.2 Van dEr WaalS′ Equation of StatE

The behaviour of real gases can be explained when we consider the assumptions of the kinetic theory 
which are ideal, but in the real case they are to be modified. Two important assumptions of the kinetic  
theory— (i) the molecules are treated as mass points and (ii) there is no force between the molecules—
are not valid. The molecules have finite dimensions however small they may be and the molecules are 
not devoid of molecular force. These two are responsible for the volume correction and pressure correc-
tion. We shall consider two methods of volume correction:
 1. Simple method: Let the molecules be regarded as hard elastic spheres of diameter s. Consider-
ing a molecule, the centre of no other molecule can come closer than s to it. We may consider that the 
considered molecule has a sphere of influence 4/3 ps3 = s within which the centre of no other molecule 
can come. Similar is the case with other molecules.

Let us consider a vessel of volume v containing a gas. Treating the molecules as mass points, the 
volume free for molecular movement is v but the free volume decreases as we consider molecules 
to be hard elastic spheres of diameter s. To determine the volume inaccessible for molecules, let the 
molecules be introduced into the vessel one by one. When the first molecule enters, it finds volume v 
available to it; second molecule finds v 2 s volume available to it where s is the sphere of influence 
of the first molecule; third molecule finds v 2 2s volume available to it and so on. Let there be N such 
molecules introduced, then the average free volume is given by 

  
1 2 3 1
N
v v s v s v s v N s[ ( ) ( ) ( ) ( ) ]+ − + − + − + + − −………

  = − + + + −
1 1 2 1
N
Nv N s{ [ ( )] }……

  = −
−











1 1
2N

Nv N N s( )

  = −
−

= − = −v N s v Ns v b1
2 2

 (5.2)

Chapter 05.indd   152 4/5/2011   8:24:17 PM



Equations of State   153

As N is very large compared to unity, (N − 1) can be written as N. Thus, we see that actual volume is 
reduced by a quantity b, where b is four times the volume of the molecules.
 2. Rigorous method: Let us consider N molecules inside a vessel of volume v. Treating the molecules as rig-
id elastic spheres of diameter s, we have seen that the sphere of influence is 4/3 ps3. Considering N molecules 
the volume inaccessible to the centre of a particular molecule is 4 3 1 4 3 13 3/ ( ) / ( ).πσ πσN N− = since N�  
Similar is the case with all other molecules. Hence, the space left for free motion of the molecule is 
v N−4 3 3/ .πσ  Therefore, the actual molecular density is 

  n N

v N
1

34
3

=
− πσ

 (5.3)

Considering the gas confined in the vessel, molecules can approach the distance s/2 from the wall. 
But a molecule at a distance s from the wall has its sphere of influence extended upto the wall and the 
centre of no other molecule can lie within the hemisphere 2/3 ps3 adjacent to the wall, that is, we may 
consider the centre of molecules to be striking an imaginary wall at a distance s from the real wall. Let 
us consider a small volume dv in the vicinity of the wall, then n1 2/3 ps3 is the fraction of volume per cc 
within which the centre of no other molecule can come, that is, this volume is inaccessible to the centre 
of other molecules. If dv1 represents the free space in volume dv, then 

  dv dv
dv

n
−

=1
1

32
3

πσ

 or 1 2
3

1
1

3− =
dv
dv

n πσ

 or dv dv n1 1
31 2

3
= −











πσ

  = −










=dv b
N
n b N1 2

31
3where πσ

  = −








−

dv b
N

N
v b

1
2

  = −








−

dv b
v b

1
2  (5.4)

Now, the actual number of molecules in volume dv is 

  n dv N dv b
v b v b1 1 2 2

1= −








− −

  =
−







− −

N dv v b
v b v b2 2

3

  =
−

− − +
Ndv v b

v b v b b
( )

( )( )
3

3 2
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  =
−

− −
Ndv v b b
v b v b

( )
( )( )

3
3

2neglecting

  =
−
Ndv
v b

 (5.5)

Considering molecules as mass points, the number of molecules in dv = Ndv/v.
Thus, on comparing these two equations, we find that the effect of considering finite volume of the 

molecule is to decrease the actual volume v to v – b where b is four times the volume of the molecules. 
Pressure correction: The pressure correction is due to the intermolecular force. Although the actual 

nature of the intermolecular force is not known, yet it is well known that molecules attract strongly at very 
short distance which falls off rapidly with distance. Let us consider a molecule at the centre; it is attracted by 
all the molecules surrounding it, so the net force is zero. But a molecule near the wall will experience a net 
resultant inward force. Accordingly, the molecules will strike the wall with lower velocity than when there 
is no force of attraction. Hence, the change in momentum or the pressure is less than that for a perfect gas. 
The actual pressure will be sum of the observed pressure p and the correction factor due to the inward pull p′. 
This p′ is proportional to the number of molecules attracting the striking molecules and the number of such 
striking molecules per unit area of the wall. Both of them are n where n is the number of molecules per cc.

 ∴ ′ ∝ ∝p n
v

2
2

1
 where v is the volume of the gas

 ∴ ′ =p a
v2  where a is a constant (5.6)

The total pressure is p p p a
v

+ ′ = +
2  

So, the resultant equation of state is p a
v

v b RT+










− =
2

( )  (5.7)

Equation 5.7 holds good in the vapour region, liquid region, near and above the critical point. Here if 
v is gram molar volume having mass equal to molecular weight, R is universal gas constant. The equa-
tion is valid for any mass, then b and R will be proportional to the mass taken, but a is proportional to 
the square of the mass.

For CO2, the values of a and b are 0.00874 and 0.0023, respectively.
Taking R = 1.00642/273 Van der Waals’ equation for carbon dioxide is 

  p
v

v+










− =
0 00874 0 0023 1 00642

272

. ( . ) .
33
T  (5.8)

In Eq. 5.8, the unit of volume is the volume of the gas at 0 8C under the pressure of 1 atmosphere.

5.3 dEtErmination of thE conStantS a and b
There are different methods of determination of a and b. We shall discuss them one by one.
	 1.	 From	the	coefficient	of	thermal	expansion	and	compressibility	of	the	liquid:

Let v1 be the volume of 1 gm of a liquid at pressure p1 and temperature T1. Let v2 be volume of 
the some mass of the liquid at the same pressure p1 and at different temperature T2, then 
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  p a
v

v b
T
T

p a
v1

1
2 1

1

2
1

2
2

+










− = +




( )







−( )v b2  (5.9)

 The volume v1 of the same mass of liquid could be changed to v2 by changing the pressure 
from p1 to p2 at constant temperature T1. Then 

  p a
v

v b p a
v1

1
2 1 2

2
2

+








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− = +










( ) 
−( )v b2  (5.10)

 From Eqs 5.9 and 5.10, we get
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v

T
T
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v b2
2
2

1
1

2
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

−
2

( )) = 0

 or   p a
v

T
T

p a
v2

2
2

1

2
1

2
2

+ = +










 (5.11)

 Knowing the values of p1, p2, T1, T2 and v2 ‘a’ can be calculated. From the value of ‘a’ thus 
obtained, the value of ‘b’ can be calculated from any of the Eqs. 5.9 or 5.10.
 Very accurate value of density of water at 20 8C was obtained by Chappuis. Under pressure 
of 1 atmosphere the density of water is 0.9982328 gm/cc, so that the volume of 1 gm of water at 
293 K and under 1 atmosphere pressure is 1/0.9991285 = 1.001770 cc. The density of water at
15 8C is 0.9991285 gm/cc under pressure of 1 atmosphere. Hence, the volume of 1 gm of water 
at 15 8C and under pressure of 1 atmosphere is 1/0.9991285 = 1.000873 cc. By reducing the 
temperature from 20 8C to 15 8C, the volume of water changes by 0.000897 cc.
 According to Pagliani and Vincentini, an increase of pressure by 1 atmosphere on 1 gm of 
water at 20 8C produces a volume strain (change in volume per unit volume) of 4.44 × 1025. The 
bulk modulus E of water is given by 

  δ
δp E v
v

= −

  1 atm = 2E × 4.44 × 1025

  giving E = 21/4.44 × 1025

 The change in pressure required to produce a change in volume by 0.000897 cc in a volume  
1.001770 cc is

  δ p = ×
×

=
−

0 000897
1 001770

1
4 44 10

20 16
5

.

. .
. atmos

 It follows that 1 gm of water at 20 8C occupies the volume 1.000873 cc under a pressure of 
1 + 20.16 = 21.16 atmosphere.
 Substituting the volumes p1 = 1 atmos, p2 = 21.16 atmos, v1 = 1.001770 cc, v2 = 1.000873, 
T1 = 293 K and T2 = 288 K in Eq. 5.11, the value of ‘a’ obtained is 1164.1 atmos.
 Substituting the value of ‘a’ in Eq. 5.10, the value of ‘b’ obtained is 0.954.

	 2.	 Constant	volume	method:
This method is simple and accurate. From the Van der Waals’ equation,
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  p a
v

v b RT+

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






− =
2

( )

 we have p RT
v b

a
v

=
−

−
2

 (5.12)

 Differentiating with respect to T and keeping v constant,
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∂
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(5.13)

 From the observation of variation of pressure with temperature from a constant volume gas 
thermometer, a and b can be calculated.

 3.	 Isothermal	method:
A study of the isothermals of a gas serves to supply a method for the determination of a and b.
We have from Van der Waals’ equation 

  p RT
v b

a
v

=
−

−
2

  
∂
∂











= −
−

+
p
T

RT
v b

a
vT ( )2 3

2
 (5.14)

 If we find the value of the slope (∂p/∂T)T of an isothermal at any temperature T and if we 
know the pressure and volume of a gas at the same temperature, we can substitute these quanti-
ties in the Eq. 5.14 and on solving it, we get the values of a and b.

	 4.	 From	critical	constants:
We know  that critical volume vc = 3b, critical pressure pC = a/27b2 and critical temperature 
TC = 8a/27bR. Hence knowing the values of the critical constants, a and b can be determined. 
This method is, however, not very accurate because Van der Waals’ equation cannot be expected 
to hold good in the critical region.

	 5.	 From	inversion	temperature:
 The temperature of inversion for the Joule Thomson effect is given by 
  Ti = 2a/bR (5.15)
   Knowing the value of either a or b previously and the inversion temperature, the other can be 

calculated.

Chapter 05.indd   156 4/5/2011   8:24:29 PM



Equations of State   157

5.4 diScuSSionS on Van dEr WaalS’ Equation

Van der Waals’ equation is given by 

  p a
v

v b RT+










− =
2

( )

 or ( )( )pv a v b RTv2 2+ − =

 or pv bpv av ab RTv3 2 2− + − =

 or v b RT
p
v av

p
ab
p

3 2 0− +










+ − =  (5.16)

This is a cubic equation in v for a particular isotherm; and for a particular p, we get three roots of v 
which are

1. All real and different;
2. All real and identical;
3. One real and two imaginary.

 Again, from p RT
v b

a
v

=
−

−
2

in the limit v tending to infinity, p tends to zero and v tending to b, p tends to infinity, Van der Waals’ 
equation when plotted for CO2 in terms of p vs v curves as shown in Fig. 5.6 are obtained. To have an 
idea of the intermediate regions of an isotherm, let us investigate the slope from 

  p RT
v b

a
v

=
−

−
2

Fig. 5.6 Van der Waals’ curves for CO2
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So, the rate of change of the slope
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v b

a
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For large values of T, (∂2p/∂v2)T is positive; so, the equation p = (RT/v - b) - a/v2 must have a 
minimum in this region. When the temperature is not high, the nature of the isothermal will be governed 
by values of v. When v approaches b, the first term of Eq. 5.18 predominates; so, ∂2p/∂v2 is positive 
and hence the isotherm has a minimum. Again as v increases slowly above b, the first term in Eq. 5.18 
decreases till it becomes equal to the second term giving 

  
∂
∂











=
2

2
0p

v T
 (5.19)

For very large values of v, the first term of Eq. 5.18 again becomes predominant and (∂2p/∂v2)T is 
positive. In the lower isotherms, there is one maxima and one minima. These maxima and minima come 
closer as the temperature increases (for isothermals below the critical isothermal) and finally at critical 
isothermal, the two points meet at which there is only one tangent parallel to v – axis instead of two 
tangents (one at maxima and the other the minima) at lower isothermals.

At maxima and minima,
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∂
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  So, from Eq. 5.17 
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Putting the value of RT
v b− in Van der Waals’ equation, we get

  p a
v
v b a

v
a
v

ab
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a
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= − − = − − = −
2 2 2 2

3 2 2 3 2 2 3
( )  (5.21)

Eq. 5.21 represents a curve passing through the maxima and minima of the isothermals. The maxima 
of this curve touches the critical isothermal at B. The value of the critical pressure and volume can be 
obtained by differentiating p with respect to v and at maxima putting ∂p/∂v = 0.

So, from p a
v

ab
v

= −
2 3

2

  
∂
∂

= − + =
p
v

a
v

ab
v

2 6 0
3 4

Representing the critical volume by vc, critical pressure pc and critical temperature Tc, we get

  
6 2 34 3

ab
v

a
v

v b
c c

c= ∴ =  (5.22)
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Again from Eq. 5.21, the critical pressure pc is given by
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2
27 9

2
27 27bb2  (5.23)

The critical temperature Tc is obtained by putting the values of pc and vc in Van der Waals’ equation 
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The ratio
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The values of the critical constants can also be found out in another way. The critical isothermal has 
only one point of inflexion; for such a point on the p - v curve,

  
∂
∂







 =

∂
∂











=
p
v

p
v

0 0
2

2and

 that is, −
−

+ =
−

− =
RT
v b

a
v

RT
v b

a
v( ) ( )2 3 3 4

2 0 2 6 0and  (5.25)

Solving these two equations and from equation 

  p RT
v b

a
v

=
−

−
2

we get the same values of pc, nc and Tc.

5.5  comPariSon of Van dEr WaalS′ Equation With 
andrEWS’ ExPErimEntal curVES

The p – v curves for CO2 obtained from Van der Waals’ equation are similar to the experimental
p – v curves of Andrews for CO2 only at and above the critical temperature.  Below the critical tem-
perature, the curves due to Van der Waals’ equations are different from Andrews’ experimental curves. 
If the isothermals of Andrews’ experimental curves are made to overlap the theoretical curves for 
the same temperatures, it is found that above the critical temperature the two sets of curves coincide 
whereas below the critical temperature the two sets of curves are coincident only at the purely gas-
eous and liquid region, and there is a prominent difference in the central region (Fig. 5.6). Instead 
of maxima and minima as in the theoretical curves, there is a flat horizontal portion in Andrews’  
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experimental curves. Let us consider such a set of curves below the critical temperature. Curve a b c 
d e f g is the theoretical curve, whereas curve a b d f g is the Andrews’ experimental curve. The two 
portions a b and f g are same, and they represent gaseous and liquid state of the substance. Instead of 
the straight horizontal portion of the experimental curves, where condensation occurs, theory gives an 
s-shaped curve b c d e f.

The discrepancy between the two curves in the region b f may be considered in the following: the part 
c d e of the theoretical curve shows that the volume increases with the increase in pressure. This repre-
sents an unrealizable condition and cannot be realized in practice. Hence, the part c d e is not obtained 
in Andrews’ experimental curves. The part b c and e f of the theoretical curves represent supercooled 
vapour and superheated liquid, both of which are metastable states and may be realized only under 
certain conditions. But this metastable state is easily disturbed by mechanical shocks, the presence of 
slightest trace of impurity, etc. Hence, these portions are not present in Andrews’ experimental curves.

Van der Waals’ theory cannot indicate the point b where the condensation begins. From thermody-
namic reasoning, Maxwell and Clausius both reached the conclusion that if the line a b c d e f g is to 
represent the actual isothermal path from a to g, it must be so chosen that the areas b c d and d e f are 
equal. For example, let us consider that the substance is taken through the cycle b c d e f b, the tempera-
ture remaining constant throughout the cyclic process; the net work done in carrying out the process is  
according to the second law of thermodynamics nil, that is, the area of the closed curve representing 
the cycle must vanish. Hence, the area b c d and d e f must be equal being described in opposite senses. 

5.6 ExPErimEntal dEtErmination of critical conStantS

The three critical constants—critical pressure, critical volume and critical temperature—are very much 
important in the study of gases, especially in liquefaction. 

Of the three constants, measurement of critical temperature and critical pressure is very easy. The 
measurement of critical volume is very difficult because it varies considerably for slightest variation 
of temperature and pressure near the critical region; hence for the measurement of critical volume, the 
substance must be kept in perfectly critical temperature and pressure. 

The experimental arrangement of the determination of critical pressure and critical temperature is 
shown in Fig. 5.7. A is a hard glass tube containing the experimental liquid. A is connected to a pump 

Fig. 5.7 Experimental arrangement of the determination of critical constants
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and a manometer M, for measurement of pressure. A is surrounded by a liquid bath the temperature of 
which can be varied. T is a thermometer for the measurement of temperature. By means of the pump, 
different pressures are applied. The temperature of the bath is also increased in small steps from a very 
low value. At a particular temperature and pressure, the liquid disappears suddenly. The corresponding 
temperature and pressure are noted.

Now the temperature of the bath is decreased in small steps, and the pressure is also recorded until 
the liquid appears again all of a sudden. The corresponding temperature and pressure are again noted. 
The mean of these two pressures gives the critical pressure and the mean of these two temperatures 
gives the critical temperature.

This method is applicable for those liquids which do not wet glass. The hard glass tube is replaced 
by a platinized steel tube for liquid which wets glass such as water.

The simple method of measurement of critical volume consists of two glass tubes containing different 
amount of the same liquid. These tubes are graduated in volume and are surrounded by a bath, the tem-
perature of which can be varied. At any particular temperature, the volume occupied by the liquid and 
the corresponding vopours are noted in both the tubes. If ρl, ρv be the densities of liquid and the vapour, 
vl, v′l be the volume of the liquid in the two tubes, vv, v′v be the volume of the vapour in the two tubes, m 
and m′ be the mass of the contents of the two tubes, then 

  
ρ ρl l v vv v m+ =

 (5.26)

 and ρ ρl l v vv v m′ + = ′′  (5.27)

Solving these two equations, ρl, ρv can be found for this particular temperature. Similar observations 
are made at different temperature till the two densities become identical at critical temperature. When 
these densities are plotted against temperature, a parabolic curve as shown in Fig. 5.8 is obtained. 

The mean of these densities at different temperatures lie on a straight line which meets the curve at 
the critical point where ρv and ρl are same. This is the law of rectilinear diameter. The coordinates of the 
point of intersection gives Tc and ρc. The reciprocal of ρc gives vc.

Fig. 5.8 Plotting of densities of liquid and vapour against temperature
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5.7 rEducEd Equation of StatE and laW of corrESPondinG StatES

Van der Waals’ equation of state contains a,b and R, the first two of which are the characteristic constants 
of a gas and the third one is universal gas constant. The presence of a and b makes the nature of the 
isothermals different for different gases hence, the equation of state is not universal. The attempt of 
building up an equation of state which is of universal use succeeded in developing reduced equation of 
state. If the three variables are measured in units of their corresponding critical values, then the result-
ing equation is called the reduced equation of state. Let us define three reduced quantities pr, vr, Tr as 

  p p
pr
c

=  (5.28)

  v v
vr
c

=  (5.29)

  T T
Tr
c

=  (5.30)

Then from Van der Waals’ equation of state,
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b

a
v b

bv b RT a
r

r
r r27 9

3 8
22 2 2

+










− =( )

77bR

 or p
v

v Tr
r

r r+










−











=
3 1

3
8
32  (5.31)

This is known as reduced equation of state. It is independent of the nature of the gas because it does 
not contain characteristic constants of the gas hence, it is universal. Since the reduced equation of state 
is derived from Van der Waals’ equation, it is not free from the intrinsic defects of Van der Waals’ equa-
tion.

It is apparent from Eq. 5.31 that if any two of the quantities pr, vr, Tr of two substances are identical, 
the third quantity will also be identical. This is called the law of corresponding states. This means that 
if pressure and temperature of two substances bear the same ratio to their corresponding critical values, 
volume will also bear the same ratio to its critical value.

5.8 mEritS and dEmEritS of Van dEr WaalS′ Equation

In spite of the fact that Van der Waals’ equation has been very helpful in understanding many of the 
properties of real gases, the evaluation of critical constants, the derivation of the equation of correspond-
ing states, the continuity of the gaseous to the liquid state, when it is subjected to experimental verifica-
tion, we find considerable discrepancies. These are: 
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1. We have seen that for CO2, the curves drawn from Van der Waals’ equation do not coincide with 
the experimental curves of Andrews. Marked discrepancy is observed for isothermals below the 
critical one where Van der Waals’ equation gives one maxima and one minima.

2. Van der Waals’ equation supposes a and b to be constants, but these are different for different 
substances and even vary with temperature for a particular substance.

3. It predicts that vc = 3b, but experimental observation shows that vc = 2b. 
4. According to Van der Waals’ equation b is equal to 4 times the volume occupied by all gas mol-

ecules, but b is found to be 4 2 times the volume occupied by all the gas modules. 
5. Van der Waals’ equation shows that the ratio RTc/pcvc is constant and its value is 2.67, but actu-

ally its value is 3.7 and it varies from gas to gas.
6. Boyle temperature derived from Van der Waals’ equation does not tally with the experimental facts. 
7. Van der Waals’ reduced equation of state is said to be of universal application, but it is not so because 

the intrinsic defects of Van der Waals’ equation are inherent in the reduced equation of state.

5.9 BoylE tEmPEraturE from Van dEr WaalS′ Equation

Van der Waals’ equation is 

  p a
v

v b RT+










− =
2

( )

 or p RT
v b

a
v

=
−

−
2

 or pv RTv
v b

a
v

=
−

−  (5.32)

At Boyle Temperature, T becomes TB; our perfect gas equation becomes 

  pv = RTB (5.33)

 From Eqs 5.32 and 5.33, we get

  RT
RT v
v b

a
vB

B=
−

−

 or 
RT v
v b

RT a
v

B
B−

− =

 or RT v
v b

a
vB −

−










=1

 or RT v v b
v b

a
vB

− +
−











=

 or RT b
v b

a
vB −

=
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 ∴        T
a
v
v b
bR

a
bRB =

−
=

( ) , as is smallb  (5.34)

 Again, T a
bR

T Tc B c= ∴ =
8

27
27
8

 (5.35)

5.10 othEr EquationS of StatE 
We have discussed the merits and demerits of Van der Waals’ equation. In order to overcome the defect 
of Van der Waals’ equation, different equations of states have been proposed. The main object of such 
equations of state is to fit the experimental results of the real gases. Some of the equations of state are 
derived from rigorous theoretical considerations while others have been derived empirically. We shall 
mention a few of them.
 1.	 Clausius	equation

According to Clausius, the equation of state is 

  p a
T v c

v b RT+
′

+











− =
( )

( )2  (5.36)

 The constant a of Van der Waals’ equation has been changed to ′a
T  in order to incorporate the 

variation of a with temperature. This equation fits Andrews’ curve better than Van der Waals’ 
equation but fails in the case of other gases.

	 2.	 Berthelot	equation
Berthelot proposed an equation of state of the form 

  p a
Tv

v b RT+
′









− =
2

( )  (5.37)

 This equation shows better agreement with experiment at moderate pressure. It may also be 
written in terms of the critical constants as 

  pv RT T
p
p
T

T
T

c

c

c= + −
























1 9
128

1
6 2

2  (5.38)

	 3.	 Dieterici	equation
According to Dieterici, the equation of state is 

  p RT
v b

e
a

RTv=
−

−
 (5.39)

 This equation agrees with experimental observation well up to a pressure of 12 atmospheres 
but fails at high pressures. 
 To a first approximation it yields Van der Waals’ equation, so it has the advantage of Van der 
Waals’ equation; it is better than Van der Waals’ equation in the sense that it gives vc = 2b and 
the ratio

  
RT
p v

c

c c

= 3 667.  (5.40)
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 From Eq. 5.39,

  pe RT
v b

a
RTv =

−
 (5.41)

 or p a
RTv

a
RTv

RT
v b

1 1
2

2

+ +






 +
















=

−
………  (5.42)

 To a first approximation, we may write 

  p a
RTv

RT
v b

1+










=
−

 or p a
pv

RT
v b

1
2

+








=

−

 or p a
v

v b RT+










− =
2

( )  (5.43)

 Thus, Van der Waals’ equation can be derived from Dieterici equation.
 To find the values of critical constants, we apply the condition dp/dv = 0 and d2p/dv2 = 0 at 
the point of inflexion.
 From Eq. 5.39,

  
dp
dv

RT
v b

e RT
v b

e a
RTv

a
RTv

a
RTv= −

−
+

−
=

− −

( ) ( )
( )

2 2
0
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RT
v b

e a
RTv v b

a
RTv

−
−

−











=
−

2

1 0

 or 
a
RTv v b2

1 0−
−

=  (5.44)

 or 
a
RT

v
v b

=
−

2

 (5.45)

 Again, 
d p
dv

RT
v b

e RT
v b

a
RTv

a
RTv

2

2 3 2 2

2
=

−
−
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




−

( ) ( ) 


−

e
a
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−

+
−




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− −
−

−
−
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

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−−






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
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




=

2 03

a
RTv

 Substituting the value of a/RT from Eq. 5.45, we get

  
2 2 1 2 0

2 2 2( ) ( ) ( ) ( )v b v b v b v v b−
−

−
+

−
−

−
=
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 or 
1 2

2( ) ( )v b v v b−
=

−

 or 1 2
v b v−

=

 or 2 2 2v b v v b− = ∴ =

 This v is the critical volume, so we write ∴ =v bc 2  (5.46)
 From Eq. 5.45,

  
a
RT

v
v b

b
b

b
c

c

c

=
−

= =
2 24 4

  T a
bRc =

4
 (5.47)

 Putting the values of nc and Tc in Eq. 5.39,

  p
RT
v b

e

Ra
bR
b b

e Ra
bc

c

c

a
RT v

a bR
Ra bc c=

−
=

−
=

− −
4

2 4

4
2

RR b
e a

b e
− =2

2 24
 (5.48)

 The ratio 
RT
p v

Ra
bR
a b
b e

Ra b e
bR ab

ec

c c

= = = =4
2

4

4
4 2 2

3 6

2 2

2 2 2

. 667  (5.49)

	 4.	 Saha	and	Bose	equation
Saha and Bose derived an equation of state from thermodynamic consideration and theory of 
probability which gives 

  p RT
v b

e v b
v

a
RTv

e=
−

−









−

log 2
 (5.50)

 This gives RTc/pcvc = 3.53 and is suitable for simple gases. Van der Waals’ equation of state 
can be deduced from this as a special case.

	 5.	 Beattie	and	Bridgemann	equation
Beattie and Bridgemann suggested the following equation of state:

  p RT
v

c
vT

v B
bB
vo
o= −











+ −










2 3
1 

− −










A
v

a
v

o
2

1  (5.51)

where a, b, c, Ao, Bo are constants. Suitable adjustment of the parameters makes the equation  
widely applicable and fits the experimental data well. 

	 6.	 Kamerlingh	Onnes	equation
Kamerlingh Onnes investigated the experimental data of a number of gases and proposed an 
equation of state containing as many as 26 constants. According to him,

  pv A Bp Cp Dp= + + + +2 3 ……………  (5.52)
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where A, B, C, D, ……… are constants called virial coefficients, the values of which decrease 
successively. These constants are functions of temperature and are independent of pressure. At 
very low pressure, this equation reduces to 

  pv = A

which gives the ideal gas equation pv = RT. For all gases, the second virial coefficient B is 
negative at low temperature; it increases to zero with rise of temperature and then becomes 
positive. The temperature corresponding to B = 0 is called the Boyle temperature. At this tem-
perature Boyle’s Law holds true.

	 7.	 F.	G.	Keyes	equations
Based on nuclear atom model and the influence of surrounding molecules on Van der Waals’ 
volume correction constant b, F. G. Keyes proposed the equation 

  p RT
v e

A
vv

=
−

−
+−β α/ ( )� 2  (5.53)

 where A, , ,β α �  are constants. 
	 8.	 Callendar	equation

While studying the behavior of steam, Callendar proposed the equation 

  v b RT
p

a
T n

− = −  (5.54)

 For steam, b = volume of 1 gm of condensed steam, n = 3.33.
 This equation may also be applied to gases and vapours at moderate pressure.

SolVEd ProBlEmS

Q1. If the critical temperature of a gas is 31 8C and the critical pressure 73 atmospheres, calculate 
the value of the constants a and b in Van der Waals’ equation (R = 0.00366 taking unit pressure 
as standard barometric pressure and unit volume as the volume at N.T.P).

Ans. According to the problem,

  
8

27
304

27
732

a
bR

a
b

= =and

 or 

8
27

27

304
73

8 27
27

304
73

2

2
a
bR
a
b

a b
bRa

= =or

 or b =
×

×
=

304 0 00366
8 73

0 00191. .

 ∴    a b= × = × × =73 27 73 27 0 00191 0 007192 2( . ) .
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Q2. Show that the Boyle temperature of a Dieterici gas is the same as that obtained for a Van der 
Waals’ gas.

Ans. The Dieterici equation of state is 

  p RT
v b

e pe RT
v b

a
RTv

a
RTv=

−
=

−

−

or

 or p a
RTv

a
RTv

RT
v b

1 1
2

2

+ +


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 +


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

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




=

−
………

 To a first approximation, we may write (as v >> a)

  p a
RTv

RT
v b
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pvv

RT
v b

1 1+
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a
v

=
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− =
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−
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or

 At Boyle temperature T becomes TB and our perfect gas equation becomes pv = RTB; so, we 
can write 

         RT
RT v
v b

a
v

RT v
v b

RT a
vB

B B
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− =or
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v b

a
v

RT v v b
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
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
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




 =1 or
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v
v b
bR

a
bRB =

−
=

( ) as is smallb

 For a gas obeying Van der Waals’ equation,

  T a
bRB =

 So, the Boyle temperature for a gas obeying Dieterici equation is the same for a gas obeying 
Van der Waals’ equation.

 Q3. Show that for a gas obeying Berthelot equation the Boyle temperature is given by ′a
Rb

.

Ans. Berthelot equation of state is given by 

  p a
Tv

v b RT+
′







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p RT
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a
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+
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−

−
′

2 2
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 or pv RTv
v b

a
Tv

=
−

−
′

 At Boyle temperature, T becomes TB and our perfect gas equation becomes pv = RTB; so, we 
can write 

  RT RT v
v b

a
T vB

B

B

=
−

−
′

 or ′
=

−
− =

−
−







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−
a
T v

RT v
v b

RT RT v
v b

RT b
v bB

B
B B

B1

 or T a v b
Rbv

a v
Rbv

T a
RbB B

2 =
′ −

=
′

∴ =
′( )

 Q4. Calculate the Van der Waals’ constants for a gas for which Tc = 132 K, pc = 37.2 atm, R per 
mole = 82.07 cm3 atm K21.

Ans. We know 

  p a
b

T a
bR

T a
b Rc c c= = =

27
8

27
64
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2

2

2 2 2
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( )
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p

a
b R
a
b

a b
b R a

a
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2 2 2
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64 27
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= = =
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( )

  a
R T
p
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= = =
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64 37 2
13

2 2 2 2

2

( . ) ( )
( . )

.33 105 6 2× − −atm cm mol
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T
p

a
bR
a
b

a b
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a
R

c

c

= = =

8
27

27

8 27
27
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27

2

2

2

 ∴    b
RT
p
c

c

= =
×

×
= −

8
82 07 132

8 37 2
36 4 3 1.

.
. cm mol

 Q5. Calculate the critical temperature of a gas from the following data:

  Critical pressure N
m

= × ×2 26 1 013 105
2. .

  Critical volume m
k mole

3

=
4

69

  R = ×8 31 103. J
k mol.K

Ans. We know that 

  
RT
p v

T
p v
R

c

c c
c

c c= =
8
3

8
3

or

  Tc =
× × × ×

× × ×
=

8 2 26 1 013 10 4
3 8 31 10 69

4 26
5

3

. .
.

. K
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ProBlEmS

Q1. Calculate the value of critical temperature for CO2 given that a = 0.00874 atm, b = 0.0023 cc 
assuming p = 1 atm, v = 1 cc and T = 273 K.

Ans. 307.4 K
Q2. Using the values of Tc = 5.3, pc = 2.25 atm, calculate a and b for gm-molecule of He gas.

Ans. a = 7.1 3 1025, b = 107.8 3 1025 
Q3. Calculate the critical temperature and critical pressure from the following data: a = 6.15 3 

1025, b = 9.95 3 1024 per gm-molecule where unit of pressure is the atmosphere and the unit 
of volume is the volume of the gas at N.T.P.

Ans. Tc = 5 K, pc 2.3 atm
Q4. Show at the critical temperature the departure of the Van der Waals’ gas laws from that of the 

ideal gas pcvc/Tc = R measures 62.5 per cent.
Q5. Show that from the Dieterici equation of state you can derive p

a
e b

v b T a
bRc c c= = =

4
2

42 2
, , .

Q6. Using Berthelot equation of state p a
Tv

v b RT+
′









− =
2

( ) , calculate the values of the critical 
constants.

Ans. p b
a R
b

v b T a
bRc c c=

′
= =

′1
12

2
3

3 8
27

, ,  

Q7. The critical temperature and pressure of argon are 151 K and 48 atmospheres, respectively.  
Calculate the radius of an argon atom.

Ans. 3.37Å

quEStionS

1. Describe the experimental study of CO2 gas by Andrews. Discuss critical pressure, critical vol-
ume, and critical temperature.

2. Deduce Van der Waals’ equation of state of real gas. Describe how far the Van der Waals’ equa-
tion explains the experimental results of Andrews.

3. What are the critical constants of a gas? Deduce their values in terms of the constants of Van 
der Waals’ equation. Deduce the law of corresponding states.

4. Discuss how pressure correction and volume correction creeps into the Van der Waals’ equation 
of state and deduce the equation of state after considering them.

5. Describe how the constants a and b can be determined by different methods.
6. Describe how the critical constants are determined experimentally.
7. Describe the merits and demerits of Van der Waals’ equation of state of real gases.
8. Discuss other equations of state and their advantages and disadvantages.
9. Define Boyle temperature and show that its expression is the same whether it is derived from 

Van der Waals’ equation or Dieterici equation.
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Chapter 6

6.1. DeDuction of clausius–clapeyron’s equations

Let AD and BC be two isothermal lines corresponding to two temperatures T and T + dT (Fig. 6.1). Let 
AB and CD be the liquid line and vapour line, respectively, of the Amagat’s curves. Along the border 
line AB, the substance is wholly in liquid state and along the line CD it is wholly in the state of saturated 
vapour. Let 1 gm of the substance be taken round the cycle ABCD reversibly.

The quantity of heat absorbed during the cycle transformation is equal to mechanical work done. We 
proceed to calculate the quantities of heat absorbed during the cycle process.

Heat absorbed in the path AB: From A to B along the border line, the substance is in the liquid 
state. If c1 is the specific heat of the liquid, the heat absorbed in the path AB is c1 dT.
Heat absorbed in the path BC: At B the substance is wholly liquid, and at C it is wholly in the state 
of vapour. The temperature remaining constant, the substance absorbs latent heat of evaporation from 
B to C. If L be the latent heat per gram at temperature T, that at temperature (T + dt) is (L + dL/dT dT). 
The heat absorbed in the path BC is (L + dL/dT dT).

Heat given out in the path CD: The substance is wholly in the state of saturated vapour along the border 
line from C to D. Let c2 be the specific heat of saturated vapour; then, the heat given out in the path CD is 
c2 dT.

Heat given out in the path DA: At D the substance is in the state of vapour, and at A it is in the state 
of liquid. The temperature remaining constant, the substance gives out its latent heat from D to A. If L be 
the latent heat at temperature T, the heat given out in the path DA is L. Hence, the total heat absorbed is 

  c dT L dL
dT
dT c dT L c c dT1 2 1 2+ +










− − = −( ) +

ddL
dT
dT  (6.1)

CHANGE OF STATE
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Work done in the cycle: The area of the cycle is AD 3 CE. Now AD = v2 2 v1 where v1 and v2 are 
the specific volumes in the liquid and vapour phases, respectively. CE is the perpendicular distance  
between AD and BC. It is equal to p dTdp

dT+( ) where p is the saturation pressure at temperature T. 
Hence, 

 Area ABCD = −( )v v dp
dT
dT2 1  (6.2)

Equating Eqs 6.1 and 6.2, we get

  ( ) ( )c c dL
dT

v v dp
dT1 2 2 1− + = −  (6.3)

Since the cycle ABCD is reversible, the total change of entropy in the cycle is zero. This gives 

  
c dT

T dT

L dL
dT
dT

T dT
c dT

T dT
L
T

1 2

2 2

0
+

+
+

+
−

+
− =  (6.4)

  
c dT
dT
T

L dL
dT
dT

dT
T

c dT
dT
T

L1 2

1
2

1 1
2

0
+

+
+

+
−

+
− =

 or c dT dT
T

L dL
dT
dT1 1

2
−










+ +











11 1
22−










− −










−

dT
T

c dT dT
T

L== 0

Neglecting squares of small terms, this gives

  c dT L L dT
T

dL
dT
dT c dT L1 2 0+ − + − − =

Fig. 6.1 Amagut’s curves

v v2v1

T + dT 

T 

D
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p 
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 or ( )c c dL
dT

L
T1 2− + =  (6.5)

Equating Eqs 6.3 and 6.5, we get

  ( )v v dp
dT

L
T2 1− =  (6.6)

Eq. 6.6 is known as Clapeyron’s equation and Eq. 6.5 is known as the equation of Clausius. It is 
convenient to express Eq. 6.5 as

  ( )c c dL
dT

L
Tvap liq− = −  (6.7)

 Again,  
dL
dT

L
T

T d
dT

L
T

− =










Hence, Eq. 6.7 can be written in the following form 

  c c T d
dT

L
Tvap liq− =









  (6.8)

Similarly, Eq. 6.6 can be written in the following form

  ( )v v dp
dT

L
Tvap liq− =  (6.9)

Since vvap is always greater than vliq, dp/dT is always a positive quantity. This means that the boiling 
point of a liquid is raised by  increasing the superincumbent pressure.

Equation 6.6 also holds for the case of change of state from solid to liquid. In this case, the equation 
can be written in the following form

  ( )v v dp
dT

L
Tliq sol− =  (6.10)

where vliq and vsol are the specific volumes in the liquid and the solid states, respectively.
If vsol is greater than vliq, as in the case of water, dp/dT is necessarily negative. This means that if a 

substance diminishes in volume on melting, then its melting point is lowered on increasing the super-
incumbent pressure.

If vsol is less than vliq, as in the case of paraffin, then dp/dT is positive. This means that if a substance 
increases in volume on melting, then its melting point is increased by increase of the superincumbent 
pressure. 
 At the critical temperature, vliq = vvap. Hence at the critical temperature, latent of heat of evaporation 
is zero.

Clapeyron’s equation can also be put in another useful form as follows:
Since vvap >> vliquid , we can write Eqn. 6.9 in the follwoing form 

  v dp
dT

L
Tvap =

where vvap is the specific volume of saturated vapour.
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Assuming that saturated vapour obeys the perfect gas law,

  v RT
pMvap =

 so that dp
dT

L
T
pM
RT

LpM
RT

= =
2

where R is the universal gas constant and M the is molecular weight

 or 1
2p

dp
dT

ML
RT

=

 or 
d
dT

p LM
RT RTe(log ) = =2 2

l
 (6.11)

where l = LM is the molar latent heat and R is the universal gas constant.
Equation 6.11 gives the change of pressure of saturated vapour with change of temperature.
Integration of Clapeyron’s equation. Eq. 6.11, thus, can be easily integrated

  d p
R

dT
Te(log )

1

2

2
1

2

∫ ∫=
l

 or loge
p
p R T T

2

1 1 2

1 1
= −











l

 or loge
p
p R

T T
TT

2

1

2 1

1 2

=
−( )l

 (6.12)

In Eq. 6.12, l is the molecular heat of evaporation and p1 and p2 are the pressures of saturated vapour 
at temperature T1 and T2, respectively. This formula has, however, been deduced on two assumptions 
which are not valid. These are: 

1. The saturated vapour obeys perfect gas laws.
2. Latent heat of a liquid is independent of temperature. 

l in Eq. 6.12 is not constant, but it depends on temperature. Expressing l as a function of T such as 

  l l= + +0
2aT bT

  d p
RT

dT a
R

dT
T

b
R

dTe(log )∫ ∫ ∫ ∫= + +
l0

2

 or log loge ep
RT

a
R

T b
R
T K= − + + +

l0

where K is the integration constant

 or log loge ep A
T

B T CT= − + − + K  (6.13)

Equation 6.13 forms the basis of the so-called vapour pressure thermometers.
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6.2 specific Heat of saturateD Vapours

The latent heat of evaporation of water at temperature T is given by 

  L = 800 2 0.705 T

  L
T T

   = −
800 0 705.

  dL
dT

= −0 705.  

Substituting these values in Eq. 6.7,

  c c dL
dT

L
Tvap liq− = −

 we get  c c
Tvap liq− = − − +0 705 800 0 705. .

 or c c
Tvap liq− = −

800

 Since for water  c c
Tliq vap= = −1 1 800,

 at 0 8C, cvap = 1 2 2.9304 = 21.9304

 at 100 8C, cvap = 1 2 2.144 = 21.144

 Thus, specific heat of saturated vapour is a negative quantity. The meaning of “saturated vapour at 
100 8C is 21.144” is as follows:

If a gram of water vapour at 100 8C and 760 mm pressure has its pressure increased to the vapour 
pressure corresponding to 101 8C and if at the same time 1.144 calories are withdrawn, then the water 
vapour will remain saturated at 101 8C. 

Table 6.1 gives the specific heat of saturated vapour of some liquids deduced by Clausius from Reg-
nault’s experiment.

Table 6.1 Specific heat of saturated vapour of some liquids

Substance 0 8C 50 8C 100 8C 150 8C
Water vapour 21.916 21.465 21.133 20.674

Ether 10.1057 10.1222 10.1309 10.1344

Carbon disulphide 20.1837 20.1600 20.1406 20.1325

Chloroform 20.1079 20.0549 20.0153 10.0155

Acetone 20.1482 20.0883 20.0515 20.0223

Equilibrium of vapour and liquid: Suppose a cylinder filled with 1 gm of substance partly in the 
state of vapour and partly in the state of liquid at temperature T. Let a fraction m of this substance be 
in the state of vapour and the remainder (1 2 m) in the liquid state. Let a small quantity of heat dQ be 
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supplied to the mass. This will produce a rise of temperature dT and will evaporate a small quantity dm 
of the liquid. 

  dQ m c mc dT Ldmliq vap= − + +[( ) ]1

The small amount of external work done in this process is neglected. If the process be adiabatic, that 
is, if no heat is supplied to the mass of liquid and vapour, dQ = 0

  dT m c mc Ldmliq vap[( ) ]1 0− + + =

 or 
dm
dT L

m c mc
S

liq vap







 = − − +

1 1[( ) ]  (6.14)

There will be neither evaporation nor condensation, that is, the vapour will be in equilibrium with 
the liquid, if 

  ( )1 0− + =m c mcliq vap

For water at 100 8C cvap = 21.144 and cliq = 1
so that (1 - m) = 1.144 m

 or m =
1

2 144.
gm

Hence, water vapour remains in equilibrium with water at 100 8C if only a fraction 1/2.144 of the 
total mass is in the state of vapour.

Adiabatic expansion of saturated vapours: By Eq. 6.8, we have 

  c c T d
dT

L
Tvap liq− =











  ( ) ( )1− + = + − = +m c mc c m c c c mT d
dliq vap liq vap liq liq TT

L
T











For water,  L = 800 2 0.705 T

  L
T T

= −
800 0 0705.  

  
d
dT

L
T T







 = −

800
2

Also, for water       cliq = 1

Hence,         ( )1 1 800
− + = −m c mc m

Tliq vap

Substituting the value in Eq. 6.14, we get

  
dm
dT L

m
TS











= − −










1 1 800
 (6.15)
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Evidently, (dm/dT )s is positive or negative depending on whether the right hand side is positive or neg-
ative. This will depend on the relative values of m and T. Thus, if m = 1/2 and T = 150 + 273 = 423, then

  
dm
dT Ls











= − −










= −
1 1 400

423
00 054.
L  (6.16)

Now, adiabatic expansion is always accompanied by reduction of temperature. Under the circum-
stance given in the Eq. 6.16, dm must be positive. Hence, adiabatic expansion would cause some quan-
tity of liquid to evaporate. If, however, m is a large fraction—nearly equal to unity—then at moderately 
high temperature, the right hand side of Eq. 6.15 must be positive. Adiabatic expansion under this 
circumstance would make dm negative; so that, some quantity of vapour would condense.

This result was verified by Cazin in the following way. The end of a long cylinder was closed by a 
parallel plate of glass. This was connected to another cylinder in which a piston worked. It was placed 
in an oil bath whose temperature could be raised. Steam was allowed to enter the cylinder from a boiler 
at a pressure of 5 atmospheres. By means of the piston, the saturated steam could be suddenly expanded 
or compressed. A cloud was always formed in the case of saturated steam never by compression. The 
same result was obtained with disulphide of carbon. The ether vapour condensed during compression 
but never during expansion. In the case of steam engine, steam expands adiabatically in the cylinder. 
This causes some of the steam to condense and settle on the cylinder wall and thereby give some of its 
heat to the cylinder. This heat is lost as far as mechanical work is concerned.

6.3 internal anD external latent Heats

The heat that is supplied to a liquid to change it into vapour is spent in two ways: a portion is used up 
to change it to vapour or to change the internal energy of the liquid and the remainder is spent in doing 
external work against the superincumbent pressure in changing the volume. The former is called the true 
latent heat or internal latent heat Li and the latter is called the external latent heat. If vvap and vliq are the 
specific volume of the vapour and of the liquid, respectively, then the external latent heat is 

  Le = p(vvap 2 vliq)

where p is the superincumbent pressure. The total latent heat is 

  L = Le + Li

 so that  L L L L p v vi e vap liq= − = − −( )  (6.17)
Now, by Eq. 6.9

  ( )v v dp
dT

L
Tvap liq− =

 or L T v v dp
dTvap liq= −( )

Substituting the value of L in Eq. 6.17, we get

  L T v v dp
dT

p v vi vap liq vap liq= − − −( ) ( )
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  = − −






T v v dp

dT
p
Tvap liq( )

  L T v v d
dT

p
Ti vap liq= −( ) 








2
 (6.18)

For water at 100 8C, vvap 2 vliq = 1673

 Hence,  Le =
× × ×

×
=

1673 76 13 6 981
4 2 10

40 21
7

.
.

.
  

Cal

Therefore,  Li = 496.29
Change of state occurs at a constant temperature, pressure remaining constant. Hence in change 

of state, thermodynamic potential remains constant. It is specially suited for investigation relating to 
change of state.

6.4 DeDuction of clapeyron’s equations from tHermoDynamic potential 
Let a certain quantity of liquid and vapour of a substance be enclosed in a cylinder. Let the masses of 
vapour and liquid be mv and ml, respectively and let their specific volumes be vv and vl, respectively. Let 
the internal energy, entropy and thermodynamic potential of the vapour and the liquid per unit mass be 
represented by Uv, Sv and Gv and Ul, Sl and Gl, respectively. From the properties of saturated vapours, 
the quantities U, S and G are functions of temperatures only.

The thermodynamic potential of the whole mass composed of liquid and vapour is 

  G mG m Gl l v v= +  (6.19)

The system composed of vapour and liquid is supposed to remain in the equilibrium state. Let us then 
perform an isothermal operation in which a mass dm of vapour condenses to the liquid state. Then, the 
altered value of the thermodynamic potential would be

  G dG m dm G m dm Gl l v v+ = + + −( ) ( )  (6.20)

From Eqs 6.19 and 6.20,

  dG dm G Gl v= −( )

 or dG
dm

G Gl v= −( )  (6.21)

Since the system is supposed to be in equilibrium, G must be a minimum so that 

  dG
dm

= 0

 or     Gl = Gv
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 or U TS pv U TS pvl l l v v v− + = − +

 This gives ( ) ( ) ( )U U T S S p v vv l v l v l− − − + − = 0  (6.22)

Differentiating Eq. 6.22 with respect to T, we get

  d
dT

U U T d
dT

S S S S v v dp
dT

p d
dT

v vv l v l v l v l v l( ) ( ) ( ) ( ) ( )− − − − − + − + − = 0  (6.23)

 But T dS
dT

dU
dT

p dv
dT

l l l= +

 and T dS
dT

dU
dT

p dv
dT

v v v= +

  T d
dT

S S d
dT

U U p d
dT

v vv l v l v l( ) ( ) ( )− = − + −  (6.24)

Substituting these values in Eq. 6.23, we get

  ( ) ( )S S v v dp
dTv l v l− = −  (6.25)

But (Sv 2 Sl) is the change of entropy when 1 gm of liquid is vapourized at constant temperature. 
Hence, it is equal to L/T. Hence, Eq. 6.25 transforms into 

  ( )v v dp
dT

L
Tv l− =

which is Clapeyron’s equation. We shall write Eqs 6.24 and 6.25 in the form

  ( )S S dp
dTv l vl

vl

− =






µ  (6.26)

  =
L
T
vl  (6.27)

where µvl v lv v= − = the difference of specific volumes.

6.5 tHe steam line, tHe Hoar frost line anD tHe ice line 
Any possibility of a spontaneous change in an isothermal isobaric process is conditioned by the 
 corresponding negative change in the thermodynamic potential. This means that for such  transformation

  dG < 0
Or, by Eq. 6.21  dm (Gl 2 Gv ) < 0

If Gl > Gv, then dm must be negative, that is, a quantity of liquid must evaporate. Conversely if Gl < 
Gv, dm must be positive, that is, a quantity of vapour must condense to the liquid state. There will evi-
dently be no evaporation or condensation if Gl 5 Gv. This is, therefore, the condition of equilibrium 

Chapter 06.indd   179 4/5/2011   8:33:37 PM



180  Heat and Thermodynamics

between the liquid and the vapour phases. The line I in the ( p 2 T) space over which the functional 
relation Gl 5 Gv holds is called the steam line (Fig. 6.2).

Let Gi be the thermodynamic potential of ice per gram. It can be proved in the same way as that 
ice and water can remain in equilibrium when Gi 2 Gl 5 0. The line II in the (p 2 T ) space where the 
functional relation Gi 5 Gl holds good is called the ice line. 

For a similar reason, the curve over which the functional relation Gi 5 Gv holds good in the curve 
of equilibrium is between a solid and its vapour. This line (III) is called the hoar frost line. These lines 
give the pressure corresponding to any temperature at which all the phases can remain in equilibrium. 
The steam line, the ice line and the hoar frost line divide the (  p 2 T  ) space into three distinct regions. 
In the space bounded by the steam line and the ice line, the substance can only exist in the liquid state. 
The region bounded by steam line and the hoar frost line is the vapour region. The ice line and the hoar 
frost line enclose the region where the substance can exist only in the solid state.

The triple point: Regnault concluded from his experimental results that the steam line and hoar frost 
line are continuous. It was proved later by Prof. James Thomson that three curves meet at a point called 
the triple point. Physical meaning of this is that there is a particular temperature (the triple point) at 
which ice, water and water vapour can remain in equilibrium.

At this temperature, the pressure of saturated vapour of the liquid is equal to the pressure of sublimed 
vapour of the solid.

That these curves must meet at a point can be proved as follows:

The equation of the steam line is   G G
G G
G G

l v

v l

l v

− =

− =

− =










0
0
0

The equation of the hoar frost line is   (6.28)
Adding these two equations, we get

This is again the equation of the ice line. Thus, every point of intersection of any two curves lies on 
the third curve. Evidently, the thermodynamic potentials for ice, water and vapour at the triple point 
must satisfy the equation

  G G Gi l v= =

Liquid 

Hoar frost 
line (iv) 

solid 

p
steam line (lv) 

Ice line (il) 

III 

II

I

Vapour 

T

Fig. 6.2 Temperature-pressure curve in change of state
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That the three curves meet at the triple point at different angles can be proved as follows:
For this purpose, we shall use the following notations

  µ µ µvl v l li l i iv i vv v v v v v= − = − = −, ,

where vi, vl and vv are the specific volumes of ice, water and vapour, respectively, at the triple point. 
Then,

  µ µ µvl li iv+ + = 0  (6.29)

 or µ µ µ µ µ µiv vl li iv il lv= − +( ) = +or

Let To be the temperature at the triple point. Then applying Eq. 6.25 to the cases of fusion,  evaporation 
and sublimation, we get

  

L
T

S S dp
dT

L
T

S S

vl
v l vl

vl

li
l i li

0

0

= − =








= − =

µ

µ

for steam line

ddp
dT

L
T

S S dp
dT

li

iv
i v iv

iv









= − =








for ice line

0

µ ffor hoar frost line











 (6.30)

From Eq. 6.30, we get by addition

  
1 0
0T
L L L S S S S S Svl li iv v l l i i v( ) ( ) ( ) ( )+ + = − + − + − =

 or L L Lvl li iv+ + = 0  (6.31)

 or L L L L Liv vl li lv il= − +( )= +

Equation 6.31 holds good only at the triple point To.
In Eq. 6.30, (dp/dT ) gives the tangent of slope of the respective curves at the triple point. Difference 

of these tangents for the hoar frost line and the steam line is

  
dp
dT

dp
dT T

L L

iv vl

iv

iv

vl

vl







 −







 = −










1

0 µ µ


  =
+
+

−










1

0T
L L Lil lv

il lv

vl

vlµ µ µ

  =
+
+

−










1

0T
L L Lil lv

il lv

lv

lvµ µ µ

Since μil is very small compared to μlv , it can be neglected. Hence,

  
dp
dT

dp
dT T

L

iv vl

i










−










=
1

0

ll

lvµ
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Example 
 Calculate, approximately, the triple point constants for water from the following data:
 Latent heat of ice at 0 8C and 760 mm press  5 80 cal
 Specific volume of ice at 0 8C   5 1.091 cc
 Specific volume of water at 0 8C  5 1.002 cc
 Vapour pressure of water at 0 8C  5 4.58 mm of Hg

Answer

 Using L T dp
dTli li

li

=








0µ

  µli l iv v dp T= − = − = − = =0 0908 760 0 458 75 542 2730. , . . cm of Hg,

  dT =
× × × ×

× ×
=

0 0908 75 542 13 6 981 273
80 4 2 10

0 0
7

. . .
.

. 007437 deg

6.6 tHe pHase rule

In order to understand the implications of the phase rule, we must understand the meaning of terms 
involved. These terms are as follows: 

Homogeneous system: A material medium is said to be homogeneous when its properties (both phys-
ical and chemical) are the same in all parts of the medium. It is a system in which there are no surfaces 
of discontinuity in physical and chemical properties. A medium with such discontinuities is said to be 
heterogeneous. These surfaces of discontinuity are not surfaces in mathematical sense. They are regions 
of very small thickness which are of great importance in the study of surface phenomena like surface 
tension, absorption, contact potential and the like.

Phase: This is measured by the sum of those portions of a material system which are identical in chem-
ical composition and physical state. Thus if there are several pieces of ice floating on a mass of water, 
then the system composed of ice and water is heterogeneous because there are surfaces of discontinuity 
of physical states, though not of chemical composition. The system is composed of two phases: the solid 
phase and the liquid phase.

Components and constituents: Constituents of a system are the discrete elemental parts or molecu-
lar species (elements, radicals, chemical compounds, dissociated ions, etc.) which build up the system. 
Thus, water has two constituents: hydrogen and oxygen. When sodium chloride is dissolved in water, 
we may have the following molecular species present:

2H2O, (H2O)2, (H2O)3, NaCL, Na+, Cl2 and hydrated ions. All these are constituents of the system.
Components are the independent variables which determine the constitution (the number of con-

stituents and their proportions) of the system. Thus in the case of water, there is one component but two 
constituents. Here, the proportion of oxygen and hydrogen is invariable. In the case of NaCl solution, 
there are two components: water and sodium chloride. The quantities of water and NaCl can be altered 
independently of each other. The quantities of the constituents of the solution will depend on the propor-
tion of common salt in water. 

Both water and the solution are homogeneous systems and each of them has got only one phase.
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Number of degrees of freedom or degrees of variability: This is determined by the number of 
variables which may be altered arbitrarily (with certain limits) without causing the disappearance of any 
phase or appearance of a new phase.

By variables we mean pressure, temperature and concentration in the several mixtures.

The Phase rule: This rule states that the number of degrees of freedom (F) of a system of N indepen-
dent components in P phases in any equilibrium state

  F 5 N 1 2 2 P (6.32)

This is the famous phase rule, first enumerated by Willard Gibbs. In applying this rule, the chemi-
cal reactions between the ingredients are not ruled out. The only restriction is that there must be full 
 opportunity of communication and interchange between various parts of the system.

Example 1: In the case of a homogenous fluid (such as water), there is only one phase and only one 
component. Hence, P 5 1 and N 5 1 so that F 5 2. Thus, water remains as water if its pressure and 
temperature are changed and there is no other method of changing its thermodynamic state. Such a 
system is said to be divariant.

Example 2: In the case of water in contact with its vapour, we have two phases but only one com-
ponent. Here P 5 2 and N 5 1 so that F 5 1. Thus water can remain in equilibrium with its vapour, if 
the temperature is changed. But, in that case, the pressure must be allowed to adjust itself according to 
pressure–temperature functional relation.

Example 3: In the case of ice, water and vapour in equilibrium, we have three phases, but only one 
component. Here, P 5 3 and N 5 1 so that F 5 0. In this case, none of the variables can be changed. 
This means that three phases can remain in equilibrium only under one definite pressure and one definite 
temperature. If any of these variables is changed, some of the phases would disappear. Such a system 
is said to be non-variant.

6.7 tHermoDynamics of solutions

The following terminologies are used in describing properties of solutions. We shall describe the prop-
erties of binary solutions.

Molar concentration: It is measured by number of moles of solute in 1 litre of solution. We shall 
represent molar concentration by CR.

Molal concentration: It is measured by number of moles of solute in 1,000 gm of solvent. We shall 
represent molal concentration by CL.

Molar fraction: Molar fraction or mole fraction of a particular component in a solution is the ratio of 
the number of moles of this component to the total number of moles present in the solution. We shall 
represent this by CF.

Mass fraction: Mass fraction of a particular component in the solution is the ratio of mass of the com-
ponent to the mass of the whole solution. We shall represent this by mF.

Density concentration: It is the mass of a component per unit volume of solution. We shall represent 
this by CD.
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Prove that if r be the density of solution, 
1. CDA FA= ρµ

2. C M CDA A RA=

3. C
M m

M m M mFA
B A

A B B A

=
+

4. ρ = + = +C C M C M CDA DB A RA B RB

Let A and B be the two components of the solution of molecular weights MA and MB. Let the masses 
of A and B in the solution be mA and mB, respectively. Then, the number of moles of A and B in the solu-
tion are 

  
n

m
M

n
m
MA

A

A
B

B

B

= =and

 The molar fraction of A is  C
n

n nFA
A

A B

=
+

 The molar fraction of B is  C
n

n nFB
B

A B

=
+

Osmosis: Figure 6.3 shows a cylindrical vessel separated into two compartments by a semi-permeable 
membrane. The lower half of the vessel is filled with a solution (say of cane sugar in water); the upper 
half of the vessel is filled with solvent. 

The semi-permeable membrane allows only the water molecules to pass through it but stops dif-
fusion of the sugar molecules. The pressure of the solution increases as a result of diffusion of water 
molecules into the solution. 

Fig. 6.3 Osmosis

Water

Semi 
permeable 
membrane

Solution
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To maintain the volume of water constant, a pressure must be exerted on the solution. The pressure 
required to stop diffusion of water into the solution is called osmotic pressure.

Laws of osmotic pressure: The following laws apply to the case of dilute solutions of non- electrolytes:
1. The osmotic pressure of a solution is proportional to the mass of the solute per unit volume of 

solution or density concentration and is independent of nature of the solvent.
2. Equal numbers of molecules of different solutes per unit volume exert equal pressure.
3. For a given concentration, the osmotic pressure is proportional to the absolute temperature of 

the solution.

Combining the first law and the third law, we get osmotic pressure

  p C TDα

where CD is the density concentration and T is absolute temperature

 Or p 5 KCDT

Now if mu is the mass of solute of molecular weight Mu and v is the volume of the solution, then 

  C
m
v

M
m M
v

M
n
v

M CD
u

u
u u

u
u

u Ru= = = =
/

 Hence, p KM C T K C Tu Ru Ru= = ′  (6.33)

The value KMu determined experimentally is equal to that of the gas constant per gm-molecule. Thus, 
the equation for osmotic pressure is 

                          
p

C T
R

Ru

=  (6.34)

where R is the gas constant per mole.
 Since osmotic pressure is independent of the solvent’s nature, we may conclude that the pressure 
exerted by non-electrolytic solute molecules dissolved in a solvent is the same as it would be if the mol-
ecules of the solute were in the gaseous state occupying the same volumes as that of the solution and at 
the same temperature.

6.7.1 Raoult’s Law
The vapour pressure of a solution is lower than that of the pure solvent. The law of lowering of vapour 
pressure of dilute solutions of non-electrolytic solutes was given by Raoult. It is as follows:

The ratio of decrease in vapour pressure of a solution to the vapour pressure of the pure solvent at the 
same temperature is equal to the molar fraction of the solute.

Deduction of Raoult’s law from thermodynamical considerations: Raoult’s law can be deduced 
from thermodynamical consideration as given below. For this purpose, we shall represent the number of 
moles of the solvent and solute forming the solution by nv and nu, respectively. We shall also represent 
the pressure of solvent and of solution by pv and pn, respectively. With these notations, Raoult’s law can 
be expressed mathematically as

  
p p
p

n
n n

v n

v

u

u v

−
=

+  (6.35)
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To prove Raoult’s law, we perform an imaginary experiment using the so-called Vant Hoff’s equi-
librium box. It consists of a cylindrical box closed at its two ends by two pistons A and B as shown in 
Fig. 6.4. The cylinder is divided into two compartments by a semi-permeable membrane C which is 
impervious to the solute but not to the solvent.

Each compartment is provided with two side chambers which in turn are provided with two valves,  
G and H.

The side chambers are closed by two pistons D and E. The two side chambers are connected by a pipe 
which can be closed by a stop cock S. The two side chambers are supposed to be filled with saturated 
vapour from the solvent and the solutions.

Let these vapour pressures be pv and pn
We now perform the following cycle of operations:

Operation I: Close the stop cock S and open the valve H. Pull the piston E upwards so as to evaporate 
dn moles of the solvent at constant temperature T and pressure pv. Since the pressure is that of saturated 
vapour, dp = 0 so that vdp∫ = 0, in this operation.

Operation 2: Close the valve on E further upwards isothermally till the pressure of the vapour falls to 
pn, the vapour pressure of the solution. In this case,

  vdp dnRT dp
p

dnRT p
pp

p
v

nn

v

∫ ∫= = loge

where R is the universal gas constant, assuming that the vapour obeys the perfect gas laws.

Operation 3: Close the valve H, open the stop cock S and transfer the dn moles of vapour at pres-
sure pn to the side chamber on the left by slowly pushing down the piston E. In this operation, pressure 
remains constant so that the vapour evidently condenses to the liquid state. By operation, the valve G 
transfers the condensed vapour to the chamber containing the solution.

Work done in certain operation in the p 2 v space is integrating this by parts

  pdv pv vdp
1

2

1
2

1

2

∫ ∫= −[ ]

  = − −∫p v p v vdp2 2 1 1
1

2

Fig. 6.4 Vant Hoff’s equilibrium box
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In a cyclic process, the total amount of external work done is

  pdv p v p v vdp
1

2

2 2 1 1
1

2

∫∑ ∑ ∫∑= − −( )

where the summation extends over the whole cycle. But in a cyclic process, the end values of p, v are 
the same so that

  ( )p v p v2 2 1 1 0− =∑

   pdv vdp vdp
1

2

1

2

2

1

∫∑ ∫∑ ∫∑= − =

Operation 4: Close the valve G. Push the piston A inwards so as to transfer dn moles of solvent iso-
thermally and reversibly into the solvent through the semi-permeable membrane C. The cycle is now 
complete and the system has now returned to its initial state. In this operation, dv volume of solvent of 
mass dn mol has passed from the pressure region pn to pressure region pv so that

  vdp dv dp dv p p p dv
p

p

n v

v

n

= = − = −∫∫ ( )

where p is the osmotic pressure.
The entire operation has been conducted under isothermal conditions. Hence, the amount of work 

done must be equal to zero. From the thermodynamic relation

  
W
Q

T T
T

=
−1 2

1 If T1 = T2, then W = 0.
Hence,

  vdp pdv dnRT
p
pe
v

n

= − + =∫∑ log 0

 or dnRT
p
p

pdve
v

n

log =

 or  p dv
dn

RT
p
pe
v

n

= log

 or RT
p p
p

p dv
dne

v n

n

log 1+
−









=

 or              RT
p p
p

p dv
dn

v n

n

−









=  (6.36)

neglecting higher terms. In Eq. 6.36, dv and dn are the small volume and molar mass of the solvent, 
respectively.
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Let the solution contain mv gm of solvent of molecular weight Mv and let the volume of the solvent 
be v. Then, 

  dn m
M

dv vv

v

= =and

Substituting these values in Eq. 6.36, we get

  RT p p
p

p M v
m

v n

n

v

v

−









=  (6.37)

Let mu be the mass of the solute of molecular weight Mu, then the gram-molecular weight of the sol-
ute is mu/Mu and its molar concentration is 

  C m M
vRu

u u=
/

 By Eq. 6.34, p RTC RTm
v MRu

u

u

= =

where R is gas constant per mole.
Substituting these values in Eq. 6.37, we get

  RT p p
p

RT
v
m
M

M v
m

v n

n

u

u

v

v

−









=

 or 
p p
p

m
M

M
m

n
n

v n

n

u

u

v

v

u

v

−
= =

 or 
p
p

n
n

v

n

u

v

− =1

 or 
p
p

n n
n

v

n

u v

v

=
+

 or 
p
p

n
n n

n

v

v

u v

=
+

 or 
p p
p

n
n n

v n

v

u

u v

−
=

+  (6.38)

Eq. 6.38 represents Raoult’s law. 

Elevation of the boiling point by an involatile solute: Figure 6.5 shows the vapour pressure curves 
of a solvent and that of solution of an involatile solute in the same solvent. Let pv be the vapour pressure 
of the pure solvent at its boiling point at temperature T. 

At the same temperature, the vapour pressure of the solution is pn. Evidently pv must be the value of 
the superincumbent pressure, to make the vapour pressure of the solution equal to the superincumbent 
pressure, the temperature of the solution must be raised.
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By Eq. 6.11, the relation between vapour pressure and temperature is 

  
d
dT

p
RTe(log ) =
l

2

where l is the latent heat per gm-molecule and R is gas constant per gm-molecule. 
 Integrating this equation between pn and pv, we get 

          loge
v

n T

Tp
p R

dT
T

=
′

∫
l

2

where T ′ is the temperature of the solution at which its vapour pressure becomes pv. On integration, the 
last equation becomes 

  loge
p
p R T T R

T T
TT

v

n

= −
′







 =

′−
′











l l1 1

If pv and pn differ by a small quantity, then 

  loge
p
p

T
T R

v

n

=
∆

2

l

 or −










= − −
−









=log loge e
p
p

p p
p

T
T R

n

v

v n

v

1 2

∆ l

 or 
p p
p

T
T R

v n

v

−
=

∆
2

l

 By Raoult’s law, 
p p
p

n
n n

v

v

u

u v

n−
=

+

Fig. 6.5 Vapour pressure curves of a solvent and that of a solution of an 
involatile solute in the same solvent
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 ∴     
∆T
T R

n
n n

u

u v
2

l
=

+

 or ∆T RT n
n n

u

u v

=
+

2

l  (6.39)

In the case of very dilute solutions, nu << nv

 so that  
n

n n
n
n

u

u v

u

v+
=  

  ∆T RT n v
n v

RT C
n v

RT C
m
M

v

u

v

Ru

v

Ru

v

v

= = =
2 2 2

l l l
/
/ / /

 or ∆T RT
M

C
m v

RT
M

C

v

Ru

v v

Ru= =
2 2

λ λ ρ/ / /

 or ∆T RT
L
CRu=

2

ρ  (6.40)

where L is the latent heat per gram.
The above result can be deduced directly from elementary principles of thermodynamics. For this 

purpose, we work an engine on the Carnot’s principle as follows:
Figure 6.6 represents two cylinders, one containing pure solvent in equilibrium with its vapour at  

atmospheric pressure p and at temperature T, the boiling point of the solvent. The other cylinder con-
tains solution of an involalite solute in equilibrium with its vapour also at temperature T + DT, the boil-
ing point of the solution and at atmospheric pressure p. The solvent in chamber 1 is connected to the 
solution through a semi-permeable membrane which can be moved as a piston. 

Fig. 6.6 Arrangement for working an engine on Carnot’s principle

T T + ∆T �

pp
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In addition, there are two sources at temperatures T + DT and T. We perform the following cycle of 
operation:

Operation I: Evaporate dm gm of the solvent from the solution chamber by pulling the piston out-
wards at temperature T + DT and at pressure p. If L + DL be the latent heat of vapourization per gram 
at temperature (T + DT), the quantity of heat absorbed by the mass dm is dm (L + DL). If dv be the 
 additional volume which dm gm of the vapour occupies, the amount of work done by the vapour is p 
dv. 

Operation 2: Cool the vapour to temperature T. Heat given out by the mass of vapour in this operation 
is dm c1dT where c1 is the specific heat of vapour at constant pressure.

Operation 3: Transfer the vapour to the solvent chamber and condense it to liquid. If L be the latent 
heat at temperature T, the quantity of heat given out by the vapour is L dm. The amount of work done 
upon the vapour is p dv. 

Operation 4: Isolate the mass of condensed vapour. Raise its temperature to (T + DT ) and transfer it 
to the solution in cylinder 2 by moving the semi-permeable membrane outwards. Let c2 be the specific 
heat of the solvent at temperature T. Then, heat given out in the operation is c2 dm DT. Let p be the 
osmotic pressure. Then, work done by the osmotic pressure is p dv where dv is the volume of mass dm 
of the solvent.

The system has now returned to its initial state. By the first law of thermodynamics, the total heat 
 absorbed in the cycle is equal to the amount of external work done.

Hence,
  (L+ DL)dm 2 c1 dmDT 2 Ldm + c2 dmDT = p dv 

  ∆ ∆L c c T pdv
dm

− − =( )1 2  (6.41)

Since the cycle is reversible, the total change of entropy must be equal to zero. Thus,

   
( )L L dm
T T

c dm T

T T
Ldm
T

c dm T

T T
+

+
−

+
− +

+
=

∆
∆

∆
∆

∆
∆

1
2

2 2

0

  ( ) ( )L L T
T

c c T
T

+ −









− − −






∆
∆ ∆1 1

21 2






− =∆T L 0

 or                                 ∆
∆

∆L L T
T

c c T− − − =( )1 2 0  (6.42)

Combining Eqs 6.41 and 6.42, we get

  L T
T

p dv
dm

∆
=  (6.43)

  
dv
dm

=
1
ρυ  

 where ru = the density of the solvent 
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By Eq. 6.34.
  p RC TRu=

Substituting the value in Eq. 6.43 it reduces to 

   L
T
T

RC TRu
∆

= /ρυ

 or ∆T RT
L

CRu=
2

ρυ
 (6.44)

Let mu be the mass of the solute and let Mu be its molecular weight. Let this mass be dissolved in 
mv gm of solvent. 

Let v be the volume of the solution. Then, v is the volume of the solvent and also of the solute.
Then,

  C m M
vRu

u u=
/

The density of the solvent is              ρ =
m
v
v

Substituting the values ofCRu and ρ in Eq. 6.44, we get

  ∆T RT
L

m
M v

v
m

u

u v

=
2

 or  ∆ =T RT
LM

m
mu
u

v

2

 (6.45)

From Eq. 6.45, the molecular weight of the solute can be determined from a known value of DT. In 
this equation, R is the universal gas constant and L is the latent heat per gm. 

Example
An elevation of the boiling point of 1.09 8C is produced by dissolving 0.674 gm of camphor in 6.81 gm 
of acetone. What is the molecular weight of camphor?

  Given: Boiling point of acetone = 56.1 8C
  Latent heat of vapourization = 124.5 cal per gm
  R = 1.985 cal per gm
  Substituting these values in Eq. 6.45,

  Mu =
× ×

× ×
=

1 985 329 1 0 674
124 5 1 09 6 81

156
2. ( . ) .

. . .
.88

The formula for camphor is C10H16O. Its molecular weight is 152. 

Depression of freezing point by an involatile solute: The presence of a non-volatile solute lowers 
the freezing point of a solution. The amount of lowering of freezing point can be calculated from simple 
thermodynamic considerations. 
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For this purpose, we perform a cyclic operation on Car-
not’s principle as follows: 

Figure 6.7 shows two cylinders, one containing pure sol-
vent in contact with frozen solvent at temperature T, the 
freezing point of the solvent; the second cylinder containing 
solution in contact with frozen solvent at temperature T 2 DT, 
the freezing point of the solution. At the top of the vessel 2,  
there is a semi-permeable membrane which also acts as a 
piston. We now perform the following operations:

Operation 1: Melt dm gm of frozen solvent in cyl-
inder 1 to obtain a volume dv of the liquid solvent. 
Let L be the latent heat of fusion at temperature T. 
The quantity of heat absorbed in this operation is  
L dm. A certain amount of work dw is also done on the sub-
stance.

Operation 2: Cool the liquid formed in operation 1 to the 
temperature T 2 DT and reversibly transfer it to the solution 
in vessel 2 by moving the semi-permeable membrane. Let c1 
be the specific heat of the liquid at temperature T and pres-
sure p, the osmotic pressure of the solution, then the heat given out by the liquid is cl dm and the work 
done by the osmotic pressure is p dv. 

Operation 3: The mass dm of the solvent is frozen up at temperature T 2 DT. The quantity of heat 
given out is (L 2 DL) dm where (L 2 DL) is the latent heat at temperature (T 2 DT ). Also, certain 
amount of work dw is done by the solid which is equal and opposite to that done in operation 1. 

Operation 4: The mass dm of the solid at temperature (T 2 DT )is then heated to temperature T and 
transferred to vessel 1. 

The quantity of heat absorbed is c2 dm DT.
The whole system has now been restored to its initial state. Hence by the first law of thermodynam-

ics, the quantity of heat absorbed is equal to the external work done.
Thus,

  Ldm c dm T L L dm c dm T pdv− − − + =1 2∆ ∆ ∆( )

 or                                         ∆ ∆L c c T p dv
dm

− − =( )1 2  (6.46)

Since the cycle is supposed to be reversible, the total change of entropy must be equal to zero. This gives

                              

Ldm
T

c Tdm
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T T
−

−
−

−
−

+
−

=1 2

2 2
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∆

∆
∆

∆
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∆
( )

 or ( ) ( )L c T T
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L L T
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− +









− − +




1 1

2
1∆

∆
∆

∆






+ +











=c T T
T2 1

2
0∆

∆

 or                                                       ∆ ∆
∆L c c T L T
T

− − − =( )1 2 0  (6.47)

Fig. 6.7 Arrangement 
representing cyclic operation on 

Carnot’s principle
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Combining Eqs 6.46 and 6.47, we get

  L T
T

p dv
dm

∆
=  (6.48)

 But, But anddv
dm

p RC T
v

R= =
1
ρ

where CR is molar concentration, that is, the number of moles of solute in 1 litre of solution.
Substituting the values in Eq. 6.48, we get

  ∆T RT
L

CR=
2

ρ  (6.49)

solVeD problems 
 Q 1. Volume of 1 gm of water at 0 8C and at 760 mm pressure is 1cc and volume of 1 gm of ice 

at 0 8C and at 760 mm pressure is 1.0908 cc. Calculate the change in melting point of ice by 
1 atmosphere increase of pressure. 

  Given L = 80 calories at N.T.P. 

Ans. From the given data, ( ) .v vliq sol− = −0 0908

  T = 273
  dp = 1 atmosphere
  = 76 3 13.6 3 981 dynes/sq. cm

 Putting the values in Eq. 6.10, we get

  − ×
× ×

=
× ×0 0908 76 13 6 981 80 4 2 10

273

7

. . .
dT

 or dT = −
× × × ×

× ×
0 0908 273 76 13 6 981

80 4 2 107

. .
.

 2nd method 

 From the given data, ( ) .v vliq sol− = −0 0908

     T = 273
     dp = 1 atmosphere
     L = 80 calories

     
=

80
0 024208.

atoms. cc

 Putting these values in Eq. 6.10, we get

  
− × =

×
0 0908 1 80

0 0242 273
.

.dT
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dT = − ×

×0 0908 0 0242 273
80

. .

  
1 76 13 6 981

2
atmosphere litre dynes

cm
× =

× ×
×

. ( )
( )

(ccm)3

  = × ×76 13 6 981. dynes cm

  = × ×76 13 6 981. ergs

  
=

× ×
×

76 13 6 981
4 2 107

.
.

cal

   = 24.205 cal
  1. atm. 3 cc = 0.024205 cal.

 Q 2. Volume of 1 gm of steam at 100 8C and 760 mm pressure is 1674 cc and volume of 1 gm of 
water at the same temperature and pressure is 1 cc. On increasing the superincumbent pres-
sure by 27.12 mm, the boiling point of water is raised by 1 degree. Calculate the latent heat of 
 vaporization of water.

Ans. From the given data, 

  ( )v vvap liq− =1673 cc.

     

dp
dT

= =27 12 27 12
760

. .mm atm
degreedeg.

 Putting these values in Eq. 6.9, we get

  
( ) .

deg ( ) deg
1673 27 12

760 273 100
1cc atm

ree ree
=

+
L

 or, L =
× ×1673 27 12 373

760
. .atm. cc

  L =
× × ×1673 27 12 373 0 024203

760
. . .calories

 or L = 538.9 calories.

 Q 3. One gm of cane sugar dissolved in 100 c.c. water at 16 8C gives an osmotic pressure of 535 mm 
of Hg. Find the value of K.

Ans. Molecular composition of cane sugar is C12H22O11 and its molecular weight is 342.

 1 gm of cane sugar =1/342 mole of cane sugar

    Hence, molar concentration of cane sugar =
×
1

342 100
  = 2.924 3 1025 mole/cm3
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196  Heat and Thermodynamics

   Putting these values in Eq. 6.33, we get

  
′ =

× × ×
×

= ×K 53 5 13 6 981 10
289 2 924

8 4 10
5

7. .
.

. ergs
mole deg.

 Q 4. Calculate the temperature for the triple point of water in absence of air. Given that the vapour 
pressure at 0 8C and 1 8C are 4.60 and 4.94 mm, respectively and the lowering of melting point 
per atmosphere is 0.0072 8C.

Ans:  Let the temperature of the triple be t 8C above 0 8C. The vapour pressure at 0 8C = 4.60 mm and 
the vapour pressure at 1 8C = 4.94 mm. 

  The rate of increase of vapour pressure = 4.94 2 4.6 = 0.34 mm per  8C. The vapour pressure 
at the triple point = (4.60 1 0.34 3 t) mm 

 Hence, change in pressure = 760 2 (4.60 1 .34t) mm

 The lowering of melting point per atmosphere = 0.0072 8C

 Therefore, the rise in melting point t due to decrease in 760 2 (4.6 1 0.34t) mm pressure is 

  
0 0072

760
755 4 0 34. ( . . )− t

 ∴ t = °0 00716. C

 Q 5. Calculate the slopes of the vapourization and sublimation curves for water at 0 8C from the 
given data. Show that these are two different lines. 

  Latent heat of sublimation = 687 calories.
  Latent heat of vapourization = 607 calories.

  And  v v v vv l s− ≈ − = ×0
421 10 cc

Ans:  From Clapeyron’s equation 

  

dp
dt

L
T v v

=
−( )2 1

 slopes of vapourisation curve at 0 8C,

  

dp
dt

=
× ×
× ×

= ×
607 4 2 10
273 21 10

4 45 10
7

4
2 2. . dyne/cm // C°

 slopes of sublimation curve at 0 8C

  

dp
dt

=
× ×
× ×

= ×
687 4 2 10
273 21 10

5 03 10
7

4
2 2. . dyne/cm // C°

 They are two different lines since the slopes being different.
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problems

1. Calculate the variation of latent heat of fusion of ice with temperature from the following data:
 Specific heat of water at 0 8C = 1
 Specific heat of ice at 0 8C = 0.505

 L = 80, v2 = 1, v1 = 1.09, dv
dT

dv
dTp p

2 10 00006 0 00011






 = −







 =. , .

Ans. 
dL
dT

= 0 79.

2. At normal pressure, melting point of mercury is 239 8C. Its density in solid state is 14.19 gm/cc
and at liquid state 13.59 gm/cc and the latent heat of fusion is 2.33 cal/gm. Calculate the melt-
ing point of mercury at 1,000 atm. 

Ans. 241.6 K
3. The excess pressure inside a pressure cooker is maintained by a mass of 130 gm placed on the 

vapour exit tube having cross sectional area 0.13 sq. cm. If latent heat of vaporization of water 
is 540 calories and specific volume of water vapour is 1674 cc, calculate the boiling point of 
water inside the cooker.

Ans. 400 K
4. Iodine boils at 185.3 8C when its density is 3.71 gm/cc and its latent heat of vaporization is 

40.9 calories/gm. A change of pressure 17 mm of Hg pressure changes its boiling point by 1 8C. 
Calculate the specific volume of iodine vapour.

Ans. 164.7 cc
5. Ether boils at 35 8C and the specific heat of liquid ether at boiling point is 0.55 calories. Latent 

heat of vaporization at 35 8C and at 40 8C is 90.2 calories and 80.5 calories, respectively. Calcu-
late the specific heat of saturated ether vapour.

Ans. 2.197 calorie

questions

1. Deduce Clausius–Clapeyron equation. If a substance increases in volume on melting, how is its 
melting point changed by increase of pressure? 

2. Derive the equation which gives the change of pressure of saturated vapour with change of temperature.
3. Deduce the equation which is the basis of vapour pressure thermometers.
4. Show that specific heat of saturated vapour is a negative quantity.
5. At the boiling point of water, some fraction of the total mass of water and its vapour is in vapour 

state which is in equilibrium with water; what is that fraction?
6. What do you mean by internal and external latent heat? Formulate them.
7. What are steam line, hoar frost line, ice line and triple point? Can the triple point of water serve 

as a fixed point of a temperature scale?
8. Define the terms: phase, component, degree of freedom. State phase rule giving examples. 
9. What is osmosis? State the laws of osmotic pressure. 

10. Deduce Raoult’s law from thermodynamical considerations.
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Chapter 7

7.1.  Introduction

In Joule’s experiment, a quantity of compressed gas was allowed to expand into a vacuous space  
without doing external work. No change of temperature of the gas was detected after expansion. The 
consequence of this was

		  du
dv

du
dpT T







 =









 =0 0and �

Thus at constant temperature, u is not a function of p and v. It must, therefore, be a function of T only.
The thermal capacity of the apparatus employed was very large in comparison with that of the gas 

experimented upon. To detect any thermal effect that might reasonably have been expected, a more 
delicate arrangement was necessary. Joule in collaboration with Thomson carried out extensive series 
of researches lasting over the period from 1852 to 1862.

In their experiments, the gas instead of flowing suddenly into vacuum was allowed to flow continuously 
from a region of high to a region of low pressure. To maintain this difference of pressure in the flowing mass of 
gas, it was forced through the porous plug of cotton wool inside the tube through which the gas was flowing.

The actual apparatus is shown in Fig. 7.1. The gas is pumped through a coil of copper pipe immersed 
in a bath of water whose temperature was measured by the thermometer a, bb was the upper end of 
the copper vessel, cc were two perforated plates between which an India rubber ring ee containing a 
silk plug s was placed. The plug could be compressed to any desired extent by pressing the plates cc 
together. To prevent conduction from bath, a ring of cork ff with loosely packed cotton wool is placed 
inside the copper vessel. A delicate thermometer h was placed inside the cotton wool plug to record any 
change of temperature of the gas issuing from the plug. The pressure of the inflowing gas was recorded 
by a gauge. The pressure of the gas issuing from the plug was that of the atmosphere.

THE JOULE–THOMSON 
COOLING EFFECT
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The Joule–Thomson Cooling Effect     199

7.2  The Theory of The Experiment

Figure 7.2 shows a cylinder separated into two chambers A and B by a partition wall perforated with a 
very fine hole. Let pA and TA, pB and TB be pressures and temperatures of the gas in the chambers A 
and B, respectively and let pA > pB. Let vA and vB be the specific volumes of the gas in the two cham-
bers A and B. When the gas is forced through the orifice, the issuing jet possesses certain amount 
of kinetic energy which gradually subsides at some distance from the orifice and is converted into 
heat by fluid friction. Near the orifice there would be a lowering of temperature due to kinetic en-
ergy produced. At a distance from the orifice where the turbulence has subsided, the temperature 
of the chamber B will be higher or lower than in the chamber A depending on the nature of the gas.

Let us follow the changes produced in the unit mass of the gas as it is forced from the chamber A to 
chamber B. We may suppose the transference to be effected by pushing the piston M exposed to pressure 
pA in the forward direction so as to sweep out a volume vA in the chamber A. The work done by the piston 
is pAvA. The mass of gas thus transferred pushes another piston N in the chamber B exposed to pressure 

Fig. 7.2  Schematic representation of porous plug experiment

TBTA

A B 

N M 

vBvA
pA  

pB

Fig. 7.1  Joule and Thomson’s porous plug experiment

e 

f f 

b b 

e s 

c 

c 

a

h 

 CoverWooden

 Level Water
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200    Heat and Thermodynamics

pB in the outward direction so as to sweep out a volume vB. The work done by the unit mass of the gas 
on the piston N is pBvB. Let uA and uB be the internal energies of unit mass of the gas in the chambers A 
and B. If dQ be the quantity of heat absorbed from outside by the unit mass of the gas in the process of 
transference, then

		  dQ du dW= +

		  = − + −( ) ( )u u p v p vA B A A B B � (7.1)

	 or	 dQ u p v u p vA A A B B B= + − +( ) ( )

	 or	 dQ H HA B= −

where HA and HB are the specific enthalpies of the gas in the chambers A and B, respectively. If the 
process is adiabatic, 

		  dQ = 0

	 so that 	 HA = HB� (7,2)

Such a process is called throttling process. Thus in a throttling process, enthalpy remains constant. 
The imaginary pistons were introduced only to make the argument clear, the result is of general applica-
tion to all cases of throttling, or frictional drop of pressure and to any fluid. Let cv be the specific heat of 
the gas at constant volume. Then Eq. 7.1 can be written as follows: 

		  Jc T T p v p v dQv A B B B A A( )− = − =for 0… � (7.3)

From Eq. 7.3, we draw the following conclusions:

	 (1)  If thenT T p v p vA B A A B B= =,

This is the same result as that obtained by Joule in his original experiment. It holds only for the case 
of perfect gases.

	 (2)  If thenT T p v p vA B B B A A> >,

This means that the gas does greater amount of work than what was done upon it in the chamber A.

	 (3)  If thenT T p v p vA B B B A A< <,

In this case, the gas yields only a part of the work done upon it in the chamber A.
How to account for this excess amount of work or loss of work? The explanation is that two mol-

ecules of a gas may either attract or repel each other. If the molecules attract, work will have to be 
done on the gas to make it expand. On the other hand, if the molecules repel each other, work will be 
done by the gas on expansion. These works are added to or subtracted from the internal energy. Hence, 
Joule–Thomson cooling effect is produced by internal work done on or done by the gas molecules in 
the process of expansion. In an adiabatic expansion, (K1 E1 1 pv) remains constant while in a throttling 
process (u 1 pv) is constant.
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7.3  Calculation of Amount of Cooling

In a throttling process,

		  dH = 0 

		  TdS = du 1 p dv

	 or	 du = T dS 2 p dv

	 Now	 du + d (pv) = T dS 2 p dv 1 d (p v)

		  = T dS 2 p dv 1 p dv 1 v dp

		  d(u 1 pv) = T dS 1 v dp

	 or	 dH = T dS 1 v dp 

	 or	 T dS 1 v dp = 0� (7.4)

Expressing S as a function of p and T,

		  dS dS
dT

dT dS
dp

dp
p T

=






 +











Substituting the value of dS in Eq. 7.4, we get

		  T dS
dT

dT T dS
dp

dp vdp
p T







 +









 + = 0 � (7.5)

Using fourth Maxwellian relation, Eq. 7.5 becomes 

		  T dS
dT

dT T dv
dT

dp vdp
p p







 −







 + = 0

	 so that	 T dS
dT

dT T dv
dT

v dp
p p







 =







 −

















	 or	 C dT T dv
dT

v dpp
p

=










−
















	 or	
dT
dp C

T dv
dT

v
H p p











=










−




1 










� (7.6)

The quantity (dT/dp)H is called the cooling coefficient produced by throttling process. In throttling 
process, dp is negative. If this is cooling effect, then dT is also negative. This makes the right-hand side 
positive. If the right-hand side is negative, it is a heating effect.
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For a perfect gas obeying the relation pv = RT,

		
dv
dT

R
pp











=

		  T dv
dT

RT
p

v
p











= =

Hence, with a perfect gas

		
dT
dp H











= 0

	 Now	 dH TdS v dp= +

	 or	
dH
dp

T dS
dp

v
T T









 =









 +

	 or	
dH
dp

T dv
dT

v
T p











= −










+

	 or	 T dv
dT

v dH
dpp T











− = −










Substituting the values in Eq. 7.6, we get

		
dT
dp C

dH
dpH p T











= −










1
� (7.7)

	 or	 dT
C

dH
dp

dp
p T

= −
1 ( )

( ) � (7.8)

Equation 7.8 gives “differential effect” due to throttle expansion. 
Equation 7.6 can also be written as follows:

		
dT
dp

T
C

d
dT

v
TH p











= −










2

	 or	 dT dT
dp

T
C

d
dT

v
TH p

=










= −










2

ddp

	 or	 ∆T T
C

d
dT

v
T
dp

pp

p

A

B

=






∫

2

� (7.9)
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Equation 7.9 gives the “integral effect” of cooling due to throttle expansion.
Again from Eq. 7.6, 

		  C dT
dp

T dv
dT

vp
H p











=










−

Using Maxwell’s fourth relation, this becomes

		   C
dT
dp

T dS
dp

vp
H T









 = −









 − � (7.10)

	 now	 TdS du pdv= +

	 or	  T dS
dp

du
dp

p dv
dpT T T









 =









 +











Substituting the values in Eq. 7.10, we get

		  C dT
dp

du
dp

p dv
dp

H T











= −










−
pp

v
T











−

		  C dT
dp

du
dp

d
dpp

H T











= −










− ( ppv T) � (7.11)

The first term on the right of Eq. 7.11 gives the deviation from Joule’s law according to which

		
du
dp T











= 0

for a perfect gas. 
The second term gives the deviation from perfect 

gas law, according to which pv = constant at constant 
temperature.

Hence, Joule–Thomson’s cooling effect shows that no 
gas is perfect in the true sense of the term. That gases actu-
ally deviate from the perfect gas law is proved conclusively 
by Amagat’s isothermals in the (pv, p) space (Fig. 7.3).

The locus of the point of minimum values of p v is 
shown by the dotted curve. Over this dotted curve,

	
d pv
dp T

( )









= 0

For a perfect gas, the (pv, p) curve should be parallel to 
the pressures axis. Fig. 7.3  Amagat’s isothermals

p 

pv 
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7.4  �Calculation of Cooling Co-efficient from  
Van der Waals’ Equation

To determine the cooling co-efficient, we have to use equation of state of real gases. We proceed to 
calculate the cooling co-efficient with the help of Van der Waals’ equation of state 

		  p a
v

v b RT+










− =
2

( )

Differentiating this with respect to T at constant pressure, we get

		  ( )v b a
v

dv
dT

p a
vp

− −

























+ +

2
3 2




















=
dv
dT

R
p

	 or	
dv
dT

a
v
b v p a

vp











− + +










2
3 2

( )












 = R

	 or	
dv
dT

a
v
b v RT

v b
R

p











− +
−











 =

2
3

( )

	 or	
dv
dT

R
a
v
v b RT

b v

Rv b v
a b v RTvp







 =

− −
−

=
−

− −2 2
3

3

2 3
( )

( )
( )

		
dT
dp C

RTv b v
a v b RTvH p











=
−

− −
1
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This is the cooling effect as deduced from Van der Waals’ equation. 

	 or	
dT
dp C

b a
RTv

v b

a
RTv

vH p











=
− −1

2

2
2

2

3

( )

( −− −b)2 1
� (7.12)
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Since a and b are small quantities in comparison with v, Eq. 7.12 can be put as 

		  dT
dp

b a
RT

CH p











=
− +

2

The cooling co-efficient Eq. 7.12 is sometimes put in a different form.
Differentiating Van der Waals’ equation with respect to T at constant pressure, we get

		
d
dT

p a
v

v b R+










−

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


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 =

2
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p a
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


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













+ +
2

3 vv
dv
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R
p
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

















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
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The cooling co-efficient will be zero, if

		  p a
bv

a
v

= −
2 3

2

	 or	 p a
b

b
v

b
v

=









−




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





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2

2 3
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

 � (7.13)
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		  p p b
v

b
vc=










−














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
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27 2 3
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
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bc 27 2
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








−






















27 2 3

2
b
v

b
v


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
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Thus, cooling co-efficient depends on temperature. It a1so depends on a and b which are character-
istics of the particular gas experimented on. At a given temperature, the cooling co-efficient depends on 
the nature of the gas. The experiments of Joule and Thomson show that the cooling effect diminishes 
as the temperature rises.

This also follows from Eq. 7.12. It is expected that at a particular temperature, the cooling effect 
would vanish. This would happen when the numerator of Eq. 7.12 is equal to zero, that is, when

		  b a
RT

b
v

= −










2 1
2

� (7.14)

	 or at temperature		  T a
Rb

b
v0

2
2 1= −











� (7.15)

It can be proved that this point corresponds to the minimum point on the Amagat (pv, p) isothermal 
as follows:

Writing Van der Waals’ equation of state in the form

		  pv RTv
v b

a
v

=
−

−

For minimum value of (pv, p) curve, we must have
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





 = 0

	 or	 −
−

+
−

+ =
RTv
v b

dv
dp

RT
v b

dv
dp

a
v
dv
dp( )2 2

0

	 or	
a
v

RTb
v b

dv
dp T

2 2 0−
−( )

























 =

Since we must havedv
dp T











≠ 0,

		
a
v

RTb
v b2 2

0−
−

=
( )

	 or	 RT b
a

v b
v

b
v

=
−

= −










( )2

2

2

1

Chapter 07.indd   206 4/26/2011   11:44:13 AM



The Joule–Thomson Cooling Effect     207

This temperature is only half of that obtained by the other method. This is of the same form as  
Eq. 7.15. Hence, the pressure and volume at the temperature at which the cooling effect vanishes can be 
obtained from the co-ordinates of the minimum point of Amagat’s curve. Evidently, the locus of mini-
mum points on Amagat’s curves of different isothermals is the curve over which the Joule–Thomson 
cooling effect vanishes.

The pressure and volume corresponding to the temperature at which cooling effect vanishes can also be 
obtained from calculation. For this purpose, we transform Eq. 7.15 in terms of reduced co-ordinates p, q,
and f where p = p/pC, q = T/TC, and f = v/vC, pC, TC and vC being the critical pressure, temperature and 
volume, respectively. We have

		  T a
Rb

p a
b

v bc c c= = =
8

27 27
3

2
, , and

Substituting the values a and b in terms of critical constants in Eq. 7.15,

		  T a
Rb

b
v0

2
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








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0

2
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4

1 1
3
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


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
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
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0
2
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4

1 1
3
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
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
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4

1 1
3
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









To obtain the values of p and f, we substitute this value of q in the reduced equation of state

		  θ π
ϕ
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
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


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π
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3

1
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	 or	 9 3
2

3
22 2

ϕ
ϕ

π
ϕ

−
= +

	 or	 π =
−9 2 1
2

( )ϕ
ϕ � (7.16)

This is a quadratic equation in f and there are two real roots for each value of p. Substituting these 
pairs of values of p and f in the reduced equation of state, we get two corresponding values of q for 
which the cooling effect is zero. The roots of the equation

		  ϕ
ϕ
π π

2 18 9 0− + =

	 are	 ϕ
π π π

=
±







 −

18 18 36

2

2

� (7.17)

The two roots will be equal if

		
18 36 9 9

2

p p
p







 = = =or or p pc �

The two equal roots of f are then f = 1.
The corresponding value of q is 

		  q = + × = × × =
3
8

9 3 2
3

3
8

12 2
3

3( )

This gives T = 3TC
Thus at a pressure 9pC, there is only one temperature at which the cooling co-efficient is zero.
We can also express the equation of the inversion curve in terms of p and q. For this purpose, we use 

Eqs 7.13 and 7.15. These are
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
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Putting x = (b/v) , these equations become 

		  ( )1 4
27

2− =x q
� (7.18)

	 and	 2 3
27

2x x− =
π

� (7.19)

From Eq. 7.18,	 x= −1 2
3 3

q

Substituting the value in Eq. 7.19, we get

		
π
27

2 1 2
3 3

3 1 2
3 3

2

= −









− −











q q
� (7.20)

		  = − + −1 8
3 3

4
9

q q

	 or	 π θ θ= − + −27 12 12 12

	 or	 = − −( )( )9 12 12 3q q � (7.21)
Equation 7.21 is the equation of a parabola.
To bring out the idea more clearly, we put Eq. 7.16 in terms of reduced Amagat co-ordinates. For this 

purpose, we put

		
y x y

x
= = =π πf fand so that

Substituting these values in Eq. 7.16, we get

		  x y
x

y
x











= −










2

9 2 1

	 or	 y y x2 18 9 0− + = � (7.22)

This curve is a parabola and is shown in Fig. 7.4 for x = 0, y = 0 or 18. Hence, it passes through the 
origin. The co-ordinates of the apex A of the parabola is obtained from the equation dx/dy = 0

Differentiating Eq. 7.22 with respect x, we get

		  2 18 9 0y dy
dx

dy
dx

− + =

	 or	 dy
dx

y( )2 18 9− = −

	 or	
dx
dy

y= − − =
1
9

2 18 0( ) � (7.23)
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	 This gives

	
y
x

=
=






= =
= =






9
9

9 1
9 9

or orπ
π π

f f
� (7.24)

  Thus for all pressures less than 9pc, there 
are two temperatures at which there is no cooling  
effect.

  From Eq. 7.12, there will be cooling on  
expansion if

b a
RT

b
v

< −








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2 1
2
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


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

2 1
2
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φ0

2
27
4

1 1
3
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







 � (7.25)

	 or	
3
8

3 1
3

27
4

1 1
32

2
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
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




 −






 < −









f

f
f

	 or	
1
2

3 1
3

9 3 1
92

2

2π +








 −






 <

−( )
f

f
f
f

	 or	 π <
−9 2 1
2

( )f
f

� (7.26)

	 or	 πf f2 9 2 1< −( )

	 or	 y y x2 18 9< − � (7.27)

	 where	 x y= =π π, f �

	 or	 y y x2 18 9 0− + <

	 or	 ( )( )y y− − =α β negative

where a and b are the roots of the equation.

		  y y x2 18 9 0− + =

	 so that 	 a =
+ −18 18 36

2

2 x
� (7.28)

Fig. 7.4  Inversion curve
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	 and	 b =
− −18 18 36

2

2 x � (7.29)

Similarly, there will be heating on expansion if 

		  ( )( )y y− − =α β a positive quantity� (7.30)

A line ABCD (Fig. 7.5) drawn parallel to the y axis will cut the parabola at two points B and C with 
values of y equal to b and a, respectively. For any point P within BC, y is greater than b but less than a. 

	 So that	 ( )( )y y− − =α β negative

Hence at states of the substance represented by a point inside the parabola, the substance cools by 
throttle expansion.

If the point P lies within AB, then y is less than b and less than a so that 

 		  ( )( )y y− −α β is positive

Similarly if P lies within CD, then also the expression

		  ( )( )y y− −α β is positive

Hence for all points lying outside the parabola, 
there is heating on expansion.

The parabola, therefore, represents the curve of 
inversion. On passing through the parabola along 
a line parallel to the y axis or along a line of con-
stant pressure starting at a very low value of y, 
the heating co-efficient diminishes and it becomes 
zero on the parabola. The substance then cools 
down on expansion. Temperatures corresponding 
to points on the parabola are called temperatures 
of inversion.

Critical temperature of Hydrogen is about 33 
K. Hence for Hydrogen the apex of the parabola 
is at 3 3 33 = 99 K. Ordinary temperatures being 
far above this temperature, the thermodynamic 
state of Hydrogen at room temperature lies out 
side the region enclosed by the parabola. Hence 
it lies in the region of warming on throttle expan-
sion. Hence hydrogen must be cooled below 100 
K to produce cooling effect.

The critical temperature of Helium is 50 K. Hence unless helium be cooled below 100 K the cooling 
co-efficient of helium can never be positive. The critical temperature of Oxygen is 135 K. The corre-
sponding apex of the parabola is at 3 3 135 = 405 K, room temperature is far below 405 K. Hence at 
ordinary temperature it shows cooling effect.

This explains the anomaly of hydrogen and helium.

Fig. 7.5  Inversion curve
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7.5  Condition for Liquefaction of Gases

It appears from the characteristics of isothermals for different gases obtained from experiments of 
Amagat and others that for every gas there is a limiting value of temperature called the critical tempera-
ture above which a gas can never be liquefied by pressure alone, however high the pressure may be. 
So, the essential condition of liquefaction is that the temperature of the gas must be below its critical 
temperature. Table 7.1 shows the values of critical temperature and pressure of some gases.

Below the critical temperature, a gas can be liquefied by compression during which the pressure 
remains constant. The further the temperature is lowered below the critical temperature, the less is the 
pressure required for liquefaction. 

Hence, the problem of liquefaction of a gas involves the problem of production of low temperatures. 
The methods of production of low temperatures are as follows:

Evaporative cooling:  It is the rapid evaporation of a liquid placed in a chamber which is thermally 
insulated. A liquid can be made to boil at any temperature by reducing its superincumbent pressure by 
means of a pump. The latent heat of evaporation is absorbed from the boiling liquid which is, therefore, 
cooled.

By adiabatic expansion or external work method:  This is usually done with the help of an expan-
sion engine. It consists of a cylinder provided with a piston, an inlet and an outlet valve. Highly com-
pressed gas enters the cylinder whenever the inlet valve is opened. The valve closes quickly and the gas 
continues to expand doing work on the piston. This work is mechanically absorbed by means of a drive 
rod and crankshaft arrangement and is used for driving other machineries such as dynamo. At the end 
of the expansion, the outlet valve opens and the gas at a constant lower pressure is pushed out of the 
cylinder and is ready to take up the next charge from the high pressure line.

The indicator diagram is shown in Fig. 7.6. In this figure, the opening of the inlet valve is marked by 
the point A. At B, the inlet valve closes. At C the outlet valve opens, which closes at the point D. The 
path DA gives the changes of pressure of the next charge of the gas. The pressure gradually rises till it 
is sufficient to force the inlet valve open, when the next cycle of operations begin.

 
Gas

 
Tc (K)

 
pc (atm)

a 
(dynes,cm4/mole2)

b 
(cm3/mole)

Normal 
Boiling point

CO2 304.2 73.00 3.64 × 1012 42.5 –

Xe 289.8 58.22 – – –

Kr 209.4 54.24 – – –

A 150.7 48.00 1.27 × 1012 36 –

O2 154.0 49.7 1.49 × 1012 32.2 90.1

N2 126.0 33.49 1.36 × 1012 38.3 77.3

Ne 44.8 26.88 0.207 × 1012 24 27.17

H2 33.2 12.8 0.25 × 1012 26.7 20.40

He 5.25 2.26 0.035 × 1012 23.6 4.19

Table 7.1  Some characteristic values of important gases

Chapter 07.indd   212 4/26/2011   11:44:51 AM



The Joule–Thomson Cooling Effect     213

The total amount of work done in the pro-
cess of adiabatic expansion is Cv (T2 − T1).

The total change of enthalpy in the adia-
batic expansion is 

	                   dH vdp
p

p

2

1

2

1

∫ ∫= �  (7.31)

From the relation dQ = CpdT 2 vdp for 
perfect gas

vdp = CpdT

	 Since               dQ = 0,

∴ H H vdp C dT C T T
p

p

p p1 2
2

1

1 2

2

1

− = = = −∫ ∫ ( )

The change of temperature of the gas in the adiabatic expansion from pressure p1 and p2 is 

		  T T T p
p1 2 1

1

2

1

1− = −




























− g
g

� (7.32)

Difficulties of expansion engines:  Cylinder expansion method of cooling is not convenient at low 
temperatures. In Claude’s expansion engine, the cylinder is heat insulated and lubricants used inside the 
cylinder to maintain the piston gas tight are frozen up on account of low temperature. This difficulty is 
overcome by using impregnated leather cups specially prepared for the purpose.

Heylandt’s expansion engine is not heat insulated. It is maintained approximately at room tempera-
ture. It is run at high speed so that the expanded gas is quickly swept out of the cylinder before it can 
warm up by conduction from walls of the cylinder.

In Kapitza’s expansion engine, a quantity of compressed gas entering the cylinder (about 4 per cent) 
is made to flow out of the cylinder through shallow longitudinal grooves on the surface of the piston of 
the lubricant.

The throttle expansion method:  The difficulties mentioned above limit the efficiency of the expan-
sion engine. Hence, the last bit of cooling for liquefaction is done with the Joule–Thomson expansion 
valve or throttle expansion valve. When highly compressed gas is allowed to expand to a lower pressure 
through a fine orifice, it cools, the consequent lowering of temperature which is given by

		  dT T
C

d
dT

v
T
dp

p

=
2 ( )

In adiabatic expansion, the entropy of the gas remains constant; in throttle expansion, the  
enthalpy of the gas remains unaltered. For every gas, there is a minimum temperature above 
which the gas can never be cooled by throttle expansion. This temperature is called the tempera-
ture of inversion. The inversion temperature is nearly three times the critical temperature of the  
gas. Critical temperatures of some common gases are given in Table 7.1. From this table, the  

Fig. 7.6  Indicator diagram of expansion engine
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inversion temperatures can be calculated. It follows that air, oxygen, CO2 can be cooled by throttle 
expansion at room temperatures but the temperatures of hydrogen and helium must be below about 
100 K and 15 K to be cooled by throttle expansion. In order that the gas may be liquefied by pres-
sure, it must be cooled below its critical temperature by adiabatic expansion or throttle expansion 
or by the combination of both these processes.

The drop of temperature due to fall of pressure from p1 to p2 by passing through the throttle valve is less 
than that produced by adiabatic expansion in the expansion engine. However on account of the difficulties 
of realization of the external work method, the two types of processes have nearly the same efficiency.

Distinction between adiabatic and Joule–Thomson (Joule–Kelvin) expansion.

Joule–Thomson (Joule–Kelvin) Expansion Adiabatic Expansion

(i)	� Enthalpy (H = u + pv) remains constant. 
Expansion is called isenthalpic. (i)	� Entropy =( )=∑ dQ

T remains constant. 

Expansion is called isentropic.

(ii)	 �In this expansion, the vessel containing the gas 
is made of heat insulating material; so, no heat 
can enter or leave the system.

(ii)	� This type of expansion is so rapid that 
no heat exchange is possible with the 
surroundings.

(iii)	�In this expansion, cooling is comparatively 
less because external work is done by the gas 
against the intermolecular force of attraction 
when the gas is real; in the case of perfect 
gas, no external work is done as there is no 
intermolecular force.

(iii)	�In adiabatic expansion cooling is 
comparatively large as external work 
is done which derives energy from the 
internal energy of the gas molecules; 
so, there is always a cooling effect 
whether the gas is real or perfect.

(iv)	�At inversion temperature, there is no 
temperature change; cooling occurs below 
inversion temperature and heating above 
inversion temperature.

(iv)	� This expansion always involves 
cooling.

(v)	� The work done in overcoming intermolecular 
attraction can not be utilized for useful purpose.

(v)	� In this expansion, work done can be 
utilized to serve useful purposes.

(vi)	�This expansion, though adiabatic in nature, 
passes through non-equilibrium states from 
initial equilibrium state to final equilibrium 
state. It is associated with internal mechanical 
irreversibility as viscosity, friction, eddies are set 
up in the neighbourhood of the plug.

(vi)	� In this expansion, the system passes 
through equilibrium state from the 
initial to the final state which can be 
expressed in terms of thermodynamic 
coordinates at any instant.
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Fig. 7.7  Schematic representation of regenerative cooling
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7.6  Regenerative Cooling

To produce cumulative cooling effect, the expanded gas is made to flow out as a counter current through 
a double-walled pipe whose inner wall is constituted by the inlet pipe leading the gas on the expansion 
engine. The double-walled pipe is wound as a helix on a large cone-shaped stainless steel form. The coil 
is placed inside a vacuum chamber.

The whole system thus formed is called the heat interchanger. The inner tube is connected to the 
inlet valve of the expansion engine while the outer tube is connected to the exhaust valve of the 
engine. The incoming gas is progressively cooled by the gas flowing out through the double- walled 
chamber.

Figure 7.7 shows the change of temperature suffered by a given mass of gas as it flows in and out 
of an interchanger in the steady state. In this figure, AB is the length of the interchanger, AC (= TA)
is the temperature of the gas just before it enters the interchanger, EB is its temperature before en-
tering the valve. The temperature of the gas falls to DB (= TB) after passing through the valve, on 
account of Joule–Thomson cooling effect. On passing out of the interchanger, the temperature of the 
gas again rises to TA. If pA and pB be the pressures of the gas at the points A and B, then the total fall 
of temperature is

		  ∆T T
C

d
dT

v
T
dp

p p

p

A

B

= ∫
2 ( )

� (7.33)
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7.6.1  Efficiency of The Liquefier
Let the pressure and temperature of the gas just before it enters the interchanger be pA and TA, respec-
tively. After throttle expansion, let its temperature and pressure fall to TB and pB. If the interchanger is 
perfect, TA = TB. Under this condition, the total heat of the gas before entering the interchanger is equal 
to that of the liquefied gas and that of the gas leaving the interchanger. Let a fraction ∈ of the gas be 
liquefied when unit mass of the gas is forced through the nozzle. Let HA, HB and HC be the total heats 
per unit mass of the gas before it enters the interchanger at A just before it passes out of the throttle at 
B and that of the liquefied gas.

Since H remains constant in a throttling process,

		  H H HA B C= −∈ + ∈( )1

		  ∈ =
−
−

H H
H H
B A

B C
� (7.34)

The fraction ∈ is called the efficiency of the liquefier. In the steady state of the interchanger, the 
values of pB, TB, pC, TC and TA depends on the design of the liquefier. Hence, the yield can be varied by 
varying the input pressure. From Eq. 7.34, efficiency ∈ is maximum, when HA is minimum, HB and HC 
being constants. 

This occurs when

		
dH
dp

A

T











= 0 � (7.35)

From the Joule–Thomson differential effect, 

		  dT
C

dH
dp

dp
p T

=










1
� (7.36)

Hence, for maximum value of efficiency, dT must be equa1 to zero. This means that for maximum 
yield, the input pressure must lie on the inversion curve. To obtain maximum yield, a knowledge of the 
inversion curve and of H as a function of p and T is necessary.

7.7  Method of Adiabatic Demagnetization

A sketch of the apparatus used for adiabatic demagnetization is shown in Fig. 7.8. The substance 
S a paramagnetic salt of Gd2(SO4)8 H2O or FeNH4,(SO4)12 H2O is pressed into a sphere or el-
lipsoid. It is coated with a thin layer of stop-cock grease to prevent oxidation or dehydration. It 
is suspended by silk thread at the centre of the secondary coils which is used for measurement of 
susceptibility inside a calorimeter immersed in boiling helium at a temperature of about 1 K. This 
in turn is surrounded by a bath of liquid nitrogen. The whole system is placed between the pole 
pieces of electromagnet. To perform the experiment, the calorimeter is filled with helium at a pres-
sure of 1 mm of Hg.
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The magnetic field of 10.000 to 30.000 oersteds is then put on. That produces a rise in temperature of 
the specimen. When the temperature has become steady, the gas is pumped out of the calorimeter. Field 
is then turned off and the magnet completely removed from the neighbourhood of the cryostat when the 
temperature of the specimen is reduced. The fall of temperature is measured from the deflection of a 
ballistic galvanometer connected to the secondary coils.

7.7.1  Theory of The Method 
Any cause which tends to bring order to a disordered system reduces the entropy of the system. The 
paramagnetic salts used in this experiment contains magnetic dipoles (better electron spin moments) 
which are oriented at random even at 1 K.

These moments are orderly arranged by the application of the magnetic field. Hence, magnetic field 
strength H is another parameter which must be added to the entropy function. Thus,

		  S f H p T= ( , , ) � (7.37)
so that,

		  dS dS
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dH dS
dpp T T

=
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,
� (7.38)

The process of magnetization or demagnetization is conducted at constant pressure so that dp = 0.

Fig. 7.8  Sketch of the apparatus used for adiabatic demagnetization
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	 Hence, 	                                 dS
dS
dH

dH dS
dTp T H
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If the process is adiabatic, dS = 0
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	 Now 	
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	 Hence,	
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The total energy per mole of the magnetic substance is given by

		  dU TdS HdI pdv= + − � (7.43)

writing ( )pdv HdI− for dW, I being the intensity of magnetization. In that case, the thermodynamic 
potential takes the following form

		  G U TS pv HI= − + − � (7.44)
so that

		  dG dU TdS SdT pdv vdp HdI IdH= − − + + − − � (7.45)

Substituting the value for dU from Eq. 7.43, we get

		  dG S dT vdp IdH= − + − � (7.46)

Expressing G as a function of p, T and H,
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Comparing with Eq. 7.46, we get
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Differentiating S with respect to H and I with respect to T, we get
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	 so that	
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Again, I = χH, where c is the susceptibility per mole 

		
dI
dT

H d
dTp H p H







 =









, ,

χ
� (7.49)

Hence from Eq. 7.48,
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Substituting the value in Eq. 7.42, we get
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In this case of paramagnetic salt,

		  χ =
A
T

	 where A is Curie constant

	 Hence,	
d
dT

A
T

χ
= − 2

Substituting the value in Eq. 7.50, we get
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, ,

a positive quantity � (7.51)

Hence, the substance is heated by increasing the magnetizing field. Conversely by reducing the mag-
netizing field, the temperature of the paramagnetic salt is lowered.

The lowest temperature attained by the method of adiabatic demagnetization is 0.0034 K. 
It is evident from Eq. 7.51 that the lower the temperature T, the greater is the amount of cooling by 

demagnetization.

Simon desorption method:  In this method, helium gas is allowed to be absorbed by charcoal at 14 K; 
on desorption of the gas, sufficiently lower temperature can be obtained. 

Adiabatic compression of liquid helium II:  When liquid helium initially at any temperature below 
2.19 K is compressed adiabatically, its temperature falls. By this method, temperature well below 1 K 
can be obtained.

By forcing liquid helium II through fine capillaries:  Adiabatically at temperature below 2.19 K, 
temperature below 1 K can be obtained.
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By nuclear demagnetization:  Nucleus of many atoms possess magnetic moment which is very small 
in comparison with magnetic moments of paramagnetic salt. By adiabatic nuclear demagnetization, low 
temperature of the order of 1026 K can be obtained.

7.8  Liquefaction of Air

7.8.1  Linde’s Process
Air is a mixture of hydrogen and oxygen and some percentage of carbon dioxide and moisture. Criti-
cal temperatures of oxygen and nitrogen are 154 K and l26 K, respectively. In order that they may 
be cooled by throttle expansion, the temperatures of oxygen and nitrogen must be below 462 K and 
378 K, respectively. It can be cooled by throttle expansion at room temperatures under suitable pres-
sure. As already stated, for a given liquefier the efficiency can be altered only by changing the input 
pressure and input temperature. Another factor which determines the efficiency is the work done in 
compression. The magnitude of this work is RT[loge p1 − loge p2] when the gas is compressed isother-
mally from pressure p1 to p2.

Hence for greater efficiency, p2 must not be very small. The theoretical optimum input pressure at 
temperature −40 8C is 210 atmospheres. In Linde’s process, the input pressure is 200 atmospheres and 
input temperature is −40 8C and value of p2 is 40 atmospheres. The air expands through the throttle value 
to a pressure of 40 atmospheres.

A sketch of apparatus explaining Linde’s process is shown in Fig. 7.9.
Here, air is first freed from CO2 and moisture by passing through a tower of lime and potassium 

hydroxide. It is then compressed to a pressure of 200 atmospheres by a compression pump. The heat 
generated by compression is removed by a water cooler. The gas at room temperature is then led 
through an ammonium refrigerator where its temperature falls to −40 8C. The gas at 200 atmospheres 
and at −40 8C then expands to 40 atmospheres through the heat interchanger cooling the inflowing gas 

Fig. 7.9  Sketch of Linde’s apparatus

Ammonia
refrigerator 

200 ATM 

40 ATM 

Joule
Thomson

Valve

H
ea

t
in

te
rc

ha
ng

er
 

Air intake 

Flow diagram of
Linde’s process

W
at

er
 c

oo
le

r 

Chapter 07.indd   220 4/26/2011   11:45:17 AM



The Joule–Thomson Cooling Effect     221

regeneratively till it liquefies. The liquefied air is 
stored up in a Dewar’s flask. Liquid air thus contains 
a mixture of liquid nitrogen and oxygen. The normal 
boiling points of N2 and O2 are 77.32 K and 90.19 K,
respectively. Nitrogen being more volatile than oxy-
gen, it is quickly evaporated and after sometime the 
liquid contains only pure oxygen.

7.8.2  Claude’s Method
In this method, air compressed to 40 atmospheres en-
ters the interchanger I maintained at −80 8C by way of 
the inlet tube A as shown in Fig. 7.10. At the point P 
gas divides, a fraction (1 2 M) passing to the expan-
sion engine and the remaining portion M at reduced 
pressure passing through the interchangers at II and III.

The fraction (1 2 M) of the gas is allowed to 
expand to 1 atmosphere and is thereby cooled. 
This cooled gas flows out by way of the tube Q 
through the interchangers I and II and cools the 
incoming gas.

The fraction M of the gas at reduced pressure 
flows through the interchangers II and III and is 
cooled below the critical temperature of the gas but 
not to its normal boiling point under 1 atmosphere. 
As a result, some quantity of the gas condenses in 
the interchangers II and III at a temperature higher 
than the normal boiling point of the liquid. It then 
passes through the valve and its pressure falls to 
1 atmosphere. The liquid collects in the chamber 
and cool vapour passes through the interchangers 
thereby cooling the inflowing gas.

The corresponding change in entropy of the flow-
ing mass of gas is shown in Fig. 7.11.

7.8.3  Heylandt’s Method
This method is based on the same principle as Claude’s and differs from it only in details. In Heylandt’s 
method, the interchanger 1 is omitted. Air enters liquefier at a pressure of 200 atmospheres. The fraction 
(1 − M) of the gas passes into the expansion engine. After expansion, the temperature of the gas still 
remains above critical temperature.

The corresponding change in entropy of the gas flowing in and out of the liquefier is shown in 
Fig. 7.12. 

Fig. 7.10  Sketch of Claude’s apparatus
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7.9  Liquefaction of Hydrogen

Critical temperature of hydrogen is 33.2 K. Hence, it must be cooled below about 100 K in order that it 
may be cooled by throttle expansion. The optimum input temperature and pressure for maximum yield 
of liquid hydrogen is between 63 K and 80 K and 160 atmospheres, the gas expanding to 1 atmosphere. 

Figure 7.13 shows the flow diagram for hydrogen of the liquefier of the Mond laboratory of the Royal 
Society at Cambridge. In this apparatus, two separate circulations are used, which are as follows:

1.	 one that is used mainly for cooling the apparatus;
2.	 other where hydrogen to be liquefied flows through the path marked

	      (i)	� Pure hydrogen at 160–170 atmospheres enters the tube 1. It flows through the interchanger A, 
then through a bath of nitrogen boiling under reduced pressure at 66 K. It then passes through 
the regenerator coil D and finally expands through the value E to a pressure of 1 atmosphere. 
A small quantity of the gas liquefies and collects in the container F. 

	      		�   When it is about one-third full, it passes by way of the tube 4 to the coil in the container 
G where it evaporates and the cold vapour passes out through the tube 2 into a compressor 
which compresses the gas to 160 to 170 atmospheres and returns the gas to the tube 1. By 
such circulation, the temperature of the interchangers is continually lowered.

	      (ii)	� Commercial hydrogen at a pressure of 3 to 4 atmospheres is led through the pipe 3 into the 
interchanger A then successively through the bath of boiling nitrogen and the regenerator coil 
D. It then enters the interchanger G whose temperature is 20 K. At this temperature, it lique-
fies under a pressure of 3 atmospheres and condenses on the coil in G. The liquid is pushed 
through the tube 5 and is drained off at the valve H into a suitable container. Any impurity 

Fig. 7.11  Schematic representation of 
entropy change in Claude’s process
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Fig. 7.13  Flow diagram for hydrogen to be liquified
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present in the commercial hydrogen solidifies and collects at the bottom of G and removed 
at the end of the run. The whole liquefier is enclosed in a metal case maintained at a high 
vacuum.

7.10  Liquefaction of Helium

The critical temperature of helium is 5 K. Hence, it must be precooled below 15 K in order that it may 
be cooled by throttle expansion below its critical temperature. The optimum input pressure for helium 
is 30 atmospheres for an input temperature of 15 K and expansion to 1 atmosphere. 

In the Kapitza helium liquefier at the Mond laboratory, Cambridge, helium is first led through a 
reducing valve and then through charcoal immersed in liquid air to remove impurities. It then passes 
through a bath of liquid hydrogen. The gas then passes through the inner tube of the interchanger and 
expands to 1 atmosphere at the throttle valve. The vapour of the gas then escapes out of the liquefier 
through the outer tube of the interchanger. 

Figure 7.14 shows the flow diagram of Kapitza’s helium liquefier working on Heylandt’s principle 
employing expansion engine. At helium temperatures, no grease can be used. This difficulty was 
overcome by Kapitza by leaving just sufficient space between the cylinder and the piston to avoid 
friction. By accelerating the compression stroke, the amount of gas escaping through the space be-
tween the cylinder and the piston could be made negligible. The great advantage of the method is that 
it requires no liquid hydrogen for precooling purposes. Theoretically, no precooling is necessary at all 
in this apparatus for liquefaction of helium. But this would require uncommonly large dimension of 
the apparatus. Hence to increase efficiency, the gas is cooled by liquid nitrogen alone. 

Pure helium enters the liquefier by tube 1 at 30 atmospheres. It then passes through the interchanger 
A and then through the bath of boiling nitrogen. A portion of the gas is then led through the expansion 
engine in the interchanger B where it expands to 2.2 atmospheres. The expanded gas passes through the 
interchanger C and escapes into atmosphere by way of tube 2. The remaining portion of the gas then 
passes through the interchanger C at 15–18 atmospheric pressure where it is cooled to 9 K. The final 
temperature drop to 4.2 K is obtained by expansion at the throttle valve. The vapour of liquid helium 
passes out of the liquefier by way of tube 2. The vapour of boiling nitrogen is led out into the atmosphere 
by way of tube 3 through the interchanger A.

7.10.1  Simon’s Single Expansion Method of Liquefaction of Helium
In this apparatus, helium is compressed to about 150 atmospheres through the tube 1 and kept in A 
(Fig. 7.15). It is cooled to the temperature of liquid hydrogen which is vigorously pumped till it solidi-
fies when its temperature falls to about 11 K. It is then thermally insulated from the surrounding. By 
opening a valve, the gas is then allowed to expand slowly to 1 atmosphere. The temperature of the con-
tainer A then falls and about 75 per cent of the volume of A is then filled with liquid helium. The liquid 
can then be drained off through the outer tube. 

The ranges of temperature covered by different liquids are indicated in Table 7.2. The range covered 
by each liquid is evidently the differences of temperature between its normal boiling point and the boil-
ing point under reduced pressure limited by its triple point at which temperature the liquid solidifies. 

The gap between oxygen and hydrogen (−218 to −253) has been bridged by Kamerlingh Onnes by 
using hydrogen vapour cryostat. The other gap between −259 and −269 could be similarly covered by 
using helium vapour cryostat. 
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Fig. 7.14  Flow diagram of Kapitza’s helium liquefier
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Fig. 7.15  Simon’s apparatus for liquifaction 
of helium
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Substance Boiling point (normal) 8C Triple point 8C

Methyl chloride 224.1 2103.6

Nitrous oxide 289.8 2102.4

Ethylene 2103.7 2169.0

Methane 2161.4 2183.1

Oxygen 2182.9 2218.4

Nitrogen 2195.8 2209.9

Hydrogen 2252.76 2259.14

Helium 2268.83

Table 7.2  Characteristic temperatures of some liquids
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7.11  Properties of Liquid Helium

Helium was first obtained in liquid form by Kamerlingh Onnes in 1908 as a colourless, mobile and 
very volatile liquid boiling at 4.22 K under 1 atmosphere pressure. All attempts to solidify helium by 
boiling under reduced pressure failed; for even under a pressure of 0.013 mm of Hg (corresponding 
temperature 0.82 K), it remained in liquid state. Helium was first obtained in the solid state by Keesom 
in 1926 by the combined effects of high pressure and low temperature. He found that helium melts at  
4 K under a pressure of 126 kg/cm2. According to Simon, melting point of helium is 42 K under a pres-
sure of 5600 atmospheres. Evidently, liquid helium contracts on freezing. Critical temperature and pres-
sure of liquid helium are 5.3 K and 1718 cm, respectively. 

Density of liquid helium:  Density of liquid helium rises by about 20 per cent as the temperature falls 
from 4.2 K to 2.19 K. Below 2.19 K, density of liquid helium decreases and then remains practically 
constant.

Dielectric constant:  Dielectric constant of liquid helium increases up to 2.19 K. Below this tempera-
ture, it suddenly decreases.

Specific heat:  Specific heat of liquid helium shows a similar variation. It rises to a pronounced 
maximum at 2.19 K and then falls abruptly as the temperature rises. It then continues to rise till 4.1 K 
and then falls. It follows that the heat content (CvdT) and, therefore, entropy of liquid helium dimin-
ishes as temperature diminishes. Hence below 2.19 K, the molecules of liquid helium are in highly 
ordered state. 

Latent heat of vapourization:  Latent heat of vapourization of liquid helium shows no abrupt change 
at 2.19 K. Latent heat of vapourization of liquid helium between 1.5 K and 3.0 K is 5.5 cal/gm only. This 
explains the extreme volatility of liquid helium. 

The l-point:  These abrupt changes in physical properties of liquid helium led Keesom and Wolfke 
to suggest that helium changes from one phase to another at 2.19 K. These two phases are called He I 
and He II. The transition temperature is called the l-point. Liquid helium, unlike other liquids, does not 
possess any triple point where solid, liq-
uid and vapour phases meet. The curves 
representing different phases of helium 
are shown in Fig. 7.16. 

The diagram shows that the solid liq-
uid line and the liquid vapour line are 
connected by the line AB called the l 
line. This means that the change from 
phase I to phase II occurs at different 
temperatures under different pressures. 
The coordinates of the point A are 1.75 
K and 30 atmospheres. The condition of 
maximum density of liquid helium per-
sists all along the l line. The solid phase 
of helium can not be attained for pres-
sures less than 25 atmospheres. The ab-
sence of any abrupt change in the value Fig. 7.16  Different phases of helium
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of latent heat at 2.19 K indicates that no heat is evolved or absorbed at the transition point between the 
two phases. 

There is nothing very remarkable about He I. But He II possesses abnormal properties which have 
nothing in common with properties of other substances. Hence, it may be looked upon as the fourth 
state of matter. 

Helium II is a superfluid:  Unlike other liquids, viscosity of liquid helium decreases as the temperature 
diminishes. Viscosity of He I decreases from 29 to 18 micropoises within the temperature range 4.0 to 
2.2 K. For He II, viscosity diminishes from 23 to 1.2 micropoises as the temperature falls from 2.18 to 
1.2 K. This stands in marked contrast with that of liquid hydrogen (200 micropoises at 15 K) and water 
(10,000 micropoises at 293 K). It can flow through extremely fine channels with a complete absence of 
viscous drag.

Film flow of He II:  If liquid helium II is placed in two concentric vessels, the surfaces of the liquid 
in the two vessels automatically adjust themselves to the same level. In this case, a thin film of liquid 
helium 3.5 3 1026 cm thick creeps over the wall of the vessel and thereby transports liquid from one 
vessel into the other.

Thermal conductivity of liquid helium:  The thermal conductivity of liquid He I is quite normal 
and that of liquid He II varies with the temperature gradient. It shows a maximum value at 1.9 K. This  
maximum value reaches the astonishing figure of 1900 cal/degree 
cm sec. This is 3 3 107 times greater than that of He I and about 
2000 times greater than that of copper at room temperature. It falls 
to a low value of 2 3 1023 cal/degree cm sec at 0.2 K. 

The fountain effect:  Figure 7.17 shows a U tube open at both 
ends tightly packed with emery powder. One limb of the U tube is 
connected to a fine capillary tube. When the U tube is immersed 
in liquid He II and is illuminated by a lamp, a jet of the liquid is 
projected to a height of several centimetres out of the capillary 
tube while liquid helium is sucked into the U tube through the  
emery powder. This effect is explained by the fact that whenever a 
temperature gradient is established in He II, a pressure gradient is 
always produced. 

The reverse of fountain effect has also been observed; when-
ever there is a pressure gradient in liquid He II, there is always a 
temperature gradient. Thus if liquid He II is forced through emery 
powder as shown in Fig. 7.17, the temperature of the jet is less than 
that of the liquid in the bath. 

7.12  Measurement of Low Temperature

The normal hydrogen pressure thermometer can be used for measurement of low temperature down 
to −259 8C. For measurement of low temperatures down to −270 8C, normal helium thermometers are 
used. To convert the readings to absolute scale, the readings of these thermometers must be extrapolated 
to vanishingly small pressures. For measurement of still lower temperatures—4.2 K to 0.9 K—the zero 
point pressure of 10 cm to 0.2 cm of mercury is employed and the mercury manometer is replaced by 

Fig. 7.17  Fountain effect
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the Pirani or the hot wire manometer. Some uncertainty arises on account of thermal molecular pressure 
at such low temperatures. 

7.12.1  Secondary Thermometers
For measurement of low temperatures, secondary thermometers such as resistance thermometer, ther-
mocouple and vapour pressure thermometers are very convenient and they give reliable results. These 
thermometers are calibrated by comparison with standard gas thermometers. The following fixed points 
(in absolute scale) are used for this purpose—melting point of Hg (−38.87), the sublimation point of 
CO2 (−78.51), the boiling point of oxygen (−182.97), and boiling point of hydrogen (−252.75).

The resistance thermometers, platinum resistance thermometers become insensitive below −258 8C. 
From 0 8 to 190 8C; the resistance of the thermometer is represented by the formula

		  R R a b cq q q q q= + + + −0
2 31 100[ ( ) ]

The constants R0, a, b and c are determined by calibration at the boiling point of oxygen, the ice 
point, the steam point and sulphur point (444.6 8C). 

Between −193 and −258, no simple formula represents the relation between temperature and resis-
tance. The readings of the thermometer are, therefore, to be compared with those of a gas thermometer 
at as many points as possible. 

At hydrogen temperatures, thermometers of gold and lead can be used with advantage. Pure metals 
become supra conductors at helium temperatures, but resistance of alloys vary appreciably below 5 K. 
Resistance thermometer of annealed phosphor bronze wire is sufficiently sensitive from 5 K to 1 K. 
At helium temperatures, carbon resistance thermometers in the form of graphite rod or carbon ink line 
drawn on glass may be used. Its resistance increases with the fall in temperature. 

The Thermocouple:  The copper constant couple can be employed to measure temperatures down 
to −258 8C. The following formula given by Nernst 
holds within the range 100 K to 15 K: 

C T T= +






+ −31 32 1

90
10 7 4. loge microvolts

At hydrogen temperatures, gold silver couple is 
more sensitive than copper constant couple. At very 
low temperatures, a couple of 1 at. per cent of cobalt in 
gold and 1 at. per cent of gold in silver is very sensitive. 

Vapour pressure thermometers:  The pressure of 
vapour in equilibrium with its liquid depends only 
on temperature. It does not, therefore, require any of 
the troublesome corrections which are so essential 
for mercury-in-glass or gas thermometers since the 
changes in the volume of the container has no effect 
on the pressure exerted by the vapour. 

A scheme of the vapour pressure manometer shown 
in Fig. 7.18 is such that one arm of the manometer con-

Fig. 7.18  Scheme of vapour pressure 
manometer
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taining mercury is completely pumped out while the other arm is connected by a gas tight tube to a bulb 
placed inside the cryostat. The bulb contains the liquefied gas whose vapour pressure is to be measured. 

The manometer is read with a cathetometer and a precision scale. For vapour below 1 mm of mercury, 
a Mcleod gauge is used for comparison. With wide manometer tubes, the effect of thermal molecular 
pressure is small. It should be noted that the pressure shown by the manometer is the saturated vapour 
pressure corresponding to the temperature of the coldest part of the thermometer. 

The relation between vapour pressure and temperature is obtained from the integration of Clapey-
ron’s equation

		  log loge ep A
T

B T CT K= − + − +

Values of the constants A, B, C and K are different for different ranges of temperature and for differ-
ent substances. 

Magnetic thermometer:  Below 1 K, vapour pressure thermometer does not serve any useful purpose. 
This is because the vapour pressure of helium is too small below 1 K; further, the Kundsen effect makes 
accurate measurement impossible. The safest method of measurement of such low temperatures is to 
use the magnetocalorie effect of paramagnetic salts which produces refrigeration. The method depends 
on Curie’s law

		  χ =
A
T

where c is the susceptibility at temperature T. Hence from change of susceptibility of a paramagnetic 
salt, change of temperature can be deducted. This temperature depends on the validity of Curie’s law. 
Hence, it is called Curie temperature and it is represented by T*. This can be translated into the absolute 
temperature by the relation 
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The procedure requires two plots: one, entropy against T* and the other heat content against T*. The 
entropy against T* is obtained from the relation 
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To obtain the plot of Q against T*, we supply heat to the specimen and measure T* continuously. 
Some experiments used carbon heater on glass capsule containing the specimen for this purpose. Others 
used g - radiations from radioactive substance for the purpose of heating. 
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The apparatus for the measurement of susceptibility consists of 
an induction coil (Fig. 7.19). The primary of the coil is wound on 
the heat exchange gas tube containing the specimen. The second-
ary consists of two coils wound on the primary, each containing 
equal number of turns, but wound in opposite directions. They, 
thus, annul the induction effect due to the primary, but only allow 
the current induced by the specimen to pass through the ballistic 
galvanometer. 

7.13  �Measurement of Specific Heat at  
Low Temperatures

A cryostat for experiment at low temperature is shown in Fig. 7.20. It consists of a Dewar’s flask con-
taining liquid nitrogen. Inside this flask, there is another Dewar’s flask containing liquid helium. A metal 
ring with taper end is sealed to the inner flask. This is connected to a metal cap through rubber gaskets. 
Experimental equipments are placed inside a thin-walled metal tube of Monel or super nickel hung from 
the metal cap by a fibre. Since helium can diffuse through pyrex glass, provision is made to pump out 
the gas from the double-walled region of the inner flask.

Figure 7.21 shows a calorimeter developed by Keesom for the measurement of specific heat of met-
als at helium temperatures. Inside the block of metal under test, there is a tapped recess into which the 
core of the calorimeter is screwed. The core contains a constantan and a phosphor bronze resistance 
thermometer and a constantan heater.

Fig. 7.19  Apparatus to 
measure susceptibility

Fig. 7.20  Cryostat for experiment at 
      low temperature

To pump 
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The block is placed in a metal casing which is immersed in liq-
uid helium. To perform the experiment, the calorimeter is allowed 
to cool to the temperature of the bath. The space surrounding the 
calorimeter is then evacuated. Current is then passed through the 
heating coil and time and temperature are recorded at regular in-
tervals during and after the period of heating. The energy input is 
determined from current, voltage and time of heating.

For measurement of specific heat of powder, the type of calo-
rimeter shown in Fig. 7.22 is used. The calorimeter is of thin sheet 
of silver or copper. The heating coil is wound round the outer wall 
of the calorimeter. The calorimeter containing powder is sealed off 
with helium at a low pressure to increase the conductivity of the 
powdered mass. The same instrument can be used for the measure-
ment of specific heat of solidified gas. 

7.13.1  �Measurement of Specific Heat of Gases 
at Low Temperatures 

Scheel and Heuse continuous flow method:  The continuous flow 
method of measurement of specific heat of a gas is illustrated by Fig. 7.23. The gas to be experimented upon 
enters the calorimeter by the open end A. It then flows through the spiral S and then through the double-jacketed 
chamber and finally discharged into the atmosphere through the end B. The temperature of the inflowing gas is 
measured by the pt. thermometer P1. It is then heated by the heating coil H. The temperature of the 
heated gas is measured by the platinum thermometer P2. The flow tube is surrounded by a glass jacket 
which is silvered in the inner wall and maintained at high vacuum to reduce loss of heat by radiation. 
The whole chamber is immersed in a bath of specific temperatures. 

Eucken and Hiller vacuum calorimeter method:  The apparatus shown in Fig. 7.24 was employed 
by Eucken and Hiller for the measurement of specific heat of hydrogen at low temperatures. The gas 
was compressed in a small steel bulb at a pressure of 150 atmospheres through the capillary tube K. 
The heating coil of constantan was wound on the outside of the bulb. The temperature of the gas was 
measured by the change of resistance of a platinum wire wound on the bulb A. 

The bulb A was surrounded by a metal cylinder B maintained at the same temperature as A by current 
through another heating coil wound on B. By this guard ring method, the loss of heat due to radiation 
was eliminated.

The quantity of temperature of A and B was indicated by a thermocouple whose junctions were 
attached to A and B. The calorimeter was placed inside a glass jacket silvered on the inside and main-
tained at high vacuum. 

7.14  Refrigerating Mechanism

It is the mechanism of artificially maintaining a reservoir at a fixed desired temperature lower than that 
of the surrounding which is done by extracting heat from a cold reservoir with as little work as possible, 
applied externally. If a device takes heat Q2 from cold body at temperature T2 and gives out heat Q1 to 
the surrounding or hot body at temperature T1, the excess of heat Q1 over Q2 is the work W applied on 
the device, then the coefficient of performance is defined as 

Fig. 7.22  Calorimeter used 
for measurement of specific 

heat of powder.
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Fig. 7.23  Scheel and Heuse 
continuous flow method of 
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At temperatures above 10 8C, bacteria increase greatly at a rapid rate. Food materials such as cooked 
food or raw materials such as fish, egg, meat, milk, fruit, vegetables, etc. become harmful in hot weather. 
If they are kept in a contrivance of lower temperature, they remain intact for long time. Such contrivance 
is known as refrigerator. For keeping medicines, vaccines and injectibles in their proper utility, they are 
kept in refrigerators. Refrigerators are used in long journey vehicles such as ships, planes, trains. Fishing 
ships must be equipped with ice-making plants by the help of refrigerators to keep the catch safe from 
decay as their voyages continue for long time. Air conditioning in residential houses, public halls, cinema 
houses, factories such as rubber, textiles, spinning mills is affected by refrigerators. Scope of refrigeration 
is very vast ranging from household refrigerators to cargo vessels where the refrigerated holds are kept 
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many degrees bellow 0 8C for various purposes. Commercial refrigeration is generally used to indicate the 
technique for keeping goods at low temperatures; this is an important trade in the US, the UK and countries 
of European Union, this trade is also in the process of growth in tropical countries.

The principle of refrigeration is manifested in several ways such as: (1) cooling of a liquid by rapid 
evaporation, the liquid is called refrigerant which should have high latent heat of vapourization so that a 
small quantity of it on evaporation may produce desired effect; it should have low boiling point, (2) at 
NTP, the refrigerant should be a vapour but coluld be easily liquefied by cooling and compressing, (3) the 
vapour pressure in the evaporator section should exceed atmospheric pressure to prevent air from mixing 
in which case the passage will be obstructed, (4) compression pressure for liquefaction of the vapour in 
condenser unit should not be very large; otherwise vapour will have a tendency to leak, (5) the part of the 
machine should be short and heavy, (6) specific volume of vapour should be small so that a small compres-
sor will serve the purpose. Sometimes, adiabatic expansion method of cooling is also used in conjunction.

Some general refrigerants are ammonia, sulphur dioxide, carbon dioxide, methyl chloride, ethyl 
chloride and freon. In massive refrigerating plants for manufacturing ice, ammonia is usually used as 
the refrigerant and they are also known as ammonia plants. But in household refrigerators such as frigi-
daires, sulphur dioxide or freon is used.

There are two types of refrigerating machines—electrolux refrigerators—absorption type and frigi-
daire—compression type.

7.14.1  Electrolux Refrigerator: Absorption Type
The absorption type of refrigerator was constructed first by Carsre; the schematic diagram is shown in 
Fig.7.25. The boiler A contains strong ammonia solution which is heated by J. The gaseous ammonia 
passes into the condenser B through spiral coil D, the coil is surrounded by cold water in B. Ammonia gas 
becomes liquefied here and the liquid is forced through the valve V on to the spiral coil E in the chamber C.
Liquid ammonia evaporates here by taking the latent heat from the brine solution in C where the refrig-

Fig. 7.25  Schematic diagram of absorption type of refrigerator
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erator chamber is placed. From the coil E, the ammonia gas is absorbed in F by dilute ammonia solution 
which is manipulated by valve H and is then pumped on the top of the boiler A by means of pump G.
This cycle is repeated so that the refrigerator runs continuously. The wanted low temperature in the 
refrigerator is obtained by regulating the valve V, which manipulates the desired difference of pressure 
in the coils D and E.

In an improvised version of electrolux refrigerator, the use of the valve and pump is done away with 
liquid ammonia being evaporated at reduced pressure by hydrogen gas, the concentrated ammonia solu-
tion being transferred to the boiler by convection current. 

7.14.2  Frigidaire Refrigerator: Compression Type
The working principle of the compression type of refrigerator is illustrated in Fig. 7.26. A suitable 
refrigerant, usually liquefiable sulphur dioxide, is made to evaporate under reduced pressure which 
produces the required cooling; the generated vapour is then compressed and cooled into the liquid state. 
This process is repeated. The machine consists of the following parts: (i) a pump A, (ii) condenser B, 
(iii) evaporator C associated with refrigerator R and (iv) a valve V.

As the piston of the pump A moves up, the pressure within the long copper spiral tube, in which 
the liquid refrigerant evaporates extracting latent 
heat from the adjacent refrigerator R, falls and the 
low pressure vapour is drawn in through the valve P. 
When the piston moves down, vapour is compressed 
and passes to the condenser B through valve S and 
gets liquefied in condenser B; the liquid then passes 
through the valve V and falls in pressure, and evapo-
rates in C extracting latent heat from the refrigera-
tor R. The low pressure vapour is again drawn in the 
pump and the cycle continues.

The working of the vapour compression machine is 
represented by the indicator diagram as shown in Fig. 
7.27 where pressure and volume of the refrigerant are 
represented along Y and X axis of the indicator diagram, 

Fig. 7.26  Working principle of the compression type of refrigerator

PS

V

B

A

RC

Fig. 7.27  Indicator diagram 
representing the working of vapour 

compression machine

p1
Q1

Q2

p2

p

c

e

v

b
a

d

Chapter 07.indd   235 4/26/2011   11:45:29 AM



236    Heat and Thermodynamics

respectively. During the passage of the cycle ab, the liquid is evaporated extracting heat Q2 at tempera-
ture T2 of the refrigerator; during bc, the vapour is adiabatically compressed; during cd, the vapour is 
liquefied at condenser B, Q1 heat is transferred at temperature T1 and pressure p1 and finally during da, 
adiabatic expansion of the liquid through valve V is made.

Since the cycle is reversible; from Carnot’s principle, Q1/T1 = Q2/T1 and coefficient of performance 
∈ is given by

∈ = =
−

=
−

Q
W

Q
Q Q

T
T T

2 2

1 2

2

1 2

In actual machine, ∈ is less as the expansion chamber is absent; expansion of liquid through valve V 
follows path de instead of da.

7.15  Air Conditioning Machine

It is found that proper working and living conditions of human being necessitates certain criteria such 
as temperature, moisture content, clearness and circulation of air should be conducive to human health 
and comfort. The technique by which this is done is known as air conditioning. Air should be free from 
any type of impurity such as gaseous material, tobacco and bad odour. All these factors increase the  
efficiency of people working in offices and factories; this is also used to create ideal conditions neces-
sary for producing and processing of certain goods. American Society of Heating and Ventilating Engi-
neers have recommended the following data for average comfort conditions:

	 (a)	 Temperature—17 8 to 22 8C in winter and 19 8 to 24 8C in summer.
	 (b)	 Relative humidity—30 to 65%.
	 (c)	 Air movement—4.5 to 15 m per minute.
	 (d)	 Fresh air to be introduced—25% of total air circulation.

This will keep fresh air free from bad odour and harmful components. Relative humidity plays an 
important role in human comfort for at a particular temperature if the relative humidity is high, we feel 
warm and if it is low, we feel cold because evaporation from our body and abstraction of heat thereby 
depends on relative humidity. The comfort condition differs from people to people, season to season and 
country to country depending on the latitudes.

7.15.1  Summer Air Conditioning
This type of air conditioning requires suitable arrangement for cooling, dehumidifying, cleaning of air 
and proper ventilation. The evaporator of a refrigerator is kept at suitable position of closed space re-
quiring summer air conditioning; evaporator is a series of zigzag copper tubing finned with thin copper 
sheets for increasing the effective area of cold surface. A suction pump draws fresh air through a filter 
which precipitates particles of dust, smoke, etc. as they are carriers of harmful bacteria. This air is passed 
from one end of the cooling coils to the other end through the fins and thus gets cooled. Moisture content 
exceeding comfort limit is precipitated on the fins and drained out. This is known as dehumidification; 
for less moisture content, humidification arrangement is to be made. There are devices controlling the 
cooling and ventilation. The power of the refrigerating machine depends on the size of the closed space, 
heat conduction through walls and roof, number of persons in the room, outside air entering the room 
and heat producing articles. If the walls and roof are carefully covered with bad conducting materials 
like masonite and calotex, cost of air conditioning will be less.
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7.15.2  Winter Air Conditioning
In winter, temperature and relative humidity are generally less. Winter air conditioning necessitates 
heating and humidifying. Air sucked through filter is passed over heating coil, which increases the tem-
perature of air. This air is simultaneously humidified by spraying water on the heating coil and is then 
supplied to the air-conditioning space; the exhausted air is again conditioned with sucking air. 

7.16  Effects of Chlorofluoro Carbons (CFCS) on Ozone Layer
Earth’s atmosphere is a mixture of gases and vapours of which some are fixed components such as ni-
trogen, oxygen, argon, carbon dioxide, neon, krypton, hydrogen, nitrogen oxide, xenon and helium 3; 
and some are variable components like ozone, sulphur dioxide, nitrogen peroxide, methane and iodine. 
The atmosphere is divided into troposphere, stratosphere, thermosphere, ionosphere and magnetosphere  
according to height and their characteristics. The layer nearest to the earth’s surface is called tropo-
sphere; it is about 17 km above equator, 9 km at latitude 50 8 and 6 km at poles. In this region, concentra-
tion of ozone is very small—nearly 0.02 parts per million in non-urban areas and less in urban areas but 
at higher altitudes in stratosphere, its concentration is higher. Ozone is an allotropic form of the element 
oxygen. Common oxygen molecule contains two atoms of oxygen while ozone molecule contains three 
atoms of oxygen. Ozone is formed by photochemical action on atmospheric oxygen at stratosphere. 
This ozone absorbs solar ultraviolet radiation helping life on earth and also raising the temperature with 
height forming a stable layer which restrains vertical mixing to such an extent that gases injected into 
this region may remain there for years together. Ozone layer, being thinnest at the equatorial region, 
allows more ultraviolet radiation to reach earth’s surface in the torrid region. That is why, people in this 
region are black and suffer from skin cancer. So, we see that the presence of ozone in lower atmosphere 
closer to earth contributes to air pollution and causes damage to human tissue; but its presence in the 
stratosphere is absolutely vital for life where ozone concentration is nearly ten parts per million. 

The decrease in ozone concentration has tremendous adverse effects on earth. Volcanic eruptions and 
cosmic rays indirectly reduces ozone; besides this, human activities are also responsible for reduction 
of ozone concentration. Nuclear explosions and supersonic aircrafts flying at altitudes nearly 28 km, 
release of chlorofluoro carbons (CFCs) are believed to reduce ozone concentration. CFCs made up of 
chlorine, fluorine and carbon are so chemically inert that once they are released in the atmosphere, they 
rise to the stratosphere where sun’s ultraviolet rays break down CFCs releasing their chlorine content 
which is the main cause of ozone depletion. Ozone absorbs 2400 to 3200 angstrom wavelength of sun’s 
rays. Above 30 km, oxygen molecule is dissociated into oxygen atoms during day time by ultraviolet 
photons O2 + hv → O + O by λ < 2400 angstrom.

This oxygen atom then forms ozone by O + O2 + M → O3 + M where M is arbitrary molecule re-
quired to conserve energy and momentum in the reactions. Electric discharge reactions including light-
ning and electric sparks from motors also convert oxygen into ozone. 

Chloro fluoro methanes CFCl3 (Freon 11) and CF2Cl2 (Freon 12) are responsible for ozone depletion, 
their atmospheric life time is about 80 years. Even if their production is halted, the effect will be felt 
upto 80 years. The importance of this ozone layer at about 30 km above earth’s surface is that it absorbs 
most of the lethal shorter ultraviolet wavelengths of the sun. If these rays penetrate the ozone layer, life 
would not be possible on earth.

Scientists reported a large hole in the ozone layer over Antarctica in early 1980s. Level of ozone 
is dropping regularly by the use of man-made chemicals containing CFCs used as coolants in refrig-
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erators, air conditioners and fire extinguishers. These are introduced because of their non-poisonous, 
non-inflammable and highly stable nature; they are used in blowing plastic foams in spray canes and 
cleaning computer circuits also. A thorough research shows that such CFC molecule destroys ten mil-
lion ozone molecules. 

When a similar hole was reported to appear over thickly populated northern hemisphere, rich  
nations of Europe and North America were set into action which resulted into Montreal Protocol. It was 
decided to eliminate 90 per unit ozone destroying substance by 2000. Developing countries were given 
a grace period of 10 years. The nations of the world should think over postponement of these practices 
which are self destructing in favour of “sustainable development”, as the environmentalists call it. There 
should be a compromise between modern technology and the corresponding environmental damage 
jeopardizing the prospect of future generation.

7.17  Applications of Substances at Low Temperature

Mysteries are the actions of science and its followers, i.e., researchers. There is no end of scien-
tific achievements; when one thinks that limit has been reached, new horizons emerge. The low  
temperature domain has provided researchers wide field to tread. Normally, electricity flows through 
a conductor which waste nearly 50 per cent of the power produced. Scientists are trying to get rid 
of this phenomenon by looking after carriers of electric current which can be made super conduc-
tive so that this waste of energy is avoided. Dutch physicist Heike Kamerlingh Onnes (1853–1926) 
discovered superconductivity in 1911 while studying the variation of electrical resistance of mer-
cury with temperature. He observed that at temperature near absolute zero, the resistance drops to 
a very low value making it superconductive; this temperature is called transition temperature or 
superconducting temperature. In 1833, W. Meissner and R. Ochsenfild discovered that a supercon-
ductor placed in a not too high magnetic field expelled the field from the interior of superconductor. 
This phenomenon is called Meissner effect. Helium liquefies at 4.2 K producing low temperature 
region for studying such phenomena. A new technological revolution with a potential input as great 
as industrial revolution creeps in. Superconductivity is a broad area serving many fields, opening 
up amazing possibilities. Bullet trains now move at a tremendous speed on cushions of magne-
tism. High power small size electric cars, miniaturized computers which are more powerful, safer 
nuclear reactors yielding many times more energy, cheap diagnostic aids of extra dimensions are 
just a few examples in this regard. A new world opens up with chemical compounds showing super 
conductivity at liquid nitrogen temperature where production is not so costly as liquid helium, lead, 
tin, mercury, etc., originally known to be super conductive at low temperature, lose this charac-
teristic as soon as enough current is made to flow to generate sufficient magnetic field but alloys 
of oxides of niobium and titanium known as ceramics posses superconductivity. Later Karl Alek 
Muller of IBM’s Zurich laboratory tried metallic oxides at higher transition temperature; Paul C.W. 
Chu of Houston University took up the study along with different scientists of the world including 
India. They are trying with rare earth element, India and China have world’s largest rare earth’s 
material’s deposit and this process is still going on. 

One of the surprising features at low temperature is superfluidity. Generally, fluids possess viscosity 
which means they tend to resist relative motion between their layers as if different layers are moving 
with different velocities. Viscous forces appear in tending to slow down the faster moving layers and 
to increase the velocity of slower moving layers. But liquid helium II has zero viscosity. This has been 
discussed in Section 7.11. Cryogenics (the study of materials and phenomena at temperature close to 
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absolute zero) has revealed a new dimension in the area of low temperature. Quick freezing by liquid 
nitrogen has enhanced taste, texture, aroma, nutritive value and appearances of food articles in addition 
to reduced degradation by bacteriological, enzymatic, oxidative and chemical reactions. This cryogenic 
freezing system is more economical than ordinary system and is handy for refrigerated transportation of 
marine food, fruits, vegetables and other perishable foods. A new blood freezing technique developed 
with liquid nitrogen is now used for storing blood for months or even years and may be used to store 
marrow cells. Some diseases such as Parkinson’s and other disorders of involuntary movement can be 
treated by cryosurgery. Tumours can be frozen and removed. Cryosurgery can be used in tonsillectomies 
and in the removal of cataracts of eyes. The gases burnt in the refineries or oil fluids uselessly can be 
liquefied by cryogenic methods and transported to the residents of remote corners of our country which 
do not have the facility of city gas lines. Liquid methane can reduce the cost of supersonic flights by 
one-third. Research on application of substances at low temperature is going on in premier research lab-
oratories in India like National Physical Laboratory, New Delhi; Tata Institute of Fundamental Research 
and Bhaba Atomic research Centre, Mumbai; Indian Institute of Science, Bengaluru; Indian Association 
for the Cultivation of Science, Jadavpur; Cryogenic Centre at Jadavpur University; Department of Phys-
ics and Astrophysics at University of Delhi, Solid State Physics Laboratory, Delhi; and IITs. Amusing 
mankind friendly results are awaited.

Solved Problems

	Q 1.	 Calculate the temperature of inversion of hydrogen where cooling effect would vanish from the 
following data assuming that the gas obeys Van der Waals’ equation. 

	 Critical temperature of hydrogen = 33.18 K

	 Critical pressure of hydrogen = 12.80 atmospheres

Ans.	 We have	 p a
b

T a
bRc c= =

27
8
272

	 ∴	        
T
p

a
bR

b
a

b
R

c

c

= × =
8
27

27 82

	 or	 b R T
p
c

c

= =
× ×

× × × ×
=

8
83 15 10 33 18

8 12 8 76 13 6 981

6. .
. .

228 16.

	 Density of hydrogen = 0.08987 gm/litre 

	 Gram- Molecular Volume of hydrogen = =v 2000
0 08987.

cc

	 Substituting the value in Eq. 7.15,	 T
a
Rb

b
vo = −
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2 1
2
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

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. . .
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		  = × −
27
4

33 18 0013 2. ( . )I

	 or	 T Ko = 223 8.

	Q 2.	 In the case of saturated steam, the specific heat at 150 8C is − 0.674 calories, critical temperature 
of steam = 374 8C, for steam pc = 218.5 atmospheres, vc = 0.00248 cc, a = 0.0110 atmospheres 
(suv)2/gm2 (suv is the volume of 1 gm of specified gas at N.T.P; for a pure gas, it is equal to 
about 22415 cc divided by the molecular weight of the gas),

		  b suv
gm

R atm suv
gm

= =0 00136 0 00369568. , . ( )
deg

	 Calculate the change of temperature per atmosphere drop of pressure of steam by throttle expansion.

Ans.	 We know	 dT
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	�   Thus saturated steam on throttle expansion becomes superheated and, therefore, unsaturated. 
By adiabatic expansion of steam in the cylinder of a boiler, it condenses on the walls of the 
cylinder. This produces considerable loss of heat. By allowing steam to pass through a throttle 
before entering the cylinder, this loss of heat is very much reduced. This process is known as 
“wire drawing”.
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	Q 3.	 Taking the gas constant R to be 8.3 3 107 ergs/8C, calculate 
dT
dp C

a
RT

b
H p











= −










1 2
 for the oxygen gas at 0 8C 

from the following data:

  a = 1.36 3 106 atmospheres

  b = 32 cc

Cp = 7.03

  J = 4.18 3 107 ergs/cal

Ans.	 We know	
dT
dp C

a
RT

b
H p
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		  = 0.31 8C per atm. per cm2

	Q 4.	 Calculate the change in enthalpy when a gram molecule of a gas is isothermally compressed 
from 1 atmosphere to 20 atmospheres. Given m = 1.08, Cp = 8.6 and J = 4.18 3 107 ergs/cal. 

Ans.	 We know			 
dH
dp

C
T

p











= µ

	 The change in enthalpy	 = − = − −∫ µ µC dp C p pp
p

p

p

2

1

1 2( )

		  = 1.08 3 8.6 3 4.2 3107 319 31.013 3 106

		  = 750.8 3 106 joules

	Q 5.	 Given Tc for helium = 5.26 K, find the inversion temperature.

Ans. We know			       T Ti C= = × =
27
4

27
4

5 26 35 5. . K

	Q 6.	 The Van der Walls’ constants a and b for one mole of hydrogen are a = 0.245 litre2 3 atm/mole2 
and b = 2.67 3 1022 litre/mole. Calculate the temperature of inversion. Atmospheric pressure 
may be approximately taken to be 106 dynes/cm2 and R = 2 cal/mole K.

Ans.	 Now	 a = 0.245 litre2 3 atm/mole2

		     = 0.245 3 106 3 106 cm4 dyne/mole2

		  b = 2.67 3 1022 litre/mole
		  = 2.67 3 1022 3 103 cc/mole

		  T a
bRi = =

× ×
× × ×

=
2 2 0 245 10

26 7 2 4 2 10
220

12

7

.
. .

K
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	Q 7.	 Calculate the drop in temperature produced by adiabatic throttling in case of oxygen when the 
pressure is reduced by 50 atmospheres. Initial temperature is 27 8C, a = 1.32 litre2 3 atmo-
sphere/mole2 and b = 3.12 3 1022 litre per mole. Atmospheric pressure may be approximately 
taken to be 106 dynes per cm2 and R = 2 cal/mole K.

Ans.	 We know

		
dT
dp C

a
RT

b
p


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
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	 Since oxygen is a diatomic gas,	 C Rp = =
7
2

7 cal/mole K
	 Change in temperature
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× ×50 106

	 	 = 12.5 K

	Q 8.	 What would be the cooling in the above case if the expansion were reversible doing external 
work, g being 1.4 and initial and final pressures are 51 atmospheres and 1 atmosphere, 
respectively?

Ans.	 We know 

		  T p T p1 1 2 2

1 1− −

=
g

g
g

g

		  300 51 1
1 1 4

1 4
1 1 4

1 4
2( ) ( )

.
.

.
.

− −

=T

	 ∴	    T2 300 51 97 4
4

1 4= =
−

( ) .
.
. K

	 The drop in temperature	 = 300 2 97.4 = 202.6 K

Problems

1.	 Calculate the temperature of inversion for hydrogen (H2) if the critical temperature is 22 K. 
� Ans. 148.5 K
2.	 Calculate the temperature of inversion of oxygen (O2) when 

	 a = 1.32 litre2 3 atmosphere per mole2 and

	 b = 3.12 3 1022 litres per mole.
� Ans. 1048 K
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3.	 Calculate the drop in temperature produced by the adiabatic throttling expansion of air from 
215 atmospheres to 1.2 atmospheres, the air being initially at 0 8C. What would be the cooling 
if the expansion were reversible doing external work? Assume that air obeys Van der Waals’ 
equation with 

	   a = 13.4 3 105 atmospheres 3 cm6 per gm mole and

	   b = 36.5 cc/gm. mole and 

	 Cp = 6.95 cal per gm. mole

	   g = 1.4
Ans. 61.8 8C, 211 8C

4.	 Given the values of Van der Waals’ constants a and b for argon to be 1.35 atm. litre2/mole2 and 
3.2 3 1022 litre/mole, respectively, calculate the critical temperature, inversion temperature and 
the Boyle temperature of the gas.

� Ans. Tc = 152.6 K
� Ti = 1030 K
� Tb = 514.3 K

Questions

1.	 Distinguish between Joule–Thomson cooling and adiabatic cooling.
2.	 What is Joule–Thomson cooling effect? Deduce the theory.
3.	 Describe different methods of liquefaction of gases.
4.	 Describe adiabatic demagnetization method of production of low temperature. Give the theory.
5.	 Describe the method of liquefaction of hydrogen.
6.	 Describe the method of liquefaction of helium.
7.	 Give a brief account of measurement of low temperature.
8.	 Give a description of the porous plug experiment of Joule and Thomson. Discus the results and 

indicate their significance for liquefaction of gases.
9.	 Explain the principle of regenerative cooling and describe a method of liquefying air based on it.
10.	 Describe the methods of measuring low temperatures.
11.	 What is Joule–Thomson effect? Obtain an expression for the cooling produced assuming that 

the gas obeys Van der Waals’ equation. Why do hydrogen and helium show a heating effect at 
ordinary temperature?

12.	 Describe briefly a method of liquefying helium and state some of the important changes in the 
physical properties of a substance near absolute zero.
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Chapter 8

8.1  Principle of Conservation of Energy
It states that the sum total of the energy of the universe is an invariant; it can only transform into differ-
ent forms. This principle forms the fundamental postulate in Physics. Regarding the forms of energy, 
we have the following categories:

1.	 The mechanical energy, which may be kinetic or potential corresponding to mechanical work 
which is measured by mechanical force 3 displacement.

2.	 The non-mechanical energy such as heat, light, electrical and magnetic energies.

In thermodynamics, we deal only with the relation between two forms of energy—heat and mechani-
cal work. The quantitative law of transformation of mechanical work into heat is given by the Joule’s law
	 	 W = J 3 Q 
where W is the amount of mechanical work done by a body in ergs and Q is the quantity of heat given 
out or absorbed by the body in calories. J is the constant of proportionality called the Joule’s equivalent 
or mechanical equivalent of heat. Its value is 4.18 3 107 ergs per calorie.

8.2  The Thermodynamic State and Thermodynamic Co-ordinates

The properties of a body which can be perceived by our senses are called physical properties. In any 
physical change of a body caused by heat, it is the pressure, volume and temperature of the body that 
changes. These properties of the body are measurable quantities. The thermodynamic state of a body 
can be measured by certain physical measurable properties of the body, suggested more or less by our 
sense perception. These measurable properties of the body which specify the thermodynamic state are 
called the thermodynamic co-ordinates of the body. The fundamental co-ordinates in thermodynamics 

FIRST LAW OF  
THERMODYNAMICS
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are (1) pressure (p), (2) volume (v) and (3) temperature (θ). In addition to these co-ordinates, there 
are other co-ordinates which can be derived from these fundamental or primary co-ordinates such as 
entropy, free energy, enthalpy, thermodynamic potential and so on. We shall call these co-ordinates 
secondary or derived co-ordinates. Since temperature of a body is measured either by the change of 
volume or change of pressure, the three fundamental or primary co-ordinates are not independent. In 
fact, any one of these co-ordinates can be expressed in terms of the other two. Hence out of the three 
fundamental co-ordinates, only two can vary independently. 

	 So that, 	 dp p
v
dv p d=

∂
∂

+
∂
∂θ

θ

		  dv v
p
dp v d=

∂
∂

+
∂
∂θ

θ

		  d
p
dp

v
dvθ

θ θ
=

∂
∂

+
∂
∂

These three co-ordinates (p, v, θ ) only define the state of matter in bulk or the so-called macroscopic 
state and they require no special assumption concerning the structure of matter composing the body.

8.2.1  Thermodynamic Equilibrium
The thermodynamic state of a body is specified by mathematical relation connecting the thermodynamic 
co-ordinates. That mathematical relation is called the equation of state of the body. It is to be noted that 
an equation of state does not refer to a changing state; in fact, the thermodynamic co-ordinates which 
define the state of a body are not measured while they are changing. As such, they are not functions of 
time. An equation of state specifies an equilibrium state or balanced state. Since the equation of state 
is defined by pressure (force per unit area), volume and temperature, any state of equilibrium in ther-
modynamics implies both mechanical and thermal equilibrium. By thermal equilibrium of a body, we 
mean a state of the body in which it is neither giving out nor absorbing any heat. A body is in mechanical 
equilibrium when it has no displacement. 

Nevertheless, we often use thermodynamic co-ordinates to describe a process of continuous change 
of thermodynamic states. The justifying assumption for such procedure is that at all times during which 
the change is taking place, the system undergoing change is supposed to be infinitely near an equilib-
rium state. An infinitely slow process of change of state like the above is called quasistatic process. Evi-
dently, it is only an ideal process. When we represent physical states of a body by a graph (such as the 
p–v diagram), our object is to find the value of pressure when the volume acquires a given value when 
both the volume and pressure are not changing, that is, when they are in equilibrium state.

A cyclic process is a process in which a substance undergoes a series of changes in the form of expan-
sion and compression, and finally comes back to the initial stage.

A process in which the system is thermally insulated and has no communication of heat or work with 
its surroundings is called an isolated process.

8.2.2  Zeroth Law of Thermodynamics
It states that if two bodies A and B are each separately in thermal equilibrium with a third body C, then 
A and B are also in thermal equilibrium with each other. This law provides the basis for temperature 
measurement.
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8.3  Specific Heats and Latent Heats

As already stated, thermodynamics deals with the transformation of heat energy into mechanical work 
and vice versa. By the application of heat, to a body, the thermodynamic state of the body changes 
and therewith the thermodynamic co-ordinates defining the state also change. Let dp, dv and dθ be the 
infinitesimally small changes in pressure, volume and temperature of the body as a result of absorption 
of small quantity of heat dQ. Then from change of any two of these co-ordinates, the quantity of heat 
absorbed dQ can be calculated. The change in the remaining thermodynamic co-ordinates can be 
obtained from the changes of the two co-ordinates with the help of the equation of state.
	 Thus,

		  dQ k d dv= +θ � � (8.1)

		  dQ k d dp= ′ + ′θ � � (8.2)

		  dQ Pdp V dv= + � (8.3)

where k, ℓ, k′, l′, P and V are constants.
To obtain the meaning of the constant k, we put dv = 0. A process which takes place at constant volume 

is called an isochore or isovolumic process. Under this condition, Eq. 8.1 gives for a body of unit mass,

		  k dQ
d v

=








θ

Hence, the constant k is called the specific heat of the substance at constant volume. We shall repre-
sent it by Cv. Thus, k = Cv.

To find the meaning of ℓ, we put dθ = 0 in Eq. 8.1 so that the process is isothermal. Under this condition,

		  �=










dQ
dv

θ

Under this condition, the heat dQ absorbed by the body does not raise its temperature but only 
changes its volume. Hence, ℓ must be latent heat. We shall call ℓ latent heat of isothermal expansion.

To find the meaning of k′, we put dp = 0. A process in which pressure remains constant is called 
isobaric process. 

Under this condition,

		  ′ =










k dQ
d pθ

Hence, k′ is the specific heat of the substance at constant pressure. We shall represent it by Cp.
Thus,					    k′ = Cp
To find the meaning of ℓ′ , we put dθ = 0 in Eq. 8.2.
This gives

		  ′ =










�
dQ
dp

θ

Under this condition, the heat absorbed by the body does not change its temperature but only 
changes the pressure. Hence, ℓ′ must be latent heat. We shall call ℓ′ the latent heat of isothermal 
increase of pressure.
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To find the value of P in Eq. 8.3, we put dv = 0 so that 

		  P dQ
dp v

=










This can be written as 

		  P dQ
d

d
dp

dQ
d

v v

=




















=




θ

θ θ

















v

v

dp
dθ

or P = Cv/a where α = co-efficient of pressure variation at constant volume.

To find the value of V, we put dp = 0 in Eq. 8.3 so that

		  V dQ
dv p

=










This can be written as

		  V dQ
dv

dQ
d

d
dv

dQ
d

p p p

=






 =















 =





θ
θ θ













p

p

dv
dθ

or V = Cp/b where b = co-efficient of volume variation at constant pressure.
For a perfect gas, a = b so that P = Cv/a and V = Cp/b
Equations 8.1–8.3 can now be written in the following forms

		  dQ C d dvv= +θ �

		  dQ C d dpp= + ′θ �

		  dQ
C
dp

C
dvv p= +

α β

or			                      αdQ C dp C dvv p= +    for a perfect gas.

The constants k, ℓ, k′, ℓ′, P and V are not independent. In Eq. 8.1, the quantity of heat absorbed dQ pro-
duces changes in volume and temperature only. In Eq. 8.2, the same quantity of heat only serves to effect a 
change in temperature and pressure. If in both cases the quantity of heat supplied be the same, then

		  kd dv k d dpθ θ+ = ′ + ′� � � (8.4)
Expressing p as a function of v and θ so that 

		  dp dp
dv

dv dp
d

d
v

=










+










θ
θ

θ
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and substituting the value in the above equation, we get

		  kd dv k d dp
dv

dv dp
d

d
v

θ θ
θ

θ
θ

+ = ′ + ′






 +



















� �

This is true when dv = 0 so that

		  k k dp
d v

= ′ + ′






�

θ � (8.5)

when	 d dp
dv

θ
θ

= = ′










0, � � � (8.6)

Expressing v as a function of θ and p,

		  dv dv
dp

dp dv
d

d
p

=










+










θ
θ

θ

and substituting the value in Eq. 8.4,

	  	 kd dv
dp

dp dv
d

d k d
p

θ
θ

θ θ
θ

+








 +
























= ′ +� ′′� dp

This is true when dp = 0. This gives

		               k
dv
d

k
p

+










= ′�
θ � (8.7)

	 Putting	        d dv
dp

θ
θ

=










= ′0, � � � (8.8)

In the same way, equating Eqs 8.1 and 8.3, we get

		  kdq 1 ℓdv = Pdp 1 Vdv� (8.9)

If p is the function of v and θ, then 

		  kd dv Vdv P dp
dv

dv dp
d

d
v

θ
θ

θ
θ

+ = +






 +



















�

Putting dv = 0,

		  k P dp
d v

=








θ � (8.10)

Putting dθ = 0,

		  �= +










V P dp
dθ

θ

� (8.11)

Putting θ as a function of p and v, and substituting the values in Eq. 8.9, we get

		  k d
dp

dp d
dv

dv dv Pdp V
v p

θ θ







 +
























+ = +� ddv
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	 Putting	      dp k d
dv

V
p

=






 + =0, θ
� � (8.12)

	 Putting	 dv k d
dp

P
v

=








 =0, θ � (8.13)

Similarly equating Eqs 8.2 and 8.3, we get other sets of relations between the constants. Thus, it 
proves the relations

		  ′










+ ′ =k d
dp

P
v

θ
� � (8.14)

		  ′










=k d
dv

V
p

θ
� (8.15)

8.4  The Energy Equation

The sum total of energy of a system may be divided into two parts—(1) the internal energy and (2) the 
external energy. 

The internal energy consists of the kinetic energy of molecular motion and potential energy of inter-
molecular forces. The external energy of a system is measured by the work which would be performed 
by the system in expanding to a state of infinite rarity starting from its present state. This work is per-
formed by the pressure exerted by the body.

The work done by an expanding fluid can be easily calculated as: let us suppose that a small element 
of surface dS of the fluid moves through a distance dn in the outward direction normally. If p is the pres-
sure of the fluid, the work done in this displacement is p ds dn = p dv

The total work done by the fluid in small displacement is the sum of contributions from all elements 
of surface which are moved. Work done by a substance as its state changes in the p–v space from the 

point A to the point B along AB is pdv
v

v

1

2

∫ =. Since the amount of work done is determined by the shape of 

the path AB, dW is not a perfect differential. 
Calling U and W the internal and external energies respectively, the total energy of a body in any 

configuration is
		  E = U 1 W� (8.16)
where U is measured from a state in which the internal energy is zero. This state of the body is not 
known. Hence, the actual internal energy of a body is an indeterminate quantity. Fortunately, we are 
concerned only with changes of energy and not with actual quantity of energy when a body passes from 
one state to another. Hence, any arbitrary state of external and internal energies can be taken as the 
standard state for our calculation. 

Let us suppose that a quantity of heat energy dQ is absorbed by a body from an external source as 
a consequence of which the pressure, volume and temperature of the body change. Let us suppose that 
after this absorption of energy, the body again assumes a steady state. Let us suppose that in the new 
state, U changes to U + dU and W changes to W + dW. By the principle of conservation of energy,

		  dQ = dE = dU + dW� (8.17)
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This equation is known as the energy equation.
Since 	 dW = p dv, 
the energy equation for a fluid takes the following form

	 	 dQ = dU + p dv� (8.18)
This energy equation is known as the first law of thermodynamics. 
In the energy equation, dQ represents that part of energy which is absorbed or given out by a body in 

the process of change from one state to another. In other words, dQ refers to energy transferred across 
the boundary of the body. 

8.4.1  dU is a Perfect Differential
The change of internal energy of a body as it passes from state A to state B depends only on the initial 
and final states, and not on the path or manner of change of state.

If not, let the difference of energy of a body in the transition from the state A to the state B along the 
path I (Fig. 8.1) be less than that along the path II. Then, the effect of bringing the body from A to B along 
path I and back from B to A along the path II would be an increase of energy of the surroundings. But the 
system has been brought back to precisely the same state as at the beginning, for the thermodynamic state 
of a body is a single valued function of any two of the thermodynamic co-ordinates (p, v and θ).

Hence, energy must have been created which is contrary to the principle of conservation of energy. 
Expressed in mathematical language, this means that dU is a perfect differential.

8.4.2  dQ is Not a Perfect Differential
In the energy equation, dU is a perfect differential and dW is not a perfect 
differential. Hence, dQ is not a perfect differential.

The change of thermodynamic state of the body in the states A and B 
can be defined in terms of any two of the thermodynamic co-ordinates—
p, v and θ.

If U is regarded as a function of q and v, that is, in the θ–v space, then

	 dU dU
d

d dU
dv

dv
v

=










+








θ

θ
θ

� (8.19)

If U is regarded as a function of θ and p, that is, in the θ–p space, then

	 dU dU
d

d dU
dp

dp
p

=










+








θ

θ
θ

� (8.20)

8.4.3  Joule’s Experiment
The apparatus (Fig. 8.2) consisted of two stout cylinders immersed under water contained in a vessel. 

One of these cylinders contained air under high pressure, and the other was exhausted of air. The two 
vessels communicated with each other by means of a pipe provided with a stop-cock. The temperature 
of water was measured by a sensitive thermometer.

On opening the stop cock, the compressed gas rushed into the vacuum without doing any external work. 
When equilibrium was attained, the thermometer recorded no change in temperature. Hence, the results of 
experiment were dW = 0, dθ = 0. No external work was done because the gas rushed into vacuum.

A 

B 

I 

II 

Fig. 8.1 
Representation of 
Internal Energy
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Since the apparatus was thermally isolated, 
dQ = 0.

Hence from the first law of thermodynamics, 
dU = 0 eqn. (8.17) 

Substituting dU = 0 and dθ = 0 in Eq. 8.19, 
we get

	                       
dU
dv











=
θ

0 � (8.21)

Substituting these values in Eq. 8.20, we get

	                       
dU
dp











=
θ

0 � (8.22)

Hence, internal energy U does not change when the volume and the pressure change at constant tem-
perature. Internal energy of a given quantity of a gas must depend only on temperature.

In other words,	 U = f (θ)
The experiment of Joule as described above is not very accurate since the thermal capacity of the ap-

paratus employed was too large to produce any readable difference of temperature by the small quantity 
of heat that might have been developed. Later on, Joule and Thomson repeated this experiment with a 
very improved form of apparatus and actually detected a difference of temperature.

Eqs 8.21 and 8.22 can, therefore, be used only in connection with an ideal gas or the so-called perfect 
gas which obeys the relation pv = Rθ.

8.4.4  Forms of Energy Equation
From Eq. 8.19,

		  dU dU
d

d dU
dv

dv
v

=










+








θ

θ
θ

�

Substituting the values in Eq. 8.18, we get

		  dQ dU
d

d dU
dv

p dv
v

=






 +







 +











θ

θ
θ

� (8.23)

If the volume remains constant so that dv = 0,

		  dQ dU
d

d
v

=








θ

θ

	 So that 	
dQ
d

dU
d

C
v v

vθ θ











=










= � (8.24)

Thus, the rate of variation of internal energy with temperature at constant volume is the same as the 
specific heat of the substance at constant volume. Hence, Eq. 8.23 can be written as

		  dQ C d dU
dv

p dvv= +






 +











θ

θ

� (8.25)

Fig. 8.2  Joule’s experiment
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Comparing Eq. 8.25 with Eq. 8.1, we find

		  �=










+
dU
dv

p
θ

Equation 8.25 is the most general form of energy equation for a perfect gas,

		
dU
dv

p










= =
θ

0, so that �

Hence for a perfect gas, the energy equation 8.25 reduces to 

		  dQ C d pdvv= +θ � (8.26)

The energy equation can be put in another form.
Expressing U as a function of p and θ, we get

		  dQ dU
dp

dp dU
d

d
p

=










+










+
θ

θ
θ ppdv � (8.27)

For a perfect gas,	  
dU
dp









 =

θ

0 	                       Eq. 8.22

	 so that	 dQ dU
d

d pdv
p

=










+
θ

θ

	 or	
dQ
d

dU
d

p dv
dp pθ θ θ











=










+









p

	 or	 C dU
d

p dv
dp

p p

=










+








θ θ � (8.28)

Expressing v as a function of p and θ, we get

		  dv dv
dp

dp dv
d

d
p

=










+










θ
θ

θ

Substituting the values in Eq. 8.27, we get

		  dQ dU
d

p dv
d

d dU
dpp p

=






 +

























+



θ θ

θ



 +





















θ θ

p dv
dp

dp � (8.29)

	 If	 dp dQ
d

dU
d

p d

p p

=










=










+0,
θ θ

vv
d

C
p

pθ











=
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	 Hence,	 dQ C d dU
dp

p dv
dp

dpp= +








 +























θ
θ θ

� (8.30)

Comparing Eq. 8.30 and Eq. 8.2, we find

		  ′ =










+










�
dU
dp

p dv
dp

θ θ

	 For a perfect gas,	  
dU
dp

p dv
dp











= ′ =










θ

0 so that � 
θ

	 For a perfect gas,	           pv R dv
dp

v
p

=










= −θ
θ

so that

	 So that for a perfect gas,                ′ = −� v
	 Hence for a perfect gas, Eq. 8.30 reduces to 

		  dQ C d vdpp= −θ � (8.31)
For a perfect gas,

		  dQ C d pdvv= +θ

If the same quantity of heat dQ is applied to the gas at constant pressure,

		  dQ C d vdpp= −θ

	 ∴	       ∴ − = +C d vdp C d pdvp vθ θ

	 or	 ( )C C d pdv vdp Rdp v− = + =θ θ

	 ∴	 C C Rp v− = � (8.32)

8.4.5  �Dependence of Cp and Cv of a Perfect Gas on Pressure and Volume 
at Constant Temperature

	 By Eq. 8.24,	 C dU
dv

v

=








θ

Regarding Cv as function of v and θ,

		  d
dv
C d U

dvd
d
d

dU
dvv( ) = =











=
2

0
θ θ

θ

 for a perfect gas.

	 ∴ For perfect gas, Cv does not change with v.

Chapter 08.indd   253 4/26/2011   11:47:07 AM



254    Heat and Thermodynamics

	 Further, 	 d
dv
C d

dv
Cp v( ) ( )− = 0 	            from Eq. 8.32

	 ∴	                  ∴ =
d
dv
Cp( ) 0

Hence for a perfect gas, Cp does not change with v.
A perfect gas obeys the relation pn = Rθ, giving

		
dv
d

R
ppθ











=

Hence, Eq. 8.28 reduces to 

		  C dU
d

Rp
p

=










+
θ � (8.33)

Differentiating Eq. 8.33 with respect to p, 

		
d
dp
C d U

dpd
d U
d dp

d
d

dU
dpp( ) = = =











2 2

θ θ θ
θθ

= 0

for a perfect gas. Hence for such a gas, Cp does not change with p. 
Further from Eq. 8.32,

		
d
dp
C d

dp
Cp v( ) ( )− = 0

		  d
dp
Cv( ) = 0

Hence for a perfect gas, Cv is independent of p.

8.4.6  Meyer’s Method of Determining J
One cc of air at N.T.P. weighs 0.001293 gm. Hence, specific volume of air v0 = 1/0.001293 cc.

Normal pressure P0 76 13 6 981= × ×. dynes/sq cm

	 Specific gas constant R=
×

1013000
0 001293 273.

ergs/degree

For air, Cp = 0.238 cal/gm, Cv = 0.17 cal/gm
Since R is expressed in ergs and Cp, Cv in calories,
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		  C C R
Jp v− =

		  J R
C Cp v

=
−

=
× ×

= ×
1013000

0 001293 273 0 066
4 2 107

. .
. ergs/cal

To prove that for an adiabatic change, pv =γ constant where γ =
C
C
p

v

in the case of a perfect gas.

	 From Eq. 8.26,	 dQ C d pdvv= +θ �

	 and from Eq. 8.31	 dQ C d vdpp= −θ �

In an adiabatic process, dQ = 0; so that Eqs 8.26 and 8.31 reduce to

		  C d pdvv θ = −

	 and	 C d vdpp θ =

	 or	
C
C

vdp
pdv

p

v

= −

	 or	 γ
dv
v

dp
p

= −

Integrating γ log log loge e ev p k= − + where loge k is the constant of integration

	 Hence, pv kγ = = constant�

Equation 8.32 is known as the adiabatic equation of state of a perfect gas.
Since every state defined by the thermodynamic co-ordinates is an equilibrium state, the state must 

confirm to the equation pv = Rθ.

Substituting p R
v

=
θ in Eq. 8.32,

		  R
v
vθ γ = constant

		  θ γv − =1 constant �

Also substituting n = Rθ/p in Eq. 8.32,

		  p R
p

γ γ

γ

θ
= constant

	 or	 θγ γp1− = constant � (8.34)

A useful form of Eq. 8.34 is given below:
Taking logarithm of Eq. 8.34, we get

		  ( ) log log1− + =γ γ θe ep constant
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Differentiating this equation, we get

		  ( )1 0− + =γ γ
θ

θ
dp
p

d

	 or	 d dp
p

θ
γ

γ
θ=

−1
� (8.35)

In the special case where the pressure is 1 atmosphere and the temperature 0 8C, such as often hap-
pens above the surface of the earth, an adiabatic change of pressure by 1 mm produced a temperature 
change given by

		  =
−

× × =
×

= °
1 41 1

1 41
1

760
273 273

3 4 760
0 106.

. .
. C

8.5  Atmosphere in Convective Equilibrium

The temperature of the atmosphere falls as one rises up in the atmosphere. 
This is due to the fact that the hot air from the lower level expands as it 
rises, such expansion being more or less adiabatic.

Consider a mass of air enclosed in a cylindrical space of height dh and 
unit cross section. Let the pressure at the two faces of the cylinder be p and 
p + dp, respectively (Fig. 8.3).

This change in pressure dp is due to the weight of the column of air 
enclosed in the cylinder so that

		  dp g dh= − ρ � (8.36)
The negative sign means that the pressure diminishes as the height increases. Let m be the mass of 

air in the cylinder, then by the gas equation if the mean pressure of air in the cylinder be p and v the 
volume of air in the cylinder

		  pv m
M
R= θ

where R is the universal gas constant and M, the molecular weight of the gas. The last equation gives 

		  p m
v
R
M

R
M

= =
θ

ρ
θ

� (8.37)

Substituting the value of ρ in Eq. 8.36, we get

		  dp g pM
R
dh= −

θ � (8.38)

From Eq. 8.35, the change of temperature when the pressure changes by dp is

		  d dp
p

θ
γ

γ
θ=

−1

Fig. 8.3  Variation of 
pressure with height

 p

p + dp

dh
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	 or	 dp p d
=

−
γ

γ
θ

θ1 � (8.39)

Equating Eqs 8.38 and 8.39, − =
−

g pM
R

dh p d
θ

γ
γ

θ
θ1

	 ∴	     
d
dh

gM
R

θ γ
γ

= −
−1

� (8.40)

For air, g = 7/5, g = 980.665, M = 28.88, R = 8.214 3 107 

so that	 d
dh

θ
= − × = −9 8 105. deg/cm 9.8 deg/km

This value is slightly higher than the observed value. The difference is due to condensation of water 
vapour in the mass of expanding air.

8.6  The Isothermal and Adiabatic Curves

The curve showing the relation between pressure and volume of a given mass of gas when the tempera-
ture is constant is called its isothermal curve. It is represented by the equation

	 	 pv = constant
The curve showing the relation between pressure and volume of a given mass of gas when the flow 

of heat into or out of the gas is stopped is called its adiabatic curve. 
It is represented by the equation

		  pvg = constant

	 where                    γ =
C
C
p

v

If isothermal and adiabatic curves be plot-
ted on the same p–v diagram (Fig. 8.4), then the 
adiabatic curve would be steeper than the iso-
thermal curve. For, at the point of intersection P, 
the slope of the isothermal curve is

tanθ1 =
dp
dv

	 Now,        pdv vdp+ = 0

	                              dp
dv

p
v

= − � (8.41) Fig. 8.4  Isothermal and adiabatic curve 
in p–v diagram

p 

v 

P

I 

A
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The slope of the adiabatic curve is obtained by differentiating the relation 

		                           pvg = constant

This gives		              p v dv v dpγ γ γ− + =1 0

	 or	 γ p dv vdp+ = 0

	 so that	                       dp
dv

p
v

= −γ � (8.42)

8.6.1  Work Done in Isothermal Expansion
Total work done by a gas in expanding under pressure p isothermally from a volume v1 to a volume 
v2 is 

		  W pdv
v

v

= ∫
1

2

By gas laws, pv R= θ

	 so that	 p R
v

=
θ

	 Hence,	 W R dv
v

v

v

= ∫θ
1

2

	 or	 W R v
ve

= θ log 2

1
� (8.43)

8.6.2  Work Done in Adiabatic Expansion
In case of adiabatic change, pvg = constant. Let p1, v1 and p2, v2 be the initial and final values of pressure 
and volume of the mass of the gas, respectively. If p and v are the pressure and volume in an intermedi-
ate stage, then

		  p v p v pv p
p v
v1 1 2 2
1 1γ γ γ

γ

γ
= = =so that

Work done by the gas in expanding from v1 to v2 is 

		  W pdv p v dv
vv

v

v

v

= =∫ ∫
1

2

1

2

1 1
γ

γ
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	 or	 W p v v

v

v

=
−











−

1 1

1

1
1

2

γ
γ

γ

		  =
−

−( )− −p v v v1 1
2
1

1
1

1

γ
γ γ

γ

		  =
−

−( )−1
1 1 1 2

1
1 1γ

γ γp v v p v

	 or	 W p v p v R
=

−
− =

−
−

1
1 12 2 1 1 2 1γ γ

θ θ( ) ( ) � (8.44)

Work done in adiabatic change can also be expressed in another way; from the energy equation,

		  dQ C d dWv= +θ

	 Since	 dQ dW C dv= = −0, θ

	 Hence,	 dW C dv
1

2

1

2

∫ ∫= − θ

		  W W C Cv v2 1 2 1 1 2− = − − = −( ) ( )θ θ θ θ � (8.45)

8.6.3  Adiabatic and Isothermal Elasticities of a Perfect Gas 
By definition of bulk modulus, the isothermal elasticity is Eθ = -v(dp/dv)θ and adiabatic elasticity is 
Es = -v(dp/dv)s.

For perfect gas, pv = constant if θ is constant; so that

	 pdv vdp+ = 0

		  E v dp
dv

pθ
θ

= −










=

For perfect gas, pvg = constant (dQ = 0)

So that	          γ γ γpv dv v dp− + =1 0

	 ∴	 ∴ = −










=E v dp
dv

ps
s

γ

	 ∴	   ∴ = =
E
E

C
C

s p

vθ

γ
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8.6.4  The Most General Equation Relating to Specific Heats of a Substance

From Eq. 8.24,	 C dU
d

dU
dp

dp
dv

v v

=










=












θ θ






v

	 ∴	             ∴










=










dU
dp

C d
dpv

v
v

θ

Differentiating U and θ, v was maintained constant. Accordingly, the resulting equation must be a 
function of v. 

	 Now,	
d
dv

dU
dp

d
dv
C d

dpv











=














θ








		  = +
d
dp
d
dv
C C d

dvdpv v
θ θ( )

2

	 From Eq. 8.28,	 C dU
d

p dv
dp

p p

=










+








θ θ

		  =




















+



dU
dv

dv
d

p dv
dp pθ θ






p

		  =














 +

















dv
d

dU
dv

p
p pθ

	 or	
dU
dv

C d
dv

p
p

p
p











=










−
θ

		
d
dp

dU
dv

d
dv

d
dp
C C d

dp
d
dvp p

p p







 =







 +








θ θ( )  −
p

1

	 Since	
d U
dvdp

d U
dpdv

2 2

=

		
d
dp

d
dv
C C d

dvdp
d
dv

d
dp
C C d

dpdvv v p p
θ θ θ θ( ) ( )+ = +

2 2

−−1

	 or	 ( ) ( ) ( )C C d
dvdp

d
dp

d
dv
C d

dv
d
dp
Cp v v p− − + =

2

1θ θ θ

For a perfect gas,	 d
dv
C d

dp
Cv p( ) ( )= = 0
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	 Since	 pv R d
dv

p
R

d
dp

d
dv Rp

=






 =







 =θ

θ θ, and 1

	 ∴	      ∴ − =C C Rp v

Solved Problems

	Q 1.	 1 gm of ice at normal pressure is changed in to 1 gm of water at 0 8C. What is the change in the 
internal energy?

Ans.	 We have		    dU = dQ − dW

	 Now,		    dQ = 80 3 4.2 3 107 = 3.4 3 109 ergs

		   dW = − × × × = − ×76 13.6 981 1
11

0 092 106. ergs

	 ∴	        ∴ = × + × = ×dU  3.4 103( . )0 092 10 34 106 8 ergs

	Q 2.	 1 cc of water at 100 8C and normal pressure is changed into 1 gm of steam whose volume is 
1649 cc at the same temperature and pressure. Find the change in internal energy.

Ans.	 dQ = 536 3 4.2 3 107 = 2.25 3 1010 ergs

		  dW = × × × = × 76 13.6 981 1649 1 67 109. ergs

		      dW dQ dW= − = × − × = × 2.25 10 1.67 10 20.83 ergs10 9 109

	Q 3.	 A mass of air is suddenly compressed to 1/10 of its original volume adiabatically; find the tem-
perature immediately after the compression. The original temperature is 20 8C.

Ans.	 For the same mass of gas, we have

		  θ θγ γ
1 1

1
2 2

1v v− −=

	    Here,	 θ1 2
1273 20 293

10
= + = =, v v

		  θ θ
γ

2 1
1

2

1
0 41

293 10 753=










= ( ) =
−

v
v

.
K

	Q 4.	 Over the surface of the earth at a height, the temperature is 0 8C and pressure is 1 atmosphere. 
What will be the change in temperature due to adiabatic change of pressure by 1 mm?

Ans.	 We know that dθ is the change in temperature. 

		  dθ = γ
γ

θ
−

=
−

= °
1 1 41 1

1 41
1

760
273 0 106dp

p
.

.
. C
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	Q 5.	 A tyre is pumped to a pressure of 2 atmospheres at 15 8C when it suddenly bursts. Calculate the 
resulting drop in temperature.

Ans.	 We know that	   θ
θ

γ
γ

2

1

2

1

1

=










−

p
p

	    Here,	 θ1 273 15 288= + =

		  p1 2= atm

		  θ2

1 4 1
1 4

288 1
2

288 1
2

=










=










−.
.


=

0 4
1 4

236 2

.

.
. K

	    ∴ Drop in temperature = 288 − 236.2 = 51.8

	Q 6.	 A volume of gas at 15 8C expands adiabatically until its volume is doubled. Find the resultant 
temperature given that g = 1.4.

Ans.	 Here, we are to use θ γv − =1 constant.

	    or	 θ θγ γ
1 1

1
2 2

1v v− −=

		  θ1 2 1273 15 288 2= + = =, v v

	 ∴	       ∴ =










= =
−

θ θ
γ

2 1
1

2

1

0 4

288
2

218 3
v
v .

. K

	Q 7.	 What pressure would be required to compress dry air at the standard pressure and temperature 
into 1/50 of its volume (a) slowly and (b) suddenly? What would be the resultant rise in tem-
perature? (g = 1.4)

Ans.	� (a) If the compression is done slowly, the change will be isothermal and we should use the rela-
tion pv = constant.

		
p v p v p p v

v
v
v1 1 2 2 2

1 1

2

1

1
1

50

50= = = =, atm

		  There will be no rise in temperature
	� (b) If the compression is done suddenly, the change will be adiabatic and we should use the 

relation pvg constant.

	    or	 p v p v1 1 2 2
γ γ=

	    or	 p p
v
v

v
v2 1

1

2

1

1

1

50

=










=







γ






= =

1 4

1 450 239

.

.  atmosphere
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	 To calculate the rise of temperature, we should use the relation qvg21 = constant.

		  θ θγ γ
1 1

1
2 2

1v v− −=

	 ∴	 ∴ =










=







−

θ θ
γ

2 1
1

2

1

1

1

273

50

v
v

v
v







= ( ) =

−1 4 1

0 4
273 50 1305

.

.
K

	Q8.	 Calculate the rise of temperature when a gas for which g = 1.5 is compressed to 8 times its 
original pressure, assuming the initial temperature to be 300 K. 

Ans.	 Here, we are to use the relation 

		  p T1− =γ γ constant

	 So,	 p T p T1
1

1 2
1

2
− −=γ γ γ γ

	    or	 T T
p
p

p
p2 1

1

2

1

1

1

300
8

=










=









− γ
γ 

=










−
−

1 1 5
1 5

0 5
1 5

300 1
8

.
.

.

.

		  = = =300 8 300 8 600
0 5
1 5

1
3( ) ( )

.

. K
	 So, the rise in temperature is 300 K.
	Q9.	 A gram molecule of a gas at 127 8C expands isothermally until its volume is doubled. Find the 

amount of work done.

Ans.	 Work done in isothermal expansion from v1to v2 is

		  R v
ve

θ2 303 2

1

. log

		  W R v
ve

= θ2 303 2

1

. log

		  = × × × = ×8 31 10 400 2 303 2 2 3 107 1

2

10. . log .e
v
v

ergs

	Q10.	 Air at 17 8C and 76 cm of mercury pressure expands isothermally until its volume is doubled 
and then adiabatically until it is redoubled. Find the final temperature and pressure (g = 1.4).

Ans.	� When air expands isothermally, we use the relation pv/q = constant. Let the pressure be p when 
the volume is doubled, then

		  76
290

2
290

v p v
=

	 or		 p = 38 cm of mercury
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	�	  So when air expands isothermally, the final pressure is 38 cm of mercury and final tempera-
ture = 290 K.

	�	  Next, air expands adiabatically; then, the relation θ γv −1 = constant is used to find the resul-
tant temperature. 

	 So,	 290 2 40 4 0 4( ) ( ). .v T v=

	 ∴	 ∴ =










=T v
v

290 2
4

219 8
0 4.

. K

	 To find the pressure, we use pvg constant.

		  38 2 4( ) ( )v p vγ γ=

		  p v
v

=










=38 2
4

14 4
γ

. cm of mercury

	Q11.	 One gram of hydrogen occupies 11.1 litres at 0 8C and 76 cm of mercury. What is the work done 
by the gas if heated to 1 8C at constant pressure and how much heat must be supplied to it in the 
process, if its specific heat at constant volume is 2.411?

Ans.	� When 1 gm of hydrogen occupying 11.1 litres at 0 8C and 76 cm of mercury is heated to 1 8C at 
constant pressure, its volume will be 11.1 3 274/273 litres.

		  The work done = p v v
v1 1

2

1

loge

		   
= × × × ×76 13 6 981 11100 2 303 274

273
. . loge

		  = ×4 147 107. erg

		  Heat supplied        = +c dTv  work done

		  = × +
×

×
2 411 1 4 147 10

4 2 10

7

7
. .

.

		        2 411 0 987 3 398. . .+ = cal

	Q12.	 Find the work done in compressing adiabatically 1 gm of air initially at N.T.P to half its original 
volume, r for air at N.T.P = 0.0001293 gm /cc, g = 1.4, atmospheric pressure = 106 dynes.

Ans.	 As 1 gm of air is considered, we have pv = rq

		  r pv
= =

×θ
10

0 0001293 273

6

.

	 Final temperature after adiabatic compression is found from θ θγ γ
1 1

1
2 2

1v v− −=
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∴

	

∴ =










=







−

θ θ
γ

2 1
1

2

1

1

1

273

2

v
v

v
v







=

0 4

360

.

K

	 Work done in adiabatic compression is 

		
W

r
=

−
−

=
−

× ×
( ) ( )

. .
θ θ
γ

2 1
6

1
10 360 273

0 0001293 273 0 4
== ×6 167 109. ergs

	Q13.	 Calculate the change in internal energy when 5 gm of air is heated from 0 8C to 10 8C, specific 
heat at constant volume for air = 0.172 cal/gm.

Ans.	 The change in internal energy = mcvdθ

		     = × × =5 0 172 10 8 6. . cal

	Q14.	 103 cc of a gas at N.T.P expands to double its volume at constant pressure. How many calories 
of heat have been supplied to it? r for the gas is 1.29 gm/litre and cv = 0.168 cal/gm. 

Ans.	 We know that for such change,

		                  
p v p v1 1

1

2 2

2θ θ
=

		                                  
p p1

3
1

3

2

10
273

2 10
=

×
θ         ∴ = × =θ2 2 273 546 K

	 Again, pv = rθ

	 or	 r pv
= = × ×

×
×

=
θ

76 13 6 981 10
273 1 29

0 0688
3

.
.

.

		  c c rp v= + = + =0 168 0 068 0 236. . .cal cal

		  Q mc dp= = × × − =θ 1 29 0 236 546 273 83 3. . ( ) . cal

	Q15.	 One gm mole of argon is expanded isothermally and reversibly at 30 8C from 1 litre to 10 litres. 
Calculate the maximum work done.

Ans.	 We know that the work done in isothermal expansion

		  = × ×R
v
v

θ 2 303 2

1

. log

		  = × × × × = ×8 31 10 303 2 303 10 5 8 107 10. . log . ergs
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	Q16.	 Calculate the amount of heat absorbed by 2.6 litres of neon at N.T.P. if it is allowed to expand 
4 times its own volume at 0 8C.

Ans.	 For 1 gm mole of a gas, the work done in isothermal expansion 

		  = × ×R
v
v

θ 2 303 2

1

. log

	 Since volume of 1 gm mole is 22.4 litres, the work done by 2.6 litres of neon is 

		
2 6
22 4

8 31 10 273 2 303 4 86 827.
.

. . log .× × × × × = caloriees

	Q17.	 A certain gas at constant temperature obeys the equation ( / )( )p a v v b K+ − = =2 constant. 
Calculate the work done when this gas expands from v1 to v2.

Ans.	 We have	 p a
v

v b K+










− =
2

( )

	 or	 p K
v b

a
v

=
−

− 2

	 The work done = =
−

−∫ ∫ ∫pdv K
v b

dv a
v
dv

v

v

v

v

v

v

1

2

1

2

1

2

2

		      
= − +







 =

−
−

+ −


K v b a
v

K v b
v b

a
v ve v

v

v

v

e[log ( )] log
1

2

1

2
2

1 2 1

1 1








	Q18.	 Immediately after explosion of an atom bomb, the ball of fire produced had a radius of hundred 
metres and a temperature of 105 K. What will be the appropriate temperature when the ball 
expands adiabatically to 1000 metres radius (g = 1.66)?

Ans.	 Initial volume	       =
4
3

104 3π( )

	 Final volume	 =
4
3

105 3π( ) cc

	 Initial temperature	 θ1
510= K

	 We know	 θ θγ γ
1 1

1
2 2

1v v− −=

	

∴

	

∴ =










=
−

θ θ
π

π

γ

2 1
1

2

1

5

12

1
10

4
3

10

4
3

10

v
v 55

1 66 1

6310













=

−.

K
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	Q19.	 A gas occupying 1 litre at 80 cm of Hg pressure is expanded adiabatically to 1190 cc. If the 
pressure falls to 60 cm of Hg in this process, deduce the value of g.

Ans. We know that			     p v p v1 1 2 2
γ γ=

	 or					         
p
p

v
v

1

2

2

1

=










γ

	 or	
80
60

1190
1000

1 19=










=
γ

γ.

	 Taking log,	 log log .e e
8
6

1 19= γ  

	 or	 γ =
−

=
log log

log .
.e e

e

8 6
1 19

1 65

Problems

1.	 A given volume of helium is at 0 8C and is expanded suddenly to twice its volume. Find the 
temperature after expansion, assume g = 1.67.

Ans. 172 K
2.	 Dry air is compressed at 27 8C to one third its volume. Find the resulting rise of temperature. 

Ans. 165.6 8C
3.	 Calculate the final temperature when a given mass of a gas at 0 8C is suddenly compressed to a 

pressure 20 times the initial pressure (g = 1.42).
Ans. 662 K

4.	 Dry air enclosed at 25 8C and atmospheric pressure is suddenly compressed to half its volume. 
Find the resulting temperature and pressure (g = 1.4).

Ans. 2.638 atm, 393 K
5.	 A quantity of air at normal temperature is compressed (a) slowly, (b) suddenly to 1/10 of its 

volume. Find the rise in temperature if any in each case. 
Ans. (a) nil, (b) 412.8 K

6.	 Calculate the rise in temperature of a gas ( g = 1.5) which is compressed to 27 times the original 
pressure, the initial temperature being 27 8C.

Ans. 600 
7.	 In a certain process, 500 calories of heat are supplied to a system and at the same time 200 

joules of work is done on it. What is the increase in initial energy?
Ans. 547.8 cal
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8.	 A certain volume of dry air at N.T.P is expanded to three times its volume under (a) isothermal 
condition and (b) adiabatic condition. Calculate in either case, the final pressure and tempera-
ture (g = 1.4).

Ans. (a) 25.3 cm of mercury, 0 8C
(b) 16.32 cm of mercury, 297 8C

9.	 An ideal gas is compressed isothermally and reversibly at 27 8C from 1 atmosphere to 
10 atmospheres. Calculate the amount of work required for this change if the quantity of gas is 
1 gm mole. (R = 8.3 J/deg mole)

Ans. 5.7 3 1010 ergs 
10.	 What is the maximum work obtained when 600 gm of mercury vapour is allowed to expand at 

500 8C from 6 atmospheres to 3 atmospheres? 
Ans. 1.33 3 1011 ergs

11.	 A litre of dry air at N.T.P is allowed to expand to a value of 3 litres (a) very slowly, (b) very 
quickly. Calculate the work done in each case. 

Ans. (a) 1.114 3 109 ergs  (b) 8.99 3 108 ergs
12.	 Eight grams of helium gas occupying 4 litres at 0 8C is quasistatically compressed to 1 litre at 

constant temperature. Assuming that the gas is perfect, calculate the work done. 
Ans. 63 3 109 ergs

13.	 One mole of Van der Waals’ gas at 27 8C was isothermally expanded from 2 litres to 20 litres. 
Calculate the work done, given a = 1.42 3 1012 dyne.cm4 per mole and b = 30 cc per mole. 

Ans. 5.76 3 1010 ergs
14.	 The equation of state for CO2 is given by p(u − nb) = nRT, n being number of gm moles. Cal-

culate maximum work done when 11 gm of CO2 expands isothermally at 47 8C from 5 litres to 
25 litres; given b = 40 cc per mole.

Ans. 1.07 3 1010 ergs

Questions

1.	 Discuss the principle of conservation of energy. Explain thermodynamic state, thermodynamic 
coordinates, thermodynamic equilibrium and quasistatic processes.

2.	 State first law of thermodynamics and explain its importance. 
3.	 What are internal and external energies? Internal energy of a gas depends on what characteris-

tics of the gas, explain. 
4.	 Explain why a gas has two kinds of specific heats. Show that the difference between two spe-

cific heats is equal to gas constant. 
5.	 How do the specific heats of a gas depend on pressure and volume at constant temperature? 
6.	 What is meant by adiabatic change? Deduce expressions for such changes relating to pressure, 

volume and temperature.
7.	 How does temperature fall with height?
8.	 What do you mean by isothermal and adiabatic changes? Show their nature in the p 2 v diagram. 
9.	 Deduce expressions for work done in isothermal expansion and adiabatic expansion. 

10.	 Discuss adiabatic and isothermal elasticities of a perfect gas.
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Chapter 9

9.1  Limitations of the First Law of Thermodynamics

All experimental methods developed so far for the investigation of the law of equivalence of heat 
and mechanical work are only methods of conversion of mechanical work into heat and not heat into 
mechanical work. The law of equivalence is

		
dW
J

dQ=
� (9.1)

This is the first law of thermodynamics in restricted sense and is applicable only when mechanical 
work is converted into heat. When heat is converted into work,

		  dQ dW
J

= �

except under some special circumstances to be developed later on. The natural law of conversion is

		
dQ dU dW

J
= +

� (9.2)

Equation 9.2 implies that out of the total quantity of heat dQ, only a part is converted into mechanical 
work and the balance is used to increase the internal energy of the body.

Thus though heat and mechanical work are only different forms of energy which can be mutually 
converted into each other without any loss of total quantity, yet we know from experience that they do 
not obey the same quantitative law of conversion. By law of nature, all mechanical work can be con-
verted into heat but all heat cannot be converted into mechanical work. 

THE SECOND LAW OF 
THERMODYNAMICS
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9.2  The Spontaneous Process

The conversion of mechanical work into heat is spontaneous. Thus when two blocks of wood are rubbed 
together, both of them become heated and this happens without our intervention thereby converting the 
mechanical work into heat. But these two blocks when placed together will not rub against each other, 
though each of them has a good stock of energy in the form of heat. So, conversion of heat into mechani-
cal work is not a spontaneous process; otherwise, ocean-going vessels would no longer need to carry large 
quantities of fuel. The ocean itself has an immeasurable store of energy in the form of heat and this heat 
could be spontaneously converted into mechanical work of moving the vessel against the friction of water. 
Such conversion would not be a violation of the principle of energy; yet, it never happens in nature.

All natural processes are spontaneous and all spontaneous processes are only one sided transforma-
tions. Thus, 

1.	 All material bodies, once set in motion, continue to move in the same direction with constant 
speed.

2.	 Heat flows of itself from warm to colder bodies. 
3.	 Bodies fall off themselves from high to lower gravitational level.
4.	 Gas flows from region of high pressure to that of lower pressure.
5.	 Positive electricity flows from high to lower potential region.
6.	 Salts tend to separate from their saturated solutions as crystals.
7.	 Two gases placed in contact tend to diffuse into each other.
8.	 An under-cooled liquid tends to freeze out.
9.	 Chemical reaction between two ingredients proceeds in a particular direction.

10.	 All mechanical works are spontaneously converted into heat.

In the process of spontaneous change, the system undergoing change does not exchange its energy 
with the surroundings so that the sum total of its energy remains constant. If any exchange of energy 
with the surroundings takes place, it occurs only as a result of the spontaneous process rather than 
a necessary accompaniment because the process would certainly take place even if the exchange of 
energy was artificially prevented. Thus, a mass of compressed gas would spontaneously expand if the 
superincumbent pressure is reduced.

In the process of expansion the temperature of the gas would, of course, fall below that of the surround-
ings. As a result, heat would flow into the gas from the surroundings. If the vessels containing the gas were 
thermally isolated, the flow of heat might be prevented; but, that would not stop the free expansion of the gas. 

Since, in a spontaneous change, the energy of the system undergoing change remains unaltered, 
the system does not produce any external work, that is, a body external to the system does not get any 
energy. Thus a freely falling pile-driver maintains its energy constant during its fall, though the energy 
of the falling body changes form. Work can be derived from a natural or spontaneous process only when 
the natural process is resisted. Thus the pile-driver, on falling on a pile, drives the pile into the earth and 
at the same time the pile-driver is brought to rest. 

Any cause which tends to resist a natural or spontaneous process is a force.* The product of this 
force and the distance over which the force acts retarding the progress of the process is a measure of the 
amount of mechanical work done against the force.

*This should be the most general definition of a force of which the Newtonian definition is only a particular case.
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Other examples of mechanical work obtained from natural processes are:
Water flows of itself from high to a lower level. To obtain mechanical work out of this flow, it must be 

checked by a suitably installed turbine. Positive electricity flows from high to lower potential. Mechani-
cal work can be derived by placing an electric motor in the path of flow of electricity. The energy of 
electric current is converted into heat by placing a resistor in the path of flow of electricity. Hydrogen 
and oxygen combine together at a suitable temperature to form water. Through the medium of a galvanic 
cell, such combination may be made to yield useful work.

Heat flows of itself from a high to a lower temperature. Main concern of thermodynamics is to obtain 
mechanical work out of this spontaneous flow of heat. Any interposed mechanism through which a con-
tinuous supply of mechanical work is obtained from heat is called a heat engine.  

9.3  The Heat Engine
The main organs of a heat engine are as follows:

1.	 A source at high temperature.
2.	 A sink or refrigerator at lower temperature.
3.	 The working substance. The heat of the source, instead of flowing directly from the source to 

the sink, passes through the medium of the working substance producing certain changes of the 
thermodynamic state of the substance. 

From the change of the thermodynamic coordinates, the work done by the substance is obtained 
from the relationW pdv

v

v

= ∫
1

2

where v1 and v2 are the initial and final volumes of the working substance, 

before and after the changes respectively. The balance of heat drawn from the source which is not con-
verted into mechanical work by the engine is discharged to the sink.

The organ of the heat engine where heat is actually converted into mechanical work is called the 
cylinder. The theoretical cylinder consists of a stout cylindrical vessel with non-conducting wall and 
provided with a piston of insulating material enclosing some quantity of the working substance. This 
is a gas since a given quantity of heat produces greatest change in volume and pressure of a gas. The 
other end of the cylinder is closed by a conducting disc which may be placed in contact with the source 
or the sink. The piston is subjected to an external pressure to balance the tendency of the gas to expand.

9.3.1  How to Obtain Maximum Amount of Work?
From the point of view of economy, our main problem is to determine the conditions under which maxi-
mum quantity of work can be derived from a given quantity of heat supplied by the source. It appears 
that to obtain maximum supply of work, all the heat must be drawn by the working substance only and 
the only changes produced by heat in the working substance should be changes in pressure and volume 
and nothing else. In actual engine, in addition to the work of expansion, the heat is spent in many other 
ways; these are as follows: 

1.	 A part of the energy is used up to change the internal energy of the substance. 
2.	 A part is lost by conduction through the walls of the cylinder and through the piston unless these 

are made of perfectly non-conducting materials and the piston. 
3.	 Some energy is spent as work required in overcoming friction of the piston against the wall of 

the cylinder. Friction always opposes motion and work done against friction is spontaneously 
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converted into heat which is dissipated into space. So, this is an irrecoverable loss. Hence to 
obtain maximum amount of work, the moving part must be frictionless. 

4.	 Some energy is spent to generate kinetic energy of moving parts of the system. If the differ-
ence of pressure on the two sides of the piston is large, the piston would move with accelerated 
motion. To generate this acceleration, some amount of energy must be spent. Further on account 
of rapid expansion, there would be local variations of pressure throughout the cylinder which 
set up eddies in the working substance. The energy of these eddies is finally converted into heat.

To avoid this waste of energy, the difference of pressure on the two sides of the piston should be as 
small as possible.

To produce work, heat must be drawn from the source by the working substance. As such, the tem-
perature of the working substance must be lower than that of the source. To produce maximum amount 
of work, the temperature of the working substance must not, however, be sensibly lower than that of 
the source.

This can be proved as follows:
Let the temperature of the source be q and that of the working substance q′, and let q > q′.  If the heat 

is drawn at temperature  q, the path of change of state of the working substance is given by the isother-
mal AB corresponding to temperature q (Fig. 9.1). Under this condition, the work done by the substance 
is represented by the area ABCD.

If the heat is drawn at temperature q′,  the work done is represented by area A′ B′ CD, where A′  B′ is 
the isothermal corresponding to temperature q′. Since A′ B′ CD is less than ABCD, work done at tem-
perature q′ is evidently less than the work done at temperature q. Hence to produce maximum amount 
of work, the temperature q′ must be as nearly equal to q as possible. In the limiting case, the source and 
the working substance must be in thermal equilibrium to obtain maximum amount of work. 

This also follows easily from Eq. 8.43 of Chapter 8

	 	 W R v
ve

= θ log 2

1

This means that for a given expansion ratio (v2/v1), W is directly proportional to q. Hence for maximum 
work, the value of q must be the highest available, that is, it must be as nearly equal to the temperature 
of the source as possible. Hence the process of expansion of the working substance must be isothermal,  

A 

B

A′ 

B′ 

D C

θ′ 

v

p θ 

Fig. 9.1  Indicator diagram
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corresponding to the temperature of the source. In order that the process may be isothermal, the system 
giving out heat and the system receiving heat must be partitioned by a perfectly conducting wall. Other 
wise, a difference of temperature will have to be maintained on the two sides of the partition wall to 
make the heat flow into or out of the working substance through the partition wall. Under these circum-
stances, the heat cannot be drawn by the working substance at the same temperature as the source. 

9.3.2  Conditions of Obtaining Maximum Amount of Work
Thus to derive maximum amount of mechanical work out of the working substance, work must be per-
formed under the following conditions:

1.	 The cylinder and the piston must be of zero heat capacity.
2.	 The moving parts of the cylinder must be frictionless.
3.	 The walls of the cylinder and the piston must be made of perfectly non-conducting material.
4.	 The base of the cylinder forming the partition wall between the source or sink and the working 

substance must be made of perfectly conducting material.
5.	 At every stage of the operation, the mechanical forces acting on the two faces of the piston must 

differ by an amount which is just sufficient to make the piston move in the desired direction.
6.	 At every stage of the operation, the temperature of the working substance must be only slightly 

lower than that of the source while it is receiving heat and only slightly higher than that of the 
sink while giving out heat.

In other words to obtain maximum amount of work, the whole process must be a succession of equi-
librium or quasi-static state, the substance passing from one state to the other by steps of infinitesimally 
small changes so that the process is perfectly continuous in the mathematical sense. 

9.3.3  Reversible Operation
Such an operation as described above is evidently reversible because by reversing the forces and the 
directions of the flow of heat, the whole operation may be traced back in the opposite sense so that the 
substance passes through the same states as in the direct process, but in the reverse order. Such reversal 
implies that the amount of heat received and the work done in each infinitesimal step of the reverse 
process is the same as in the direct process, heat being parted with where—in the direct process—it was 
received and work being done upon the substance by some external agency where—in the direct pro-
cess—it did work. In any thermodynamic process, not only the system undergoing change but also the 
system external to it participates unless the system is thermally isolated. Hence, the condition of exact 
reversibility requires further that the system undergoing change and that external to it must be in the 
same state at the end of the reversal as at the beginning of the direct process. If at the end of the reversal 
there is a permanent change somewhere else, then the process is not exactly reversible.

A thermodynamic operation is reversible, if it satisfies the conditions (1) to (6) given in the previous 
section which are also the conditions for maximum yield of mechanical work. Conversely, a thermody-
namic operation can yield maximum amount of mechanical work from a given quantity of heat only if 
the operation is reversible.

The method of obtaining maximum amount of work from a given quantity of heat as described above 
is only an idealized method, for the conditions of reversibility demand that the process be carried out 
infinitely slowly with substances possessing uncommon physical properties. These conditions can never 
be realized in any real experimental process; but, they can at least be approached. In the exposition of 
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thermodynamics, we shall very often discuss such idealized experiments to derive results which are 
nevertheless, valid. This is because the departures of the real substances from these ideal properties do 
not affect the argument; rather in the case of certain irregularities, they actually reinforce the argument. 
A reversible process is not an imaginary process; rather, it is to be regarded as the limit of actually 
realizable process.

9.3.4  Cyclic Operation
The ideal engine discussed earlier satisfies the condition of reversibility (1) to (6). So, it produces maxi-
mum amount of mechanical work. Nevertheless, some amount of heat must be used up to change the 
internal energy of the working substance. To convert the whole heat into mechanical work, dU must be 
made equal to zero. Since dU is a perfect differential, it would be zero if the substance is made to work 
in a closed path. This has the additional advantage that by making the working substance traverse a 
closed path, a continuous supply of power equal to area of the cycle into the number of cycles traversed 
per second can be obtained.

9.3.5  The Carnot’s Engine
Black’s discovery that heat was a measurable quantity made it possible for Watt to develop the steam 
engine on scientific lines. The industrial problem was how to obtain maximum quantity of work from a 
given quantity of heat. The search for this led to the discovery of the ideal engine by Sadi Carnot.

Carnot’s engine was imagined to be constructed as follows:

1.	 The cylinder was made of perfectly non-conducting material whose thermal capacity is zero.
2.	 The piston was made of perfectly non-conducting material of zero thermal capacity. It moved 

inside the cylinder without friction.
3.	 The base of the cylinder was made of perfectly conducting material.
4.	 In addition, there was a moveable disc of perfectly non-conducting material by which the base 

could be covered. 
5.	 The source and the sink had infinite thermal capacity.

Heat was all taken in by the working substance at the temperature q1 of the source and given to the 
sink at the temperature q2 of the sink. Throughout the entire operation, the working substance was sup-
posed to be in mechanical equilibrium with the external forces and the thermal equilibrium with the 
source to the sink. The engine so constructed satisfied the conditions for production of maximum quan-
tity of mechanical work and was, therefore, perfectly reversible.

To make the engine work in a closed cycle, the two isothermal curves corresponding to temperatures 
q1 and q2 of the source and the sink, respectively must be connected by two adiabatic lines in order that 
the working substance may not exchange heat with the surroundings. The substance changed its tem-
perature from q2 to q1 or from q1 to q2 by adiabatic compression or expansion. This enabled the working 
substance to take in and reject heat at the ends of the adiabatic changes only without taking or rejecting 
any heat in the process of change of temperature. The Carnot’s engine is, thus, a four-stroke engine. Its 
construction and the details of operation in different strokes are described below.

In Fig. 9.2  EF is the cylinder, P is the piston, S is the source, R is the refrigerator, D is the insulating 
disc, ab and cd are the two isothermals at temperatures q1 and q2, bc and ad are the two adiabatics con-
necting the two isothermals. The diagram abcd is called the indicator diagram.
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For the working substance of the engine, we shall take a perfect gas. This will not affect the argu-
ments in any way; for it will be proved later on that any substance can be used as working substance 
without any loss of efficiency. 

The different strokes of the engine and their characteristics are tabulated in Table 9.1.
Total work done by the working substance 
=(Area ab vbva 1 Area bc vcvb) − (Area dc vcvd 1 Area ad vdva)
= Area abcd of the cycle
Since in a cyclic operation there is no change of internal energy, 
work done = Q1 2 Q2 = area abcd of the cycle.
Since the working substance is a perfect gas, work done in the cycle is
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Fig. 9.2  Working of Carnot’s engine

Table 9.1  Characteristics of different strokes of Carnot’s engine

Stroke
Base of the 
cylinder Path of change Initial state Final state

Heat 
drawn

Work done by 
the substance

I In contact with 
source (S)

ab, isothermal 
expansion

pa, va, q1 
(State at a)

pb, vb, q1 
(State at b)

Q1 Rq1 loge vb/va 
(area ab vbva)

II Insulated by D bc, adiabatic 
expansion 

pb, vb, q1 
(State at b)

pc, vc, q2 
(State at c)

0 Cv (q1 2 q2)
(area bc vcvb)

III In contact with 
sink (R)

cd, isothermal 
compression

pc, vc, q2 
(State at c)

pd, vd, q2 
(State at d)

Q2 Rq2 loge vd /vc 
(area dc vcvd)

IV Insulated by D da, adiabatic 
compression

pd, vd, q2 
(State at d)

pa, va, q1 
(State at a)

0 Cv (q2 − q1)
(area ad vdva)
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Efficiency of an engine is defined by

		  η =
Heat  converted  into  work

Heat  drawn  frrom  the  source
=

−Q Q
Q

1 2

1

		  =
Area  of  the  cycle (abcd)

Heat  drawn  froom  the  source

In the case of a perfect gas, there is no change of internal energy in an isothermal process. This is 
because internal energy is a function of temperature only. Hence, the heat drawn or the isothermal pro-
cess is equal to the amount of work done, or

		  Q R v
ve
b

a
1 1= θ log

Total amount of work done in the whole cycle is obtained by addition of works done in the last col-
umn of Table 9.1.
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=
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� (9.3)

Now the points a and b are on the same isothermal,

		  p v p v
v
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p
pa a b b

b

a
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b

= ∴ = � (9.4)

Again c and d are on the same isothermal, 

		  p v p v
v
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p
pc c d d

c

d

d

c

= ∴ = � (9.5)

Again a and d are on the same adiabatic, 

		  p v p va a d d
γ γ= � (9.6)

	 Similarly, 	 p v p vb b c c
γ γ= � (9.7)

	 From Eqs 9.6 and 9.7, 	
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Substituting for pb/pa and pc/pd from Eqs 9.4 and 9.5,
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Substituting the value in Eq. 9.3, we get for efficiency 

		  η
θ θ

θ
=

−
=

−1 2

1

1 2

1

Q Q
Q � (9.8)

Thus in trying to convert as much heat into mechanical work as possible, it is the temperature that 
limits our power and only Q1(q1 - q2/q1) quantity of heat is converted into work.

Reversible Carnot’s Engine:  The Carnot’s engine as described in the previous section is evidently 
reversible, since the engine satisfies all the conditions of reversibility. In the direct cycle heat is drawn 
from the source, a part of which is converted into mechanical work (equal to the area of the cycle) 
done by the substance and the rest is delivered to the sink. In the reverse operation heat is drawn from 
the sink, same amount of work is done upon the substance and the sum of the heat energy drawn and 
the work done is transferred to the source. Direct process is spontaneous process, heat flowing of 
itself from high to lower temperature through the engine. As a result, some amount of work becomes 
available. In the reverse process, heat is conveyed from lower to higher temperature by doing work 
on the engine.

The characteristics of the different strokes of the reversed Carnot’s cycle are tabulated in Table 9.2.

Table 9.2  Characteristics of different strokes of reversed Carnot’s cycle

Stroke
Base of the 
cylinder Path of change

Initial 
state Final state Heat drawn

Work done 
by working 
substance

I Insulated by D ad, adiabatic 
expansion 

pa, va, q1 pd, vd, q2 0 Cv (q1 − q2)
area ad vdva

II In contact with 
refrigerator (R)

dc, isothermal 
expansion

pd, vd, q2 pc, vc, q2 Q2 from 
refrigerator

1Rq2 loge vc/
vd area dc 
vcvd

III Insulated by D cb, adiabatic 
compression

pc, vc, q2 pd, vd, q1 0 Cv (q2 − q1)
area cb vbvc

IV In contact with 
source (S)

ba, isothermal 
compression

pb, vb, q1 pa, va, q1 Q
Given to the 
source

Rq1 loge va/vb 
area ba vavb
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At the end of the reversal, the source, the sink and the working substance are brought to the same 
state as at the beginning of the direct process. Thus, writing r = vb/va = vc/vd, with 

Carnot’s Cycle (direct) Carnot’s Cycle (reverse)

Work done by the gas = R(q1 2 q2) loger

Heat taken from source = Rq1 loger

Heat given to sink = Rq2 loger

Work spent on gas = R(q1 2 q2) loger

Heat given to source = Rq1 loger

Heat taken from sink = Rq2 loger

Hence after the reversal, total heat taken from the source is zero, total heat taken from the sink is 
zero, and the total work done by the working substance is zero. Since the process is, by assumption, 
quasistatic, the work done by the working substance is the same as that done against the external forces. 
Hence at the end of the reversal, total work done by external forces is zero. Thus, by reversal, there is 
no permanent change anywhere. Hence, the whole process is perfectly reversible.

9.3.6  Are Spontaneous Processes Reversible?
In the Carnot’s engine, working in the direct way, heat flows from the hot body (source) to the cold body 
(sink) through the engine. As a result, some amount of mechanical work is obtained. We have seen that 
the process is perfectly reversible.

Let us now examine whether the spontaneous flow of heat from a hot body (A) to a cold body (B) 
without any impediment is reversible. The only changes effected at the end of such flow are: (1) the hot 
body has lost some amount of heat (Q) and (2) the cold body has gained the same amount (Q) of heat. 
Further, there has been no exchange of energy with the surroundings.

To restore the original condition, the heat absorbed by the cold body must be transferred in toto to 
the hot body.

Now, heat does not flow of itself from the cold to the hot body. A Carnot’s engine driven backwards 
is to be employed for such transference of heat from the cold to the hot body. Let this engine draw Q 
quantity of heat from the cold body and by expenditure of work W, let it deliver (Q 1 W) quantity of 
heat to the hot body. The heat equivalent Q′ of the work W is then to be removed from the hot body to 
a separate reservoir.

The two bodies A and B are now in the same state as at the beginning. The conversion of work W into 
equivalent amount of heat Q′ (where W = J Q′) is spontaneous and is effected without any change in 
the external objects. The backward drive of Carnot’s engine has, however, been effected at the expense 
of work done by some external force; as for example, by displacement of some weights to lower level. 
Hence the reversal is necessarily accompanied by certain changes in the external objects, namely (1) 
movement of some weights to lower level, and (2) gain of some heat Q′ by the reservoir. The process 
is, therefore, not reversible.

It may be argued that the heat of the reservoir might be utilized to raise the weights to their original 
level thereby restoring the surrounding objects to their initial states. This requires the whole quantity of 
heat Q′ to be converted to mechanical work, which is impossible.

Even if it was possible to convert the whole quantity of heat to mechanical work without any supply 
of energy from outside, that would amount to the realization of the perpetual motion machine because 
mechanical work is spontaneously converted into work. 
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Let us take another example: an ideal gas spontaneously expands into vacuum without exchange of 
energy with the surroundings and without any change of temperature of the gas.
	 To bring the gas back to its initial state, it must be compressed by a piston loaded by suitable 
weights so as to be in pressure equilibrium at every stage of compression. The heat developed by com-
pression must be allowed to flow into a reservoir so that at every instant, the temperature of the gas is 
not sensibly different from what it was at the beginning. Under these conditions, the gas returns exactly 
to its original state if it is compressed to its initial volume.

This reversal has been effected at the expense of some changes of state in the outside objects, namely 
(1) some weights have moved to lower levels and (2) a reservoir has gained heat. To restore the sur-
roundings to its initial state, the heat of the reservoir may be converted into mechanical work of raising 
the weights to their original level. But, this is impossible.

To take another example, let us consider the chemical process

		  Zn 1 CuSO4 (Aq) = ZnSO4 (Aq) 1 Cu 1 Q

This means that when 65.4 gm of zinc is placed in equivalent amount of CuSO4 solution, we get 63.6 gm 
of copper in equivalent amount of ZnSO4 solution and also some quantity of heat Q, since the process is 
exothermic. This is a spontaneous process and there is no exchange of heat or matter with the surroundings.

To get back the reacting ingredients out of the products of reaction at the initial temperature, the 
heat of reaction must first be removed to a reservoir. The zinc sulphate solution may then be taken in 
a voltameter with a copper anode and zinc cathode. On passing a feeble current through the voltame-
ter, zinc is deposited on the cathode and (SO4) ion is deposited on the copper anode converting it to 
CuSO4 which passes into solution. Time allowed for electrolysis should be just sufficient to liberate one 
gm- equivalent of zinc. The system has now returned to its initial state but that at the expense of some 
changes in state of the surrounding objects; namely (1) a reservoir has gained heat and (2) a battery has 
lost some amount of energy.

To restore the surrounding to its original state, the heat of the reservoir may be converted into mechan-
ical work of running a dynamo to restore the electrical energy to the battery. But, it is not possible.

9.4  The Second Law of Thermodynamics

In all the examples discussed in Section 9.3, the possibility of exact reversal depends on the possibility 
of conversion of heat of a single source directly into mechanical work without effecting other changes. 
Experience teaches us that such conversion is not possible; otherwise, it would be possible to construct 
a machine which would give continuous supply of work without any expenditure of energy which con-
tradicts the principle of conservation of energy. This impossibility has been stated as a law known as the 
second law of thermodynamics.

9.4.1  Kelvin’s Statement of the Second Law
It is impossible for an inanimate material agency to derive (continuous) mechanical effects from any 
portion of matter by cooling it below the temperatures of coldest of surrounding objects.

9.4.2  Planck’s statement
“It is impossible to construct an engine which working in a complete cycle will produce no effect other 
than the raising of a weight and the cooling of a hot reservoir”.
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These two statements can be combined into one equivalent statement known as Kelvin Planck’s 
statement of the second law of thermodynamics.

9.4.3  Kelvin Planck’s Statement
It is impossible to construct an engine which operating in a cycle has the sole effect of extracting heat 
from a reservoir and performing an equivalent amount of work.”

9.4.4  Clausius’ Statement of the Second Law
It is impossible for a self-acting* machine, unaided by external agency, to transfer heat from a body at 
lower temperature to a body at higher temperature. 

The word continuous is very significant: A compressed gas in a cylinder, if allowed to flow, can drive 
a fan. In the process of expansion, the gas cools. It would, thus, appear that mechanical work can be 
obtained by cooling the gas. This is not a violation of the second law. But by this method, work cannot 
be obtained continuously.

Maxwell’s demon: Maxwell devised an ingenious and elusory violation of the second law of ther-
modynamics as stated in the form that it is not possible for an isolated mass at uniform temperature 
and pressure throughout to create any difference of temperature and pressure within itself by itself. The 
idea of Maxwell’s demon as an imaginary being can, however, create a difference of temperature and 
pressure within the mass in the following way. Putting a partition inside the mass, the demon which 
can recognize the faster and slower moving molecules can direct the faster moving molecules in one 
chamber and the slower moving molecules in the other producing an apparent violation of the second 
law. Now, the demon which can recognize the molecules as discrete particles is no longer a part and 
parcel of the mass itself; it is a body external to the given mass and accordingly its performance is not 
a violation of the second law. 

9.5  Carnot’s Theorem

All reversible engines working between the same limits of temperature must have the same efficiency.
Proof (A): If not, let an engine S be more efficient than an engine R (Fig. 9.3). This means that by 

drawing the same quantity of heat from the source, the work WS produced by S is greater than the work 
WR  produced by R. Accordingly, S can be made to drive R backwards. 

Let the quantity of heat drawn by S from the source be Q. Then, the quantity of heat given by S to the 
refrigerator is (Q 2 Ws). Let the quantity of working substance in R be so adjusted that in each reverse 
cycle, it returns the same quantity of heat Q to the source. If Q′ is the quantity of heat drawn by R from 
the refrigerator,

	 then 	 Q = Q′ 1 WR or Q′ = Q 2 WR

Hence in each cycle, heat drawn from the refrigerator is 

		  (Q 2 WR ) 2 (Q 2 WS ) = WS 2 WR = a positive quantity 

*A self-acting machine is one which can work without any permanent change in the apparatus itself; in other words, the course of changes which it 
undergoes during an operation must be such that it can resume its original state without external aid and thus perform cycles, repeating its operations 
any number of times.
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while the heat drawn from the source is zero. Then by drawing heat from a colder body, the combined 
engine can produce continuous supply of mechanical work. This violates the second law of thermody-
namics in the form stated by Kelvin.

Proof (B): Let the quantities of working substance in the two engines be so adjusted that each would 
do the same amount of work (W) in spite of their difference of efficiencies.

Let S drive R backwards. Let the heat drawn by S from the source be QS and that given to the refrig-
erator be Q′S (Fig. 9.4).

Let the heat drawn by R from the refrigerator be Q′R and that given to the source be QR. 
Then, the efficiency of S is

		
W
Q

Q Q
QS

S S

S

=
− ′

Since R is reversible, efficiency of R in the reverse cycle is the same as that in the direct cycle so that 
efficiency of R is
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Q Q
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Fig. 9.3  Scheme representing Carnot’s 
theorem
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Fig. 9.4  Another schematic 
representation of Carnot’s 

theorem
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Hence, regarding the coupled engines as a single transformer, heat gained by source is (QR 2 QS), 
and heat removed from the sink is (Q′R 2 Q′S  ) and both of these quantities are positive. Thus, by this 
operation, the source gets continually hotter and the sink continually colder without any work being 
done on the whole. This is violation of the second law of thermodynamics as stated by Clausius.

Hence, no other engine S can be more efficient than a reversible engine R when both of them work 
between the same limits of temperature. In other words when the source and the receiver of heat are 
given, a reversible heat engine is as efficient as any engine working between them can be.

Further, let both engines be reversible. Then the same argument shows that neither can be more efficient 
than the other. Hence, all reversible heat engines taking in and rejecting heat at the same two temperatures are 
equally efficient. Under these circumstances, the efficiency of a reversible engine is the maximum possible.

The two methods of proof based on two statements of the second law of thermodynamics as given by 
Kelvin and Clausius lead to the same result. Hence, both the statements must be equivalent. 

9.6  �Efficiency of A Carnot’s Engine is Independent of Nature of  
the Working Substance

Let us have two Carnot’s engines X and Y (Fig. 9.5) working with two substance x and y between two 
limits of temperature q1

 and q2 (q1 > q2)  independently. 
Let the engine X draw Q1 quantity of heat at q1 and reject Qx2 quantity of heat at q2 after doing Wx 

amount of work when running independently. Let the engine Y draw Q1 quantity of heat at q1 and reject 
Qy2 quantity of heat at q2 after doing Wy amount of work when running independently

Then by the first law,
		  Q1 = Qx2 1 Wx

	 and	 Q1 = Qy2 1 Wy

	 so that	 Qy2 1 Wy = Qx2 1 Wx

Efficiency of X
W
Q
x=
1

	 efficiency ofY
W
Q
y=
1

In the first instance, let us suppose that Y is 
more efficient than X so that Wy > Wx so that 
Qx2 . Qy2. Let the two engines X and Y be 
coupled together and let the engine Y drive the 
engine X backwards. By adjusting the quan-
tity of working substance, the engine X may 
be made to draw Qx2 quantity of heat from the 
refrigerator and deliver Qx2 + Wx = Q1 quantity 
of heat to the source where Wx is the work done 
upon the substance x.

The source, at the end of the cycle, has lost  
no heat. The heat drawn from the refrigerator is 
(Qx2 - Qy2) and the amount of work done by 
the substance is (Wy - Wx), which is positive. 

Direct
drive

Source
θ1

Sink
θ2

Q1

Qx2 Qx2 + Wx = Q1

Qy2

Y

X

Fig. 9.5  Carnot’s engine

Chapter 09.indd   282 4/26/2011   11:50:01 AM



The Second Law of Thermodynamics     283

Thus, at the end of the compound cycle, a cer-
tain amount of work has been derived at the 
expense of equivalent quantity of heat drawn 
from the refrigerator. This is violation of the 
second law of thermodynamics in the form 
given by Kelvin. Thus, our original assump-
tion must be wrong. Hence, Y cannot be more 
efficient than X.

Next, let us suppose that X is more effi-
cient than Y so that Wx > Wy. This requires 
(Qy2 > Qx2). Let the two engines X and Y be 
coupled together and let the engine X drive Y 
backwards. The engine Y driven backwards 
would draw Qy2 quantity of heat from the 
refrigerator and deliver (Qy2 1 Wy  = Q1) quantity of heat to the source, Wy being the amount of work 
done upon the substance y (Fig. 9.6).

The source at the end of the combined cycle has lost no heat. The quantity of heat drawn from 
the refrigerator at the end of the cycle is (Qy2 - Qx2) and the amount of work done by the substances 
is (Wx - Wy), which is positive. Thus, we get a certain amount of work at the expense of heat drawn 
from the refrigerator. This is violation of the second law of thermodynamics. Hence, X cannot be 
more efficient than Y.

Therefore, the efficiency of engine X cannot be different from that of Y. Hence, the original assump-
tion must be wrong. Thus, efficiency of Carnot’s engine is independent of nature of the working sub-
stance. In this sense, Carnot’s engine is said to be absolute engine.

9.7  The Thermodynamic or Kelvin Scale of Temperature

We have seen that a Carnot’s engine is made up of a working substance, source and a sink maintained 
at two different temperatures. We have proved that the efficiency of Carnot’s engine is independent of 
nature of the working substance. It must, therefore, depend only on the temperatures q1 and q2 of the 
source and the sink, respectively. Thus, efficiency is

		  η θ θ= = =
−W

Q
f

Q Q
Q1 1 2

1 2

1

( , )

where W is the work done per cycle and Q1 is the heat drawn at temperature q1 and Q2 is the heat rejected 
at temperature q2. In other words,

		  η θ θ= − =1 1

2
1 1 2

Q
Q

f ( , )

	 so that	 Q
Q
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2
1 2= ( , )θ θ

Qy2 + Wy = Q1
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Qx2
Q1

Qy2 Y

X

Fig. 9.6  Another scheme of Carnot’s engine
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Let another Carnot’s engine work between temperatures q2 and q3 (q2 > q3 ). By adjusting the amount 
of working substance, let the second engine take in heat Q2 at q2 and reject heat Q3 at q3; then by the 
same argument as above,

		
Q
Q

F2

3
2 3= ( , )θ θ

Now, suppose an engine works between temperatures q1 and q3 taking in heat Q1 at q1 and rejecting 
heat Q3 at q3.

	 Then	
Q
Q

F1

3
1 3= ( , )θ θ

	 But	
Q
Q

Q
Q

Q
Q

1

3

1

2

2

3

= ×

	 Or 	      F F F( , ) ( , ) ( , )θ θ θ θ θ θ1 3 1 2 2 3=

This equation is true only if F(q1, q2) is of the form f (q1)/f (q2)
Thus, we get the relation
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Representing f (q) by T, the above relation takes the form 

		
Q
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Q
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9.7.1  Thermodynamic Absolute Temperature
Lord Kelvin proposed the following definition of absolute temperature:

The quantities of heat taken in and rejected by a reversible engine working with a given source and 
refrigerator are proportional to two quantities which are functions of temperatures of the source and 
refrigerator. These quantities are the thermodynamic temperatures of the source and the refrigerator.

The thermodynamic temperature so defined is absolute in the sense that the scale of this temperature 
is independent of properties of any gas or other substance, real or imaginary.

The efficiency of Carnot’s engine is

		  η =
−

=
−

= −
Q Q
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T T
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where T1 and T2 are the thermodynamic temperatures of the source and the refrigerator, respectively. 
Efficiency of Carnot’s engine working with an ideal gas has already been proved to be

		  η
θ
θ

= −1 2

1
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where q1 and q2 are the temperatures of the source and the refrigerator, respectively. These temperatures 
appear in the equation of state

		  pv = Rq

of an imaginary perfect gas. This equation is the basis of a scale in which equal intervals of temperature 
are defined as those which correspond to equal amounts of expansion of a perfect gas under constant 
pressure. This scale of temperature is called the perfect gas scale. It follows that the temperatures mea-
sured by the perfect gas scale agree with those measured by the thermodynamic scale. Henceforth by 
absolute scale of temperature, we shall mean the perfect gas scale or the thermodynamic scale.

The zero of the thermodynamic scale:  From the equations 

		
Q
T

Q
T

T
T

1

1

2

2

2

1

= = −and 1η

if h = 1, then T2 = 0 so that Q2 = 0

This gives the following definition of zero of thermodynamic scale of temperature:  if the refrigera-
tor of a reversible engine is kept at the absolute zero of temperature, then the engine working with this 
refrigerator and a source at any arbitrary higher temperature would convert all the heat drawn from the 
source into mechanical work so that the efficiency of the engine is unity.

Graduation of the thermodynamic scale of temperature: Let A1A2A3A4 … B1B2B3B4 … be two 
adiabatics for the working substance of a Carnot’s engine (Fig. 9.7). Divide the space between these 
adiabatics into equal areas by isothermals A1B1, A2B2, A3B3 and A4B4. Let the temperature of these 
isothermals be T1, T2, T3, T4, respectively. Let a chain of reversible engines be provided each working 
with one of the intervals of temperature (T1 2 T2), (T2 2 T3), (T3 2 T4) and so on for its range, and each 
handing on to the engine below it the heat which it rejects so that the heat rejected by the first forms the 
supply of the second and so on. 

Then, the efficiencies of the different engines are

	                 
T T
T

T T
T

T T
T

1 2

1

2 3

2

3 4

3

− − −
, , ……

Amount of heat supplied to them are
Q Q T T Q T T1 1 2 1 1 3 1, ( / ), ( / )… (Q1 = heat drawn by 
the first engine).

Amount of work done by different engines are
Q T T T Q T T T Q T T T1 1 2 1 1 2 3 1 1 3 4 1( / ), ( / ), ( / )− − − …
Since by assumption the areas between the successive 
isothermals are the same, the works done in successive 
intervals are equal. Hence,

	        T1 2 T2 = T2 2 T3 = T3 2 T4 = ………

Each of the equal intervals is, thus, a measure of 
the degree in the absolute scale.

A1

A2

A3

A4

B1

B2

B3

B4

T1

T2

T3

T4

v

p

Fig. 9.7  Carnot’s cycle
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Rankine’s statement of the second law:  Conversely, “if the absolute temperature of any 
uniformly hot substance be divided into any number of equal parts, the effects of these parts 
in causing work to be performed are equal”. This is Rankine’s statement of the second law of 
thermodynamics.

9.8  Centigrade Scale and Absolute Scale
In order that the thermodynamic scale chosen above may agree with the two fixed points of the cen-
tigrade scale, we take 373 engines in the chain, the top temperature of the chain being taken to be 
the boiling point of water under 760 mm Hg pressure. Then it takes 100 steps to come down to the 
melting point of ice and 273 more steps to convert the remaining heat of work to reach the zero of 
the absolute scale.

9.8.1  The Centigrade Scale of Temperature
In the centigrade scale of temperature, the melting point of ice under normal pressure of 760 mm of 
mercury is taken to the zero of the scale and the boiling point of water at 760 mm pressure is taken as 
100 °C. The interval between these two fixed points is divided into 100 equal parts, each division being 
called a degree. We shall represent the centigrade temperature by q.

No two liquid thermometers based on the centigrade scale agree among themselves throughout the 
entire range. Hence, necessity was felt to have a standard thermometer to serve as a basis for compari-
son between the scales of different temperatures.

The isometric hydrogen pressure centigrade scale:  In 1887, an international congress of weights 
of measures decided to use as standard for measurement of temperature the constant volume hydrogen 
thermometer in which pure hydrogen gas was used as the thermometric substance. Since the co-efficient 
of cubical expansion of a gas depends on pressure of the gas, the temperature and pressure of the gas 
filling the bulb of the thermometer had to be specified.

The standard or normal hydrogen thermometer is a constant-volume thermometer whose bulb is fit-
ted with pure hydrogen at 0 8C and 1000 mm Hg pressure.

In this thermometer, each degree is measured by 1/100th of change of pressure of the gas at constant 
volume between 0 8C and 100 8C. Let p0, p100 and pq be the pressure of the gas at 0 8C, 100 8C and q 8C, 
respectively then 

		  p p p pθ

θ
=

−
+

( )100 0
0100

This can be proved as follows. 
Let the equation of p 2 q curve (Fig. 9.8) be p = mq  1 c when q = 0, 

p = p0 so that c = p0

	 Also, m p p p
p p

p= − ∴ =
−

+( ) /
( )

100 0
100 0

0100
100θ θ

	 so that θ θ=
−( )×

−

p p
p p

0

100 0

100
	�  (9.10)

q

p100

p0

p

Fig. 9.8  p-q curve
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The pressure co-efficient of a gas at constant volume is 

		  α
θp

vp
dp
d

=










1

0

	 or	 dp p dp= α θ0

	 or	 dp p d
p

p

p p

0

100

0
0

100

∫ ∫= α θ αif is constant

	 or	 p p pp100 0 0 100− = ×α

	 or,	        αp

p p
p

=
−100 0

0100
�

At 1000 mm Hg pressure, the accepted value of ap for hydrogen is 0.0036626/ 8C
Substituting the value in Eq. 9.10, 

		  θ
α
θ θ=

−
=

−
×

p p
p

p

p

0

0

1000
0 0036626 1000.

	 or	 θ θ=
−p 1000

3 6626.
degree centigrade� (9.11)

It follows that the pressure of the gas is reduced as its temperature diminishes. There must, there-
fore, exist a temperature at which the gas does not exert any pressure. According to the kinetic theory 
of gases, this is the temperature at which the molecules of the gas have no translational motion. This 
temperature is obtained by putting pq = 0 in Eq. (9.11). Its value is 

		  θ0
1000

3 6626
273 03= − = − °

.
. C

This is, of course, a hypothetical temperature because the gas liquefies long before the zero degree 
temperature is reached. 

Temperature scale of which the zero is taken at 2273.03 is called the absolute hydrogen pressure 
scale. We shall represent absolute hydrogen temperature by 

		  = q 1 273.03
where q is the centigrade temperature. Temperatures of ice point and steam point under normal pressure 
are, according to hydrogen temperature scale, 1 273.03 and 373.03 8.

In 1927, the international temperature scale was introduced. This is the ideal scale based on ther-
modynamic considerations or the thermodynamic scale identical with the ideal gas scale. An ideal gas 
obeys the equation of state
		  pv = f ()� (9.12)

where  is the temperature measured on the ideal gas scale. For a constant volume thermometer with an 
ideal gas as thermometric substance, (dp/dt)v = 0 is constant and equal to A (say).
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Differentiating Eq. 9.12 with v constant (= v0 ), we get

		  v dp
d

d
d

f v A
v v

v v0 0

0

0τ τ
τ











= =
=

=[ ( )]

	 or	 d f v Ad Rd R v A( )τ τ τ



 = = =0 0where

	 or	 f R C( )τ τ= +

where C is the constant of integration which must be of the same nature as R. Let us put it as 
C = RT0, then

		  f R T( ) ( )τ τ= + 0

	 Hence,	                 pv f R T= = +( ) ( )τ τ 0 � (9.13)

Evidently for a constant volume thermometer, p would vanish when t = 2T0. Taking 2T0 as the zero 
of the ideal gas scale and reckoning temperature from this absolute zero, Eq. 9.12 becomes 

		  pv = RT  where  T = t 1 T0

It will be proved later on that T0 = 273.16. Hence on the absolute thermodynamics scale, the melting 
point of ice under normal pressure is 273.16.

9.9  �Conversion of Real Gas Thermometer Scale to Perfect Gas  
Thermometer Scale or Absolute Thermodynamic Scale

No real gas obeys the equation of state of a perfect gas

		  pv = RT

But, any real gas approaches the perfect gas in the limit when the pressure of the gas is infinitesimally 
small. Accordingly to translate the readings of a real gas scale (such as the hydrogen scale), they are to 
be extrapolated to the limit of vanishingly small pressures. This is done as follows:
	 For a real gas, we can use the following equation of state:

		  pv A Bp Cp= + + +2 …… � (9.14)

where the constants A, B, C, …. are functions of temperature. 
Taking the constant volume at 0 8C equal to vo, Eq. 9.14 for a constant volume thermometer with 

volume maintained at vo can be written as 

		

p v A B p C p

p v A B p C
0 0 0 0 0 0 0

2

100 0 100 100 100

= + + +

= + +

……

1100 100
2

0
2

p

p v A B p C p

+

= + + +










……

……θ θ θ θ θ θ


� (9.15)

where p0, p100, and pq are pressures of volume v0 of the gas at 0 8, 100 8 and q 8.

Chapter 09.indd   288 4/26/2011   4:13:49 PM



The Second Law of Thermodynamics     289

If the unit of pressure is 10 mm of Hg, then B/A is of the order of 1023 unit and C/A is of the order of 
1025 to 1026 unit. If p is small, then the last set of equations become

		

p v A B p
p v A B p
p v A B p

0 0 0 0 0

100 0 100 100 100

0

= +

= +

= +θ θ θ θθ










� (9.16)

Substituting in Eq. 9.10 the values of Eq. 9.16, we get

		  θ θ θ θ θ=
−

−
= ×

− + −100
1000

100 0

0 0 0( ) ( ) ( )p p
p p

A A B p B p
(( ) ( )A A B p B p100 0 100 100 0 0− + − � (9.17)

The corresponding temperature as p approaches zero is evidently the absolute temperature T so that

		  T
A A
A Ap=

−
−

×→Lim 0
0

100 0

100θ θ( )
( )

Equation 9.17 can be put as 

		  θ
θ

θ θ

θ= ×

− +
−
−













100
10

0 0

0

( )A A
B p B p
A A













− +
−

−




( )A A

B p B p
A A100 0

100 100 0 0

100 0

1 






















	 	 = +
−
−

−
−

−→Lim p

B p B p
A A

B p B p
A0

0 0

0

100 100 0 0

100

1θ θ θ

θ AA0













		  Lim Limp p

B p B p
A A

B p
→ →− =

−
−

−
−

0 0
100 100 0 0

100 0

θ θ θ θ θ BB p
A A

0 0

0θ −












� (9.18)

The correction ( )Lim p→ −0θ θ can be calculated if the constants A, B are known from the isotherms 
of the thermometric gas. But, the correction term involves Lim p→0θ . Hence, it is convenient to use the 
method of successive approximations. For this purpose, the observed temperature q  given by Eq. 9.17 
is first substituted for Lim p→ −0θ θ in the correction term and Lim p→0θ is calculated. This gives the first 
approximate value of Lim p→0θ . This is then introduced in the correction term and the second approxi-
mate value of Lim p→0θ is obtained. 

9.9.1  Extension of Carnot’s Cycle
A Carnot’s cycle is bounded by two isothermals and two adiabatics so that all heat is taken in at one 
temperature and given out at another lower temperature. In all practical cycles, heat is not taken in or 
given out at the same temperature. An actual cycle is not as simple as Carnot’s cycle. Nevertheless, a 
cycle of any contour can be broken up into a large number of infinitesimally small Carnot’s cycles by 
very close isothermals and adiabatics as shown in Fig. 9.9.
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It will be observed that in traversing any two elementary adja-
cent cycles in the same direction, the common adiabatic sepa-
rating the two cycles is traversed twice in opposite directions. 
Hence, the net amount of work done along the common adiabatic 
is zero. The only uncompensated work that is left out in traversing 
all the elementary cycles in the same direction is that done along 
isothermals separating two contiguous adiabatics. 

In the limit when the adiabatics are indefinitely close together, 
the lengths of the isothermals lying between two consecutive adia-
batics would coincide with the lengths of the contour lines inter-
cepted by the same adiabatics. Hence, the net amount of work done 
is represented by area bounded by the given contour line.

Evidently, the algebraic sum of quantities of heat drawn and 
rejected by the engines in traversing all the elementary cycles in 
the same direction reversibly must be equal to zero, or

		  ∆Q
T∑ = 0 � (9.19)

where the summation extends over the whole contour line of the given cycle. In the limit when the adia-
batic lines are indefinitely close together, the summation is replaced by the closed integral 

		  dQ
T�∫ = 0 � (9.20)

Equation 9.20 is known as the theorem of Clausius.

9.10  Entropy

The quantity dQ/T is called the change of entropy. Thus in any thermodynamic process, when any 
quantity of heat dQ is given out by a substance at absolute temperature T, the entropy of the substance 
is reduced by dQ/T. Since the quantity of heat dQ absorbed or emitted in any thermodynamic process 
depends on the mass and specific heat of the substance, the entropy depends on the mass and nature of 
the substance emitting or absorbing heat. As a result, the entropy of a substance is reckoned per unit 
mass of the substance and it is different for different substances. 

As in dealing with internal energy, we take an arbitrary starting point at which the entropy of a sub-
stance is taken a zero; what we are concerned with is not the absolute value entropy in a given thermo-
dynamic state but the change of entropy as a substance passes from one state to another.

The entropy of unit mass of a substance is defined by dQ/T. Each of the quantities dQ and T are sca-
lar. Hence, entropy must also be a scalar quantity. Its unit is erg/degree. The name Rank was suggested 
by Rankine for the unit of entropy.

We have already seen that in trying to convert as much of heat energy into mechanical work as pos-
sible, it is the temperature that limits our power of conversion. In the most perfect type of engine (the 
Carnot’s engine), the maximum amount of work that can be obtained from a given quantity of heat Q1 
drawn from a source at temperature T1 is

		  Q Q Q
T T
T

Q
T
T T1 2 1

1 2

1

1

1
1 2− =

−
= −( )

where Q2 is the quantity of heat given to the refrigerator at temperature T2. Further,

v

p

Fig. 9.9  Extension of Carnot’s 
cycle
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Q
T

Q
T

1

1

2

2

=

In this respect, entropy is analogous to the gravitational weight of a body. In passing down the tem-
perature interval (T1 2 T2), the entropy Q1/T1 of given mass of a substance at temperature T1 does not 
change (provided the change is reversible) while it does an amount of mechanical work Q1/T1(T1 2 T2); 
just as a given quantity (mg) of water in falling down a height (h1 2 h2) can supply an amount of work 
mg (h1 2 h2) though its mass remains unaltered. Further as we shall prove, like work in gravitational 
field, entropy is independent of path of change.

In developing his idea of the most perfect engine, Carnot thought that heat was an incompressible 
fluid which could neither be created nor destroyed. According to Carnot this imaginary fluid in falling 
from the temperature level of the source to that of the refrigerator supplied the amount of work done by 
the engine, the quantity of heat remaining constant. This led to much controversy since later researches 
proved that heat was not indestructible and that it could be obtained from mechanical work. We now 
know that it is not heat but entropy which is analogous to falling mass of water in regard to its power 
of doing mechanical work. 

9.10.1  Entropy of a Heterogeneous System
If unit mass of a substance absorbs Q quantity of heat in passing from state A to state B, then a mass m 
of the same substance will absorb mQ quantity of heat in the same transformation. Hence, its change of 
entropy would be mQ/T where T is the absolute temperature at which the change takes place.

If we have a heterogeneous system consisting of different bodies of masses m1, m2, m3 … and of 
entropies per unit mass S1, S2, S3 … measured from any arbitrary zero, and at temperatures T1, T2, T3 …, 
respectively, then the entropy of the system as a whole is

		  S m S m S m S= + + +1 1 2 2 3 3 ………

The average entropy of the system per unit mass may, therefore, be defined as

	                               S
S
m

mS
m

= =
∑

∑
∑ � (9.21)

The theorem of Clausius states that the total change of entropy 
of a substance in any closed reversible cyclic process is zero. This 
can be true only when the change of entropy in a given transfor-
mation depends on the initial and final states and is independent 
of the path of change. This can also be proved as follows:

Imagine a reversible operation taking place along the path 
APB and a closed reversible cycle to be completed by a pro-
cess conducted along the path BQA (Fig. 9.10). Then, the total 
change of entropies along the paths APB and BQA is 

dQ
T

dQ
T

dQ
T

A

B

B

A

∫ ∫ ∫+ = = 0�
by the theorem of Clausius, since the cycle is supposed to be 
reversible.

v

A

P

B
Q

p

Fig. 9.10  Two reversible paths 
of operation joining the initial 

and final states of a system
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Let ARB be some other reversible path joining A and B.
Let X be the change of entropy along the path ARB. Then considering the paths ARB and BQA, the 

total change of entropy along these paths are

		        X
dQ
T

dQ
T

B

A

+ = =∫ ∫ 0�

		
dQ
T

dQ
T

X dQ
T

A

B

B

A

B

A

∫ ∫ ∫+ = +

	 ∴	                 X
dQ
TA

B

= ∫

This is true for every other reversible path connecting A and B.
Hence, dQ/T must be a perfect differential

	 or	
dQ
T

dS=

where dS is the change of entropy so that

		
dQ
T

S SB A
A

B

= −∫ � (9.22)

Evidently, dQ
T

A

B

∫ can be evaluated only when the transformation from the state A to the state B is 
reversible.

9.10.2  The Integrating Factor
In the energy equation  
		  dQ = dU 1 dW
dU is a perfect differential, but dW is not a perfect differential. But on multiplying both sides of the 
energy equation by 1/T, it becomes a perfect differential; thus,

		
dQ
T

dU
T

dW
T

dS= + = � (9.23)

Hence,1/T is the integrating factor of the energy equation.

9.10.3  Change of Entropy Along an Adiabatic
A system undergoing any adiabatic change does not exchange any heat energy with the surroundings. 
Hence in an adiabatic process, dQ = 0; so that along an adiabatic line, dS = 0. Adiabatic lines are, 
therefore, lines of constant entropy or isentropies. 

There is a perfectly definite change of entropy when a given substance passes from one adiabatic line 
to another, by any path connecting the adiabatic lines. This can be proved as follows:

Let ad and bc be two adiabatics specified by entropies S1 and S2, respectively (Fig. 9.11). Connect 
these two adiabatics by isothermal lines ab and dc corresponding to temperatures T1 and T2, respectively. 
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If Q1 and Q2 are the heats absorbed from a to b and 
from d to c in a reversible process, then change of 
entropy along ab is Q1/T1 and that along dc is Q2/T2.

But since abcd forms a Carnot’s cycle,

Q
T

Q
T

1

1

2

2

=

If a and c be connected by a line ac, then change 
of entropy along ac is the sum of change of entropy 
along ad plus the change of entropy along dc. But, 
change of entropy along ad is zero. 

Therefore, change of entropy along ac = change 

of entropy along dc =
Q
T

Q
T

2

2

1

1

=

If we move from the isentropic S1 to the isentropic S2 along the path af, then the total change of 
entropy from a to f is the change of entropy from a to e and from e to f. But, change of entropy from a 
to e is zero. Hence, the change of entropy from a to f = Q3/T3 where Q3 is the heat drawn reversibly at 
T3. But, the cycle abfe is the Carnot’s cycle. 

Therefore,	
Q
T

Q
T

3

3

1

1

=

 Change of entropy along each path is Q1/T1. 

Entropy of given mass of a substance may be defined as that physical property of the substance which 
does not change when the substance undergoes an adiabatic transformation.

9.10.3  Clausius’ Theorem Considered as Second Law 
The theorem of Clausius

		  dQ
T�∫ = 0

for a closed reversible cyclic process has been obtained merely as a generalization of the equation 

		
Q
T

Q
T

1

1

2

2

=

which applies to a simple Carnot’s cycle. The latter equation is based on the fact that the efficiency of 
Carnot’s engine is the maximum attainable efficiency. To prove this, the only principle adopted is the 
second law of thermodynamics. Hence, Clausius’ theorem may properly be regarded as the mathemati-
cal expression for the second law of thermodynamics.

Conversely, if Clausius’ theorem represents the second law of thermodynamics, it ought to be pos-
sible to deduce the second law from this theorem. This can be done as follows:

Let a body pass through a closed cyclic operation so that the entropy at the end of the operation is 
the same as at the beginning. If, in the process of transformation, an amount of heat dQ1 has been taken 

T1

S2S1

T2

p

c

b

e

Isothermal
A

diabatics

f

v

a

d

Fig. 9.11  Entropy change representation
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in at temperature T1 and if dQ2 has been given out at temperature T2  then, in order that the entropy may 
remain unaltered, the exchange of heat must take place in such a way that

		
dQ
T

dQ
T

1

1

2

2

=

If T2 is less than T1, then dQ2 must be less than dQ1.
This means that the amount of heat gained by the cold body must be less than that lost by the hot 

body so that the work is done during the cycle by drawing heat from the warm body and giving it in part 
to the colder body. This is the second law of thermodynamics.

9.10.4  Changes of Entropy in Irreversible and Reversible Processes
The theorem of Clausius states that the change of entropy in 
a closed reversible cyclic process is zero. As already stated a 
reversible process is an equilibrium process, the working sub-
stance being at the temperature of the source when it is taking 
in heat and at the temperature of the refrigerator when it is 
giving out heat. Considering a simple Carnot’s cycle, let T1 
and T2 be the temperature of the source and the refrigerator, 
respectively (Fig. 9.12). If the process is irreversible, that is, if 
it is a non-equilibrium process, then the working substance is 
at a lower temperature t1 than the temperature T1 of the source 
when it is receiving heat and at a higher temperature t2 than 
the temperature T2 of the refrigerator when it is giving out 
heat. Let Q1 be the quantity of heat received by the working 
substance at temperature t1 and let Q2 be the quantity of heat 
given out by the working substance at temperature t2. Now, 
heat lost by the source is equal to that gained by the working 
substance and that gained by the sink is equal to that lost by 
the working substance.

Hence, the gain of entropy of the working substance = −
Q Q1

1

2

2τ τ
Loss of entropy of the source =

Q
T
1

1

Gain of entropy of the refrigerator = Q
T
2

2

Then, the total gain of entropy of the system consisting of the source, sink and the working substance is 
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Fig. 9.12  Schematic presentation 
of entropy change in irreversible 

and reversible process
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Applying this method of proof to all the elementary Carnot’s cycles constituting a given closed cyclic 
operation, we conclude that the entropy of the entire system taking part in a given irreversible cyclic 
operation tends to increase.

Hence in a closed irreversible cyclic operation,

		  dQ
T�∫ >0 � (9.24)

We have already proved that Carnot’s cycle is perfectly reversible and that the temperature of the 
working substance is the same as that of the source when it is receiving heat. 

Further since the heat gained by the working substance is the same as that lost by the source, the 
gain of entropy of the working substance is equal to the loss of entropy by the source. It can be simi-
larly proved that the loss of entropy by the working substance, when it is giving out heat, is the same as 
the gain of entropy of the refrigerator. Hence, the total gain of entropy of the system consisting of the 
source, sink and the working substance is equal to zero. Applying this method of proof to all elementary 
Carnot’s cycles constituting a given closed reversible cyclic operation, we conclude that the total gain 
of entropy of the entire system taking part in a closed reversible cyclic operation is zero. In other words, 
for a closed reversible cyclic process 

		  dQ
T�∫ = 0

We have already proved that all natural or spontaneous processes are irreversible. Hence, we may 
define entropy as that physical property which increases in all natural or spontaneous processes. Tak-
ing the whole universe as one isolated system, we may enunciate a general principle – the entropy of 
the universe tends towards a maximum value. In a spontaneous process the total energy of the system 
undergoing change remains constant though it may transform. So, energy is not a measure of the magni-
tudes of spontaneous changes in nature. Such changes can only be measured by change of the physical 
property of the system which we call entropy.

Condition of reversibility:  Every process occurring in nature is accompanied by an increase in the 
sum of entropies of all bodies which take part in any manner in the process.

If an isolated system goes from a state A to another state B without any change of entropy of the 
system, then the process must be reversible; for if it were irreversible, the entropy must have increased. 
If in the process of change, the entropy in the state B were greater than in the state A, then the process 
must have been irreversible; for if it had been reversible, there would have been no change of entropy. 
When applied to any process occurring in an isolated system, the equality or inequality of entropy of the 
system in the two states is not on1y the necessary but also the sufficient condition for the reversibility 
or irreversibility of the process.

Available energy of motivity:  In Carnot’s reversible cycle, the amount of mechanical work done by 
the working substance is

		  W J Q Q JQ
Q
Q

JQ
T
T

= − = −










= −( )1 2 1
2

1
1

2

1

1 1










where Q1 is heat drawn at absolute temperature T1 and Q2 is the heat rejected at absolute temperature 
T2. According to the first law of thermodynamics, the dynamic value of the quantity of heat Q1 drawn 
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from the source is J Q1. But its practical value is JQ(1 - T2/T1). This practical value of heat is called the 
motivity of heat or the available energy from the amount of heat Q1. If the refrigerator is at the absolute 
zero of temperature (T2 = 0), then the motivity of heat Q1 is equal to its dynamical value JQ1. This is the 
maximum possible value of motivity or energy available from the Q1 amount of heat.

Dissipation of energy:  Let T and To be the temperatures of the hottest and coldest body of a system, 
respectively. Let a Carnot’s engine draw dQ quantity of heat from the body at temperature T and reject the 
unused heat to the body at temperature To. Then, the motivity of the system under the given condition is

		  dQ
T
T
o1−











Instead of rejecting heat to the coldest body at temperature To, let heat dQ′ be rejected to a body at an 
intermediate temperature T′.

A Carnot’s engine working between temperatures T′ and To and drawing in heat dQ′ at T′ would 
produce

		  dQ
T
T
o′ −
′











1

units of mechanical work. Hence, motivity still remaining in dQ′ is

		  dQ
T
T
o′ −
′











1

Hence, the loss in motivity or energy available for performance of external work due to transference 
of heat to a body at intermediate temperature T′ is

		  dQ
T
T

dQ
T
T

o o1 1−









− ′ −

′











		  = − ′− −
′

′











dQ dQ T dQ
T

dQ
To

Considering any closed cyclic transformation as made up of large number of small elementary cycles 
bounded by two isothermals and two adiabatics as in Carnot’s cycle, the loss in motivity for the entire cycle is

		  Q Q T dQ
To− ′− ∫�

where Q and Q′ are the total quantities of heat taken in and rejected during the cycle.
If the process is reversible, dQ T/�∫ = 0 and the loss in motivity is Q 2 Q′. If the process is irrevers-

ible, dQ T/�∫ > 0 = a positive quantity and the loss in motivity is greater than that for reversible cycle.
Now, all natural processes are irreversible. Hence in all practical cases of cyclic transformation, a 

quantity of heat energy of magnitude dQ/T is lost. This waste of availability is called dissipation. Hence, 
“entropy of the universe tends towards a maximum value” means that “the availability of energy tends 
towards a minimum value”. This is known as the 1aw of degradation of energy. This means that in all 
natural transformations, energy is transformed to a less useful form.
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9.10.5  Entropy and Available Energy
Maximum work obtainable from heat Q1 taken from a body of fixed composition and volume at tem-
perature T1 is 

		  W Q Q Q
T
T

= − = −








1 2 1

2

1

1

where T2 is the lowest temperature available for the refrigerator of a reversible engine. The balance of 
heat Q1 which is not converted into work, that is, Q2 = Q1 T2/T1 is the unavailable energy given up as 
heat to the refrigerator. It is proportional to the lowest available temperature T2 and inversely propor-
tional to the temperature of the source from which Q1 is taken. The quantity Q1/T1 is the entropy of the 
quantity of heat Q1 at temperature T1. Hence,  

		  Entropy unavailable energy
lowest available tem

=
pperature

If the lowest available temperature is fixed, then entropy and unavailable energy must increase 
together. Therefore, increase of entropy means diminution of available energy or dissipation of energy. 

9.10.6  Entropy of an Ideal Gas
In an infinitesimal change of reversible process undergone by a mole of perfect gas involving a certain 
amount of external work pdv

		  dQ C dT pdvv= + ,

change of entropy in the process is 

		               dS dQ
T

C dT
T

p
T
dvv= = +

For an ideal gas, pv RT
p
T

R
v

= =so that       pv RT
p
T

R
v

= =so that

R being  the universal gas constant, 

		  dS C dT
T

R dv
vv= + � (9.25)

Total change of entropy as the gas passes from the state A to state B is 

		  S S C dT
T

R dv
vB A v

T

T

v

v

A

B

A

B

− = +∫ ∫

	 or	      S S C
T
T

R
v
vB A v e

B

A
e

B

A

− = +log log � (9.26)

Equation 9.26 gives change of entropy due to change in temperature and volume only.
Equation 9.25 can be expressed in other forms as follows:
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	 In the state A, 	 p v RTA A A= � (9.27)

	 In the state B,	 p v RTB B B= � (9.28)

	 This gives	
T
T

p v
p v

B

A

B B

A A

=

Substituting the value in Eq. 9.26, we get

		  S S C
p
p

C
v
v

R
v
vB A v e

B

A
v e

B

A
e

B

A

− = + +log log log

		  = + +C
p
p

C R
v
vv e

B

A
v e

B

A

log ( ) log

	 or	 S S C
p
p

C
v
vB A v e

B

A
p e

B

A

− = +log log � (9.29)

Equation 9.29 gives change of entropy due to change of pressure and volume only.
Again from Eqs 9.27 and 9.28,

		
v
v

T
T
p
p

B

A

B

A

A

B

=

Substituting the value in Eq. 9.25,

		  S S C
T
T

R
T
T

R
p
pB A v e

B

A
e

B

A
e

A

B

− = + +log log log

		  = + +( ) log logC R
T
T

R
p
pv e

B

A
e

A

B

	 or	 S S C
T
T

R
p
pB A p e

B

A
e

A

B

− = +log log � (9.30)

Equation 9.30 gives change of entropy due to change in temperature and pressure only.
Integrating Eq. 9.25, we get

		  S C T R v cv e e= + +log log � (9.31)

Here, c is the constant of integration. It must be of the nature of S. Hence, it must depend on the 
quantity and nature of the substance. 

From equation of the perfect gas pv = RT, we get 

		  S C T R RT
p

cv e e= + +log log
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		  = + + +C T R T
p

R R cv e e elog log log

	 or	 S C T R T
p

kv e e= + +log log � (9.32)

where k = R loge R 1 c. Evidently, it depends on the quantity and nature of the gas.

	 Also,	 S C T R T R p kv e e e= + − +log log log

		  = + − +( ) log logC R T R p kv e e

	 or	 S C T R p kp e e= − +log log � (9.33)

9.10.7  Entropy of Mixture of Perfect Gases
Consider n1, n2, n3 ……. moles of perfect gases numbered 1, 2, 3 …… etc. mixed up in a volume v at 
the same temperature T. Let p1, p2, p3 ……. be the partial pressure of these gases and let p be the resul-
tant pressure. Let Cv1, Cv2, Cv3 ……. be the specific heats of these gases at constant volume. Then, the 
entropy of the mixture is 

		  S n C T R T
p

kv e e= +









+










1 1

1
1log log






	 	 + +









+












n C T R T

p
kv e e2 2

2
2log log 



		  + +









+












n C T R T

p
kv e e3 3

3
3log log 



		  + . . . . . . . . . . . . . . . . . .

	 or	 S n C T R T
p

kv e e= +









+










1 1

1
1log log






∑

where the summation extends over all the numbered gases.

	 Now,	                                   p
n RT
v

p
n RT
v

p
n RT
v1

1
2

2
3

3= = =, ,  and so on

By Dalton’s law of partial pressures,

		  p p p p= + + +1 2 3 ……

		  = + + +
RT
v
n n n( )1 2 3 ……
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	 or	 p RT
v

n= ∑

	 or	
RT
v

p
n

=
∑

This gives	                 p p p p p pn
n

n
n

n
n1 2 3

1 2 3= ∑ = ∑ = ∑; ; and so on

	 or	 p1 = C1 p; p2 = C2 p; p3 = C3 p and so on

where C1, C2, C3 …… are concentrations of gases 1, 2, 3…, respectively. 
Hence, the entropy of the mixture is 

		  S n C T R T
C p

kv e e= + +








∑ 1

1

1
11

log log � (9.34)

9.10.8  Changes of Entropy in Spontaneous Processes
We have seen that all spontaneous processes are irreversible. Accordingly in all such processes, there 
must be an increase of entropy. We proceed to illustrate this by some examples: 
	 (a)	 Expansion of gas into vacuum. The entropy of n moles of a perfect gas is given by Eq. 9.31

		  S n C T R v cv e e= + +( )log log

	�	  Let the volume of the gas before and after expansion be v1 and v2, respectively. By Gay Lus-
sac’s experiment, there is no change of temperature after expansion. Let S1 and S2 be the entropies 
of the gas before and after expansion, then

		  S n C T R v cv e e1 1= + +( )log log

	 and	 S n C T R v cv e e2 2= + +( )log log

		  The change of entropy is 

		  S S nR
v
ve2 1

2

1

− = log � (9.35)

		  Since v v2 1> , the right hand side of Eq. 9.35 must be positive. So, S2 must be grater than S1.
	 (b)	 Change of entropy due to diffusion. Diffusion is a spontaneous process. Let nA and nB moles 

of two perfect gases A and B initially at the same temperature  T and at the same pressure p 
be separated by a porous partition. They will diffuse into one another. Let CvA and CvB be the 
specific heats of these gases at constant volume. Then, the entropy of the gases A and B before 
diffusion is given by Eq. 9.32.

	 	 S n C T R T
p

kA vA e e A1 = +









+










log log 

Chapter 09.indd   300 4/26/2011   11:51:33 AM



The Second Law of Thermodynamics     301

		  + +









+











n C T R T

p
kB vB e e Blog log

	�	  Let CA and CB be the molar concentrations of the two gases after complete diffusion. The two 
gases after diffusion will evidently be at the same pressure p. Then, the entropy of the mixture is 
given by Eq. 9.34. 

	 	 S n C T R T
pC

kA vA e e
A

A2 = +









+






 log log










		  + +









+










n C T R T

pC
kB vB e e

B
Blog log







		  Hence, the change of entropy by diffusion is 

	 	 S S R n T
pC

n T
pCA e

A
B e

B
2 1− =










+




log log 






















		  −









+











R n T
p

n T
pA e B elog log













	 or	 S S R n
C

n
CA e

A
B e

B
2 1

1 1
− =










+




log log 





















� (9.36)

	�	  All the quantities on the right hand side of Eq. 9.36 are necessarily positive. Hence, S2 must be 
grater than S1. 

	 (c)	 Change of entropy by equalization of temperature. Let a quantity of heat Q  flow from a body A 
at higher temperature T1 to a body of B at lower temperature T2. Then, the loss of entropy of A is 
(Q/T1) and the gain of entropy B is (Q/T2) . Hence, the gain of entropy of A and B taken together is 

		  Q
T T
1 1

2 1

−










	�	  Since T1 > T2, there is a positive gain of entropy. The spontaneous processes of conduction, convec-
tion and radiation by which equalization of temperature is effected involve flow of heat, unaltered in 
quantity, from one body to another. Hence in all these processes, there must be increase of entropy.

	� “All spontaneous changes are attended by increase of entropy and, therefore, by diminution of 
available energy. Hence, all changes would cease when the available energy of a system is a mini-
mum or its entropy a maximum.”

9.10.9  The Temperature–Entropy Diagram
The entropy is a very useful and important property of matter in bulk. Hence, it can be used as a ther-
modynamic co-ordinate for specifying the physical state of a body in the process of thermodynamic 
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change. Entropy is, of course, a derived thermodynamic 
co-ordinate since it can always be expressed in terms of the 
fundamental co-ordinates (p, v and T).

Let ab be any portion of a curve representing the change 
of state of a substance in the S–T space (Fig. 9.13). The 
area of the shaded strip is T dS But, 

T dS = dQ

Hence, the whole area abcd under the curve ab is 

Tds dQ∫ ∫=

where the integration is to extend within assigned limits.
Hence, the whole area under the curve is equal to the 

total quantity of heat taken in as the substance passes from 
the state a to the state b. For a closed cycle,

TdS Q Q= −∫ 2 1�
where Q1 is the heat taken in and Q2 is the heat given out. 
Since the substance returns to its initial state, 

Q1 2 Q2 = W = the total work done in the cycle 

Hence, temperature–entropy diagram has the property 
in common with the p–v diagram in that the area enclosed 
by a curve measures the work done in a complete cycle 
provided the cycle is reversible. 

Carnot’s Cycle on the temperature–entropy diagram. 
In an isothermal operation, temperature remains constant.

Hence, isothermal must be parallel to S-axis in the S–T 
space (Fig. 9.14). Adiabatic lines  must be  parallel  to  the 
T-axis. Thus, Carnot’s cycle bounded by two adiabatic and 
two isothermal lines must be a rectangle in the temperature–
entropy diagram. Area of this rectangle is equal to the work 
done in the cyclic operation.

9.11  Calculation of Efficiency of Rankine’s Cycle

We shall first calculate the amount of work done. In the forward motion of the piston (AB portion of 
the curve in (Fig. 9.15)), a volume vS1 of the steam enters the cylinder at constant pressure p1. Hence, 
work done in operation AB is p1 vS1. In the operation CD, a volume vS2 of steam is forced out of the 
cylinder at constant pressure p2. Hence, the total work done is p2vS2. Total work done in the operations 
AB and CD is (p1vS1 2 p2vS2). 

T

a b

d c

S

Fig. 9.13  Entropy temperature 
diagram

T1

T2

T

a b

d

Adiabatic

Isothermal

Adiabatic

c
Isothermal

S

Fig. 9.14  Carnot’s cycle scheme on 
entropy temperature diagram
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In the case of adiabatic expansions, amount of work done is equal to 
the change in internal energy. Let US1 and US2 be the internal energies 
of vapour in the state B and of the mixture of vapour and condensed 
drops in the state C. Then, the change in internal energy from state B 
to state C is (US1 2 US2). Hence, the total amount of work done in the 
operations AB, BC and CD is

	 	      ( ) ( )U U p v p vS S S S1 2 1 1 2 2− + −

	 	 = ( ) ( )U p v U p vS S S S1 1 1 2 2 2+ − +

		  = +H HS S1 2

The work done by the auxiliary pump is to be subtracted from this. 
Hence, the total work done in the cycle is
		  H H p p vS S w1 2 1 2+ − −( )

Since the auxiliary pump must work in a complete cycle for the production of continuous work, this 
requires an additional expenditure of work represented by area ABCD = ( p1 2 p2)vw where vw is the 
volume of condensed water. The cycle of operation is called the Rankine’s cycle. The useful work done 
in the complete cycle is the area GBCE. Rankine’s cycle is also an ideal cycle to which all practical 
cycles attempt to approach. 

9.11.1  Calculation of Heat Drawn
Heat is drawn by the working substance in the transition from the state of water in the condenser at tem-
perature T2 and under vapour pressure of water at T2 to the state of steam at temperature T1 of the boiler 
and under pressure p1 inside the boiler. This transition is made up of following three distinct operations: 

1.	 Increasing the pressure of water in the condenser from p2 to p1 at constant volume (neglecting 
small change of volume due to change of pressure).

2.	 Increasing the temperature of water from T2 to T1. 
3.	 Evaporating the mass of water at temperature T1 and pressure p1. 

Let Hw2 be the total heat of water in the condenser at pressure p2 and temperature T2. Work done in 
the operation (1) is vw(p1 − p2). Heat equivalent of this amount of work is absorbed by water so that the 
total heat after the stage (1) is [Hw2 1 vw(p1 − p2)]. The operations (2) and (3) are effected at constant 
pressure p1. Hence if HS1 is the total heat after operation (3), then the net amount of heat drawn in the 
operation AB is 

		  H H v p pS w w1 2 1 2− − −( )

Hence, the efficiency of Rankine’s cycle is 

		  η =
+ − −( )
− − −( )

H H p p v
H H p p v
S S w

S w w

1 2 1 2

1 2 1 2

Values of total heats of water and steam can be obtained from steam tables.

G

p

E

A B

D C

v

Fig. 9.15  Rankine’s cycle
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9.12  Efficiency of Diesel Cycle

9.12.1  Ideal Diesel Cycle
The ideal diesel cycle is a constant pressure cycle (Fig. 9.16).

The cycle consists of two adiabatics: AB, CD, and two con-
stant pressure lines: AD and BC. At A, the cylinder is com-
pletely filled with air at nearly atmospheric pressure drawn 
along the path EA. It is then compressed adiabatically along 
AB. At B, the oil valve opens and the fuel is injected. It ignites 
and the air expands at constant pressure till the point C is 
reached. The oil valve is closed and the volume expands adia-
batically along CD. At D, the exhaust valve opens and pressure 
drops to atmospheric pressure. The spent charge then flows into 
the atmosphere along AE. 

We shall suppose that the work done along EA and AE bal-
ance one another. 

Let vA, vB, vC and vD be the volumes at A, B, C and D, respectively; and let TA, TB, TC and  TD 
be the corresponding temperatures. The characteristics of the different operations are tabulated in 
Table 9.3. 

Work done during the cycle = total heat entry 

		  = −( )− −( ) C T T T Tp C B D A

Efficiency =                           η =
−( )− −( ) 

−( )
C T T T T

C T T
p C B D A

p C B

		                             = −
−
−

1 T T
T T
D A

C B

	 Now,	
v T v T

v T v T
A A B B

D D C C

γ γ

γ γ

− −

− −

=

=








1 1

1 1 	 ∴










=










−
v
v

T
T

v
v

A

D

A

D

B

C

γ 1 γγ −1
T
T
B

C

Fig. 9.16  Ideal diesel cycle

CB

p

E DA

v

Temperature Path of change Heat entry Work done by

Rising from TA to TB AB 0 2Cp (TB 2 TA)

Rising from TB to TC BC Cp (TC 2 TB) pB (vC 2 vB)

Falling from TC to TD CD 0 CP (TC 2 TD)

Falling from TD to TA DA 2Cv (TD 2 TA) pD (vD 2 vA)

Table 9.3  Characteristics of different operations of ideal diesel cycle
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Since AD and BC are constant pressure lines,

		

v
v

T
T

v
v

T
T

A

D

A

D

B

C

B

C

=

=











  T
T

T
T

A

D

B

C

=  or 
T
T

T
T

T T
T T

D

C

A

B

D A

C B

= =
−
−

Hence, efficiency 	 η
γ γ

= − = −










= −








− −

1 1 1 1
1 1T

T
v
v r

A

B

B

A

calling	                        r v
v
A

B

=

Hence, efficiency = 1 2 (ratio of temperatures at the beginning and at the end of adiabatic compression)

9.12.2  Actual Diesel Cycle
Consideration of mechanical simplicity makes it impossible to 
carry the expansion CD  right down to the atmospheric pres-
sure (the former cycle requires a very large volume for the 
cylinder) and in actual diesel engine, the exhaust valve opens 
earlier. Under the  condition, the indicator diagram is shown in 
Fig. 9.17. The characteristics of successive operations in the 
cycle are tabulated in Table 9.4.

Hence, work done = total heat entry 
= Cp [(Tc 2 TB) 2 Cv(TD 2 TA)]

	 Efficiency  = =
− − −

−
η

C T T C T T
C T T

p C B v D A

p C B

[( ) ( )]
( )

	 = −
−
−

= −
−
−

1 1
C T T
C T T

T T
T T

v D A

p C B

D A

C B

( )
( ) ( )γ

Temperature Path of change Heat entry Work done by

Rising from TA to TB AB 0 2Cv (TB 2 TA)

Rising from TB to TC BC Cp (TC 2 TB) pB (vC 2 vB)

Falling from TC to TD CD 0 Cv (TC 2 TD)

Falling from TD to TA DA 2Cv (TD 2 TA) 0

Table 9.4  Characteristics of successive operations of actual diesel cycle

Fig. 9.17  Actual diesel cycle
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This result is usually expressed in terms of volume changes. Thus, let

		
V
V

r V
V

A

B

C

B

= =and ρ

Since the points A and B lie on the same adiabatic,

		  v T v TA A B B
γ γ− −=1 1

	 or	 T
v
v

T r TB
A

B
A A=











=
−

−

γ

γ

1

1

Since the pressure at B and C is same,

		
T
T

v
v

C

B

C

B

= = ρ    T T r TC B A= = −ρ ρ γ 1

	 Also,	    v T v TD D C C
γ γ− −=1 1

	 and	   v T v TA A B B
γ γ− −=1 1

	 Hence,	
v
v

T
T

v
v

D

A

D

A

C

B











=










−γ γ1 −−1
T
T
C

B

	 But,	 v vD A=

	 Hence,	
T
T

T
T

D

A

C

B

= = =− −ρ ρ ρ ργ γ γ1 1

		  T TD A= ργ

Substituting the values of TC, TD and TB in terms of TA,

We get efficiency	 = −
−

−( )− −
1

1 1

ρ

γ ρ

γ

γ γ

T T
r T r T

A A

A A

		  = −
−( )

−( )−
1

1
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T

r T
A

A

ρ

γ ρ

γ

γ

		  = −
−( )
−( )














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−
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1

1
1

1

ρ

γ ρ

γ

γr
If r is very small, 

	 efficiency η
γ

γ

= −










−

1 1 1
1

r
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9.13  Efficiency of Otto Cycle

The indicator diagram for an Otto cycle is as shown in Fig. 9.18. It may be 
assumed that the work done in filling the cylinder with charge represented 
by EA and that of exhausting the cylinder along AE balance each other. 

We shall represent the volumes and temperatures at points A, B, C, D by 
VA, VB, VC, VD and TA, TB, TC, TD, respectively. 
Table 9.5 gives full description of the different operations.

The work done by the engine in one cycle is 

= −( )− −( )  = −( )− −( ) C T T T T C T T T Tv C D B A v C B D A

	           = −( ) −
−
−











C T T T T

T Tv C B
D A

C B

1

In the indicator diagram,

		
v v
v v

v
v

v
v

D A

C B

A

B

D

C

=

=






= = ρ

Further since the points C and D are on the same adiabatic,

		  v T v TC C D D
γ γ− −=1 1

Since B and A are on the same adiabatic,

		  v T v TB B A A
γ γ− −=1 1

		
T
T

v
v

T
T

v
v

A

B

B

A

D

C

C

D

=










=





−γ 1

and





−γ 1

	 ∴	
T
T

T
T

T T
T T

A

B

D

C

D A

C B

= =
−
−

Hence, the work done by the engine in one cycle is = − −( )C T Tv C B
T
T
A

B
( ) 1

Fig. 9.18  Otto cycle

p

v

A

D

C

B

E

Temperature Path of change Heat entry Work done by

Rising from TA to TB AB 0 2Cv(TB 2 TA)

Rising from TB to TC BC Cv(TC 2 TB) 0

Falling from TC to TD CD 0 Cv(TC 2 TD)

Falling from TD to TA DA 2Cv(TD 2 TA) 0

Table 9.5  Characteristics of different operations of Otto cycle
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Heat drawn by the engine isC T Tv C B−( )
Hence, the efficiency of the Otto engine is 

		  η
ρ

= = − = −








Work  done
Heat  drawn

1 1 1T
T
A

B



−γ 1

9.14  Third Law of Thermodynamics

In 1906, Nernst proposed a new theorem called heat theorem derived from thermodynamic consider-
ations supported by a series of experimental evidences on dealing with atomic heat at low temperature. 
Its importance is very great and, hence, it is known as the third law of thermodynamics. It states, “the 
heat capacities of all solids tend to zero as the absolute zero is approached and that the internal energies 
and entropies of all substances become equal there, approaching their common value asymptotically 
tending to zero.” It follows neither from the 1st law, law of conservation of energy nor from the second 
law, law of transmutability of energy giving rise to the nature of a new law called the third law of ther-
modynamics, the consequence of which is that absolute zero temperature can never be attained.

Solved Problems

	Q 1.	 A Carnot’s engine whose low temperature reservoir is at 27 8C has an efficiency of 40%. What 
should be the temperature of high temperature reservoir? What should be the temperature of the 
latter if the efficiency is to be raised to 60%?

Ans. We know that η =
−T T
T

1 2

1

	 or	             0 4 3001

1

. =
−T
T

	 or	          0 4 3001 1. T T= −

	 or	           0 6 3001. T =

	 or	                T1 500= K

	 Again,       0 6 300. =
−T
T

	 or	           0 6 300. T T= − 		  or	 0 4 300. T = ,T k= 750 o

	Q 2.	 A Carnot’s engine working between 0 8C and 100 8C takes up 840 joules from the high tempera-
ture reservoir. Calculate the work done, heat rejected and the efficiency.

Ans.	 Work done = Q Q Q Q T
T

Q T T
T1 2 1 1

2

1
1

1 2

1

− = − =
−

		                             =
−

=840 373 273
373

225 joules
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	 Heat rejected = = = =Q Q T
T2 1

2

1

840
4 2

273
373

146
.

calories

	 Efficiency =
−

=
−

=
T T
T

1 2

1

373 273
373

26 8. %

	Q 3.	 Liquid oxygen boils at 90 K and liquid hydrogen at 20 K. What is the efficiency of a revers-
ible engine working between heat reservoirs at these two temperatures? If the same efficiency is 
required for an engine with a cold reservoir at 27 8C, what must be the temperature of the source?

Ans.	 Efficiency	 =
−

= =
90 20

90
70
90

0 77.

		  η = =
−

= − =
7
9

300 7 9 2700 2 2700T
T

T T Tor or

	 ∴ 	     T = 1350 K

	Q 4.	 A reversible engine works in a Carnot’s cycle between the temperatures 100 8C and 0 8C. If the 
work done in the cycle is 1200 kilogram metres, find the quantity of heat in calories taken at 
higher temperatures. 

Ans.	 Now,	 Q
T

Q
T

Q Q
T T

W
T T

1

1

2

2

1 2

1 2 1 2

= =
−
−

=
−

		  Q W T
T T1

1

1 2

5

7

1200 10 980
4 18 10

373
100

10490=
−

=
× ×

×
=

.
cal

	Q 5.	 Assuming that a domestic refrigerator can be regarded as a reversible engine working between 
the temperatures of melting ice and the room temperature of 17 8C, calculate the efficiency and 
the energy that must be supplied to freeze 1 kg of water already at 0 8C. 

Ans.	� The refrigerator takes heat from a cold body and rejects heat to a hot body and does some work 
which is reckoned as negative. 

	    Efficiency	 = − =
−

=
W
Q

290 273
273

5 86. %

	 To freeze 1 kg of water at 0 8C, 80,000 calories of heat must be taken away from water at 273 K

		  − =
W

80 000
17
273,

		  W = ×2 092 1011. ergs

	Q 6.	 An engine works in a Carnot’s cycle between the temperature 100 8C and 0 8C. Calculate the work 
done in the cycle in ergs, if the quantity of heat taken in at the higher temperature is 104 calories.

Ans.	 We know that
Q
T

Q
T

Q Q
T T

W
T T

1

1

2

2

1 2

1 2 1 2

= =
−
−

=
−

Chapter 09.indd   309 4/26/2011   11:52:30 AM



310    Heat and Thermodynamics

	 ∴	    W Q
T
T T= −( ) =

× × ×1

1
1 2

4 710 4 2 10 100
373

. ergs

		  = ×1 1 1011. ergs

	Q 7.	 A Carnot’s engine develops 100 h.p and operates between 27 8C and 227 8C. What is the heat 
supplied? What is the heat rejected? What is its thermal efficiency?

Ans.	 Thermal efficiency = − = −1 12

1

2

1

T
T

Q
Q

		  = − = =1 300
500

0 4 40. %

	 Power developed by the engine = 100 h.p

		  = × =
×100 746 100 746
4 2

watts calories/sec
.

	 If Q1 is the heat supplied, then 

		  Q1
4100 746

4 2
100
40

4 44 10=
×

× = ×
.

.cal/sec cal/sec

	 Again,	 1 0 42

1

− =
Q
Q

.

		
Q
Q

2

1

1 0 4 0 6= − =. .

		  Q Q2 1
4 40 6 4 44 10 0 6 2 66 10= × = × × = ×. . . . cal/sec

	Q 8.	 A Carnot’s cycle is performed by a litre of air (g = 1.4) initially at 327 8C and at a pressure of 
12 atmospheres. Each stage represents a compression or expansion in the ratio 1:6. Calculate 
the lowest temperature, net work delivered and efficiency of the cycle.

Ans.	� The lowest temperature will be reached by adiabatic expansion. To calculate the lowest tem-
perature, we use the relation

		  T v T v1 1
1

2 2
1γ γ− −=

	 or		 T T
v
v2 1

1

2

1

0 4

600
6

293=










= =
−γ

.
K

	 Work is done in following four stages:

	 1.	Work done by the gas in isothermal expansion atT R T v ve1 1 2 1= ′ log ( / )

	 2.	Work done by the gas in adiabatic expansion = R′(T1 - T2)/g - 1

	 3.	Work done on the gas in isothermal compression = ′R T v ve2 2 1log ( / ).
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	 4.	Work done on the gas in adiabatic compression = R′ (T1 - T2)/g - 1

	 Net work done by the gas

		   W R T v
v

R T T
R T v

v
R T T

e e= ′ +
′ −( )

−
− ′ +

′ −( )
−1

2

1

1 2
2

2

1

1 2

1 1
log log

γ γ

		  = ′ −( )R T T v
ve1 2

2

1

log

	 Again, we know that pv R T= ′ where p = 12 atm, v = 1 litre, T = 600 K.

	 ∴	              ′ = =
× × ×

= ×R pv
T

12 1 013 10 10
600

2 026 10
6 3

7. .

		  W e= × −( )× ×2 026 10 600 293 2 303 67. . log

		  = ×1 11 1010. ergs

	 Efficiency	 = − = − =1 1 293
600

51 22

1

T
T

. %

	Q 9.	 An engine consumes 4 lbs of coal per horse power per hour. The heat developed by combustion 
of 1 lb of coal is capable of converting 15 lbs of water at 100 8C into steam at 100 8C. What 
percentage of heat produced is wasted? [Latent heat of steam 964.8 B. Th. U per lb]

Ans.	 The heat developed by combustion of 4 lbs of coal

		  = × × = × × ×4 15 964 8 4 15 964 8 778. .B. Th. U ft lbs

	 Work done by the engine per horse power hour = ×33000 60 ft lbs

	 Efficiency = =
×

× × ×
=

W
Q

33000 60
4 15 964 8 778

4 3
.

. %

	 So, 4.3% of the heat is converted into work; hence, 95.7% of heat is wasted.

	Q10.	 In a test on a gas engine, it was found that the gas consumption was 16.3 cubic feet of gas per 
minute when the brake horse power is 31 b.h.p. The heating value of the gas used was 500 B.  
Th. U per cubic feet and mechanical efficiency was 72%. What is the indicated thermal efficiency?

Ans.	 Mechanical efficiency =
B H P
I H P
. .
. .

	 ∴	 I H P B H P
M E

. . . .
. .

= =
31

0 72

	 Input power = × ×16 3 500 778. ft.lb.

		  =
× ×16 3 500 778
33000

. HP
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	 Indicated thermal efficiency =
× ×

31
0 72

16 3 500 778
33000

.
.

		              =
×

× × ×
=

31 33000
0 72 16 3 500 778

22 4
. .

. %

	Q11.	 What should be horse power of a steam engine which consumes 200 lbs of coal per hour, 
assuming that all the heat supplied is turned into useful work? (1 lb of coal gives 12500 B. Th. 
U, J is equivalent to 770 ft lbs per B. Th. U).

Ans.	 Heat produced per hour = ×12500 200B.Th.U

	 Equivalent work = × ×12500 200 770 ft.lb.per hr

	 Horse power =
× ×
×

=
12500 200 770

60 33000
909 1.

	Q12.	During the initial suction of an otto engine, the petrol vapour and air are sucked in at atmospheric 
pressure and temperature. If the atmospheric temperature is taken as 340 K and the temperature 
after the compression stroke as 612 K, calculate the adiabatic expansion ratio, assuming the ratio 
of specific heats at constant pressure and at constant volume to be 1.4. Hence, find the efficiency 
of the engine. If after the constant volume ignition, the temperature rises to 2040 K, what is the 
maximum pressure in the engine in atmospheres?

Ans.	 Let us draw the indicator diagram
	 From the adiabatic AB,

		  T V T VA B2
1

1
1γ γ− −=

	 ∴	
T
T

V
V

T
T

A

B

D

C

=










=








 =

− −

1

2

1 1
1

γ γ

ρ

	 ∴	    ρ
γ

=










=






 =

−T
T
B

A

1
1

1
0 4612

340
4 5

.
. approx

		  η
ρ

γ

= −








 =

−

1 1 44
1

%

	 From the adiabatic CD, p T p T p T
T

pC C D D C
D

C
D

1 1
1

− −
−

= =










γ γ γ γ

γ
γ

or

	 From AD, p v
T

p v
T

p T
T
pD

D

A

A
D

D

A
A

2 2= =or

B

p

C

v v2v1

A

D

E
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	 ∴	 p T
T

T
T
p T

T
pC

D

C

D

A
A

C

B
A=











=
−
γ

γ
γρ

1

		         = ( ) =4 5 2040
612

271 4. . atmospheres

	Q13.	 In an engine of constant pressure ignition type, the temperatures at the beginning and at the end 
of the ignition are 915 K and 2040 K, respectively and the adiabatic expansion ratio is 12.6 . 
Calculate the efficiency of the engine. (g = 1.39)

Ans.	 η
ρ γ

ρ
γ γ

= −










−
−

−

1 1 1
1

1
x
x( )

where = 12.6 annd x= =
2040
915

2 23.

		  = −








( ) −

−( )
=1 1

12 6
2 23 1

1 39 2 23 1
0 554

0 39 1 39

.
.

. .
.

. .

	Q14.	The expansion ratio of a diesel engine is 15 and to start with the compression stroke, it con-
tains air at 15 lb/sq. inch and 520 K. Calculate the pressure and temperature at the end of the 
stroke. 

Ans.	 p v v T1 1 2 115 15 520= = =lb/sq.inch, / K,

	 Now,                  p v p v1 1 2 2
γ γ=

		  p p v
v2 1

1

2

1 4 2 415 15 15 664 6=










= ( ) = =
γ

. . . lb/in2

	 and from         T v T v1 1
1

2 2
1γ γ− −=

		  T T v
v2 1

1

2

1
0 4520 15 1536=











= ( ) =
−γ

. K

Problems

1.	 Calculate the efficiency of Carnot’s engine working between 100 8C and 0 8C.
Ans. 26.8%

2.	 A Carnot’s engine is operated in the reverse direction as a refrigerator between 300 K and  
450 K. If it receives 1000 calories of heat from the reservoir at 300 K, what is the amount of 
heat delivered at 450 K.

Ans.1500 calories
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3.	 A Carnot’s engine has a low temperature reservoir at 7 8C with efficiency of 40%. It is desired 
to increase the efficiency to 50%. By how many degrees should the temperature of the high 
temperature reservoir be increased? 

 Ans. 93.3 8C
4.	 An engine works in a Carnot’s cycle between 27 8C and 127 8C and the work output per cycle is 

300 kgm-meters. Calculate the heat supplied to the engine from the source.
Ans. 2803 calories

5.	 A Carnot’s engine has a low temperature reservoir at 12 8C and has an efficiency of 40%. It is 
desired to increase the efficiency to 60%. By how many degree centigrade should the tempera-
ture of the reservoir at the higher temperature be increased?

Ans. 237.5 8C
6.	 An engine works in a Carnot’s cycle between the temperatures 100 8C and 15 8C. If the work 

done in the cycle is 400 kgm-meters, how much heat measured in calories is taken in at the 
upper temperatures? 

Ans. 4.1 × 103 calories 
7.	 Calculate the efficiency of a reversible heat engine working between the temperatures 167 8C 

and 57 8C. 
Ans. 25%

8.	 A Carnot’s engine works between temperatures 100 8C and 10 8C. Calculate its efficiency. When 
will its efficiency be 100%? 

Ans. 24.13%, T2 = 0 K
9.	 A Carnot’s engine whose hot body temperature is 227 8C takes 200 calories of heat at this tem-

perature and rejects 150 calories to the cold body. What is the temperature of the latter?
Ans. 102 8C

10.	 Heat supplied to a Carnot’s engine working between 0 8C and 100 8C is 1000 calories. How 
much useful work can be done by the engine?

Ans. 268 calories
11.	 Calculate the efficiency of a diesel engine for which the adiabatic compression ratio r = 17, the 

adiabatic expansion ratio e = 5.  and g = 1.4 
Ans. 50%

12.	 An engine works in a Carnot’s cycle between the temperatures 100 8C and 10 8C. If the work 
done in the cycle is 1000 kgm-meters, find how much heat measured in calories is taken in at 
the higher temperature? 

Ans. 9680 cal 
13.	 A Carnot’s engine with sink at 10 8C has an efficiency of 30%. By how many degrees the tem-

perature of the source should be changed to increase its efficiency to 50%?
Ans. 162 K
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Questions

1.	 Give the enunciation of the second law of thermodynamics as given by Clausius as well as by 
Kelvin. Show that the two actually mean the same thing.

2.	 Explain the terms: reversible process and reversible cycle. Describe Carnot’s cycle. Is the  
efficiency of the Carnot’s cycle dependent on the nature of the working substance?

3.	 Describe a Carnot’s engine. Draw the p-v indicator diagram for a cycle of its operations  
between two given temperatures and deduce from it the thermal efficiency of the engine.

4.	 State and explain the significance of the second law of thermodynamics. Show that the effi-
ciency of a reversible engine is maximum.

5.	 Show that no engine can be more efficient than the reversible Carnot’s engine.
6.	 How did Kelvin arrive at the absolute scale of temperature? Show that the ideal gas scale and 

the absolute scale are identical. How is the absolute scale realized in practice?
7.	 Define entropy. What is its physical significance? Show that entropy remains constant in a  

reversible process and increases in an irreversible process.
8.	 Derive an expression for the change of entropy of a gm molecule of a gas during an isothermal 

expansion.
9.	 Explain the concept of reversible and irreversible process. Show that the efficiency of a revers-

ible engine is a maximum.
10.	 Show that the second law of thermodynamics enables us to define a scale of temperature  

independent of the properties of any working substances. How is the scale realised in practice?
11.	 Describe a Diesel engine and deduce an expression for its efficiency. Can the Carnot’s engine 

be realized in practice?
12.	 Describe with diagrams an Otto engine and deduce an expression for its efficiency.
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Chapter 10

10.1  Maxwell’s Relations

The two fundamental principles of thermodynamics are as follows: 

1.	 The first law of thermodynamics represented by the energy equation

		  dQ dU dW= + � (10.1)

2.	 The second law of thermodynamics represented by the equation of Clausius

		  dQ TdS= � (10.2)

In these equations, the quantities U, W and S are functions of the thermodynamic co-ordinates p, v 
and T of which only two are independent variables. From these equations, other useful relations between 
the four co-ordinates p, v, T and S can be obtained. Out of these four co-ordinates, only two can vary 
independently. Hence, any two of these co-ordinates only can be expressed in terms of the remain-
ing two co-ordinates. The equations thus obtained are called Maxwell’s relations. We shall represent 
the two independent variables by x and y. They can subsequently be replaced by any two of the four 
co-ordinates, that is, p, v, T and S.

From Eqs  10.1 and 10.2, we get

		  T dS dU dW dU p dv= + = +

	 or	 dU T dS p dv= − � (10.3)

THERMODYNAMIC  
RELATIONS
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Since S and v are both functions of x and y,

∴	 dS S
x
dx S

y
dy=

∂
∂

+
∂
∂

		  dv v
x
dx v

y
dy=

∂
∂

+
∂
∂

Substituting the values of dS and dv in Eq. 10.3,

		  dU T S
x
dx S

y
dy p v

x
dx v

y
d=

∂
∂

+
∂
∂










−

∂
∂

+
∂
∂

yy










		  =
∂
∂

−
∂
∂











+
∂
∂

−
∂
∂




T S

x
p v
x
dx T S

y
p v
y





dy

Since U is a function of x and y,

		  dU U
x
dx U

y
dy=

∂
∂

+
∂
∂

Hence,	 ∂
∂

=
∂
∂

−
∂
∂

U
x

T S
x

p v
x

and	 ∂
∂

=
∂
∂

−
∂
∂

U
y

T S
y

p v
y

Since U is a function of x and y, 

		
∂
∂

∂
∂











=
∂
∂

∂
∂









y

U
x x

U
y

	 or	
∂
∂

∂
∂

−
∂
∂











=
∂
∂

∂
∂

−
∂
∂



y
T S
x

p v
x x

T S
y

p v
y







	 or	
∂
∂

∂
∂

+
∂
∂ ∂

−
∂
∂

∂
∂

−
∂

∂ ∂
T
y
S
x

T S
y x

p
y
v
x

p v
y x

2 2

		  =
∂
∂

∂
∂

+
∂
∂ ∂

−
∂
∂

∂
∂

−
∂

∂ ∂
T
x
S
y

T S
x y

p
x
v
y

p v
x y

2 2

	 or	
∂
∂

∂
∂

−
∂
∂

∂
∂

=
∂ ∂

∂
−

∂
∂

∂
∂

T
y
S
x

p
y
v
x

T
dx

S
y

p
x
v
y � (10.4)

From Eq. 10.4, we can deduce some important relations by substituting for x and y any two of the 
variables S, p, T and v.
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Relation I:  Let x = S and y = v

Then,		 ∂
∂

=
∂
∂

=
S
x

v
y

1 1and

		  ∂
∂

=
∂
∂

=
S
y

v
x

0 0and  since x and y  are independent.

Substituting the values in Eq. 10.4, we get

		       
∂
∂







 = −

∂
∂









T
v

p
Ss v

� (10.5)

	 or	    − ∂
∂











=
∂
∂











T
v

T p
Qs v

� (10.6)

Equation 10.6 means that the fall of temperature per unit increase of volume during an adiabatic 
transformation is equal to the increase of pressure per unit increase of entropy at constant volume.

Relation II:  Let x = T and y = v

	 Then,	
∂
∂

=
∂
∂

=
T
x

v
y

1 1and

	 Also,	
∂
∂

=
∂
∂

=
T
y

v
x

0 0and

Substituting these values in Eq. 10.4, we get

		
∂
∂







 =

∂
∂









S
v

p
TT v

� (10.7)

	 or	
∂
∂











=
∂
∂











Q
v

T p
TT v

� (10.8)

This means that the change of entropy per unit change of volume at constant temperature is 
equal to the change of pressure per unit change of temperature at constant volume. It may also be 
interpreted as shown in Eq. 10.8—latent heat of isothermal expansion at temperature T is equal to 
the absolute temperature multiplied by change of pressure per unit change of temperature at con-
stant volume.

Let L be the latent heat required to change unit mass of the substance from state 1 to state 2, and let 
v1 and v2 be the specific volumes in the two states; then,

		
∂
∂











=
−

Q
v

L
v vT 2 1
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Hence, Eq. 10.8 may be written as 

		
L

v v
T p

T v2 1−
=

∂
∂









 � (10.9)

If the change of state takes place in such a way that pressure is independent of volume (as in the case 
of saturated vapours), then the suffix v in Eq. 10.9 may be omitted so that Eq. 10.9 may be written as 

		
L

v v
T p
T2 1−

=
∂
∂ � (10.10)

Equation 10.10 is known as Clapeyron’s equation.

Relation III:  Let x = p and y = S

	 Then,	
∂
∂

=
∂
∂

=
p
x

S
y

1 1and

	 Also,	
∂
∂

=
∂
∂

=
p
y

S
x

0 0and

Substituting these values in Eq. 10.4, we get

		
∂
∂







 =

∂
∂











v
S

T
pp S

� (10.11)

	 or	 T v
Q

T
pp S

∂
∂









 =

∂
∂









 � (10.12)

This means that the increase of temperature per unit increase of pressure in an adiabatic change is 
equal to the absolute temperature multiplied by change of volume due to unit quantity of heat supplied 
to the substance at constant pressure.

Relation IV:  Let x = T and y = P

	 Then,	
∂
∂

=
∂
∂

=
T
x

p
y

1 1and

	 Also,	
∂
∂

=
∂
∂

=
T
y

p
x

0 0and

Substituting these values in Eq. 10.4, we get

		
∂
∂











= −
∂
∂











S
p

v
TT p

� (10.13)

Now, the co-efficient of thermal expansion at constant pressure is

		  α =
∂
∂











1
v

v
T p

Hence, Eq. 10.13 can be written as

		
∂
∂











= −
Q
p

Tv
T

α � (10.14)
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This means that in the case of substance which expands on being heated (a is positive), increase of 
pressure is accompanied by evolution of heat so that the heat must be taken away to keep the tempera-
ture constant.

Water below 4 8C diminishes in volume with rise of temperature (a is negative) while above 4 8C, it 
increases in volume with rise of temperature (a is positive). Hence below 4 8C, increase of pressure will 
be accompanied by cooling while above 4 8C increase of pressure would produce heating effect. This 
result was verified by Joule.

Rubber contracts on being heated. So for rubber, a is negative. Tension is negative pressure. Hence, put-
ting a wire under tension or pulling it is equivalent to reduction of pressure. Hence, a rubber cord would show 
a fall of temperature on being pulled. Metallic wires under similar conditions would show heating effect.

10.1.1  Gibb’s Heat Functions

1.	 Free energy: By combining the first and the second law of thermodynamics, we have obtained

		  dU TdS pdv= −   Eq. (10.3)

	 Subtracting d(T S) from both sides of the above equation, we get

		  dU d T S TdS p dv d T S− = − −( ) ( )

	 or		  d U T S T dS p dv T dS S dT( )− = − − −

	 Calling U 2 T S = F, this becomes
		  dF p dv S dT= − − � (10.15)

	 The function F is called the free energy.
2.	 Enthalpy or Total Heat: Adding d(p v) to both sides of Eq. 10.3, we get

		  dU d p v TdS pdv d p v+ = − +( ) ( )

	 or		  d U pv TdS pdv pdv vdp( )+ = − + +

	 Calling U 1 pv = H, the above equation reduces to

		  dH T dS v dp= + � (10.16)
	 The function H is called the enthalpy or free energy.
	 Thermodynamic potential: Performing both the above operations on Eq. 10.3, we get

		  dU d T S d p v TdS pdv d T S d p v− + = − − +( ) ( ) ( ) ( )

		  = − − − + +TdS pdv TdS SdT pdv vdp

	 or		  d U ST pv SdT vdp( )− + = − +

	 calling	  U ST pv G− + = ,

	 we have	 dG SdT vdp= − + � (10.17)

	 The function G is called the thermodynamical potential.
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10.1.2  Alternative Method of Deduction of Maxwell’s Relations
We have already proved that dS is a perfect differential. All the quantities of which dF, dH and dG com-
posed are also perfect differentials. Hence, dF, dH and dG are also perfect differentials.

From Eq. 10.3, we at once obtain

		
∂
∂











= −
∂
∂











T
v

p
SS v

This is the first Maxwellian relation.
From Eq. 10.15 since dF is a perfect differential,

		
∂
∂











=
∂
∂











p
T

S
vv T

This is the second Maxwellian relation.
From Eq. 10.16, since dH  is a perfect differential,

		
∂
∂











=
∂
∂











T
p

v
Sv p

This is the third Maxwellian relation.
From Eq. 10.17, since dG is a perfect differential,

		
∂
∂











= −
∂
∂











S
p

v
TT p

This is the fourth Maxwellian relation.

10.2  Relation Between the Thermodynamic Functions

In Eq. 10.15, F is a function of v and T; hence,

		  dF F
v

dv F
T

dT
T v

=
∂
∂











+
∂
∂











By Eq. 10.15,	 dF pdv SdT= − −

	 Hence,	 p F
v

S F
TT v

= −
∂
∂











= −
∂
∂











and � (10.18)

Again, H is a function of S and p. Hence,

		  dH H
S

dS H
p

dp
p S

=
∂
∂







 +

∂
∂











By Eq. 10.16,	 dH = TdS 1 vdp

	 Hence,	 T H
S

v H
pp S

=
∂
∂











=
∂
∂











and � (10.19)
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G is a function of T and p. Hence,

		  dG G
T

dT G
p

dp
p T

=
∂
∂











+
∂
∂











By Eq. 10.17, dG = 2SdT 1 vdp

	 Hence,	 S G
T

v G
pp T

= −
∂
∂











=
∂
∂











and � (10.20)

	 Now,	 F = U 2 TS
	 or	 U = F 1 TS

		  U F T F
T v

= −
∂
∂











from Eq. 10.18.� (10.21)

Equation 10.21 is called Gibb’s Helmholtz equation.

	 Again,	 H = U 1 pv
	 or	 U = H 2 pv

		  U H p H
p S

= −
∂
∂









 from Eq. 10.19� (10.22)

	 Further,	 G U TS pv H TS= − + = −( )

		  H G TS= +

		  H G T dG
dT p

= −






 from Eq. 10.20.� (10.23)

Conditions of possibility of a transformation: Equations 10.3 and 10.15–10.17 relate only to iso-
lated systems undergoing thermodynamic changes; that is, it includes all members which take part in 
the process of exchange of energy. In most of the physical and chemical processes with which we have 
to deal, the exchange of energy occurs between a system and its surroundings. To deal with such cases, 
we have to regard the system under consideration and that external to it as one isolated system.

Let Si and Se stand for entropies of the system under consideration and of that external to it. Then 
considering the two as one isolated system,
		  d(Si 1 Se) ≥ 0

The sign of equality applies when the process is reversible and inequality sign holds only for irre-
versible processes. In an infinitesimally small change of thermodynamic state, let the internal system 
absorb dQ quantity of heat supplied by the surroundings and thereby do an amount of work dW on the 
surroundings. If, thereby, the internal energy of the given system increases by amount dU, then by the 
first law of thermodynamics,
		  dUi = dQ − dW

We may, without any loss of generality, assume that the exchange of energy with the surroundings 
takes place reversibly. Then, the change of entropy of the surroundings would be 
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		  dS dQ
T

dU pdv
Te
i= − = −
+

	 writing	 dW = pdv

Then, the total change of entropy of the systems taken as a whole is

		  dS
dU pdv

Ti
i= −
+

≥ 0

	 or	 dS
dU pdv

Ti
i≥
+

	 or	 TdS dU pdv dU pdv TdSi i i i≥ + + ≤or

		  dU TdS pdvi i≤ −

We shall, for the sake of convenience, drop the subscript i and write the equation for the given inter-
nal system simply as 
		  dU TdS pdv≤ − � (10.24)

U and S referring only to the internal system.
When a system is not isolated, spontaneous processes can take place  

between the system and the surroundings. Such processes, as we know, are 
irreversible. Hence, Eqs  10.24 to 10.26 give the conditions of possibility of 
a transformation.

The above result can be deduced otherwise as follows:
Let a system pass from the state A (Fig. 10.1) to the state B along the revers-

ible path AMB. Along the path, the quantity dQ/T is a perfect differential so that

		
dQ
T

S S
A

B

R

B A∫











= −

Let the same system be brought back to the state A along the irreversible path BNA. Along the path, 
the quantity dQ/T is not a perfect differential and cannot be evaluated. The whole cycle AMBNA being 
irreversible,

		
dQ
T

dQ
T

B

A

I A

B

∫ ∫











+












=












+ −( )>∫

R B

A

I

B A
dQ
T

S S 0

	 or 	
dQ
T

S S
I

A B∫










> − � (10.25)

	 or 	
dQ
T

S S
I

B A∫










< −

Since the spontaneous processes are irreversible, we conclude that no spontaneous change is pos-
sible for which the value of the integral is greater than (SB 2 SA). Hence, the condition of possibility of 
a transformation is that the value of the integral is less than (SB 2 SA).

Fig. 10.1  Behaviour 
of a system

M

N

B

A
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For an infinitesimally small change,

		  dQ
T

dS<

	 or	 dQ < Tds� (10.26)

		  dU pdv TdS+ <

	 or	 dU TdS pdv< − � (10.27)

For reversible change,	 dU TdS pdv= −
If the system is isolated,	 dQ = 0
so that	 TdS > 0
Also, from Eq. 10.25 if	 dQ = 0

		  SB > SA

Hence for any transformation occurring in an isolated system, the energy of the final state must  
always be greater than that in the initial state.

When a system is in the state of maximum entropy consistent with its energy, it cannot undergo any 
further change because that would result in further increase of entropy. Hence, the state of maximum 
entropy is the most stable state of equilibrium.

Subtracting d(TS) from both sides of Eq. 10.27, we get

		  dF pdv SdT<− −
Adding d(pv) to both sides of Eq. 10.27, we get

		  dH TdS vdp< +

Performing both operators on Eq. 10.27, we get

		  dG SdT vdp<− +
Thus for a system which is not isolated,

		  dU Tds pdv≤ − � (10.28)

		  dF pdv SdT≤− − � (10.29)

		  dH TdS vdp≤− + � (10.30)

		  dG SdT vdp≤− + � (10.31)

The signs of equality hold good for the cases of reversible operations. 

10.3 S pecific Heat Equations

With the help of Maxwell relations, the fundamental equations

		  dQ C dT l dvv= + � (10.32)

	 and	    dQ C dT l dpp= + ′ � (10.33)
can be put in a more useful form. 
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From Eq. 10.32 putting dT = 0, 

		  l dQ
dv

T dS
dvT T

=










=










By Maxwell’s relation II,

		  T S
v

T p
TT v

∂
∂











=
∂
∂











		  l T p
T v

=
∂
∂











Hence, Eq. 10.32 takes the following form

		  dQ C dT T p
T

dvv
v

= +
∂
∂









 � (10.34)

	 For a perfect gas,	 T dp
dT

p
v











=

	 Hence,	 dQ C dT pdvv= +

Again from Eq. 10.33, putting      dT = 0 

		  ′ =










=










l dQ
dp

T dS
dTT T

From Maxwell’s relation IV,

		         T
S
p

T v
TT p

∂
∂











= −
∂
∂











Hence, Eq. 10.33 takes the following form

		             dQ C dT T v
T

dpp
p

= −
∂
∂









 � (10.35)

For a perfect gas,	       pv RT v
T

R
pp

=
∂
∂











=so that

	 Hence,	 T v
T

RT
p

pv
p

v
p

∂
∂











= = =

	 so that for a perfect gas,

		  dQ C dT v dpp= −

	 Again,	 dS dQ
T

=
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Since dS is a perfect differential, 

		
∂
∂



























=
∂

∂
∂
∂




v

C
T T

p
T

v

T


















v

	 or	   
dC
dv

T p
T

v

T v











=
∂
∂











2

2 � (10.36)

For a perfect gas, pv = RT

	 ∴	       
∂
∂







 =

∂
∂



















 =

p
T

R
v T

R
vv v

0

	 For a perfect gas,	
∂
∂











=
C
v
v

T

0

or Cv does not vary with v in an isothermal change.
From Eq. 10.35,

		  dS dQ
T

C
T
dT v

T
dpp

p

= = −
∂
∂











Since dS is a perfect differential,

		
∂
∂





























= −
∂

∂
∂
∂






p
C
T T

v
T

p

T


















p

	 or	
∂

∂












= −

∂
∂











C
p

T v
T

p

T p

2

2 � (10.37)

For a perfect gas, pv = RT

		
∂
∂











=
∂

∂














v

T
R
p T

R
pp

and 




 = ∴

∂

∂












=0 0

C
p
p

T

Hence, for a perfect gas, Cp does not change with pressure in an isothermal change.
In the case of real gases if (v T) curve at constant pressure be drawn, then Cp must diminish with 

increase of pressure, if the curve is concave downwards and conversely.

Between temperature 0–150 8C,
dC
dp

p

T












is positive for nitrogen and negative for CO2.

From Eq. 10.34,

		
∂
∂











= +
∂
∂











∂
∂

Q
T

C T p
T

v
Tp

v
v










p
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	 or	 C C T p
T

v
Tp v

v p

− =
∂
∂











∂
∂









 � (10.38)

Expressing p as a function of v and T,

		  dp p
v

dv p
T

dT
T v

=
∂
∂











+
∂
∂











	 putting	 dp = 0, ∂
∂











= −
∂
∂











∂
∂




p

T
p
v

v
Tv T






p

Substituting these values in Eq. 10.38,

		  C C T p
v

v
Tp v

T p

− = −
∂
∂











∂
∂











2

� (10.39)

∂p/∂v is always a negative quantity. Hence, Cp is always greater than Cv. For water, (∂v/∂T)p = 0 at 
4 8C. Hence for water at 4 8C, Cp = Cv.

Now, the compressibility of a substance is 

		  K
v

v
p T

= −
∂
∂











1

	 so that	
∂
∂











= −
v
p

Kv
T

The co-efficient of cubical expansion is three times that of linear expansion (a) and 

		  3 1
α =

∂
∂









v
v
T p

	 so that	
∂
∂











=
v
T

v
p

3α

Substituting the values ∂
∂











∂
∂











v
p

v
TT p

and in Eq. 10.39,

		  C C T
Kv

vp v− = − −










1 3 2( )α

	 or	 C C vT
Kp v− =

9 2α � (10.40)
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It has been proved experimentally that v/K is approximately constant at all temperatures. Gruneisen 
has shown that specific heat at constant pressure is proportional to the co-efficient of linear expansion. 
Hence, Eq. 10.40 can be put in the following form

		  C C BC Tp v p= + 2 � (10.41)

where B is a constant characteristic of the substance and it is inversely proportional to the melting point 
of the substance ( Ts ). Hence, Eq. 10.41 reduces to 

		  C C B
TC
Tp v
p

s

= + 0

2

� (10.42)

Here, Bo is a universal constant. Its value is 0.0214 deg/cal. Specific heats of solids and liquids are 
determined at constant pressure. Eqs  10.40 and 10.42 give the specific heats at constant volume when 
those at constant pressure are known.

10.3.1  Specific Heat of Saturated Vapour
For saturated vapour, Eq. 10.34 can be written as 

		
∂
∂











= +
∂
∂











∂Q
T

C T p
T

v

sat
v

v ∂∂









T sat

where the suffix sat means saturation pressure. From Amagat’s curve, (∂p/∂T)v is positive. But,
(∂v/∂T)sat is positive on the liquid line and negative on the vapour line. Hence on the vapour side, the 
specific heat of saturated vapour is always less than Cv. In the case of steam, it is so much as to become 
negative. This means that heat must be removed from the vapour as the temperature rises so that the 
vapour may remain saturated.

For water, the following experimental data was obtained.

 
 

t 8C

 
Volume at constant 

pressure

∂
∂











v
T

p

∂

∂











2

2

v
T

p

20 1.001738

21 1.001949 0.000211 0.000011

22 1.002171 0.000222 0.000010

23 1.002403 0.000232 0.000010

24 1.002643 0.000242 0.000010

Mean = 0.00001
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Solved Problems

	Q 1.	 The melting point of pure acetic acid is 16.6 8C and this is raised by 0.0244 8C per one atmo-
sphere increase of pressure. If 1 gm of acetic acid occupies 0.00079 litre in the solid state and 
0.00095 in the liquid state at its melting point, calculate the latent heat of fusion in work units 
(litre-atmosphere) per gram.

Ans.		  L
0 00095 0 00079

273 16 6 1
0 0244. .

( . )
.−

= + ×

		  L = ×289 6 0 00016
0 0244

. .
.

litre-atospherelitre-atmosphere

	Q 2.	 Calculate the change in Cp of water at 22 8C.

Ans.	 We know

		
∂

∂












= −

∂
∂











C
p

T v
T

p

T p

2

2

	 Here,	 T = 273 1 22 = 295 K 

	 Mean value of	
∂
∂











= = −
2

2
50 00001 10v

T p

.

	 Hence,	
∂

∂












= − × −

C
p
p 295 10 5

	 ∴	     dC dpp = − × −295 10 5

		  dp = 1 atmosphere = 106 C. G. S. Unit

		  dCp = − ×29 5 102. C. G. S. Unit

		  = −
×

= − × −2950
4 2 10

7 107
5

.
cal/degree

	Q 3.	 Calculate the specific heat of copper at constant volume at 0 8C from the following data: 
		  Specific volume of copper at 0 8C = 0.112 litre per degree 
		  Coefficient of linear expansion of copper = 5.01 3 1026

		  Compressibility of copper = 8 3 10–7 per atmos.
		  Cp of Copper = 0.0909 cal/degree

Ans.	 We know

		  C C vT
Kp v− =

9 2α
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	 Substituting the data,

		  C Cp v− =
× × × ×

×

−

−

9 273 0 112 5 01 10
8 10

6 2

7

. ( . )

		  = 8.63 Atoms. cc/degree

	 To convert this into calories per degree, we must multiply this by 0.024142. This gives for copper

		  C Cp v− = ×8 63 0 024142. . *

		  = 0.208 cal/degree

		  Cv = 0 298. cal/degree

	Q 4.	 Prove that the ratio of adiabatic to isothermal elasticity is equal to the ratio of specific heat at 
constant pressure to that at constant volume.

Ans.	 Adiabatic elasticity	 E V p
vS

S
  = −

∂
∂











	 Isothermal elasticity 	 E V p
vT
T

  = −
∂
∂











		
E
E

p
v
p
v

S

T

S

T

   =

∂
∂











∂
∂











=

∂∂
∂

∂
∂











∂
∂

∂
∂











p
T

T
v

p
S

S
v

S

T

==

∂
∂











∂
∂











∂
∂






p
T

T
v

p
S

S S







∂
∂











T T

S
v

		                                          =

−
∂
∂











∂
∂











−
∂
∂





S
v

p
S

T
v

p v







∂
∂











p v

p
T

by Maxwell’s equations.

*		                              Atmos litre
degree degree

dynes
cm

cm×
=

× × ×
×

76 13 6 981 1000
2

3.
( )

( )

	 or	 =
× × ×

=
× × ×

×
76 13 6 981 1000 76 13 6 981 1000

4 2 107
. .

.degree
erg   cal

deggree

		  Atmosphere cc
degree

cal
degree

×
= 0 024142.
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		  =

∂
∂











∂
∂











∂
∂






S
v

v
T

p
T

p p







∂
∂











=

∂
∂











v v

s
p

S
T 

∂
∂











=












p

v

p

S
T

dQ
dT

dQ
dT







= =

v

p

v

C
C

γ

	Q 5.	 The melting point of pure acetic acid is 16.6 oC and this is raised by 0.0244 oC per 1 atmosphere 
increase of pressure. If 1 gm of acetic acid occupies 0.00079 litre in the solid state and 0.00095 litre 
in the liquid state when at its melting point, calculate the latent heat of fusion in work unit  
(litre-atmosphere) per gram. 

Ans.	 We know

		
L

v v
T p

T v2 1−
=

∂
∂











  

	 or	
L

0 00095 0 00079. .−
= + (273 16.6) 1

0.0244

	 ∴	     L =
× 289.6 0.00016

0.02414
 litre-atmosphere

		  =1 896.  litre-atmosphere

	Q 6.	 Determine the rate of change of saturation pressure with temperature for water at 100 8C; given 
latent heat of water at 100 8C = 539 cal, J = 4.2 3 107 ergs/cal and volume of steam formed = 
1670 cc.

Ans.	 We know

		
L

T v v
p
T v( )2 1−

=
∂
∂











  

	 ∴	    
∂
∂

=
−

=
× ×

−
p
T

L
T v v( )

.
( )2 1

7539 4 2 10
373 1670 1

erg
deg cc

		  = × =
×
×

3 64 10 3 64 10
13 6 981

4
4

. .
.

erg
deg cc

cm of mercurry

		  = 2.7 cm of mercury

	Q 7.	 Water boils at 100.5 8C and 99.5 8C when the atmospheric pressures are 77.371 and 74.650 cm 
of Hg, respectively. Calculate the volume of a gram of steam at 100 8C, the latent heat being 537 
cal/gm.

Ans.	 We know

		
L

T v v
p
T v2 1−( )

=
∂
∂










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	 ∴	     
( ) .

( . . )
v v L

T
v

2 1

7537 4 2 10
373 77 321 74 650 13

− =
∂
∂









=
× ×

− ×p
T

..6 981×

		  =
× ×

× × ×
=

537 4 2 10
373 2 721 13 6 981

1666
7.

. .
cc

		  v v2 1 1666 1 1666 1667= + = + =cc cc cc

	Q 8.	 Calculate the specific volume of the vapour of carbon tetrachloride at the boiling point from the 
following data: boiling point = 77 8C at 1 atmosphere, latent heat = 46 cal/gm, density of liquid 
= 1.6 gm/cc, dp/dT = 23 mm of Hg/degree.

Ans.	 We know

		
L

T v v
p
T v2 1−( )

=
∂
∂











  

	 ∴	     
( ) . .

( ) . .
v v L

T
v

2 1

74 6 4 2 10
273 77 2 3 13 6 981

− =
∂
∂









=
× ×

+ × ×
=

p
T

1179 9. cc

		  v2 179 9 1
1 6

180 525= + =.
.

. cc

	Q 9.	 Calculate the change in temperature of the boiling point of water due to a change of pressure of 
1 cm of mercury (L = 536 calories, volume of 1 gm of water at 100 8C = 1 cc, volume of 1 gm 
saturated steam at 100 8C = 1600 cc).

Ans.	 We know

		
L

T v v
p
T v2 1−( )

=
∂
∂











  

	 or	 =
× ×

−
=

× ×536 4 2 10
373 1600 1

1 13 6 9817.
( )

.
dT

	 ∴	    dT = =
× × ×

× ×
change in temperature degree373 1599 13 6 981

536 4 2 107

.
.

		  = 0.35 degree

	Q 10.	Napthaline melts at 80 8C. The increase in specific volume is 146 cc/gm. Assuming the latent 
heat of fusion to be 35.6 cal/gm, find the change in the melting point per atmosphere pressure. 

  Ans.	We know

		   ∂
∂











=
−

p
T

L
T v vv ( )2 1
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	 ∴	         dT
T v v dp

L
 =

−
=

+ × × × ×
× ×

( ) ( ) . .
. .

2 1
7

273 80 0 146 76 13 6 981
35 6 4 18 10

		  = 0.035 per atmosphere

Q 11.	Calculate the change in the freezing point of water at 0 8C from the following data: L = 79.6 3
4.18 3 107 ergs/gm. T = 273.16 K, v1 = 1.0001 cc (specific volume of water at 0 8C) v2 = 
1.0908 cc (specific volume of ice at 0 8C).

  Ans.	We know

		
∂
∂

=
−

p
T

L
T v v( )2 1

	 or	 dT
T v v dp

L
 =

−
=

− ×( ) . ( . . ) .2 1 273 16 1 0001 1 0908 1 013××
× ×

10
79 6 4 18 10

6

7. .

		  taking dp =1 atmosphere = 76 13 6 981 1 013 106× × = ×. . dyne
cm2

		  dT = 2 0.0075 8C
	�	  This shows that the melting point of ice is lowered with increase of pressure, the lowering per 

atmosphere being 0.0075 8C . The pressure necessary to lower the melting point by 1 8C is 133 
atmospheres.

	Q 12.	Deduce a relation of variation of Cv with v.

  Ans.	We know	 C Q
T

T S
Tv

v v

=
∂
∂











=
∂
∂











	 From second relation,

		    
∂
∂







 =

∂
∂









S
v

t p
TT v

	 As dS is a perfect differential, we may write

		
∂

∂
∂
∂







 =

∂
∂

∂
∂







T v

S
v

S
T

		    
∂
∂

=
∂
∂

∂
∂











=
∂

∂
∂
∂




v

C T
v

S
T

T
T

S
vv

v

( )







=
∂

∂
∂
∂











=
∂
∂T v

T
T

p
T

T p
T

2

2

	Q 13.	Derive a relation of variation of Cp with p.

  Ans.	We know	 C Q
T

T S
Tp

p p

=
∂
∂











=
∂
∂











	 From fourth relation,

		
∂
∂











= −
∂
∂











S
p

v
TT p
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	 As dS is a perfect differential, we may write

		
∂

∂
∂
∂









 =

∂
∂

∂
∂







T

S
p p

S
T

	 So,	     
∂
∂

( )=
∂
∂

∂
∂











=
∂

∂
∂
∂




p

C T
p

S
T

T
T

S
pp

p







= −
∂

∂
∂
∂











= −
∂
∂



T p

T
T

v
T

T v
T

2

2






p

	Q 14.	Prove that for a perfect gas, Cp 2 Cv = R.

  Ans.	In the case of a perfect gas, pv = RT

	 ∴	     p
RT
v

v RT
p

= =and

	 So,	
∂
∂











=
∂
∂











=
p
T

R
v

v
T

R
pv p

and

		  C C T v
T

p
T

T R
v
R
p

TR
RT

Rp v
p v

− =
∂
∂









∂
∂







 = = =

2

	Q 15.	Prove that for a gas obeying Van der Waals’ equation,C C R a
RTvp v− = +











1 2 .

  Ans.	We have p a
v

v b RT+










− =
2

( )

	 or	 p a
v

RT
v b

+ =
−2

	 or	 p RT
v b

a
v

=
−

−
2

		
∂
∂











=
−

p
T

R
v bv

	 Again, we have	 a
v

RT
v b

p
2

=
−

−

	 or	 −
∂
∂











=
−

−
−

∂
∂




2

3 2

a
v

v
T

R
v b

RT
v b

v
Tp ( )






p

	 or	
∂
∂







 −

−










=
−

v
T

RT
v b

a
v

R
v bp ( )2 3

2

	 Now,	 C C T p
T

v
Tp v

v p

− =
∂
∂











∂
∂










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		  =
−









−








−
−

=
−

−

T R
v b

R
v b
RT
v b

a
v

T R
v b

RT
v( )

( )

(2 3

2

2

2
bb

a
v)2 3
2

−

		  =
−

−
=

−

R
a
v

v b
RT

R
a
v
v
RT

1 2 1 2
3

2

3

2( )
 since b is very small ( )v b v− ≈2 2

		  =
−

= −










= +




−
R
a

RTv

R a
RTv

R a
RTv1 2

1 2 1 2
1







	Q 16.	Prove that for a gas obeying the relation pv RT Bp= + , C C R p dB dTp v− = + 2 / .

  Ans.	We have	                             pv = RT 1 Bp

	 ∴	     ∴ = +p RT
v

Bp
v

		
∂
∂











= +
∂
∂











+
p
T

R
v

B
v

p
T

p
vv v

∂∂
∂










B
T v

	 ∴	
∂
∂







 −







 = +

∂
∂









p
T

B
v

R
v

p
v

B
Tv v

1

	 Again,	 v RT
p

B= +

		
∂
∂











= +
∂
∂











v
T

R
p

B
Tp p

	 ∴	    C C T p
T

v
dTp v

v p

− =
∂
∂









∂







		  = +
∂
∂

























+
∂
∂









−








T R
p

B
T

R
v

p
v

B
T

B
v

p

v

1
















		  = +
∂
∂

























+
∂
∂









−











T R
p

B
T

R p B
T

v Bp

v













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		  = +
∂
∂

























+
∂
∂









−( )








T R p B
T

R p B
T

p v Bp

v















		
=

+
∂
∂























−
=

+
∂
∂







T R p B

T
pv Bp

T R pR B
Tp

2

2 2 ++
∂
∂

























p B
T

RT

2
2

		  = +
∂
∂





















∂
∂









TR
RT

R p B
T

p B
T

2 2
2

neglecting

		  = +
∂
∂

R p B
T

2

	Q 17.	Prove that dQ C T
v

dv C T
pp

p
v=

∂
∂











+
∂
∂










vv

dp .

  Ans.	Let Q be a function of pressure and volumeQ f p v= ( , )

		  dQ Q
p

dp Q
v

dv
v p

=
∂
∂











+
∂
∂











		  =
∂
∂











∂
∂











+
∂
∂

Q
T

T
p

dp Q
Tv v 







∂
∂











p p

T
v

dv

	 Now,	 C Q
T

C Q
Tv

v
p

p

=
∂
∂











=
∂
∂











and

	 ∴	     dQ C T
p

dp C T
v

dvv
v

p
p

=
∂
∂









 +

∂
∂









	Q 18.	If dQ denotes the amount of heat absorbed in an isothermal change, prove that 

dQ C C T
v

dvp v
p

= −
∂
∂











( )

  Ans.	Let T be a function of p and v

		  T f p v= ( , )

		  dT T
p

dp T
v

dv
v p

=
∂
∂











+
∂
∂











	 For an isothermal change, dT = 0

	 ∴	    
∂
∂









 = −

∂
∂









T
p

dp T
v

dv
v p
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		  dQ C T
p

dp C T
vv

v
p=

∂
∂











+
∂
∂










pp

dv

		  =
∂
∂











−
∂
∂











C T
v

dv C T
v

dp
p

v
p

vv

		  = −
∂
∂









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	Q19.	 Prove that the ratio of isochoric and adiabatic pressure coefficient of expansion =
−
γ

γ 1
.
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Problems

1.	 If a substance of latent heat 50 melts in vacuum at 127 8C and contracts 1/10 of its bulk while 
melting, at what temperature will it melt at 100 atmospheres?

Ans. 125.06 8C
2.	 Calculate the specific volume of the vapour of ethyl ether at its boiling point, given BP = 346 8C 

at 1 atmosphere and density of liquid = 0.71 gm/cc, latent heat = 86 cal/gm, rate of increase of 
vapour pressure with temperature = 27 mm of mercury per 8C.

Ans. 328 cc/gm
3.	 Calculate the rate of increase of vapour pressure of water with temperature; given that boiling point 

= 100 8C, latent heat of steam = 539.4 cal/gm, specific volume of saturated steam at 100 8C = 1677 
cc per gm and specific volume of water at 100 8C = 1 cc per gm and J = 4.18 3 107 erg/cal.

Ans. 2.7 cm of Hg per 8C 
4.	 The density of iodine at the boiling point 185.3 8C is 3.71 gm/cc and L of vapourization is 

40.9 cal/gm. If the boiling point changes by 1 8C for a change of pressure of 17 mm of Hg, 
calculate the specific volume of vapour.

Ans. 164.27 cc/gm
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5.	 Calculate the melting point of ice when it is subjected to a pressure of 100 atmospheres; given 
density of ice = 0.917 gm/cc, latent heat of fusion = 334 Joule/gm. 

Ans. −0.745 8C 
6.	 Calculate the boiling point of benzene under pressure of 80 cm of mercury. The normal boiling 

point of benzene is 80 8C, latent heat of evaporation is 380 Joules, the density of vapour at boil-
ing point is 4 gm per litre and of the liquid is 0.9 gm per cc. 

Ans. 81.2 8C
7.	 Calculate the value of Cv per mole of silver from the following data at 0 8C, cp = 0.0556 cal/gm 8C, 

coefficient of linear expansion = 20.5 3 1026 per 8C, bulk modulus = 1.04 3 1012 dynes/cm2, density =
10.5 gm/cm3, atomic weight = 107.9, J = 4.18 3 107 erg/cal.

Ans. 5.74 cal/ 8C 
8.	 Paraffin wax melts at 52.7 8C, increases in specific volume 0.125 cc, find the change in melting 

point per atmosphere, L = 35.35 cal/gm.

Ans. 0.028 8C
9.	 Find the value of dp/dT in case of water ice. Given latent heat of ice = 80 cal/gm, volume of 

ice per gm = 1.09 cc.

Ans. 1.36 3 108 dyne/sq cm/degree
10.	 Calculate the specific heat of aluminium at constant volume at 0 8C from the following data: 

			   bulk modulus = 7.46 3 1011 dynes/cm2 
			     v = 0.37 cc per gm
			    a = coefficient of linear expansion = 25.6 3 1026 per 8C
			    cp = 0.201 cal per 8C

Ans. 0.19 cal per 8C
11.	 Calculate the specific heat of mercury at constant volume from the following data: 

			    a = 1.812 3 1024 per 8C
			    cp = 3.33 3 1022 calories
			    K = 3.9 3 1026 per atmosphere
			     d = 13.6 gm/cc

Ans. 0.03 cal per 8C 
12.	 Prove that the ratio of adiabatic and isobaric volume coefficient of expansion is 1

1−γ .

Questions

1.	 Deduce Maxwell’s thermodynamic relations and explain them.
2.	 Discuss free energy, enthalpy and thermodynamic potential. Deduce Gibb’s Helmholtz equation. 
3.	 Starting from Maxwell’s relation, derive Clapeyron’s equations.
4.	 With the help of Maxwell’s thermodynamic relations derive equations involving specific heats. 
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Chapter 11

11.1  Introduction

If we hold one end of a metal rod in fire, after some time we feel hot at our hand as that heat moves from 
the end of the rod on fire to the other end at our hand. We have also seen that if a beaker containing water 
and potassium permanganate at the bottom of the beaker is heated, after some times pink lines rise from 
the bottom of the beaker to the top of the beaker turning round, moving towards the bottom of beaker and 
again moving up. Also, we have the experience of feeling hot when we stand near a furnace. These three 
experiences categorize three different processes of transfer of heat. The first process of transfer of heat is 
called conduction of heat. Here, heat waves move through the solid medium without actual movement 
of the molecules of the medium. The molecules are heated, made to vibrate vigorously transferring heat 
energy to the adjacent colder molecule by collision. This operation is repeated. In the second case, the 
movement of the pink colour shows that the water molecules carry the heat energy from one end to the 
other. This process is called the convection of heat. The last event shows that no medium is necessary for 
the transfer of heat. This third process of transfer of heat is called radiation. The first two processes are 
slow and require medium, and the last process is rapid and requires no medium for heat transfer. 

In the first process, our sensation of hotness depends upon the material heated. Some materials are quickly 
heated and we feel hot in less time than by other materials which are heated less quickly. This difference is 
due to variation of a particular property of the material called thermal conductivity which is defined as the 
quantity of heat flowing per second normally through the opposite faces of a unit cube from the hotter side 
to the colder side when the temperature difference is unity. In CGS system, its unit is cal.cm21.sec21 8C21.

11.2 R ectilinear Flow of Heat

Let us consider a metal rod of area of cross section A whose one end is heated at a furnace (Fig. 11.1). 
Heat will be conducted towards the free end. The temperature at any section of the rod perpendicular to 

CONDUCTION OF HEAT 
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its length increases and after some time it becomes steady; before this state, it was variable state when 
the temperature varied with time. 

Let q be the steady temperature at a distance x and q 1 dq be the steady temperature at a distance 
x 1 dx. The quantity of heat flowing through the layer x per second is

		  Q KA d
dx1 = −

θ � (11.1) 

and the quantity of heat flowing through the layer x 1 dx per second is 	

		  Q KA d
dx

d
dx
dx2 = − +











θ
θ

� (11.2)

Heat gained by the rod of thickness dx per second is 
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This heat will be used up in two ways. A part of it will raise the temperature of the rod of thick-
ness dx and another part will be radiated from that part. If we neglect the heat lost by radiation, 
then the heat will be used up to heat the body. If A be the area of cross section of the body, r the 
density, c the specific heat of the material of the body and dq/dt is the rate of rise of temperature, 
then we can write

		  KA d
dx

dx Adx c d
dt

2

2

θ
ρ

θ
= � (11.4)

	 or	
d
dt

K
c
d
dx

h d
dx

θ
ρ

θ θ
= =

2

2

2

2 � (11.5)

where h = K/rc is called the diffusivity by Kelvin and thermometric conductivity by Maxwell; it is 
equal to the thermal conductivity divided by thermal capacity per unit volume. It determines the rapidity 
with which temperature changes take place in a given rod.

In the steady state,	 d
dt
θ

= 0

	 So,	 h d
dx

d
dt

2

2

2

2
0 0θ θ

= =or as h is not zero.� (11.6)

Fig. 11.1  Rectilinear flow of heat

θ + dθθ
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The solution of this equation gives
		  θ = +Ax B � (11.7)

where A and B are constants determined from the boundary conditions. 

	         At	     x = =0 0let θ θ � (11.8)

	 and      at	 x l= =let θ θ1 � (11.9)

From the boundary conditions, Eq. 11.7 changes to 

		  θ
θ θ

θ=
−

+1 0
0l

x � (11.10)

But if the radiation of heat is considered, then if p = the perimeter of the rod, E = emissive power of 
the surface, that is, the quantity of heat radiated per second per unit area per unit temperature difference, 
qe = excess temperature of the surface over the surroundings, then the heat radiated is given by Epdx qe.

Now, θ θ θe s= − where qs is the surrounding temperature� (11.11)

	 ∴	    θ θ θ= +e s

		
d
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d
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2

2

2

2

θ θ
= � (11.12)

	 and	 d
dt

d
dt
eθ θ

=  considering that qs remains constant� (11.13)

Then, Eq. 11.4 changes to
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This is known as Fourier equation of one dimensional heat flow. 

In the steady state,	 d
dt
eθ

= 0

	 or	 h
d
dx

e
e

2

2

θ
µθ= � (11.16)

	 or	
d
dx h

e
e e

2

2
2θ µ

θ α θ= = � (11.17)
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	 where 	 α
µ ρ

ρ
ρ
ρ

2 = = = =
h

Ep A c
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/
/

�

	 Let the solution of Eq. 11.17 be θe
mxAe= � (11.18)

where A and m are constants.

Then from Eq. 11.17, m m2 2= = ±α αor

	 ∴	 θ α α
e

x xAe Be= + − � (11.19)

where the constants A and B are determined from boundary conditions. 

	 At 	 x e= =0 0, ,θ θ source temperature excess over the surrounding� (11.20)

		  x e= ∞ =, ,θ 0 � (11.21)

		  x l e m= =, θ θ farthest end temperature over the surrounding� (11.22)

Using Eq. 11.20 in Eq. 11.19,

we get	  θ0 = +A B � (11.23)

Using Eq. 11.21 in Eq. 11.19,

we get                             0 0= ∞ ∴ =A A � (11.24)

Using Eq. 11.22 in Eq. 11.19,

we get              θ α
m

lBe= − � (11.25)

From Eqs  11.23 and 11.24,	 B = θ0

	 \ Eq. 11.19 becomes θ θ θα
m

x
Ep
AK

x
e e= =− −

0 0

.
� (11.26)

Distribution of temperatures along the length of the rod from 
the hot end is given by Eqs 11.10 and 11.26 and are graphically 
represented by curves I and II, respectively as shown in Fig. 11.2.

11.3 Ingen-Hausz’s method 
The experiment utilizing Eq. 11.26 was conducted due to Ingen-Hausz. In this experiment, thermal 
conductivities of different materials are compared and determined if that of any one material is known. 

Here, several rods of different metals and of equal area of cross section and polish to ensure 
equal emissivity are coated with wax. One end of each of the rods is placed in an oil bath as shown 
in Fig. 11.3.

Fig. 11.2  Temperature distance 
curve for rectilinear flow of heat 
(i) considering no radiation and 

(ii) considering radiation
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Heat is transferred from the end introduced 
into the bath towards the other end exposed 
outside. This causes melting of wax on the 
surface. At first, heat is transferred quickly in 
bismuth than in copper because at the variable 
state flow of heat depends on thermal capacity 
as well as thermal conductivity and as thermal 
capacity of bismuth is lower than that of copper. 
However when steady is reached, melting of wax 
stops. Wax melts up to that point of the rod whose 
steady state temperature is the melting point of 
wax. The lengths are measured up to which wax 
melts. Let l1 be the length and K1 be the thermal 
conductivity of the material of the first rod, l2, K2 be the similar quantities for the second rod; l3, K3 be 
the similar quantities for third rod, and so on.

Then from Eq. 11.26, we can write 

		
Ep
AK

l e
m

= log
θ
θ

0
� (11.27)

Since log / ,e mθ θ0  E, p and A are same for all bars, we can write
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= = = =…… constant � (11.28)

The thermal conductivities are in the simple ratio of the square of length up to which wax 
melts. If the thermal conductivity of any one material is known, then that of other materials can be  
calculated.

11.4 �E xperiment of Despretz, Wiedemann and Franz for Comparison  
of Conductivities of Two Different Materials 

In 1822, Despretz compared the thermal conductivities of two materials by heating one end of each of 
the rods made with the materials, and measuring temperature at three equidistant places of the rods. 
For this purpose three equidistant holes were made and filled with mercury in which mercury-in-glass 
thermometers were introduced for temperature measurement. 

Let q1, q2, q3 be the temperatures at distances x, x + a, x 1 2a from the hot end, respectively; then from 
Eq.11.19, we can write

		  θ α α
1 = + −Ae Bex x

		  θ α α
2 = ++ − +Ae Bex a x a( ) ( )

		  θ α α
3

2 2= ++ − +Ae Bex a x a( ) ( )

Fig. 11.3  Ingen Hausz’s experiment
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Putting y e a= α in Eq. 11.29, we have 
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The negative sign before the radical sign is impossible since it is experimentally observed that
θ θ θ1 3 22 1+ >/

Hence, n > 1.

	 So,	 e y n naα = = + −2 1

	 or	 αa n ne= + −log ( )2 1
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If the two bars are of same perimeter, area of cross section and emissivity and a is same, then we 
can write 
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Thus by determining temperatures at three places of each rod, ratio of their thermal conductivities 
can be determined. 

Following this rule, Wiedemann and Franz designed a more accurate apparatus. 

11.5  Forbes’ Method

It is one of the earliest methods for determination of thermal conductivity of a substance. The experi-
ment is a tedious one. Forbes performed the experiment in 1864.
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The principle of the method is that at the steady state, the quantity of heat passing through any 
section of a bar will be equal to the quantity of heat lost by radiation by the remaining part of the 
bar. Let l be the length, A be the area of cross section, r be the density, c be the specific heat and K 
be the thermal conductivity of the material of the bar. We consider a section of the bar at a distance  
x = x1 from the hot end of the bar; then according to the theory, the quantity of heat passing through 
the section at x = x1 per second

		  =








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=

KA d
dx x x
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� (11.32)

At the steady state, the amount of heat lost by the surface of the bar per second from x to x + dx is 

		                             Adx c d
dt

d
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ρ
θ θwhere is the rate of change of temperature.

So, the total amount of heat lost by radiation per second from the point x = x1 to the end of the bar 
(x = l ) is 
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At steady state, 
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By determining d
dt
dx d
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is called the static part as it is 

determined at the steady state of the bar and d
dt
dx

x x

x l
θ

=

=

∫
1

 is called dynamic part because it is determined when 
the bar is radiating. 

A long bar made of the material whose thermal conductivity is to be determined is heated at one end 
which is introduced into a hot bath of molten lead or silver (Fig. 11.4). 

The other end is practically at room temperature. A number of thermometers with their bulbs in-
troduced in the holes drilled on the bar within which a little quantity of mercury was given to make 
good contact between the metal and the bulbs of the thermometer indicate its temperature through 
out its entire length. When steady state is reached for which a few hours are required, the temperature 
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at each thermometer becomes constant and then the tempera-
tures are noted. The distribution of steady temperature follows 
exponential variation as given by Eq. 11.26. The excess tem-
perature over that of the room is plotted against distance and a 
curve as shown in Fig. 11.5 is obtained.

The curve meets x axis at l. A tangent is drawn at (x1, q) 
which meets x axis making an angle f, then

tanφ
θ

=










=
=

d
dx

AB
BCx x1

This is the static part of the experiment since it deals with 
the steady state of heat flow. 

There is another part of the experiment called the�������� �������dynami-
cal part. In this part of the experiment another bar of the same 
material, short in length, otherwise similar to the previous bar 
is heated uniformly up to the temperature which the hot end gained in the static part experiment and it 
is allowed to cool by suspending in the same surroundings as that of the bar. 

The excess temperature of the bar over the surroundings is noted with time and a curve is obtained 
as shown in Fig. 11.6. From this curve, the values of dq/dt corresponding to various values of q and, 
therefore, of x obtained in Fig. 11.5 are plotted in another curve as shown in Fig. 11.7.

Fig. 11.4  Forbes’ method

Fig. 11.5  Plot of excess 
temperature at different lengths 

of the bar

A

θ

φ

B C
Ix = x1 x

Fig. 11.6  Plot of q - t of the same rod

θ

t

Fig. 11.7  dq/dt vs x curve

x x = lx = x1
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On extrapolating the graph, it meets the x axis the corresponding value of x is l. From this graph, the 
value of

d
dt
dx

x x

x l
θ

=

=

∫
1

, which is equal to the area of the shaded portion of the graph, is obtained and is measured 

by a planimeter. So, value of K can be found out from Eq.11.34 if r, c,

		  d
dx

d
dt
dx

x x

x l
θ

φ
θ( ) and=

=

=

∫tan
1

are known.

The experiment is laborious and tedious since in the static part of the experiment, six hours are 
needed to attain the steady state.

There are some sources of error though; they are as follows: 

1.	 The specific heat of the metal of the bar does not remain constant as temperature changes. But 
specific heat is considered constant, so error appears.

2.	 The temperature distribution in the two cases (static and dynamic experiments) is not same.

11.6 C onductivity of Poor Conductors

In the case of poor conductors as the heat conduction is very small, the specimen can not be taken as 
bars as in the case of the good conductors because in that case the heat loss from the sides will be many 
times the heat conducted. Since the rate of flow of heat is proportional to the cross sectional area and 
inversely proportional to the thickness, substances in the form of a thin plate, sphere or cylinder will be 
favourable. Wood, rubber, glass, asbestos, clay and cork are poor conductors. 

We shall consider here three methods of determining thermal conductivities; they are: 

1.	 Lee’s disc method
2.	 Spherical shell method
3.	 Cylindrical shell method

11.6.1  Lees’ Disc Method
This method is used to measure thermal conductivity of poor conductors such as wood, ebonite, card 
board and asbestos. The material is taken in the form of a circular sheet B placed between a steam 
chamber A and solid disc C, both made of brass as shown 
in the Fig. 11.8.

Two thermometers are inserted in the holes drilled in the 
solid base of steam chamber A and the solid disc C.

As steam is passed through A the solid base gets heated, 
and heat is conducted to C through B. This goes on till the 
temperature recorded by two thermometers becomes con-
stant. This is the steady state. Let the two steady tempera-
tures be q1 and q2. In this state, the heat conducted through 
B to C is radiated by the exposed surface of C as there is 
no rise of temperature of thermometer T2. 

Fig. 11.8  Lees’ disc method
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Fig. 11.9  q – t plot to determine 
temperature gradient

θ

t

Fig. 11.10  Apparatus to measure 
thermal conductivity of liquids
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F

So, we may write for the heat conducted per second

	                           Q
KA

d
=

−( )θ θ1 2 � (11.35)

where K is the thermal conductivity of the material, A is 
the area of the cross section and d is the thickness of the 
sheet.

This Q can be measured in the following way. After 
the steady state has reached, the steam chamber A and the 
sheet are withdrawn and the lower disc is heated above, 
say, 10 degrees of its steady value either by a burner or 
by putting the steam chamber directly over it. When the 
temperature is 10 degrees above its steady value, the sheet is again placed in between A and C. 
C will radiate as its temperature is higher, and its temperature is recorded at an interval of half a 
minute. When the temperature reaches q1, flow of steam is stopped and the procedure of noting the 
temperature of the lower disc at an interval of half a minute is continued till the temperature is below 
5 degree of q2. The reading of q with t is plotted as shown in Fig. 11.9. 

Then at temperature q2, a tangent is drawn to the curve and that will give (dq/dt)q = q2
The amount of heat radiated per second from the lower slab is

	                              Q ms d
dt

=










=

θ

θ θ2

� (11.36)

where m = mass of the lower disc and s = specific heat of the 
material of the lower disc.

From Eqs  11.35 and 11.36, we can write

	 K

msd d
dt

A
=











−
=

θ

θ θ
θ θ2

1 2( )
� (11.37)

Thermal conductivity of liquids can also be determined 
by this method with some modifications. The arrangement of 
the apparatus is as shown in the Fig. 11.10.

A, C, D and F are four copper discs. In between D and F, 
the experimental liquid is kept in L surrounded by ebonite ring 
E. G is a glass disc and B houses the heating coil. This com-
bined arrangement so formed is varnished for providing uni-
form known emissivity. The whole thing is within a constant 
temperature enclosure. Heat is produced by connecting the 
heating coil to a constant source of electromotive force. Four 
thermocouples are provided to measure the temperatures of 
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the two faces of glass discs and the two faces of liquid trapped by ebonite ring. By heating the coil, steady 
temperatures recorded by the four thermocouples are noted. In the steady state, let q1, q2, q3 and q4 be the 
temperatures recorded by four thermocouples, I be the current flowing through the heating coil and E 
be the potential difference between the two ends of the heating coil, then we can write for the amount 
of heat supplied per second

		  Q EI
J

KA
d

K A
d

K A

g

l l

l

e e= =
−

=
−

=
−( ) ( ) ( )θ θ θ θ θ θ1 2 3 4 3 4

dde
� (11.38)

where K = thermal conductivity of glass
	 Kl = thermal conductivity of liquid
	 Ke = thermal conductivity of ebonite
	 q 1 = steady temperature of upper glass face
	 q 2 = steady temperature of lower glass face
	 q 3 = steady temperature of upper surface of ring
	 q 4 = steady temperature of lower surface of ring
	 A = area of cross section of glass disc
	 Al = area of cross section of liquid
	 Ae = area of cross section of ebonite
	 d = thickness of glass
	 dl = thickness of liquid
	 de = thickness of ebonite
From Eq. 11.38, Kl can be calculated. For accurate measurement, loss of heat due to radiation from 

the curved surface of G, D and E should be considered.

11.7 S pherical Shell Method

In spherical shell method employed by Nusselt two hollow con-
centric spheres, one of copper and 30 cm diameter (A) and the 
other (B) of aluminium and 15 cm diameter are used; the spheres 
can be divided into two parts and can also be united (Fig. 11.11).

The material under test such as powdered cork, charcoal and 
clay is placed between the intervening space of the two spheres. 
The source of heat is placed at C, which is electrically driven. 

Thermocouples are provided to measure the temperatures 
of the material at point of different radii which will be spheres 
of isothermal surfaces. Thermal conductivity can be calculated 
from the heat generated, electrical energy spent and the tem-
peratures at different surfaces of equal radii. The theory of the 
method is as follows: 

Let us consider a spherical surface of radius r; the quantity of heat flowing outwards through the 
spherical surface of radius r per second= 24pr2 K dq/dr where dq/dr is temperature gradient. This must 
be equal to the amount of electrical energy (Q) supplied. So, we can write

		  Q r K d
dr

= −4 2π
θ � (11.39)

Fig. 11.11  Nusselts’ apparatus

A
B
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	 or	 d Q
K
dr
r

θ
π

=
−
4 2

	 Integrating, 	 θ
π

= +
Q
Kr

A
4

� (11.40)

In the steady state, the temperature at r1 is q1 and that at r2 is q2 then

		  θ
π1

14
= +

Q
Kr

A � (11.41)

		  θ
π2

24
= +

Q
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A � (11.42)
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2π θ θ( )
( )

� (11.43)

where I = current flowing through heating coil of resistance R, E = potential difference between the two 
ends of the heating coil and J = mechanical equivalent of heat. 

Knowing Q, r1, r2, q1, q2, K can be calculated.

11.7.1  Temperature Distribution at a Point at a Certain Time
Dividing Eq. 11.41 by r2 and Eq. 11.42 by r1 and then subtracting them, we get
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� (11.44)

From Eqs  11.40, 11.43 and 11.44, we can write

		  θ
π θ θ

π
θ θ

=
−

−
+

−
−

4
4

1 2 1 2

2 1

1 2

1 2

1

2

K r r
Kr r r

r r
r r r
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22

1r











� (11.45)

This is the expression for the temperature at any spherical surface of radius r.

Rigorous proof:  The simplest case of heat conduction in three dimensions is that of a sphere. With 
reference to Fig. 11.12, we can write for the conduction of heat in three dimensions:

		  h d
dx

d
dy

d
dz

d
dt

2

2

2

2

2

2

θ θ θ θ
+ +











= � (11.46)

At steady state,		                             d
dt
θ

= 0
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	 So,	    
d
dx

d
dy

d
dz

2

2

2

2

2

2
0θ θ θ

+ + = � (11.47)

Quantity of heat flowing per second across the surface of radius r

		  = −4 2π
θr K d
dr

	 Again,	 d
dx

d
dr
dr
dx

θ θ
= � (11.48)
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	 Similarly, 	 d
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d r
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2
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θ θ θ
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Adding
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Fig. 11.12  Schematic representation of spherical shell method in cartisian coordinates

y

r2

x

r

r1

z

Chapter 11.indd   351 4/11/2011   11:47:07 AM



352    Heat and Thermodynamics

In the case of spherical shell,

		  r x y z2 2 2 2= + + � (11.53)
Differentiating this with respect to x, 

		  2 2r dr
dx

x= � (11.54)

Differentiating again with respect to x, 

		  r d r
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dr
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Similarly, we can get 

		  r dr
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y= � (11.56)
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	 and	 r dr
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z= � (11.58)
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Squaring Eqs 11.54, 11.56 and 11.58, and then adding them, we get
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From Eqs 11.53 and 11.60,
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Adding Eqs 11.55, 11.57 and 11.59,
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From Eqs 11.61 and 11.62, we get
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From Eqs 11.52, 11.61 and 11.63, we can write
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But in the steady state,	 d
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From Eqs 11.39, 11.65 and 11.66, we get
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11.8 C ylindrical Shell Method

Thermal conductivity of bad conductors may also be determined by cylindrical shell method. Here, the 
space between two hollow cylinders of radius r1 and r2 is filled with the bad conducting material (saw 
dust, sand, fire clay, rock) (Fig. 11.13).

The source of heat lies along the axis of the cylinder so that the heat flows radially along the surface 
of the cylinder as the cylinder is symmetrical about its axis where the source of heat is kept. The tem-
peratures of the cylindrical surfaces of radii r1 and r2 are measured by thermocouples. Let the steady 
temperatures be q1 and q2 corresponding to radii r1 and r2, respectively. As the isothermal surface is 
cylindrical, the amount of heat Q flowing per second through this surface of a cylinder of radius r at the 
steady state 

		  Q rlK d
dr

= −2π
θ � (11.68)

where l = length of the cylinder 
     K = thermal conductivity of bad conducting material

	  d
dr

θ
= temperature gradient

	 From Eq. 11.68,	 d Q
lK
dr
r

θ
π

= −
2

� (11.69)

Integrating Eq. 11.69, we get 

		  θ
π

= − +
Q
lK

r Ae2
log � (11.70)

where A is a constant.
If q1 and q2 are the steady temperatures at the surface of a cylinder of radius r1 and r2, then

		  θ
π1 12

= − +
Q
lK

r Aelog � (11.71)

	 and	 θ
π2 22

= − +
Q
lK

r Aelog � (11.72)

Fig. 11.13  Schematic representation of cylindrical shell method
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Heat is produced by sending current I through the heating coil of resistance R placed along the axis 
of the cylinders, then Q = I2R/J = EI/J (symbols explained earlier). Then, we have

					       Q
EI
J

lK
r
re

= =
−2 1 2

2

1

π θ θ( )

log
� (11.75)

from which K can be calculated 
Temperature gradient at any point. 

Multiplying Eq. 11.71 by loge r2 and Eq. 11.72 by loge r1 and then subtracting, 
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Then using Eqs 11.70 and 11.75,
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This is the expression for temperature on cylindrical surface of radius r in the steady state. 

11.8.1  Determination of Thermal Conductivity of Rubber 
The required apparatus consists of a rubber tubing B, a copper boiler A for producing steam, a calorim-
eter C, a thermometer T and a beaker R as shown in Fig. 11.14. 

The procedure of the experiment is as follows. Let m gm of water be kept in the calorimeter C of 
water equivalent W gm. One end of the rubber tubing is fitted at the mouth of the boiler, the other end is 
placed inside a beaker R. A certain length l of the rubber tubing is dipped into water in the calorimeter. 
Let the initial temperature recorded by the thermometer in water be q1. Now, the steam is produced in 
A by a heater and the temperature recorded by thermometer T is recorded at an interval of 3 minutes. 
The temperature of water rises slowly and then becomes steady at q2 after a certain interval of time. The 
amount of heat conducted through rubber in time t is 
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where K = thermal conductivity of rubber
	    l = length of rubber tubing dipped in water
	    q = steam temperature, the temperature at the surface of inner radius r1
   q1 + q2/2 = temperature at the surface of outer radius r2, the average temperature of water of the 

calorimeter
The amount of heat gained by water and calorimeter = w m( ) ( )θ θ θ θ2 1 2 1− + −
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To measure the radii of the rubber tube, the impression of one end of the tube is taken on a piece 
of paper and the inner and outer radii are measured by travelling microscope. K can be calculated by 
measuring temperatures and if l is known. 

Fig. 11.14  Apparatus to determine thermal conductivity of rubber
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11.8.2  Determination of Thermal Conductivity of Glass 
The experimental arrangement for the measurement 
of thermal conductivity of glass is shown in Fig. 11.15. 

A is a steam jacket through which steam is 
passed. A encloses symmetrically a glass tube B 
through which water is allowed to flow; the initial 
temperature is recorded by thermometer T1 and the 
temperature of outflow of water at the other end 
is measured by thermometer T2 . There is a spiral 
wire inside the glass tube B to ensure slow flow and 
good contact of water with the jacket.

Temperatures recorded by T1 and T2 are noted at 
regular intervals of 3 minutes as the steam is passed. 
The temperatures rise with time and after a considerable amount of time, the temperatures will attain constant 
values; let the steady temperature of inflow and outflow of water be q1 and q2, respectively. When steady state 
is reached, water flowing out is collected for an interval of time t; let the mass be m. The length of the glass 
tube exposed to steam is measured and let it be l. The internal and external radii of the glass tube are mea-
sured, let them be r1and r2, respectively. The outer surface of the glass tube is at steam temperature q and the 
inner surface will be at average temperature of the inflowing and outflowing water. Heat will be conducted 
through the glass and will be taken by flowing water. Heat conducted, Q per second, through glass is 
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The heat taken by water is m
t

( )θ θ2 1−

Equating, we get
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Fig. 11.15  Experimental arrangement 
for measurement of thermal conductivity 

of glass
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11.8.3  Conductivity of Gas 
Determination of thermal conductivity of gases faces great difficulty as it is very small. Gases require con-
tainer to be kept in, which are of larger thermal conductivity than gases. Again, two other processes of heat 
transfer—convection and radiation—also play an important role in the determination of thermal conductivity 
of gases. Scientists devised methods overcoming these difficulties. We shall describe one such method.

Laby and Hercus method:  Laby and Hercus method was developed by Laby and Hercus in 1919. The 
arrangement of the apparatus is as shown in Fig. 11.16. 

P, Q and S are copper plates. R is a guard ring made of copper. P, Q and R are heated electrically and 
maintained at temperature q1.

The gas under test is enclosed in between P, Q and S. The principle of this method is that heat is sup-
plied electrically in P to the gas, for eliminating convection. Gas present in between Q and S conducts 
heat from Q to S which is taken away by water flowing below S. A guard ring R surrounds Q to make the 
lines of flow of heat normal to Q and is maintained at the same temperature as Q by another heater coil 
in R. To perform the experiment, the heaters in P, Q and R are switched on and the temperatures of Q 
and S are noted from thermocouples attached to them with time. After some time, the temperature will 
be steady; let the steady temperature of Q be q1 and that of S be q2, d is the distance of S from Q and A 
is the area of cross section of Q. If E and I are the potential difference and current in the heater coil, and 
K is the conductivity of gas, then we can write

		  EI
J

KA
d

=
−( )θ θ1 2 � (11.81) 

The action due to radiation is eliminated by performing another experiment in which the electrical 
energy supplied is changed from EI to E ‘I’ and d is changed to d′ to keep the temperature difference 
q1 2 q2 same. Hence, the amount of heat transfer by radiation h is unchanged. So, we can write

		  EI
J

KA
d

h=
−

+
( )θ θ1 2 � (11.82)

		  ′ ′
=

−
′

+
E I
J

KA
d

h
( )θ θ1 2 � (11.83)

Subtracting Eqs 11.82 and 11.83, we get

		  EI E I
J

KA
d d

− ′ ′
= − −

′











( )θ θ1 2
1 1 � (11.84)

K can be calculated as other quantities are known. 

Fig. 11.16  Apparatus used by Laby and Hercus
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11.9 P eriodic Flow of Heat

In all the considerations till now, source of heat is 
supplying heat at a constant rate. Now, we shall con-
sider a source which supplies heat periodically to one 
end of a bar. Here, we may also include the heat loss 
by radiation from the surface of the bar or exclude it. 
Excluding radiation means that the bar is having a 
guard ring or jacket which is similar to the propaga-
tion of periodic temperature wave in a semi infinite 
solid in a specified direction. It resembles the daily 
and yearly temperature variation in the earth’s surface.

In dealing with such problem, we consider one end of such a jacketed bar in a source whose periodic 
variation of temperature is given by θ θ ω θ= 0 cos ,t is the temperature measured from its mean value, q0 
is amplitude of temperature variation, w is the pulsatance = =2 2π π

τn 2p/t where n is the frequency and t 
is the time period, t is the time. The situation is shown in Fig. 11.17. 

The variation of temperature at points of the bar can be described by the diagram shown in  
Fig. 11.18. This diagram is meant for a general case for an unjacketed bar whose mean temperature at the 
source end is higher than that of the far end. For the bar under consideration, the dotted line coincides with 
x axis. At any given point along the bar, the temperature variation can be written in the form 

		  θ ω= − ∈a tcos( ) � (11.85)

where a = amplitude

		  ∈
=

ω
time l ga �

The time lag is due to the finite speed of propagation of the temperature wave depending on the heat 
capacity of the material of the bar. The amplitude decreases with distance from source end; at a large 
distance, the temperature of the bar becomes same as that of the surroundings.

Considering the heat flow along the x axis, let the equation be 

		  d
dt

h d
dx

θ θ
=

2

2
� (11.86)

Fig. 11.17  Scheme showing periodic flow 
of heat
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Fig. 11.18  Temperature variation at points of the bar
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	 where	 h K
c

= =
ρ

diffusivity.

With the conditions at x t= =0 0, cosθ θ ω

		  and at x = ∝,    q ≠ ∝

Let us try a solution 

		  θ α β= +Ae x i t � (11.87)

where i = −1 , A, a and b are constant.

		  d
dt

i Ae ix i tθ
β βθα β= =+

		  d
dx

Ae x i tθ
α αθα β= =+

		
d
dx

Ae x i t
2

2
2 2θ

α α θα β= =+

Putting the values in Eq. 11.86, we get

		  i h i
h

βθ α θ α
β

= = ±2 �

then from Eq. 11.87,

		
θ

β
β

=
± +

Ae
i
h
x i t � (11.88)

Again from	 ( )1 1 2 1 2 1 22 2+ = + + = + − =i i i i i

	 ∴	     i i= +
1
2

1( )

From Eq. 11.88, we get

		    θ
β

β
=

± + +
Ae h

i x i t
2

1( )

	 or	  θ
β

β
=

− + +
Ae h

i x i t
2

1( )
 since q ≠ ∞ when x = ∞� (11.89)

	 ∴	 θ
β β

β

=
− −









Ae eh

x i t
h
x

2 2

		  = −









+ −















−
Ae t

h
x i t

h
xh

xβ

β
β

β
β2

2 2
cos sin











� (11.90)
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Since the imaginary term is of no use, we get

		  θ β
ββ

= −












−
Ae t

h
xh

x
2

2
cos � (11.91)

At	 x = 0, q = A cos b t
We know that at x = 0, θ θ ω= 0 cos t

	 ∴	 A t tcos cosβ θ ω= 0

Comparing A = q0 and b = ω, our Eq. 11.91 becomes

		  θ θ ω
ωω

= −












−

0
2

2
e t

h
xh

x
cos � (11.92)

The equation shows that the temperature wave is travelling with a velocity 2ωh.
If we consider radiation from the side of the bar, then our equation is 

		
d
dt

h d
dx

θ θ
µθ= −

2

2 � (11.93)

where m = Ep/A rc, the symbols having their usual meanings.
The initial conditions are: 

		              At x = 0, θ θ ω= 0 cos t

		  and at x = ∝,  q ≠ ∝

	 For solving, let us put θ ψµ= −e t � (11.94)
	 where y is a function of x and t 

		  d
dt

e e d
dt

t tθ
µ ψ

ψµ µ= − +− −

		  d
dx

d
dx
e tθ ψ µ= −

		  d
dx

d
dx

e t
2

2

2

2

θ ψ µ= −

Putting these values in Eq. 11.93, we get 

		  − + = −− − − −µ ψ
ψ ψ

µ ψµ µ µ µe e d
dt

h d
dx

e et t t t
2

2

	 or 	
d
dt

h d
dx

ψ ψ
=

2

2

This equation can be solved as in the previous way.
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11.10 A ngstrom’s Experiment

Angstrom determined the conductivity of the material of a bar by periodically heating and cooling it. 
The bar was heated and cooled periodically by passing steam and water at regular intervals through a 
chamber at one end of the bar as shown in Fig. 11.19. 

In this way, the temperature at points along the bar fluctuate periodically and on account of surface 
radiation the temperature amplitude diminishes as the distance from the region of supply increases.

The bar must be chosen so that it is sufficiently long to allow us to neglect the effect of terminal 
faces. The fluctuations should die away at a short distance from the cooler end, which thus has the same 
temperature as the air surrounding it. When the heating and cooling continues long enough, the periods 
develop themselves completely so that the mean temperature at any point of the bar maintains some 
constant value. 

The bar was heated for 12 minutes by passing steam and cooled by passing water for 12 minutes so 
that the period was 24 minutes in total. Temperatures were observed at two points x and x + l along the 
bar every minute by means of two thermocouples.

The temperature along the bar will be periodic both in distance and in time. The total effect is a 
propagation of heat wave which is damped, that is, the amplitude of temperature variation at any point 
dies away as one proceeds along the bar towards the cold end.

So, the temperature q at any point is a function of x and t and is expected to be of the form 

		  θ ω β γα( , ) sin( )x t A e n t xn
n

n
x

n n
n= + +

=

= ∞
−∑

0
� (11.95)

In this case since there is no guard ring, the equation is 

		  d
dt

h d
dx

θ θ
µθ= −

2

2
� (11.96)

From Eq. 11.95,

		  d
dt

A e n n t xn
n

n
x

n n
n

θ
ω ω β γα= + +

=

= ∞
−∑

0
cos( )

		
d
dx

A e n t xn n
n

n
x

n n
n

θ
α ω β γα= − + +

=

= ∞
−∑ ( ) sin( )

0

		  + + +
=

= ∞
−∑ A e n t xn

n

n
x

n n n
n

0

α β ω β γcos( )

Fig. 11.19  Schematic representation of Angstrom’s experiment
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d
dx

A e n t xn
n

n

n
x

n n
n

2

2
0

2θ
α ω β γα= −( ) + +

=

= ∞
−∑ sin( )

		  + − + +
=

= ∞
−∑ A e n t xn

n

n

n
x

n n n
n

0
( ) cos( )α β ω β γα

		  + − + +
=

= ∞
−∑ A e n t xn

n

n

n
x

n n n
n

0
( )  cos( )α β ω β γα

		  − + +
=

= ∞
−∑ A e n t xn

n

n
x

n n n
n

0

2α β ω β γsin( )

Therefore, Eq. 11.96 changes to 

		  A n e n t xn
n

n
x

n n
n

=

= ∞
−∑ + +

0
ω ω β γα cos( )

		  = + +



 =

= ∞
−∑h A e n t xn

n

n

n
x

n n
n

0

2α ω β γα sin( )

		  − + +
=

= ∞
−∑2

0
A e n t xn

n

n

n n
x

n n
nα β ω β γα cos( )

		  − + +



=

= ∞
−∑ A e n t xn

n

n
x

n n n
n

0

2α β ω β γsin( )

		  − + +
=

= ∞
−∑µ ω β γαA e n t xn

n

n
x

n n
n

0
sin( )

Equating coefficients of sin( ),n t xn nω β γ+ + we get 

		  h A e A e An
n

n

n
x

n
n

n

n
x

n
n

n
n n

=

= ∞
−

=

= ∞
−

=

=

∑ ∑−










=
0

2

0

2

0

α β µα α
∞∞

−∑ e nxα

	 or	                    h n n( )α β µ2 2− =

	 or	                         α β
µ2 2

n n h
− = � (11.97)

Equating coefficients of cos( )n t xn nω β γ+ +

		  A n e h A en
n

n
x

n
n

n

n n
xn n

=

= ∞
−

=

= ∞
−∑ ∑= −

0 0
2ω α βα α

		  n h n
hn n n nω α β α β
ω

= − ∴ = −2
2

� (11.98)
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From Eqs 11.97 and 11.98, an and bn can be determined and the complete solution is known.
To find An and gn, the temperatures at two points x and x 1 l are determined as a function of t

		     θ ω δx n
n

n

nB n t= +
=

= ∞

∑
0

sin( )

		  θ ω δx l n
n

n

nB n t+
=

= ∞

= ′ + ′∑
0

sin( )

where Bn, Bn', dn and dn' are constants for the two places and are given by 

		  B A en n
xn= −α

� (11.99)

		  ′ = − +B A en n
x lnα ( )� (11.100)

		  δ β γn n nx= + � (11.101)

		  ′ = + +δ β γn n nx l( ) � (11.102)

	 From Eq. 11.99,	 log loge n e n nB A x= −α

	 From Eq. 11.100,	 log log ( )e n e n nB A x l′ = − +α

	 Subtracting	 αn e
n

n

l
B
B

=
′

log � (11.103)

	 from Eqs 11.101 and 11.102, ′ − =δ δ βn n nl � (11.104)

	 from Eqs 11.103 and 11.104, we get

		  α β δ δn n e
n

n
n nl

B
B

2 =
′







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

′ −log ( )

	 ∴	          α β δ δn n e
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B
B

=
′


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
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1
2 log ( ) � (11.105)

		                         = −
n
h
ω

2
    from eqn. (11.98)

So, we get 
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π
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ρ
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log ( )
� (11.106)
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where	 h = diffusivity
	 K = thermal conductivity
	 r = density
	 c = specific heat of the material

	 ∴	 K n l c

T B
Be
n

n
n n

=

′











− ′

π ρ

δ δ

2

log ( )
� (11.107)

Thus, the value of K can be calculated if all the quantities on the right hand side are known.
We get as many independent values of h as there are terms in Eq. 11.95. Generally, first two or three 

terms are important as the coefficients diminish rapidly.
The evaluation of the constants Bn, Bn', dn and dn' can be done as follows:

		  θ ω δx n
n

n

nB n t= +
=

= ∞

∑
0

sin( )

		  = + + + + +B B t B t0 0 1 1 2 22sin sin( ) sin( )δ ω δ ω δ ……

In order to obtain the value of Bn, we integrate the above equation after multiplying it by sin( )nwt dt

		      θ δ δ
π π π

x nwt dt B nwt dt B wt
0

2

0
0

2

0 1
0

2

1∫ ∫ ∫= + +sin( ) sin sin( ) sin( )sin(( ) ........nwt dt+

		  + +∫ B n t dtn n
0

2
2

π

ω δsin ( )

On integration, all terms except the nth term in the right hand side vanish. So, we get 

		  θ ω π δ
π

x n nn t dt B
0

2

∫ =sin( ) sin

	 or	
1

0

2

π
θ ω δ

π

x n nn t dt B S∫ = =sin( ) sin sin

	 Similarly,	
1

0

2

π
θ ω δ

π

x n nn t dt B S∫ = =cos( ) cos cos

	 ∴	    B S Sn
2 2 2= +sin cos� (11.108)

	 and 	 tan sin

cos

δn
S
S

= � (11.109)

To find the values of Scos and Ssin, first the curve between qx and t is plotted from which a second curve 
between qx sin wt and t is plotted and a third one between qx cos wt and t is drawn. In these curves, the 
area lying between the curve and the t axis for values lying between t = t1 and t = t1 1 T is measured 
with a planimeter giving Ssin and Scos. 
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To find the values of Bn' and dn', we have to multiply by sin(nwt)dt and cos(nwt)dt and proceed as 
before. The same process has to be applied for q x 1 1.

11.11 C onductivity of Earth’s Crust

The periodic flow of heat is very efficient in determining the conductivity of earth’s crust. The 
earth’s surface gets heated during the day and cooled during the night. This heating and cooling 
causes heat wave to travel inside the earth (diurnal wave). The earth also receives more heat during 
summer than in winter; this causes another heat wave to pass through earth’s crust having a period of 
one year (annual wave). We assume the wave to be simple harmonic due to which the diurnal wave 
comes close by this, while the annual wave departs much. The matter is equivalent to an infinite wall 
periodically heated and cooled at one end or to a bar provided with a guard ring which is periodi-
cally heated and cooled. For investigation of movement of temperature wave inside the earth, some 
thermometers are provided at different depths. 

The fluctuation of temperature at any point with in the earth can be written as 

		  θ θ ω
ωω

= −












−

0
2

2
e t

h
xh

x
cos � (11.110)

where x is the distance of the point from the source w = 2p/T and velocity of wave = 2ωh , 
2 02 2ω β α β µh v w hn n, / /= − − = =and in our case as radiation loss in avoided.

	 So,	 α βn n= −

	 Now,	 α β
ω

n n
n
h

= −
2

	 or	 β
ω

n
n
h

2

2
=

		  β
ω π π

= = =
2

2
2h T h Th

� (11.111)

		  α β
π

= − =
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�
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hT
T

hT h
T

= − = = =
ω

π
ω

π
π

π
π2 2

� (11.112)

For daily wave, T = 24 hours = 86400 sec
Taking h = 0.0049 for ordinary moist soil,

		  v =
×

= × −2 3 14 0 0049
86400

8 4 10 4. . . cm/sec � (11.113)
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11.12 W iedemann–Franz Law

Wiedemann–Franz law states that the ratio of the thermal (K) to electrical conductivities (s) is the same 
for all metals at the same temperature. 

		  K
σ

= constant � (11.114)

Lorentz extended it by adding that the value of the ratio is proportional to absolute temperature

		  K
Tσ

= constant � (11.115)

Drude gave a mathematical deduction based on the assumption that the presence of free electrons 
inside metals is responsible for the thermal and electrical conductivities. He further assumed that these 
free electrons behave like gas molecules and that the law of equipartition of energy is valid for them.

For deducing the law, we have to deduce thermal conductivity and electrical conductivity in terms 
of electrons. 

Let us take the case of electrical conductivity. When a block of metal is subjected to electric field 
(i.e., a voltage is applied between two points of a metal block), the electron cloud will develop a drift 
velocity in the direction opposite to that of the field. While calculating the drift velocity, we shall neglect 
the Maxwellian distribution of electronic velocity and attribute to all free electrons the same speed u of 
thermal agitation which we shall take to be large compared with the superposed drift velocity produced 
by the field. Furthermore on account of small dimensions of the electrons, we shall assume that colli-
sions between electrons occur so infrequently as to be negligible in number compared with collisions 
of electrons with atoms. 

Let e be the charge of the electron and m be its mass; then the acceleration given to it by a field E is 

		  f eE
m

=

If l is the mean free path between two successive collisions and u is the velocity of thermal agitation, 
then time taken per collision is l/u.

Then, the drift velocity acquired in the course of single free path is v ft f u eE m u= = =( / ) ( / )( / )λ λ
in the direction of the field. 

As the drift velocity is zero at the beginning of the free path, the mean drift velocity is half of this, that is

		  v eE
m u

=
1
2

λ
� (11.116)

Let us consider unit area of the metal. Thus in one second, the electrons contained in a cylinder of 
volume1 1× × =v v will pass through unit area in unit time.

The total charge passing through a unit area of cross section in unit time or the current developed J nve=
where n is the number of electrons per cc and J = current density = the charge flowing through unit area 
at right angles to the direction of flow in unit time.

		  J nve nEe
mu

= =
1
2

2λ � (11.117)
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Let us consider a cylinder of base area unity, and the bases are separated by unit distance. Let its 
resistance be r. 

	 Its conductivity = 1
ρ

σ=

The conductivity is defined as the ratio of the current density to the electric intensity. Therefore,

		  σ
λ λ

= = =
J
E

ne E
muE

ne
mu

1
2

1
2

2 2

� (11.118)

As u varies with the square root of T, the conductivity should vary inversely with the square root of 
the absolute temperature; provided the other quantities appearing in this equation are constants. In pure 
metal, it is actually nearly proportional to the inverse first power of T. 

Then, we consider the case of thermal conductivity. Let us take the origin at the centre of a unit area 
perpendicular to the x axis (Fig. 11.20). 

Let us now consider the electrons whose free paths originate in volume element dt at P. If n be the 
number of electrons per unit volume, then ndt electrons are inside the volume element dt. 

Now, we shall calculate the heat Q which passes through unit area in unit time in a metal which has 
temperature gradient along the x axis.

Let the collision frequency of an electron be G, that is, the number of collisions of an electron per 
second. Therefore, the total number of collisions per second due to electrons contained in the volume 
dt is Gndt and they start out on a fresh free path.

The distance of body from origin = r, the probability of a molecule to travel a distance r without 

having collision=
−
e

r
λ .  The total number of molecules travelling a distance r without suffering collision 

		  =
−
e n d

r
λ τΓ � (11.119)

As the unit area at ‘o’ subtends a solid angle cosq/r2 at P, only cosq/4pr2 of these electrons are passing 
through unit area at ‘o’. 

The number of electrons whose free paths begin at p crossing this unit area at ‘o’ per sec is 

		  n d
r
e

r

Γ τ
θ

π
λcos

4 2

−
�

Fig. 11.20  Figure to study the Wiedemann-Franz law
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Let us now consider electrons contained in the ring of volume 
2pr2 sinqdqdr (Fig. 11.21).

Let T be the temperature at the origin; then the temperature of the ring =
T + ∂T/∂X rcos q.

According to the law of equipartition of energy, energy carried 
out by each electron is

		
3
2
k T T

x
r+

∂
∂











cosθ

Therefore, the total energy carried in through the surface in the 
positive direction of the x axis is 

		  Q
r
e n r d dr k T T

x
r

r

= − +
∂
∂
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∞
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nk e r dT
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r

Γ λ

		  = −
∞ −

∫
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The first term is zero at both the limits, the second term at upper limit is zero but with lower limit it is l2

		  Q nk dT
dx

= −
1
2

2Γ λ � (11.120)

Now, Gl is the mean velocity due to thermal agitation, Γλ = u

		  Q nku dT
dx

= −
1
2

λ � (11.121)

This is the heat flowing per second in unit area in the positive direction of the x axis.
From the equation of conductivity, 

		  Q K T
x

= −
∂
∂

�

where ∂T/ ∂x is the temperature gradient along the positive direction of x axis and K is the thermal 
conductivity.

Fig. 11.21  Another figure 
to study the law
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	 ∴	    −
∂
∂

= −K T
x

nku dT
dx

1
2

λ

	 ∴	     ∴ =K nu k1
2

λ � (11.122)

	 ∴	       
K nu k

ne
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k u m
eσ

λ

λ
= =
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2
1
2

2

2

2 �

mu2 is the twice the mean kinetic energy of an election and is equal to 3kT by the principle of equiparti-
tion of energy. 

	 ∴	        
K k

e
kT k

e
T

σ
= =
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
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k
e

k e
σ
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
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 =3
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K
σ
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


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


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× = ×
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.
. esu

at a temperature of 273 8 absolute. Furthermore the temperature coefficient of the ratio, the increase in 
the ratio per unit rise in temperature divided by the value of the ratio at 0 8 is1 3 66 10 13/ . ( ) /273 c c° = °−

It was found that at and above room temperature, the value of K/s is nearly constant, that is, Wiede-
mann–Franz law is valid in that range of temperature. But at lower temperature, K/s decreases instead 
of remaining constant. This law does not hold good at low temperature; from experimental results, it 
appears that the value of the ratio approaches to zero at 0 K. With lowering of temperature, both K and 
s increase; but, the latter increases much more rapidly. Holst found that of mercury, s becomes infinite 
(super conduction) while K still remains finite. Messer and Lees found that for Cu, the value of K/sT at 
20 K was one-seventh of its value at room temperature. 

“The variation of K/sT indicates that thermal conductivity is not determined only by free electrons, 
there must be some other agency responsible for conduction of metals. It is quite probable that the agency 
is the elastic binding force between different atoms as in the case of conduction through insulators.”

11.13  Jaeger and Diesselhorst Method

Kohlrausch introduced a method of determining the ratio of thermal to electrical conductivity. He pointed 
out that a simple way of determining the thermal conductivity of a metal is to measure the temperature 
distribution in the metal when it is heated by an electric current. The theory of this method depends upon 
the fact that when a steady state has been reached, the heat gained by any element by conduction plus 
the heat generated by the electric current in the element is zero. This was experimentally worked out by 
Jaeger and Diesselhorst. The theory of this method is as follows:

Let us take the case of a solid cylinder of metal of which the thermal conductivity is to be deter-
mined. We assume that the current lines are parallel to the axes, the heat losses are negligible and the 
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Fig. 11.22  Schematic 
representation of Jaeger and 

Diesselhorst method

P Qflow of heat is parallel to the axis. Let x be the position 
coordinate of the plane P measured along the axis (Fig. 
11.22).

Let v, T be the electric potential and temperature of the 
same plane and let (x + dx) be the position coordinate of 
the plane Q whose electrical potential and temperature are 
(v + dv) and (T + dT), respectively. Let A be the cross 
section of the cylindrical bar, K and s be the thermal and electrical conductivity. Both K and s are the 
functions of the temperature and so vary along the length of the bar.

	 Heat flowing in unit time into the element over the area at P is equal to 

		
−KA d

dx
θ

and that flowing into it over the area at Q in unit time is equal to 

		
− +






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





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KA d

dx
d
dx
KA d
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dxθ θ

The net gain of heat by conduction in unit time is, therefore, 

		  A d
dx

K d
dx
dxθ









� (11.124)

The electrical energy supplied to the element in unit time is 

		  i R A dv
dx

dx2
2

=








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σ � (11.125)

for		 R dx
A

i dv
dx
A= = −

σ
σand

When a steady state has been reached, the total rate of gain of heat by the element is zero; so, we have

		  A d
dx

K d
dx
dx A dv
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in case where there is no loss of heat from the sides due to radiation. 

Then,	 d
dx

K d
dx

dv
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θ
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0 � (11.126)
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We may write 		             d
dx

d
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So, Eq. 11.126 changes to 
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If we assume that K and s are constants, then dK/dx = 0.
So, we get
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Since the same current is flowing throughout the specimen, i = As dv/dx is constant as both A and s 
are constants; so, dv/dx = constant.

	 	     ∴ =
d v
dx

2

2
0

 Eq. 11.127 becomes

		  K d
dv
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2
0θ

σ+ =

	 or	 K d
dvσ
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2
1 0+ = � (11.128)

Integrating 

		
K d
dv

v
σ

θ
α+ = −

Integrating again, we get

		  K v v
σ

θ α β+ = − −
1
2

2

where a and b are constants of integration.

	 Or	 K v v
σ

θ α β+ + + =
1
2

02 � (11.129)

Chapter 11.indd   372 4/11/2011   11:49:29 AM



Conduction of Heat     373

Let ( , ),( , ),( , )θ θ θ1 1 2 2 3 3v v v be the temperature and potential at three points of the bar. Then, we have 
from Eq. 11.129

		  K v v
σ

θ α β1 1
2

1
1
2

0+ + + = � (11.130)

		  K v v
σ
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2

2
1
2

0+ + + = � (11.131)

Subtracting, we get 
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2
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1 2
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Multiplying Eq. 11.130 by v2 and Eq. 11.131 by v1, we get
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Subtracting, 
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Equation 11.129 gives the equation of a hyperbola. Measuring temperature and electric potential at 
the three points ( , ),( , ) ( , )θ θ θ1 1 2 2 3 3v v vand , if we plot them we get a curve as shown in Fig. 11.23. 

The temperature will be maximum at O and will fall off at the 
two ends. Two points A and B were found where the temperatures 
q1, q2 will be equal due to the symmetry of the curve.

Let A (q1, v1), O (q3, v3) and B (q2, v2) denote the three points, 
then q1 = q2 and v v v3 1 2 2= + /

	 Therefore,                            a = 2v3� (11.134)
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Fig. 11.23  Temperature-
electrical potential curve at 
different points of the rod
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Corresponding to the point O (q3, v3) Eq. 11.129 becomes 
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Since the temperature and potentials are parabolic in the electrically heated rod, the temperature 
at middle point will be maximum. In the experiment, Jaeger and Diesselhorst measured the maxi-
mum temperature. Next, they found out two points on either side of the maximum point where the 
temperature were the same. Actually, they measured the temperature of the middle point (q3) and 
the common temperature at the two ends of the bar (q0). The potential difference between the points 
of common temperature (v1 2 v2) was also measured. Thus, K/s can be calculated from Eq. 11.136. 

In the experiment of Jaeger and Diesselhorst, the experimental rod was surrounded by a copper jack-
et through which water or steam was passed so as to keep the rod at a constant temperature enclosure. 
In this arrangement, there will be transmission of heat to the surroundings. In deriving the equation, we 
have neglected this transmission of heat. So, the final equation was corrected for the radial flow of heat.

Simidu modified the apparatus in such a way that radial flow of heat was taken into account, so no 
correction in final expression was to be applied. Figure 11.24 represents his experimental arrangement. 

The experimental rod R is provided with a guard ring G consisting of a brass tube having a heating 
spiral H in the middle, B1 and B2 are the two baths at its ends. Two copper wires C1 and C2 are soldered 
at the two ends of rod R; B3 and B4 are the two water baths. G is a vacuum covering. A wooden chest 
encloses the whole apparatus. 

By controlling heating current and bath temperature in such a manner that while measuring tempera-
tures at three points I, II, III radial flow of heat was avoided. Potential difference between the point II 
and any one of the points I or III is measured, knowing all these K/s can be calculated. 

Fig. 11.24  Simidus’ experimental arrangement
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Solved Problems

	Q 1.	 Calculate the amount of heat that will be conducted in an hour through each square centimetre 
of an iron plate 3 centimetre thick, its two sides being kept at the respective temperatures of  
50 8C and 200 8C, thermal conductivity of iron = 0.12 cgs unit. 

Ans:	 We know	 Q KA d
dx
t=

θ

		
0 12 1 200 50 60 60

3
21600. ( )× × − × ×

= cal

	Q 2.	 One end of a copper bar of 25 cm long, 10 sq cm in cross section is kept at 100 8C, the other 
end is cooled by a spiral through which water flows, the water entering the spiral at 14 8C. What 
must be the rate of flow of water if this end is never to rise above 20 8C when conductivity = 
0. 9 cgs unit? 

Ans:	 We know	 Q KA
d

m=
−

= −
( ) ( )θ θ

θ θ1 2
3 4

		  0 9 10 100 20
25

20 14. ( ) ( )× −
= −m

	 ∴	                      m =
×
×

=
9 80
25 6

4 8. gm per sec.

	Q 3.	 Heat is supplied to a slab of compressed cork 5 cm thick and of effective area 2 sq m by a heat-
ing coil spread over its surface. When the current in this coil is 1.18 amperes and the potential 
difference across its ends 20 volts, the steady temperatures of the faces of the slab are 12.5 8C 
and 0 8C. Assuming that the whole of the heat developed in the coil is conducted through the 
slab, calculate the thermal conductivity of the cork. 

Ans:	 We know	 EI
J

KA
d

=
−( )θ θ1 2

		  1 18 20
4 2

2 10 12 5 0
5

4.
.

( . )×
=

× × × −K

		
K =

× ×
× × ×

=
1 18 20 5

4 2 2 10 12 5
0 000114

.
. .

. cgs unit.

	Q 4.	 Water passes through a glass tube 30 cm long at the rate of 165 cc per minute. It enters the tube 
at 20 8C and leaves at 40 8C, the outside of the tube being maintained at 100 8C. If the internal 
and external radii of the tube are 6 mm and 8 mm respectively, determine the thermal conduc-
tivity of glass.

Ans:	 We know	
2

2
1 2

2

1

1 2

π θ
θ θ

θ θ
lK

r
r

m
t

e

−
+









=
−

log

( )
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e

	 ∴	     K
e

=
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× × × ×
=
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3

60 2 3 14 30 70
0 0012

log

.
. cgs Unit

	Q 5.	 Two bars of nickel and copper of the same dimensions are coated with wax, and one end of each 
bar is inserted in a bath containing oil at a high temperature. When the steady state has been 
reached, it is found that the wax has been melted off the nickel bar to a length of 1.9 cm and 
of the copper bar to a length of 5 cm. Find the thermal conductivity of nickel given that K for 
copper = 0.92 cgs unit. 

Ans:	 We know	 l
K

l
K

1
2

1

2
2

2

=

		
1 9 5

0 92

2

1

2.
.K

=

	 ∴	    K1

2

2

0 92 1 9
5

0 132=
×

=
. . . cgs unit

	Q 6.	 Equal bars of copper and aluminium are welded end to end and lagged. If the free ends of cop-
per and aluminium are maintained at 100 8C and 0 8C respectively, find the temperature of the 
welded interface. Assume the thermal conductivity of copper and aluminium to be 0.92 and 
0.50, respectively.

Ans: Let the temperature of the interface be q, then

		

K A
d

K A
d

1 2100 0( ) ( )−
=

−θ θ

		  0 92 100 0 5. ( ) .A
d

A
d

−
=

θ θ

		  92 0 92 0 5− =. .θ θ

	 ∴	    θ = °64 8. c

	Q 7.	 Steam at 100 8C is passed through a rubber tube 14.6 cm length which is immersed in a cop-
per calorimeter of thermal capacity 23 cal, containing 440 gm of water. The temperature of the 
water and calorimeter is found to rise at the rate of 0.19 8C every second when they are at the 
room temperature 22 8C. The external and internal diameters of the tube are 1 cm and 0.75 cm, 
respectively. Calculate the conductivity of rubber.
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Ans: We know	
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	Q 8.	 The temperature inside a cottage is 18 8C while the outside temperature is 4 8C. How much heat 
is lost per hour by transmission across each square metre of wall (a) when the wall is of stone 
25 cm thick and with conductivity 0.008 (b) when the wall is of steel 2 cm thick and with con-
ductivity 0.12 (the conductivity is in cgs unit)? 

Ans:	 We know	 Q KA
t

d
=

−( )θ θ1 2

		  For stone, 

		  Q =
× × − × ×

= ×
0 008 10 18 4 60 60

25
1 6128 10

4
5. ( ) . caloreiis

		  For steel, 

		  Q = × − × × = ×0 12 10 18 4 60 60 3 024 104 7. ( ) . calories

	Q 9.	 A slab consists of two parallel layers of different materials 4 cm and 2 cm thick and of ther-
mal conductivities 0.54 and 0.36 cgs units, respectively. If the opposite faces of the slab are at  
100 8C and 0 8C, calculate the temperature at the surface dividing the two materials.

Ans.	� Let q be the temperature at the surface dividing the two materials, then at the steady state same 
heat is flowing; so,

		
0 5 100

4
0 36 0

2
. ( ) . ( )A A−

=
−θ θ

	 or	 0 25 100 0 36. ( ) .− =θ θ

	 ∴	    25 0 36 0 25 0 61= + =. . .θ θ θ

	 ∴	    θ = =
25

0 61
41

.
oc
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	Q 10.	The temperature at one end varies between 15 8C and 45 8C in a heating cycle of 5 hours. To 
what distance the temperature variation can be detected by a thermometer reading to 1/10 8C? 
Thermal conductivity = 0.3 cgs unit, density of the material = 7 gm/cc and specific heat = 1. 

  Ans.	The fluctuation of temperature is represented by 

		  θ θ θ
ω

= =
− −

0
2

0e eh
x bx

	 Here,	       θ θ= =
1

10
300

o oC C,

		  b
h T h

c
TK

= = = =
× ×

× ×
ω π πρ
2

2
2

3 14 7 1
5 3600 0 3

.
.

	 ∴	    1
10

30= −e bx

	 or	 300 = ebx

	 or	 x xe=
×

× ×

=
× ×

×
=

log
.

.

. .
.

.
300

3 14 7
5 3600 0 3

5 7 5 3600 0 3
3 14 7

89 3or cm.

Problems

1.	 A boiler has 2 cm thick plates and exposes a surface of 2 sq m to the furnace. The temperature 
of the outside face is kept at 105 8C. If the conductivity of the metal is 0.2 and the latent heat of 
steam is 540 calories per gm, find how much steam is generated in one hour? 

Ans. 66.7 kg 
2.	 A steady stream of water is flowing at the rate of 500 gm a minute through a glass tube 30 cm 

long, 1 cm in external diameter are 8 mm in bore, the outside of which is surrounded by steam 
at a pressure of 760 mm of Hg which raises the temperature from 20 8C to 30 8C as it passes 
through the tube. Find the thermal conductivity of glass. 

Ans. 0.001315 cgs unit
3.	 Calculate approximately the heat passing out per minute through the walls and windows of a 

room 7 3 5 3 3 metres if the walls are of bricks 20 cm thick and have windows of glass 0.5 cm 
thick and of total area 5 sq m. The temperature of the room is 20 8C above that of the outside. The 
thermal conductivity of brick and of glass may be taken as 12 3 1024 and 17 3 1024 cgs units.

Ans. 25.225 3 104 cal
4.	 At the depths of 6, 12, 24 metres, the annual ranges of fluctuation of temperature are 5.6 8C, 2.8 8C,

0.7 8C, respectively. Find the velocity of propagation of the temperature wave into the earth. 
Also, calculate the diffusivity of the earth’s crust. 

Ans. 0.15 metres per day, 
0.0746 cm2 sec-1
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5.	 A bar of length 30 cm and uniform cross section 5 cm2 consists of two halves AB of copper and 
BC of iron welded together at B. The end A is maintained at 200 8C, the end C at 0 8C and the 
sides are thermally insulated. Find the rate of flow of heat along the bar when the steady state 
has been reached, thermal conductivity of copper = 0.9 cgs unit and of iron = 0.12 cgs unit.

Ans. 7.05 cal/sec
6.	 The hollow space between two very thin concentric copper shells is filled with sand of thermal 

conductivity 0.13 3 1023 cgs unit. The radii of the spheres are 6 cm and 4 cm, respectively and 
the temperature of the hollow space inside the inner sphere is maintained at 100 8C while the 
outer sphere is kept at 0 8C. Find the quantity of heat passing per minute through the sand when 
a steady state has been reached. 

Ans. 117.6 cal/minute
7.	 In the periodic flow method, a rod is heated at one end with a heating cycle of 4 minutes. The 

temperature maximum travels at the rate of 6 cm per minute. Assuming density of the metal to 
be 7.8 gm/cc and specific heat 0.11, calculate the thermal conductivity of the metal. 

Ans. 0.164 cgs unit

Questions

1.	 Deduce the Fourier equation of one dimensional heat flow. Prove that the length to which the 
wax melts in the steady state along a wax coated bar is proportional to the square root of the 
coefficient of thermal conductivity of the material of the bar.

2.	 Describe Ingen-Hausz’s experiment and prove, from mathematical theory, that the conductivi-
ties of the different bars vary as the square of the length upto which wax is melted.

3.	 Describe Forbes’ method of determining the thermal conductivity of a metallic bar. Deduce the 
necessary formula. 

4.	 Work out Despretz’s method of comparison of thermal conductivities.
5.	 Describe Lees’ method of determining thermal conductivity of poor conductors.
6.	 Derive the theory of spherical shell method of determining thermal conductivity of powdered 

materials. 
7.	 Deduce the theory of cylindrical shell method of determining thermal conductivity of rubber 

and describe the experiment of measuring it.
8.	 Describe the experiment of measuring thermal conductivity of glass. Deduce the relevant  

theory.
9.	 State the law of Wiedemann and Franz and describe the method to obtain a comparison of ther-

mal conductivities of metal bars. 
10.	 Find an expression for the temperature at any point along a long bar, surrounded by a non-

conducting jacket, if one end of the bar has a periodically varying temperature given by 
θ θ ω= 0 cos .t

11.	 One end of the long uniform bar is maintained at a temperature q1 above its surroundings. 
Show that when a steady state is attained, the temperature at any point distance x from the 
hot end exceeds that of the surroundings by an amount θ θ= −

1e
bx where b is a constant for 

specified bar.
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12.	 Describe Angstrom’s experiment to measure the thermal conductivities of metal bars. 
13.	 Give an account of the mode of propagation of heat wave into the earth. Give the expression of 

the velocity of much wave.
14.	 Prove that a damped heat wave propagates into the interior of earth due to alternate heating and 

cooling of its surface, and deduce the expression for velocity of propagation of the wave and 
damping factor.

15.	 When steam is passed through a circular tube of length l, having internal and external diameters 
a and b respectively, prove that radial flow of heat outwards is given by 

	 	 Q
Kl

b
ae

=
−2 1 2π θ θ( )

log

16.	 Describe in detail the method of Forbes and Lees for the determination of conductivity of solids 
which are good conductors and bad conductors, respectively.

17.	 Describe suitable methods for measuring conductivities of liquids and gases.
18.	 A thin rod of uniform cross-sectional area is situated in air at temperature 0 8C. Obtain a dif-

ferential equation for the flow of heat in the rod, when the steady state is established. Solve it 
and indicate a problem to which the solution may be applied.
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Chapter 12

12.1  Introduction

In this chapter, we shall study the laws of thermal radiation only. It is the type of radiation the quality 
and quantity of which depends solely on the temperature of the body emitting radiation. Here, by qual-
ity we mean the wavelengths of the radiation emitted and by quantity we mean the energy associated 
with each wavelength. Thus when a feeble electric current is sent through the wire of an electric heater, 
we first have a feeling of warmth which gradually increases in intensity as the strength of the current 
is increased. The wire begins to emit visible light radiation in addition to the invisible heat or infrared 
radiation, when the temperature of the wire rises to about 550 8C.

At this temperature, the wire appears to be dull red. With rise of temperature, other colours of the 
visible spectrum are added to the radiation. At the same time, the quantity of visible radiation increases 
at the expense of heat radiation. At about l200 8C the wire becomes nearly white, that is, almost all the 
colours of the visible spectrum are emitted by the wire. This is true of all materials of which the heating 
element may be made. The quality and quantity of radiation, therefore, depends on the temperature of 
the radiating body and not on the material composing the body. 

Thermal radiations are ordinarily emitted by solids and liquids. As such when thermal radiation is 
dispersed by suitable prism, it shows continuous spectrum. 

Radiation emitted by a discharge tube, that resulting from thermal agitation (sodium flame), 
that caused by bombardment by electrons, photo-electric emission, fluorescence, phosphores-
cence, gamma radiation from radioactive substances do not come under the category of thermal 
radiation. 

The distribution of energy amongst different wavelengths in the continuous spectrum of thermal 
radiation emitted by incandescent tungsten wire is shown in Fig.12.1. It is found that there is a region of 
maximum intensity for each temperature of the radiating body. This region of maximum intensity shifts 
towards the shorter wave-length as the temperature of the radiating body increases. 

RADIATION 
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12.2  Some Fundamental Concepts and Definitions

There is much confusion in existing textbooks with regard to the terminology used in connection with 
emission and absorption of radiation. We shall use, in this chapter, the terminology of the international 
critica1 tables.

Total emissive power:  As already stated, the quality and quantity of radiation emitted by a body 
depend on the temperature of the body. They also depend on the degree of polish of the radiating surface.

By total emissive power of a body, we shall mean the total energy associated with all the wavelengths 
in the radiation emitted per unit area of a surface of the body per unit time in all possible directions.

The total emissive power will be represented by Es and will be expressed in ergs per sq cm per sec.

Monochromatic emissive power:  Thermal radiation when dispersed by a prism gives a continuous 
spectrum. If we select a narrow range of wavelengths l to l 1 dl, then the total energy associated with 
waves lying in the range gives the monochromatic emissive power in that range. Thus, monochromatic 
emissive power at wavelength l is the radiant energy emitted in the spectral range l to l 1 dl per unit 
area of the radiating surface per unit time in all directions. 

Monochromatic emissive power of a body is different for different wavelengths of the spectrum. It is 
represented by el dl and is expressed in ergs per sq cm per second. It is evident that the relation between 
the total emissive power and the monochromatic emissive power is

		  E e ds =
∞

∫ λ λ
0

� (12.1)

The monochromatic emissive power of the body whose spectral distribution of energy is shown in 
Fig.12.1 within the range l to l + dl is represented by the shaded area in the figure.

The total emissive power of the same body is the area bounded by the curve and the portion of the 
wavelength axis under the curve.

Fig. 12.1  Spectrum of thermal radiation emitted by an incandescent tungsten wire
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Normal monochromatic emissive power of a surface:  In Fig. 12.2, ds is an element of the radiat-
ing surface. Describe a hemisphere of radius r round the centre of the element of surface ds. Let us 
determine the quantity of radiation within unit range of wavelength in the neighbourhood of l passing 
through an area dB of a belt of thickness r dq on this hemisphere. 

The amount of radiation received by an element dB on the belt per second would evidently be pro-
portional to (l) the area ds of the radiating surface, (2) the area dB of the surface receiving the radiation, 
(3) the cosine of the angle q which the direction of emission makes with the normal to the surface (by 
the cosine law to be proved presently), (4) 1/r2, by the inverse square law.

Hence, if dQ/dt is the rate at which the energy is received by the surface dB per second from the 
surface ds, then

		
dQ
dt

ds dB
α

θ
ρ

cos
2

	 or	
dQ
dt

K ds dB
= λ

θ
ρ

cos
2 � (12.2)

where Kl is the constant of proportionality, dB/r2 is the solid angle dw subtended by dB at the centre of 
the area ds. Hence,

		  dQ
dt

K ds d= λ θ ωcos � (12.3)

	 or	 K dQ dt
ds dλ θ ω

=
/

cos � (12.4)

The constant of proportionality Kl is called the normal monochromatic emissive power.
In Eq. 12.4, Kl = dQ/dt when ds = 1 and dw = 1, q = 0 8. Hence, the normal monochromatic emis-

sive power of a surface corresponding to unit range of wavelength in the neighbourhood of l at a given 
temperature is equal to the amount of heat radiated from unit area of surface of the radiating body per 
unit solid angle per unit time in the direction of normal to the surface.

Fig. 12.2  Schematic representation of finding the rate at which the energy is received 
by surface dB per second from surface ds

dB
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N

dθθ
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Total normal emissive power is obtained by integrating the normal monochromatic emissive power 
over all the emitted wavelengths in the direction normal to the emitting surface. Representing this by K,

		  K K d=
∞

∫ λ λ
0

� (12.5)

Relation between emissive power and normal emissive power 
We shall first take the case of monochromatic radiation lying within the range of wavelengths l to 

l 1 dl 
Referring to Fig. 12.2, the area of the belt of thickness r dq is 2pr Sinq r dq. Assuming the distribu-

tion of energy to be symmetrical round the normal ON to the emitting surface, the total energy crossing 
the belt per sec is (by Eq. 12.2)

		
dQ
dt
d K ds d d
λ θ

πρ θ θ λ
ρλ= cos sin2 2

2

Putting the area of the belt in place of dB in Eq. 12.2,

	 or	 dQ
dt
d K ds d dλ π θ θ λλ= sin 2

	 or 	
dQ dt
ds

d K d d/
λ π θ θ λλ= sin 2

This quantity integrated over the whole hemisphere gives the total energy emitted by unit area of 
surface of the radiating body in unit time. This is the total monochromatic emissive power of the body. 
Hence, 

		  e d K d d Kλ λ λλ π λ θ θ π θ

π
π

= = −∫ sin [cos ]2 1
2

2
0 0

2
2

	 or	 e d K dλ λλ π λ= � (12.6)

Total emissive power of the radiating body is

		  E e d K ds = =
∞ ∞

∫ ∫λ λλ π λ
0 0

		  E Ks = π � (12.7)

Absorptivity:  When radiation is incident on a surface a part of it is absorbed, a part is reflected from 
the surface and the remaining portion is transmitted, unless the body is very opaque. By absorptivity we 
mean the fraction of incident energy which is absorbed. Absorptivity is necessarily a pure numeric, less 
than unity. It depends largely on the wavelength of the incident radiation and to a lesser extent on the 
temperature of the absorbing body. We shall represent absorptivity within the range of wavelengths l to 
l 1 dl by al and that for all wavelengths by A.
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Reflectivity:  This is measured by the fraction of the incident energy which is reflected by the surface. 
Reflectivity is also pure numeric which is evidently less than unity. We shall represent the reflectivity 
within the range of wavelengths l to l 1 dl by rl and that for all wavelengths by R.

Transmissivity:  This is measured by the fraction of incident energy which is transmitted. It is rep-
resented by the symbol tl within the range of wavelengths l to l + dl. Transmissivity for all wave-
lengths will be represented by T. It is also a numeric less than unity. Bodies considered in this chapter 
are either very opaque or very thick. Hence for such bodies, transmissivity tl = 0. Evidently for such 
bodies, al 1 rl = 1.

Black body:  A black body is a perfect absorber of radiation of all wavelengths. Hence for such a body, 
A = 1 and R = T = 0. No body is perfectly black in the true sense of the term. 

Lamp black, black velvet, etc. are only nearest approach to a black body.
For theoretical and experimental purposes, a black body is realized by a cavity inside a material 

impervious to heat rays and maintained at a uniform temperature. It communicates with the outside 
through a small hole having a diameter which is very small in comparison with the area of the hollow 
interior. The inner wall of the cavity is coated with highly absorbing material such as platinum black, 
bismuth black and the like.

A ray entering the cavity through the hole is diffusedly reflected a large number of times. At each 
incidence, some amount of energy is absorbed. Evidently, only a very small fraction of energy can come 
out through the hole. Practically, an approximation sufficient for experimental purposes is obtained 
by taking a hollow cylindrical tube 20 cm long and 4 to 5 cm in diameter having a hole 1 to 2 cm in 
diameter. 

When such an enclosure is heated, the inner walls of the enclosure radiate. Some of these radiations 
pass out through the hole. Hence, a black body can radiate as well as absorb energy. The radiation emitted 
by such a black body is called black body radiation or cavity radiation. We shall represent the total emis-
sive power of a black body by the symbol Eb and its total normal monochromation emissible power by Kb.

Black bodies are usually of two types—absorption type and emission type. The former type was 
designated by Fery and is called Fery’s black body. It consists of a double-walled hollow metallic sphere 
having a small opening coated inside with lampblack and platinum black and having a conical feature 
just diametrically opposite to hole to avoid direct reflection of radiation passing through the open-
ing inside the vessel. Its outside is polished with nickel. When heated, it arrives at constant tempera-
ture. When a radiation enters into it, it is reflected inside successively and is absorbed. Thus, the body  
behaves as a perfect absorber.

The emission type of black body was first constructed by Wien and later on modified by Lummer 
and Pringsheim, Coblentz and others. It consists of a hollow cylindrical brass, platinum or carbon tube 
which is heated electrically. One end is closed by an airtight plug. In this type, the conditions of emis-
sion of ideal black body radiation is taken to be accomplished.

Perfect mirror:  A perfect mirror is a surface which reflects all incident rays completely unweakened, 
while it does not radiate itself. If a mirror which completely reflects all rays could radiate, temperature 
equilibrium could never be reached inside an enclosure at uniform temperature because such mirror 
would necessarily cool down. 

The density of radiation:  The quantity of radiant energy per unit volume in a radiation field is called 
the density of radiation. We shall represent density of monochromatic radiation by ul and the density of 
total radiation by u. 

Chapter 12.indd   385 6/1/2011   1:42:20 PM



386    Heat and Thermodynamics

Homogeneous and isotropic radiation:  Radiation in a field is said to be homogeneous and isotropic 
when the quality and quantity of radiation striking a unit area in unit time is the same for all positions 
and orientations of the area.
Intensity of radiation at a point in a radiation field is the quantity of radiant energy passing through unit 
area surrounding the point in one second.

12.3  Prevost’s Theory of Exchanges
A body at all temperatures radiates heat and the rate of emission depends on temperatures of the body. 
Consider an enclosure the walls of which are maintained at a constant temperature. If a body at a lower 
temperature is placed inside the enclosure, the temperature of the body would rise till it becomes the 
same as that of the enclosure. In this case, the amount of heat absorbed by the body from the enclosure 
per second is greater than that emitted by the body in the same time so that there is a net gain of heat 
by the body. If the body were at a higher temperature than that of the enclosure, the rate of emission of 
heat by the body would be greater than the rate of absorption of heat from the enclosure. This process of 
exchange of heat would continue however small the difference of temperature between the body and the 
enclosure may be. It is natural to conclude that where the body and the enclosure are at the same tem-
perature, the rate of emission of heat must be equal to the rate of absorption. According to the classical 
notion, there can be no exchange of heat between two bodies at the same temperature. It is difficult to 
conceive how the exchange of heat between two bodies at different temperatures, which is responsible 
for their equalization of temperature, could suddenly stop as soon as their temperatures become the 
same. Thus, a body would continue to radiate heat even when it is in temperature equilibrium with its 
surroundings. Its temperature does not change because it emits as much heat as it receives in a given 
time. This idea of exchange of heat under equilibrium condition is called Prevost’s theory of exchanges. 

The reciprocity theorem:  It is a very general theorem applicable to any equilibrium process. It is also 
known as the principle of detailed balancing. It states, “If one elementary process occurs at equilibrium, 
exactly the reverse process also occurs and just as frequently.”

Cavity radiation:  The laws of thermal radiation can be deduced by studying the characteristics of 
cavity radiation. We now proceed to study the characteristics of cavity radiation; they are as follows: 

1.	 The radiation inside an enclosure at uniform temperature must be homogeneous and isotropic. 

To prove this, let a body bounded by surfaces of materials with different emissive powers and  
absorptivities be introduced inside the enclosure. The body would evidently acquire the temperature of 
the enclosure. If its temperature in the equilibrium state was different from that of the enclosure, tem-
perature difference could be continuously used to drive a thermodynamic engine for obtaining useful 
work. This is contrary to the second law of thermodynamics. This is true wherever the body may be 
placed inside the enclosure and whatever may be its orientation. For temperature equilibrium, the total 
energy absorbed by the body must he equal to the total energy emitted per second. This must be true for 
all positions and orientations of the body. Since the absorption of the different surfaces is different and 
since absorptivity depends on the wavelength, the total absorption can remain constant only when the 
quality and quantity of radiation remains the same at all points and in all directions. 

As a necessary consequence of isotropy, the radiation inside an enclosure at uniform temperature 
must be unpolarized. This means that the components of vibration in the radiation of a particular fre-
quency in any two perpendicular directions must be equal. If Kl and K′l be the normal emissive powers 
of vibration in two perpendicular directions, then the total emissive power of a surface would be
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		  E K K ds = + ′
∞

∫π λλ λ( )
0

	 For isotropic radiation,	 K Kλ λ= ′

	 ∴	     E K ds =
∞

∫2
0

π λλ � (12.8)

2.	 The density of cavity radiation in the range l to l 1 dl depends only on the temperature of the 
enclosure and is independent of shape, material and contents of the enclosure. 

Proof:  If not, let us suppose we have two enclosures A and B of different materials both of them being 
maintained at the same temperature (Fig. 12.3).

Let the density of radiation in the range l to l 1 dl 
be greater in A than in B. Let the two chambers be sepa-
rated by a partition which is transparent to radiation in 
the wavelength range l to l 1 dl. Since the density in 
A is greater than in B, more energy falls on the A side 
than on the B side of the screen so that B gains a certain 
amount of energy and A loses an equal amount.

Let the transparent partition be replaced by an opaque 
screen after a certain amount of energy has passed from 
A to B. Since the two chambers are at the same constant 
temperature T, the excess energy in B must be absorbed 
by the walls in B and, as a result, the temperature of the walls of B would rise. For a similar reason, the 
temperature of walls of A would fall to supply the energy transferred from A to B. 

The walls of B at higher temperature can thus be used as a source and that of A at lower temperature 
can be used as sink to drive an engine. This can he repeated as often as we please. Thus, useful work 
can be obtained by utilizing the heat of bodies at the same temperature. This is contrary to experience. 
Hence, the original assumption must be wrong. The same argument also applies to bodies inside the 
enclosure. We can easily extend the argument to chambers A and B of any shape whatsoever.

3.	 Radiation emitted by the wall of an enclosure in temperature 
equilibrium must obey the cosine law.

Proof of cosine law:  Let ds1 and ds2 be two elements of sur-
face of the enclosure (Fig. 12.4). Let the line joining the centres 
of these two surfaces be inclined to their respective normals at 
angles q1 and q2.

Let Kl be the normal monochromatic emission power of the 
enclosure. Then, the quantity of radiation emitted by ds1 and pass-
ing through ds2 per second is given by Eq. 12.2.

	                            
dQ
dt

C K ds ds
r

= 1 1
2 2

2λ
θcos

� (12.9)

Writing ds2cosq2/r2 for dB where the factor C1 has been intro-
duced to take into account any variation of emission with angle. 

Fig. 12.3  Scheme to study the 
characteristics of density of cavity 

radiation
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Fig. 12.4  Scheme for proof of 
cosine law
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The fraction of this energy absorbed by ds2 is

		  C K a ds ds
r1

1 2 2
2λ

λ θcos
� (12.10)

where ag is the absorptivity of the surface ds2 in the wavelength range l to l + dl.
Similarly, the energy emitted by ds2 and absorbed by ds1 is 

		  C K a ds ds
r2

1 2 1
2λ

λ θcos
� (12.11)

By the reciprocity theorem, the energy emitted by ds1 in the direction of ds2 and absorbed by ds2 must 
be equal to the energy emitted by ds2 in the direction of ds1 and absorbed by ds1 in a given time. Hence, 
Eqs 12.10 and 12.11 must be equal. This requires 

		  C C1 1 2 2= =cos cosθ θand

4.	 Quantity of radiation crossing unit area per second in a direction inside an enclosure in tem-
perature equilibrium is equal to the emissive power of a black body at the temperature of the 
enclosure and in the same direction.

To prove this, let a black body be placed inside the enclosure. In the state of thermal equilibrium, the 
quantity of radiation absorbed by unit area of the surface of the black body per second must be equal to 
the quantity of heat emitted by the same area in the same time. Since, by assumption, the absorptivity of 
a black body is unity, the amount of heat emitted by the unit area per second must be equal to the total 
quantity of heat energy falling on the area per second. This is true wherever, inside the enclosure, the 
black body may be placed. In other words, the quantity of radiation crossing unit area per second inside 
the enclosure must be equal to the emissive power of a black body at the same temperature.

5.	 It follows that a hole on the wall of a hollow heated enclo-
sure in temperature equilibrium emits radiation as if the 
hole were a perfect black body at the temperature of the 
enclosure and that this rate of emission is quite indepen-
dent of the nature and shape of the interior surfaces. 

Density of energy inside an enclosure at uniform 
temperature:  Let v be the volume of a small element of space 
inside the enclosure (Fig. 12.5). Round the centre of the volume 
v construct a sphere of radius r, the whole surface of the sphere 
lying inside the enclosure. Then any radiation passing through the 
volume v must first pass through the surface of the sphere.

Take a small element ds on the surface of the sphere, with the 
centre P of the area ds as apex, draw a narrow cone intercepting the 
volume v at A and B. Let the distance AB be 1. Let the mean of the 
intercepted areas at A and B be f. Then the volume of the space v 
intercepted by the cone is (f.1). Let c be the velocity of propagation 
of radiation. Then, the time taken by the radiation to traverse the 
distance 1 is dt = 1/c.

Fig. 12.5  Scheme to study 
density of energy inside 
an enclosure at uniform 

temperature
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Let Kl be the normal monochromatic emissive power of the area ds for radiation lying within the 
range l to l 1 dl.

The amount of radiation crossing unit area at a point inside the enclosure is equal to the emissive 
power of a black body at the temperature of the enclosure. The same argument would, therefore, apply 
if the sphere is replaced by the spherical shell of a black body. Then, the quantity of radiation emitted 
by the area ds in time dt in the direction of the cone is

		  dQ K ds d dt= λ ω

where dw = f/r2 is the solid angle subtended by the area f at P. Substituting for dt and dw, we get

		  dQ K ds f
r c

= λ 2

1

Summing over the whole solid angle subtended by v at P, the total radiation from ds passing through v
in time dt is

		  = =∑K ds
f

cr
K ds v

crλ λ

1
2 2

Summing over the whole surface of the sphere, the total radiation passing through v from all directions is

		  = = =∑K v
cr

ds K r v
cr

K v
cλ λ

λπ
π

2
2

24
4

Hence, energy density of monochromatic radiation within the range l to l + dl is 

		  u K
cλ

λπ
=
4

� (12.12)

Let undn be the energy density in the frequency range n to n 1 dn, corresponding to the energy 
density in the same special range comprised between l to l 1 dl where l corresponds to frequency n. 
Thus, we can write 

		  u d u dλ νλ ν= −

The negative sign indicates that the wavelength increases with the decrease in frequency. To find the 
relation between ul and uv, we have
	 	 c c d c d= = ∴ = −νλ λ

ν
λ

ν
νor 2

	 ∴	 − = − ∴ =u c d u d u
c
uλ ν λ νν

ν ν
ν

2

2

It can be similarly proved that

		  K
c
Kλ ν

ν
=

2

Substituting the values of Ul and Kl in Eq. 12.12,

		  u K
cν

νπ
=
4

� (12.13)
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The energy density of full radiation inside the enclosure is

		  u u d
c

K d= =
∞ ∞

∫ ∫λ λλ
π

λ
0 0

4

		  u K
c

=
4π

� (12.14)

It has already been proved that the radiation passing through unit area inside an enclosure in the nor-
mal direction in temperature equilibrium is equal to the emissive power of a black body in that direction 
at the temperature of the enclosure.

Hence, the quantity K in Eq. 12.14 is the total normal emissive power of a black body. Hence, K in 
Eq. 12.12 is to be replaced by Kb. Thus, the relation between the energy density inside an enclosure and 
the total normal emissive power of a black body is 

		  u
K
cb

b=
4π

	 But	 πK E u
E
cb b
b= ∴ =

4
� (12.15)

Since the radiation inside an enclosure at uniform temperature is isotropic, the components of  
vibration in two perpendicular directions are equal. If Kl and Kl ′ are the normal monochromatic emis-
sive powers in two perpendicular directions, then for isotropic radiation Kl = Kl ′ so that the energy 
density is

		  u
c

K K d= + ′
∞

∫
4

0

π
λλ λ( )

		  u
c

K d K
c

= =
∞

∫
8 8

0

π
λ

π
λ � (12.16)

12.4  Kirchhoff’s Law of Radiation

Let a body of monochromatic emissive power el and of absorptivity al be placed inside an enclosure 
at uniform temperature T. It has already been proved that the amount of radiation crossing unit area at 
any point inside the enclosure is equal to the emissive power of a black body at the temperature of the  
enclosure. Then, the quantity of radiation falling per second on unit area of the body is elbdl. The 
amount of energy absorbed by the body is al elb dl. For temperature equilibrium, this must be equal to 
the quantity of radiation emitted per unit area of the body in one second, that is, el dl. Hence, 

		  a e d e dbλ λ λλ λ=

	 or	  
e
a

e bλ

λ
λ= � (12.17)
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Or, the ratio of monochromatic emissive power of a body within the range of wave-length l to l 1 
dl to its absorptivity at a given temperature is equal to the monochromatic emissive power of a black 
body at the same temperature. This is known as Kirchhoff’s law of radiation. 

A natural conclusion following from Kirchhoff’s law of radiation is that “no body can emit 
more radiation at a given temperature than a black body, for the maximum value of al is equal to 
unity; the absorptivity of a black body and any smaller value of al would imply a smaller value 
of el”. Hence, a black body is not only the most efficient absorber, it is the most efficient emitter also.

Since the emissive power of a black body is independent of material of walls of the enclosure, it must 
depend on temperature T of the enclosure; in other words,

		  e f Tb = ( )

	 We next proceed to find the form of this function.

Pressure of radiation:  The fact that radiation exerts pressure on a reflecting or absorbing surface can 
be proved, independently of any theory of radiation, with the help of the principle of conservation of 
energy. We shall adopt Larmor’s method of proof, for plane waves and normal incidence.

Let a train of plane parallel wave of wave length l move in the direction 
of diminishing x with velocity c. Let these waves be incident normally on a 
mirror M moving in the direction of increasing x with velocity v (Fig. 12.6). 
Then the displacement due to the incident waves at a point x of the medium 
at time is 

		  y a x ct= +cos ( )2π
λ

where a and l are the amplitude and wave-length of the incident waves, 
respectively. The displacement due to the reflected waves moving in the 
direction of increasing x at the same instant is

		  ′ = ′
′

−y a x ctcos ( )2π
λ

where a′ and l′ are the amplitude and the wave-length of the reflected 
waves, respectively. Let x be the position occupied by the mirror at the 
instant t measured from the same origin so that x = v t. Since the resultant disturbance on the surface of 
the mirror must be zero,

		                    y y+ ′ = 0

	 we have	 a vt ct a vt ctcos ( ) cos ( )2 2π
λ

π
λ

+ = − ′
′

−

		  = − ′
′

−a ct vtcos ( )2π
λ

This can be true for all values of t only when 

		  a a c v c v= − ′ + =
′

−and 2 2π
λ

π
λ

( ) ( )

Fig. 12.6  Larmor’s 
proof of pressure of 

radiation
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′

=
−
+

λ
λ

c v
c v � (12.18)

Now, energy-density of waves of length l is inversely proportional to l2. Let u and u′ be the energy-
densities of the incident and reflected waves, respectively; then, 

		
u
u

c v
c v′

=
′

=
−
+

λ
λ

2

2

2

2

( )
( ) � (12.19)

The relative velocities of the incident and reflected waves with respect to the moving mirror are (c 1 v)
and (c 2 v), respectively. The energy striking unit area of the moving mirror in 1 second is, therefore, 
u(c 1 v) and the energy reflected from the same mirror in the same time is u′(c 2 v). Representing the 
energy moving away from and that moving up to the mirror in 1 second by E′ and E, we get 

		
′
=

′ −
+

=
+
−

−
+

=
+
−

E
E

u c v
u c v

c v
c v

c v
c v

c v
c v

( )
( )

( )
( )

2

2 � (12.20)

Hence, E′ is greater than E. This difference of energy can only be due to the work done by the mirror 
against the pressure p exerted by the radiation on the mirror .

Hence by the principle of conservation of energy, 

		  ′ = +E E pv

		  ′ − = + +u c v u c v pv( ) ( )

where pv is the amount of work done by the mirror against the pressure p in the second. Thus, 

		  pv E E= ′−

		  =
+
−

−E c v
c v

E 	 from Eq. 12.20

	 or	 =
−
2vE
c v

	 or	 p E
c v

=
−
2 � (12.21)

From Eq. 12.19,

		
u u
u

c v c v
c v

c v
c v

+ ′
=

+ + −
−

=
+

−
( ) ( )

( )
( )
( )

2 2

2

2 2

2

2

		  u c v
c v

u u=
−
+

+ ′( )
( )

( )
2

2 22

Substituting the value of u in Eq. 12.21, we get

		  p c v
c v

u u=
−
+

+ ′
2 2

2 2
( ) � (12.22)
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If the mirror is stationary, v = 0 and 
		  p u u= + ′ � (12.23)

If the surface is a perfect mirror, u = u′ and p = 2u
If the surface is a perfect absorber, u′ = 0 and p = u
Thus, the pressure exerted by radiation on a perfectly absorbing surface is numerically equal to the 

energy per unit volume in the beam of radiation incident on the surface.
If R is the reflecting power of the mirror, then

		  p = (I + R)u

Radiation pressure inside an enclosure at uniform temperature:  Since the radiation inside an 
enclosure at uniform temperature is homogeneous and isotropic, the radiation may be thought of as 
divided into three equal parallel beams each of density 1/3u. In this case, the pressure on the walls of a 
hollow heated enclosure exerted by radiation within the enclosure of any form is

		  p u=
1
3

This can also be obtained directly as follows:
Consider an element of surface ds of a black body placed inside the heated enclosure (Fig. 12.7). 

To find the total amount of energy of monochromatic radiation within the spectral interval l to 
l 1 dl coming from open side of the surface ds, construct a hemisphere of radius r round the centre 
of ds.

Then, any energy falling on the area must have to pass through the surface of the hemisphere. Let the 
intensity of radiation through an element of surface dB (= r2 sinq dq df)or the normal monochromatic 
emissive power of a black body at the temperature of the enclosure placed at dB be Kl. 

Then, the quantity of radiation coming from dB and falling on the area ds cosq in one second is given by 
Eq. 12.2,

dQ
dt

K dBds
r

= λ θcos
2

Quantity of radiation passing per second (dQ/dt) through an area ds is equal to the quantity of energy 
contained in a cylinder of cross-section ds and of length c. If u 
be the energy density, then

dQ
dt

c dsu u

dQ
dt
c ds

= ∴ =

Evidently, the energy density in the direction q is 

K dBds
ds c r

K
cr

dBλ λθ
θ

cos
cos2 2= ×

where c is the velocity of propagation of radiation.

Fig. 12.7  Schematic 
representation of finding  

radiation pressure

r

dB

ds
dφ

ds cos θ

θ
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Now, the density of energy at a point in a radiation field is equal to the force* per unit area placed at 
the point. Hence, the normal force per unit area on the surface ds cosq is

K
cr
dBλ θ2 cos

The component of this force in the direction of normal to the surface ds is 

		
K
cr

dBλ θ2
2cos

		  =
K
cr
r d dλ θ θ φ θ2

2 2sin cos

		  =
K
c

d dλ θ θ θ φcos sin2

Hence, the total normal force per unit area on the surface ds due to radiation coming through the 
hemisphere is

		
K
c

d dλ
π

θ θ θ φ

π

cos sin2

00

2 2

∫∫

		  = =∫
2 2

3
2

0

2π
θ θ

πλ

π

λK
c

d K
c

cos (cos )

For equilibrium of temperature inside the enclosure, the black body must emit the same amount of 
energy. The reaction of this will produce the same amount of pressure on the surface ds. Hence, the total 
pressure on the surface ds is 

		  p K
cλ
λπ

=
4
3

	 But by Eq. 12.12,	 u
c
Kλ λ

π
=
4

	 so that	 p uλ λ=
1
3

 

Total pressure due to full radiation is obtained by integration

		  p p d u d p u= = =
∞ ∞

∫ ∫λ λλ λ
0 0

1
3

1
3

or, � (12.24)

This relation evidently holds for radiation inside a heated enclosure. The relation p = u holds when 
the absorber does not emit radiation. 

* Density of energy = = = = =
−

− −
−Energy

Volume
force per uni( ) ( ) ( )

( )
MLT L
L

ML T MLT
L

2

3
1 2

2

2 tt area so that pl = 1/3 ul
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12.5  Analogy Between Black Body Radiation and Perfect Gas

There are some points of fundamental similarity between black body radiation and the so-called perfect 
gas which makes it possible to apply the methods of thermodynamics to problems of radiation; these 
are as follows:

1.	 A gas consists of molecules moving with all possible velocities in all possible directions. By 
virtue of kinetic energy of these molecules, each unit volume of the contained gas has definite 
amount of energy which, at the same temperature, is the same everywhere and in all possible 
directions.

		    An evacuated enclosure at a given temperature consists of radiations of all possible wave-
lengths streaming back and forth in all possible directions. The quality and quantity of this 
radiation are same at all points and in all directions. Each unit volume of the enclosure contains 
a definite amount of energy, which is the same at all points at the same temperature.

2.	 The molecules of the gas exert a pressure on the walls of the container. This pressure is inde-
pendent of material and shape of the container and depends on the temperature of the container. 
The density of radiation or the quantity of energy per unit volume is independent of material 
and shape of the enclosure and depends only on the temperature of the enclosure.

		    The density of radiation inside a heated enclosure being a function of temperature only is 
analogous to internal energy of a perfect gas. 

12.6  Boltzmann’s Ether Engine
In this engine, radiation is used as the working substance. It consists of a hollow cylinder and a friction-
less piston (Fig. 12.8). The walls and base of the cylinder also the piston are impervious to heat. They 
have vanishingly small heat capacity and are placed in perfect vacuum. In the base of the cylinder, there 

Fig. 12.8  Boltzmann’s ether engine
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is a small hole through which radiation can pass into or out of the cylinder. This hole may be closed 
by a disc which is a perfect reflector. The source of heat is a black body at temperature T1. The sink is 
another black body at a lower temperature T2. We shall suppose the temperature T1 to be only slightly 
higher than T2; with this engine, we now perform the following cycle of operations:

Stroke I:  Place the piston in the position P1. Let the initial state of radiation be represented by pressure 
p1, volume v1 and temperature T1. Uncover the hole and place the black body at temperature T1 close to 
the hole. Allow the piston to move forward slowly till the volume increases by an infinitesimally small 
amount to v2. The path of this operation is P1  P2.

In this operation the two chambers, the black body and the cylinder are maintained at uniform tem-
perature T1. Hence, the energy density and, therefore, pressure of radiation remains constant all through-
out the operation. The amount of radiation drawn into the cylinder is due to following two causes:

1.	 Work done by the piston against external pressure. Since it is an equilibrium process, the work 
done is

		  W p v v u v ve = − = −1 2 1 2 1
1
3

( ) ( )

2.	 Radiation required to fill up the space ( ). ( )v v u v v2 1 2 1− −This is

   Hence, total radiation entering the cylinder is

		  1
3

4
3

4
32 1 2 1 2 1u v v u v v u v v udv( ) ( ) ( )− + − = − = � (12.25)

Stroke II:  The hole of the cylinder is now covered by the disc and the piston is allowed to move to 
the position P3 so that the new volume is now v3. This is evidently an adiabatic process. The density 
of radiation within the cylinder must decrease partly because of external work and partly because of 
increase of volume. Let the amount of expansion be such that the temperature of the cylinder falls to 
T2, the temperature of the sink. Let the change in density of radiation in this operation be du so that the 
change in pressure is

		  dp du=
1
3

Stroke III:  The insulating disc is then removed and the hole is placed opposite the black body at tem-
perature T2. The piston is then moved slowly to the position P3 to P4. The path of operation is P3P4. 

Stroke IV:  The opening of the cylinder is now closed and the radiation is further compressed till the 
temperature rises to T1 and it occupies the initial volume at the same initial pressure. The path of this 
operation is P4P1.

The net amount of work done in the cycle is the area of the parallelogram P1P2P3P4.

	 or	 dw dp dv du dv= =
1
3
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Since the cycle is perfectly reversible, the efficiency of the engine is

		  η =
−

=
T T
T

1 2

1

Work done in the cycle   
Heat drawn from the sourrce

 	 or	
dT
T

du dv

u dv
=

1
3
4
3

	 or	 dT
T

du
u

=
1
4

	 or	 4log log log loge e e eT u a a= − =where const. of integraation

	 or	 u aT= 4 � (12.26)

The constant a is called the total radiation constant. This is because a black body at a given tempera-
ture emits full radiation corresponding to that temperature.

By Eq. 12.15,

		  u
E
c
b=

4

	 or	 E cu caT
b = =

4 4

4

	 or	 E Tb =σ 4 � (12.27)

where	 σ =
c a
4

� (12.28)

The quantity s is called the Stefan’s constant or the Stefan–Boltzmann constant. It is to be noted that 
Eb is the total quantity of radiation crossing unit area of an opening in the side of a uniformly heated 
enclosure at temperature T in 1 second.

In all experimental determinations it is the value of s that is determined. The accepted value of s is

	 	 = 5.709 3 1025 ergs per sq. cm per sec per (degree)4

	 Hence	 a=
× ×

×

− − − −

−

4 5 709 10
3 10

5 2 1 4

10 1

. sec deg
sec

erg cm
cm

	 or	 a = 7.617 3 10215 erg cm23 deg24
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Stefan’s law is based upon Carnot’s cycle employing radiation as working substance which obeys the 
laws of perfect gas. Evidently, temperature measured with the help of Stefan’s law is absolute tempera-
ture. Temperature above 1400 8C can be accurately determined with the help of Stefan’s law.

12.7  Thermodynamics of Radiation

We have proved that radiation inside an enclosure at a uniform temperature can be regarded as a perfect 
gas. Accordingly, radiation should obey the laws of perfect gas. 

Let V be the total volume of the enclosure and u the energy density inside the enclosure. Then, total 
energy in the enclosure is

		  U V u=

	 But,	 u aT= 4

	 ∴	     U VaT= 4 � (12.29)

	 This gives 	
dU
dT

aVT= 4 3 � (12.30)

	 Again,	 p u aT= =
3

1
3

4

	 This gives	
dp
dT

aT=
4
3

3
� (12.31)

Substituting the value in the most general energy equation,

		  T ds dU
dT

dT T dp
dT

d
v v

=










+









VV

We get the energy equation of radiation as

		  dQ T ds aVT dT aT dV= = +4 4
3

3 4 � (12.32)

12.7.1  Reversible Isothermal Change of Volume Occupied by Radiation
For isothermal condition, the cylinder containing the radiation must communicate through a hole with 
a black body maintained at the given temperature as in Boltzmann’s ether engine. Since dT = 0, we get 
from Eq. 12.32 for the total quantity of radiation enter the cylinder

		  Q aT V V u V Vf i f i= − = −
4
3

4
3

4 ( ) ( )

where Vi and Vf are the initial and final volumes, respectively. This agrees with Eq. 12.25. 
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We have seen that the fundamental quantity in radiation is energy density and it is a function of 
temperature only. Hence, energy density does not depend on any process by which the change of tem-
perature is effected. To find the characteristics of radiation at different temperatures, we can adopt any 
method of production of change of temperature. Here, we adopt the adiabatic process.

12.7.2  Reversible Adiabatic Change of Volume Occupied by Radiation
In this case, there is no exchange of heat between the radiation and the surroundings. As a consequence 
of the change of volume, the density of radiation in the enclosure would change. Since the density of 
radiation is a function of temperature only, the temperature of radiation would necessarily change. In 
order to be able to apply the laws of black body radiation to the radiation undergoing adiabatic change 
of volume, we have to prove that the radiation, in the process of change, maintains the spectral energy 
distribution characteristic of a black body, that is, the radiation remains complete black. 

To prove this let us take a cylinder with a piston, all the interior surfaces being perfect reflectors. Let the 
cylinder be filled with black body radiation at temperature T1. Let the piston move outwards, thus increas-
ing the volume occupied by the radiation. This has the effect of lowering the temperature of radiation. If 
the radiation at any temperature other than T1 is not black body radiation, it can be made to have the char-
acteristics of black body radiation by introducing a very small black body of negligible thermal capacity 
inside the cylinder*. This process being irreversible causes the entropy of the radiation to increase for the 
radiation still remains black by removing the black body from inside the enclosure.

With the black body still inside the enclosure, move the piston inwards till the radiation occupies its 
initial volume. The work done during backward drive of the piston ∫  pdv is the same as that done during 
the forward drive.

This is because the density of radiation and, therefore, the pressure of radiation is the same at every 
stage or compression or expansion of volume. The original stage of radiation has thus been reached 
and in the entire cycle, there has been no gain of work or heat energy though the entropy of radiation 
has increased. This is violation of the second law of thermodynamics. The original assumption that the 
irreversible process of the redistribution of energy by the introduction of the black body cannot have 
occurred. Hence, the energy distribution must have retained the characteristic of black body radiation 
during the process of adiabatic change.

We are now in a position to apply the Eq. 12.32 to the adiabatic process. In this process, ds = 0.

	 ∴	 4 4
3

3 4aVT dT aT dV= −

	 or	 3 0dT
T

dV
V

+ =

	 or	 VT 3 = constant� (12.33)
This gives the relation between temperature of radiation and volume occupied by radiation during 

an adiabatic change. Thus if the volume of black body radiation was increased 8 times adiabatically, 
the radiation would be capable of existing in equilibrium with that of a black body at one-half or the 
original temperature. 

	 Since	      u aT= 4

* The black body at the temperature under consideration must emit its radiation corresponding to that temperature. For tempera-
ture equilibrium, it, therefore, must absorb exactly similar type of radiation.
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we get by substitution in Eq. 12.33,

	 	 u V3 4 = constant � (12.34)

This gives the relation between energy density of black body radiation and the volume of the radia-
tion during an adiabatic change.

12.8  The Wavelength–Temperature Displacement Law
For the sake of convenience of proof, we perform an imaginary experiment. Suggested by Larmor to 
simplify the calculation, we take an enclosure of the shape of a sphere of radius r (Fig.12.9). It has got 
perfectly reflecting interior walls consisting of small segments of perfect mirror oriented at random so 
as to obtain diffuse reflection and is impervious to heat and is capable of uniform adiabatic expansion 
in the radial direction. Since the volume of the sphere is proportional to the cube of its radius, Eq. 12.34 
takes the following form

		  ur 4 = constant � (12.35)
and Eq. 12.33 takes the following form
		  rT = constant � (12.36)

When a wave train of length l moving with velocity c is incident obliquely at an angle q on a mirror 
moving with velocity w parallel to itself, the change in wavelength due to Doppler’s effect is 

		  d w
c

λ
λ θ

=
2 cos

� (12.37)

w being very small compared to c. A ray incident on the inner wall of the spherical enclosure at an angle 
q suffers successive reflection. Length of each chord between two successive reflections is 2r cosq.
Time taken to traverse each chord is thus 2r cosq/c. The rate at which wavelength changes with time is

		  d
dt

w
c

c
r

w
r

λ λ θ
θ

λ
= × =

2
2

cos
cos

	 Since	 w dr
dt

d
dt r

dr
dt

= = ×, λ λ

	 ∴	    
d dr

r
λ
λ

=

	 This gives l/r = constant� (12.38)

Equation 12.36 reduces to 

	                                       l/T = constant� (12.39)
Equation 12.39 is called Wien’s wavelength temperature dis-

placement law. Fig. 12.9  Change in 
wavelength on reflections

r

2r cos θ

θ
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12.8.1  Wien’s Energy–Temperature Displacement Law
Instead of filling up the spherical enclosure with full radiation coming from a black body as in the imagi-
nary experiment described earlier, let us now fill up the enclosure with monochromatic radiation within 
a narrow spectral range l to l 1 dl by means of suitable filter. Equation 12.35 would then take the form 

		  u r d u r dλ λλ λ4 4= ′ ′ ′� (12.40)
where r and r′ are the radii of the enclosure before and after the adiabatic change, respectively.

For the same reason, Eq. 12.38 changes to

		  λ λ λ λ+
=

′ + ′
′

d
r

d
r

� (12.41)

for wavelengths λ λ λ λ+ ′ + ′d dand .For wavelengths l and l′, we get by Eq. 12.38

		
λ λ
r r

=
′
′ � (12.42)

Subtracting Eq. 12.42 from Eq. 12.41, we get

		
d
r

d
r

λ λ
=

′
′

Substituting the value in Eq. 12.40, we get

		  u r u rλ λ
5 5= ′ ′

Using Eq. 12.36, this reduces to

		
u
T

u
T

λ λ
5 5=

′
′ � (12.43)

This is Wien’s energy–temperature displacement law. Since the monochromatic energy density in-
side an enclosure at temperature T is proportional to monochromatic emissive power of a black body at 
that temperature, Eq. 12.43 may also be written as

		
e
T
bλ
5 = constant � (12.44)

This constant is evidently independent of both elb and T.
Equation 12.43 means that “the energy density of radiation in a narrow wavelength range dl when 

divided by the fifth power of temperature of the enclosure emitting the radiation is equal to the energy 
density in the corresponding wavelength range after an adiabatic change, when this is divided by the 
fifth power of the final temperature”.

With the help of the Eqs 12.39 and 12.44, we can find the energy distribution curve at temperature 
T2 when the curve at T1 is known.

Thus, let curve I in Fig. 12.10 be the energy distribution curve at temperature 1259 8C. To obtain the 
distribution curve II at temperature 1449 8C, take a wavelength at l = 4.1 m on curve I. In curve II, this 
would correspond to wavelength

		  ′ =






 =λ 4 19 1259

1449
3 55. . µ
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The energy associated with wavelength l = 4.1m at 
1259 8C is elb = 20 by Eq. 12.44; the energy associated 
with wavelength l′ at 1449 8C is

′ = ×






 =e bλ 20 1449

1259
40 5

5

.

For each wavelength l of curve I, corresponding 
wavelength l′ and el′ can be thus obtained. Plotting el′ 
against l′. the curve II can be plotted.

Equations 12.39 and 12.44 apply to every correspond-
ing point of the wavelength and emissive power curves I 
and II, accordingly, they also apply to the point of maxi-
mum emissive power.

Let lm be the wavelength at which the emissive power 
is the maximum. Then by Eq. 12.39, 

	                        λmT b= =constant � (12.45)

Equation 12.45 is known as Wien’s displacement law. 
Evidently as T increases, lm decreases. Hence, Wien’s displacement law states that with increase of tem-
perature of the black body emitting radiation the point of maximum intensity in the emitted spectrum 
shifts towards the shorter wavelength side.

The constant b in Eq. 12.45 has the value

		  b = 0.2885 cm degree

The corresponding emissive power at the wavelength lm is given by

		
e
T

Bm
5

= � (12.46)

Since lT and el/r5 are constant, there must exist a functional relation between lT and (el/T
5)

Hence instead of plotting elb against l at a particular temperature T, we may plot l T (= x) against 
elb/T

5 (= y). This has the advantage that a single curve thus drawn will describe the dependence of elb 
on l for all temperatures.

Let us represent this functional relation by

		  y x=φ( )

	 or	
e
T

Tbλ φ λ5 = ( ) � (12.47)

Since l T is constant, Eq. 12.47 may also be written as

		  e f Tbλ λ λ5 = ( ) � (12.48)

Again,	 e d e db bν λν λ= − � (12.49)

Fig. 12.10  Wien’s energy 
temperature distribution curve
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The negative sign indicates that n diminishes as l increases.
Now,	 c c

= =νλ λ
ν

or

		  d c dλ
ν

ν= − 2

Substituting the value in Eq. 12.49, we get

		  e d e c db bν λν
ν

ν= 2

	 or	 e
c
eb bλ ν

ν
=

2

Substituting this value in Eq. 12.48, we get

		
ν ν

ν
ν

νν

2 5

5

5

5c
e

c
f c T

c
f T

b =






 = × ′









	 or	 e
c
f T

bν
ν

ν
= ′









3

4 � (12.50)

12.9  Forms of the Distribution Function f (λ)
From purely thermodynamic reasoning, Wien arrived at the relation

		  e f Tλ λ λ= −5 ( )

where el is the monochromatic emissive power of a black body within the wavelength range l to l 1 dl
and at absolute temperature T.

12.9.1  Wien’s Formula
Wien arrived at the following relation

		  f T Ae T( )λ
α
λ=

−

on certain arbitrary assumptions; these assumptions are as follows:

1.	 The radiation was produced by oscillators of atomic dimensions.
2.	 The frequency of the emitted waves was proportional to the kinetic energy of the oscillators.
3.	 The intensity in any particular wavelength range was proportional to the number of oscillators 

having the requisite energy.

Substituting the value of f  (l T) in Eq. 12.48, we get

		  e A e T
λ

α
λλ= − −5 � (12.51)

This formula fits with the experimental curve only in the region of short wavelength (1 to 3m where 
m = 104 Angstroms)
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12.9.2  Rayleigh’s Formula
It is based upon two theorems: 

1.	 The theorem of equipartition of energy.
2.	 The theorem of stationary waves in a closed space.

Jeans and Lorentz proved later on that Rayleigh’s formula gives the only law consistent with 
the principles of classical dynamics. Hence, it is known as Rayleigh–Jeans’ formula. This famous  
Rayleigh–Jeans’ formula is usually written in the following form

		  u k T=
8

5

π
λ

λ( ) � (12.52)

where ul is the energy density within the range l to l 1 dl and k is the Boltzmann constant.

From Eq. 12.12,	 u K
cλ

λπ
=
4

Substituting the value in Eq. 12.52, we get

		  K kc Tλ λ
λ=

2
5 ( )

For black body radiation, Kl = elb so that

		  e kc Tbλ λ
λ=

2
5 ( ) � (12.53)

Difficulties of Rayleigh–Jeans’ formula:   Following are the difficulties of this formula:
1.	 It agrees with the experimental results only in the region of large wavelengths.
2.	 At any definite temperature, ul = 0 when l = ∞.
3.	 At any definite temperature, ul = 0 when l = 0.
4.	 It does not give any maximum value of ul, which is contrary to the experimental results.
5.	 By Stefan–Boltzmann’s law, the total energy density over all wavelengths must be finite for 

finite values of T but from Rayleigh–Jeans’ law, the energy density integrated over all wave-
lengths at any temperature must be infinite. The only temperature at which the total energy 
density would be finite is zero. Hence, all energy would pass into smallest wavelengths which 
the medium is capable of sustaining.

The consequences of (5) are as follows:

		  (a) � A hot body placed inside the enclosure would speedily lose all its energy and fall to the 
absolute zero of temperature so that temperature equilibrium can never be attained.

		  (b) � A thermometer placed inside an enclosure would not be able to record the temperature of 
the enclosure.

		  (c)  For the same reason, the earth would not be able to maintain its average temperature.

The state of things predicted by classical mechanics is, therefore, so utterly different from that  
observed in nature that we are compelled to abandon or at least modify the classical mechanics in so far 
as the mechanism of interaction between matter and energy is concerned.
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12.9.3  Planck’s Radiation Formula
In 1901, Planck introduced revolutionary concepts regarding interaction of matter and energy. He  
assumed that

1.	 Radiation is not emitted or absorbed in a continuous manner but in discrete finite amounts 
known as quanta. 

2.	 The energy associated with wave of frequency n is ∈ = hν

where h is a universal constant known as Planck’s constant.
Based on these assumptions, Planck deduced the following radiation formula

		  u ch

e
ch
kT

λ
λ

π
λ

=
−

8 1

1
5 � (12.54)

where k is Boltzmann’s constant.

This formula can also be expressed in terms of frequency with the help of the following relationν
λ

=
c

	 This gives	 d c dν
λ

λ= −






2 � (12.55)

Let n and n 1 dn correspond to l and l 1 dl and let un correspond to ul, so that 

		  u d u dν λν λ= −

Substituting for dl from Eq. 12.55 , we get

		  u d u
c
dν λν

λ
ν= − −











2

	 or	 u c uλ νλ
= + 2

From Eq. 12.54, we get

		  + =






 −

c u ch
c e

ch
kT cλ

π

λ
ν

ν
λ

ν2
2

3

8 1

1

	 or	 u h
c
e
h
kT

ν ν
λ

π ν
=

−

8

1
3

3
� (12.56)

Again by Eq. 12.14,

		  u K
cλ

λπ
=
4

Substituting the value in Eq. 12.54, we get 

		  e c h

e
b ch

kT
λ

λ
λ

=
−

2 1

1

2

5
� (12.57)
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Planck’s formula is universal in application and covers the complete range of wavelengths in the field 
of radiation. Wien’s formula and Rayleigh–Jeans’ formula can be deduced as special cases of Planck’s 
formula.

Deduction of Wien’s formula:  For short wavelengths, –ch/lkT is very large so that

		  e e
ch
kT

ch
kTλ λ−











≈
−

−
1

1

Substituting the value in Eq. 12.57, we get 

		  e c h e
ch
kT

λ
λ

λ
=

−2 2

5

which is of the same form as Wien’s formula.

Deduction of Rayleigh–Jeans’ formula:  For large wavelengths, (ch/lkT) is small. Hence,

		  e ch
kT

ch
kT

−
= + +λ

λ
1 ……

	 or	 e ch
kT

ch
kT

−
− =λ

λ
1

Substituting the value in Eq. 12.57, we get 

		  e c h kT
chλ λ
λ

= ×
2 2

5

	 or	 e ckTλ λ= −2 4

which is of the same form as Rayleigh–Jeans’ formula.

Deduction of Stefan–Boltzmann’s law from Planck’s formula:  Total energy density is

		  u u d h
c

d

e
h
kT

= =
−

∞

∫ ∫ν νν
π ν ν

0
3

38

1
� (12.58)

	 Put	 x h
kT

dx h
kT
d= =

ν
νso that

Substituting for n and dn in Eq. 12.58, we get 

		
u h

c

kTx
h

kT
h
dx

ex
=



















8

3

3

π
−−

∞

∫ 10
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	 or	 u h
c

kT
h

x dx
ex

=








 −

∞

∫
8

13

4 3

0

π

It follows that u is proportional to T 4 which is Stefan–Boltzmann’s law, since the integral is definite 
and, as such, it is a pure number.

The total radiation constant is 

		  a k
h c

x dx
ex

=
−

∞

∫
8

1

4

3 3

3

0

π

To evaluate the integral, we expand ( )ex − −1 1

		  ( ) ( )e e e e e e ex x x x x x x− = − = + + + +( )− − − − − − − −1 1 11 1 2 3 ……

		  = + + +− − −e e ex x x2 3 ….

and integrate the series. Thus,

		  a k
h c

x dx e e ex x x= + + +( )
∞

− − −∫
8 4

3 3
3

0

2 3π
….

		  = −
∞

=

∞

∫∑8 4

3 3
3

01

πk
h c

x e dxrx

r

		  =
=

= ∞

∑8 64

3 3 4
1

πk
h c rr

r

	 or	 a k
h c

k
h c

= = ×
48

90
48 1 0823

4

3 3

4 4

3 3

π π π . � (12.59)

Substituting the value of 

		  k = × − −1 3808 10 16. degerg 1

		  h= × −−6 625 10 27. secerg

		  c= ×2 9986 1010. seccm –1

in Eq. 12.59, we get 

		  a= × − − −7 582 10 15. erg cm degree3 4

This agrees closely with the experimental value. 
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Determination of Wien’s constant from Planck’s formula:  This is obtained from the following equation

		
de
d

bλ

λ
= 0

		
de
dx

dx
d

x ch
kT

bλ

λ λ
= =0 where

Substituting this value of x in Eq. 12.57, it reduces to 

		  e c hx k T
c h eb xλ = ×

−
2 1

1

2 5 5 5

5 5

		  =
−

2
1

5 5

3 4

5k T
c h

x
ex

� (12.60)

Differentiating Eq. 12.60 with respect to x, we get

		
de
dx

k T
c h

x
e

x e
e

b
x

x

x
λ =

−
−

−











=
2 5

1 1
0

5 5

3 4

4 5

2( )

	 or	  5
1

0−
−

=
xe
e

x

x

	 or	  5 1 0( )e xex x− − =

Dividing by 5ex, this reduces to 

		  1
5

0− − =−e xx � (12.61)

The solution of the Eq. 12.61 is

		  x= 4 9651.

	 This gives	
ch
k Tmλ

= 4 9651. � (12.62)

By Wien’s displacement law, λmT b= .
From Eq. 12.62,

		  b ch
=

4 9651. k

		  b=
× × ×

× ×

−

−

2 9986 10 6 554 10
1 3708 10 4 965

10 27

16

. .
. . 11

		  b= 0 2888.

This agrees clearly with the experimental value.
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12.10  The Equipartition Principle
Degrees of freedom:  In the case of a moving body, the separate and independent quantities which 
need be known to specify the position and configuration of a body completely are called the degrees of 
freedom of the body. 
Examples: A block sliding in a groove has only one degree of freedom. The same block sliding on 
the surface of a table has two degrees of freedom. A billiard ball rolling on a table has five degrees of 
freedom, two co-ordinates specifying the position of its centre and three co-ordinates specifying its 
orientations. 

A monatomic gas molecule has only a point mass. It can have motion of translation in any of the 
three directions, mutually perpendicular to each other. Hence, a monatomic molecule has three degrees 
of freedom. 

A rigid diatomic molecule consists of two point masses, a fixed distance apart. In this case, the centre 
of gravity of the molecule can have free motions in three mutually perpendicular directions. In addi-
tion, it can rotate about two axes perpendicular to each other and to the line joining the molecules. The 
rotation about the axis of symmetry is of no consequence because the mass of the atom is practically 
concentrated at the nucleus which is very nearly a point. Hence, a rigid diatomic molecule has five 
degrees of freedom. 

If the diatomic molecule is not rigid, it can vibrate in the direction of the line joining their centres. 
This gives the molecule an additional degree of freedom. Hence, a non-rigid diatomic molecule has six 
degrees of freedom.

A triatomic molecule should have nine degrees of freedom, three degrees of translation, three degrees 
of rotation and three of vibration, if none of the vibrational degrees are frozen up.

Degrees of freedom are additive:  Thus, a system may consist of N bodies, each having n degrees 
of freedom. In this case, the degree of freedom of the system is Nn. If we have a mixture of two gases 
containing N1 and N2 molecules with respective degrees of freedom n1 and n2, then the degrees of free-
dom of the system is (N1n1 1 N2n2).

Corresponding to each degree of freedom, there is a possible motion with associated kinetic energy. 
Hence, the number of degrees of freedom may also be defined as follows:

“The number of degrees of freedom of a body is the number of independent terms necessary to 
express the kinetic energy of the body (both translational and rotational) as a function of its co-ordinates”.

Let Vx, Vy and Vz be the three components of linear velocities of a body along three mutually perpen-
dicular directions OX, OY and OZ, and let Wx, Wy and Wz be the three component angular velocities of 
the body round these axes. Let Ix, Iy and Iz be the moments of inertia of the body round the axes OX, OY 
and OZ, respectively. Let Ex, Ey and Ez be the kinetic energy of vibrational motion. Then, the kinetic 
energy of a monatomic molecule of mass m is

		  W m V V Vx y z= + +
1
2

2 2 2( )

That of a rigid diatomic molecule is

		  W M V V V I W I Wx y z y y z z= + + + +
1
2

1
2

1
2

2 2 2 2 2( )
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where M is the reduced mass of the molecule, that for a non-rigid diatomic molecu1e, the total energy is

		  W M V V V I W I W Ex y z y y z z x= + + + + +
1
2

1
2

1
2

2 2 2 2 2( )

The equipartition theorem:  The theorem of equipartition of energy developed by Maxwell, Gibbs 
and Boltzmann states that the group average of kinetic energy of each component of large group is the 
same for each degree of freedom. 

Here by group average we mean the sum of the kinetic energies of all the components corresponding 
to one degree of freedom divided by the total number of components which constitute the group.

The equipartition energy:  Consider the case of a monomatic gas with density at temperature T. 
According to the kinetic theory, the pressure exerted by the gas is

		  p c=
1
3

2ρ � (12.63)

where c2 is the mean square velocity. If M be the molecular weight of the gas and V its molecular vol-
ume, then

		  ρ = =
M
V

mN
V

where m is the mass of the atom and N, the Avogadro number.
Substituting for r in Eq. 12.63, we get

		  pV mNc N mc= =
1
3

2
3

1
2

2 2

	 or	 pV NE=
2
3

� (12.64)

where E is the average kinetic energy of an atom.
But,	  pV = RT

where R is the universal gas constant.

		
2
3
NE RT= � (12.65)

If Ex, Ey and Ez are the average kinetic energies corresponding to three mutually perpendicular direc-
tions OX, OY and OZ, then

		  2
3
N E E E RTx y z( )+ + =

By equipartition theorem,	 E E E Ex y z= = =

	 or	 2
3

3N E RT=
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	 or	 E RT
N

=
1
2

	 or	 E kT=
1
2

� (12.66)

The constant k R
N

= is called the Boltzmann’s constant.

Its value is 

		  k =
×
×

= × −8 315 10
6 023 10

1 382 10
7

23
16.

.
. .ergs per molecule per degree

In 1905, Einstein developed a theory of motion of Brownian particles. His equation is

		  ∆s R
N
T

2 2
τ α

=

where ∆s2 is the average square of small distance traversed by the particle in time t, a is a constant 
depending on viscosity of the medium and size of the particle. ∆s2 can be determined. From the value 
thus obtained, the Avogadro number N can be calculated. This value of N agrees with the value of N 
obtained by dividing the Faraday by the charge on the electron. This proves the validity of the equiparti-
tion theorem.

Relation between degrees of freedom and ratio of specific heats:  Let each molecule of a gas have 
n degrees of freedom. Then, the total internal energy of the gas is

		  U nkT N nRT= =
1
2

1
2

where N is the Avogadro number. The molecular heat at constant volume is

		  C dU
dT

nRv
v

=










=
1
2

For a perfect gas,C C Rp v− =

	 ∴	 C C R R n
p v= + = +







1

2

	 ∴	 γ γ= =
+

= +
C
C

R n

R n n
p

v

2
2

2

1 2( )
or

Hence, the degrees of freedom of a molecule can be calculated knowing the value of g.
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12.11  The Rayleigh–Jeans’ Radiation Formula

The law of equipartition of energy was applied by Lord Rayleigh and Jeans to derive a formula for dis-
tribution of energy in the black body radiation. Every vibrating system has, in general, different modes 
of vibration. Each of these modes corresponds to one degree of freedom*. 

According to Rayleigh and Jeans, an amount of energy 1/2 kT may be assigned to each degree of 
freedom. To develop the idea, we shall for simplicity consider a cubical box of side a containing a me-
dium capable of sustaining vibrations. One corner of the cube will be taken as the origin of co-ordinates 
and its three sides meeting at that corner as the axes OX, OY and OZ. Since the boundary walls of the 
cube are supposed to be fixed, in the steady state, the medium can only sustain stationary oscillations. 
The essential condition for formation of stationary waves is that the two opposite boundaries must be 
two nodes. For this to occur, the distance between any two opposite walls of the cubical box must be 
equal to integral multiples of half wavelengths of the component waves.

Let the direction cosines of the normal to the nodal planes be l, m and n (Fig. 12.11). Let the inter-
cepts between two consecutive nodal planes on the three axes OX, OY and OZ be p1, p2 and p3, respec-
tively. Then by the condition of formation of stationary waves,

p1 = l/2l, p2 = l/2m and p3 = l/2n where l is the wavelength of the component waves. Let n1, n2 
and n3 be the number of intercepts on the three axes; then a = n1 p1 = n2  p2 = n3  p3 where n1, n2 and n3 
can only assume integral values.

Then,

		  n a
p

al n a
p

am n a
p

an
1

1
2

2
3

3

2 2 2
= = = = = =

λ λ λ

Squaring and adding we get

		  n n n a l m n1
2

2
2

3
2

2
2 2 22

+ + =






 + +

λ
( )

* This is because the expression for energy of the vibrating system is the sum of energies associated with each mode.

Fig. 12.11  Scheme to study equipartition of energy of vibrating system

Y

XO p1

p2

λ
2

(l, m, n)
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	 or	 n n n a l m n1
2

2
2

3
2

2

2
2 2 24 1+ + = + + =

λ
since

Since c = ln where n is the frequency,

		  n n n a
c1

2
2
2

3
2

2 2

2

4
+ + =

ν
� (12.67)

From Eq. 12.67, the possible modes of vibration for a given value is given by the possible combination 
of the integers n1, n2, n3, the sum of whose squares is equal to 4a2n2/c2. Evidently, it is given by points on 
the surface of a sphere of radius (2an/c) the coordinates of the point being only integers. Since n1, n2 and 
n3 are necessarily positive, only the points lying on the positive octant of the sphere are to be considered 
to compute the possible modes of vibration (N) for frequencies 0 to n and is one eighth of the volume 
of the sphere of radius (2an/c)

	 or	 ′ =






 =N a

c
a
c

1
8

4
3

2 4
3

3 3 3

3

π ν π ν

Again since each possible mode of vibration may be polarized in two perpendicular planes, we have 
two waves for each mode.

Hence, the total number of modes within the frequency range 0 to n is

		  2 8
3

3 3

3
′ =N a

c
π ν

Since a3 is the volume of the cube, the total number of modes and, therefore, total number of degrees 
of freedom per unit volume is 

		  N N
a c

=
′

=
2 8

33

3

3

π ν

Number of degree of freedom within the frequency range n to n 1 dn is 

		  dN d
c

=
8 2

3

πν ν � (12.68)

Now, the time-average of kinetic energy of a vibrating system is the same as the time-average of its 
potential energy and the total energy of the system is partly kinetic and partly potential.

Hence, the time-average of total energy = 2 3 time average of kinetic energy

		  = × =2 1
2
kT kT ,

In the case of an enclosure in temperature equilibrium, whatever the nature of radiating or absorb-
ing mechanism with each vibratory degree of freedom, an amount of energy equal to kT is associated. 
Hence by Eq. 12.58, energy associated with frequencies within the range of n to n 1 dn per unit 
volume is
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		  u d kT
c

dν ν
πν

ν=
8 2

3 � (12.69)

	 or since	 c c d c d= = = −νλ ν
λ

ν
λ

λor , 2

		  − = − = −u c d kT c d kT dλ λ
λ

πν
ν λ λ

λ
πν
ν λ

νλ
λ

λ2

2

3 3 2

2

3 3 2

8 8

		  u d k T dλ λ
π λ
λ

λ=
8

5

( )
…… � (12.70)

This is the Rayleigh–Jeans’ formula. We have seen that this formula does not agree with experimen-
tal results.

The problem of energy distribution was attacked by numerous investigations during the first decade 
of the twentieth century on the basis of classical statistical mechanics, all leading to the same result—
the Rayleigh–Jeans’ formula. We are led to conclude that the equipartition principle is not applicable to 
the partition of energy between matter and ether.

In the meantime, numerous evidences accumulated in support of the atomic nature of energy. These 
atoms of energy are called photons. We reproduce below some of the facts which have led to the idea 
of atomicity of energy:

1.	 The experimental curve of distribution of energy of radiation emitted by a black body amongst 
the different wavelengths resembles the Maxwell’s distribution curve of velocity amongst dif-
ferent molecules.

2.	 Radiation, like a gas, exerts pressure. In fact, pressure of radiation can be calculated from the 
impacts of photons on the walls of the vessel enclosing the radiation.

3.	 In the process of ionization by X-rays or other ionizing radiations, only a few of the molecules 
of the gas are ionized. By doubling the intensity of radiation, the number of molecules ionized 
is not doubled. If the radiation were propagated as waves, all the molecules lying in the path of 
waves would be ionized.

4.	 Light falling on some metals ejects electrons known as photoelectrons. The capacity of radia-
tion to eject photoelectrons depends on the frequency of the incident radiation and not on the 
intensity of the radiation. Further, there is no time lag between emission of photoelectrons and  
incidence of radiation. It is impossible to understand this phenomenon except by supposing 
that light is in some way tied up in very concentrated packets, where strength depends on 
frequency.

5.	 By Einstein’s law of equivalence of mass and energy, we can associate mass with every photon. 
Every photon moves with the velocity of light. Hence, a photon possesses momentum.

6.	 Professor Compton has obtained direct evidence of the existence of mass of photon from the 
recoil of a photon on striking an atom. This produces a change in energy of the photon with 
consequent change in frequency. The photon can also spin about an axis. This has been recently 
detected and measured by Raman and Bhagavantam.
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12.12  The Dynamical and Thermodynamical State of a System
The dynamical state of a system consisting of a large number of components is determined by the total 
number of degrees of freedom specifying the positional and momentum co-ordinates of all the com-
ponents. The thermodynamical state of a system is defined by its average property taken in bulk. It is 
defined by lesser number of co-ordinates such as pressure, volume and temperature.

A dynamical state with a particular distribution of velocities amongst the component parts of the 
system is called a macro state or a thermodynamic state. Now, one macro state can be realized in a large 
number of ways each of which is called a complexion. Thus suppose we have a system consisting of N 
parts, each part being different from the other so that they can be identified. Let us name the different 
parts a, b and c, etc.

Consider a velocity space with co-ordinates U, V and W. Let the velocity space be divided into n num-
ber of elementary cells. Let these cells be numbered I, II, III ----- l.

Table 12.1 shows only two ways of filing up the cells I, II, III ----- l with N1 parts in the first cell, N2 
parts in the second cell ------ Nl parts in the lth cell. This gives only two comp1exions of one macro state 
in which N1 parts are placed in the first cell, N2 parts in the second cell and Nl parts in the lth cell. In a 
macro state, we are not concerned with the possible number of arrangement of given number of parts in 
a cell, but only with the number of parts in each cell.

Hence, the total number of complexions by which the particular macro state can be realized is the 
number of ways in which N1, N2, N3 ….Nl members can be selected out of the total number of members 
equal to N

		  W N
N N N N

=
!

!, !, ! !1 2 3…… λ

Now, the more often a condition occurs the more probable it is. Hence, the probability of a particular 
distribution or a macro state must be proportional to the number of complexions by which the state can 
be realized. In a spontaneous process, a system passes from a state of lower to a state of higher prob-
ability. Hence, the most stable state of the system will be the state of highest thermodynamic probabil-
ity* consistent with the given energy content of the system. Hence, the statement that in a spontaneous 

Number
of cell

Complexion

I II III

1. a, e, f b, g h, r,

2. c, d, g p, q a, f

3. N1 N2 N3 N

Table 12.1  Characteristics of a dynamical state

* A material system composed of large number of parts left to itself tends to move from an orderly to a chaotic state. With progress 
of time, the state of chaos or confusion increases and it continues till no further confusion is possible. This state of maximum 
confusion is called the kinetic equilibrium. 
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process the entropy of a system tends to increase is equivalent to the statement that a system left to itself 
tends to pass from a state of lower to a state of higher thermodynamic probability or from an orderly to 
a disorderly state. 

The ratio of occurrence of a macro state (w) to the probability of occurrence of standard state of 
ordered arrangement (Wo) is called the thermodynamic probability of that state, or thermodynamic prob-
ability W = w/Wo

Since the probability of occurrence of an ordered state is vanishingly small, W is always greater than 
unity.

If a particular event happens in a ways and fails in b ways, then the algebraic probability of hap-
pening of the event is a/(a 1 b) and probability of failing is b/(a 1 b). Hence, algebraic probability is 
always less than unity.

This parallelism suggests a functional relationship between entropy and thermodynamic probability. 
Representing the thermodynamical probability of a state by W, we assume that the entropy of the state 
is connected by the relation

		  S = f (W  )� (12.71)

To evaluate the function, let us consider two independent systems with different states for which the 
entropy and corresponding probability are S1 and S2, W1 and W2, respectively; then,

		  S1 = f (W1)  and  S2 = f (W2)

Then, the total entropy of the combined system is

		  S = S1 1 S2 = f (W1) 1 f (W2)� (12.72)

Now, the actual state we are considering for the first system can be realized by selecting any one 
of the W1 complexions of that particular state, and similarly for any one of the W2 complexions of the 
second system. Then for the combined system, the state can be realized by selecting any one of the W1 
complexions of the first system and any one of the W2 complexions of the second system and combining 
these two. Hence, the total number of combinations or complexions by which the state of the combined 
system can be realized is given by 

		  W = W1 3 W2� (12.73)

Hence by Eq. 12.71,	 S = f (W  ) = f (W1 3 W2)

	 Thus,	 f WW f W f W( ) ( ) ( )1 2 1 2= + � (12.74)

This is true only if the function is a logarithmic one, that is

 		   loge W1W2 = loge W1 1 loge W2� (12.75)

It follows that	    S a loge W

	 or	 S = k loge W� (12.76)

or writing it in the most general form,

		                    S = k loge W 1 constant� (12.77)
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It can be easily shown thermodynamically that the value of constant k is 

		  k R
N

=

where N is the number of molecules in one gm-molecule, that is, k is the gas constant per molecule.

12.13  Planck’s Radiation Formula

To deduce an equation for the law of distribution of energy amongst different wavelengths, we require 
a known mechanism of emission and absorption of radiant energy by matter. At the time when Planck 
deduced his radiation formula, the mechanism of emission and absorption of radiant energy (as later 
developed by Bohr) was not known. But, the idea of Hertzian oscillators was fully developed. They are 
electromagnetic oscillators consisting of two poles with equal and opposite charges. Radiation being 
of electromagnetic nature, such an oscillator placed in a radiation field will be caused to execute forced 
oscillations. The damping force on these oscillators being very small, the oscillators are only sensitive 
to radiations whose frequency differs only slightly from their natural frequency. Hence, these oscillators 
behave like resonators. They absorb energy from the radiation and transfer their energy partly or wholly 
to the surrounding molecules by collision.

We now imagine an enclosure with perfectly reflecting walls containing resonators, molecules at a 
given temperature in radiation equilibrium. Let the number of resonators inside the enclosure be N and 
let U be the mean energy of these oscillators. Then, the total energy of the resonators is

		  U NUN =

Here Planck makes an assumption that in the process of interaction between matter and radiation, the 
energy is not emitted or absorbed in continuous stream but in integral multiples of a smallest element or 
quantum. So, we divide the total energy UN into P elements each of magnitude ∈, so that

		  U NU PN = = ∈

so that the number of elements of energy is

		  P NU
=

∈

The number of ways of distributing P energy elements among N resonators is 

		
( )!
( )! !

!

( )! !

N P
N P

N NU

N NU
+ −
−

=
+

∈
−











−
∈











1
1

1

1 

This gives the number of complexions determining the thermodynamic probability of the energy 
state of the system of resonators. From Boltzmann’s entropy–probability relation (Eq. 12.76), the  
entropy of the resonators is 

		  S k WN e= log
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	 or	 S k
N NU

N NUN e=
+

∈
−











−
∈











log
!

( )! !

1

1

	 or	 S k N U
N NUN e=

+ ∈
∈

log [ ( )]!
!( / )!
1 /

Neglecting 1 in comparison with N which is very large 

	 or	 S k N U N NUN e e e= + ∈ − − ∈[log [ ( )]! log ! log ( )!]1 / / � (12.78)

To evaluate the expression on the right hand side of Eq. 12.78, we use Stirling’s theorem*

		  log ! loge ep p p p= − � (12.79)

for large value of p. Applying in Eq. 12.78, we get

  S k N U N U N U N N N NU NN e e e= + ∈ + ∈ − + ∈ − + − ∈[ ( / ) log [ ( )] ( / ) log ( / ) log (1 1 1/ UU NU/ ) ( / )]∈ + ∈

	    = + ∈ + ∈ − ∈ ∈ −



k N U N U NU NU N Ne e e( / ) log ( / ) ( / ) log ( / ) log1 1

  S kN U N U U
N e e= +

∈









 + +

∈









 +

∈







1 1 1log log


−

∈
−

∈ ∈
−













U N U U Ne e elog log log

	    = +
∈









 +

∈









−

∈ ∈











kN U U U U

e e1 1log log

The entropy of one resonator is 

		  S
S
N

k U UN
e= = +

∈











+
∈











1 1log −−
∈ ∈













U U
elog

By the second law of thermodynamics,

		  dS
dU T

=
1

	 or	
1 1 1 1 1 1
T

k U U
e e=

∈
+

∈










+

∈
−

∈ ∈
−

∈




log log








* This is LimLim p

p

e ep p p
e

p p p→∞ =






 = + +







 −! log log2 1

2
2 1

2
π π == −p p pelog
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		  =
∈

+
∈

∈

=
∈

+
∈








k
U

U
k

Ue elog log
1

1

	 or	 loge U kT
1+

∈









=
∈

	 or	 U
ekT

=
∈

−
∈

1
� (12.80)

From the laws of electromagnetism, Planck deduced the relation

		  e
c
Uν

ν
=

2

2 � (12.81)

	 or	 U c e=
2

2ν ν

	 or	 U c
c
f T

= ′








2

2

3

4ν
ν

ν   from Eq. 12.50

	 or	 U
c
f T

= ′








ν
ν2

	 or	 U F
T

=






ν

ν
� (12.82)

From Eqs 12.80 and 12.82,

		
∈

−
=







∈

e
F
TkT 1

ν
ν

This can be true only if 

		  ∈α ν 

	 or	 ∈ = hν � (12.83)

This constant of proportionality h is called Planck’s constant. 
Substituting ∈ = hn in Eq. 12.80, the average energy of the resonator becomes 

		  U h

e
h
kT

=
−

ν
ν

1
� (12.84)
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Substituting this value in Eq. 12.81, we get 

		  e
c

h

e
h
kT

ν ν

ν ν
=

−

2

2

1

From Eq. 12.13, if the radiation is unpolarized

		  U
c
e h

c
e
h
kT

ν ν ν

π π ν
= =

−

8 8 1

1

3

3  Eq. (12.56)

Equation 12.56 is the famous Planck’s radiation formula.
Equation 12.84 may be written as 

		  U h
h
kT

h
kT

h
kT

=

+ +






 +







 +













ν

ν ν ν1 1
2

1
3

2 3

! !
……



−1

		  =

+






 +







 +

h
h
kT

h
kT

h
kT

ν

ν ν ν1
2

1
3

2 3

! !
……

	�  (12.85)

For large value of T and small values of n,U becomes equal to kT , which is the classical equiparti-
tion law for energy distribution amongst waves. 

12.14  Jean’s Method of Deduction of Planck’s Radiation Formula

According to Planck, a member of a system in temperature equilibrium can emit or absorb energy in 
integral multiples of a definite smallest amount called the quantum of energy. Hence, the total energy 
of a system of oscillators in temperature equilibrium can only be distributed amongst themselves in 
integral multiples of this quantum.

Let us call the quantum of energy ∈. Now from the laws of classical statistics, the number of oscil-
lators having energy between ∈ and∈ + ∈d is

		  Be dkT
−

∈

∈ � (12.86)

where B is a constant. To apply this result to the case of oscillators, ∈ can assume values 0, ∈, 2∈, 
3∈ …… etc. Number of oscillators having energy r∈ is

		  n Ber

r
kT=

−
∈

� (12.87)

Let n0 be the number of molecules having zero energy; then, putting r = 0 in Eq. 12.87
		  n0 = B
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so that Eq. 12.87 takes the form

		  n n er

r
kT=

−
∈

0
� (12.88)

If N be the total number of oscillators, then

		  N n n n n= + + + +0 1 2 3 ……

		  = + + + +










−
∈

−
∈

−
∈

n e e ekT kT kT
0

2 3

1 ……

	 or	 N
n

e kT

=

−
−

∈
0

1
� (12.89)

The total energy of all the oscillators is 

		  U n e n e n ekT kT kT= ∈ + ∈ + ∈ +
−

∈
−

∈
−

∈

0 0

2

0

3

2 3 ……

		  = ∈ + + +










−
∈

−
∈

−
∈

n e e ekT kT kT
0 1 2 3 ……

	 or	
U

n e

e

kT

kT

=
∈

−










−
∈

−
∈

0
2

1
� (12.90)

Substituting for n0 from Eq.12.89, we get 

		  U N e

e

N

e

kT

kT kT

=
∈

−

=
∈

−

−
∈

−
∈ ∈

1 1

Hence, the mean energy of an oscillator is 

		  U U
N

ekT
= =

∈

−
∈

1
� (12.91)

	 If T is large, 	 U

kT kT

kT=
∈

+
∈

−
=

∈
∈

=
1 1

which agrees with the classical equipartition principle.
Inside an enclosure containing radiation and oscillators in temperature equilibrium, the average  

energy of the oscillators must be the same as the average energy of each mode of vibration of waves of 
frequency constituting the radiation. 
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Now, the number of degrees of freedom per unit volume associated with frequency n is given by 
Eq. 12.68

		
8 2

3

πν
c

Energy associated with frequency n per unit volume is 

		  u
c

Uν
πν

=
8 2

3

	 or	 u
c

ekT
ν

πν
=

∈

−
∈

8

1

2

3 � (12.92)

Wien’s displacement law gives us the relation

		  e f Tbλ λ λ= −( ) 5

	 Now, 	 e d e db bν λν λ= −

	 Since	 λ
ν

λ
ν

ν= = −
c d c d, 2

	 Hence,	 e d e c db bν λν
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c
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From the laws of electrodynamics, Planck deduced the relation 

		  e
c
Ubν

ν
=

2

2

	 so that 	 U e c
c
c f T
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
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
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	 or	 U F
T

=






ν

ν

Comparing Eq. 12.91 with the electromagnetic equation of Planck (Eq. 12.82)

		  U F
T

=






ν

ν

We find that these equations can be satisfied only if 

		  ∈α ν

		  ∈ = hν � (12.93)

where h is the constant of proportionality, called the Planck’s constant.
Substituting∈ = hν in Eq. 12.92, we get Planck’s radiation formula

		  u h
c

e
h
kT

ν ν

π ν
=

−

8 1

1

3

3

12.15  Specific Heats of Substances
The simplest law of specific heat of monatomic solids was given by Dulong and Petit. It runs as 
follows:

The product of atomic weight and specific heat is the same for all elementary monatomic solid  
substances and is called atomic heat.

Regnault’s experiments on a large number of substances give a mean value of 6.38 calories per gram 
per degree for specific heats of the substances investigated.

This law can be readily explained on the basis of equipartition principle. An atom of a mona-
tomic solid has three degrees of freedom of vibrational motion; with each degree of kinetic energy, 
an amount of energy 1/2 kT is associated. Since the average energy of vibrational motion is equally 
divided between the kinetic and potential forms, the total amount of energy per degree of freedom is 
kT. Hence, the energy of each atom is 3kT. If N be the Avogadro number, the total energy of the solid 
per gram atom is

		  U NkT RT= =3 3

	 Now,	 C dU
dT

Rv =






 =
υ

3

	 or	 Cv = 3 3 1.988 = 5.1965 cal per gm atom per degree

Thus according to Dulong and Petit, the specific heat of substance would be the same at all 
temperatures.
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12.16  Deviations from Dulong and Petit’s Laws

Extensive researches by Magnus, Nernst and Lindemann, and Lewis conclusively prove that specific 
heats of substances actually vary with temperature. The curves in Fig. 12.12 show the nature of variation 
of Cv with temperature.

The atomic heat of diamond rises from a low value of 0.03 at 86.5 K to 5.077 at 1100 K. All light 
substances such as boron, beryllium and silicon behave in a similar manner. 

At room temperature, atomic heat of lead approximates the value required by Dulong and Petit. 
But below 100 K, it drops rapidly to zero value. 

Some general conclusions: 
1.	 The general form of the specific heat and temperature curve is the same for all substances.
2.	 At high temperature, the curves approach asymptotically to the value required by Dulong and 

Petit’s law.
3.	 The substances differ in temperature above which they obey Dulong and Petit’s law.
4.	 At low temperature, the specific heat rapidly falls and in the case of some substances (such as 

diamond) acquires zero value long before the zero of temperature is reached.
5.	 From 0 K up to a certain specified temperature, the atomic heat at constant volume varies as 

the cube of the absolute temperature. This is true for all substances and the law is known as 
Debye’s T 3-law.

6.	 The curves showing the relation between Cv and T for all substances can be brought nearly into 
coincidence by suitably altering the temperature scale of each substance. Thus if the abscissae 
of the curve for aluminium are multiplied by a factor 4.6, the specific heat curve for aluminium 
will coincide with that for diamond. In fact if instead of plotting Cv against T, Cv is plotted 
against T/q where q is a quantity characteristic of the substance then the specific heat curves for 
all substances would coincide. This temperature q is called the characteristic temperature of the 
substance. Under these circumstances, Cv can be represented as a function of T/q where T is the 
absolute temperature at which the specific heat is determined.

Fig. 12.12  Variation of specific heat of some substances with temperature

Cν

T

Pb

Al

C
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It appears that the departure from the Dulong and Pelit’s value of specific heat at different tem-
perature is much larger than the experimental error. This is another case of failure of the equipartition 
principle which is based on classical mechanics. We shall prove that in the field of specific heat also, the 
quantum theory has acquired astonishing success. 

12.17  Einstein’s Theory of Specific Heat

Einstein’s derivation of specific heat formula is based upon the following assumptions: 

1.	 All atoms of a monatomic solid vibrate with the same frequency n.
2.	 The frequency depends on the mass of the atom and the restoring force.
3.	 These atoms, like Planck’s oscillators, are in equilibrium with ether vibrations of the same 

frequency.
4.	 Instead of classical law of equipartition, that is ½ KT for each degree of freedom, Einstein uses 

the mean energy of Planck’s oscillator for each degree of freedom, that is, 

		  U h

e
h
kT

=
−

ν
ν

1

For one gram-atom of a monatomic solid, consisting of N atoms each with 3 degrees of freedom, the 
total internal energy per gm-atom is
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writing θ = hn/k, Eq. 12.94 takes the form
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The function F is called Einstein’s function. 
Putting x = θ/T, Eq. 12.95 reduces to 
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If T is large, x is small. Hence neglecting terms higher than the second power, 
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x
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≈

so thatC Rv ≈ 3 for high values of T. This agrees with the experimental result. 

If T is very small, x is very large. In this case,
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2

If x is large, 1/ex = 0, so that
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Thus at the absolute zero of temperature, the atomic heat reduces to zero value. This is in accord with 
experiment.

12.17.1  The Characteristic Temperature
We have defined the characteristic temperature by

		  θ
ν

=
h
k

It is evidently a temperature T for which 

		  h kT h
kT

ν
ν

= =or 1

Substituting hn/kT = 1 in Eq. 12.94, it reduces to

		  C
e

Rv =
−

= × = × =
3

1
3 0 921 5 96 0 92 5 49

2

Re
( )

. . . .

Hence, the characteristic temperature of a substance is that temperature at which the specific heat at 
constant volume becomes 5.49. Hence from the experimental (Cv - T) curve of a substance, its charac-
teristic temperature can be determined.

12.17.2  Characteristic Frequency
Knowing the characteristic temperature q, the characteristic frequency n can be calculated from the relation 

		  ν
θ

=
k
h

where k is Boltzmann’s constant and h is Planck’s constant.

Other methods of determining characteristic frequency:  The characteristic frequency of a solid 
can also be determined in other ways; they are as follows:

1.	 The residual rays method:  A substance which exhibits selective reflection at a particular region 
of the spectrum must consist of resonators which respond to vibration of frequencies corre-
sponding to that region. Rubens and his collaborators succeeded in isolating these frequencies 
by successive reflections from the surfaces of a number of substances.

2.	 From compressibility:  This is determined with the help of the relation

		  ν = ×






2 8 107

3 3

6

. V
K A

A � (12.96)

where K is the compressibility, A is the atomic weight and VA is the volume of the gram-atom.
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3.	 From melting point:  This is obtained from the relation 

		  ν =C T
AV

m

A
2 3/ � (12.97)

where Tm is the temperature of the melting point, A is the atomic weight and VA is the volume of the 
gram-atom. The constant C has the order of magnitude 2.8 3 1012.

Knowing the characteristic frequencies by any of the above methods, the specific heat of a substance 
at any temperature can be calculated with the help of Einstein’s equation. 

We have seen that the values of Cv calculated from Einstein’s equation agrees with experimental 
values at very high and very low temperatures. In the case of diamond, the experimental values of Cv 
down to 30 K agree remarkably with values calculated from Einstein’s formula. In the case of oth-
er substances, the atomic heats at low temperatures fall off much more slowly than those demanded 
by Einstein’s equation. Thus for silver at 14 K, the value of Cv calculated from Einstein’s formula is 
28 times lower than the experimental value and at lower temperatures the discrepancy is still greater.

The weak point in Einstein’s theory is that in the ideal solid postulated by him, all atoms are supposed 
to vibrate with the same frequency at all temperatures.

12.18  Debye’s Theory of Specific Heat

According to Debye, the actual vibration of an atom in an elastic solid must be necessarily complex  
owing to collisions and mutual action of the neighbouring atoms. This complex vibration of an atom can 
be analysed into a large number of simple components. The number of such components must be finite, 
though large because the total number of degrees of freedom cannot exceed 3N where N is the number 
of atoms constituting the monatomic solid. Hence, the possible frequencies must have an upper limit. 
Let us call this limiting frequency nm.

Now, a solid can transmit both longitudinal and transverse waves represented by cL and cT, respec-
tively. We have already proved in Eq. 12.68 that the number of degrees of freedom per unit volume of 
longitudinal waves in the frequency range n to n 1 dn is

		  dN
c
dL

L

= 4
2

3π
ν

ν

and those of transverse waves in the same frequency range is 

		  dN
c
dT

T

= 8
2

3π
ν

ν

Hence, the total number of degrees of freedom within the frequency range n to n 1 dn is

		  dN dN dN
c c

dL T
L T

= + = +








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4 1 2
3 3

2π ν ν

Let V be the volume of gram-atom of the solid. Then, the total number of degrees of freedom in this 
volume is 

		  dNV V
c c

d
L T

= +










4 1 2
3 3

2π ν ν
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	 or	 dNV A d A V
c cL T

= = +

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
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ν ν π2
3 34 1 2where

Since the total number of degrees of freedom must be equal to 3N where N is the number of atoms 
in gm-atom, we must have 

		  3
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2

0

3N A d Am

m= =∫ ν ν ν
ν

	 so that 	 A N

m

=
9

3ν � (12.98)
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With each degree of freedom, we associate the mean energy
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Then, the total internal energy of the solid is
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Put	
h
kT

x x h
kTm
mν ν

= =,
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	 Then,	 d kT
h
dxν =

Substituting for n in Eq. 12.99, we get
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Equation 12.100 is known as Debye’s specific heat equation.
For high temperature, x is small and it has already been proved that for small values of x 
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Hence for high temperature, Eq. 12.100 reduces to
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This agrees with Dulong and Petit’s result. At low temperature, x is large and the upper limit of the 
integral can be made equal to infinity. Equation 12.100 can then be put into the following form 
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This is Debye’s T 3-law.
The value of nm can be calculated from Eq. 12.98. 

		  νm
N
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The values of cL and cT can be calculated from the elastic constants of the solid. Therefore, 
nm depends on the nature of material of the solid. From Eq. 12.100, Cv is necessarily a function of 
xm where

		  x h
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h
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m m
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m= = =
ν θ

θ
ν

where
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θ
� (12.102)

Evidently instead of plotting CV against T, if we plot CV against T/qm we shall get a curve which will 
represent the variation of specific heat with temperature for all substances. The value of qm ranges from 
88 to 846. For diamond, it is as high as 1860.

Experiments of Blackmann and Kellermann prove that there is actually a region of temperature in 
which the T3-law holds, but that is a region of very low temperature. At this region, only long waves 
contribute to the energy and the wavelengths are large compared to interatomic distances. Accord-
ingly, the idea of a continuum is more fully realized at this temperature. But we must not expect too 
much of the Debye law. Schaefer concludes there is for each substance a very low temperature below 
which Debye T3-law does not hold. At helium temperatures, the specific heats of metals are repre-
sented by the formula

		  C a T bTv =






 +

θ

3

� (12.103)

the first term is due to contribution from the lattice vibration, the second gives the contribution from 
the conduction electrons which can be treated like perfect gas molecules. For copper, the value of  
a and b are 

		  a = 464.5     and     b = 0.000177

In addition to all these, some amount of energy is absorbed by atoms to raise them from a state of 
lower to that of higher energy at the absolute zero temperature, the atoms occupy the lowest or the 
ground state; with rise of temperature, the higher states begin to be populated. If DE is the energy  
associated with the higher state, then the contribution to specific heat due to this cause is 
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12.19  Specific Heat of Gases

The atoms of a solid have only vibrational degrees of freedom. The gas molecules can have three types 
of motion—translational, rational and vibrational. Hence, the total energy of atoms of a mass M is

		  U U U UM T R V= + + � (12.105)

where UT, UR and UV are the energies associated with translational, rotational and vibrational degrees of 
freedom, respectively. 

12.19.1  Calculation of Specific Heat Due to Translational Motion
With each degree of freedom of translational motion, an amount of energy 1/2 kT is associated. Hence 
if N be the number of molecule per gm-molecule, then the energy per gm-molecule due to translational 
motion is

		  U N kT RTT = × =3 1
2

3
2

Since the centre of gravity of the molecule can have only three degrees of freedom of translation, 
contribution to specific heat due to this cause is 

		  C
dU
dT

RT
R

V

=










= =
3
2

2 98.

12.19.2  Calculation of Specific Heat Due to Rotational Motion 
The energy of rotational motion per degree of freedom can be calculated from the classical quantum 
theory. According to this theory,

		  pdq nh∫ = � (12.106)

where p is the momentum co-ordinate and q is the positional co-ordinate. In the case of rotational 
motion, p is the angular momentum (Iw) and q is the angular displacement (q). Substituting the values 
of p and q in Eq. 12.105 and integrating from 0 to 2p , we get

		    I d nh nω
π

0

2

0 1 2 3∫ = =θ ( , , , )……

	 or	 2π ωI nh=

	 so that	 ω
π

=
nh
I2

In other words, angular momentum is quantized. The kinetic energy of rotational motion is

		  1
2 8

2
2 2

2I n h
I

ω
π

=
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According to the new quantum theory, this is equal to

		  1
2

1
8

2
2

2I n n h
I

ω
π

= +( )

12.19.3  Calculation of Specific Heat Due to Vibrational Motion 
According to Planck, the mean energy of an oscillator is

		  U h

e
V h

kT

=
−

ν
ν

1

If N be the number of molecule per gm-molecule, then the mean energy per gm-molecule is
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	 or	 C R x e
e

x h
kTV

x

x=
−

=
2

21( )
where ν

12.19.4  Specific Heat of Hydrogen
The variation of specific heat of hydrogen with fall of temperature is given in Table 12.2.

It follows that below 60 K, hydrogen behaves like a monatomic gas having only three degrees of 
freedom. At higher temperatures, rotational degrees of freedom appear. It can be proved that the contri-
bution to specific heat due to rotational motion of a diatomic molecule is

TK 196.5 100 80 60 45 35

CV 48.39 3.42 3.14 2.99 3.00 2.98

Table 12.2  Variation of specific heat of hydrogen with fall of temperature

Chapter 12.indd   433 6/1/2011   1:47:06 PM



434    Heat and Thermodynamics

		  U R d
d

QR e= σ
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Subtracting UT = 2.98 for hydrogen at 60 K from the observed value of UM in Eq. 12.105, we can 
find the value of UR. This value of UR does not agree with the value of UR calculated from Eq. 12.108.

Now, analysis of band spectra of hydrogen led to the discovery of two types of hydrogen mol-
ecules—(1) orthohydrogen in which the molecules can assume rotational quantum states specified by 
odd values of n; (2) parahydrogen in which the molecules can assume rotational quantum states speci-
fied by even values of n.

Wave mechanics indicated that in the orthohydrogen, the magnetic moments of the two nuclei are 
parallel and in the parahydrogen, they are antiparallel. 

Hence for parahydrogen, 

		  Q n eP
n

n n= +
=

− +∑ ( )
, , , , .......

( )2 1
0 2 4 6

1 σ

and for orthohydrogen, 

		  Q n eO
n

n n= +
=

− +∑ ( )
, , , .......

( )2 1
1 3 5

1 σ

Hence, a mass of hydrogen gas consists of a mixture of ortho- and parahydrogen whose proportion 
depends upon temperature. Assuming that

		
mass of ortho-hydrogen
mass of para-hydrogen

=
1
ρ

in a mass of hydrogen and representing the specific heat of orthohydrogen by UR(O) and that of parahy-
drogen by UR(P), the specific heat of a mass of hydrogen due to rotational motion is

		  U U P U O
R

R R=
+

+
ρ

ρ
( ) ( )
1 �  (12.109)

Eucken and Hiller produced various proportions of ortho- and parahydrogen by leaving hydrogen 
in contact with activated charcoal which serves as catalyst for transformation and verifies the truth 
of Eq. 12.108.

12.20  Experimental Determination of Stefan’s Constant

The principle of the method is as follows: The instrument consists of three essential parts (Fig. 12.13):

1.	 A source of radiation (a black body) (FG).
2.	 A screen with a shutter (CD).
3.	 A receiver (AB).
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The first important adjustment is that the centres of the receiver, the shutter and the radiator must 
lie in the same straight line. The second adjustment is that the surfaces of the receiver, the shutter and 
the radiator must be perpendicular to the central line. The third important adjustment in setting of the 
instrument is that the line joining the points A, D and B, C must intersect the radiating surfaces at two 
points F and G (say). In that case, every point of the receiver must receive the same amount of radiation 
per second; this can be seen as follows:

To find the radiation received by the point p of the receiver, join P, C and P, D and produce them to 
intersect the screen at G1 and F1. Then, p will receive radiation contained only within the cone F1PG1. 
Let E be the radiation emitted per unit area of the radiator within the cone F1PG1 and let the area of CD 
be a1 and that of F1G1, a2; the distance between receiver and screen be d1 and that between receiver and 
radiator be d2. Then, 

		
a
a

d
d

1

2

1
2

2
2

=

By the law of inverse squares, the radiation received by unit area around p when the radiator is placed 
at FG is 

		  I E
a
d2
2

2
2

=

If the same radiation be placed in the position of the screen CD, the radiation received by unit area 
around P would be 

		  I E
a
d

E
a d
d d

E
a
d
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1

1
2

2 1
2

1
2

2
2

2

2
2 2= = = =

Hence under the condition of adjustment, the radiation falling on the receiver per unit area around P 
would be independent of the position of the radiator.

Fig. 12.13  Apparatus’ arrangement for determination of stefan’s constant
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	 Now, let A1 = the area of the receiver
                 A2 = the area of the shutter
                  d = distance of the receiver from shutter
                  T1 = the temperature of the radiator
                 T2 = the temperature of the shutter 
The solid angle subtended by the radiator at the centre of the receiver = that subtended by the shut-

ter at the same point = dW = A2/d
2
1, since cosq = 1. The energy falling on unit area of the receiver per 

second is obtained from the relation
		  K dt ds dW cosq

Now by Stefan–Boltzmann law,

		  H K T= =π σ 1
4

	 so that 	 K T
=
σ
π

1
4

Hence, the energy falling on unit area of the receiver per second

		  =σ σ
θ

π
T dtd d1

4 Ω
cos

In this particular case, q = 0 so that cosq = 1, ds = A1, the area of the receiver, dt = 1 second and 
dW = A2/d

2
1

Hence, energy falling on the receiver per second from the radiator is

		  Q T A A
d1

1
4

1 2

1
2=

σ
π

Similarly, the energy falling on the receiver per second from the shutter at temperature T2 is

		  Q T A A
d2

2
4

1 2

1
2=

σ
π

(This holds on the assumption that the shutter is also a black body.)
Hence, the difference of energy falling on the receiver per second with 

the shutter open and closed is

		  Q Q A A T T
d1 2 1 2

1
4

2
4

2− =
−

σ
π

( )

This is the working formula for the determination of s.

The apparatus:  In Lummer Pringsheim’s method, the receiver was the 
surface bolometer made up of exceedingly thin strip of platinum (1 to 2 3 
1023 mm thick) coated with platinum black and joined together in series 
so as to form a grating (Fig. 12.14). 

Fig. 12.14  Sketch of 
receiver
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Resistance of each grating is about 60 ohms. For experimental purpos-
es, four exactly similar gratings are taken and placed in the four arms of the 
Wheatstone’s bridge as shown in the figure (Fig. 12.15). The gratings in arms 
3 and 1 are placed one back to the other with edges overlapping so as to form 
a continuous surface. The gratings 1 and 3 are exposed to the radiation while 
those in arms 2 and 4 are shielded from the radiation. Usual battery and galva-
nometer connections being made, the bridge is balanced with all the gratings 
shielded from the radiation. When radiation falls on the gratings 1 and 3 the 
temperatures of these gratings rises, the balance is disturbed and the galva-
nometer shows a deflection. 

The radiator:  For measurement of temperature of radiation within the 
range 200 8 to 600 8C, a copper sphere coated on the inside with platinum 
black is used (Fig. 12.16). 

It is enclosed in an iron vessel filled with a mixture of sodium and potassium nitrates which melts at 
219 8C. It is heated by a burner supplied with regulated amounts of gas and air. The temperature of the 
bath is measured by high pressure gas thermometer and by a thermoelement. The bath is also provided 
with an efficient stirring arrangement. The opening of the copper vessel is surrounded by a diaphragm 
vv through which water at atmospheric temperature flows. In front of the copper vessel, there is a double 
walled cylinder whose opening can be closed by a double walled shutter. Through each of these, water at 
atmospheric temperature is made to flow. The water-filled vessels protect the bolometer from radiations 
coming from the heated chamber.

For measurements in the temperature range 600 8C to 1300 8C, an iron cylinder is substituted for the 
copper sphere. The inner surface is coated with platinum black. The cylinder is enclosed in a double-
walled gas furnace. The temperature measured by this thermometer is reduced to the scale of nitrogen 
thermometer from the results of Holborn and Day’s comparison.

The bolometer is placed on a bench in front of the radiator so that its distance from the radiator can 
be varied. The radiation reaches the bolometer through a number of stops in a cylindrical casing, the 
narrowest one being just in front of the grating. The inner wall of the casing and the surfaces of the stops 
are covered partly with black velvet and partly with felt.

Fig. 12.15  Sketch of 
wheatstone’s bridge
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2

41

Fig. 12.16  Experimental arrangement to determine stefan’s constant

ν

ν

Chapter 12.indd   437 6/1/2011   1:47:20 PM



438    Heat and Thermodynamics

In making an observation, the shutter is raised allowing the radiation to fall on the surface of the 
bolometer and the maximum deflection of the spot of light is noted. The shutter is then lowered and the 
maximum deflection due to radiation from the shutter is again noted.

In actual experiments, the deflection of each temperature should be about 300 mm either by altering 
the distance of the bolometer from the radiator or by regulating the current through the battery con-
nected to the Wheatstone bridge.

12.21  Measurement of High Temperatures by Radiation

At high temperatures above the melting point of gold (1063 8C), the difficulties of gas thermometers 
are too high. Hence, they are of no use in establishing the thermodynamical scale of temperature. Ther-
mometers based on laws of radiation are wonderfully suited for the measurement of high temperatures 
beyond the limit of gas thermometer.

We have seen that the radiation inside an enclosure whose walls are maintained at a constant tem-
perature is unique in character and is independent of the nature of walls of the enclosure. Further, the 
radiation inside such an enclosure behaves as a perfect gas. Hence, radiation inside the enclosure can 
be used as the thermometric substance for defining a scale of temperature which is absolute in the same 
sense that Kelvin’s scale is absolute.

The only serious objection in using the laws of radiation for the measurement of temperature is that 
these laws are only applicable to the case of black bodies like the Bessemer converter or any other 
chamber at a fairly uniform temperature with a small aperture.

For measuring temperature, any of the following laws of radiation may be used:

		  U T=σ 4

		  λmT = constant

		  E C e
c
T

λ
λ

λ
= −











1
5

2

1

Of these formulae the second one is not generally used, for it requires elaborate apparatus like infra-
red spectrometer.

The measurement of temperature by Stefan’s laws has led to the so-called total radiation pyrometers 
while the method based on Planck’s formula is used in the optical pyrometers.

12.21.1  The Optical Pyrometer
If we put T = 4000 K as the upper limit of temperature, c2 = 1.432 (from experiment) and l = 6.58 3 1025

cm for wavelength of red light, then

		  e
c
T
2

230λ =
With these values of c2, l and T, 
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and Planck’s formula reduces to Wien’ s formula
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If E1 and E2 are the energies at two temperatures T1 and T2 respectively, then
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If T1 and E1 be known at a known wavelength, then from measured value of E2, T2 can be calculated; 
T1 is taken to be the temperature at the gold point and the scale thus obtained has been legalized by 
international conference.

12.21.2  The Disappearing Filament Pyrometer
The instrument is really a telescope consisting of the object glass L with a diaphragm placed in front of 
the eyepiece E (Fig. 12.17). C is a red filter which transmits only a narrow band of wavelength in the red 
part of the visible spectrum. The image of the source S is projected on the filament. 

Calibration of the pyrometer:  The pyrometer is sighted on a black body S which can be kept at vari-
ous temperatures upto the melting point of gold, the temperature of the black body being measured by a 
standardized thermocouple. At each temperature, the current through the filament is adjusted till the fila-
ment becomes invisible against the image of the source S which is formed in the plane of the filament. 
The temperature is plotted against the current and from the calibration curve, any unknown temperature 
can be determined if the corresponding current required to match the radiation is known.

Fig. 12.17  Disappearing filament pyrometer
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For measurement of temperature above the gold point, a rotating sector is placed between S and L. 
The number of rotation of the sector is adjusted at 30 to 40 revolutions per second. This sector cuts down 
the intensity of radiation from S in the ratio q/2p where q is the angular width of the opening of the 
sector. By this means, the observed intensity is allowed to fall within the limits of the calibration curve.

Let T1 be the apparent temperature corresponding to the observed reducing intensity E1. Then if the 
actual intensity is E2, we must have

		
E
E

2
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2
=

π
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From Eq. 12.110, the temperature T2 corresponding to actual intensity E2 can be calculated.
In the polarizing type of optical pyrometer, the intensity of standard light is maintained constant and 

the intensity of light from the source is varied by means of a polarizing and analyzing Nicol.

12.21.3  The Total Radiation Pyrometer
This instrument measures the total energy of radiation of all wavelengths from the body whose tempera-
ture is to be measured. Figure 12.18 shows the design of Fery’s radiation pyrometer.

In this figure, M is a concave mirror which is silvered on the front. D is a diaphragm with a central 
hole. The blackened surfaces of the receiver T is placed just behind the diaphragm. One junction of the 
thermocouple called the hot junction is soldered to the back of the receiver. The cold junction is shielded 
from the direct radiation by means of a tongue and a box. The leads of the thermocouple are joined to 
a millivoltmeter. The concave mirror can be moved backwards and forwards by means of a rack and 
pinion arrangement. The diaphragm is sighted by means of an eyepiece E fitted to a hole in the centre 
of the concave mirror. 

The principle of working of the instrument is based on the fact that the intensity of the image of 
a distant object formed on a fixed plane by a mirror (or lens) is independent of distance of the object 

Fig. 12.18  Fery’s radiation pyrometer
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from the mirror or the lens. This is because with the increase of distance, the amount of radiation fall-
ing on the aperture of the mirror falls off inversely as the square of the distance. If the object distance 
u is large, the mirror requires only small displacement to focus the image on the same plane so that 
the image distance v remains practically unaltered. Now, magnification of the image is

		  m v
u

I
O

= =

so that the linear dimension of the image is inversely proportional to the object distance. Hence, the area 
of the image is inversely proportional to the square of the distance. Hence, intensity of image at every 
point of the plane is the same and is independent of the object distance.

The essential conditions of using the instrument, therefore, are as follows:

1.	 The image of aperture of the black body should always be accurately focussed in the plane of 
the diaphragm.

2.	 The size of the heat image formed by the concave mirror should be larger than the hole in the 
diaphragm.

In that case, the thermocouple would measure the intensity of total radiation and not the total radiation.
The first condition was realized by Fery by the following optical device. Two semicircular skew 

mirrors each with a semicircular opening of 15 mm radius were placed in the plane of the diaphragm. 
Through this opening, the radiation passed on to the hot junction. The inclination of the skew diameters 
of the mirror was about 5 8 to 10 8. It is evident that unless the heat image is formed in the plane of the 
diaphragm, the two images of the hot object formed by two semicircular mirrors would be displaced 
relatively to each other. Hence to focus the image on the diaphragm, the concave mirror is moved back-
ward or forward till the two semicircular images of the mirror lie on the same circle.

The second condition requires that the distance of the pyrometer from the hot object can not be too 
large so that the image may not be smaller than the opening in the semicircular mirrors.

Let To be the temperature of the receiving surface and let T be the temperature of the source. In actual 
practice, the electromotive force of the thermocouple is 

		  v a T Tb
o
b= −( )

where b varies from 3.8 to 4.2. This departure from the index value of 4 is due to the following causes:

1.	 The emf of the thermocouple is not exactly proportional to the difference of temperature  
between the junctions.

2.	 Stray reflections cause error.
3.	 Conduction along the wire raises the temperature of the junctions.
4.	 The loss of heat from the hot junction is not proportional to the temperature excess.

For this reason, the instrument is calibrated directly at number of points by sighting a furnace and 
comparing its readings with a standard thermometer or an optical pyrometer at temperatures higher than 
the gold point. 

The range of the instrument can be extended beyond the calibration limit by using a rotating sector. 
In this case if T1 is the apparent temperature as read on the calibrated instrument and q is the sector 
opening, then the true temperature T is given by

		  T T1
4 4

2
=

θ
π
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12.21.4  Methods of Determination of High Temperature Melting Points 

1.	 The metal whose melting point is to be determined is welded between two thermocouple wires. 
The junction is placed inside a furnace whose temperature is gradually raised. At the melting 
point, the deflection of the galvanometer remains steady for a short time; the circuit then breaks 
and the emf falls to zero.

2.	 A small sight tube is immersed in the molten metal. The tube thus behaves like a black body 
whose temperature is determined by the optical pyrometer as described above.

3.	 The temperature of molten iron is determined by inserting a tube in the molten metal and blow-
ing a bubble at its end. This bubble forms a black body whose temperature is determined by the 
optical pyrometer.

4.	 A strip of metal whose melting point is to be determined is folded into the shape of a wedge of 
small angle and electrically heated. The inside of the wedge forms a black body and is sighted 
by an optical pyrometer. The strength of the current is gradually increased and its temperature 
is determined when it begins to melt.

12.22  Determination of Solar Constant

Dominating our little corner of the universe is the mighty glowing orb of the Sun which is the ultimate 
source of all terrestrial energy. The warmth and light of the Sun are the most important things to us 
on the Earth; without them there would be no life of any type, the sky would be black and the tem-
perature would be deadly cold. The blazing Sun is a sphere remarkable in magnitude of hot glowing 
gas, the diameter of the main ball of the Sun is nearly 13,90,000 km which is 109 times the diameter 
of the Earth. The Sun is 150 million km distant from us. Astronomers considers this distance as a 
convenient unit of distance in solar system called astronomical unit. It is highly dangerous to see the 
Sun by any means, even through smoked glass or photograph negative. The safest way of looking 
at it is looking at the image formed by suitable means. It is one of the many stars in the Milky Way. 
Present evaluation considers the Sun’s distance from galactic centre to be about 32,000 light years. 
The Sun and other such stars usually rotate with the mean speed of 250 km per second about the  
galactic centre. The Sun takes 250 million years to complete one such revolution and this time is now 
called a cosmic year. The visible portion of the Sun seen as a bright disc called photosphere is not 
bright throughout. Powerful telescope shows tiny bright specks called granules against a less bright 
background, these are considered to be currents of hot gases emerging out of the Sun’s atmosphere. 
Prominent characteristics of the photosphere are dark markings called sunspots. These are areas of 
madly whirling gases, areas varying from a few hundred kilometers to tens of thousands kilometers 
in diameter. These sunspots are about 2,000 degree Celsius lower than the rest of the photosphere 
which is about 6,000 degree Celsius. This sunspot activity rises and falls in intensity in a cyclic 
period of 11 years, namely sunspot cycle. At times of maximum intensity, sunspot outbursts, in the 
form of hot ionized gas rolling out as enormous cloud known as solar wind, called solar flares are 
seen which affect electrical, magnetic instruments and radio disturbances on the Earth. This stream 
of electrified particles  become confined in great belts by Earth’s magnetism giving rise to luminous 
shimmering arcs and streamers in northern region called aurora boreales (northern lights) and aurora 
australis (southern lights). Surrounding the photosphere, there is a region of thinner gas which nor-
mally remains unseen because of the dazzlingness of the photosphere. It is only seen during an eclipse 
for a short time when the moon covers the photosphere. At that time, narrow rose-red fringe around 
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the dark body of the Moon is seen. This lower part of the Sun’s atmosphere is called chromosphere 
(coloursphere) extending to several thousand kilometers. Sometimes exalted flame like streamers of 
hot gas shoot up hundreds of thousands of kilometers through the chromosphere which are known as 
solar prominences. The outer atmosphere is called corona which can be seen as a pearly white halo 
during total solar eclipse. 

Sun is the ultimate source of energy which is formed by nuclear fusion occurring at the core of the Sun 
where the temperature is believed to be several million degrees Celsius. Like all other stars Sun is com-
posed of hydrogen, simplest of all elements. There, four atoms of hydrogen combine together to form one 
atom of next simplest element helium. In doing so, a small amount of matter is lost which is converted into 
unbelievable amount of energy because the mass of one helium atom is less than the combined mass of 
four hydrogen atoms. Thus, the temperature of the Sun is different at different regions.

Usually we mean by the Sun’s effective temperature the temperature of the photosphere which can be 
calculated by applying Stefan’s law of total radiation after determining solar constant.

12.22.1  Solar Constant and its Determination
The amount of solar energy received normally  per minute per unit area of a black body kept on the 
Earth’s surface without intermediate absorption in the space is known as solar constant. By determin-
ing this value, temperature of Sun can be estimated.

Solar constant can be determined by various methods such as water-stir pyrheliometer, water-flow pyr-
heliometer and Angstrom’s pyrheliometer. However, we shall describe the simplest method as suggested 
by Angstrom (Fig. 12.19).

Two similarly blackened platinum strips A and B are exposed normally to the Sun’s rays. 
Strip A is covered with source C so that no sunrays fall on it. Two thermocouple junctions are at-
tached to A and B with a galvanometer G for measuring the thermocurrent generated. The ends 
of the unexposed strip A is connected with a current providing arrangement with cells E, am-
meter M and a rheostat R. When Sun’s rays fall on B, it will be heated and a thermocurrent will 
flow; as a result, the galvanometer will be deflected. When the deflection becomes constant, 
strip A is heated by passing a current through it. By
adjusting current in A, galvanometer deflec-
tion is annulled which indicates that the two 
strips A and B are receiving some heat. Then if 
E be the voltage of cell in volts and I be the cur-
rent in amperes shown in ammeter, then the heat  
received per minute by A = EI 3 60/4.2 calories. If S 
be the solar constant, A be the area of B or A, α be the 
absorption coefficient of the strip then the heat energy 
received is S α A per minute.

	 Then, S A EI
∝ =

×60
4 2.

	 ∴               S
EI
A

=
×

∝
60
4 2.

 cal per cm2 per minute.
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Fig. 12.19  Angstrom’s pyrheliometer
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The experiment is repeated and a proper correction for absorption of Sun’s rays in space is done; thus S 
is determined. It comes out to be 1.34 3 106 ergs per cm2 per second or 1.94 calories per cm2 per minute.

12.22.2  Temperature of the Sun
Considering that the photosphere is emitting black body radiation, we can determine the temperature of 
the Sun from the measurement of solar constant.

Let T be the temperature of the Sun, r be its radius and R being the distance of earth from Sun, σ be the 
Stefan’s constant then applying Stefan’s radiation law, energy emitted by the Sun per minute= ×σ πT r4 24 60.

The energy received per unit area of the Earth’s surface per minute is
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Putting the values, T comes out to be 5723 K which corroborates the value calculated from Wien’s 
displacement law.

12.22.3  Some Everyday Applications
Radiations from the Sun mostly consists of long wavelength electromagnetic radiation. It ranges from 
ultraviolet to infrared through visible region. Visible region has seven colours—violet, indigo, blue, 
green, yellow, orange and red. Infrared region gives heating effect which decreases with the decrease in 
wavelength. For the study of different regions, different types of instruments are needed. Solar spectrum 
consists of a large number of dark lines called Fraunhofer lines. Fraunhofer measured the wavelengths 
of these lines and found that they occupy the same position as the bright lines emitted by different 
elements which are present in the Earth’s and the Sun’s outer atmosphere. Infrared radiations are not 
sucked up by atmosphere; so, infrared photograph can be derived through fog and mist which visible 
light can not penetrate. In World War II, these photographs played a surviceable role in detecting objects 
in dark through mist, fog and clouds. Infrared radiations play a magnificent role in medicine, industry, 
etc. It penetrates deep into the human body and by their heating effect can dilate blood vessels at the part 
of the body exposed to such radiation thereby enabling increased flow of blood causing comfort. Ul-
traviolet (UV) radiations also have variety of applications. Rooms where blood plasma, drug, vaccines 
are prepared and sealed in containers are sterilized by UV radiation. Resolving power of microscopes is 
increased when UV light is used. Fluorescent tubes are based on the principle of fluorescence caused by 
UV radiation. Skin disease specialists use UV radiation for treatment of skin disease by phototherapy 
with UV B (311 nanometer) or photochemotherapy where UV A (365 nanometer) are used. 

Recently, exploration of the unlimited worldwide available solar energy has drawn the attention of all 
to overcome electrical energy crisis and to operate electrical equipments in secluded areas and islands. 
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Profusely available solar energy can be used directly as heat which is used to make pure drinking 
water from saline water using plate collector methods. In addition to solar distillation, solar drying, 
solar water heating, absorption type solar refrigeration, solar energy may be stored by suitable methods.

Solar energy is converted into electrical power using photovoltaic cells. The photovoltaic cells are 
constructed of semiconductor materials mainly silicon with little amount of gallium arsenide or cad-
mium sulfide so as to be more effective in producing electrical energy.

In India as the fossil fuel is limited and profuse sunshine is available throughout the year, utilization 
of solar energy should be explored as the best possible alternative.

Solved Problems

	Q 1.	 Two substances P and Q are kept in evacuated vessels maintained at temperatures of 27 8C. 
Temperatures of P and Q are 627 8C and 227 8C, respectively. Find the ratio of the rates at which 
heat is lost from the two substances. 

Ans.	 We know that the rate of loss of heat = −σ ( )T To
4 4

	 where s = Stefan’s constant, T = temperature of hot body, To = temperature of surroundings. 

		
Rate of loss of heat by  
Rate of loss of heat by 

P
Q

=
σ [(627 ++ − +

+ − +
=

273 27 273
227 273 27 273

11 9
1

4 4

4 4

) ( ) ]
[( ) ( ) ]

.
σ

	Q 2.	 A black body of 300 8C is allowed to cool inside an evacuated enclosure surrounded by melting 
ice at the rate of 0.35 8C/s. lf the mass, specific heat and surface area of the body are 82 gm, 0.01 
and 8 sq cm, respectively, calculate Stefan’s constant.

Ans.	 We know that m s dT/dt = −σ A T To( )4 4

		  σ =
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	Q 3.	 Compare the intensity of radiation at a distance of 60 cm from a black body at 600 8C with that 
from the same source at 30 cm when the temperature is 300 8C.

Ans.	� We know that energy emitted by a black body E = s T4 and the intensity of radiation varies 
inversely as the square of the distance; so, we can write
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	Q 4.	 A black body at 10 8C radiates heat at the rate of 4.17 3 105 ergs/sq cm/s. Find the heat in calo-
ries radiated per second by a sphere of 6 cm radius at 1100 8C, assuming it to behave as a black 
body.

Ans.	� If E1 be the heat radiated in ergs/sq cm/s from a black body at T1 and E2 be that the heat radiated 
at T2, then we have
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   Surface area of the sphere	 = 4p 62 = 452.16 sq cm
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		  = 2496.67 cal/s

	Q 5.	 Rays from the sun are allowed to fall on a lens of diameter 20 cm. They are then brought to a 
focus on a calorimeter containing 25 gm of ice. If the absorption due to the passage through 
the lens is ignored, how long will it be before all the ice is melted (amount of heat from the sun 
received on one sq cm of earth’s surface = 2 cal/min, latent heat of ice = 80 cal/gm)?

Ans.	 Amount of heat received by the lens per second = × ×
2

60
102π calories

	 If t be the total time for which the sun’ s rays are allowed to fall, then we have

		  2
60

3 14 10 80 25 3 1842× × = × ∴ =. . mint t

	Q 6.	 The sun’s rays are reflected from a concave mirror 35 cm in diameter and are brought to a focus 
on a copper calorimeter of mass 30 gm containing 60 gm of water. The temperature of water 
is found to rise to 16 8C in 5 minutes. Obtain an estimate of the amount of heat received by the 
earth per sq m per min. The specific heat of copper is 0.1 cal/gm/degree.

Ans.	 Let the amount of heat received by the earth per sq m per min be Q, then

		  Q 0 35
4

5 60 30 0 1 16
2. ( . )π

× = + ×

	 ∴	 Q= 2096 calories

	Q 7.	 Compare (a) the rate of loss of heat and (b) the rate of cooling of two blackened copper spheres 
of radius 5 cm and 10 cm at temperatures of 427 8C and 227 8C by radiation in an evacuated 
enclosure at 27 8C.

Ans.	 Rate of loss of heat = −σ A T To( )4 4

	 Rate of cooling is the rate of decrease of temperature per second. 

	 Then for the first sphere,

		  4
3

5 4 5 427 273 27 2733
1

2 4 4π ρ σ πSc = + − +[( ) ( ) ]

	�   where r = density of copper, S = specific heat of copper, c1 = rate of cooling of first sphere. 
Similarly, for the second sphere 
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	 Dividing these two equations, 
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	 Q 8.	 When a Fery total radiation pyrometer in a room with surroundings at 300 K is sighted on black 
body at 600 K, the deflection observed in the galvanometer is 6 divisions. When sighted on 
another black body, the deflection is found to be 400 divisions. Calculate the temperature of the 
latter.

Ans.	� Using the formula d A T To= −( )4 4 where d is deflection, A is constant, T1 is temperature of the 
black body, T0 that of the surroundings, then we can write

		  6 600 300 400 3004 4 4 4= − = −A A T[( ) ( ) ] [ ]and

	 or	 6 300 400 600 3004 4 4 4( ) ( )T − = −

		  T 4 4 4 4 11300 400
6

600 300 162 10− = − = ×( )

		  T 4 11 8 11162 10 81 10 162 081 10= × + × = ×.

		  T = 2006 K

	 Q 9.	 Luminosity of the star Regel in Orion constellation is 17000 times that of our sun. If the surface 
temperature of the sun is 6000 K, calculate that of Regel.

Ans.	 Supposing the sun and Regel as black bodies and that luminosity is proportional to sT4

	 Then,	 σ σT 4 417000 6000= ( )

		  T = 68510 K

	Q10.	 Show how Newton’s law of cooling can be deduced from Stefan’s law.

Ans.	� Rate of cooling a Rate of loss of heatα σ ( )T To
4 4− where s is Stefan’s constant, T is tempera-

ture of the hot body and To is the temperature of the surroundings.

	 Rate of coolingα σ α σ      ( ) ( )( )T T T T T T T T T To o
4 4 3 2

0 0
2

0
3− − + + +

	 If temperature difference is small,T T≈ 0

	 Rate of coolingα σ α       ( ) ( )T T T K T To o− −4 0
3
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	Q 11.	If the degree to which a given material absorbs radiation depends upon the wavelength of radia-
tion, show that the intensity of radiation falls in geometric progression as the thickness of the 
material increases in arithmetic progression.

Ans.	� Let the amount of monochromatic radiant energy conveyed per second (that is, initial intensity) 
be I and let it travel through a thickness x of some material. Due to absorption, let the intensity 
be reduced from I to KI (say, where K is a constant). If this energy (KI) passes through another 
layer of thickness x, then this energy is reduced by K of its value, that is, K 2I after travelling a 
total distance of 2x. Similarly after travelling through a total distance of 3x, it is further reduced 
to K 3I or if it passes through thickness nx the intensity is reduced to KnI. 

Problems

1.	 Calculate the maximum net rate of loss of heat by radiation from a sphere of 10 cm radius at a 
temperature of 200 8C when the surroundings are at a temperature of 20 8C, if Stefan’s constant 
is 5.7 3 1025 ergs/sq cm/s/deg4. 

Ans. 3.659 3 109 ergs/s
2.	 Calculate the radiation loss per sq cm per second from a black cylinder of emissivity 0.95 at  

327 8C when surrounded by an enclosure at 27 8C. 
Ans. 6579 3 103 ergs

3.	 A hot black body of mass 64 gm, area 16 sq cm and specific heat 0.1 cal/gm/ 8C is allowed to 
cool inside an evacuated enclosure surrounded by melting ice. It is found that at 300 8C, the 
body cools at the rate of 21 8C per minute; calculate Stefan’s constant. 

Ans. 1.37 3 10212 cal/sq cm/s/deg4C
4.	 A solid copper sphere cools at the rate of 2.8 degree per minute when its temperature is 127 8C.

At what rate will a solid copper sphere of twice the radius cool when its temperature is 227 8C,
if in both cases the surroundings are maintained at 27 8C and the conditions are such that Ste-
fan’s law may be applied.

Ans. 4.35 8C per minute
5.	 The distances of Venus, Earth and Mars from the Sun are, approximately, in the ratio of 

0.72:1.00:1.52, respectively. Assume that all radiate as black bodies, calculate approximate 
mean temperatures of Venus and Mars (taking that of the Earth to be 15 8C). 

Ans. 66.4 8C , 239.4 8C

Questions

1.	 Discuss Prevost’s theory of heat exchanges. Define emissive power and absorptive power of a 
body and deduce the relationship between them. 

2.	 Explain the terms emissive power and absorptive power. Deduce that at any temperature, the 
ratio of the emissive power to the absorptive power of a substance is constant and is equal to 
the emissive power of a perfectly black body.
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3.	 What is meant by a black body? What are the characteristics of a black body radiation? How has 
it been realized in practice? Discuss Stefan–Boltzmann’s law for black body radiation. What is 
the value of Stefan’s constant?

4.	 Discuss Kirchhoff’s law of black body radiation. How will you verify the law experimentally?
5.	 State and explain the laws relating to the radiation and temperature of a radiating body. What 

do you mean by (a) perfectly black body, (b) co-efficient of absorption and (c) co-efficient of 
emission?

6.	 Describe suitable method for verifying experimentally the Stefan–Boltzmann’s law. In what 
circumstances may it be applied?

7.	 Discuss the principles underlying the measurement of temperature by radiation pyrometer and 
describe any one method of measuring a high temperature from such consideration.
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Chapter 13

13.1  Significance of Statistics

The scientific study of all physical phenomena began through dynamical principle which is evident 
from the writing of a Dutch scientist Christian Huygens “In true philosophy we should conceive the 
cause of all natural phenomena in terms of mechanics”. This notion was so deep rooted in the beginning 
of scientific study that he wrote “We must do or for ever renounce the hope of understanding anything 
of physics.”

In kinetic theory of gases while finding the pressure and temperature of a gas enclosed in a 
vessel by general approach, we refer to the macroscopic or bulk state of the gas. Each individual 
molecule of the gas belongs to the microscopic state whose individual information is difficult to 
attain. So to study the general behaviour of a system, whether it is a gas, liquid or solid, consist-
ing of large number of individual particles we should employ statistical methods. Thus, we see 
the system consisting of a large number of individual particles producing together common single 
effects. This system as a whole is called an ensemble whose concept was introduced by Josiah 
Willard Gibbs, an American scientist. Again, the behaviour of individual particle in a system is 
different and is a characteristic of the system. For example in a gas, the molecules are always in 
motion at a particular temperature without any interacting force or intermolecular force, individu-
ality and indistinguishability are maintained. There is an interaction only when they collide with 
another individual molecule or wall of the container; so, these particles are weakly interacting or 
quasi-independent. They are indistinguishable as they are not located in space. But, the situation is  

INTRODUCTION  
TO STATISTICAL  

THERMODYNAMICS
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different in liquids and solids where the particles are distinguishable because they are constrained 
to move or oscillate about fixed positions; so, one particle can be distinguished from its neighbour 
by its position. The particles are distinguishable quasi-independent. This necessitates another kind 
of statistical approach.

Before the arrival of quantum theory, scientists like James Clerk Maxwell, Ludwig Boltzmann 
and Josiah Willard Gibbs applied statistical methods for studying classical physics which is known 
as Maxwell–Boltzmann statistics or classical statistics. This approach explains satisfactorily physi-
cal properties such as temperature, pressure and energy, but could not explain other observed prop-
erties such as black body radiation, photoelectric effect and specific heat at low temperature. In 
order to explain these effects, a new approach was devised by scientists like Satyendranath Bose, 
Albert Einstein, Enrico Fermi and Paul Adrien Maurice Dirac whereby the Planck’s quantum con-
cept of discrete exchange of energy between particles in a system was used instead of continuous 
energy available for the systems.

So till now, there are three statistics depending upon three different kinds of particle and energy  
exchange processes; they are as follows:

1.	 Maxwell–Boltzmann statistics applicable to identical, distinguishable particles of any spin 
possessing continuous energy exchange nature. 

2.	 Bose–Einstein statistics applicable to identical, indistinguishable particles of zero or integral 
spin called bosons such as helium atoms at low temperature, hydrogen molecules and photons 
having the nature of discrete energy exchange.

3.	 Fermi–Dirac statistics applicable to identical, indistinguishable particles of odd half integral 
spin obeying Pauli exclusion principle called fermions such as electrons, positrons, protons 
and neutrons possessing the nature of discrete energy exchange.

Classical Maxwell–Boltzmann statistics is the limiting case of the later two quantum statistics.

13.2  Some Basic Concepts

We shall develop these statistical methods after discussing related basic concepts.

13.2.1  Probability
The notion of probability is the key note of statistical physics. Its concept was thought to represent the 
capability of visualization of the behaviour of electrons and protons in wave mechanics. There are two 
kinds of probability: (i) mathematical probability and (ii) thermodynamical probability.

Mathematical probability:  Let us suppose that we play tossing of a coin like the captains of two 
teams doing before the beginning of the play. If we take a coin and toss it, two events may occur with 
either tail falling uppermost or head falling uppermost; the total number of events being two, experience 
shows that if the number of toss is very large the chances of head or tail falling uppermost will be equal 
in number. Thus, the probability of each event or the ratio of the number of toss in which each event  
occurs to the total number of toss is 1/2. In the same way if we throw a six-faced cubical dice, it is evi-
dent that the dice will fall with any one of its six faces upwards.

Thermodynamic probability:  Thermodynamic probability is defined as the number of equally likely 
states in which a substance may exist������������������������������������������������������������������ and is obviously a whole number. It is proportional to mathemati-
cal probability and is not exactly equal to its numerical value.
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13.2.2  Complexion and Statistical State
A happening is often referred to as a complexion or a combination and the happening is specified as 
statistical state. Thus in tossing a coin, head or tail falling uppermost is a happening or event or com-
plexion or combination.

13.2.3  Statistical Weight
The number of happenings or events or complexions or combinations of any assigned statistical state is 
called its statistical weight.

13.2.4  Probability of a Composite Event 
If two or more events are mutually independent of each other, then the probability or possibility of all 
events happening simultaneously is the product of individual events.

13.2.5  The Postulate of Equal a Priori Probability
The doctrine of assuming equal probability for events which are equally likely to occur is known as the 
principle of equal a priori probability. A priori means something derived by reasoning from self-evident 
propositions, presupposed by experience.

Let us suppose that we take two coins for tossing, denoted by 1 and 2, and toss them a large number 
of times and consider the following events: 

1.	 Heads of the two coins falling uppermost a1a2

2.	 Tails of the two coins falling uppermost b1b2

3.	 Head of 1 and tail of 2 falling uppermost a1b2

4.	 Tail of 1 and head of 2 falling uppermost b1a2

where a1 means head of coin 1 and a2 means head of coin 2, b1 means tail of coin 1 and b2 means tail of 
coin 2. The possible events are the product of (a1 1 b1) (a2 1 b2).

It is evident that probability of each event is 1/4 as all four events are of equal likelihood. This can 
be thought in the following way—if we toss the first coin, the probability of getting head uppermost 
is 1/2 and if we toss the second coin, the probability of getting head uppermost is also 1/2. Thus, the 
probability of getting of heads uppermost in a simultaneous toss of both the coins is 1/2 3 1/2 = 1/4. 
In other words, the probability of a composite event is the product of the probabilities of the individual 
and independent component events. 

But if we toss two identical silver coins, events (3) and (4) as mentioned earlier can not be differenti-
ated because a1 = a2 = a, b1 = b2 = b, a1b2 = a2b1 = ab, possible combinations are now given by a2, b2, 
2ab the terms of a binomial expression (a 1 b)2. The probability of getting a2 or b2 is 1/4 while that of 
getting ab is 1/2. It is, thus, found that the relative happenings are in the ratio of the coefficients of the 
corresponding terms in binomial expansion.

Extending this for n identical coins and tossing them a large number of times, we get choosing r coins 
with heads uppermost and s coins with tail uppermost happening in nCr ways which is the coefficient of 
arbs in the binomial expansion (a 1 b)n.

The mathematical probability of such combination arbs is

		  W
C
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n
r n r n

r s

n

n n
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=
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	 Since	 n n nC
r

= + =∑ ( )1 1 2 �

Let us now determine which of the (n 1 1) events arbs has maximum probability. This necessitates 
the finding of maximum value of nCr. Elementary algebra shows that nCr is maximum when r = n/2. This 
corresponds to most probable state known as equilibrium state. This is called statistical equilibrium.

Hence, we have 
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We now compare Wmax with Wx where Wx is a combination in which r = n/2 + x and s = n/2 - x , x 
being a small number. Thus, we have 
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where x is a very large number; the expression can be reduced to a very simple form by applying a well-
known theorem in the theory of numbers called Stirling’s theorem.

13.3  Stirling’s Theorem

The value of n! increases very quickly with n. 30! produces a member requiring 33 figures to write. 
Stirling gave an approximate formula for n!
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Taking log of both sides,	 ln ! ln ln ln ln logn n n n e n= − + =( )1
2

2π e

		  = n (ln n − 1) roughly� (13.4)

It can be proved in the following way 
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The summation can be approximately replaced by the integration

		  (ln ln ) ( ln ) ( ln )x n dx x x x x n
n n− = − −∫1 1 0

1

		  = − − +( ) lnn n1
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	 or	 ln n! = n ln n − (n − 1) 1 ln n 

		  = n (ln n − 1) 1 ln n 1 1

the last two terms can be neglected in comparison to others when n is very large leading to 

		  ln n! = n (ln n 2 1)

This is known as Stirling’s theorem or Stirling’s approximation.

13.4 M athematical Probability

We have considered earlier mathematical probability by notations W, Wmax and Wx. We shall now exem-
plify. Let us first express W, Wmax and Wx using Stirling’s theorem.

Equation 13.3 yields
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This shows the probability of large deviations x from most probable value is vanishingly small.
Equation 13.1 was presented by Newton. Later, Laplace presented a convenient form through ap-

proximation of factorials. In this, Stirling’s theorem is used giving Laplace’s formula
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when x << n.
We want to extend the consideration further taking the game of dice each of which has 6 faces denoted 

by a, b, c, d, e and f. If we throw n dice for a large number of times giving complexion represented by 
		  a n1 b n2 c n3 d n4 e n5 f  n6

which means that n1 dice fall with face a uppermost, n2 dice fall with face b uppermost etc. where n = 
n1 1 n2 1 n3 1 n4 1 n5 1 n6. Probability that n1 dice will fall with a uppermost = n nC
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and so on.

The probability number of the above complexion

		  Px = a n1 b n2 c n3 d n4 e n5 f  n6

		  =
n

n n n n n n
!

! ! ! ! ! !1 2 3 4 5 6
�

Since each aspect of a dice has a priori probability 1/6 on account of six faces, the probability of the 
complexion is
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In general case, let us take a board with p square cells arranged side by side and let us throw into 
these cells n number of balls from a long distance, and let us suppose that n1 balls are found within cell 
a1, n2 balls are found within cell a2 and so on.

Each cell-wise distribution of particles is known as a microstate, total number of microstates for  
n particles is (n 1 1). The probable number of such combination is given by 
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where p denotes the product of the factorial n1! n2! n3! n4 ……
Again in this case, a priori probability of each combination is 1/p; the probability of the above com-

bination is 
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When n is very large, Stirling’s theorem is used; then, 
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13.5  Statistical Methods of a Molecular System

We now consider the case of dealing with the statistics of the motion of an assembly of weakly interact-
ing like particles such as molecules of a perfect gas. The argument holds good for any dynamical system 
may it be the oscillators in a black body radiation, velocity distribution of the molecules of a gas. There 
are various ways of attacking the problem, but we shall adopt the method of statistical distribution due 
to Maxwell and Boltzmann which is the simplest and historically the oldest. 

The dynamical situation of a particle is decided by its positional coordinates x, y, z, and velocity 
coordinates or better momenta px = mvx, py = mvy, pz = mvz where it seems nx, ny, nz are the velocity co-
ordinates of a particle of mass m. The precise presentation of these values for all the particles defines the 
microscopic state of the system. The question is now to determine how many particles occupy very nearly 
the same position and have nearly the same velocity components. It is evident that two particles can not 
occupy the same position in space. We, therefore, take into account the particles having their positional 
coordinates lying between x and x 1 dx, y and y 1 dy, z and z 1 dz. They may have velocity compo-
nents lying between 0 and ∞, but we are interested with those having their momenta components lying 
between px, px 1 dpx, py, py 1 dpy, pz and pz 1 dpz. Thus, we define an element of volume in phase space 
given by dxdpx dydpy dzdpz (this is called an elementary phase cell) to which we fix nx particles. In 
case of linear harmonic oscillators as well, we can assign nx to a similar element of hyper space which 
will be two dimensional in this case. The three-dimensional space in which the location of a particle is 
completely given by three position coordinates is known as position space. Similarly, three mutually 
perpendicular momentum coordinates px py pz in three-dimensional space is known as momentum space 
and the small volume element in momentum space is given by dpxdpydpz. A combination of position 
space and momentum space is known as phase space. For a monatomic gas, this hyperspace called 
molecular phase space or m space is six dimensional. We can indicate the dynamical state of the gas 
completely by imagining a number of small cells p of equal size extending throughout the complete 
phase space and, thus, embracing the whole volume and the whole range of momenta between 0 and ∞.
Let the cells be denoted by a0, a1, a2, … ar, the cell ar containing molecules each having a definite 
amount of energy ∈r and let us allot n indistinguishable molecules among these cells. Let us consider 
the distribution of the molecules with respect to their energy so that n0 molecules are found in a0, n1 in 
a1, n2 in a2 … nr in ar and so on. The cells now correspond to the sides of the dice.

The probability number of realizing this distribution which may be characterized by suffix x 
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In deducing Eq. 13.10, we assumed that a molecule was as likely to be in one cell as in the other. This 
is because the cells are of equal size. This result is obvious if the cells were like boxes in the ordinary 
three-dimensional space. The same result can, however, be proved for cells in the six-dimensional phase 
space. Hence, the probability of distribution is proportional to Px. We have 

		  n n n n nr= + + + + +0 1 2 � � � (13.13)
and the total kinetic energy

		  U n n n nr r= ∈ + ∈ + ∈ + + ∈ +0 0 1 1 2 2 � � � (13.14)
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13.6 L iouville’s Theorem

We shall now study the variation of density with time. The density of distribution r of representative 
points in phase space can describe the condition of an ensemble at any instant. We consider now the  
motion of points in phase space according to the principle of mechanics and study the changes of den-
sity with time. Let us consider any point q1, q2, … qm, p1, p2 … pm in phase space, the differential element 
of extension that may be defined at that point by dq1, … dqm, dp1, … dpm. The number of representative 
points within the element at any instant 

		  n = rdq1 … dqm dp1 … dpm � (13.15)

This number will change with time as the number of representative points entering the volume in 
phase space through any face will, in general, be different from the number leaving through the oppo-
site face. Let us consider the two faces perpendicular to q1 axis at q1 and q1 1 dq1, then the number of 
representative points entering the surface at q1 per second is

		  rq.1 dq2 … dqm dp1 … dpm� (13.16) 

where r is the density and q.1 is the component of velocity for points at q1 … qm, p1 … pm 
The corresponding expression for the number of representative points leaving the opposite face at 

q1 1 dq1 is 
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In expressions represented by Eqs 13.16 and 13.17, higher order differentials have been neglected.
Combining these two expressions again, neglecting higher order differentials and summing up over 

all such resulting terms i for m coordinates and m momenta we have 
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		  dq1 … dqm dp1 … dpm� (13.18)

as an expression for the rate of change of representative points n within the specified volume element 
of phase space with time.

In order to simplify this, we consider the equation of motion in canonical form; we may now write
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as expressions for rate of change of coordinates and momenta with time of a system as considered 
above.

H is the Hamiltonian for the system as a function of coordinates and momenta; since the order of 
differentiation is immaterial, we get 
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Equation 13.18 can now be written as 
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This gives the rate of change of density at the considered point in the phase space. This is of funda-
mental importance for statistical mechanics known as Liouville’s theorem.

Noting the full form of the density r (p, q, t) on coordinates, momenta and time q.i and p.i are the 
expressions for the components of velocity with which a representative point moves through phase 
space; we get the simple result ∂r/∂t = 0 when we consider the rate of change of density in the proxim-
ity of any selected moving representative point in substitute of the neighbourhood of a fixed point in 
phase space. Gibbs called it the principle of conservation of density in phase space.

13.7  Boltzmann’s Relation Between Entropy and Probability

Before deducing the relation, let us consider the actual situation. We know from kinetic theory that the 
gas as a whole has a particular pressure and temperature as a macroscopic state. But, the constituent 
molecules of the gas behaving as a microscopic state are in incessant motion colliding with each other 
and the wall has negligible volume and intermolecular force in actual gas. But, all such characteristics 
make the microscopic state constant. At a particular instant, the gas as a whole has a constant tempera-
ture and pressure as macroscopic state. This process involves, naturally, an increase in the number of 
possible microscopic states. It is, thus, evident that an equilibrium macroscopic state is one for which 
the number of microscopic states is maximum.

We know from the second law of thermodynamics that the entropy of a system tends towards a 
maximum which corresponds to maximum disorder leading to the condition of maximum probability. 

Judging all these facts, Boltzmann inferred that there must be a relation between the thermodynamic 
entropy which has a maximum value in equilibrium state and the maximum probability of the dynami-
cal equilibrium state. Supposing S as the entropy of an isolated system and W the number of possible 
microscopic states by means of which the system arrives at a given macroscopic state, here the thermo-
dynamic probability of the state of the system, then the duo S and W tend to increase to maximum value 
and Boltzmann concluded that S is a function of W

		  S = f (W)� (13.22)

More explicitly, considering two separate systems possessing entropies S1 and S2 and thermodynamic 
probabilities W1 and W2, we may write 
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		  S1 = f (W1) and S2 = f (W2)

Total entropy of the two systems 

		  S = S1 1 S2 = f (W1) 1 f (W2)

Again, the thermodynamic probability of the two systems taken together is W1W2. We may write

		  f (W1W2) = f (W1) 1 f (W2) = S1 1 S2 � (13.23)

To solve Eq. 13.23, let us differentiate it with respect to W1 keeping W2 constant and vice versa giving 

		  f ′(W1) = W2 f ′(W1W2) 

	 and	 f ′(W2) = W1 f ′(W1W2)

	 Hence,	 W1 f ′(W1) = W2 f ′(W2) 

		  = W1W2 f ′(W1W2) = constant

	 or	 W df W
dW

k1
1

1

( )
= =constant

		  df W k dW
W

( )1
1

1

=

Integrating	 f (W1) = k ln W1 1 c
where c is a constant
	 or	 S = k ln W 1 c� (13.24)

In classical thermodynamics, entropy is generally taken as the difference between the entropy in the 
actual state and the entropy in an arbitrarily chosen standard state. If the thermodynamic probability in 
the standard state is Wo, then

		  S k W k W k W
W

k P= − = =ln ln ln ln0
0

� (13.25) 

where P = W/W0 represents the number of probable ways in which a particular state (other than that of 
absolute zero) can be realized.

13.8 �C alculation of Statistical Probability and Number of Cells  
According to Quantum Statistics

The most satisfactory way to calculate statistical probability is from wave mechanics. But, a simpler 
avenue first given by Einstein which arose out of the work by S. N. Bose on the statistics of photon is 
followed here. This treatment applies only for the translational motion of structureless spherical par-
ticles when the interaction amongst the particles is disregarded.
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Let us consider particles which have energies ∈ lying between ∈t and ∈t 1 d∈t where t denotes trans-
lational energy. The available phase volume Gt of the particles between the above mentioned energy 
limits is given by 

		  G dxdydz dp dp dpt x y z= ∫∫∫∫∫∫ � (13.26)

the integration is done within energy limits ∈t and ∈t 1 d∈t.
The first integral is v the volume occupied by the particles and the second integral represents the 

volume of the spherical shell between p and p 1 dp where p is given by 

		  p p p p mx y z t
2 2 2 2 2= + + = ∈

		  dp dp dp p dpx y z∫∫∫ = 4 2π

		  = ∈
∈

∈
4 2

2
π( )m md

mt
t

t

		  = ∈ ∈2 2 3 2 1
2π( ) /m dt t

	 ∴	  G V m dt t t= ∈ ∈2 2 3 2 1
2π ( ) / � (13.27)

From quantum theory, dpdq h=∫∫ for each degree of freedom. For three degrees of freedom of the 
monatomic gas particles, 

		  dxdydz dp dp dp hx y z∫∫∫∫∫∫ = 3

is the volume of phase space occupied by each particle which may be taken to be the volume of an  
elementary cell of phase space. Hence, the number of cells at availed by the particles of energy between 
∈t and ∈t 1 d∈t is given by

		  a G
h

v
h

m dt
t

t t= = ∈ ∈3 3
3 22 2

1
2

π ( ) /
� (13.28)

13.9  Bose–Einstein, Fermi–Dirac and Classical Statistics

There are three ways of calculating the probability Pt depending upon the statistics the particles obey—
(1) Bose–Einstein, (2) Fermi–Dirac and (3) classical. Let us study the three methods considering the 
particles to be indistinguishable from each other.

13.9.1  Calculation of Pt According to Bose–Einstein Method

We have at cells to place nt particles in them, the problem is whether we can place in each cell one par-
ticle or more than one. In the first case, we assume as Einstein did, that there is no limit to the number 
of particles which a cell can contain; it can have any number from 0, 1, 2, … to nt. The number of ways 
of accommodating nt particles in at cells according to this conception is the old algebraic problem of 
combination with repetition and can be done in Pt ways where
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We have, therefore, the total probability P for all energy states

		  P P a n
a nt
t t

t t

= =
+

π π
( )!

! ! � (13.30)

where the product p extends over all the states.
Let the cells be designated by x1, x2, … xat

. An individual distribution may be represented by

		  x x xat1 2
α β υ, ,… � (13.31)

where a, b … u are the number of particles in the cells x1, x2 … xat
, respectively and 

		  a 1 b 1 … 1 u = nt� (13.32)

We consider the product
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where each factor of the product consists of an infinite number of terms. In this product, we have all 
possible combinations of the powers of x1, x2 … xat

. Hence, the number of ways of distributing nt par-
ticles in the at cells is equal to the number of those terms of the Eq. 13.31 for which the condition by 
Eq. 13.32 is satisfied.

Now let x1 = x2 = … = xat
 = x, then the number of combinations is equal to the coefficient of xnt in 

the expression 
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Hence, the required number is (that is the coefficient of xnt)
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Hence, the number of ways of distributing nt particles in at cells such that any number of particles 
can be accommodated in a cell is 

		  P a n
a nt
t t

t t

=
+( )!
! ! � (13.34)

		  W
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t t

t t

=
+

π
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! !
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13.9.2  Calculation of Pt According to Fermi–Dirac Method
In this approach, it is supposed that an individual cell can not contain more than one particle. The ques-
tion, now, is the distribution of nt particles amongst at cells so that a cell contains not more than one 
particle. The number of ways Pt of doing so is by ordinary algebra to be the expression for combination 
without repetition, that is

		  P a
a n nt

t

t t t

=
−

!
( )! ! � (13.36)

	 and	 P P
a

a n nt t
t

t t t

= =
−

π π
!

( )! ! � (13.37)

13.9.3  Calculation of Pt According to Maxwell and Boltzmann Method
When at >> nt as is usually the case, it can be easily verified that both Bose–Einstein and Fermi–Dirac 
expressions represented by Eqs 13.34 and 13.36 reduce to 
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t
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� (13.38)

	 and 	 P
a
nt
t
n

t

t

= π
!

This is the classical situation which can be deduced in the following way. First, we have N distinct 
particles and we have to choose groups of n0, n1, n2, . . . nt from the whole. This can be done in 

		
N
nt

!
π

ways

Then we have to distribute nt particles in the midst of at cells, each cell being capable of accommo-
dating 0, 1, 2 … up to nt particles. The first particle can be adapted in at ways either in the 1st, 2nd or
at 

th cell, the second particle can also be adapted in either the 1st , 2nd or at 
th cell, the third particle can 

also be adapted in at ways and so on as it has no bar to be in the same cell as the first particle. Going on 
in the same way, we find that the nt particles can be placed in at cells in at 

th ways. Thus, we can effect 
the desired distribution in Wt different ways given by 

		  W N a
nt
t
n

t

t

= !
!

π

This may be said to be thermodynamic probability for the intended distribution. To get Pt, we have to 
divide it by W0 which is the number of ways in which the particle can be distributed within themselves 
when at rest. This is N!. Pt is obtained by dividing Wt by W0 and is given by

		  P a
nt
t
n

t

t

= π
!
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13.10 D istribution Law According to the Three Statistics 
We shall now work out the equilibrium conditions from the three statistics and deduce expression for 
distribution functions.

13.10.1  Maxwell–Boltzmann Distribution Law
Let us now calculate S from the relation S = k ln P using Stirling’s theorem.
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13.10.2   Bose–Einstein Distribution Law
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13.10.3  Fermi–Dirac Distribution Law
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Equations 13.40 and 13.41 can be combined under the single form 
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If we put g = 1, we get Bose–Einstein statistics and if we put g = 21, we get Fermi–Dirac statistics. 
Putting g = 0 we get classical or Maxwell–Boltzmann statistics, neglecting N.

13.11 E quilibrium State According to the Three Statistics

The equilibrium state is obtained from the conditions 

		  δ δ δ δ δS N n U nt t t= = = = ∈ =0 0 0, ,Σ Σ � (13.43)

Using dS = 0 and remembering that at does not vary, we deduce from Eqs 13.39 to 13.42 that 
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Using the method of undetermined multipliers, we get from Eqs 13.43 and 13.44
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Equation 13.46 represents the distribution law in Maxwell–Boltzmann statistics.
From Eqs 13.43 and 13.45, we get 
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where f = ea is an unknown parameter to be called the degeneracy parameter whose value is to be 
inferred from the conditions of the case.

From Eq. 13.47 putting g = 1, we get the distribution function in Bose–Einstein statistics and putting 
g = 21, we get the distribution function in Fermi–Dirac statistics.

We see that if f  >> 1 (weakly degenerate case), the distribution laws according to both Bose–Einstein 
and Fermi–Dirac statistics transform to classical or Maxwell–Boltzmann statistics.

This is found to be the case with all ordinary gases at N.T.P which behave as ideal gases. So in 
the region in which kinetic theory of gases is valid, there is practically no difference among the three  
statistics.

When f is very small f << 1, the distribution will not be according to Maxwell–Boltzmann but 
according to Bose–Einstein and Fermi–Dirac statistics. Here, the particles are said to be in a state of 
degeneracy when nearly all the cells are filled up since nt = at.

13.11.1  Value of b
From Eqs 13.42, 13.46 and 13.47, we have 
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Hence, using the relation         ∂
∂

=
S
U T

1

we have b = 1/kT for all statistics.

13.12 �L aw of Distribution of Molecular Velocities According to  
Classical or Maxwell–Boltzmann Statistics

The number of cells at at the disposal of the number of particles of energy lying between ∈t and ∈t 1 d∈t  
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Putting
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whereΓ ( )n is the Euler’s gamma function. 
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where n = N/V = number of particles per unit volume. 
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2

2

c being molecular velocity. This agrees with the corresponding expression derived in kinetic theory. 
Thus, we see that the Maxwell–Boltzmann statistics explain the behaviour of ideal gas molecules.

13.13 A pplication of Bose–Einstein Distribution Law to Photon Gas

We have seen earlier that the three statistics evolved to explain the experimental facts in different fields 
in order to explain black body radiation and more such phenomena.

Professor S. N. Bose considered the radiation from a black body as photon and Einstein generalized 
it to describe the energy distribution among physical entity light quanta or photon. The particles have 
energy distribution not in a continuous manner but in the form of quanta nhn where n is an integer, h 
is Planck’s constant and n is the frequency of radiation. These particles have integral spin having spin 
angular momenta nh

_
 where h

_
 = h/2p.
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These particles are generally called bosons, examples of which are a - particles, photons, deuterons, 
p- mesons and the like.

Considering a black body chamber to be full of photons in thermal equilibrium having energy hn 
moving with constant velocity c thus having momenta hn/c, we are now going to study the spectral 
distribution of energy in finding the number of photons which are like particles having momenta px, py, 
pz, (hnx/c, hny/c, hnz/c) where nxnynz = n (a, b, g); a, b and g are the direction cosines of the direction of 
motion of photon. The phase volume described by the photons within energy ranges hnr and h(nr 1 dnr) 
where nr denotes any arbitrary frequency of radiation is given by 
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The number is to be multiplied by 2 as there are two photons differentiated by their polarization state 
to a particular frequency and direction. So, the total number of cells are 
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Let the number of photons having frequency lying between nr and nr 1 dnr be denoted by Nrdnr, we 
are to find out the number of ways in which Nrdnr can be distributed amongst Ardnr cells. We assume 
that each cell may contain 1, 2, 3, … up to Nrdnr photons, then 
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In the equilibrium case, dS = 0, that is, d (ln P) = 0 for the condition 

		  E N d hr r r= =∑ ( )ν ν constant.

This leads 

		  δ [( ) ln ( ) ln ln ]A N A N N N A Ar r r r r r r r+ + − − =∑ 0

subject to the condition                                                            ν δr rN =∑ 0
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Using undetermined multiplier a, the condition gives

		  ln( ) lnA N Nr r r r+ − − =αν 0

	 or	 ( )A N
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r
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From the condition	
∂
∂
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we get	 α =
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8
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2
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which represents the density of radiation between frequencies n and n 1 dn as has already been deduced 
in Chapter 12.

13.14 A pplication of Fermi–Dirac Distribution Law to Electron Gas

Fermi–Dirac statistics has many applications in studying electrical and thermal conductivities, ther-
moelectricity, thermionic and photoelectric effects, specific heat of metals, etc. on the assumption that 
metals contain free electrons constituting like a perfect gas known as electron gas. Though many scien-
tists like Drude, Lorentz and others worked on this, but Sommerfeld in 1928 revived quantum electron 
theory of metals. The conductivity of metals is due to the presence of free electrons inside a metallic 
conductor moving freely inside them colliding with fixed atoms behaving like an electron gas. These 
are called fermions because electrons obey Pauli’s exclusion principle is the electrons have odd half in-
tegral spin angular momenta (n 1 1/2)h

_
 where n = 0, 1, 2 … Though the electrons are not bound to any 

particular atom in a metal but to the metal as a whole, the interior of which is considered as a region of 
uniform potential positive relative to free space, so that work is required to be done to extract an electron 
from the metal. For this reason, the electrons inside metals can not be compared to the free molecules 
of a gas. The electrons, being of very light mass and dense packing, are considered as degenerate gases. 
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Further since the electrons are assumed to be governed by Pauli’s exclusion principle, they should obey 
Fermi–Dirac statistics.

To obtain the law of distribution for the electron gas according to Fermi–Dirac statistics, we should 
note that 

		  n a
f et

t
t

=
+∈β 1 � (13.59)

where nt is the number of electrons in the energy interval between ∈t and ∈t 1 d∈t, at is the number of 
phase cells at the disposal of each of these electrons and b = 1/kT, at the number of phase cells at the 
disposal of particles of energy interval between ∈t and ∈t 1  d∈t is 

		  a V m d
h
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t t
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� (13.60)

Owing to the special property of the electron known as spin, each cell of momentum space can con-
tain not one electron alone but two corresponding to two directions of spin. This means that at must be 
multiplied by 2,

	 ∴	 a V m d
ht

t t=
∈ ∈4 2 3 2

3

1
2π ( ) /

� (13.61)

Writing Eq. 13.59 in a differential mode, 
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Integrating over all possible energy value, 
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Introducing the variable u = b∈t,
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Introducing the integral In defined by 
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Case (1):
When f I I>>1 1 2 3 2, ,/ /and  may be taken to be equal to unity, so U/N = 3/2 kT as in classical statistics.

We get from Eq. 13.53,

		  f V
N h

mkt0 3
3 22 2= ( ) /π � (13.66)

Supposing that number of free electrons in metals is equal to the number of atoms per cc, that is, 
of the order of 1022 we find that even at ordinary temperature, T = 300 K, f0 = 1023, that is, f0 << 1. 
Hence, the electron gas will be almost completely degenerate even at ordinary temperature T = 300 K,
f0 = 1023, that is, f0 << 1. Hence, the electron gas will be almost completely degenerate even at ordi-
nary temperature which justifies the assumptions of Sommerfeld.

Case (2):
When f << 1, we have the integrals 
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Putting ln f = =α s/kT where s is the Fermi energy, the energy value up to which all the energy states 
are completely filled by electrons at 0 K and above which all the energy states are completely empty, we get 

Chapter 13.indd   470 4/11/2011   11:59:42 AM



Introduction to Statistical Thermodynamics     471

		  N V
h

mkt= + +










2 2 4
3

1
83

3 2 3 2
2

2
( )π

π
α

π
α

/ / � � (13.68)

	 or	 N V
h

mkt= + +








2 2 4

3
1

83
3 2 3 2

2

2
( ) / /π π

π
α

π
α

�

	 or	
α

π π
α

3 2
3

3 2 2

2

3
8

1
2

1

1
8

/
/( )

=










+

Nh
V mkt

++









�

	 or	 α
π π

α

=










+ +





3
8 2

1

1
8

2 3 2

2

2

n h
mkt

/

�








2 3/

Let the first approximation value of a be a0. Then, we get 
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Equation 13.68 assumes the form
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from which we deduce that to a second approximation, 
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From Eq. 13.65, we can write 
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On simplification, we get 

		  U Nh
m

n Nm
h

k
n

=










+
3

40
3 1

2
2

3

2 2 3

2
2

π
π

π
/

( )










2 3
2

/

T � (13.70)

This shows that at absolute zero, the energy of Fermi–Dirac gas for which f << 1 is not zero but pos-
sesses a value 
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This may be called null point energy. The energy U adds a term to the specific heat given by 
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which can be utilized to calculate the heat capacity due to free electrons in a metal like silver. 
Putting the known values, Cv = 0.767 3 1024 RT per gram atom = 0.046 cal per gram atom at 300 K.

Thus, Cv forms only 0.7 per cent of the ordinary specific heat of silver and hardly adds anything to it. 
This removes one of the difficulties of the electron theory of metals.

At low temperature, the specific heat is due to lattice vibration diminishing according to T 3 law. 
This becomes small compared to the electronic specific heat of silver from the temperature range 3 K 
downwards. Keesom and Kok measured specific heat of silver in this region and found that it varies  
according to Eq. 13.71 from 1.5 K to 3 K but above 3 K, T 3 term becomes prominent. So, we may say 
that free electrons contribute chiefly at specific heat.

The entropy is given by
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which gives that as T tends to zero, entropy tends to zero.
All physical and thermodynamic properties of three states can be studied with the help of these three 

statistics, that is, Maxwell–Boltzmann, Bose–Einstein and Fermi– Dirac such as pressure, temperature, 
entropy, enthalpy, free energy, Gibb’s potential, partition functions, vapour pressure, chemical con-
stants, emission of electrons, Nernst heat theorem and equipartition of energy.
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Maxwell–Boltzmann Bose–Einstein Fermi–Dirac

The idea was developed by James 
Clerk Maxwell in 1859 and by 
Ludwig Boltzmann in 1872. 

The idea was set forth by 
Satyendranath Bose and Albert 
Einstein in 1924.

The idea was evolved by Enrico 
Fermi and Paul Adrien Maurice 
Dirac in 1926.

The particles are identical, 
distinguishable and of any spin.

The particles are identical, 
indistinguishable having zero or 
integral spin.

The particles are identical, 
indistinguishable and of odd 
half integral spin.

Particles are minute, like gas 
molecules without intermolecular 
force. 

Particles are called bosons; 
examples are a particles, 
photons, deuterons and p- 
mesons.

Particles are called fermions; 
examples are electrons, 
positrons, protons, neutrons and 
μ-mesons.

It is based on classical 
mechanics acting on particles.

It is based on quantum 
mechanics where quantum states 
are considered.

It is based on quantum 
mechanics where quantum states 
are considered.

Pauli’s exclusion principle is 
not applicable, that is, there is 
no restriction on the number of 
particles in a given state.

Pauli’s exclusion principle is 
not applicable, that is, there is 
no restriction on the number of 
particles in a given quantum 
state.

Pauli’s exclusion principle is 
applicable, that is, only one 
particle can be there in a given 
quantum state.

Particles are of very minute 
volume, which is neglected.

Volume occupied by each 
particle in phase space is h3.

Volume occupied by each 
particle in phase space is h3.

The number of ways of 
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at cells 
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Distribution law is represented 
by 
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Nature of distribution is 
independent of temperature.

Bose–Einstein distribution 
approaches Maxwell–Boltzmann 
distribution at high temperature.

Fermi–Dirac distribution 
approaches Maxwell–Boltzmann 
distribution at high temperature.

Internal energy of an ideal 
monatomic gas depends on its 
temperature. At absolute zero, 
energy is zero.

The energy at absolute zero is 
taken to be zero.

Even at absolute zero 
temperature, the energy is not 
zero.

The number of cells available 
in a phase space is very large 
compared to the number of 
particles.

The number of cells available 
is approximately equal to the 
number of particles.

The number of cells available 
is approximately equal to the 
number of particles.

Table 13.1  Characteristics of three statistics
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13.15 C omparison of the Three Statistics

The three statistics—Maxwell–Boltzmann, Bose–Einstein and Fermi–Dirac may be scrutinized by indi-
cating their main characteristics in Table 13.1.

13.16 C riticism of the Three Statistics

Classical statistics manifested by Maxwell–Boltzmann interprets energy and velocity distribution of 
the molecules of an ideal gas assuming that all the energy levels are accessible to all the particles of the 
system. Actually, certain energy levels are prohibited to a certain group of particles for which it could 
not expound some experimental phenomena such as black body radiation, photoelectric effect, specific 
heat at low temperature, etc. Here comes quantum statistics with the idea of discrete energy exchange 
to explain them introducing photons and electrons as the elementary particles. Bosons and fermions are 
very much helpful in the study of nuclear physics. But everything is not perfect with this new statistics. 
It has some limitations; firstly, it assumes absolute freedom of the particles making theoretical results 
very approximate in thermionic and photoelectric emissions, and paramagnetic susceptibilities of alkali 
metals. Secondly, it supposes constant potential for the electrons hindering full fledged explanation of 
thermal and electrical conductivities of metals. This necessitates the refinement of constant potential by 
space periodic potential which was well introduced by Kronig and Penney.

Solved Problems

	Q 1.	 Two six faced dice each marked 1 to 6 are thrown. Calculate the probability that one of the dice 
shows 6 and the other shows 5. 

Ans.	� The probability that the first throw gives a 6 is 1/6. The probability that the first throw gives 5 is 
1/6. These two events are independent; hence, the probability = 1/6 × 1/6 = 1/36 and as there 
are two dice the required probability will be = 2 × 1/36 = 1/18.

	Q 2.	 What is the probability of drawing four aces in succession from a pack of 52 cards?

Ans.	� The number of ways in which the first ace can be drawn is 52. As there are 4 aces, the number 
of ways in which the first ace may be drawn is 4. Probability of getting an ace in the first draw is 
P1 = 4/52 = 1/13. The number of ways in which the second card can be drawn is 51 because 
one ace has been drawn already; now, number of cards left is 51 and the number of aces are 3. 
Therefore, the number of ways for the second incident, that is, the second card drawn may be 
an ace is 3. 

		  Probability of getting an ace in the second draw is P2 = 3/51 = 1/17. 

		  Similarly, probability of getting an ace in the third draw is P3 = 2/50 = 1/25.

		  Similarly, probability of getting an ace in the fourth draw is P4 = 1/49.

		  Since the incidents are independent, the total probability P P P P P= × × ×1 2 3 4

		
= × × × =

1
13

1
17

1
25

1
49

1
270725
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	Q 3.	 If 12 particles are distributed among two boxes of equal size, find the probability of distribution (8, 4).

Ans.	� Probability of distribution (8, 4) corresponding to the distribution of 12 particles into two boxes 
of equal size is given by 

		  P = × = × =
12
8 4

1
2

12 11 10 9 8
8 4 3 2

1
2

49
12 12

!
! !

. . . . !
! . .

55
4096

	Q 4.	 Calculate the probability that the speed of oxygen molecule lies between 100 and 101 m/s at 200 K.

Ans.	 The probability of a molecule with its speed between c and c 1 dc is given by 
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Problems

1.	 A dice has six numbers depicted on its six faces. By throwing it twice, what is the probability 
of getting 6 and 4? 

Ans. 1/36
2.	 A container has 5 red and 4 green balls. What are the probabilities that on two successive draws 

		  (a) both will be red and (b) both will be green? 
Ans. (a) 5/18, (b) 1/6

3.	 Calculate the probability of getting 1 head and 5 tails in tossing a coin 6 times. 
Ans. 3/32

4.	 Four similar dice P, Q, R, S each having 6 equally likely faces marked as 1, 2, 3, 4, 5 and 6 
are thrown simultaneously; and in a toss, all the faces have equal probability of appearing up. 
Calculate the probability of getting the faces of all the dice up marked with 2.

Ans. 1/1296
5.	 Calculate the probability of drawing 3 jacks in succession from a pack of 52 cards.

Ans. 1/5525
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6.	 Identical n coins are tossed simultaneously for a large number of times. Calculate the probabil-
ity of falling g heads uppermost.

Ans. 
n

r n r
n!

!( )!−
−2  

7.	 In a system of 14 distinguishable particles distributed in two equally probable halves of a box, 
find out the probability distribution (10, 4), (14, 0) and (7, 7).

Ans. 1001
16384

1
16384

3432
16384

, ,

Questions

1.	 Define
		  i.	Ensemble 
		  ii.	Microscopic and macroscopic states 
		  iii.	Phase space
		  iv.	Probability
		  v.	Mathematical probability 
		  vi.	Thermodynamic probability
		  vii.	Postulate of equal a priori probability 
		 viii.	Statistical equilibrium
		  ix.	Most probable state

2.	 Discuss the importance of statistical approach in Physics. 
3.	 What do you mean by probability? When will it be zero and one?
4.	 What is the postulate of equal probability? Does the microstate of the system change continu-

ously? What is the most probable microstate?
5.	 Show the difference among the three statistics. Calculate thermodynamic probability of micro-

state for all these three statistics.
6.	 Define and explain macrostate and microstate citing examples. 
7.	 What are the advantages of statistical methods?
8.	 Show that the probability of large deviation from most probable state is very small.
9.	 Derive Boltzmann relation between entropy and probability.

10.	 Derive Maxwell–Boltzmann distribution law of molecular velocities. 
11.	 Derive Maxwell–Boltzmann distribution law and, hence, show that 

		
n E N

kT
E E

kT
dEt ( )

( )
exp

/
= −









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2
3 2

1
2

π
π

		  where nt(E) is the number of molecules with energies lying between E and E 1 dE.
12.	 Derive Bose–Einstein distribution law of energy among different frequencies. What are  

bosons? Which statistics is used to study them? What is the speciality of this statistics? 
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13.	 How does Fermi–Dirac statistics differ from Bose–Einstein statistics?
14.	 What is the method of Lagrange’s undetermined multiplier and when is it used? Evaluate this.
15.	 Show that Bose–Einstein and Fermi–Dirac statistics reduce to Maxwell–Boltzmann statistics 

in the limiting case. 
16.	 What are fermions? Derive an expression for the probability distribution of particles governed 

by Fermi–Dirac statistics.
17.	 Deduce Fermi–Dirac distribution law as applied to electron gas.
18.	 Calculate the value of total internal energy.
19.	 Find out the value of Fermi energy at absolute zero temperature.
20.	 Deduce expression for null point energy as applied to electron gas according to Fermi–Dirac 

statistics.
21.	 Do electrons have zero energy at 0 K? If not, why? Explain.
22.	 Derive expression for specific heat for metals and entropy according to Fermi–Dirac statistics.
23.	 Show how specific heats of metals at low temperature are explained by Fermi–Dirac statistics.
24.	 Describe a comparative picture of the three statistics.
25.	 What are the merits and demerits of the three statistics?
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A
absolute (Kelvin) scale, 18
absolute manometer, 125–126
absolute temperature, 318

definition, 284
absolute zero of temperature, 427
absorptivity, 384
accommodation coefficient, 124–125
actual diesel cycle, 305–306
actual molecular density, 153
adiabatic curve

definition, 257
slope of, 258
work done in, 258–259

adiabatic demagnetization, 216–217
apparatus, 217
compression of liquid helium II, 219
by forcing liquid helium II through fine  

capillaries, 219
nuclear, 220
Simon desorption method, 219
theory, 217–220

adiabatic elasticity of perfect gas, 259
adiabatic expansion, 234

equilibrium of vapour and liquid, 176
liquefaction of a gas, 212–213
of saturated vapours, 176–177
vs Joule-Thomson (Joule-Kelvin) expansion, 214

air conditioning, 233
machine, 236–237
summer, 236
winter, 237

alcohol thermometer, 17, 19
Amagat’s curve, for specific heat of saturated vapour, 

328
Amagat’s curves, 171
ammonia plants, 234
ammonium refrigerator, 220
Andrew’s experimental curves, 159–160

Angstrom’s experiment, 362–366
Angstrom’s pyrheliometer, 443
angular displacement, 432
angular momentum, 432
ankylosis, 80
assumption of molecular chaos, 57–58
astronomical unit, 442
atmosphere, in convective equilibrium, 256–257
atomicity of energy, 414
aurora australis, 442
aurora boreales, 442
available energy, 296–297
average velocity, 63
Avogadro number, 62, 80, 102, 132, 136–137,  

410–411, 423

B
baffle plates, 34
Beattie and Bridgemann equation of state, 166
Berthelot equation of state, 164
black body, 385
black body radiation, 399, 474
Boltzmann, 57, 59
Boltzmann, Ludwig, 451
Boltzmann’s constant, 405, 411
Boltzmann’s ether engine, 395–398
Boltzmann’s H-function, 71–74
Boltzmann’s relation between entropy and probability, 

458–459
Bose, S. N., 459
Bose-Einstein distribution law, 463

application to photon gas, 466–468
Bose-Einstein statistics, 473
bosons, 474
Boyle’s law, 152
Boyle’s temperature, from Van der Waals’  

equation of state, 163–164
Boyle temperature, 167
British Thermal Unit, 39

Index
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Brownian motion, 411
average kinetic energy of the particle, 132
characteristic features, 131
definition, 131
Einstein and Smoluchowski’s equation for, 131–

133
equation of motion of the particle, 131
equipartition principle to, 132
in gases, 133–137
of the suspended oil drops, 133

bulk modulus E of water, 155
buoyancy force, 133

C
cadmium vapour, 75
calibration curve, 439
Callendar and Barnes’ steady flow method, 37–38
Callendar equation of state, 167
Callendar’s compensated constant pressure air 

thermometer, 21
caloric theory, 33
calorie, 39
calorimeter, 34–36

principle, 40
calotex, 236
carbon resistance thermometers, 27
Carnot, Sadi, 274
Carnot’s cycle, 280–282

extension of, 289–290
schematic representation, 281
on the temperature-entropy diagram, 302

Carnot’s engine, 274–278
characteristics of different strokes, 275
characteristics of different strokes of reversed, 

277–278
efficiency of, 276, 282–284
total amount of work done in the whole cycle, 276
total work done by the working substance, 275
working of, 275

Carnot’s principle, 236
cathetometer, 20
centigrade (Celsius) scale, 18, 39
centigrade scale of temperature, 286–288
ceramics, 238
CFC molecule, 238
Chapman and Enskog yields of h, 102
characteristic temperature, 427
Charles’ law, 152
chloro fluoro methanes CFCl3, 237

chromosphere (coloursphere), 443
Clapeyron’s equation, 178–179, 230, 319
Claude’s expansion engine, 213
Claude’s method, 221–222
Clausius-Clapeyron’s equations

heat absorbed in the path AB, 171
heat absorbed in the path BC, 171
heat absorbed in the path CD, 171
heat absorbed in the path DA, 171
integration of, 174
work done in a cycle, 172–174

Clausius equation of state, 164
Clausius’ statement, of second law of  

thermodynamics, 280
Clement–Desormes method, of determination  

of g , 43–44
closed irreversible cyclic operation, 295
closed reversible cyclic process, 295
co-efficient of cubical expansion, 327
coefficient of diffusion, 96
co-efficient of linear expansion, 328
coefficient of performance, 232, 236
co-efficient of pressure variation at constant  

volume, 247
coefficient of self-diffusion, 96, 98–99
coefficient of slip, 107–109
co-efficient of thermal expansion, at constant  

pressure, 319
coefficient of viscosity, 96
coefficient of viscosity of a gas, 98
co-efficient of volume variation at constant  

pressure, 247
cold junction, 25, 440
collisions

Boltzmann’s H-function, 71–74
of class a, 68–71
of class A by a in time dt, 69
of b-class per unit volume, 68, 71
components of the relative velocity of  

retreat after, 67
illustration of general, 68
increase in the number of A molecules after, 71
Joule’s classification of molecules crossing  

ds from above per second, 99
linear, 64–66
mechanical laws obeyed by, 64–67
of mixed gases, 76–78
molecules of class A per unit volume after, 67, 69
molecules of class B per unit volume after, 68
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number of molecules striking unit area  
in unit time, 111

oblique, 64–65
per unit volume in time dt, 70
process of impact of molecules of class B with a 

molecule A of class A, 68
proof of Maxwellian law of distribution of 

velocities, 68
relative velocity (Cr) between the retreating 

spheres after, 66
with a solid boundary, 110–116
specifications of b type, 69
tangent at the moment of, 66
tangential components on smooth sphere after, 66
types, 64

collision sphere, 68
complexion, 415
components of a system, 182
compressibility of a substance, 327
compression type of refrigerator, 235–236
conduction of heat, 339
conductivity

definition, 368
of earth’s crust, 366

conservation of energy, principle of, 244
conservative field of force, work done in a, 10

due to inverse square law of force, 12
energy equation, 13–14
energy of a body placed in a, 78
potential energy, 10–11
principle of conservation of energy for  

mechanical forces, 13–14
constantan heater, 231
constantan resistance thermometer, 28
constant of integration, 133
constant of proportionality, 96
constant pressure (Cp)

Regnault’s experimental arrangement to measure, 42–43
specific heat at, 39

constant pressure gas thermometer, 17
constant volume (Cu)

determination by Joly’s differential steam 
caloriemeter, 41

specific heat at, 39
constant volume gas thermometer, 17
constant volume thermometer, 288
constituents of a system, 182
continuity of the liquid and gaseous state, 151
convection of heat, 339

cooling coefficient, 201
cooling co-efficient

from Van der Waals’ equation of state, 204–211
copper constantan thermocouples, 27
copper constantan thermoelectric thermometer, 17
corona, 443
critical constants

according to Van der Waals’ equation of state, 159
densities at different temperatures, 161
experimental arrangement of the determination of, 160
experimental determination of, 160–161
plotting of densities of liquid and vapour  

against temperature, 161
simple method of measurement of, 161

critical temperature
of helium, 211

critical temperature of hydrogen, 211
Crookes’ radiometer, 130
cryogenic freezing system, 239
Cryostat, 231
cryosurgery, 239
cumulative cooling effect, 215
Curie constant, 219
Curie’s law, 230
Curie temperature, 230
cyclic operation, 274
cylindrical shell method, for determining thermometric 

conductivity, 354–358

D
Dalton’s law of partial pressures, 299
degenerate gases, 468
degree of rotational motion, 80
degrees of freedom, 183, 409–410

for a diatomic gas, 81
of the monatomic gas particles, 460
Planck’s oscillator for each, 425
of a vibrating system, 413
of vibrational motion, 82

degrees of freedom of a molecule, 78–80
degrees of variability, 183
dehumidification, 236
density concentration, 183–184
density of radiation, 385
determination of a and b

coefficient of thermal expansion and 
compressibility of the liquid, 154–155

constant volume method, 155–156
from inversion temperature, 156
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determination of a and b (continued)
isothermal method, 156
values of the critical constants, 156

Dewar, professor, 27
Dewar’s flask, 221, 231
diatomic molecule, 79
dielectric constant of liquid helium, 227
diesel cycle

actual, 305–306
ideal, 304–305

Dieterici equation of state, 164–166
diffusion coefficient, 128
diffusivity, 340
Dirac, Paul Adrien Maurice, 451
disappearing filament pyrometer, 439–440
dissipation of energy, 296–297
Doppler’s effect, 400
double-walled pipe, 215
drift velocity, 367
Dulong and Petit’s law, 81–82
dynamical state, 415

E
Earth, 10
Earth’s atmosphere, 237
earth’s crust, conductivity of, 366
eclipse, 442–443
efficiency of an engine, 276
efficiency of Carnot’s engine, 282–284
efficiency of Rankine’s cycle, 303
efficiency of the Otto engine, 308
Einstein, Albert, 451
Einstein’s function, 426
Einstein’s law of equivalence of mass and energy, 414
electrolux refrigerators, 234
electromagnetic radiation, 444
electromotive force (emf), 24

of battery, 25
electron gas, distribution law of, 468–473
elementary phase cell, 456
energy

definition, 9
kinetic energy, 9
potential energy, 10

energy equation, 13–14
atmosphere in convective equilibrium, 256–257
dependence of Cp and Cv of a perfect gas 

on pressure and volume at constant 
temperature, 253–254

dQ, 250
dU, 250
forms of, 251–253
Joule’s experiment, 250–251
Meyer’s method of determining J, 254–256
principle of conservation of energy, 249
work done by an expanding fluid, 249

energy of gas molecules
degrees of freedom of a molecule, 78–80
Dulong and Petit’s law, 81–82
equipartition of energy amongst different  

degrees of freedom, 80
kinetic theory and variation of specific heat, 82
mean energy of a molecule along the x axis, 80
molecular energy and specific heat, 80–81
with n degree of freedom, 81
total energy of a diatomic molecule, 81

ensemble, 450
enthalpy, 320
entropy of electrons, 472
entropy of radiation, 399
entropy of system, 217, 290–291

of an ideal gas, 297–299
and available energy, 297
changes along an adiabatic line, 292–293
closed irreversible cyclic operation, 295
closed reversible cyclic process, 295
combined system, 416
condition of reversibility, 295
conditions of possibility of a transformation, 322–324
at constant volume, 318
definition, 293
by diffusion, 300–301
due to change in temperature and pressure, 298
due to change in temperature and volume, 297–298
due to change of pressure and volume, 298
by equalization of temperature, 301
expansion of gas into vacuum, 300
of a heterogeneous system, 291–292
integrating factor of the energy equation, 292
in irreversible and reversible processes, 294–296
of mixture of perfect gases, 299–300
net amount of heat drawn, 303
of the refrigerator, 294
in spontaneous processes, 300–301

Epstein’s formula for non-conducting disc, 130
equation of Clausius, 173
equation of state, 149
equation of state of the body, 245
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equilibrium process, 294
equipartition energy, 410–411
equipartition of energy, 472
equipartition of energy, of vibrating system, 412
equipartition theorem, 410
Eucken–Hiller vacuum calorimeter method, 232–233
Euler’s gamma function, 466
exclusion space, 88
external energy, 249
external latent heat, 177–178

F
F. G. Keyes equation of state, 167
fahrenheit scale, 18
Fermi, Enrico, 451
Fermi-Dirac distribution law, 463–464

application to electron gas, 468–473
Fermi-Dirac statistics, 473
Fermi energy, 470
fermions, 474
Fery’s radiation pyrometer, 440–441
Fick’s experimental law, 96
field of force, 10

conservative, 10–14
first law of thermodynamics, 191, 250,  

295–296, 322
energy equation, 316
limitations, 269

Forbes’ method, of determination of thermal 
conductivity

amount of heat lost by radiation per second, 345
amount of heat lost by the surface of the bar per 

second from x to x + dx, 345
dynamic part, 345
plotting of excess temperature, 346
sources of error, 347
static part, 345

force
mechanical work done by a, 8–9
non-conservative system of, 14
and spontaneous process, 270
work done in a conservative field of, 10–14

fountain effect, 228
Fourier equation of one dimensional heat flow, 341
four-stroke engine. see Carnot’s engine
Fraunhofer lines, 444
free energy, 320
freon, 234
friction, 271

frigidaires, 234
compression type of refrigerator, 235–236

frozen degrees of freedom, 80
fundamental temperature interval, 18

G
galvanometer, 24, 443
gamma functions, 14–16
gas expansion into vacuum, 300
gas thermometer, 17

Callendar’s compensated constant pressure air, 21
constant volume hydrogen, 20
limitations, 21–22

geometrical meaning of perfect differential, 8
Gibbs, Josiah Willard, 450–451
Gibbs, Willard, 183
Gibb’s heat functions, 320
Gibb’s Helmholtz equation, 322
gold silver couple, 229
gravitational field, 10
gravitational force, 78
Griffiths, E. H., 22

H
Hamiltonian for the system as a function of 

coordinates and momenta, 457
heat, dynamical theory of, 33–34
heat, mechanical equivalent of, 36
heat conductivity of a gas, 96, 98
heat engine, 271–279

Carnot’s engine, 274–278
conditions for obtaining maximum quantity  

of work, 271–273
cyclic operation, 274
main organs, 271
reversible operation, 273–274

heat interchanger, 215
heat theorem, derived from thermodynamics, 308
heat transfer

Angstrom’s experiment, 362–366
experiment of Despretz, Wiedemann and  

Franz for comparison of conductivities, 
343–344

Forbes’ method, 344–347
Fourier equation of one dimensional heat flow, 341
Ingen-Hausz’s method, 342–343
periodic flow of heat, 359–361
per second in unit area in the positive direction of 

the x axis, 369
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heat transfer (continued)
quantity of heat flowing through the layer x 

per second, 340
radiation, 341
rectilinear flow, 339–342
types, 339

helium, 214
critical temperature, 211
density of liquid, 227
dielectric constant of liquid, 227
film flow of, 228
II, 228
latent heat of vapourization of, 227
liquefaction of, 224–226
l-point, 227–228
properties of liquid, 227–228
specific heat of liquid, 227
thermal conductivity of liquid, 228

helium gas thermometer, 27
helium vapour pressure thermometers, 28
Heylandt’s expansion engine, 213
Heylandt’s method, 221–222
hoar frost line, 180–181
homogeneous radiation, 386
homogeneous systems, 182
hot junction, 25, 440
hotter body, 17
hot wire manometer, 229
humidification arrangement, 236
Huygens, Christian, 450
hydrogen, 151, 214

critical temperature of, 211
liquefaction of, 222–224

hydrogen gas thermometers, 29
hydrogen scale, 288
hydrogen temperatures, 229
hydrogen vapour pressure thermometer, 28

I
ice line, 180
ideal diesel cycle, 304–305
indicator diagram, 275
infrared radiations, 444
Ingen-Hausz’s experiment, 342–343
integrability, 11
integrating factor, 7–8
integrating factor, of the energy equation, 292
integrations, 14–16
intensity, at a point (x, y and z), 12

internal energy, 249
internal latent heat, 177–178
ionosphere, 237
iron constantan thermocouples, 27
isobaric process, 246
isochore process, 246
isolated process, 245
isometric hydrogen pressure centigrade scale,  

286–288
isothermal curve

definition, 257
slope of, 257
work done in, 258

isothermal elasticity of perfect gas, 259, 326
isothermal isobaric process, 179
isothermal operation, 178
isothermal process, 272–273
isothermals of a gas, 156
isotropic radiation, 386
isovolumic process, 246

J
Jacobi’s theorem, 70
Jaegar–Diesselhorst method, of determining 

thermometric conductivity, 370–374
constants of integration, 372
electrical energy supplied to the element  

in unit time, 371
heat flowing in unit time into the element over  

the area at P, 371
measurement of maximum temperature, 374
measurement of temperature and electric potential 

at the three points, 373
net gain of heat by conduction in unit time, 371
schematic representation, 371

Joule and Thomson’s porous plug experiment,  
198–199

Joule’s Apparatus, 34
Joule’s equivalent, 33

Callendar and Barnes’ steady flow  
method, 37–38

Joule’s method, 34–36
Mayer’s method, 37
Searle’s method, 36

Joule’s experiment, 250–251
Joule’s law, 244
Joule’s method, friction methods for determining, 34–36

sketch of Joule’s apparatus, 34
sources of error, 35
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Joule-Thomson cooling effect
Amagat’s isothermals, 203, 207, 209
apparatus, 198–199
cooling coefficient, 201
“differential effect” due to throttle expansion, 202
“integral effect” of cooling due to throttle 

expansion, 203
locus of the point of minimum values of p v, 203
theory of experiment, 199–200

Joule-Thomson differential effect, 216
Joule Thomson effect, 156
Joule-Thomson (Joule-Kelvin) expansion, 214

K
Kamerlingh Onnes equation of state, 166–167
Kapitza’s expansion engine, 213
Kapitza’s helium liquefier, 225
Keesom’s calorimeter, 231
Kelvin scale of temperature, 283–286, 438

graduation of thermodynamic scale of  
temperature, 285

zero of thermodynamic scale of temperature, 285
Kelvin’s statement, of second law of  

thermodynamics, 279
Kevin-Planck statement, of second law of 

thermodynamics, 280
kinetic energy

of a body rotating with angular velocity w, 9
definition, 9
of falling weights, 34
of heat engine, 272
of liquid, 35
of a molecule moving with velocity c, 61–62
of rotation, 78
of rotational motion, 432
of translational motion, 78
vibrational, 78
of water particles, 35

kinetic equilibrium, 415
kinetic theory of gases, 136, 287, 450

accommodation coefficient, 124–125
coefficient of heat conduction K, 119
conduction of heat at intermediate pressure, 121–122
conduction of heat at very low pressure, 122–124
of conduction of heat through a gas, 116–126
conduction of heat through rarified gases, 121
degrees of freedom due to translational motion, 120
derivation of pressure exerted by a perfect  

gas, 55–57

energy transferred across unit area of zero plane in 
all possible directions, 117

energy transferred through dxdy from dv in time 
dt, 118

evaluation of coefficient of heat conduction, 118
in free path and velocities, 117–121
growth of, 55
macroscopic view, 54
microscopic point of view, 54
nature of variation of K with temperature, 121
net transfer of energy through dxdy in time dt, 119
number crossing the area ds in specified 

direction, 117
number traversing the distance r without 

collision, 118
real gases, 152
total energy transfer per unit area per second, 120
and variation of specific heat, 82

Knudsen manometer, 94
Knudsen’s absolute manometer, 125–126

theory of, 125–126
Knudsen’s cosine law, 111

apparatus, 115
experimental results, 115
experiment for verification, 112, 114–116
hypothesis, 112
momentum transferred to the element of area O dl 

in time dt, 113
in photometry, 112
tangential components of velocities of  

molecules, 112
theory of streaming, 112–114

Kundsen effect, 230

L
Laby and Hercus method, for determining 

thermometric conductivity, 358
Lammert’s apparatus, 75
Laplace’s formula, 455
Laplace’s method of undetermined multipliers, 59
latent heat of evaporation of water, 175
latent heat of isothermal expansion, 246
latent heat of isothermal expansion,  

at temperature T, 318
law of conservation of linear momentum, 65
law of conservation of translational kinetic energy, 65
law of degradation of energy, 296
law of distribution of molecules under the action  

of gravity, 135–136
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law of equipartition, 425
law of equipartition of energy, 369
law of osmosis, 135
law of perfect gas, 136
law of transmutability of energy, 308
laws of radiation, 438
laws of thermal radiation, 381
lead resistance thermometer, 27
Lee’s disc method, for determining thermometric 

conductivity, 347–349
Linde’s process, 220–221
linear collision, 64–66
Liouville’s theorem, 457–458
liquefaction of a gas, 212

by adiabatic expansion or external work  
method, 212–213

air, 220–222
Claude’s method, 221–222
difficulties of expansion engines, 213
evaporative cooling, 212
helium, 224–226
Heylandt’s method, 221–222
hydrogen, 222–224
Linde’s process, 220–221
throttle expansion method, 213–214

liquefiable sulphur dioxide, 235
liquefier efficiency, 216
liquid ammonia, 234
liquid methane, 239
liquid thermometer, 17
Loeb, Leonard B., 125
lower range of a mercury thermometer, 26
low temperature, measurement of, 228–231

M
macroscopic view, of kinetic theory of gases, 54
macro state, 415–416
magnetic thermometer, 18, 230–231
magnetosphere, 237
manometer, 21, 43–44
masonite, 236
mass fraction, 183
mathematical probability, 451, 454–455
Maxwell, James Clerk, 451
Maxwell-Boltzmann distribution law, 463
Maxwell-Boltzmann statistics, 473

law of distribution of molecular velocities,  
465–466

method of calculating probability, 462

Maxwell-Bolzmann law of distribution of  
velocities, 59, 85, 99

Maxwellian relation, 201, 203
Maxwell’s demon, 280
Maxwell’s distribution curve of velocity, 414
Maxwell’s distribution law of velocities, 120
Maxwell’s law of distribution of velocities,  

59–61, 64, 75
Boltzmann’s explanation of, 82
distribution curve for different  

temperatures, 63
experimental test of, 74–76
proof of, 68
scheme of Stern’s experimental arrangement,  

74–75
Maxwell’s relation, 325
Maxwell’s relations, 316–320

method of deduction of, 321
relation I, 318
relation II, 318–319
relation III, 319
relation IV, 319–320

Mayer’s method, of determining J, 37
McLeod gauge, 94
Mcleod gauge, 230
mean energy of an oscillator, 433
mean free path

on account of finite size of molecules, 88
on the assumption of uniform molecular  

velocity, 83–85
average value of relative velocity, 90
Bielz’s experiment, 95
Born’s apparatus for determination of, 94
calculation of, 82–83
collision rate, 89–90
correction for relative motion between  

the molecules, 90–91
definition, 82
evaluation of quantity b, 92
evaluation of s and u, 89–90
experimental determination of, 94–95
impulse communicated per second from  

all directions, 91
Jean’s, 87
Maxwell’s, 85–86, 102
in a mixture of gases, 87–88
number of molecules striking area ds in 1 second 

from all directions, 92
number striking unit area per second, 92
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pressure-volume relation of Clausius, 91–92
probability of, 93–94
scale factor, 93
Tait’s, 87

mean square velocity, 57
mean value, 63
mechanical energy, 244
mechanical equivalent of heat, 33, 244
mechanical work

converted into heat, 269
from natural processes, 271

mechanical work done by a force
definition, 8
in rotational motion, 9

Meissner, W., 238
Meissner effect, 238
melting points, determination of, 442
mercury, rationale for use in thermometers, 19
mercury-in-glass thermometer, 17, 19
mercury manometer, 228
microscopic view, of kinetic theory of gases, 54
microstate, 455
Milky Way, 442
molal concentration, 183
molar concentration, 183, 301
molar fraction/mole fraction, 183–184
molar specific heat (Cu), 39
molecular configuration, of a mass of gas, 88
molecular path, 82
molecular phase space, 456
molecule, state of motion of a, 58
momentum space, 456
monatomic molecule, 79
monochromatic emissive power, 382

normal, 383–384
Wien’s energy-temperature displacement law, 401

Montreal Protocol, 238
motivity of heat, 296

N
napthalene, melting point of, 25
natural law of conversion, 269
Nernst formula, 229
Nernst heat theorem, 472
Newton’s law of cooling, 38–40
Newton’s law of equality of action and reaction, 95
Newton’s low of cooling, 40
Newton’s second law of motion, 103
nickel nichrome thermocouple, 29

nitrogen gas thermometers, 29
non-conservative system of forces, 14
non-mechanical energy, 244
normal emissive power, of a black body, 390
normal monochromatic emissive power, 383–384

of the area ds, 389
null point energy, 472

O
oblique collision, 64–65
Ochsenfild, R., 238
Onnes, Kamerlingh, 224, 227
Onnes, Kamerlingh Heike, 238
optical pyrometer, 438–440
osmosis, 185
osmotic pressure, 185

equation for, 185
laws of, 185

Otto cycle, 307–308
characteristics, 307
work done by the engine in one cycle, 307

oxygen vapour pressure thermometer, 27
ozone, 237–238

P
Parkinson’s disease, 239
partial derivatives of u, 1
partial differentiation

geometrical meaning of perfect differential, 8
integrating factor, 7–8
partial derivative of u, 1–2
perfect or exact differential, 4–7
total derivative of a function, 3–4
total differential of a function, 2–3

Pauli’s exclusion principle, 469
perfect/exact differential, 4–7

geometrical meaning, 8
perfect gas, 326

adiabatic elasticity of, 259
Amagut experiments, 151–152
Andrews experimental results, 150
critical constants of the gas, 151
critical pressure (pc), 150–151
defined, 149
equation of, 149–152
ethylene, 151
hydrogen, 151
isothermal elasticity of, 259
isothermals, 150
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perfect gas (continued)
nitrogen, 151–152
relation, 202

perfect gases (pv = RT ), 55
perfect gas law

saturated vapour, 174
periodic flow of heat, 359–361
permanent gases, 149
Perrin’s experimental method of observation of 

Brownian motion, 134–135
apparatus, 135
method of determination of Avogadro number, 133

phase rule, 182–183
phase space, 456
phosphor bronze resistance thermometer, 28, 231
photoelectrons, 414
photon gas, distribution law of, 466–468
photons, 414
photosphere, 442
physical properties, 244
Planck’s constant, 405
Planck’s oscillator for each degree of freedom, 425
Planck’s radiation formula, 417–420

deduction of Rayleigh-Jeans’ formula from, 406
deduction of Stefan-Boltzmann’s law from,  

406–407
deduction of Wien’s formula from, 406
determination of Wien’s constant from, 408
Jean’s method of deduction of, 420–423

planimeter, 347
platinum and platinum iridium, 29
platinum resistance thermometer, 17, 22–24, 27–28

demerits, 24
experimental arrangement for temperature 

measurement by, 23
merits, 24
modern form, 22

platinum resistance thermometers, 229
platinum rhodium thermocouple, 29
platinum temperature, 22–23

vs true temperature, 23
Poiseuille’s law, 116
Poisseuille’s method, 108
poor conductors, 347
porous plug experiment, 199–200
position space, 456
potential energy, 9, 105

Cartesian components of intensity, 11
condition of existence of potential function, 11–12

in a conservative field, 10–11
definition, 9
due to configuration, 10
due to position, 10
of falling weights, 35
vibrational, 78

potential function, 10–12
condition of existence of, 11–12

pressure co-efficient, of a gas at constant volume, 287
pressure diffusion, 129
pressure-volume relation of Clausius, 91–92
Prevost’s theory of exchanges, 386–390
primary thermometers, 22
principle of conservation of energy, 14, 244

for mechanical forces, 13–14
principle of equal a priori probability, 452–453
principle of equipartition of energy, 80, 370
probability

Boltzmann’s relation between entropy and,  
458–459

of a composite event, 452
mathematical, 451, 454–455
method of calculating, 462
notion of, 451
a priori, 455
thermodynamic, 451

Q
quasistatic process, 245
quick freezing, 239

R
radiation, 339, 341

absorptivity, 384
absorptivity of the surface, 388
black body, 399, 474
of a black body, 385
Boltzmann’s ether engine, 395–398
cavity, 386–387
change in wavelength on reflections, 400
cosine law, 387–388
degrees of freedom, 409–410
density of, 385
distribution of energy, 381
Dulong and Petit’s law, 424–425
electromagnetic, 444
emitted by a discharge tube, 381
energy density of full radiation inside enclosure, 

388–390
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energy distribution, 399
energy equation of, 398
energy received per unit area of the Earth’s surface 

per minute, 444
equilibrium of temperature inside the  

enclosure, 394
fundamental similarity between black body 

radiation and perfect gas, 395
homogeneous and isotropic, 386
infrared, 444
intensity of, 386
Kirchhoff’s law, 390–394
measurement of high temperatures, 438–445
monochromatic emissive power, 382
normal monochromatic emissive power, 383–384
from a perfect mirror, 385
Planck’s formula, 405–408, 417–420
Prevost’s theory of exchanges, 386–390
Rayleigh-Jeans’ law, 404, 412–414
Rayleigh’s formula, 404
reflectivity, 385
region of maximum intensity, 381
relation between emissive power and normal 

emissive power, 384
reversible adiabatic change of volume occupied by, 

399–400
reversible isothermal change of volume occupied 

by, 398–399
spectrum of thermal radiation emitted by an 

incandescent tungsten wire, 382
from sun, 444
thermodynamics of, 398–400
total emissive power, 382
transmissivity, 385
for treatment, 444
ultraviolet (UV), 444
wavelength-temperature displacement law, 400–403
Wien’s energy-temperature displacement law, 

401–403
Wien’s formula, 403

radiation pyrometer, 18, 29
radiometric effect, 130
Rankine’s cycle, 303
Rankine’s statement, of second law of 

thermodynamics, 286
Raoult’s law, 185

cycle of operation at different temperatures, 191–192
cycle of operations, 186–188
cyclic operation on Carnot’s principle, 193–194

depression of freezing point by an involatile  
solute, 192–194

elevation of boiling point by an involatile  
solute, 188–192

from thermodynamical consideration, 185–186
vapour pressure curves of a solvent and that  

of a solution of an involatile solute in  
the same solvent, 189

Rayleigh-Jeans’ law, 404, 412–414
from Planck’s radiation formula, 406

Rayleigh’s formula, 404
reciprocity theorem, 386
reduced equation of state, 162
reflectivity, 385
refrigerator, 233, 280

absorption type of, 234–235
principle of, 234

regenerative cooling
efficiency of the liquefier, 216
schematic representation, 215

resistances, of pure metals, 22
resistance thermometers, 17, 27, 229
reversible Carnot’s engine, 277–278
reversible operation, 273–274
Reynolds, Osborne, 129
root mean square (RMS) velocity, 63
rotational degrees of freedom, 79

S
Saha and Bose equation of state, 166
saturated steam, 177
Scheel–Heuse continuous flow method, 232–233
Searle’s method, for measuring J, 36
secondary thermometers, 22, 229
second law of thermodynamics, 160, 316

Clausius’ statement, 280
Kelvin’s statement, 279
Kevin–Planck statement, 280
Maxwell’s demon, 280
Rankine’s statement of, 286
spontaneous process, 270–271
violation of, 399

self-diffusion in a gas, theory, 127–129
concentration gradient, 127
concentration of gas in the plane a height z is n, 127
diffusion coefficient, 128
illustration for evaluation of diffusion  

coefficient, 127
mutual diffusion coefficient, 128
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self-diffusion in a gas, theory (continued)
number of molecules crossing the area dxdy in 

time dt downwards, 127
number of molecules crossing through the  

area dxdy in time dt upwards, 128
semi-permeable membrane, 184
sensitive radiometer, 75
Simon desorption method, 219
Simon’s apparatus for liquifaction of helium, 226
sodium chloride, 182
solar constant, 443–444
solar eclipse, 443
solar flares, 442
solar prominences, 443
solar wind, 442
specific heat, 39

characteristic frequency of a solid, 427–428
from compressibility, 427
at constant pressure, 328
at constant pressure (Cp), 39
at constant volume (Cu), 39
Debye’s theory of, 428–431
due to rotational motion, 432–433
due to rotational motion of a diatomic molecule, 433
due to translational motion, 432
due to vibrational motion, 433
Dulong and Pelit’s value of, 424–425
Dulong and Petit’s law, for solid monatomic 

molecule, 81–82
Einstein’s derivation of, 425–428
equations, 324–328
Eucken and Hiller vacuum calorimeter method, 232
of a gas at constant pressure by Regnault’s  

method, 42–43
of a gas by Joly’s differential steam  

caloriemeter, 41–42
of gases at low temperatures, 232
of gases in motion, 432–433
of hydrogen, 433–434
Keesom’s calorimeter for measurement, 231
kinetic theory and variation of, 82
of liquid helium, 227
of liquids, 40
at low temperatures, 231–232
of a mass of hydrogen due to rotational motion, 434
from melting point, 428
of the monatomic gas at constant volume, 80
for orthohydrogen, 434
for parahydrogen, 434

of perfect gas, 325–326
of powder, 232
quantum theory of, 82
relation between Cp and Cv, 39–40
relation with degrees of freedom, 411
from residual rays method, 427
of saturated vapour, 328
of saturated vapour of some liquids, 175
of saturated vapours, 175–177
Scheel and Heuse continuous flow method, 232
of solids and liquids, 328
of substance at constant pressure, 246
of substance at constant volume, 246
of substances, 423

spherical shell method, for determining  
thermometric conductivity, 349–353

spin of electrons, 469
spontaneous process, 270–271, 323

changes in entropy of system, 300–301
reversible, 278–279

standard thermometer, 27
stationary oscillations, 412
stationary waves, 412
statistical equilibrium, 453
statistics

Boltzmann’s relation between entropy and 
probability, 458–459

Bose-Einstein distribution law, 463
Bose-Einstein method of calculating  

probability, 460–461
calculation of equilibrium state, 464–465
complexion and statistical state, 452
Fermi-Dirac distribution law, 463–464
Fermi-Dirac method of calculating  

probability, 462
Hamiltonian for the system as a function of 

coordinates and momenta, 457
law of distribution of molecular velocities, 465–466
Liouville’s theorem, 457–458
mathematical probability, 454–455
Maxwell-Boltzmann distribution law, 463
Maxwell-Boltzmann method of calculating 

probability, 462
method of a molecular system, 456
notion of probability, 451
principle of equal a priori probability, 452–453
probability of a composite event, 452
quantum, 459–460
significance, 450–451
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statistical weight, 452
Stirling’s theorem, 453–454

steam line, 180–181
Stefan-Boltzmann’s law, 404

from Planck’s radiation formula, 406–407
Stefan’s constant, determination of, 434–438
Stefan’s law of total radiation, 443
Stirling’s approximation, 454
Stirling’s theorem, 453–455
Stokes’ law of terminal velocity, 133–134
stratosphere, 237
sulphur dioxide, 234
summer air conditioning, 236
Sun’s distance from galactic centre, 442
sunspot cycle, 442
sunspot outbursts, 442
sunspots, 442
superconductivity, 238
superfluidity, 238
susceptibility, apparatus for measurement of, 231
sustainable development, 238
Sutherland’s formula for variation of viscosity with 

temperature, 102–107

T
tangential stress, 95
temperature, 17
temperature-entropy diagram, 301–302
temperature gradient, 355
temperature of inversion, 213
temperature of Sun, 443–444
temperature-pressure curve, in change of state, 180
temperature radiation pyrometers, 28
temperatures of inversion, 211
theorem of Clausius, 290, 293–294
thermal capacity, 198, 340
thermal conductivity, 339

Ingen-Hausz’s method, 342–343
thermal conductivity of the gas, 96
thermal creep of gas, 129–130
thermal diffusion, 129
thermal effusion. see thermal transpiration
thermal equilibrium energy, 80
thermal radiations, 381
thermal transpiration, 129
thermocouple thermometers, 24–28
thermodynamical state of a system, 415–417

definition, 415
entropy of the combined system, 416

probability of occurrence of standard state of 
ordered arrangement, 416

thermodynamic coordinates of the system, 54
thermodynamic functions, relation between,  

321–324
thermodynamic potential, 218, 320
thermodynamic probability, 451
thermodynamics of radiation, 398–400
thermodynamics of solutions, 183–194
thermodynamic state of a body, 244

co-ordinates secondary/derived co-ordinates, 245
first law of thermodynamics, 250
fundamental co-ordinates, 245
primary co-ordinates, 245
thermodynamic equilibrium, 245
zeroth law, 245

thermoelectric thermometer, 17
thermometer, 17

alcohol, 17, 19
carbon resistance, 27
gas, 17, 20–22
helium gas, 27
helium vapour pressure, 28
lead resistance, 27
liquid, 17, 19
lower range of a mercury, 26
magnetic, 18
mercury-in-glass, 17, 19
of phosphor bronze, 27
platinum resistance, 27
primary, 22
reading of, 19
resistance, 17, 22–24, 27
scales used in, 18
secondary, 22
standard, 27
thermocouple, 24–26
thermometric bodies, 17
thermometric properties, 17

thermometric bodies, 17
thermometric conductivity, 340

of a cylinder, 354–355
cylindrical shell method, 354–358
of earth’s crust, 366
of gases, 358
of glass, 357
Jaegar–Diesselhorst method, 370–374
Laby and Hercus method, 358
Lee’s disc method, 347–349
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thermometric conductivity (continued)
of rubber, 355–356
Simidus’ experimental arrangement, 374
spherical shell method, 349–353
Wiedemann-Franz law, 367–370

thermometric properties, 17, 26
general theory of, 18

thermosphere, 237
third law of thermodynamics, 308
Thomson, James, 180
throttle expansion method, 213–214
throttling process, 200, 216
time-average of kinetic energy, of a vibrating system, 413
time-average of total energy, 413
tonsillectomies, 239
total emissive power, 382
total radiation pyrometers, 438
transference process, 200
translation energy, 80
transmissivity, 385
transport phenomena

Chapman and Enskog yields of h, 102
coefficient of self-diffusion, 96
evaluation of coefficient of self-diffusion, 98–99
evaluation of coefficient of viscosity of a gas, 98, 101
evaluation of heat conductivity of a gas, 98
heat conducted through unit area of a layer, 96
heat conductivity of a gas, 96
Maxwell’s method of evaluation of h, 99–101
momentum transferred through dxdy in 

time dt, 100
net transfer of momentum through dxdy in 

time dt, 101
number of molecules moving in direction  

of dxdy, 100
Sutherland’s formula for variation of viscosity  

with temperature, 102–107
transport theorem, 97
viscosity of a gas, 95–96
viscous drag, 101

transport theorem, 97
triatomic molecule, 79
triple point, 180–181
troposphere, 237
tungsten-molybdenum thermocouple, 29

U
ultraviolet (UV) radiations, 444
unavailable energy, 297

V
Van der Waals’ equation of state, 155–156, 164–166

behaviour of real gases, 152
Boyle temperature from, 163–164
calculation of cooling co-efficient from,  

204–211
for carbon dioxide, 154, 157
cooling effect as deduced from, 204
critical temperature, 158–159
discussions, 157–159
maxima and minima of the isothermals, 158
merits and demerits, 162–163
methods of pressure correction, 154
methods of volume correction, 152–154
rate of change of the slope, 158
reduced equation of state from, 162
with respect to T at constant pressure, 205
values of critical constants, 159
vs Andrew’s experimental curves, 159–160

Vant Hoff’s equilibrium box, 186
vapour compression machine, 235
vapour pressure manometer, 229–230
vapour pressure thermometer, 18, 229–230
vapour pressure thermometers, 27, 174, 229
velocities, distribution function of

assumption of molecular chaos, 57–58
average of molecules, 63–64
change with temperature, 62–63
Maxwell’s law of, 59–61, 64
in space at an instant, 58
value of a and b, 60–62

velocities in space, distribution of, 58
vibrational degree of freedom, 79
vibrational energy, 78

degrees of freedom, 82
of a solid monatomic molecule, 82

viscosity of a gas, 95–96
effective collision cross section of, 105–106
Hasse–Cook formula of simultaneous existence  

of forces of attraction and repulsion, 107
influence of intermolecular force on, 103
intermolecular force of repulsive nature, 107
at low pressures, 107–109
molecules moving in a forceless field, 105
Reinganum’s calculation of mutual attraction 

among molecules, 106
Sutherland’s formula for variation of viscosity with 

temperature, 102–107
total resisting force on a layer of thickness dr, 109
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volume of f luid f lowing out of tube per second, 109
volume of liquid flowing through the tube per 

second, 109
viscous drag, 101

on the inner surface of tube, 108
viscous forces, 238

W
waste of energy, 272
water-flow pyrheliometer, 443
water-stir pyrheliometer, 443
wavelength-temperature displacement law, 400–403
wax, melting of, 343
Wheatstone bridge, 22, 438
wheatstone’s bridge, 126
Wiedemann-Franz law, 367–370
Wien’s energy-temperature displacement law,  

401–403, 444
Wien’s formula, 403

from Planck’s radiation formula, 408

Wien’s wavelength temperature displacement  
law, 400

winter air conditioning, 237
work done

actual diesel cycle, 305–306
in a conservative field of force, 10
during expansion of a gas at constant  

pressure, 36–37
by a force, 8–9
ideal diesel cycle, 304
in one Otto cycle, 307
in Rankine’s cycle, 303

work function, 10

Z
Zartman’s apparatus, 75
zeroeth law of thermodynamics, 17
zero of thermodynamic scale of  

temperature, 285
zeroth law of thermodynamics, 245
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