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Preface

This book can be regarded as the first part of a text on “modern
physics.” Indeed, it is the basis for the treatment of relativity in such a
text that I am now writing with Robert Eisberg. That text will be the
third and concluding volume of a series on introductory physics, the
first two volumes of which I have written with David Halliday.

However, the material in this Introduction to Special Relativity has a
coherence of its own and can be used in many ways. In the two-year in-
troductory physics course at Rensselaer, for example, these chapters
build upon the background in electromagnetism and optics of the
Halliday-Resnick text and precede the full development of quantum
physics. Applications of relativity to certain areas, such as high-energy
physics, are given when, as in our third volume, those areas are pre-
sented later. There are other ways to use these chapters, as well. For
instance, they can be integrated easily with the classical material. The
early chapters on the experimental background and kinematic aspects
of relativity could follow immediately the development of Newtonian
mechanics, as could much of the relativistic dynamics, whereas the elec-
tromagnetic aspects of relativity could follow the presentation of Max-
well’s equations. Or, this book could replace the brief and sketchy treat-
ment of the foundations of relativity characteristic of modern physics
courses of the immediate past. Still other uses will suggest themselves
to physics instructors.

A good deal of optional material is presented here not gnly because
of its intrinsic interest but also to permit the instructor to vary the length
and depth of his treatment. Thus, in separate appendices, there are sup-
plementary topics on the geometrical representation of space-time, on
the twin paradox, and on the principle of equivalence and general rela-
tivity. Also, in the body of the text, some material of an historical, an
advanced, or a special nature is printed in reduced type for optional use.
Similarly, the problems and thought questions, nearly 250 in number,
span a wide range of content and level of difficulty so that the impact of
the course can be altered significantly by the choice of which ones and
how many are assigned. Many references are cited especially to encour-
age students to read widely in relativity. The writing is expansive, how-
ever, so that the book is self-contained. Pedagogic aids, such as sum-
mary tables and worked-out examples, are employed to help the student
to learn on his own.



viii PREFACE

Writing this book has been a labor of love. Relativity has always been
a favorite subject of mine, and Einstein was one of the heroes of my
youth. Over two decades ago, Franco Rasetti impressed the beauty of the
subject upon me in a course at The Johns Hopkins University. Also I was
much influenced by the relativity treatments in the classic advanced texts
of Peter Bergmann and of Wolfgang Panofsky and Melba Phillips. In
revising my notes through successive drafts, classroom trials, and produc-
tion, I have received constructive criticism or other valuable assistance
from many individuals, especially Richard Albagli, Kenneth Brownstein,
Benjamin Chi, Robert Eisberg, David Halliday, and Roland Lichtenstein.
I am grateful to Mrs. Cassie Young for her skill and dedication in typing
the many versions of the notes and to the publishers, John Wiley and
Sons, Inc., for their outstanding cooperation. To my wife and daughters,
whose forbearance over years of writing is nearly habitual, my deepest
thanks. My release from some other duties during the preparation of the
manuscript was made possible in part by a Ford Foundation grant to
the Engineering School at Rensselaer for curricular development.

It is my earnest hope that this effort will make relativity accessible
to beginning students and arouse in them some of the excitement that
is physics.

Robert Resnick
Troy, New York
January 1968
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Chapter One

The Experimental Background
of the Theory of Special Relativity

1.1 Introduction

To send a signal through free space from one point to another as
fast as possible, we use a beam of light or some other electromagnetic
radiation such as a radio wave. No faster method of signaling has ever
been discovered. This experimental fact suggests that the speed of light
in free space, ¢ (= 3.00 X 108 m/sec),* is an appropriate limiting refer-
ence speed to which other speeds, such as the speeds of particles or of
mechanical waves, can be compared.

In the macroscopic world of our ordinary experiences, the speed u of
moving objects or mechanical waves with respect to any observer is
always less than c. For example, an artificial satellite circling the earth
may move at 18,000 mph with respect to the earth; here u/c = 0.000027.
Sound waves in air at room temperature move at 332 m/sec through the
air so that u/c = 0.0000010. It is in this ever-present, but limited, mac-
roscopic environment that our ideas about space and time are first formu-
lated and in which Newton developed his system of mechanics.

In the microscopic world it is readily possible to find particles whose
speeds are quite close to that of light. For an electron accelerated through
a 10-million-volt potential difference, a value reasonably easy to obtain,
the speed u equals 0.9988c. We cannot be certain without direct experi-
mental test that Newtonian mechanics can be safely extrapolated from
the ordinary region of low speeds (u/c < 1) in which it was developed to
this high-speed region (u/c — 1). Experiment shows, in fact, that New-
tonian mechanics does not predict the correct answers when it is applied
to such fast particles. Indeed, in Newtonian mechanics there is no limit
in principle to the speed attainable by a particle, so that the speed of
light ¢ should play no special role at all. And yet, if the energy of the
10 Mev electron above is increased by a factor of four (to 40 Mev) experi-
ment [1] shows that the speed is not doubled to 1.9976¢, as we might

*The presently accepted value of the speed of light is 2 997925 = 0 000003 X 108 m/sec
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expect from the Newtonian relation K = 4Mv2, but remains below ¢; it
increases only from 0.9988c to 0.9999¢, a change of 0.11 percent. Or, if
the 10 Mev electron moves at right angles to a magnetic field of 2.0
weber/m?, the measured radius of curvature of its path is not 0.53 cm
(as may be computed from the classical relation r = mev/qB) but, in-
stead, 1.8 cm. Hence, no matter how well Newtonian mechanics may
work at low speeds, it fails badly as u/c — 1.

In 1905 Albert Einstein published his special theory of relativity.
Although motivated by a desire to gain deeper insight into the nature of
electromagnetism, Einstein, in his theory, extended and generalized
Newtonian mechanics as well. He correctly predicted the results of
mechanical experiments over the complete range of speeds from u/c = 0
to u/c — 1. Newtonian mechanics was revealed to be an important
special case of a more general theory. In developing this theory of rela-
tivity, Einstein critically examined the procedures used to measure
length and time intervals. These procedures require the use of light
signals and, in fact, an assumption about the way light is propagated is
one of the two central hypotheses upon which the theory is based. His
theory resulted in a completely new view of the nature of space and
time.

The connection between mechanics and electromagnetism is not sur-
prising because light, which (as we shall see) plays a basic role in making
the fundamental space and time measurements that underlie mechanics,
is an electromagnetic phenomenon. However, our low-speed Newtonian
environment is so much a part of our daily life that almost everyone has
some conceptual difficulty in understanding Einstein’s ideas of space-
time when he first studies them. Einstein may have put his finger on the
difficulty when he said “Common sense is that layer of prejudices laid
down in the mind prior to the age of eighteen.” Indeed, it has been said
that every great theory begins as a heresy and ends as a prejudice. The
ideas of motion of Galileo and Newton may very well have passed
through such a history already. More than a half-century of experimenta-
tion and application has removed special relativity theory from the
heresy stage and put it on a sound conceptual and practical basis. Fur-
thermore, we shall show that a careful analysis of the basic assumptions
of Einstein and of Newton makes it clear that the assumptions of Einstein
are really much more reasonable than those of Newton.

In the following pages, we shall develop the experimental basis for
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the ideas of special relativity theory. Because, in retrospect, we found
that Newtonian mechanics fails when applied to high-speed particles, it
seems wise to begin by examining the foundations of Newtonian me-
chanics. Perhaps, in this way, we can find clues as to how it might be
generalized to yield correct results at high speeds while still maintaining
its excellent agreement with experiment at low speeds.

1.2 Galilean Transformations

Let us begin by considering a physical event. An event is something
that happens independently of the reference frame we might use to
describe it. For concreteness, we can imagine the event to be a collision
of two particles or the turning-on of a tiny light source. The event hap-
pens at a point in space and at an instant in time. We specify an event by
four (space-time) measurements in a particular frame of reference, say
the position numbers x, y, z and the time t. For example, the collision of
two particles may occur at x = 1 m,y = 4 m, 2 = 11 m, and at time
t = 7 sec in one frame of reference (e.g., a laboratory on earth) so that
the four numbers (1, 4, 11, 7) specify the event in that reference frame.
The same event observed from a different reference frame (e.g., an
airplane flying overhead) would also be specified by four numbers,
although the numbers may be different than those in the laboratory
frame. Thus, if we are to describe events, our first step is to establish a
frame of reference.

We define an inertial system as a frame of reference in which the law
of inertia—Newton’s first law—holds. In such a system, which we may
also describe as an unaccelerated system, a body that is acted on by zero
net external force will move with a constant velocity. Newton assumed
that a frame of reference fixed with respect to the stars is an inertial
system. A rocket ship drifting in outer space, without spinning and with
its engines cut off, provides an ideal inertial system. Frames accelerating
with respect to such a system are not inertial.

In practice, we can often neglect the small (acceleration) effects due
to the rotation and the orbital motion of the earth and to solar motion.*
Thus, we may regard any set of axes fixed on the earth as forming (ap-

*Situations in which these effects are noticeable are the Foucault pendulum experiment or the deflec-
tion from the vertical of a freely falling body. The order of magnitude of such effects is indicated
by the result that in falling vertically 100 ft (1200 in.) a body at the Equator is deflected less than
%in from the vertical
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proximately) an inertial coordinate system. Likewise, any set of axes
moving at uniform velocity with respeet to the earth, as in a train, ship,
or airplane, will be (nearly) inertial because motion at uniform velocity
does not introduce acceleration. However, a system of axes which acceler-
ates with respeet to the earth, such as one fixed to a spinning merry-go-
round or to an aceelerating car, is not an inertial system. A partiele aeted
on by zero net external foree will not move in a straight line with eonstant
speed aceording to an observer in such noninertial systems.

The special theory of relativity, which we eonsider here, deals only
with the description of events by observers in inertial reference frames.
The objeets whose motions we study may be accelerating with respeet to
such frames but the frames themselves are unaccelerated. The general
theory of relativity, presented by Einstein in 1917, eoncerns itself with
all frames of reference, including noninertial ones, and we shall discuss
it briefly in Topical Appendix C.

Consider now an inertial frame S and another inertial frame S’ which
moves at a constant velocity v with respect to S, as shown in Fig. 1-1.
For convenience, we choose the three sets of axes to be parallel and allow
their relative motion to be along the common x, x” axis. We can easily
generalize to arbitrary orientations and relative veloeity of the frames
later, but the physieal principles involved are not affected by the particu-

lar simple choice we make at present. Note also that we can just as well

¥ S,"
S .—:} v
- x =%
0 0 —
- vt - x’
2 ;

Fig. 1-1. Two inertial frames with a common x-x" axis and with the y-y" and
z 2’ axes parallel As seen from frame S, frame § is moving in the positive
x-direction at speed v. Similarly, as seen from frame §’, frame $ is moving in
the negative x’-direction at this same speed. Point P suggests an event, whose
space-time coordinates may be measured by each observer The origins O and
O coincide at timet = 0.1 = 0
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regard S to be moving with velocity —v with respect to $’ as we can
regard S’ to move with velocity v with respect to S.

Let an event occur at point P, whose space and time coordinates are
measured in each inertial frame. An observer attached to S specifies by
means of meter sticks and clocks, for instance, the location and time of
occurrence of this event, ascribing space coordinates x, y, and z and
time ¢ to it. An observer attached to S’, using his measuring instruments,
specifies the sume event by space-time coordinates x', y', 2’, and ¢'. The
coordinates x, y, z will give the position of P relative to the origin O as
measured by observer S, and t will be the time of occurrence of P that
observer S records with his clocks. The coordinates x’, y', and 2’ likewise
refer the position of P to the origin O’ and the time of P, ¢, to the clocks
of inertial observer §'.

We now ask what the relationship is between the measurements x, vy, z,
¢t and ', ¥/, Z/, t. The two inertial observers use meter sticks, which
have been compared and calibrated against one another, and clocks,
which have been synchronized and calibrated against one another. The
classical procedure, which we look at more critically later, is to assume
thereby that length intervals and time intervals are absolute, that is,
that they are the same for all inertial observers of the same events. For
example, if meter sticks are of the same length when compared at rest
with respect to one another, it is implicitly assumed that they are of the
same length when compared in relative motion to one another. Similarly,
if clocks are calibrated and synchronized when at rest, it is assumed that
their readings and rates will agree thereafter, even if they are put in
relative motion with respect to one another. These are examples of the
“common sense” assumptions of classical theory.

We can show these results explicitly, as follows. For simplicity, let
us say that the clocks of each observer read zero at the instant that the
origins O and O’ of the frames S and §’, which are in relative motion,
coincide. Then the Galilean coordinate transformations, which relate

the measurements x, vy, z, t to x’, y', ', t, are

X =x — vt
Y =y (1-1a)
7 =z

These equations agree with our classical intuition, the basis of which is
easily seen from Fig, 1-1. It is assumed that time can be defined independ-
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ently of any particular frame of reference. This is an implicit assumption
of classical physics, which is expressed in the transformation equations
by the absence of a transformation for t. We can make this assumption
of the universal nature of time explicit by adding to the Galilean transfor-
mations the equation

U =t (1-1b)

It follows at once from Eqs. 1-1a and 1-1b that the time interval between
occurrence of two given events, say P and Q, is the same for each ob-
server, that is

tp’ - tQ’ =1p — 1y, (1-2a)

and that the distance, or space interval, between two points, say 4 and B,
measured at a given instant, is the same for each observer, that is

xB' — xA' = XB — X4. (1-2b)

This result (Eq. 1-2b) is worth a more careful look. Let 4 and B be the
end points of a rod, for example, which is at rest in the S-frame. Then, the
primed observer, for whom the rod is moving with velocity —v, will measure
the end-point locations as x5’ and x4, whereas the unprimed observer locates
them at xp and x4. Using the Galilean transformations, however, we find that
xg = xg — vig and x4’ = x4 — vty, s0 that xg' — x4’ = xg — x4 — v(tg — t4).
Since the two end points, 4 and B, are measured at the same instant,
ty = tgand we obtain xg' — x4’ = xg — x4, as found above.

Or, we can imagine the rod to be at rest in the primed frame, and moving
therefore with velocity v with respect to the unprimed observer. Then the
Galilean transformations, which can be written equivalently as

x=x 4+ vt

Y=< (1-3)
zZ2 =2

t=1r,

give us xg = xg’ + vtg’ and x4 = x4 + vt4’ and, with ¢4 = tg, we once
again obtain xg — x4 = x5" — x4".

Notice carefully that two measurements (the end points x4’, xp" or x4, xp)
are made for each observer and that we assumed they were made at the same
time (t4 = tp, or t4’ = tg’). The assumption that the measurements are made
at the same time—that is, simultaneously—is a crucial part of our definition
of the length of the moving rod. Surely we should not measure the locations
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of the end points at different times to get the length of the moving rod; it
would be like measuring the location of the tail of a swimming fish at one
instant and of its head at another instant in order to determine its length
(see Fig. 1-2).

The time-interval and space-interval measurements made above are
absolutes according to the Galilean transformation; that is, they are the
same for all inertial observers, the relative veloeity v of the frames being
arbitrary and not entering into the results. When we add to this result the
assumption of classical physics that the mass of a body is a constant,
independent of its motion with respeet to an observer, then we can con-
clude that classical mechanics and the Galilean transformations imply
that length, mass, and time—the three basic quantities in meehanies—
are all independent of the relative motion of the measurer (or observer).

|
|
i
\ Y

5 6 5 5 I ) . B
x4 (t) xu()
(a)
|
—Dv
\9
Lo
| |
| |
.‘|YJI’EI|[iI|.|If|}‘_|}J
2, (0) xy(t)
(b)

Fig 1-2. To measure the length of a swimming
fish one must mark the positions of its head and
tail simultaneously (a), rather than at arbitrary
times (b)
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1.3 Newtonian Relativity

How do the measurements of different inertial observers compare
with regard to velocities and accelerations of objects? The position of a
particle in motion is a function of time, so that we can express particle
velocity and acceleration in terms of time derivatives of position. We
need only carry out successive time differentiations of the Galilean trans-
formations. The velocity transformation follows at once. Starting from

xX = x — vt

differentiation with respect to ¢ gives

de _ dx _
dt dt

But, because ¢ = ¢, the operation d/dt is identical to the operation d/dt’,
so that

dx’ _ dx’

de de’
Therefore, dx’ = dx _ .

dr dt
Similarly, di — ﬁ

dr dt
and ds' _ dz

dr dt

However, dx’'/dt = u,’, the x-component of the velocity measured in §',
and dx/dt = u,, the x-component of the velocity measured in S, and so
on, so that we have simply the classical velocity addition theorem

’

u = u; — v
u = u, (1)
u, = u,.

Clearly, in the more general case in which v, the relative velocity of
the frames, has components along all three axes, we would obtain the
more general (vector) result

!

u=u-—v. (1-5)

The student has already encountered many examples of this. For exam-
ple, the velocity of an airplane with respect to the air (u’) equals the
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velocity of the plane with respect to the ground (u) minus the velocity of

the air with respect to the ground (v).

® Example 1. A passenger walks forward along the aisle of a train at a speed
of 2.2 mi/hr as the train moves along a straight track at a constant spced of
57.5 mi/hr with respect to the ground. What is the passenger’s speed with
respect to the ground?

Let us choose the train to be the primed frame so that u,” = 2.2 mi/hr. The
primed frame moves forward with respect to the ground (unprimed frame) at
aspeed v = 57.5 mi/hr. Hence, the passenger’s speed with respect to ground is

ur = u; + v = 2.2 mi/hr 4+ 57.5 mi/hr = 59.7 mi/hr.

# Example 2. Two electrons are ejected in opposite directions from radioactive
atoms in a sample of radioactive material at rest in the laboratory. Each elec-
tron has a speed 0.67c as measured by a laboratory observer. What is the speed
of one electron as measured from the other, according to the classical velocity
addition theorem?

Here, we may regard one electron as the S frame, the laboratory as the S’
frame, and the other electron as the object whose speed in the S-frame is
sought (see Fig. 1-3). In the §’-frame, the other electron’s speed is 0.67¢, mov-

s
R o
ey €2
(a)
S s v
4—{ >
/ (One electron) (Laboratory)

u
€1 /92

(Other electron)
(b)

Fig 1-3. (a) In the laboratory frame, the electrons are observed to
move in opposite directions at the same speed. (b) In the rest frame,
S. of one electron, the laboratory moves at a velocity v. In the
laboratory frame, §', the second electron has a velocity denoted
by u’ What is the velocity of this second electron as seen by
the first?
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ing in the positive x"-direction say, and the speed of the S-frame (one electron)
is 0.67¢c, moving in the negative x’-direction. Thus, u,” = +0.67c and v =
+0.67¢, so that the other electron’s speed with respect to the S-frame is

u, =u; + v= +0.67c +0.67c = +1.34¢,

according to the classical velocity addition theorem. ¢

To obtain the aeceleration transformation we merely differentiate the
velocity relations (Eq. 1-2). Proceeding as before, we obtain

%(uz’) == —dd—t(uz —v),

or du;, _ du, bei i
P v being a constant,
duy’ _ duy
dt’ dt
du,’ du

d =%
an dr dt

That is, a," = a;, ay’ = ay, and a,” = a,. Hence, a’ = a. The measured
components of acceleration of a particle are unaffected by the uniform
relative velocity of the reference frames. The same result follows directly
from two successive differentiations of Eqs. 1-1 and applies generally
when v has an arbitrary direction, as long as v = constant.

We have seen that different velocities are assigned to a particle by
different observers when the observers are in relative motion. These
velocities always differ by the relative velocity of the two observers,
which in the case of inertial observers is a constant velocity. It follows
then that when the particle velocity changes, the change will be the
same for both observers. Thus, they each measure the same accelera-
tion for the particle. The acceleration of a particle is the same in all
reference frames which move relative to one another with constant ve-

locity; that is
a = a. (1-6)

In classical physics the mass is also unaffected by the motion of the
reference frame. Hence, the product ma will be the same for all inertial
observers. If F = ma is taken as the definition of force, then obviously
each observer obtains the same measure for each force. If F = ma,
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then F' = ma’ and F = F'. Newton’s laws of motion and the equations
of motion of a particle would be exactly the same in all inertial systems.
Since, in mechanics, the conservation principles—such as those for
energy, linear momentum, and angular momentum—all can be shown
to be consequences of Newton’s laws, it follows that the laws of mechan-
ics are the same in all inertial frames. Let us make sure that we under-
stand just what this paragraph says, and does not say, before we draw
some important conclusions from it.

First, concerning the invariance of Newton’s laws (that is, the state-
ment that they are the same for all inertial observers), we should recall
that a complete statement of the laws includes the assertions (1) that
particles interact in pairs (third law) and (2) that the action-reaction
forces are directed along the straight line connecting the interacting
particles. For many forces that we deal with, it is also true that their
magnitude is a function only of the separation of the particles (see Exam-
ple 3). Thus, these laws apply to such phenomena as gravitation, Van
der Waals’ forces, and electrostatics. Furthermore, by considering a col-
lection of interacting mass points, we can include the mechanics of rigid
bodies, of elastic bodies, and hydrodynamics. Notice, however, that
electrodynamics is not included because the interaction between moving
electric charges (that is, between charges and magnetic fields) involves
forces whose directions are not along the line connecting the charges;
notice too, that these forces depend not only on the positions of the
charges but also on their velocities. We shall return later (Chapter Four)
to the electrodynamic situation.

Second, although different inertial observers will record different
velocities for the same particle, and hence different momenta and kinetic
energies, they will agree that momentum is conserved in a collision or
not conserved, that mechanical energy is conserved or not conserved,
and so forth. The tennis ball on the court of a moving ocean liner will
have a different velocity to a passenger than it has for an observer on
shore, and the billiard balls on the table in a home will have different
velocities to the player than they have for an observer on a passing
train. But, whatever the values of the particle’s or system’s momentum
or mechanical energy may be, when one observer finds that they do not
change in an interaction, the other observer will find the same thing.
Although the numbers assigned to such things as velocity, momentum,
and kinetic energy may be different for different inertial observers, the
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laws of mechanics (e.g., Newton’s laws and the conservation principles)
will be the same in all inertial systems (see Problems 2 to 6).

# Example 3. A particle of mass m; = 3 kg, moving at a velocity of u; =
+4 m/sec along the x-axis of frame S, approaches a second particle of mass
mg = 1 kg, moving at a velocity us = —3 m/sec along this axis. After a

head-on collision, it is found that mz has a velocity Us = +3 m/sec along
the x-axis.

(a) Calculate the expected velocity U; of m;, after the collision.
We use the law of conservation of momentum.
Before the collision the momentum of the system of two particles is

P = myu; + maus = (3 kg)(+4 m/sec) + 1 kg (—3 m/sec)
= +9 kg-m/sec.

After the collision the momentum of the system,

P = m1U1 + szz,

is also +9 kg-m/sec, so that

+9 kgm/sec = 3 kg)(Uy) + 1 kg (4+3 m/sec)

or Ui = +2 m/sec along the x-axis.

(b) Discuss the collision as seen by observer S’ who has a velocity v of
+ 2 m/see relative to S along the x-axis.

The four velocities measured by 8’ can be calculated from the Galilean
velocity transformation equation (Eq. 1-5), " = u — v, from which we get

u’ = u; — v= +4 m/sec — 2 m/sec = 2 m/sec,
uy = us — v= —3 m/sec — 2 m/sec = —5 m/sec,
U'=U; —v= 42 m/sec — 2 m/sec = 0,

U = Us —v= 43 m/sec — 2 m/sec = | m/sec.
The system momentum in § is
P = mqu;" + mauy’ = (3 kg)(2 m/sec) + (1 kg)(—5 m/sec)
= 41 kg-m/sec
before the collision, and
P = mUy + mUy = 3 kg)(0) + (1 kg)(1 m/sec)
= +1 kg-m/sec
after the collision.

Hence, although the velocities and momenta have different numerical

values in the two frames, S and §’, when momentum is conserved in S it is
also conserved in S'. ¢
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An important consequence of the above discussion is that no mechani-
cal experiments carried out entirely in one inertial frame can tell the
observer what the motion of that frame is with respect to any other iner-
tial frame. The billiard player in a closed box-car of a train moving
uniformly along a straight track cannot tell from the behavior of the
balls what the motion of the train is with respect to ground. The tennis
player in an enclosed court on an ocean liner moving with uniform
velocity (in a calm sea) cannot tell from his game what the motion of
the boat is with respect to the water. No matter what the relative motion
may be (perhaps none), so long as it is constant, the results will be iden-
tical. Of course, we can tell what the relative velocity of two frames may
be by comparing measurements between frames—we can look out the
window of a train or compare the data different observers take on the
very same event—but then we have not deduced the relative velocity
from observations confined to a single frame.

Furthermore, there is no way at all of determining the absolute ve-
locity of an inertial reference frame from our mechanical experiments.
No inertial frame is preferred over any other, for the laws of mechanics
are the same in all. Hence, there is no physically definable absolute rest
frame. We say that all inertial frames are equivalent as far as mechanics
is concerned. The person riding the train cannot tell absolutely whether
he alone is moving, or the earth alone is moving past him, or if some
combination of motions is involved. Indeed, would you say that you on
earth are at rest, that you are moving 30 km/sec (the speed of the earth
in its orbit about the sun) or that your speed is much greater still (for
instance, the sun’s speed in its orbit about the galactic center)? Actually,
no mechanical experiment can be performed which will detect an abso-
lute velocity through empty space. This result, that we can only speak
of the relative velocity of one frame with respect to another, and not
of an absolute velocity of a frame, is sometimes called Newtonian
relativity.

# Example 4. Consider the forces that two particles exert on each other to
lie along their connecting straight line, the magnitude of these equal and
opposite forces being a function only of the separation distance of the parti-
cles. Under these conditions, forces can always be represented by the negative
space derivatives of the potential energy. Show that the equation of motion
of such a particle remains unchanged under a Galilean transformation.
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Let the distance between the two particles be ry2 in the S frame, and ry’
in the §’ frame. Then the potential energy U of the system in § will be a func-
tion of ry5, which we write as U(ri2). Hence, the components of force are
given by
LU, _ U

—_ and F, = ot

F,= = = ——=
’ ox v dy Oz

The equations of motion in frame S for particle 1, say, of mass my will there-
fore be

dix _ U
Yde T T Tom
d2y1 OU
= —— 1-7
m—s oy (1-7a)
& __oU
1 dr? - azl

Now the mass of a body is assumed to be independent of the inertial refer-
ence frame in which it is measured in classical physics. Also, we have seen
that under a Galilean transformation the S’ observer obtains the same accel-
eration for a body as the S observer does. Hence (using x’, ¥, 2’, and ¢’ for the
primed observer’s variables to describe the motion of the same particle that
the unprimed observer described with x, y, z, and ¢), we have already found
that m;" = m,, and that

d2x1 d2x1' d2y1 . d2y1’

d?z, d2z¢
= . = , and = .
di? di'z 7 di? dr'? di? dr'?
Furthermore, we have seen that both observers measure the same separa-
tion of the two particles. That is, x2" — x;" = 2 — x1, y2' — y1' = y2 — y1,
and zo' — z;' = z2 — z; so that
ri2 = Vi’ — 2% + (2 — v1)? + (22 — #)?
= V2 — x1)2 + (y2 — y1)? + (32 — z1)2 = ry2.

The potential energy of the system is represented by U(ry2), which is some
function of the separation of the particles, such as k/r;,2 for example. Because
ri2 = ri2’, U(ry2) simply becomes (transforms to) the same function of ri2".
Hence, U(ri2) = Ul(r12'), where U(ri2’) expresses the potential energy in the
primed system’s variables.

Remember that we are trying to prove that the equations of motion of parti-
cle 1 in one inertial frame S will have the identical form as the equations of
motion of the same particle in another inertial system &', if the relation be-
tween the different observer’s variables is given by the Galilean transforma-
tion. That is, we are trying to show that each inertial observer uses the same
laws of mechanics. So far we have found that the left side of Eqs. 1-7a, when
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transformed from S to §’, has the identical form and that U(ry2) and U(ri2’)
are identical.
It remains now to show that
oU oU oU ol oU oU
_—= - —— = — . and —_—= -
axl Dx;’ ay1 Dyl’ azl azl/

and we shall have completed our proof. Let us do the x differentiation only
(the y and z differentiations proceed identically). We have

_a—U - dU orye _ dU x5 — x
ox1 drig dxy  drip  n2
and
_ oU _ dU arlz’ _ dU xz’ —_ xl'
ox)’  drip’ ox  dr’ m

But rj = r12’; x2 — x;7 = x2’ — x{; and U(ryz) = U(r12’) so that

LU _ _ U
0x1 axl"

Hence, by applying the Galilean transformation equations to the equations
of motion of particle 1 in S, we obtain the identical equations of motion for
this same particle 1 in §’, namely,

m dlel _ oU

Ydrz T T oxy

2y’ oU

n _ 2 1-7b
mi— P (1-7b)
&= _ U

Yarz 021

in which the variables xi, y1, 21, and ¢ of S in Egs. 1-7a simply become the
corresponding variables x1’, y1’, 21, and ¢’ of §’ in Eqs. 1-7b. Obviously, we
would obtain similar results for particle 2, and indeed the procedure is easily
generalized to a large collection of mass particles.

This example illustrates explicitly the statement that Newton’s laws of
mechanics and the equations of motion are the same in all inertial frames
when the frames are related by the Galilean transformation equations. Under
a Galilean transformation F = ma becomes F' = ma’. ¢

Transformation laws, in general, will change many quantities but will
leave some others unchanged. These unchanged quantities are called
invariants of the transformation. In the Galilean transformation laws for
the relation between observations made in different inertial frames of
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reference, for example, acceleration is an invariant and—more impor-
tant—so are Newton’s laws of motion. A statement of what the invariant
quantities are is called a relativity principle; it says that for such quanti-
ties the reference frames are equivalent to one another, no one having
an absolute or privileged status relative to the others. Newton expressed
his relativity principle as follows: “The motions of bodies included in
a given space are the same amongst themselves, whether that space is
at rest or moves uniformly forward in a straight line.”

1.4 Electromagnetism and Newtonian Relativity

Let us now consider the situation from the electrodynamic point
of view. That is, we inquire now whether the laws of physics other than
those of mechanics (such as the laws of electromagnetism) are invariant
under a Galilean transformation. If so, then the (Newtonian) relativity
principle would hold not only for mechanics but for all of physics. That
is, no inertial frame would be preferred over any other and no type of
experiment in physics, not merely mechanical ones, carried out in a
single frame would enable us to determine the velocity of our frame
relative to any other frame. There would then be no preferred, or abso-
lute, reference frame.

To see at once that the electromagnetic situation is different from the
mechanical one, as far as the Galilean transformations are concerned,
consider a pulse of light (i.e., an electromagnetic pulse) traveling to the
right with respect to the medium through which it is propagated at a
speed c. The “medium” of light propagation was given the name “ether,”
historically, for when the mechanical view of physics dominated physi-
cists’ thinking (late 19th century and early 20th century) it was not
really accepted that an electromagnetic disturbance could be propagated
in empty space. For simplicity, we may regard the “ether” frame, S,
as an inertial one in which an observer measures the speed of light to be
exactly ¢ = (1/ \/eo_p,o) = 2.997925 X 108 m/sec. In a frame S’ moving
at a constant speed v with respect to this ether frame, an observer would
measure a different speed for the light pulse, ranging from ¢ + v to
¢ — v depending on the direction of relative motion, according to the
Galilean velocity transformation.

Hence, the speed of light is certainly not invariant under a Galilean
transformation. If these transformations really do apply to optical or
electromagnetic phenomena, then there is one inertial system, and only
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one, in which the measured speed of light is exactly ¢; that is, there is
a unique inertial system in which the so-called ether is at rest. We would
then have a physical way of identifying an absolute (or rest) frame and
of determining by optical experiments carried out in some other frame
what the relative velocity of that frame is with respect to the abso-
lute one.

A more formal way of saying this is as follows. Maxwell’s equations
of electromagnetism, from which we deduce the electromagnetic wave
equation for example, contain the constant ¢ = 1/\/@ which is iden-
tified as the velocity of propagation of a plane wave in vacuum. But
such a velocity cannot be the same for observers in different inertial
frames, according to the Galilean transformations, so that electromag-
netic effects will probably not be the same for different inertial observers.
In fact, Maxwell’s equations are not preserved in form by the Galilean
transformations, although Newton’s laws are. In going from frame S
to frame §’, the form of the wave equation, for example, changes if the
substitutions of Eqs. 1-1 are made (see Problem 8). But if we accept
both the Galilean transformations and Maxwell’s equations as basically
correct, then it automatically follows that there exists a unique privi-
leged frame of reference (the “ether” frame) in which Maxwell’s equa-
tions are valid and in which light is propagated at a speed ¢ = l/m

The situation then seems to be as follows.* The fact that the Galilean
relativity principle does apply to the Newtonian laws of mechanics but
not to Maxwell’s laws of electromagnetism requires us to choose the
correct consequences from amongst the following possibilities.

1. A relativity principle exists for mechanics, but not for electro-
dynamics; in electrodynamics there is a preferred inertial frame; that is,
the ether frame. Should this alternative be correct the Galilean transfor-
mations would apply and we would be able to locate the ether frame
experimentally.

2. A relativity principle exists both for mechanics and for electro-
dynamics, but the laws of electrodynamics as given by Maxwell are not
correct. If this alternative were correct, we ought to be able to perform
experiments that show deviations from Maxwell’s electrodynamics and
reformulate the electromagnetic laws. The Galilean transformations
would apply here also.

*The treatment here follows closely that of Ref 2
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3. A relativity principle exists both for mechanics and for electro-
dynamics, but the laws of mechanics as given by Newton are not correct.
If this alternative is the correct one, we should be able to perform experi-
ments which show deviations from Newtonian mechanics and reformu-
late the mechanical laws. In that event, the correct transformation laws
would not be the Galilean ones (for they are inconsistent with the invari-
ance of Maxwell’s equations) but some other ones which are consistent
with classical electromagnetism and the new mechanics.

We have already indicated (Section 1-1) that Newtonian mechanics
breaks down at high speeds so that the student will not be surprised to
learn that alternative 3, leading to Einsteinian relativity, is the correct
one. In the following sections, we shall look at the experimental bases
for rejecting alternatives 1 and 2, as a fruitful prelude to finding the new
relativity principle and transformation laws of alternative 3.

1.5 Attempts to Locate the Absolute Frame—The Michelson-Morley

Experiment

The obvious experiment* would be one in which we can measure
the speed of light in a variety of inertial systems, noting whether the
measured speed is different in different systems, and if so, noting espe-
cially whether there is evidence for a single unique system—the “ether”
frame—in which the speed of light is ¢, the value predicted from electro-
magnetic theory. A. A. Michelson in 1881 and Michelson and E. W.
Morley in 1887 carried out such an experiment [4]. To understand the
setting better, let us look a bit further into the “ether” concept.

When we say that the speed of sound in dry air at 0°C is 331.3
m/sec, we have in mind an observer, and a corresponding reference
system, fixed in the air mass through which the sound wave is moving,
The speed of sound for observers moving with respect to this air mass
is correctly given by the usual Galilean velocity transformation Eq. 1-1.
However, when we say that the speed of light in a vacuum is 2.997925 X
108 m/sec (= 1/ M) it is not at all clear what reference system is im-
plied. A reference system fixed in the medium of propagation of light
presents difficulties because, in contrast to sound, no medium seems to
exist. However, it seemed inconceivable to 19th century physicists that

*Of the two famous experiments, the Trouton-Noble and the Michelson-Morley, we discuss only the
latter. See Ref. 3 for a discussion of the Trouton-Noble experiment.
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light and other electromagnetic waves, in contrast to all other kinds of
waves, could be propagated without a medium. It seemed to be a logical
step to postulate such a medium, called the ether, even though it was
necessary to assume unusual properties for it, such as zero density and
perfect transparency, to account for its undetectability. The ether was
assumed to fill all space and to be the medium with respect to which the
speed c applies. It followed then that an observer moving through the
ether with velocity v would measure a velocity ¢’ for a light beam, where
¢ = ¢ + v. It was this result that the Michelson-Morley experiment was
designed to test.

If an ether exists, the spinning and rotating earth should be moving
through it. An observer on earth would sense an “ether wind,” whose
velocity is v relative to the earth. If we were to assume that v is equal to
the earth’s orbital speed about the sun, about 30 km/sec, then v/c =
1074, Optical experiments, which were accurate to the first order in v/c,
were not able to detect the absolute motion of the earth through the
ether, but Fresnel (and later Lorentz) showed how this result could be
interpreted in terms of an ether theory. This interpretation had difficul-
ties, however, so that the issue was not really resolved satisfactorily with
first-order experiments. It was generally agreed that an unambiguous test
of the ether hypothesis would require an experiment that measured the
“second-order” effect, that is, one that measured (v/c)2. The first-order
effect is not large to begin with (v/c = 10%, an effect of one part
in 10,000) but the second-order effect is really very small (v2/¢2 = 1078,
an effect of one part in 100 million).

It was A. A. Michelson (1852-1931) who invented the optical inter-
ferometer whose remarkable sensitivity made such an experiment
possible. Michelson first performed the experiment in 1881, and then—
in 1887, in collaboration with E. W. Morley—carried out the more pre-
cise version of the investigation that was destined to lay the experimental
foundations of relativity theory. For his invention of the interferometer
and his many optical experiments, Michelson was awarded the Nobel
Prize in Physics in 1907, the first American to be so honored.

Let us now describe the Michelson-Morley experiment. The Michelson
interferometer (Fig. 1-4) is fixed on the earth. If we imagine the “ether”
to be fixed with respect to the sun, then the earth (and interferometer)
moves through the ether at a speed of 30 km/sec, in different directions
in different seasons (Fig. 1-5). For the moment, neglect the earth’s spin-
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Fig 1-4. A simplified version of the Michelson interferometer showing how

the beam from the source S is split into two beams by the partially silvered

mirror M The beams are reflected by mirrors 1 and 2, returning to the par-

tially silvered mirror The beams are then transmitted to the telescope T where

they interfere, giving rise to a fringe pattern. In this figure, v is the velocity of

the ether with respect to the interferometer

Fig. 1-5. The earth E moves at an or-
bital speed of 30 km/sec along its
nearly circular orbit about the sun S,
reversing the direction of its velocity
every six months.

ning motion. The beam of light (plane
waves, or parallel rays) from the
laboratory source S (fixed with re-
spect to the instrument) is split by the
partially silvered mirror M into two
coherent beams, beam 1 being trans-
mitted through M and beam 2 being
reflected off of M. Beam 1 is reflected
back to M by mirror M; and beam 2
by mirror Mz. Then the returning
beam 1 is partially reflected and the
returning beam 2 is partially trans-
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Fig 1-6. A typical fringe system seen through
the telescope T when M; and M, are not quitc
at right angles

mitted by M back to a telescope at T where they interfere. The inter-
ference is constructive or destructive depending on the phase differ-
ence of the beams. The partially silvered mirror surface M is inclined
at45° to the beam directions. If M; and M; are very nearly (but not quite)
at right angles, we shall observe a fringe system in the telescope (Fig. 1-6)
consisting of nearly parallel lines, much as we get from a thin wedge of
air between two glass plates.

Let us compute the phase difference between the beams 1 and 2. This
difference can arise from two causes, the different path lengths traveled,
I, and I3, and the different speeds of travel with respect to the instrument
because of the “ether wind” ». The second cause, for the moment, is the
crucial one. The different speeds are much like the different cross-stream
and up-and-down-stream speeds with respect to shore of a swimmer in
amoving stream. The time for beam 1 to travel from M to M, and back is

ll ll ( 2¢ ) 211( 1 )
L = + =hl——)="A——
c—v cH+ v c? — 1?2 c \1 — v2/c?

for the light, whose speed is ¢ in the ether, has an “upstream” speed of

¢ — v with respect to the apparatus and a “downstream” speed of ¢ + v.
The path of beam 2, traveling from M to Mz and back, is a cross-stream
path through the ether, as shown in Fig. 1-7, enabling the beam to return
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Fig. 1-7. The crossstream path of beam 2 The mirrors move
through the “ether” at a speed v, the light moving through the

“ether” at speed c. Reflection from the moving mirror automatic-
ally gives the cross-stream path In this figure, v is the velocity of
the interferometer with respect to the “ether.”

to the (advancing) mirror M. The transit time is given by

271/2
o+ (5) ] =

o 21
2 — 1 ¢ V1 — v2/c2‘

The calculation of t2 is made in the ether frame, that of ¢; in the frame

or

of the apparatus. Because time is an absolute in classical physics, this is
perfectly acceptable classically. Note that both effects are second-order
ones (v2/c¢2 =~ 1078) and are in the same direction (they increase the
transit time over the case v = 0). The difference in transit times is

At = o —) = E[ lz h ]

cb\/1 —v2/c? B 1 — v2/c?

Suppose that the instrument is rotated through 90°, thereby making I
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the cross-stream length and I the downstream length. If the correspond-
ing times are now designated by primes, the same analysis as above gives
the transit-time difference as

’ ’ ’ 2[ 12 ll ]
At =t —ty == - .
ekl — v/ /1 — v2/c?

Hence, the rotation changes the differences by
At’—Az—_-g[ b+hL b4k ]
cll — v2/¢? V1 — v2/c?

Using the binomial expansion and dropping terms higher than the
second-order, we find

9 2 2 2
Al’——Al%—(ll+l2)[1+v——1——l£—]:(ll+lz)vf
c cz c?

2 ¢ c

Therefore, the rotation should cause a shift in the fringe pattern, since
it changes the phase relationship between beams 1 and 2.

If the optical path difference between the beams changes by one wave-
length, for example, there will be a shift of one fringe across the cross-
hairs of the viewing telescope. Let AN represent the number of fringes
moving past the crosshairs as the pattern shifts. Then, if light of wave-
length A is used, so that the period of one vibration is T = 1/¥ = A/e,

_Atl—At~ll+lzv_2_ll+lzv_2

AN = = .
T cT ¢2 A ¢

(1-8)

Michelson and Morley were able to obtain an optical path length,
li + ls, of about 22 m. In their experiment the arms were of (nearly)
equal length, that is, Iy = I = I, so that AN = (21/A)(v%/c?). If we
choose A = 5.5 X 1077 m and v/c = 1074, we obtain, from Eq. 1-8,

22 m

=——=—— 10"8 = 0.4,
55X 107" m

or a shift of four-tenths a fringe!

Michelson and Morley mounted the interferometer on a massive stone
slab for stability and floated the apparatus in mercury so that it could
be rotated smoothly about a central pin. In order to make the light path
as long as possible, mirrors were arranged on the slab to reflect the beams
back and forth through eight round trips. The fringes were observed
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to bring it to the proper scale
Noon the fringe shift predicted by the
ether hypothesis. (From “On the
Relative Motion of the Earth and the
Luminiferous Aether” by Albert A,
Night Michelson and Edward W. Morley,
The London, Edinburgh, and Dublin
Philosophical Magasine and Jour-
nal of Science, December 1887.)

under a continuous rotation of the apparatus and a shift as small as 1/100
of a fringe definitely could have been detected (see Fig. 1-8). Observa-
tions were made day and night (as the earth spins about its axis) and
during all seasons of the year (as the earth rotates about the sun), but
the expected fringe shift was not observed. Indeed, the experimental
conclusion was that there was no fringe shift at all.
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TABLE 1-1 TRIALS OF THE MICHELSON-MORLEY EXPERIMENT

OBSERVER YFAR PLACE ! METFRS  FRINGF SHIFI  UPPER LIMIT
PREDI( TED OF OBSERVED
BY ETHER FRINGE SHIFT
THEORY
Michelson 1881 Potsdam 1.2 0.04 002
Michelson and
Morley 1887 Cleveland 11.0 0.40 0.01
Morley and
Miller 1902-1904  Cleveland 32.2 1.13 0.015
Miller 1921 Mt Wilson 32.0 1.12 0.08
Miller 1923-1924  Cleveland 32.0 1.12 0.030
Miller
(sunlight) 1924 Cleveland 320 1.12 0.014
Tomaschek
(starlight) 1924 Heidelberg 8.6 0.3 0.02
Miller 1925 1926 Mt. Wilson 32.0 1.12 0.088
Kennedy 1926 Pasadena and
Mt. Wilson 2.0 0.07 0.002
Hlingworth 1927 Pasadena 20 0.07 0.0004
Piccard and
Stahel 1927 Mt. Rigi 2.8 0.13 0.006
Michelson
et al 1929 Mt. Wilson 25.9 0.9 0010
Joos 1930 Jena 21.0 0.75 0.002

Source From Shankland. McCuskey, Leone, and Kuerti. Rev Mod Phys. 27, 167 (1955).

This null result (AN = 0) was such a blow to the ether hypothesis
that the experiment was repeated by many workers over a 50-year period.
The null result was amply confirmed (see Table 1-1) and provided a
great stimulus to theoretical and experimental investigation. In 1958
J. P. Cedarholm, C. H. Townes et al [5] carried out an “ether-wind”
experiment using microwaves in which they showed that if there is an
ether and the carth is moving through it, the earth’s speed with respect
to the ether would have to be less than 1/1000 of the earth’s orbital
speed. This is an improvement of 50 in precision over the best experi-
ment of the Michelson-Morley type. The null result is well established.

The student should note that the Michelson-Morley experiment
depends essentially on the 90° rotation of the interferometer, that is,
on interchanging the roles of I; and I, as the apparatus moves with a
speed v through an “ether.” In predicting an expected fringe shift, we
took v to be the earth’s velocity with respect to an ether fixed with the
sun. However, the solar system itself might be in motion with respect
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to the hypothetical ether. Actually, the experimental results themselves
determine the earth’s speed with respect to an ether, if indeed there is
one, and these results give v = 0. Now, if at some time the velocity were
zero in such an ether, no fringe shift would be expected, of course. But
the velocity cannot always be zero, since the velocity of the apparatus
is changing from day to night (as the earth spins) and from season to
season (as the earth rotates about the sun). Therefore, the experiment
does not depend solely on an “absolute” velocity of the earth through
an ether, but also depends on the changing velocity of the earth with
respect to the “ether.” Such a changing motion through the “ether”
would be easily detected and measured by the precision experiments,
if there were an ether frame. The null result seems to rule out an ether
(absolute) frame.

One way to interpret the null result of the Michelson-Morley experi-
ment is to conclude simply that the measured speed of light is the same,
that is, ¢, for all directions in every inertial system. For this fact would

lead to AN = 0 in the (equal arm) experiment, the “downstream” and

“cross-stream” speeds being c, rather than |e¢ 4 v|, in any frame. How-
ever, such a conclusion, being incompatible with the Galilean (velocity)
transformations, seemed to be too drastic philosophically at the time.
If the measured speed of light did not depend on the motion of the
observer, all inertial systems would be equivalent for a propagation of
light and there could be no experimental evidence to indicate the exist-
ence of a unique inertial system, that is, the ether. Therefore, to “save
the ether” and still explain the Michelson-Morley result, scientists sug-
gested alternative hypotheses. We explore these alternatives in succeed-

ing sections.

1.6 Autempts to Preserve the Concept of a Preferred Ether Frame—

The Lorentz-Fitzgerald Contraction Hypothesis

Fitzgerald (in 1892) proposed a hypothesis, which was elaborated
upon by Lorentz, to explain the Michelson-Morley null result and still
to retain the concept of a preferred ether frame. Their hypothesis was
that all bodies are contracted in the direction of motion relative to the
stationary ether by a factor \/1 — v2/c2. For convenience, let the ratio
v/c be represented by the symbol B, so that this factor may be written
as \/1 — B2. Now, if I° represents the length of a body at rest with
respect to the ether (its rest length) and [ its length when in motion with
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respect to the ether, then in the Michelson-Morley experiment

l] = llo\/l - ,82 and lz = lzo.

This last result follows from the fact that in the hypothesis it was assumed
that lengths at right angles to the motion are unaffected by the motion.
Then

and, on 90° rotation, (1-9)

2 1 ° o
AY = :ﬁ(ll — 1°).
Hence, no fringe shift should be expected on rotation of the interferom-
eter, for At — At = 0.

Lorentz was able to account for such a contraction in terms of his
electron theory of matter, but the theory was elaborate and somewhat
contrived and other results predicted from it could not be found experi-
mentally. As for the interferometer result of the contraction hypothesis,
it too can be demolished as a correct explanation. Recall that, in the
original experiment, the arms were of (nearly) equal length (; = I, = ).
Consider now an interferometer in which Iy 7= lb. In that case, even
including the Lorentz contraction effect, we should expect a fringe shift
when the velocity of the interferometer changes with respect to the ether
from v to v'. The predicted shift in fringes (to second-order terms; see
Problem 11) is

L° = b° (v2 v'2>
AN =~ < [ _ ). )
A c? c? (1-10)

Kennedy and Thorndike [6], using an interferometer with unequal
arms (the path difference was about 16 cm, as great as permitted by
coherence of the source), carried out the appropriate experiment.
Although the difference (v2 — v'2?)/c? should change as a result of the
earth’s spin (the biggest change occurring in twelve hours) and the earth’s
rotation (the biggest change occurring in six months), neither effect was
observed (i.e., AN = 0) in direct contradiction to the contraction

hypothesis.
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1.7 Attempts to Preserve the Concept of a Preferred Ether Frame—
The Ether-Drag Hypothesis
Another idea advanced to retain the notion of an ether was that
of “ether drag.” This hypothesis assumed that the ether frame was
attached to all bodies of finite mass, that is, dragged along with such
bodies. The assumption of such a “local” ether would automatically give
a null result in the Michelson-Morley experiment. Its attraction lay in
the fact that it did not require modification of classical mechanics or
electromagnetism. However, there were two well-established effects
which contradicted the ether-drag hypothesis: stellar aberration and the
Fizeau convection coefficient. Let us consider these effects now, since
we must explain them eventually by whatever theory we finally accept.
The aberration of light was first reported by Bradley [see Ref. 7] in
1727. He observed that (with respect to astronomical coordinates fixed
with respect to the earth) the stars appear to move in circles, the angular
diameter of these circular orbits being about 41 seconds of arc. This can
be understood as follows. Imagine that a star is directly overhead so that
a telescope would have to be pointed straight up to see it if the earth
were at rest in the ether. That is (see Fig. 1-9a), the rays of light coming
from the star would proceed straight down the telescope tube. Now,
imagine that the earth is moving to the right through the ether with a
speed v. In order for the rays to pass down the telescope tube without
hitting its sides—that is, in order to see the star—we would have to tilt
the telescope as shown in Fig. 1-9b. The light proceeds straight down
in the ether (as before) but, during the time At that the light travels the
vertical distance I = ¢ At from the objective lens to the eyepiece, the tele-
scope has moved a distance v At to the right. The eyepiece, at the time
the ray leaves the telescope, is on the same vertical line as the objective
lens was at the time the ray entered the telescope. From the point of view
of the telescope, the ray travels along the axis from objective lens to
cyepiece. The angle of tilt of the telescope, a, is given by

vAt _ v

tan a = = .
c At ¢

(1-11)

It was known that the earth goes around the sun at a speed of about
30 km/sec, so that with ¢ = 3 X 103 km/sec, we obtain an angle
a = 20.5 sec of arc. The earth’s motion is nearly circular so that the
direction of aberration reverses every six months, the telescope axis
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True Apparent
position position

(a) (]

(c)

Fig 1-9. (a) The star and telescope have no relative motion (i.e., both are at
rest in the ether), the star is directly overhead (b) The telescope now moves to
the right at speed v through the ether, it must be tilted at an angle o (greatly
exaggerated in the drawing) from the vertical 10 see the star, whose apparent
position now differs from its true position (“True” means with respect to the
sun, i e , with respect to an earth that has no motion relative to the sun ) (c) A
cone of abberation of angular diameter 2o is swept out by the telescope axis
during the year.
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tracing out a cone of aberration during the year (Fig. 1-9¢). The angular

diameter of the cone, or of the observed circular path of the star, would

then be 2a = 41 sec of arc, in excellent agreement with the observa-

tions. For stars not directly overhead, the analysis, although more

involved, is similar and identical in principle (see Problem 12).

The important thing we conclude from this agreement is that the
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ether is not dragged around with the earth. If it were, the ether would
be at rest with respect to the earth, the telescope would not have to be
tilted, and there would be no aberration at all. That is, the ether would
be moving (with the earth) to the right with speed v in Fig. 1-9¢, so there
would be no need to correct for the earth’s motion through the ether;
the light ray would be swept along with the ether just as a wind car-
ries a sound wave with it. Hence, if there is an ether, it is not dragged
along by the earth but, instead, the earth moves freely through it. There-
fore, we cannot explain the Michelson-Morley result by means of an
ether-drag hypothesis.

Another well-established effect that contradicts the ether-drag hypoth-
esis involves the propagation of electromagnetic waves in moving media.
J. A. Fresnel, in 1817, predicted that light would be partially dragged
along by a moving medium and derived an exact formula for the effect
on the basis of an ether hypothesis. The effect was confirmed experi-
mentally by Fizeau in 1851. The set-up of the Fizeau experiment is
shown diagrammatically in Fig. 1-10. Light from the source S falls on a
partially silvered mirror M which splits the beam into two parts. One
part is transmitted to mirror M; and proceeds in a counterclockwise
sense back to M, after reflections at M;, M, and M3. The other part is
reflected to M3 and proceeds in a clockwise sense back to M, after reflec-
tions at M3, Mz, My. At M, part of the returning first beam is transmitted
and part of the returning second beam is reflected to the telescope T.
Interference fringes, representing optical path differences of the beams,
will be seen in the telescope. Water flows through the tubes (which have
flat glass end sections) as shown, so that one light beam always travels
in the direction of flow and the other always travels opposite to the direc-
tion of flow. The flow of water can be reversed, of course, but outside
the tubes conditions remain the same for each beam.

Let the apparatus be our S-frame. In this laboratory frame the velocity
of light in still water is ¢/n and the velocity of the water is v,,. Does the
flow of water, the medium through which the light passes, affect the
velocity of light measured in the laboratory? According to Fresnel the
answer is yes. The velocity of light, v, in a body of refractive index, n,
moving with a velocity v, relative to the observer (i.e., to the frame of
reference S in which the free-space velocity of light would be ¢) is given
by Fresnel as
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Fig 1-10. Schematic view of the Fizeau Experiment

v = % + vw(l — -1-). (1-12)

The factor (1 — 1/n?) is called the Fresnel drag coefficient. The speed of
light is changed from the value ¢/n because of the motion of the medium
but, because the factor is less than unity, the change (increase or de-
crease) of speed is less than the speed v, of the medium—hence the
term “drag.” For yellow sodium light in water, for example, the speed
increase (or decrease) is 0.565 v,,. Notice that for n = 1 ("a moving
vacuum”) Eq. 1-12 reduces plausibly to v = ¢.

This result can be understood by regarding the light as being carried
along both by the refractive medium and by the ether that permeates it.
Then, with the ether at rest and the refractive medium moving through
the ether, the light will act to the rest observer as though only a part of
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the velocity of the medium were added to it. The result can be derived
directly from electromagnetic theory. There we use the electric displace-
ment vector D which is a sum (¢gE + P) of two terms. The first term
depends on the free-space electric field E and the second term is the
polarization P, which relates to the refractive medium. In computing
the velocity of electromagnetic waves in a moving refractive medium
compared to that in a stationary one, only that part of D which depends
on P contributes to the difference.

In Fizeau’s experiment, the water flowed through the tubes at a speed
of about 7 m/sec. Fringe shifts were observed from the zero flow speed
to flow speeds of 7 m/sec, and on reversing the direction of flow. Fizeau’s
measurements confirmed the Fresnel prediction. The experiment was
repeated by Michelson and Morley in 1886 and by P. Zeeman and others
after 1914 under conditions allowing much greater precision, again
confirming the Fresnel drag coefficient.

# Example 5. In Fizeau’s experiment, the approximate values of the parame-
ters were as follows: I = 1.5 m, n = 1.33,A = 53 X 100" m,and v,, = 7
m/sec. A shift of 0.23 fringe was observed from the case v,, = 0. Calculate the
drag coefficient and compare it with the predicted value.

Let d represent the drag coefficient. The time for beam 1 to traverse the
water is then

=2
17 ¢/n) = vwd

and for beam 2

b= — 2L
(c/n) + vod
Hence,
_ _ 4lv,,d _ Anv,d
A=t —p= (c/n)2 — v,2d2 —  ¢2

The period of vibration of the light is T = A/c so that

At 4ln2v,d
AN = — = T Twe

T Ac
and, with the values above, we obtain

_ AcAN

T 4in2y,

= 0.47.
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The Fresnel prediction (see Eq. 1-12) is

d=1—-L—044. ¢

n2

If the ether were dragged along with the water, the velocity of light in
the laboratory frame, using the Galilean ideas, would have been (¢/n) +
Uy in one tube and (¢/n) — v, in the other tube. Instead, the Fizeau
experiment, as we have seen, is interpreted most simply in terms of no
ether drag at all, either by the apparatus or the water moving through it,
and a partial drag due to the motion of the refractive medium. Indeed,
the aberration experiment, when done with a telescope filled with water
(see Question 15), leads to exactly the same result and interpretation.
Hence, the ether-drag hypothesis is contradicted by the facts.

There appears to be no acceptable experimental basis then for the idea
of an ether, that is, for a preferred frame of reference. This is true
whether we choose to regard the ether as stationary or as dragged along.
We must now face the alternative that a principle of relativity is valid in
electrodynamics as well as in mechanics. If this is so, then either electro-
dynamics must be modified, so that it is consistent with the classical
relativity principle, or else we need a new relativity principle that is
consistent with electrodynamics, in which case classical mechanics will
need to be modified.

1.8 Auempts to Modify Electrodynamics

Let us consider now the attempts to modify the laws of electro-
magnetism. A possible interpretation of the Michelson-Morley result (one
that contradicts the classical relativity principle) is that the velocity of
light has the same value in all inertial frames. If this is so, then the
velocity of light surely cannot depend on the velocity of the light source
relative to the observer. Hence, one modification of electromagnetism
that suggests itself, if we wish to avoid the principle of the invariance of
the velocity of light as the correct interpretation of the Michelson-Morley
results, is to assume that the velocity of a light wave is connected with
the motion of the source rather than with an ether. The various theories
that are based on this assumption are called emission theories. Common
to them all is the hypothesis that the velocity of light is ¢ relative to the
original source and that this velocity is independent of the state of mo-
tion of the medium transmitting the light. This would automatically
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explain the null result of the Michelson-Morley experiment. The theories
differ in their predictions as to what the velocity of light becomes on
reflection from a moving mirror.* Nevertheless, all emission theories are
contradicted directly by two types of experiment. The first is typified by
the de Sitter observations on double (or binary) stars (see Ref. 9 and
Problem 14), the second by a Michelson-Morley experiment using an
extraterrestrial light source.

Two stars that are close to one another and move in orbits about their
common center of mass are called double stars. Imagine the orbits to be
circles. Now assume that the velocity of the light by which we see them
through the empty space is equal to ¢ + v, where v is the component of
the velocity of the source relative to the observer, at the time the light
is emitted, along the line from the source to the observer. Then, the time
for light to reach the earth from the approaching star would be smaller
than that from the receding star. As a consequence, the circular orbits of
double stars should appear to be eccentric as seen from earth. But
measurements show no such eccentricities in the orbits of double stars
observed from earth.

The results are consistent with the assumption that the velocity of
the light is independent of the velocity of the source.** DeSitter’s con-
clusion was that, if the velocity of light is not equal to ¢ but is equal
instead to ¢ + kv, then k experimentally must be less than 2 X 1073,
More recent experiments [11], using fast-moving terrestrial sources,
confirm the conclusion that the velocity of electromagnetic radiation is
independent of the velocity of the source. In the most recent experiment
(1964), measurements are made of the speed of electromagnetic radiation
from the decay of rapidly moving 7° mesons produced in the CERN syn-
chrotron. The mesons had energies greater than 6 GeV (v, = 0.99975c¢)
and the speed of the y-radiation emitted from these fast-moving sources
was measured absolutely by timing over a known distance. The result
corresponded to a value of k equal to (—3 == 13) x 1075,

The Michelson-Morley experiment, using an extraterrestrial source,
has been performed by R. Tomaschek, who used starlight, and

*The original source theory assumes that the velocity remains ¢ relative to the source, the ballistic
theory assumes that the velocity becomes c¢ relative to the mirror, and the new source theory
assumes that the veloeity becomes ¢ relative to the mirror image of the ~ourie See Refs 8

**For an analysis and a discussion of alternate interpretations of the de Sitter experiment,

wee Ref 10
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D. C. Miller, who used sunlight [12]. If the source velocity (due to rota-
tional and translational motions relative to the interferometer) affects
the velocity of light, we should observe complicated fringe-pattern
changes. No such effects were observed in either of the experiments.

We saw earlier that an ether hypothesis is untenable. Now we are
forced by experiment to conclude further that the laws of electrodynam-
ics are correct and do not need modification. The speed of light (i.e.,
electromagnetic radiation) is the same in all inertial systems, independent
of the relative motion of source and observer. Hence, a relativity prineci-
ple, applicable both to mechanics and to electromagnetism, is operating.
Clearly, it cannot be the Galilean principle, since that required the speed
of light to depend on the relative motion of source and observer. We
conclude that the Galilean transformations must be replaced and, there-
fore, the basic laws of mechanics, which were consistent with those
transformations, need to be modified.

1.9 The Postulates of Special Relativity Theory

In 1905, before many of the experiments we have discussed were
actually performed (see Question 18), Albert Einstein (1879-1955),
apparently unaware of several earlier important papers on the subject,
provided a solution to the dilemma facing physics. In his paper “On the
Electrodynamics of Moving Bodies™ [13], Einstein wrote “. . . no proper-
ties of observed facts correspond to a concept of absolute rest; . . . for all
coordinate systems for which the mechanical equations hold, the equiva-
lent electrodynamical and optical equations hold also . . . . In the follow-
ing we make these assumptions (which we shall subsequently call the
Principle of Relativity) and introduce the further assumption—an
assumption which ig'at the first sight quite irreconcilable with the former
one—that light is propagated in vacant space, with a velocity ¢ which is
independent of the nature of motion of the emitting body. These two
assumptions are quite sufficient to give us a simple and consistent theory
of electrodynamics of moving bodies on the basis of the Maxwellian
theory for bodies at rest.”

We can rephrase these assumptions of Einstein as follows.

L. The laws of physics are the same in all inertial systems. No preferred
inertial system exists. (The Principle of Relativity.)
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2. The speed of light in free space has the same value c in all inertial
systems. (The Principle of the Constancy of the Speed of Light.)

Einstein’s relativity principle goes beyond the Newtonian relativity
principle, which dealt only with the laws of mechanics, to include all
the laws of physics. It states that it is impossible by means of any physical
measurements to designate an inertial system as intrinsically stationary
or moving; we can only speak of the relative motion of two systems.
Hence, no physical experiment of any kind made entirely within an
inertial system can tell the observer what the motion of his system is with
respect to any other inertial system. The second principle above, which
flatly contradicts the Galilean velocity transformation (Eq. 1-5), is clearly
consistent with the Michelson-Morley (and subsequent) experiments.
The entire special theory of relativity is derived directly from these two
assumptions. Their simplicity, boldness, and generality are characteristic
of Einstein’s genius. The success of his theory can only be judged by
comparison with experiment. It not only was able to explain all the
existing experimental results but predicted new effects which were con-
firmed by later experiments. No experimental objection to Einstein’s
special theory of relativity has yet been found.

In Table 1-2 we list the seven theories proposed at various times and
compare their predictions of the results of thirteen crucial experiments,
old and new. Notice that only the special theory of relativity is in agree-
ment with all the experiments listed. We have already commented on the
successes and failures of the ether and emission theories with most of
the light-propagation experiments and it remains for us to show how
special relativity accounts for their results. In addition, several experi-
ments from other fields—some suggested by the predictions of relativity
and in flat contradiction to Newtonian mechanics—remain to be exam-
ined. What emerges from this comparative preview is the compelling
experimental basis of special relativity theory. It alone is in accord with
the real world of experimental physics.

As is often true in the aftermath of a great new theory, it seemed
obvious to many in retrospect that the old ideas had to be wrong. For
example, in discussing the concept of an ether as a substance, a concept
that persisted long after relativity, Max Born [14] made the point that the
elastic properties of matter were being derived with increasing success

from electromagnetic forces so that it was quite inconsistent to try, in
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TABIE 1-2 EXPERIMENTAL BASES FOR THE THEORY OF SPECIAL RELATIVITY
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Legend. A, the theory agrees with experimental results.

D, the theory disagrees with experimental results.

N, the theory is not applicable to the experiment.
Source From Panofsky and Phillips, Classical Electricity and Magnetism (2nd ed.), Addison-Wesley,
New York (1962).

turn, to explain electromagnetic phenomena in terms of the elastic
properties of some hypothetical medium. In the same spirit Herman
Bondi [15] has said:

“The special theory of relativity is a necessary consequence of any
assertion that the unity of physics is essential, for it would be intolerable
for all inertial systems to be equivalent from a dynamical point of view
yet distinguishable by optieal measurements. It now seems almost in-
credible that the possibility of such a discrimination was taken for
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granted in the nineteenth century, but at the same time it was not easy
to see what was more important—the universal validity of the Newtonian
principle of relativity or the absolute nature of time.”

It was his preoccupation with the nature of time that led Einstein to
his revolutionary proposals. We shall see later how important a clear
picture of the concept of time was to the development of relativity
theory. However, the program of the theory, in terms of our discussions
in this chapter, should now be clear. First, we must obtain equations of
transformation between two uniformly moving (inertial) systems which
will keep the velocity of light constant. Second, we must examine the
laws of physics to check whether or not they keep the same form (i.e., are
invariant) under this transformation. Those laws that are not invariant
will need to be generalized so as to obey the principle of relativity.

The new equations of transformation obtained in this way by Einstein
are known for historical reasons as a Lorentz transformation. We have
seen (Section 1-3) that Newton’s equation of motion is invariant under a
Galilean transformation, which we now know to be incorrect. It is likely
then that Newton’s laws—and perhaps other commonly accepted laws
of physics—will not be invariant under a Lorentz transformation. In
that case, they must be generalized. We expect the generalization to be
such that the new laws will reduce the old ones for velocities much less
than that of light, for in that range both the Galilean transformation and
Newton’s laws are at least approximately correct.

In Table 1-3, for perspective, we compare relativity theory to the older
emission and ether theories in terms of their basic assumptions and

conclusions.

1.10 Einstein and the Origin of Relativitv Theory

It is so fascinating a subject that one is hard-pressed to cut short a
discussion of Albert Einstein, the person. Common misconceptions of the
man, who quite properly symbolized for his generation the very height of
intellect, might be shattered by such truths as these: Einstein’s parents feared
for a while that he might be mentally retarded for he learned to speak much
later than customary; one of his teachers said to him “You will never amount
to anything, Einstein,” in despair at his daydreaming and his negative attitude
toward formal instruction; he failed to get a high-school diploma and, with no
job prospects, at the age of fifteen he loafed like a "model dropout’; Einstein’s
first attempt to gain admission to a polytechnic institute ended when he failed
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Source From Panofsky and Phillips, Classical Electricity and Magnetism (2nd Ed ), Addison-
Wesley, New York (1962).

to pass an entrance examination; after gaining admittance he cut most of the
lectures and, borrowing a friend’s class notes, he crammed intensively for two
months before the final examinations. He later said of this . .. after I had
passed the final examination, I found the consideration of any scientific prob-
lem distasteful to me for an entire year.”” It was not until two years after his
graduation that he got a steady job, as a patent examiner in the Swiss Patent
Office at Berne; Einstein was very interested in technical apparatus and
instruments, but—finding he could complete a day’s work in three or four
hours—he secretly worked there, as well as in his free time, on the problems
in physies which puzzled him. And so it goes.*

The facts above are surprising only when considered in isolation, of course.
Einstein simply could not accept the conformity required of him, whether in
educational, religious, military, or governmental institutions. He was an avid
reader who pursued his own intellectual interests, had a great curiosity about
nature, and was a genuine “frec-thinker” and independent spirit. As Martin
Klein (Ref. 16) points out, what is really surprising about Einstein’s early life
is that none of his “elders” recognized his genius.

But such matters aside, let us look now at Einstein’s early work. It is appro-
priate to quote here from Martin Klein [16].

“In his spare time during those seven years at Berne, the young patent
examiner wrought a series of scientific miracles; no weaker word is adequate.
He did nothing less than to lay out the main lines along which twentieth-
century theoretical physics has developed. A very brief list will have to suffice.

*see Refe 16 21 for some rewarding articles and books about Einstein
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“The only thing that gives me pleasure, apart from my work, my
violin and my sailboat, is the appreciation of my fellow workers.”

Einstein leaning against the mast of his boat
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He began by working out the subject of statistical mechanics quite independ-
ently and without knowing of the work of J. Willard Gibbs. He also took this
subject seriously in a way that neither Gibbs nor Boltzman had ever done,
since he used it to give the theoretical basis for a final proof of the atomic
nature of matter. His reflections on the problems of the Maxwell-Loreniz
electrodynamics led him to create the special theory of relativity. Before he
left Berne he had formulated the principle of equivalence and was struggling
with the problems of gravitation which he later solved with the general theory
of relativity. And, as if these were not enough, Einstein introduced another
new idea into physics, one that even he described as ‘very revolutionary,’ the
idea that light consists of particles of energy. Following a line of reasoning
related to but quite distinct from Planck’s, Einstein not only introduced the
light quantum hypothesis, but proceeded almost at once to explore its implica-
tions for phenomena as diverse as photochemistry and the temperature
dependence of the specific heat of solids.

“What is more, Einstein did all this completely on his own, with no aca-
demic connections whatsoever, and with essentially no contact with the elders
of his profession. Years later he remarked to Leopold Infeld that until he was
almost thirty he had never seen a real theoretical physicist. To which, of
course, we should add the phrase (as Infeld almost did aloud, and as Einstein
would never have done), “except in the mirror!”

The discussion thus far emphasizes Einstein’s independence of other con-
temporary workers in physics. Also characteristic of his work is the fact that
he always made specific predictions of possible experiments to verify his
theories. In 1905, at intervals of less than eight weeks, Einstein sent to the
Annalen der Physik three history-making papers. The first paper [22] on the
quantum theory of light included an explanation of the photoelectric effect.
The suggested experiments, which gave the proof of the validity of Einstein’s
equations, were successfully carried out by Robert A. Millikan nine years
later! The second paper [23] on statistical aspects of molecular theory, in-
cluded a theoretical analysis of the Brownian movement. Einstein wrote later
of this: ““My major aim in this was to find facts which would guarantee as much
as possible the existence of atoms of definite sizc. In the midst of this I discov-
ered that, according to atomistic theory, there would have to be a movement
of suspended microscopic particles open to observation, without knowing that
observations concerning the Brownian motion were already long familiar.”*
The third paper {13], on special relativity, included applications to electro-
dynamics such as the relativistic mass of a moving body, all subsequently
confirmed experimentally.

Under these circumstances, it is not particularly fruitful to worry about
whether, or to what extent, Einstein was aware of the Michelson-Morley ex-

*Robert Brown, in 1827, had published these obseryations
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periment* (the evidence is that he had heard of the result but not the details)
or the directly relevant 1904 papers of Lorentz and Poincare** (the evidence
is strong that he had not read them)—all the more so since all the participants
acknowledge Einstein as the original author of relativity theory. Instead, we
should note another characteristic of Einstein’s work, which suggests why
his approach to a problem was usually not that of the mainstream; namely,
his attempt to restrict hypotheses to the smallest number possible and to the
most general kind. For example, Lorentz, who never really accepted Einstein’s
relativity, used a great many ad hoc hypotheses 1o arrive at the same transfor-
mations in 1904 as Einstein did in 1905 (and as Voigt did in 1887); further-
more, Lorentz had assumed these equations a priori in order to obtain the
invariance of Maxwell’s equations in free space. Einstein on the other hand
derived them from the simplest and most general postulates—the two funda-
mental principles of special relativity. And he was guided by his solution to
the problem that had occupied his thinking since he was 16 years old: the
nature of time, Lorentz and Poincaré had accepted Newton’s universal time
(t = '), whereas Einstein abandoned that notion.

Newton, even more than many succeeding generations of scientists, was
aware of the fundamental difficulties inherent in his formulation of mechan-
ics, based as it was on the concepts of absolute space and absolute time. Ein-
stein expressed a deep admiration for Newton’s method and approach and
can be regarded as bringing many of the same basic attitudes to bear on his
analysis of the problem. In his Autobiographical Notes [18], after critically
examining Newtonian mechanics, Einstein writes:

“Enough of this. Newton, forgive me; you found the only way which, in
your age, was just about possible for a man of highest thought and creative
power. The concepts, which you created, are even today still guiding our
thinking in physics, although we now know that they will have to be replaced
by others farther removed from the sphere of immediate experience, if we
aim at a profounder understanding of relationships.”

It seems altogether fitting that Einstein should have extended the range
of Newton’s relativity principle, generalized Newton’s laws of motion, and
later incorporated Newton’s law of gravitation into his space-time scheme. In
subsequent chapters we shall see how this was accomplished.

Questions

1. Can a particle move through a medium at a speed greater than the speed
of light in that medium? Explain. (Sce R. Resnick and D. Halliday,
Physics, p. 517-518.)

*See Refs. 24 and 25 for a fascinating analysis of this issue and of Einstein’s early work.
**See Ref 26 for a careful study of the historical situation and the characteristics of Einstein’s

work.
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(Questions continued)

2.

10.

11.

12.

13.

Is the sum of the interior angles of a triangle equal to 180° on a spherical
surface? On a plane surface? Under what circumstances does spherical
geomeltry reduce to plane geometry? Draw an analogy to relativistic me-
chanics and classical mechanics.

Would observers on the North Pole agree with those on the South Pole
as to the direction of “up” and “down?”’ What definition of the terms
could they agree on?

Give examples of non-inertial reference frames.

How does the concept of simultaneity enter into the measurement of

the length of a body?

Could a mechanical experiment be performed in a given reference frame
which would reveal information about the acceleration of that frame
relative to an inertial one?

Discuss the following comment, which applies to most of the figures:
“The figure itself belongs to some particular reference frame, that is, the
picture represents measurements made in some particular frame.” Can
we look omnipotently at moving frames, wave fronts, and the like, with-
out realizing first what frame we are in?

In an inelastic collision, the amount of thermal energy (internal mechani-
cal kinetic energy) developed is independent of the inertial reference
frame of the observer. Explain why, in words.

Describe an acoustic Michelson-Morley experiment by analogy with the
optical one. What differences would you expect, and what similarities,
in comparing the acoustical and the optical experiment?

Does the Lorentz-Fitzgerald contraction hypothesis contradict the elassi-
cal notion of a rigid body?

A simple way to test the Loreniz contraction theory would be to make
one-way measurements of the speed of light (rather than round trips).
That is, we could measure the speed along a straight line in the direetion
of the earth’s motion through the ether and compare it with the speed
along the same line in the opposite direction. Explain how this would
make possible the detection of an ether wind, if one existed. (Such a
high precision experiment, using the Massbauer effect, can be done

today.)

If the earth’s motion, instead of being nearly circular about the sun,
were uniformly along a straight line through the “ether,” could an aber-
ration experiment measure its speed?

How can we use the aberration observations to refute the Ptolemaic
model of the solar system?
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15.

16.

17.
18.
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Does the fact that stellar aberration is observable contradict the principle
of the relativity of uniform motion (i.e., does it determine an absolute
velocity)? How, in this regard, does it differ from the Michelson-Morley
experiment?

If the “ether” were dragged along with water, what would be the ex-
pected result of the aberration experiment when done with a telescope
filled with water? (The actual results were the same with as without
water. The experiment was done by Sir George Airy in 1871 and con-
firmed Eq. 1-12. For a complete analysis see Rosser [3].)

Of the various emission theories, only the original source one is consist-
ent with the ordinary optical result of the Doppler effect for a moving
mirror. Explain.

What boxes in Table 1-2 have been accounted for in this chapter?

Of the experiments discussed in this chapter, which ones were not avail-
able at the time of Einstein’s 1905 paper? (See references.)

Problems

1.

Justify the relations y = y’ and z = 2’ of Eq. 1-1a by symmetry argu-

ments,

Momentum is conserved in a collision of two objects as measured by an
observer on a uniformly moving train. Show that momentum is also
conserved for a ground observer.

Repeat Problem 2 under the assumption that after the collision the
masses of the two objects are different from what they were before; that
is, assume a transfer of mass took place in the course of the collision.
Show that for momentum to be conserved for the ground observer, con-
servation of mass must hold true.

Kinetic energy is conserved in an elastic collision by definition. Show,
using the Galilean transformation equations, that if a collision is elastic
in one inertial frame it is elastic in all inertial frames.

Consider two observers, one whose frame is attached to the ground and
another whose frame is attached, say. to a train moving with uniform
velocity u with respect to the ground. Each observes that a particle, ini-
tially at rest with respect to the train, is accelerated by a constant force
applied to it for time ¢t in the forward direction. (a) Show that for each
observer the work done by the force is equal to the gain in kinetic energy
of the particle, but that one observer measures these quantities to be
ima2t2, whereas the other observer measures them to be $ma2:2 + maut.
Here a is the common acceleration of the particle of mass m. (b) Explain
the differences in work done by the same force in terms of the different
distances through which the observers measure the force to act during
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the time t. Explain the different final kinetic energies measured by each
observer in terms of the work the particle could do in being brought to
rest relative to each observer’s frame.

Suppose, in the previous problem, that there is friction between the
particle and, say, the train floor, and that the applied force gives the
particle the same acceleration over the same time as before. Note that
there is no change in the initial and final kinetic cnergies but an extra
forece is needed to oppose friction. (a) Show that the amount of heat
energy developed is the same for each observer. (Hint. Work done against
friction depends on the relative motion of the surfaces.) (b) The applied
force does work on the train itself, according to the ground observer, in
addition to developing heat energy and increasing the kinetic energy of
the particle. Compute the amount of this work. ls there an equivalent
performance of work by the observer on the train? Explain.

Write the Galilean transformation equations for the case of arbitrary
relative velocity of the frames. (Hint. Let v have components v;, vy,
and v,.)

Show that the clectromagnetic wave equation

02¢ 02¢ + 2 1 229 0
ox2 dy? 0z2 2 o2 T 7

does not retain its form (i.e., is not invariant) under the Galilean transfor-
mation equations (Eqs. 1-1). (Hint. use the chain rule in which if x =

fix', ¥y, 2, ¢') Then

of _ of ox +Lf dy’ of 07 4 of a:')
ox X ox dy’ ox 0z 0x or 0x

A pilot is supposed to fly due east from A to B and then back again to A
due west. The velocity of the plane in air is 1’ and the velocity of the
air with respect to the ground is v. The distance between A and B is !
and the plane’s air speed u’ is constant. (a) Hf v = 0 (still air), show that
the time for the round trip is to = 21/u’. (b) Suppose that the air velocity
is due east (or west). Show that the time for a round trip is then

to

lp = —m—mMm8 .
B 1 — v2/@W')?

(c) Suppose that the air velocity is due north (or south). Show that the
time for a round trip is then

P —

N V1 — v2/(W)?
(d) In parts (b) and (c) we must assume that v < u’. Why? (e) Draw an
analogy to the Michelson-Morley experiment.
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In the description of the Michelson-Morley experiment, it was assumed
that one of the arms of the interferometer was aligned along the diree-
tion of the earth’s motion while the second was perpendicular to this
direction. Suppose, instead, that one arm makes an angle of ¢ with the
direction of motion (see Fig. 1-11). Repeat the analysis in the text for
this more general case and show that, under the Lorentz-Fitzgerald eon-
traction hypothesis, no fringe shift would be expected when the appa-
ratus is rotated through 90°: that is, the time difference between the
two beams is the same before and after rotation. (Hint. Remember, only
the component of length in the direction of motion through the ether
is affected).

Derive Eq. 1-10.

Show that, to first order in v/c, Eq. 1-11 becomes tan a = (v/c) sin
when the rays from a star make an arbitrary angle § with the plane of the
earth’s orbit, rather than an angle § = 90° as assumed for simplicity in
the text. (That is, v and ¢ are no longer at right angles.) Does this change
the conelusions drawn there?

(@) In the Fizeau experiment (Fig. 1-10) identify the frames S and &
and the relative velocity v which correspond to Fig. 1-1. (b) Show that
in the Fresnel drag formula (Eq. 1-12) v — v, for very large values
of n. How would you interpret this? (¢) Under what circumstances will
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14.

15

.

the Fresnel drag coefficient be zero? To what does this correspond
physically?

Consider one star in a binary system moving in uniform circular motion
with speed v. Consider two positions: (I) the star is moving away from
the earth along the line connecting them, and (II) the star is moving
toward the earth along the line connecting them (see Fig. 1-12). Let the
period of the star’s motion be T and its distance from earth be l. Assume
1 is large enough that positions I and II are a half-orbit apart. (a) Show
that the star would appear to go from position (I) to position (II) in a
time T/2 — 2lv/(c2 — v2) and from position (II) to position (1) in a time
T/2 4 2lv/(c2 — v?), assuming that the emission theories are correct.
(b) Show that the star would appear to be at both positions I and II at
the same time if T/2 = 2lv/(c2 — v2).

Fig. 1-12.

A bullet from a rifle travels 1100 ft in its first second of motion. On a
calm day the rifle is fired from a train along the tracks. A man stands
1100 ft away from the rifle at that instant, in the line of fire. Does the
bullet or the sound of the firing reach the man first if the train (a) is at
rest, (b) is moving away from the man, or (c) is moving toward the man?
(d) Ts the first sentence of this problem ambiguous? Explain. (e) State
the relevance of this problem 10 emission theories,
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Chapter Two

Relativistic Kinematics

2.1 The Relativity of Simultaneity

In Conversations with Albert Einstein, R. S. Shankland [1] writes
“I asked Professor Einstein how long he had worked on the Special
Theory of Relativity before 1905. He told me that he had started at age
16 and worked for ten years; first as a student when, of course, he could
spend only part-time on it, but the problem was always with him. He
abandoned many fruitless attempts, ‘until at last it came to me that time
was suspect!” ”” What was it about time that Einstein questioned? It was
the assumption, often made unconsciously and certainly not stressed,
that there exists a universal time which is the same for all observers.
Indeed, it was only to bring out this assumption explicitly that we in-

’

cluded the equation t = t’ in the Galilean transformation equations
(Eq. 1-1). In pre-relativistic discussions, the assumption was there implic-
itly by the absence of a transformation equation for ¢ in the Galilean
equations. That the same time scale applied to all inertial frames of refer-
ence was a basic premise of Newtonian mechanics.*

In order to set up a universal time scale, we must be able to give mean-
ing, independent of a frame of reference, to statements such as “Events
A and B occurred at the same time.” Einstein pointed out that when we
say that a train arrives at 7 o’clock this means that the exact pointing of
the clock hand to 7 and the arrival of the train at the clock were simul-
taneous. We certainly shall not have a universal time scale if different
inertial observers disagree as to whether two cvents are simultaneous.

Let us first try to set up an unambiguous time scale in a single frame of

*In the Principia Newton wrote “Absolute, true and mathematical time, of itself, and from its own
nature. flows equably without relation to anything external ™ Although classical philosophers ac
cepted the universality of the time scale. many criticized this particular statement of Newton's
They found it unnecessary to hypothesize that moments of time can exist independent of events
Time is regarded as deris ed from events and not vice versa Leibniz, for example. opposed Newton's
view of absolute time, the difference between his view and Newton's being aptly summarized by the
statement that aceording to Newton the universe has a clock whereas according to Leibniz it is a
clock See Ref 2 for a fascinating account of the philosophy of time and Ref 3 for a diccussion of

the Newtonian and Leibniz views

30
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reference; then we can set up time scales in exactly the same way in all
inertial frames and compare what different observers have to say about
the sequence of two events, A and B.

Suppose that the events occur at the same place in one particular frame
of reference. We can have a clock at that place which registers the time
of occurrence of each event. If the reading is the same for each event, we
can logically regard the events as simultaneous. But what if the two events
occur at different locations? Imagine now that there is a clock at the
positions of each event—the clock at A being of the same nature as that
at B, of course. These clocks can record the time of occurrence of the
events but, before we can compare their readings, we must be sure that
they are synchronized.

Some “obvious” methods of synchronizing clocks turn out to be
erroneous. For example, we can set the two clocks so that they always
read the same time as seen by observer A. This means that whenever A
looks at the B clock it reads the same to him as his clock. The defect here
is that if observer B uses the same criterion (that is, that the clocks are
synchronized if they always read the same time to him), he will find that
the clocks are not synchronized if A says that they are. For this method
neglects the fact that it takes time for light to travel from B to A and vice
versa. The student should be able to show that, if the distance between
the clocks is L, one observer will see the other clock lag his by 2L/c
when the other observer claims that they are synchronous. We certainly
cannot have observers in the same reference frame disagree on whether
clocks are synchronized or not, so we reject this method.

An apparent way out of this difficulty is simply to set the two clocks to
read the same time and then move them to the positions where the events
occur. (In principle, we need clocks everywhere in our reference frame
to record the time of occurrence of events, but once we know how to
synchronize two clocks we can, one by one, synchronize all the clocks.)
The difficulty here is that we do not know ahead of time, and therefore
cannot assume, that the motion of the clocks (which may have different
velocities, accelerations, and path lengths in being moved into position)
will not affect their readings or time-keeping ability. Even in classical
physics, the motion can affect the rate at which clocks run.

Hence, the logical thing to do is to put our clocks into position and
synchronize them by means of signals. If we had a method of transmitting
signals with infinite speed, there would be no complications. The signals
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would go from clock A to clock B to clock C, and so on, in zero time.
We could use such a signal to set all clocks at the same time reading. But
no signal known has this property. All known signals require a finitc
time to travel some distance, the time increasing with the distance trav-
eled. The best signal to choose would be one whose speed depends on as
few factors as possible. We choose electromagnetic waves because they
do not require a material medium for transmission and their speed in
vacuum does not depend on their wavelength, amplitude, or direction of
propagation. Furthermore, their propagation speed is the highest known
and—most important for finding a universal method of synchroniza-
tion—experiment shows their speed to be the same for all inertial
observers.

Now we must account for the finite time of transmission of the signal
and our clocks can be synchronized. To do this let us imagine an observer
with a light source that can be turned on and off (e.g., a flash bulb) at
each clock, A and B. Let the measured distance between the clocks (and
observers) be L. The agreed-upon procedure for synchronization then is
that A will turn on his light source when his clock reads t = 0 and ob-
server B will set his clock to t = L/c the instant he receives the signal.
This accounts for the transmission time and synchronizes the clocks in
a consistent way. For example, if B turns on his light source at some later
time ¢ by his clock, the signal will arrive at A at a time t + L/c, which
is just what A’s clock will read when A receives the signal.

A method equivalent to the above is to put a light source at the exact
midpoint of the straight line connecting A and B and inform each ob-
server to put his clock at t = 0 when the turned-on light signal reaches
him. The light will take an equal amount of time to reach A and B from
the midpoint, so that this procedure does indeed synchronize the clocks.

Now that we have a procedure for synchronizing clocks in one refer-
ence frame, we can judge the time order of cvents in that frame. The
time of an event is measured by the clock whose location coincides with
that of the event. Events occurring at two different places in that frame
must be called simultaneous when the clocks at the respective places
record the same time for them. Suppose that one incrtial observer does
find that two separated events are simultaneous. Will these same events
be measured as simultaneous by an observer on another inertial frame
which is moving with spced v with respect to the first? (Remember, each

obscrver uses an identical procedure to synchronize the clocks in his
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Fig. 2-1. The point of view of the S-frame, the $'-frame moving to the right
A light wave leaves 4, A" and B, B’ in (a). Successive drawings correspond to
the assumption that event 44’ and event BB’ are simultaneous in the S-frame.
In (b) one wavefront reaches O’. In (¢) both wavefronts reach O In (d) the

other wavefront reaches O’

reference frame.) If not, simultaneity is not independent of the frame of
reference used to describe events. Instead of being absolute, simultaneity
would be a relative concept. Indeed, this is exactly what we find to be
true, in direet contradiction to the classical assumption.

To understand this, let us consider an example. Let there be two iner-
tial reference frames S” and S having a relative velocity. Each frame has
its own meter sticks and synchronized clocks. The observers note that
two lightning bolts strike each, hitting and leaving permanent marks in
the frames.* Assume that afterwards, by measurements, each inertial
observer finds that he was located exactly at the midpoint of the marks
which were left on his reference frame. In Fig. 2-1a, these marks are left
at A, B on the S-frame and at 4’, and B’ on the S’ frame, the observers

*The essential point is to have light sources that leave marks Exploding sticks of dynamite would
do as well, for example.
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being at 0 and 0'. Because each observer knows he was at the midpoint of
the mark left by these events, he will conclude that they were simultane-
ous if the light signals from them arrive simultaneously at his clock (see
the definitions of simultaneity given earlier). If, on the other hand, one
signal arrives before the other, he will conclude that one event preceded
the other. Since each observer has a synchronized set of clocks, he can
conclude either that the clocks at the marks read the same time when
the marks were made (simultaneous case) or that they read different
times (non-simultaneous case).

Many different possibilities exist in principle as to what the measure-
ments might show. Let us suppose, for the sake of argument, that the
S-observer finds that the lightning bolts struck simultaneously. Will the
S’-observer also find these events to be simultaneous? In Figs. 2-1b to
2-1d we take the point of view of the S-observer and see the S'-frame
moving, say, to the right. At the instant the lightning struck at 4 and 4,
these two points coincide, and at the instant the lightning struck at B
and B’ those two points coincide. The S-observer found these two events
to occur at the same instant, so that at that instant 0 and ¢ must coincide
also for him. However, the light signals from the events take a finite time
to reach 0 and during this time 0’ travels to the right (Figs. 2-1b to 2-1d).
Hence, the signal from event BB’ arrives at 0 (Fig. 2-1b) before it gets to
0 (Fig. 2-1¢), whereas the signal from event 44’ arrives at 0 (Fig. 2-1¢)
before it gets to 0’ (Fig. 2-1d). Consistent with our starting assumption,
the S-observer finds the events to be simultaneous (both signals arrive
at 0 at the same instant). The S’-observer, however, finds that event BB’
precedes event A4’ in time; they are not simultaneous to him. Therefore,
two separated events which are simultaneous with respect to one frame
of reference are not necessarily simultaneous with respect to another
frame.

Now we could have supposed, just as well, that the lightning bolts
struck so that the S’-observer found them to be simultaneous. In that
case the light signals reach 0’ simultaneously, rather than 0. We show
this in Fig. 2-2 where now we take the point of view of §’. The S-frame
moves to the left relative to the S’-observer. But, in this case, the signals
do not reach 0 simultaneously; the signal from event 44’ reaches 0
before that from event BB’. Here the S’-observer finds the events to be
simultaneous but the S-observer finds that event A4’ precedes event BB'.

Hence, neither frame is preferred and the situation is perfectly recip-
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Fig. 2-2. The point of view of the S'-frame, the S-frame moving to the left. A
light wave leaves 4, A’ and B, B’ in (a). Successive drawings correspond to the
assumption that event A4’ and event BB’ are simuitaneous in S'-frame In (b)
one wavefront reaches O. In (c) both wavefronts reach 0. In (d) the other wave-
front reaches O

rocal. Simultaneity is genuinely a relative concept, not an absolute one.*
Indeed, the two figures become indistinguishable if you turn one of them
upside down. Neither observer can assert absolutely that he is at rest.
Instead, each observer correctly states only that the other one is moving
relative to him and that the signals travel with finite speed c relative to
him. It should be clear that if we had an infinitely fast signal, then simul-
taneity would be an absolute concept; for the frames would not move at
all relative to one another in the (zero) time it would take the signal to
reach the observers.

Some other eonelusions suggest themselves from the relativity of
simultaneity. To measure the length of an object means to locate its end

*In these arguments, we have shown that if one observer finds the events to be simultaneous, then
the other one will find them not to be simultaneous Of course, it could also happen that neither
observer finds the events to be simultaneous but then they would disagree either on the time order
of the events or on the time interval elapsing between the events, or both (see Appendix A).
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points simultaneously. Because simultaneity is a relative concept, length
measurements will also depend on the reference frame and be relative.
Furthermore, we find that the rates at which clocks run also depend on
the reference frame. This can be illustrated as follows. Consider two
clocks, one on a train and one on the ground, and assume that at the
moment they pass one another (i.e., the instant that they are coincident)
they read the same time (i.e., the hands of the clocks are in identical
positions). Now, if the clocks continue to agree, we can say that they go
at the same rate. But, when they are a great distance apart, we know from
the preceding discussion that their hands cannot have identical positions
simultaneously as measured both by the ground observer and the train
observer. Hence, time interval measurements are also relative, that is,
they depend on the reference frame of the observer. As a result of the
relativity of length and time interval measurements it is perhaps possible
to reconcile ourselves to the experimental fact that observers who are
moving relative to each other measure the speed of light to be the same
(see Question 20). In succeeding sections, we shall look more carefully
into these matters.

2.2 Derivation of the Lorentz Transformation Equations

We have seen that the Galilean transformation equations must
be replaced by new ones consistent with experiment. Here we shall
derive these new equations, using the postulates of special relativity
theory. To show the consistency of the theory with the discussion of the
previous section, we shall then derive all the special features of the new
transformation equations again from the more physical approach of the
measurement processes discussed there.

We observe an event in one inertial reference frame S and characterize
its location and time by specifying the coordinates x, y, z, t of the
event. In a second inertial frame S, this same event is recorded as the
space-time coordinates x', y’, z’, . We now seek the functional rela-
tionships x' = x'(xy.2.0), ¥ = y'(xy.z), 7 = 2Z(xyzt), and ¢ =
¢ (x,y.z,t). That is, we want the equations of transformation which relate
one observer’s space-time coordinates of an event with the other ob-
server’s coordinates of the same event.

We shall use the fundamental postulates of relativity theory and, in
addition, the assumption that space and time are homogeneous. This
homogeneity assumption (which can be paraphrased by saying that all
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points in space and time are equivalent) means, for example, that the
results of a measurement of a length or time interval of a specific event
should not depend on where or when the interval happens to be in our
reference frame. We shall illustrate its application shortly.

We can simplify the algebra by choosing the relative velocity of the S
and S’ frames to be along a common x-x’ axis and by keeping correspond-
ing planes parallel (see Fig. 1-1). This does not impose any fundamental
restrictions on our results for space is isotropic—that is, has the same
properties in all directions. Also, at the instant the origins 0 and ¢’ coin-
cide, we let the clocks there read t = 0 and ' = 0, respectively. Now,
as explained below, the homogeneity assumption requires that trans-
formation equations must be linear (i.e., they involve only the first
power in the variables), so that the most general form they can take (see
Question 5) is

= aj1x + aizy + a3z + aigt
= az21x + a2y + az33 + az4t
= a3zix + azzy + aszzz + azgt
U = aq1x + a42y + a43z + aq4t.

xl
Y @2-1)
z

~

Here, the subscripted coeflicients are constants that we must determine
to obtain the exact transformation equations. Notice that we do not ex-
clude the possible dependence of space and time coordinates upon one
another.

If the equations were not linear, we would violate the homogeneity
assumption. For example, suppose that x" depended on the square of x,
that is, as x’ = a11x2. Then the distance between two points in the primed
frame would be related to the location of these points in the unprimed
frame by x" — x1" = aj1(x22 — x12). Suppose now that a rod of unit
length in S had its end points at x2 = 2 and x; = 1; then x2’ — xy" =
3ay,. If, instead, the same rod happens to be located at x = 5 and x; =
4, we would obtain x2" — x1" = 9aii. That is, the measured length of the
rod would depend on where it is in space. Likewise, we can reject any
dependence on ¢ that is not linear, for the time interval of an event should
not depend on the numerical setting of the hands of the observer’s clock.
The relationships must be linear then in order not to give the choice of
origin of our space-time coordinates (or some other point) a physical
preference over all other points.

Now, regarding these sixteen coeflicients, it is expected that their
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values will depend on the relative velocity v of the two inertial frames.
For example, if v = 0, then the two frames coincide at all times and we
expect a3 = az = azz = agq = 1, all other coeflicients being zero.
More generally, if v is small compared to ¢, the coefficients should lead
to the (classical) Galilean transformation equations. We seek to find the
coefficients for any value of v, that is, as functions of v.

How then do we determine the values of these sixteen coeflicients?
Basically, we use the postulates of relativity, namely (1) The Principle of
Relativity—that no preferred inertial system exists, the laws of physics
being the same in all inertial systems—and (2) The Principle of the
Constancy of the Speed of Light—that the speed of light in free space has
the same value c in all inertial systems. Let us proceed.

The x-axis coincides continuously with the x’-axis. This will be so
only if for y = 0, z = 0 (which characterizes points on the x-axis) it
always follows that ¥/ = 0, 27 = 0 (which characterizes points on the
x’-axis). Hence, the transformation formulas for y and z must be of the
form

y = azzy + az3z and Z = azy + aszsz

That is, the coefficients a2y, @24, @31, and az4 must be zero. Likewise,
the x-y plane (which is characterized by z = 0) should transform over to
the x’-y’ plane (which is characterized by z' = 0); similarly, for the x-z
and x'-z’ planes, y = 0 should give ¥’ = 0. Hence, it follows that a23 and
azs are zero so that

’ ’
Yy = a2y and Z = Qassz.

These remaining constant coefficients, az; and ass, can be evaluated
using the relativity postulate. We illustrate for az2. Suppose that we have
a rod lying along the y-axis, measured by S to be of unit length. Accord-
ing to the S" observer, the rod’s length will be a2z, (ie., ¥y = a2z X 1).
Now, suppose that the very same rod is brought to rest along the y’ axis
of the S’-frame. The primed observer must measure the same length
(unity) for this rod when it is at rest in his frame as the unprimed
observer measures when the rod is at rest with respect to him; other-
wise there would be an asymmetry in the frames. In this case, however,
the S-observer would measure the rod’s length to be 1l/az2 [i.e,
y = (1/a22)y’ = (1/a22) X 1]. Now, because of the reciprocal nature of
these length measurements, the first postulate requires that these meas-
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urements be identical, for otherwise the frames would not be equivalent
physically. Hence, we must have a2 = 1/az2 or ags = 1. The argument
is identical in determining that a3z = 1. Therefore, our two middle
transformation equations become

Yy =y and =z (2-2)

There remain transformation equations for x” and ¢, namely,

’

x = a11x + a2y + a13z + aiat
and ' = anx + aszy + a43z + aqqt.

Let us look first at the ¢"-equation. For reasons of symmetry, we assume
that ¢ does not depend on y and z. Otherwise, clocks placed symmetri-
cally in the y-z plane (such as at +y, —y or + 2z, —z) about the x-axis
would appear to disagree as observed from §’, which would contradict
the isotropy of space. Hence, as2 = a43 = 0. As for the x"-equation, we
know that a point having x = 0 appears to move in the direction of the
positive x-axis with speed v, so that the statement x’ = 0 must be identi-
cal to the statement x = vt. Therefore, we expect x’ = ay1(x — vi) to
be the correct transformation equation. (That is, x = vt always gives

2’ = 0 in this equation.) Hence, x' = a1 x — a11 vt = a11 x + ayqt.
This gives us aj4 = —wvayy, and our four equations have now been
reduced to
x = aj1(x — vt)
/!
Yy =y
' 2-3)
=z
t' = aq1x + aqq4t.

There remains the task of determining the three coefficients a11, a4,
and ay4. To do this, we use the principle of the constancy of the velocity
of light. Let us assume that at the time ¢ = 0 a spherical electromagnetic
wave leaves the origin of S, which coincides with the origin of S at that
moment. The wave propagates with a speed ¢ in all directions in each
inertial frame. Its progress, then, is described by the equation of sphere
whose radius expands with time at a rate ¢ in terms of either the primed

or unprimed set of coordinates. That is,

22 + y2 + 22 = 22 (2-4)
or X2 4 y'2 4 22 = 2 (2-5)
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If now we substitute into Eq. 2-5 the transformation equations (Egs. 2-3),
we get

a1i?(x — v)?2 + y2 + 22 = c2(aux + aqq?)?
Rearranging the terms gives us

(@112 — 2agu?)x? + y? + 22 — 2(va11? + c2agia44)xt
= (c2a44® — v2a;?)L2.

In order for this expression to agree with Eq. 2-4, which represents the
same thing, we must have

2

a11? — a2 =1

c?ass® — viays®

vay? + c2aq1a44 = 0

Here we have three equations in three unknowns, whose solution (as
the student can verify by substitution into the three equations above) is

ags = 1/1/1 — v2/c?
a1 = 1/+/1 — v2/c2 (2-6)

and agqgl = —%/\/1 - v2/02.
c

By substituting these values into Eqs. 2-3, we obtain, finally, the new

sought-after transformation equations,

’ x — vl
=
V1 —12/c
Y=y
=z 27

, _t— (v/cA)x
V1 — v2/c?
the so-called* Lorentz transformation equations.
Before probing the meaning of these equations, we should put them
to two necessary tests. First, if we were to exchange our frames of refer-

ence or—what amounts to the same thing—consider the given space-
time coordinates of the event to be those observed in S’ rather than in

*Poincaré originally gave this name 1o the equations Lorentz, in his classical theory of electrons,
had proposed them before Einstein did. However, Lorentz took v to be the speed relative to an
absolute ether frame and gave a different interpretation to the equations



Section 2.2 Derivation of the Lorentz Transformation Equations 61

S, the only change allowed by the relativity principle is the physical one
of a change in relative velocity from v to —wv. That is, from S’ the
S-frame moves to the left whereas from S the S’-frame moves to the right.
When we solve Egs. 2-7 for x, y, z, and ¢ in terms of the primed coordi-
nates (see Problem 3), we obtain

x = x + ot
V1 — v2/c?
’ - Z 2-8)

U+ (v/eA)x
N V1 — 1v2/c?

which are identical in form with Eqs. 2-7 except that, as required, v
changes to —v.

Another requirement is that for speeds small compared to ¢, that is,
for v/c € 1, the Lorentz equations should reduce to the (approximately)
correct Galilean transformation equations. This is the case, for when
v/c £ 1, Eqs. 2-7 become*

xX =x— vt

y,=y (2-9)
=z

t =t

which are the classical Galilean transformation equations.
In Table 2-1 we summarize the Lorentz transformation equations.

TABLE 2-1 THE LORENTZ TRANSFORMATION EQUATIONS

Y= x — vt v = x + ot
V1 — v¢/c? V91— v2/e2

Y=y y=y

=z z =3z

r=t= (v/c?)x (= t + (v/c?)x
V1 — v2/c? V1 — v2/c?

*In the time equation, ¢ = (t — vx/¢?)/\/1 — v2/¢2, consider the motion of the origin ', for exam-
ple. given by x = vt. Then

= (t — v2t/e?)/\1 — 12/ = t\/1 — v2/2

Asv/c— 0, — ¢t



62 Chapter Two RELATIVISTIC KINEMATICS

2.3 Some Consequences of the Lorentz Transformation Equations

The Lorentz transformation equations (Eqs. 2-7 and 2-8), derived
rather formally in the last section from the relativity postulates, have
some interesting consequences for length and time measurements. We
shall look at them briefly in this section. In the next section we shall
present a more physical interpretation of these equations and their con-
sequences, relating them directly to the operations of physical measure-
ment. Throughout the chapter we shall cite experiments that confirm
these consequences.

One consequence is this: a body’s length is measured to be greatest
when it is at rest relative to the observer. When it moves with a velocity
v relative to the observer its measured length is contracted in the direction
of its motion by the factor \/1 — v%/c2, whereas its dimensions perpen-
dicular to the direction of motion are unaffected. To prove the italicized
statement, imagine a rod lying at rest along the x"-axis of the S'-frame.
Its end points are measured to be at x’ and x;’, so that its rest length
is x2’” — x1. What is the rod’s length as measured by the S-frame
observer, for whom the rod moves with the relative speed v? For con-
venience, we shall let v/c = B, as before. From the first Lorentz equation

we have
, X2 — Ulg , X1 — v
X2 = —— 1 = —F—
V1 — B2 V1 — B2
X9 — x1) —vite — ¢
so that x' — x1 = (x2 V (&2 1).

V1 — B2
Now the length of the rod in the S-frame is simply the distance between
the end points, xz and xy, of the moving rod measured at the same instant
in that frame. Hence, with ¢t = t;, we obtain
le _ xll _ x2 — X1
V1 — 2
or x2 — x1 = (x2’ — x1') /1 — B2 (2-10)

so that the measured length of the moving rod, x2 — x1, is contracted by
the factor\/l——i,B2 from its rest length, x»" — x;’. As for the dimensions
of the rod along y and z, perpendicular to the relative motion, it follows
at once from the transformation equations ¥’ = y and z’ = z that these
are measured to be the same by both observers.
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A second consequence is this: 4 clock is measured to go at its fastest
rate when it is at rest relative to the observer. When it moves with a ve-
locity v relative to the observer, its rate is measured to have slowed down
by a facwrm. To prove these italicized statements, consider a
clock to be at rest at the position x” in the S’-frame. It may simplify mat-
ters to picture the hand of this clock going around and to let unit time be
the time it takes the hand of the clock to go around once. Hence, the
events we observe (the two successive coincidences of the hand of the
clock with a given marker on the face of the clock) span the time interval
ttot + 1inthe primed coordinates. The S-frame observer records these
events as occurring at times

U+ (v/c)x €+ 1)+ (v/cA)x
= and to = .
iR V=
The clock in the S’-frame is at a fixed position x’, but the time ¢; and ¢
are read from two different clocks in the S-frame, namely the stationary
S-clock that happens to be coincident with the moving clock at the begin-
ning of the interval, and the stationary S-clock coincident with the mov-
ing clock at the end of the interval. These clocks are synchronized,
however, so that the time interval they record for the event is simply

tz—tIZ;

Vo h
Clearly, if, instead of unit time, the S'-clock recorded a time interval
t2’ — t;’, the S-clock would have recorded the corresponding interval

ty — 8y = 2 2-11)

VITF
Hence, unit time measured on the S'-clock is recorded as a longer time on
the S-clocks. From the point of view of observer S, the moving S'-clock
appears slowed down, that is, it appears to run at a rate which is slow by
the factor\/1 — B2 This result applies to all S'-clocks observed from S,
for the location x’ in our proof was arbitrary.

It is common in relativity to speak of the frame in which the observed
body is at rest as the proper frame. The length of a rod in such a frame
is then called the proper length. Likewise, the proper time interval is the
time interval recorded by a clock attached to the observed body. The
proper time interval can be thought of equivalently as the time interval
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between two events occurring at the same place in the S’-frame or the
time interval measured by a single clock at one place. A nonproper (or
improper) time interval would be a time interval measured by two differ-
ent clocks at two different places. Thus, we see from the previous discus-
sion that if d7 represents a proper time interval, then the expression

dr
dt = \/1——_W (2-12)
relates the nonproper interval dt to the proper interval dr. Later we shall
define other proper quantities, such as proper mass, and shall find that
they represent invariant quantities in relativity theory.

A third consequence of the Lorentz transformation equations is this:
Although clocks in a moving frame all appear to go at the same slow rate
when observed from a stationary frame with respect to which the clocks
move, the moving clocks appear to differ from one another in their read-
ings by a phase constant which depends on their location, that is, they
appear to be unsynchronized. This becomes evident at once from the
transformation equation

U4 (v/eA)x
_—————-—m .

For consider an instant of time in the S-frame, that is, a given value of .

t

Then, to satisfy this equation, ' + (v/c%)x’ must have a definite fixed
value. This means the greater is x’ (i.e., the farther away an S'-clock is
stationed on the x’-axis) the smaller is ¢ (i.e., the further behind in time
its reading appears to be). Hence, the moving clocks appear to be out of
phase, or synchronization, with one another. We shall see in the next
section that this is just another manifestation of the fact that two events
that occur simultaneously in the S-frame are not, in general, measured
to be simultaneous in the S’-frame, and vice versa.

All the results of this section are reciprocal. That is, no matter which
frame we take as the proper frame, the observer in the other frame meas-
ures a contracted length and dilated (expanded) time interval and finds

the moving clocks to be out of synchronization.

® Example 1. The factor \/1 — B2 occurs in Eq. 2-10 and the factor y =
1/v/1 — B?in Eq. 2-12. Because they arise frequently in relativity, it is help-
ful to be able to estimate their values as a function of 8. Compute /1 — 32
andy = 1/+/1 — B2 for B = v/c = 0.100, 0.300, 0.600, 0.800, 0.900, 0.950,
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and 0.990, and plot them as functions of .

We find
B= 0.100 0.300 0 600 0.800 0.900 0.950 0.990
V1-—-p2= 0.995 0.954 0.800 0.600 0.436 0.312 0.141
1/v/1 - B2 = 1.005 1.048 1.250 1.667 2.294 3.205 7.092

These factors are plotted as a function of 8 in Fig, 2-3.
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Fig. 2-3. (a) A plot of \/1 — B2 as a function of § (b) A plot of
Y = 1/4/1 — B2 as a function of 8

2.4 A More Physical Look at the Main Features of the Lorentz Trans-
formation Equations
The main distinguishing features of the Lorentz transformation
equations are these: (A) Lengths perpendicular to the relative motion are
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measured to be the same in both frames; (B) the time interval indicated
on a clock is measured to be longer by an observer for whom the clock is
moving than by one at rest with respect to the clock; (C) lengths parallel
to the relative motion are measured to be contracted compared to the
rest lengths by the observer for whom the measured bodies are moving;
and (D) two clocks, which are synchronized and separated in one inertial
frame, are observed to be out of synchronism from another inertial
frame. Here we rederive these features one at a time by thought experi-
ments which focus on the measuring process.

(A) Comparison of Lengths Perpendicular to the Relative Motion.
Imagine two frames whose relative motion is v along a common x-x’ axis.
In each frame an observer has a stick extending up from the origin along
his vertical (y and y) axis, which he measures to have a (rest) length of
exactly one meter, say. As these observers approach and pass each other,
we wish to determine whether or not, when the origins coincide, the top
ends of the sticks coincide. We can arrange to have the sticks mark each
other permanently by a thin pointer at the very top of each (e.g., a razor
blade or a paintbrush bristle) as they pass one another. (We displace the
sticks very slightly so that they will not collide, always keeping them
parallel to the vertical axis.) Notice that the situation is perfectly sym-
metrical. Each observer claims that his stick is a meter long, each sees the
other approach with the same speed v, and each claims that his stick is
perpendicular to the relative motion. Furthermore, the two observers
must agree on the result of the measurement because they agree upon the
simultaneity of the measurements (the measurement occurs at the instant
the origins coincide). After the sticks have passed, either each observer
will find his pointer marked by the other’s pointer, or else one observer
will find a mark below his pointer, the other observer finding no mark.
That is, either the sticks are found to have the same length by both ob-
servers, or else there is an absolute result, agreed upon by both observers,
that one and the same stick is shorter than the other. That each observer
finds the other stick to be the same length as his follows at once from the
contradiction any other result would indicate with the relativity princi-
ple. Suppose, for example, that observer S finds that the S’-stick has left
a mark (below his pointer) on his stick. He concludes that the S"-stick is
shorter than his. This is an absolute result, for the S’ observer will find
no mark on his stick and will conclude also that his stick is shorter. If,
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instead, the mark was left on the S'-stick, then each observer would con-
clude that the S-stick is the shorter one. In either case, this would give us
a physical basis for preferring one frame over another, for although all
the conditions are symmetrical, the results would be unsymmetrical—a
result that contradicts the principle of relativity. That is, the laws of
physics would not be the same in each inertial frame. We would have a
property for detecting absolute motion, in this case; a shrinking stick
would mean absolute motion in one direction and a stretching stick
would mean absolute motion in the other direction. Hence, to conform
to the relativity postulate, we conclude that the length of a body (or
space interval) transverse to the relative motion is measured to be the
same by all inertial observers.

(B) Comparison of Time-Interval Measurements. A simple experiment
which reveals in a direct way the quantitative relation connecting the
time interval between two events as measured from two different inertial
frames is the following. Imagine a passenger sitting on a train that moves
with uniform velocity v with respect to the ground. The experiment will
consist of turning on a flashlight aimed at a mirror directly above on the
ceiling and measuring the time it takes the light to travel up and be re-
flected back down to its starting point. The situation is illustrated in
Fig. 2-4. The passenger, who has a wrist watch, say, sees the light ray
follow a strictly vertical path (Fig. 2-4a) from 4 10 B to C and times the
event by his clock (watch). This is a proper time interval, measured by
a single clock at one place, the departure and arrival of the light ray
occurring at the same place in the passenger’s (S’) frame. Another ob-
server, fixed to the ground (S) frame, sees the train and passenger move
to the right during this interval. He will measure the time interval from
the readings on two stationary clocks, one at the position the experiment
began (turning-on of flashlight) and a second at the position the experi-
ment ended (arrival of light to flashlight). Hence, he compares the read-
ing of one moving clock (the passenger’s watch) to the readings on two
stationary clocks. For the S-observer, the light ray follows the oblique
path shown in Fig. 2-4c. Thus, the observer on the ground measures the
light to travel a greater distance than does the passenger (we have already
seen that the transverse distance is the same for each observer). Because
the speed of light is the same in both frames, the ground observer sees
more time elapse between the departure and the return of the ray of
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Fig 2-4. (a) The path of a light ray as seen by a pas-
senger in the S’ frame B is a mirror on the ceiling, 4
and C are the same point, namely, the bulb of the
flashlight, in this frame. (b) The readings on the pas-
senger’s clock at the start and end of the event, show-
ing the time interval on one moving clock (S’ frame).
(©) The path of a light ray as seen by a ground observer
(S-frame). A and C are the different locations of the
flashlight bulb at the start and the end of the event,
as the train moves to the right with speed v, in this
frame (d) Readings on the two stationary (synchro-
nized) clocks located at the start (4) of the event and
the end (C) of the event {S-frame)
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light than does the passenger. He concludes that the passenger’s clock
runs slow (see Fig. 2-4b and 2-4d). The quantitative result follows at
once from the Pythagorean theorem, for

Af — 2BD At — AB + BC;
c c
but
(BD)2 = (AB)2 — (AD)2 = (BC)? — (DC)?
so that

Av 2BD 21/(AB)2 — (AD)?

At — AB + BC — 24B

/1 — %Z (2-13)

Here AD is the horizontal distance travelled at speed v during the time

the light travelled with speed c along the hypotenuse. This result is identi-
cal to Egs. 2-11 and 2-12, derived earlier in a more formal way.

(C) Comparison of Lengths Parallel to the Relative Motion. The sim-
plest deduction of the length contraction uses the time dilation result
just obtained and shows directly that length contraction is a necessary
consequence of time dilation. Imagine, for example, that two different
inertial observers, one sitting on a train moving through a station with
uniform velocity v and the other at rest in the station, want to measure
the length of the station’s platform. The ground observer measures the
length to be L and claims that the passenger covered this distance in a
time L/v. This time, At, is a nonproper time, for the events observed
(passenger passes back end of platform, passenger passes front end of
platform) occur at two different places in the ground (S) frame and are
timed by two different clocks. The passenger, however, observes the
platform approach and recede and finds the two events to occur at the
same place in his (S') frame. That is, his clock (wrist watch, say) is lo-
cated at each event as it occurs. He measures a proper-time interval
At, which, as we have just seen (Eq. 2-13), is related to At by Ar =
At\/1 — v2/c2. But At = L/vsothat AY = L\/1 — v2/¢%/v. The passen-
ger claims that the platform moves with the same speed v relative to him
so that he would measure the distance from back to front of the platform
at v A¢. Hence, the length of the platform to him is L' = vAr =
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L\/1 — v2/c2. This is the length-contraction result, namely, that a body
of rest length L is measured to have a length L\/1 — v2/¢Z parallel to the
relative motion in a frame in which the body moves with speed v.
Another deduction of the length contraction, although somewhat more
involved, is directly related to an interpretation of the Michelson-Morley
experiment. Consider a rod at rest in the S’ frame and call its (rest) length
there L’. (Notice that in this example the rod is at rest in S’ whereas, in
the previous example, the platform was at rest in S. Since in relativity
the laws must be independent of the reference frame used, we should still
find the same physical result—that is, the observer who sees the rod
move should get a shorter length than the rest length. We shall see that
the S-observer measures the shorter length in this example, consistent
with the relativity principle.) We put a flashbulb at one end of the rod
and a mirror at the other end (see Fig. 2-5a). The S-observer measures
the time it takes a light flash to go down and be reflected back to the bulb.
This time interval, At = 2L’/c, is a proper one for it is measured by a
single clock at one point. How is this same sequence of events seen from
the Sframe? (We can regard the S-frame as the historical ether frame
through which the Michelson interferometer, the S'-frame, moves with
speed v.) During the time the light pulse goes down and back, the rod
moves to the right (Fig. 2-5b). Let us calculate the time (At;) the pulse
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Fig. 2-5. (a) A rod is at rest in the S’ frame. A bulb B’ is at one end
and a mirror M’ at the other end of a rod of length L’. (b) Successive
positions of the bulb and mirror in the S-frame as the light pulse
leaves By and is reflected from M; back to B during the motion of
the rod of length L 10 the right with speed »
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takes to reach the mirror. The light pulse must travel not only the dis-
tance L (the length of the rod in S) but also the distance v Aty that the
mirror has moved to the right during this time. Since the velocity of
light is also ¢ in this frame, we have Aty = (L + v Aty)/c or Aty =
L/(c — v). Now, let us calculate the time At; it takes the pulse to return
from the mirror to the bulb. In this case the light pulse travels less than
the distance L by the amount the bulb has moved to the right during
this time. Thus, Ats = (L — v At2) /c or Aty = L/(c + v). The total time
down and back, measured by S, is therefore
L L 2L (2L/¢)

At = Ay + A, = = = .
LAk c—v+c+v 2 —v2 (1 —v2/c?)

This time interval is a nonproper one for it is measured by two clocks
at two different places in S (at By and Bj). The relation between
the proper and nonproper time interval of the same two events (the
sending and receiving of the light flash) is given by Eq. 2-13, At =
At\/1 — v2/c2. If we substitute for At’ its value 2L’ /c and for At its value

2L/c
1 — v2/¢2
we obtain

2L 2L /T — /2

c ¢ (1—1v2/»)’

from which it follows that

L =1L"\1— v?/c. (2-14)

The rod of rest length L’ is found to have a length L'\/1 — v2/¢? parallel

to the relative motion in a frame in which the rod moves with speed v.

(D) The Phase Difference in the Synchronization of Clocks. The stu-
dent will recall that the Lorentz transformation equation for the time

(see Eqs. 2-7 and 2-8) can be written as
U+ (v/A)x
VI = v2/c®

Here we wish to give a physical interpretation of the vx’/c? term, which

we call the phase difference. We shall synchronize two clocks in one
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frame and examine what an observer in another frame concludes about
the process.

Imagine that we have two clocks, 4 and B, at rest in the S'-frame.
Their separation is L' in this frame. We set off a flashbulb, which is at
the exact midpoint, and instruct observers at the clocks to set them to
read t' = 0 when the light reaches them (see Fig. 2-6a). This is an agreed-
upon procedure for synchronizing two separated clocks (see Section 2-1).
We now look at this synchronization process as seen by an observer in
the S-frame, for whom the clocks 4 and B move to the right (see Fig.
2-6b) with speed v.

To the S-observer, the separation of the clocks will be L'm
He observes the following sequence of events. The flash goes off and
leaves the midpoint traveling in all directions with a speed c¢. As the
wavefront expands at the rate ¢, the clocks move to the right at the rate

() A N

(5 ‘
— v : —t v t=0
A B
—D> v & v
A B
[
,—D v —_>v t=t,

—D>v .,,L: DV =ty
A B

Fig. 2-6. (a) A flash sent from the midpoint of clocks 4 and B, at rest in
the S’-frame a distance L’ apart, arrives simultaneously at 4 and B. (b) The
sequence of events as seen from the S-frame, in which the clocks are a dis-
tance L apart and move to the right with speed v.
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v. Clock A intercepts the flash first, before B, and the 4 observer sets
his clock at ¢ = 0 (third picture in sequence). Hence, as far as the
S-observer is concerned, A sets his clock to zero time before B does and
the setting of the primed clocks does not appear simultaneous to the
unprimed observer. Here again we see the relativity of simultaneity; that
is, the clocks in the primed frame are not synchronized according to the
unprimed observer, who uses exactly the same procedure to synchronize
his clocks.

By how much do the S'-clocks differ in their readings according to the
S-observer? Let t = 0 be the time S sees the flash go off. Then, when
the light pulse meets clock 4, at t = t4, we have

cty = (L’/2) V1 — 1)2/02 — vig4.

That is, the distance the pulse travels to meet A is less than their initial
separation by the distance A travels to the right during this time. When
the light pulse later meets clock B (fourth picture in sequence), at
t = tg, we have ctg = (L’/2)\/m2_+ vtg. The distance the pulse
travels to meet B is greater than their initial separation by the distance B
travels to the right during this time. As measured by the clocks in S,
therefore, the time interval between the setting of the primed clocks is

L'VT = #/&/2  L\T—5&/2

At =tg — ty =

c—v c+ v
L'v\/1 — v2/c?
or At = > > .
2 —v

During this interval, however, S observes clock 4 to run slow by the
factor \/1 — v2/¢? (for “moving clocks run slow”) so that to observer S
it will read

L'v(l — v2/¢?)  L'v

At = At\/1 — v2/c? = —a—p Tz

when clock B is set to read t' = 0.

The result is that the S-observer finds the S’ clocks to be out of syn-
chronization, with clock 4 reading ahead in time by an amount L'v/c2.
The greater the separation L’ of the clocks in the primed frame, the
further behind in time is the reading of the B clock as observed at a
given instant from the unprimed frame. This is in exact agreement with
the Lorentz transformation equation for the time.
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Hence, all the features of the Lorentz transformation equations, which
we derived in a formal way directly from the postulates of relativity in
Section 2-2, can be derived more physically from the measurement
processes which were, of course, chosen originally to be consistent with
those postulates.

® Example 2. Why is the fact that simultaneity is not an absolute concept an
unexpected result? It is because the speed of light has such a large value com-
pared to ordinary speeds. Consider these two cases, which are symmetrical
in terms of an interchange of the space and time coordinates. Case I: S’
observes that two events occur at the same place but are separated in time;
S will then declare that the two events occur in different places. Case 2: §'
observes that two events occur at the same time but are separated in space;
S will then declare that the two events occur at different times.

Case 1 is readily acceptable on the basis of daily experience. 1f a man (§')
on a moving train lights two cigarettes, one ten minutes after the other, then
these events occur at the same place on his reference frame (the train). A
ground observer (S), however, would assert that these same cvents occur at
different places in his reference system (the ground). Case 2, although true,
cannot be easily supported on the basis of daily experience. Suppose that &',
seated at the center of a moving railroad car, observes that two men, one at
each end of the car, light cigarettes simultaneously. The ground observer S,
watching the railroad car go by, would assert (if he could make precise enough
measurements) that the man in the back of the car lit his cigarette a little
before the man in the front of the car lit his. The fact that the speed of light
is s0 high compared to the speeds of familiar large objects makes Case 2 less
intuitively reasonable than Case 1, as we now show.

(a) In Case 1, assume that the time separation in S’ is 10 minutes; what
is the distance separation observed by S? (b) In Case 2, assume that the dis-
tance separation in S’ is 25 meters; what is the time separation observed by
S? Take v = 20.0 m/sec which corresponds to 45 mi/hr or 8 = v/c =
6.6 X 1078,

(a) From Eqs. 2-8 we have

Xy — 2y = x2' — xy v(ta’ — ty))

—x = . L
Vi—-p  V1-p

We are given that xo" = x1" and t2’ — ;" = 10 minutes, so that

_(20.0 m/sec)(10 min)
T V1 Z(6.6 X 1079)2

= 12000 m = 12 km.

X2 — X1

This result is readily accepted. Because the denominator above is unity
for all practical purposes, the result is even numerically what we would ex-
Y purp y
pect from the Galilean equations.
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(b) From Eq¢s. 2-8 we have
t — (v/c)(x2' — x1')
V1 — B2 V31— B2
We are given that £y’ = t;’ and that x2" — x;" = 25 m, so that
_ [(20 m/sec) /(3.0 X 108 m/sec)?])(25 m)
V1 — (6.6 X 1078)2

The result is not zero, a value that would have been expected by classical
physics, but the time interval is so short that it would be very hard to show
experimentally that it really was not zero.

to — 1y = 5.6 X 10715 gec.

If we compare the expressions for x — x1 and for t; — ¢; above, we see
that, whereas v appears as a factor in the second term of the former, v/c2
appears in the latter. Thus the relatively high value of ¢ puts Case 1 within
the bounds of familiar experience but puts Case 2 out of these bounds.

In the following example we consider the realm wherein relativistic effects
are easily observable.

Example 3. Among the particles of high-energy physics are charged pions,
particles of mass between that of the electron and the proton and of positive
or negative electronic charge. They can be produced by bombarding a suita-
ble target in an accelerator with high-energy protons, the pions leaving the
target with speeds close to that of light. It is found that the pions are radio-
active and, when they are brought to rest, their half-life is measured to be
177 X 1078 secs. That is, half of the number present at any time have
decayed 1.77 X 1078 sec later. A collimated pion beam, leaving the accel-
erator target at a speed of 0.99¢, is found to drop to half its original intensity
39 m from the target.

(a) Are these results consistent?

If we take the half-life to be 1.77 X 1078 sec and the speed to be
2.97 X 108 m/sec (=0.99¢), the distance traveled over which half the pions
in the beam should decay is

d=vt =297 X 108 m/sec X 1.77 X 1078 sec = 5.3 m.

This appears to contradict the direct measurement of 39 m,

(b) Show how the time dilation accounts for the measurements.

If the relativistic effects did not exist, then the half-life would be measured
to be the same for pions at rest and pions in motion (an assumption we made
in part a above). In relativity, however, the nonproper and proper half-lives
are related by

At = Ar

V1= v2/c2
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The proper time in this case is 1.77 X 1078 sec, the time interval measured
by a clock attached to the pion, that is, at one place in the rest frame of the
pion. In the laboratory frame, however, the pions are moving at high speeds
and the time interval there (a nonproper one) will be measured to be larger
(moving clocks appear to run slow). The nonproper half-life, measured by
two different clocks in the laboratory frame, would then be

1.77 x 108 sec
V1 — (0.99)2

This is the half-life appropriate to the laboratory reference frame. Pions that
live this long, traveling at a speed 0.99¢, would cover a distance

d =099 X At = 297 X 1008 m/sec X 1.3 X 1077 sec = 39 m,

At = = 1.3 X 1077 sec.

exactly as measured in the laboratory.

(¢) Show how the length contraction accounts for the measurements.

In part a we used a length measurement (39 m) appropriate to the labora-
tory frame and a time measurement (1.77 X 1078 sec) appropriate to the
pion frame and incorrectly combined them. In part b we used the length
(39 m) and time (1.3 X 1077 sec) measurements appropriate to the laboratory
frame. Here we use length and time measurements appropriate to the pion
frame.

We already know the half-life in the pion frame, that is, the proper time
1.77 X 1078 see. What is the distance covered by the pion beam during which
its intensity falls to half its original value? If we were sitting on the pion,
the laboratory distance of 39 m would appear much shorter to us because the
laboratory moves at a speed 0.99¢ relative to us (the pion). In fact, we would
measure the distance

d =d+\/1 — v2/c2 = 39/1 — (0.99)2 m

The time elapsed in covering this distance is d'/0.99¢ or

N - 3
Ar = 39 my1 — (0.99) = 1.77 X 1078 sec,

- 0.99¢

exactly the measured half-life in the pion frame.

Thus, depending on which frame we choose to make measurements in,
this example illustrates the physical reality of either the time-dilation or the
length-contraction predictions of relativity. Each pion carries its own clock,
which determines the proper time 7 of decay, but the decay time observed
by a laboratory observer is much greater. Or, expressed equivalently, the
moving pion sees the laboratory distances contracted and in its proper decay
time can cover laboratory distances greater than those measured in its
own frame.

Notice that in this region of v = ¢ the relativistic effects are large. There
can be no doubt whether in our example, the distance is 39 m or 5.3 m. If
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the proper time were applicable to the laboratory frame, the time (1.3 X 10~7
sec) to travel 39 m would correspond to over seven halflives (ie.,
L3 X 1077 sec/1.8 X 1078 sec = 7). Instead of the beam being reduced to
half its original intensity, it would be reduced to (1/2)7 or 1/128 its original
intensity in travelling 39 m. Such differences are very easily detectable.

This example is by no means an isolated result (see, e.g., Problems 27 to
30 and Ref. 4). All the kinematic (and dynamic) measurements in high-energy
physics are consistent with the time-dilation and length-contraction results.
The experiments and the accelerators themselves are designed to take rela-
tivistic effects into account. Indeed, relativity is a routine part of the every-

day world of high-speed physics and engineering.

Example 4. We could define the length of a moving rod as the product of its
velocity by the time interval between the instant that one end point of the
rod passes a fixed marker and the instant that the other end point passes the
same marker. Show that this definition also leads to the length contraction
result of Eq. 2-10.

Let the rod be at rest in the primed frame. Then

x,__xg—vtg and 2 = x1 — vl
Ry SN

where x5’ and x;’ are the end points of the rod whose proper length is
x2" — x1". The positions of the end points in the unprimed frame are x; and
x1 measured at times ¢z and tq, respectively. However, because the marker
is fixed, xp = x; that is, we stay at the same x-position in the S-frame and

watch the rod go by. Hence,

X2 =x1
so that 22’1 — B2 4+ vty = x' /1 — B2 + vty
(2’ — )1 — B2
v

or ty — ty =

The defined length of the rod is v(t; — t5). From the above, it follows that

v(ty — t2) = (x2" — x1) /1 — B2

which is the contraction of the proper length, x;" — x1’, given by Eq. 2-10. ¢

2.5 The Observer in Relativity

There are many shorthand expressions in relativity which can
easily be misunderstood by the uninitiated. Thus the pilrase “moving
clocks run slow” means that a clock moving at a constant velocity rela-
tive to an inertial frame containing synchronized clocks will be found
to run slow when timed by those clocks. We compare one moving clock
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with two synchronized stationary clocks. Those who assume that the
phrase means anything else often encounter difficulties.

Similarly, we often refer to “an observer.” The meaning of this term
also is quite definite, but it can be misinterpreted. An observer is really
an infinite set of recording clocks distributed throughout space, at rest
and synchronized with respect to one another. The space-time coordi-
nates of an event (x,y,z,?) are recordcd by the clock at the location (x,y,z)
of the event at the time (f) it occurs. Measurements thus recorded
throughout space-time (we might call them local measurements) are
then available to be picked up and analyzed by an experimenter. Thus,
the observer can also be thought of as the experimenter who collects
the measurements made in this way. Each inertial frame is imagined
to have such a set of recording clocks, or such an observer. The rela-
tions between the space-time coordinates of a physical event measured
by one observer (S) and the space-time coordinates of the same physical
event measured by another observer (§8) are the equations of
transformation.

A misconception of the term “observer” arises from confusing “meas-
uring” with “seeing.” For example, it had been commonly assumed for
some time that the relativistic length contraction would cause rapidly
moving objects to appear to the eye to be shortened in the direction of
motion. The location of all points of the object measured at the same
time would give the “true” picture according to our use of the term
“observer” in relativity. But, in the words of V. F. Weisskopf [5]:

“When we see or photograph an object, we record light quanta emitted
by the object when they arrive simultaneously at the retina or at the
photographic film. This implies that these light quanta have not been
emitted simultaneously by all points of the object. The points further
away from the observer have emitted their part of the picture earlier
than the closer points. Hence, if the object is in motion, the eye or the
photograph gets a distorted picture of the object, since the object has
been at different locations when different parts of it have emitted the
light seen in the picture.”

To make a comparison with the relativistic predictions, therefore, we
must first allow for the time of flight of the light quanta from the differ-
ent parts of the object. Without this correction, we see a distortion due
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to both the optical and the relativistic effects. In this sense, the Lorentz
contraction is visible, particularly for views taken at right angles to the
motion of rapidly moving large objects [see Ref. 6]. But the term “ob-
server” does not mean “viewer” in relativity and we shall continue to
use it only in the sense of “measurer” described above.

2.6 The Relativistic Addition of Velocities

In classical physics, if we have a train moving with a velocity v
with respect to ground and a passenger on the train moves with a veloc-
ity u’ with respect to the train, then the passenger’s velocity relative to
the ground u is just the vector sum of the two velocities (see Eq. 1-5),
that is,

u=u 4 v. (2-15)

This is simply the classical, or Galilean, velocity addition theorem. How
do velocities add in special relativity theory?

Consider, for the moment, the special case wherein all velocities are
along the common x—x’ direction of two inertial frames S and S'. Let S be
the ground frame and S’ the frame of the train, whose speed relative to
the ground is v (see Fig. 2-7). The passenger’s speed in the S'-frame is
u', and his position on the train as time goes on can be described by
x’ = u/t’. What is the speed of the passenger observed from the ground?

Using the Lorentz transformation equations (Eqs. 2-7), we have

x — vt

Nieror

!/

’

ut

’

, t — (v/c?)x

and t = 5
V1 — v2/c?

Passenger o—d u’
Train

Sem i - e o 5 : = Ground

Fig 2-7. A schematic view of the system used in deriving the equa-
tions for the relativistic addition of velocities.
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Combining these yields
x—vt=u(t —2x),
c?

which can be written as

= _W+ov (2-16)
1 + v'v/c?)

If we call the passenger’s speed relative to ground u, then his ground
location as time goes on is given by x = ut. Comparing this to Eq. 2-16,
we obtain

p—_wtv (@-17)
1+ u'v/c?
This is the relativistic, or Einstein velocity addition theorem.

If v’ and v are very small compared to ¢, Eq. 2-17 reduces to the classi-
cal result, Eq. 2-15, u = v’ + v, for then the second term in the denomi-
nator of Eq. 2-17 is negligible compared to one. On the other hand, if
u' = ¢, it always follows that u = ¢ no matter what the value of v. Of
course, 4’ = ¢ means that our “passenger” is a light pulse and we know
that an assumption used to derive the transformation formulas was
exactly this result; that is, that all observers measure the same speed c
for light. Formally, we get, with u’ = ¢,

—_¢ctv _ ct+v o_
1+ cv/e2  clc + v)

Hence, any velocity (less than c) relativistically added to ¢ gives a result-
ant c. In this sense, ¢ plays the same role in relativity that an infinite
velocity plays in the classical case.

The Einstein velocity addition theorem can be used to explain the
observed result of the experiments designed to test the various emission
theories of Chapter One. The basic result of these experiments is that the
velocity of light is independent of the velocity of the source (see Section
1-8). We have seen that this is a basic postulate of relativity so that we are
not surprised that relativity yields agreement with these experiments.
If, however, we merely looked at the formulas of relativity, unaware of
their physical origin, we could obtain this specific result from the ve-
locity addition theorem directly. For, let the source be the S’ frame. In
that frame the pulse (or wave) of light has a speed ¢ in vacuum according



Section 2.6 The Relativistic Addition of Velocities 81

to the emission theories. Then, the pulse (or wave) speed measured by
the S-observer, for whom the source moves, is given by Eq. 2-18, and is
also c. That is, u; = ¢ when u,’ = ¢, as shown above.

It follows also from Eq. 2-17 that the addition of two velocities, each
smaller than ¢, cannot exceed the velocity of light.

® Example 5. In Example 2 of Chapter One, we found that when two electrons
leave a radioactive sample in opposite directions, each having a speed 0.67¢
with respect to the sample, the speed of one electron relative to the other is
1.34¢ according to classical physics. What is the relativistic result?

We may regard one electron as the S-frame, the sample as the S'-frame,
and the other electron as the object whose speed in the S-frame we seek (see

Fig. 1-3). Then
u = 0.67c v = 0.67¢
u +v (0674 0.67)c  1.34

= = = = 0.92c.
"E1E wue 1+ (0.67)2 1.45 € ¢

and

The speed of one electron relative to the other is less than c.
Does the relativistic velocity addition theorem alter the result of Example 1
of Chapter One? Explain.

# Example 6. Show that the Einstein velocity addition theorem leads to the
observed Fresnel drag coefficient of Eq. 1-11.

In this case, v, is the velocity of water with respect to the apparatus and
¢/n is the velocity of light relative to the water. That is, in our formula we have

c
== and V= Uy
n

Then, the velocity of light relative to the apparatus is

U= c/n + vy
T 1 4 vy/nc

and for v,,/c small (in the experiments v,/c = 2.3 X 1078) we can neglect
terms of second order in v,,/c, so that

= (S u)(i- ) =< g1 - )
n nc n n

This is exactly Eq. 1-11, the observed first-order effect. Notice that there is no
need to assume any “drag” mechanism, or to invent theories on the interac-
tion between matter and the “ether.” The result is an inevitable consequence
of the velocity addition theorem and illustrates the powerful simplicity of
relativity. 4



82 Chapter Two RELATIVISTIC KINEMATICS

It is intercsting and instructive to note that there are speeds in excess of c.
Although matter or energy (i.e., signals) cannot have speeds greater than
¢, certain kinematical processes can have super-light speeds (see Ref. 7 and
Question 26). For example, the succession of points of intersection of the
blades of a giant scissors, as the scissors is rapidly closed, may be generated
at a speed greater than ¢. Here geometrical points are involved, the motion
being an illusion, whereas the material objects involved (atoms in the scissors
blades, e.g.) always move at speeds less than ¢. Other similar cxamples are the
succession of points on a fluorescent screen as an electron beam sweeps across
the screen, or the light of a searchlight beam sweeping across the eloud cover
in the sky. The electrons, or the light photons, which carry the energy, move
at speeds not exceeding c.

Thus far, we have considered only the transformation of velocities
parallel to the direction of relative motion of the two frames of reference
(the x—x’ direction). To signify this, we should put x subscripts on u and
v’ in Eq. 2-17, obtaining

L i s (2-18)

1+ u/(v/c?

For velocities that are perpendicular to the direction of relative motion,
the result is more involved. Imagine thaf an object moves parallel to the
y’-axis in §'. Let it be observed to be at y;" and y>" at the times ¢;" and
t2’, respectively, so that its velocity in 8" isu,” = Ay /At = (y2' — y1)/
(2" — t1'). To find its velocity in S, we use the Lorentz transformation
equations and obtain

y2' —yi'=y2—n
tp — by — (xa — x))v/c® At — Ax(v/c?)

V1 — v%/¢? V1 — v?/c?

!

12' — 4L =

so that

&: Ayl — 02/ (Ay/A)y/1 — vE/c?
A At — Ax(v/ed) 1 — (%)v/cz

Now Ay/At is uy and Ax/At is u, so that

, _uy\/1 —v2/c?

YT T ww/ed)
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For comparison with Eq. 2-18, we can write the corresponding inverse
transformation. We merely change v to —v and interchange primed and
unprimed quantities, obtaining

LAYE Sl (2-19)
Y 1 + u,/(v/c?)

The student can derive the result also by seeking Ay/At directly, instead
of Ay’'/At’ as is done above (see Problem 31). In exactly the same way,
we also find

w1 —v2/c? 2.20)

u, = - o
1 + u,’(v/c?)

In Table 2-2 we summarize the relativistic velocity transformation

equations. We shall have occasion to use these results, and to interpret
them further, in later sections. For the moment, however, let us note
certain aspects of the transverse velocity transformations. The perpen-
dicular, or transverse, components (i.e., u, and u,) of the velocity of an
object as seen in the S-frame are related both to the transverse com-
ponents (i.e., u,” and u,’) and to the parallel component (i.e., u;’) of the
velocity of the object in the S’-frame. The result is not simple because
neither observer is a proper one. If we choose a frame in which u,” = 0,
however, then the transverse results become u, = uz'\/l_:vz—/c2 and
u, = u,/\/1 — v2/c%. But no length contraction is involved for trans-
verse space intervals, so what is the origin of the ﬁj—vz/? factor?
We need only point out that velocity, being a ratio of length interval
to time interval, involves the time coordinate too, so that time dilation
is involved. Indeed, this special case of the transverse velocity trans-
formation is a direct time-dilation effect.

TABLE 2-2 THE RELATIVISTIC VELOCITY TRANSFORMATION

EQUATIONS
r Urp — v _ u/ + v
e =72 usv/c =T + u;'v/c?
W = uy\/1 — v2/c? T u,/ /1 — v?/c?
4 1 — uv/c? 4 1 4 u;'v/c?
w = u /1 — v2/c¢ v — u,’\/1 — v2/c?
z 1 — uv/e? ‘ 1 4+ u'v/c?
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We can obtain the relativistic acceleration transformation equations,
also, by time differentiation of the velocity transformation equations (see
Problem 42). With a, = du,/dt and a,’ = du,’/dt’ as the x and x’ com-
ponents of the acceleration, we obtain

R v2/c2)3/2
T = uv/e?)3’

for example, with similar (more involved) equations for a,/, a,/, and ay,
a,. The principal features to note are that (1) the acceleration of a par-
ticle depends upon the inertial reference frame in which it is measured
(unlike the Galilean result wherein a,’ = a;), and (2) the relativistic
result reduces to the classical result when u and v are small compared
to ¢ (a; — a; as uy/c and v/c— 0). For emphasis we repeat that,
although in special relativity the frames are inertial (unaccelerated), the
objects whose motions we study may be accelerating with respect to
such frames.

2.7 Aberration and Doppler Effect in Relativity

Up to now we have shown how relativity can account for the
experimental results of various light-propagation experiments listed in
Table 1-2 (e.g., the Fresnel drag coefficient and the Michelson-Morley
result) and at the same time how it predicts new results also confirmed
by experiment (time dilation in pion or meson decay, also in Table 1-2).
Here we deduce the aberration result. In doing this, we shall also come
upon another new result predicted by relativity and confirmed by experi-
ment, namely a transverse Doppler effect.

Consider a train of plane monochromatic light waves of unit ampli-
tude emitted from a source at the origin of the S’-frame, as shown in
Fig. 2-8. The rays, or wave normals, are chosen to be in (or parallel to)
the x’-y’ plane, making an angle 6’ with the x’-axis. An equation describ-
ing the propagation would be of the form

cos 27r[ x' cos @ + y' sin @ _ V’t'],

N (2-21)

for this is a single periodic function, amplitude unity, representing a
wave moving with velocity A'»’ (= ¢) in the #'-direction. Notice, for
example, that for ' = 0 it reduces to cos 27[x’/\" — »'t'] and for &' =
7/2 it reduces to cos 27|y’ /A" — »'t’], well-known expressions for propa-
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Fig 2-8. A ray, or wave normal. of plane monochromatic
light waves is emitted from the origin of the S’ frame The
bars signify wavefronts separated by one wavelength from
adjacent wavefronts. The direction of propagation makes
an angle §’ with the x"-axis, the rays being parallel to the
x'-y’ plane

gation along the positive-x’ and positive-y’ directions, respectively, of
waves of frequency »’ and wavelength A’. The alternate forms, cos
@m/N)x" — N'V''] and cos 27/N)[y’ — A'V't'] show that the wave speed
is A’v’ which, for electromagnetic waves, is equal to c.

In the S-frame these wavefronts will still be planes, for the Lorentz
transformation is linear and a plane transforms into a plane. Hence, in
the unprimed, or S, frame the equation describing the propagation will

have the same form:

(2-22)

cos 2w[x cos 0 + ysin @ _ w]

A

Here, A and » are the wavelength and frequency, respectively, measured
in the S-frame, and @ is the angle a ray makes with the x-axis. We know,
if Eqs. 2-21 and 2-22 are to represent electromagnetic waves, that Av = ¢,
just as A'?" = ¢, for c is the velocity of electromagnetic waves, the same
for each observer.

Now let us apply the Lorentz transformation equations directly to
Eq. 2-21, putting

, x— vt , _ t—(v/cP)x

= and

Vie e TTVI-R
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We obtain
1 (x—wv) ,  ysin@ [t — (v/cz)x]J
2 [———— 0 -
CINVICE Ty T e

or, on rearranging terms,

cos + BB x4 sin ¢ (B cos & 4+ 1) t]
NVI— B N Vi

As expected, this has the form of a plane wave in the S-frame and must

cos 27r[

be identical to Eq. 2-22, which represents the same thing. Hence, the
coefficient of x, y, and ¢ in each equation must be equated, giving us

cos  cos + B

= 2-23
A ANVl — B2 ( )
sin 0 sin &
= 2-24
A A ( )
V(1 + Bcos @)
= 2-25
— (2:25)
We also have the relation

Av =AY =, (2-26)

a condition we knew in advance.

In the procedure that we have adopted here, we start with a light wave
in S’ for which we know X', v/, and & and we wish to find what the cor-
responding quantities A, », and @ are in the S-frame. That is, we have
three unknowns but we have four equations (Eqs. 2-23 to 2-26) from
which to determine the unknowns. The unknowns have been overde-
termined, which means simply that the equations are not all independ-
ent. If we eliminate one equation, for instance, by dividing one by
another (i.e., we combine two equations), we shall obtain three inde-
pendent relations. It is simplest to divide Eq. 2-24 by Eq. 2-23; this

gives us

N
0 = sin6'V1 — B (2-27a)

ta
" cos + B8

which is the relativistic equation for the aberration of light. It relates
the directions of propagation, & and &, as seen from two different inertial
frames. The inverse transformation can be written at once as
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: — 2
tan @ = S0V = B2 (2-27b)
cos — B

wherein B of Eq. 2-27a becomes — B and we interchange primed and
unprimed quantities. Experiments in high-energy physics involving
photon emission confirm the relativistic formula exactly.

# Example 7. Show that the exact relativistic aberration formula, Eq. 2-27a,
can be derived from the velocity transformation equations, Eqs. 2-18 and
2-19.

Let a source §’ (an atom, for example), which is moving along the x-axis
at a speed v, emit light at an angle §' to the x'-axis of its own rest frame (see
Fig. 2-8, e.g.). In the S-frame the emitting angle is 6.

The speed of light in the §'-direction is ¢ so that the component of velocity
along the x'-direction is u,” = cos §' and that along the y’-direction is
u, = csin 8.

Using the velocity addition formulas, we obtain

v — u/; +v _ ccosl + v
T 14 u/v/i2 T 1+ (veos &) /c
and v u,/ V1 — B2 csin§y/1 — B2
y =

1+ u/v/e2 14 (veos®)/c’

Now, tan 6 = csin /c cos @ = u,/u, so that, with u; and u, as found above,

tan § = 2¥ — csin1 — B _ sin\/1—- p2

u; ccosd +v ~  cos® + B

which is the relativistic aberration formula, Eq. 2-27a.

Example 8. Show that the observed first-order aberration effect, which cor-
responds to the classical picture, is a special case of the exact relativistic
formula.

Consider the case of a star directly overhead in the S-frame. One receives
plane waves whose direction of propagation is along the negative y direction.
Hence, § = 37/2. In S, the propagation direction is ¢, given by Eq. 2-27b
with 8 = 37/2. That is,

cos (37/2) — B

When v is very small compared to ¢ (v < ¢), then v/c, or B, is very small
compared to one. Thus, 82 will be negligible compared to one; neglect-
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ing terms in the second order then, we can write

ang = —VI-F -1 1 _c

B BB W
This result is in perfect agreement with the observed first-order aber-
ration effect, corresponding to the classical interpretation of the situa-
tion, as shown in Fig. 2-9. In Fig. 2-9a we show the propagation direction
of the starlight in S and in §’ and in Fig. 2-9b the orientation of the
telescopes in S and S’ which observe the star.

# Example 8. Max Born, in Einstein’s Theory of Relativity [8], says in this
conneetion:

“This result is particularly remarkable beeause all the other theories have
considerable diffieulty in explaining aberration. From the Galilean trans-
formation one obtains no deflection at all of the wave plane and the wave
direction, and to explain aberration one has to introduce the concept ‘ray,’
which in moving systems need not coincide with the direction of propagation.
In Einstein’s theory this difficulty disappears. In every inertial system S the
direction of the ray (that is, the direction along which the energy is trans-
ported) coincides with the perpendieular to the wave planes, and the aberra-
tion results, in the same way as the Doppler effect and Fresnel’s eonvection
coefficient, from the concept of a wave with the help of the Lorentz trans-
formation. This method of deriving the fundamental laws of the optics of

h4 h4
——0>v
S S
- ’ o pap=1{=C
'/,\8'_ 3r/2 ./\0 E= tanx' = :3= 2
\O x \ o S S

Fig 2-9. (a) In S, the direction of propagation from the source is along —y,
6 = 37/2 In §, the same ray makes an angle with —y"-axes (b) The line of
sight of the telescope in S is vertical and in § is inclined forward by an angle
8 = v/c, in order to see the source.
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moving bodies shows very strikingly that Einstein’s theory of relativity is
superior to all other theories.” 4§

The third of our four equations above (Egs. 2-23 to 2-26) gives us
directly the one remaining phenomenon we promised to discuss; that is,
the relativistic equation for the Doppler effect,

) — V(L + B cos @) (2-25a)

Vi-F

which we can also write inversely as

o (1 — B cos6)
ViR

Let us first check that the relativistic formula reduces to the classical

(2-25b)

one. That is, for v € ¢ we can neglect terms higher than first order in
v/c, or B, and the first-order result should be the classical one. From
Eq. 2-25b, we get (using the binomial theorem expansion through first-

order terms)

V'm v
= = ='(1 0
1—Bcos@ 1— Bcosb V(L + B oos )

which is the classical result. This becomes clear on consideration of the
more familiar special cases. For, with 6 = 0, which corresponds to ob-
server S seeing the source move toward him or his moving toward the

source, we obtain
v=v(1+pB = V’(l +3)
c

which shows that the observed frequency » is greater than the proper
frequency »’. With 6 = 180°, which corresponds to observer S seeing
the source move away from him or his moving away from the source, we
obtain
v=v'(1l-p) = V'(l — 2)
c

which shows that the observed frequency » is less than the proper fre-
quency »'. Finally, for @ = 90°, wherein the line of sight is perpendicu-
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lar to the relative motion, there is no Doppler effect classically; that is,
v = v'. All these first-order results are classical effects.

Now, if v is not small compared to ¢, we should obtain relativistic
(second-order) effects. It is convenient to think of these effects separately
as a longitudinal one and a transverse one. Thus, for the longitudinal
Doppler effect in relativity, we use Eq. 2-25b and set 8 =0orf = 180°.
That is, in v = (/1 — B2)/(1 — B cos 6), with § = 0 (source and ob-

server move toward one another) we obtain

— 1+B_I C+U. -
v=1v /1—,8_V /c_v, (2-28)

and with § = 180° (source and observer move away from one another)

o, /1—,3_, fe — v )
v=1y 1+B_v e T v (2-29)

These results, were first confirmed experimentally in 1938 by Ives and

we obtain

Stilwell, who (following a suggestion first made by Einstein in 1907)
used a beam of excited hydrogen atoms of well-defined speed and direc-
tion as the source of radiation [9, 10]. The experiment was repeated in
1961 with higher accuracy by Mandelberg and Witten [11], again con-
firming the relativistic effect.

More striking, however, is the fact that the relativistic formula pre-
dicts a transverse Doppler effect, an effect that is purely relativistic, for
there is no transverse Doppler effect in classical physics at all. This
prediction follows from Eq. 2-25b, v = (V' V1 = B3/(1 — B cos 6),

when we set @ = 90°, obtaining

v = v'/T1= B (2-30)

If our line of sight is 90° to the relative motion, then we should observe
a frequency » which is lower than the proper frequency »’ of the source
which is sweeping by us. Ives and Stilwell [9] in 1938 and 1941, and
Otting [12] in 1939 confirmed the existence of this transverse Doppler
effect, and more recently Kundig [13] obtained excellent quantitative
data confirming the relativistic formula to within the experimental error
of 1.1 percent.

It is instructive to note that the transverse Doppler effect has a simple
time-dilation interpretation. The moving source is really a moving clock,
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beating out electromagnetic oscillations. We have seen that moving
clocks appear to run slow. Hence, we see a given number of oscillations
in a time that is longer than the proper time. Or, equivalently, we see a
smaller number of oscillations in our unit time than is seen in the unit
time of the proper frame. Therefore, we observe a lower frequency than
the proper frequency. The transverse Doppler effect is another physical
example confirming the relativistic time dilation.

In both the Doppler effect and aberration, the theory of relativity
introduces an intrinsic simplification over the classical interpretation of
these effects in that the two separate cases which are different in classical
theory (namely, source at rest-moving observer and observer at rest-
moving source) are identical in relativity. This, too, is in accord with
observation. Notice, also, that a single derivation yields at once three
effects, namely aberration, longitudinal Doppler effect, and transverse
Doppler effect. Perhaps it should be remarked, however, that there are
certain properties of the electromagnetic wave which cannot be derived
merely by considering the phase term, as we have done. In order to deter-
mine things such as the degree of polarization, the distribution with
direction of the power flow, and the momentum content, we need to
know the transformation properties of the electromagnetic fields them-
selves (Chapter Four).

2.8 The Common Sense of Special Relativity

We are now at a point where a retrospective view can be helpful.
Later we shall see more predictions of special relativity which are con-
firmed by experiment, in direct contradiction to classical views. And
throughout atomic, nuclear, high-energy, and solid-state physics, rela-
tivity is used in an almost commonplace way as the correct description
of the real microscopic world. Furthermore, relativity is a consistent
theory, as we have shown already in many ways and shall continue to
show later. However, because our everyday macroscopic world is classi-
cal to a good approximation and students have not yet lived with or
used relativity enough to become sufficiently familiar with it, there may
remain misconceptions about the theory which are worth discussing now.

(A) The Limiting Speed c of Signals. We have seen that, if it were
possible to transmit signals with infinite speed, we could establish in an
absolute way whether or not two events are simultaneous. The relativity
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of simultaneity depended on the existence of a finite speed of transmis-
sion of signals. Now we probably would grant that it is unrealistic to
expect that any physical action could be transmitted with infinite speed.
It does indeed seem fanciful that we could initiate a signal that would
travel to all parts of our universe in zero time. It is really the classical
physics (which at bottom makes such an assumption) that is fictitious
(science fiction) and not the relativistic physics, which postulates a limit-
ing speed. Furthermore, when experiments are carried out, the relativity
of time measurements is confirmed. Nature does indeed show that rela-
tivity is a practical theory of measurement and not a philosophically
idealistic one, as is the classical theory.

We can look at this in another way. From the fact that experiment
denies the absolute nature of time, we can conclude that signals cannot
be transmitted with infinite speed. Hence, there must be a certain finite
speed that cannot be exceeded and which we call the limiting speed. The
principle of relativity shows at once that this limiting speed is the speed
of light, since the result that no speed can exceed a given limit is certainly
a law of physics and, according to the principle of relativity, the laws of
physics are the same for all inertial observers. Therefore this given
limit, the limiting speed, must be exactly the same in all inertial refer-
ence frames. We have seen, from experiment, that the speed of light has
exactly this property.

Viewed in this way, the speed of electromagnetic waves in vacuum
assumes a role wider than the travel rate of a particular physical entity.
It becomes instead a limiting speed for the motion of anything in nature.

(B) Absolutism and Relativity. The theory of relativity could have
been called, instead, the theory of absolutism with some justification.

The fact that the observers who are in relative motion assign different
numbers to length and time intervals between the pair of events, rather
than finding these numbers to be absolutes, upsets the classical mind.
This is so in spite of the fact that even in classical physics the measured
values of the momentum or kinetic energy of a particle, for example, also
are different for two observers who are in relative motion. What is
troublesome, apparently, is the philosophic notion that length and time
in the abstract are absolute quantities and the belief that relativity con-
tradicts this notion. Now, without going into such a philosophic byway,
it is important to note that relativity simply says that the measured length
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or time interval between a pair of events is affected by the relative motion
of the events and measurer. Relativity is a theory of measurement, and
motion affects measurement. Let us look at various aspects of this.

That relative motion should affect measurements is almost a ““common-
sense”” idea—classical physics is full of such examples, including the
aberration and Doppler effects already discussed. Furthermore, to ex-
plain such phenomena in relativity, we need not talk about the structure
of matter or the idea of an ether in order to find changes in length and
duration due to motion. Instead, the results follow directly from the
measurement process itself. Indeed, we find that the phenomena are
reciprocal. That is, just as A’s clock seems to B to run slow, so does B’s
clock seem to run slow to A; just as A’s meter stick seems to B to have
contracted in the direction of motion, so likewise B’s meter stick seems
to A to have contracted in exactly the same way.

Moreover, there are absolute lengths and times in relativity. The rest
length of a rod is an absolute quantity, the same for all inertial observers:
If a given rod is measured by different inertial observers by bringing the
rod to rest in their respective frames, each will measure the same length,
Similarly for clocks, the proper time (which might better have been
called “local time”) is an invariant quantity:* the frequency of oscilla-
tion of an ammonia molecule, for instance, would be measured to be the
same by different inertial observers who bring the molecule to rest in
their respective frames.

Where relativity theory is clearly “more absolute” than classical
physics is in the relativity principle itself: the laws of physics are abso-
lute. We have seen that the Galilean transformations and classical notions
contradicted the invariance of electromagnetic (and optical) laws, for
example. Surely, giving up the absoluteness of the laws of physics, as
classical notions of time and length demand, would leave us with an
arbitrary and complex physical world. By comparison, relativity is
absolute and simple.

(C) The “Reality” of the Length Contraction. Is the length contraction
“real” or apparent? We might answer this by posing a similar question.
Is the frequency, or wavelength, shift in the Doppler effect real or appar-

*In terms of simultaneity, we can say that the time order of two events at the same place can be
absolutely determined It is in the case that two events are separated in space that simultaneity is a

relative concept
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ent? Certainly the proper frequency (i.e., the rest frequency) of the
source is measured to be the same by all observers who bring the source
to rest before taking the measurement. Likewise, the proper length is
invariant. When the source and observer are in relative motion, the
observer definitely measures a frequency (or wavelength) shift. Likewise,
the moving rod is definitely measured to be contracted. The effects are
real in the same sense that the measurements are real. We do not claim
that the proper frequency has changed because of our measured shift.
Nor do we claim that the proper length has changed because of our meas-
ured contraction. The effects are apparent (i.e., caused by the motion)
in the same sense that proper quantities have not changed.

We do not speak about theories of matter to explain the contraction
but, instead, we invoke the measurement process itself. For example, we
do not assert, as Lorentz sought to prove, that motion produces a physical
contraction through an effect on the elastic forces in the electronic or
atomic constitution of matter (motion is relative, not absolute), but
instead we remember the fish story. If a fish is swimming in water and
his length is the distance between his tail and his nose, measured simul-
taneously, observers who disagree on whether measurements are simulta-
neous or not will certainly disagree on the measured length. Hence,
length contraction is due to the relativity of simultaneity.

Since length measurements involve a comparison of two lengths
(moving rod and measuring rod, e.g.) we can see that the Lorentz length
contraction is really not a property of a single rod by itself but instead is
a relation between two such rods in relative motion. The relation is both
observable and reciprocal.

(D) Rigid Bodies and Unit Length. In classical physics, the notion of
an ideal rigid body was often used as the basis for length (i.e., space)
measurements. In principle, a rigid rod of unit length is used to lay out
a distance scale. Even in relativity we can imagine a standard rod defining
a unit distance, this same rod being brought to rest in each observer’s
frame to lay out space-coordinate units. However, the concept of an
ideal rigid body is untenable in relativity, for such a body would be
capable of transmitting signals instantaneously; a disturbance at one end
would be propagated with infinite velocity through the body, in contra-
diction to the relativistic principle that there is a finite upper limit to the
speed of transmission of a signal.
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Conceptually, then, we must give up the notion of an ideal rigid body.
This causes no problems for, at bottom, time measurements are primary
and space measurements secondary. We know that this is so in relativity
(the simultaneity concept is used in the definition of length) but it is less
well recognized that a similar situation exists in classical physics.

For example, we do not use the rigid-body concept in making distance
measurements on the astronomical scale. Instead we use the “radar”
method. We measure the round-trip time for electromagnetic waves and
derive distance from a product of the velocity ¢ and the time interval.
Even the units, such as light-years, suggest this procedure. An analagous
“sonar” technique is used by animals (e.g., bats and fish) for distance
measurement. And on the atomic and subatomic scale we do not invoke
rigid bodies for distance measurements either. We again use the proper-
ties of electromagnetic waves and not of rigid bodies. Indeed, the very
quantity that is today taken as the unit of length is the wavelength of
light of a given frequency », the wavelength being the distance ¢/v trav-
eled in one period at a speed c. In atomic theory, the frequencies are the
standard or characteristic quantities, so that the time standards are
primary and lengths are determined from them by the use of c.

It is fitting, in emphasizing the common sense of relativity, to conclude
with this quotation from Bondi [14] on the presentation of relativity
theory:

“At first, relativity was considered shocking, anti-establishment and
highly mysterious, and all presentations intended for the population at
large were meant to emphasize these shocking and mysterious aspects,
which is hardly conducive to easy teaching and good understanding.
They tended to emphasize the revolutionary aspects of the theory
whereas, surely, it would be good teaching to emphasize the continuity
with earlier thought. . ..

“It is first necessary to bring home to the student very clearly the
Newtonian attitude. Newton’s first law of dynamics leads directly to the
notion of an inertial observer, defined as an observer who finds the law
of inertia to be correct . ... The utter equivalence of inertial observers
to each other for the purpose of Newton’s first law is a direct and logical
consequence of this law. The equivalence with regard to the second law
is not a logical necessity but a very plausible extension, and with this
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plausible extension we arrive at Newton's principle of relativity: that
all inertial observers are equivalent as far as dynamical experiments go.
It will be obvious that the restriction to dynamical experiments is due
simply to this principle of relativity having been derived from the laws
of dynamies. . ..

“The next step . . . is to point out how absurd it would be if dynamics
were in any sense separated from the rest of physics. There is no experi-
ment in physics that involves dynamics alone and nothing else. . ..
Hence, Newton’s principle of relativity is empty because it refers only
to a class of experiment that does not exist—the purely dynamical experi-
ment. The choice is therefore presented of either throwing out this
principle or removing its restriction to dynamical experiments. The first
alternative does not lead us any further, and clearly disregards something
of significance in our experience. The second alternative immediately
gives us Einstein’s principle of relativity: that all inertial observers are
equivalent. It presents this principle, not as a logical deduction, but as
a reasonable guess, a fertile guess from which observable consequences
may be derived so that this particular hypothesis can be subjected to
experimental testing. Thus, the principle of relativity is seen, not as a
revolutionary new step, but as a natural, indeed an almost obvious, com-
pletion of Newton’s work.”

Questions

1. Distinguish between sound and light as to their value as synchronizing
signals. Is there a lack of analogy?

2. If the limiting speed of signals in classical physics were ¢ rather than
inﬁnily, would simultaneity be an absolute concept or a relative concept
in classical physics?

3. Give an example from classical physics in which the motion of a clock
affects its rate, that is, the way it runs. (The magnitude of the effect may
depend on the detailed nature of the clock.)

4. Explain how the result of the Michelson-Morley experiment was put into
our definition (procedure) of simultaneity (for synchronizing clocks).

5. The transformation equations (with the sixteen coefficients) would still
be linear if we added a different constant term to each of them, We im-
plicitly took all these constants to be zero. What is the meaning of this
choice? (Hint. Consider the choice of origins.)
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According to Eqs. 2-4 and 2-5, each inertial observer finds the center
of the spherical electromagnetic wave to be at his own origin at all times,
even when the origins do not coincide. How is this result related to our
procedure for synchronizing clocks?

How can we justify excluding the negative roots in solving for the coeffi-
cients ayq and a44 in Section 2-27

What assumptions, other than the relativity prineiple and the constancy
of ¢, were made in dedueing the Lorentz transformation equations?

In our deduction of the length contraction, we arrive at the same result
that was proposed by Lorentz. Why then did we reject the Lorentz length
contraction hypothesis; that is, in what way do our assumptions differ
from those of Lorentz?

Two observers, one at rest in § and one at rest in §’, each carry a meter
stick oriented parallel 10 their relative motion. Each observer finds on
measurement that the other observer’s meter stick is shorter than his
meter stick. Explain this apparent paradox. (Hint. Compare the following
situation. Harry waves good-bye to Walter, in the rear of a station wagon
driving away from Harry. Harry says that Walter gets smaller. Walter
says that Harry gets smaller. Are they measuring the same thing?)

Although in relativity (where motion is relative and not absolute) we
find that “moving clocks run slow.” this effect has nothing to do with
motion altering the way a clock works. What does it have to do with?

In time dilation, what is dilated? Would “time retardation™ be a better
term?

Comment on the statement of G. J. Whitrow [2]: “Just as observers in
different places have different spatial perspectives of the universe, so
observers with different velocities have different temporal perspectives.”

We have always set the elocks at the origins of two inertial frames to
read zero when they are coincident. If these clocks are synchronized to
a time other than zero, can we use the Lorentz transformations as before?

Explain (see Problem 5).

Is it true that two events which occur at the same place and at the same
time for one observer will be simultaneous for all observers? Explain.

If an event A precedes an event B at the same point in one frame of refer-
ence, will A precede B in all other inertial reference frames? Will they
occur at the same point in any other inertial frame? Will the time interval
between the events be the same in any other inertial frame? Explain.

(See Topical Appendix A.)

If two events are simultaneous but separated in space in frame S, will
they be simultaneous in any other frame $"? Will their space separation
be the same in any other frame? Explain. (See Topical Appendix A.)



98

18.

19.

20.

21.

22,

23.

24.
25.

26.

27.

28.

29.

30.

Chapter Two RELATIVISTIC KINEMATICS

We saw that two moving clocks appear to be out of synchronization by an
amount L'v/c2. Does the sign of the effect change, if we reverse the direc-
tion of motion of the clocks? (Sending v 1o —v is equivalent to changing
the observer from S to S'.) Explain physically.

Recalling that each observer finds the other observer’s length scale to
contract and the time scale to dilate, explain how it happens that they
disagree on the sign of phase-difference effect?

If we assume the existence of an ether and the correctness of the Lorentz
transformation equations, we can show that all inertial observers measure
the same speed ¢ for light regardless of their speed through the ether
(see, e.g., Chapter VIII of Ref. 15). Make this plausible. (Hint. In addition
to time dilation and length contraction we need to account for the phase
difference in the synchronization of clocks.)

Show, from the velocity addition theorem of relativity, how we can
account for the result of the Michelson-Morley experiment and the
double-star observations.

Equation 2-17 for the relativistic addition of parallel velocities holds
whether ©’ and v are positive or negative, although our examples con-
sidered only positive quantities. Modify an example to include a negative
value for u’ or v and show that the physical conclusions are unchanged.

Compare the results obtained for length- and time-interval measure-
ments by observers in frames whose relative velocity is c. In what sense,
from this point of view, does ¢ become a limiting velocity?

In Example 6, what would happen if v, = —c¢/n?

Consider a spherical light wavefront spreading out from a source. As
seen by the source, what is the difference in velocity of portions of the
wavefront traveling in opposite direetions? What is the relative velocity
of one portion of the wavefront with respect to the other portion?

The sweep rate of the tail of a comet can exceed the speed of light. Ex-
plain this phenomenon and show that there is no contradiction with
relativity.

Starting from Max Born’s quotation in Section 2-7, make an argument
showing that relativity is consistent with the existence of photons.

Imagine a source of light emitting radiation (photons) uniformly in ail
directions in S’. In S, the radiation will be concentrated in the forward
direction for high values of v. Explain, qualitatively (see Problem 43).

List several experimental results not predicted or explained by classical
physies which are predicted or explained by special relativity theory.

Is everything relative according to relativity theory or are there any
invariant things permitied by the theory? That is, are there any things
which appear to be the same for all observers? If so, name some of them.
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Why is Einstein’s theory called the theory of relativity? Would some
other name characterize it better?

Is the classical concept of an incompressible fluid valid in relativity?

Explain.

For a classical assembly of particles, the total angular momentum is the
sum of the orbital and spin angular momenta. Can we regard the spin
angular momentum as an example of a “proper” quantity in classical
physics? (In the proper frame, the spin angular momentum equals the
total angular momentum, the orbital part being zero.)

We have stressed the utility of relativity at high speeds. Relativity is also
useful in cosmology, where great distances and long time intervals are
involved. Show, from the form of the Lorentz transformation equations,
why this is so.

Problems

1.

(a) Assume, in Fig. 2-1, that §’ is a train having a speed of 100 mi/hr and
that it is 0.5 miles long (proper length). What is the elapsed time between
the reception of the two wavefronts by 0'? [Do this two ways: first by
using the Lorentz transformation; second, by finding expressions for the
time of receipt of the two signals by ¢ and subtracting. Hint. Remember
that you are viewing the events from the ground (S) frame.] (b) What
if the train were at rest on the tracks? What if the wavefronts traveled
with infinite speed?

. Show that Eqgs. 2-6 for a44, a11, and ay; are the solutions to the equations

preceding them.
Derive Eqgs. 2-8 directly from Eqs. 2-7.

Suppose that an event occursin Satx = 100 km, y = 10 km,z = 1.0 km
at t = 5.0 X 1076 seeonds. Let S’ move relative to S at 0.92¢ along the
common x-x’ axis, the origins coinciding at ¢ = ¢t = 0. What are the
coordinates ', y', z’, and ¢’ of this event in §’? Check the answer by using
the inverse transformation to obtain the original data.

. Two observers in the S frame, 4 and B, are separated by a distance of

60 m. Let " move at a speed #c relative to S, the origins of the two
systems, O’ and O, being coincident at ¥ =t = 3 X 1077 sec (90/¢).
The S’ frame has two observers, one at A’ and one at a point B’ such
that, according to clocks in the S frame, 4’ is opposite 4 at the same
time that B’ is opposite B (Fig. 2-1a). (@) What is the reading on the
clock of B' when B’ is opposite B? Do this twice: first, use the direct
Lorentz transformation to find ¢’; second, use the inverse Lorentz trans-
formation but again solve for ¢". Do the answers agree? (Careful: x and '
are related as improper and proper lengths). (b) The S’ system continues
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10.

moving until 4’ is opposite B. What is the reading on the clock of B
when he is opposite 4? (c) What is the reading on the clock of 4" when
he is opposite B? Do this also in two ways: first, use the Lorentz transfor-
mations; second, use the concept of proper and improper time intervals.
(Note. You may find it convenient to express time in units of 1/c, i.e.,
3 X 1077 sec = 90/c and so on.)

At what speed v will the Galilean and Lorentz expressions for x differ
by 0.10 percent? By 1 percent? By 10 percent?

Prove the invariance of the electromagnetic wave equation in relativity
by showing that the corresponding differential operator is an invariant.
That is, show that

02 02 02 1 92 _ o2 02 02 1 02

IR R ¥ X T W R W) t oz T & o

when the space-time variables are related by the Lorentz transforma-
tions (see Problem 1-8).

Show that the proper time, given by Eq. 2-12 as d7 = dt\/1 — f82, is
an invariant quantity with respect to a Loreniz transformation. [Hint.

In B2 = v2/c2, let 12 = (dx/d)? + (dy/d9)2 + (dz/dp)2.]

Two events, one at position x;, y1, 1 and another at a different position
X2, ¥2, 32 occur at the same time t according to observer S. (a) Do these
events appear to be simultaneous to an observer in §' who moves rela-
tive to S at speed ¢? (b) If not, what is the time interval he measures
between occurrences of these events? (¢) How is this time interval
affected as v — 0? As the separation between events goes to zero?

A cart moves on a track with a constant velocity v (See Fig. 2-10). A and
B are on the ends of the cart and observers C and D are stationed along
the track. We define event AC as the occurrence of A4 passing C, and the
others similarly. (a) Of the four events BD, BC, AD, AC, which are use-
ful for measuring the rate of a clock carried by A for observers along
the track? (b) Let At be the time interval between these two events for
observers along the track. What time interval does the moving clock
show? (c) Suppose that the events BC and AD are simultaneous in the
track reference frame. Are they simultaneous in the cart’s reference
frame? If not, which is earlier?

—Dv

00 v ¢

Fig 2-10. Problems 10 and 11
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A eart moves on a track with constant velocity, as in Problem 10. Event
AD is simultaneous with BC in the track frame. (a) The track observers
set out to measure the length of the cart AB. They can do so either by
using the events BD and AD and working through time measurements
or by using the events BC and 4B. In either case, the observers in the
cart are not apt to regard these results as valid. Explain why for each
case. (b) Suppose that the observers in the cart seek to measure the dis-
tance DC by making simultaneous marks on a long meter stick. Where
(relative to 4 and B) would the observer, E, be situated such that AD
is simultaneous with EC in the cart frame? Explain why in terms of syn-
chronization. Can you see why there is a length contraction?

As seen from inertial system S an event occurs at point 4 on the x-axis
and then 1076 sec later an event oceurs at point B further out on the
x-axis. A and B are 600 m apart as seen from S. (a) Does there exist
another inertial system §’, moving with speed less than ¢ parallel to the
x-axis, such that the two events appear simultaneous as seen from §?
If so, what is the magnitude and direetion of the velocity of §" with
respect to S? What is the separation of events 4 and B according to §?
(b) Repeat part a for the case where 4 and B are only 100 m apart as
seen from S.

What is the proper time interval between the occurrence of two events:
(a) if in some inertial frame the events are separated by 10° m and
occur 5 sec apart? (b) If ... 7.5 X 108 m and occur 2.5 sec apart? (c) If . ..
5 X 108 m and occurs 1.5 sec apart?

In the usual set-up of frames S” and S having relative velocity v along
x-x’, the origins coinciding at t = ¢ = 0, we shall find that, at a later time,
t, there is only one plane in S on which the clocks agree with those of §'.
(a) Show that this plane is given by

=@ (-2}

and moves with velocity

(-2

in 8. (b) Show that this speed is less than v. (c) Suppose that an observer
S moves with the velocity u relative to S. This means that clocks oppo-
site him in S and § will each measure the same improper time interval
for an event in which an observer in the S” frame carries the proper
time. Using the result of (b) and the expression for time dilation, explain
how this is possible.

(@) In Problem 14, let v = #c. Find u, the velocity of 8" relative to S. Is
your answer consistent with Problem 14(b)? (b) Using this value of u in
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16.

17.

18.

19.

20.

21.

22,

23.

the velocity transformation equations, find the velocity of the frame S
relative to frame S”. Is your answer consistent with Problem 14(c)?
(c) Prove that the result of (b) is a general result; that is, for any relative
velocity v between frames S and &', an observer in this special frame S”
will see frame S moving with a velocity —u and frame §" moving with a
velocity + u. (d) Justify the result (c) logically using symmetry arguments
and the fact that there is no preferred reference frame.

In our physical derivation of the length contraction (Section 2-4) we
assumed that the time dilation was given. In a similar manner derive the
time dilation for longitudinal light paths, assuming instead that the length
contraction is given.

Show how the four results of the physical measurement processes of
Section 2-4 can be combined to derive the Lorentz transformation
equations of Section 2-2.

An airplane 40.0 m in length in its rest system is moving at a uniform
velocity with respect to earth at a speed of 630 m/sec. (a) By what frac-
tion of its rest length will it appear to be shortened to an observer on
earth? (b) How long would it take by earth clocks for the airplane’s clock
to fall behind by one microsecond? (Assume that special relativity only

applies).

The rest radius of the earth may be taken as 6400 km and its orbital
speed about the sun as 30 km/sec. By how much would the earth’s diame-
ter appear 1o be shortened to an observer on the sun, due to the earth’s
orbital motion?

Consider a universe in which the speed of light ¢ = 100 mi/hr. A Lincoln
Continental traveling at a speed v relative 10 a fixed radar speed trap
overtakes a Volkswagon traveling at the speed limit of 50 mi/hr = ¢/2.
The Lincoln’s speed is such that its length is measured by the fixed ob-
server to be the same as that of the Volkswagon. By how much is the
Lincoln exceeding the speed limit? The proper length of the Lincoln is
twice that of the Volkswagon.

A 100-Mev electron, for which 8 = 0.999975, moves along the axis of an
evacuated tube which has a length I’ of 3.00 m, as measured by a labora-
tory observer S’ with respect to whom the tube is at rest. An observer $
moving with the electron would see the tube moving past at a speed v.
What length would observer S measure for this tube?

The length of a spaceship is measured to be exactly half its proper length.
(a) What is the speed of the spaceship relative to the observer’s frame?
(b) What is the dilation of the spaceship’s unit time?

The radius of our galaxy is 3 X 1020 m, or about 3 X 10* light-years.
(a) Can a person, in principle, travel from the center to the edge of our
galaxy in a normal lifetime? Explain, using either time-dilation or length-
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contraction arguments. (b) What constant velocity would he need to make
the trip in 30 years (proper time)?

Two spaceships, each of proper length 100 m, pass near one another
heading in opposite directions. If an astronaut at the front of one ship
measures a time interval of 2.50 X 1076 sec for the second ship to pass
him, then (a) what is the relative velocity of the spaceships? (b) What
time interval is measured on the first ship for the front of the second ship
to pass from the front to the back of the first ship?

Suppose that a pole vaulter, holding a 16 ft long pole parallel to his direc-
tion of motion, runs through an 8 ft long shed which is open at each end.
Is it possible to close sliding doors at each end of the shed such that the
pole is entirely in the shed before it strikes the exit door? Discuss the

situation from the point of view of the pole-vaulter and an observer on
the shed roof [see Ref. 16].

A rod of rest length 1.0 m is moving longitudinally on a smooth table
with a velocity 0.8c relative to the table. A circular hole of rest diameter
1.0 m lies in its path. (@) What is the diameter of the hole as seen by the
rod? (b) What is the length of the rod as seen by the hole? (c) Does the
rod fall into the hole (gravity acting) or not? Explain (see Refs. 17
and 18).

(a) If the average (proper) lifetime of a u-meson is 2.3 X 1076 sec, what
average distance would it travel in vacuum before dying as measured in
reference frames in which its velocity is 0.00¢, 0.60c, 0.90c, and 0.99¢?
(b) Compare each of these distances with the distance the meson sees
itself traveling through.

A 7* meson is created in a high-energy collision of a primary cosmic-ray
particle in the earth’s atmosphere 200 km above sea level. It descends
vertically at a speed of 0.99¢ and disintegrates, in its proper frame,
2.5 X 1078 gec after its creation. At what altitude above sea level is it
observed from earth to disintegrate?

The mean lifetime of p-mesons stopped in a lead block in the laboratory
is measured to be 2.3 X 107% sec. The mean lifetime of high-speed
p-mesons in a burst of cosmic rays observed from the earth is measured
to be 1.6 X 1075 sec. Find the speed of these cosmic-ray p-mesons.

Laboratory experiments on p-mesons at rest show that they have a
(proper) average lifetime of about 2.3 X 1078 sec. Such p-mesons are
produced high in the earth’s atmosphere by cosmic-ray reactions and
travel at a speed 0.99¢ relative 1o the earth a distance of from 4000 to
13000 m after formation before decaying. (a) Show that the average
distance a g-meson can travel before decaying is much less than even the
shorter distance of 4000 m, if its lifetime in flight is only 2.3 X 1076 sec.
(b) Explain the consistency of the observations on length traveled and
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lifetime by computing the lifetime of a g-meson in flight as measured by
a ground observer. (c) Explain the consistency by computing the length
traveled as seen by an observer at rest on the meson in its flight through
the atmosphere.

(a) Derive Eq. 2-18 in the same way in which Eq. 2-19 was derived.
(b) Derive Eq. 2-19 directly, rather than by taking the inverse of u,/’.

In Fig. 2-11, A and B are the points of intersection of the x-axes (station-
ary rod) and an inclined rod (moving rod) at two different times. The
inclined rod is moving in the + y-direction (without turning) with a
speed v. (a) Show that the point of intersection of the rods has a speed
u = v cot @ to the left. (b) Let § = 60° and v = }c. Show that u then

exceeds c and explain why no contradiction with relativity exists.

Fig 2-11. Problem 32

One cosmie-ray particle approaches the earth along its axis with a velocity
0.8¢ toward the North Pole and another with a velocity 0.6¢ toward the
South Pole. What is the relative speed of approach of one particle with
respect to the other? (Hint. It is useful to consider the earth and one of
the particles as the two inertial systems.)

Suppose that a particle moves parallel to the x-x axis, that v = 25,000
mi/hr and u,” = 25,000 mi/hr. What percent error is made in using the
Galilean rather than the Lorentz equation to calculate u;? The speed of

light is 6.7 X 102 mi/hr.

Consider three inertial frames of reference S, S’, and S”. Let 8’ move
with velocity v with respect to S, and let §” move with velocity v” with
respect to 8. All velocities are colinear. (@) Write the transformation
equations relating x, y, z, t with x’, ', 2/, ¢’ and also those relating %y,
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2/, ' with x”7, ", 27, t”. Combine these equations to get the relations be-
tween x, y, z, tand x”, y”, 2", ¢, (b) Show that these relations are equiva-
lent to a direct transformation from S to S” in which the relative velocity
v of S” with respect to S is given by the relativistic addition theorem

N - v
T+ v/

(¢) Explain how the above analysis proves that two successive Lorentz
transformations are equivalent to one direct transformation.

Suppose that a particle moves relative 1o the primed system with the
velocity v’ in the x"-y’ plane so that its trajectory makes an angle & with
the x’-axis. (a) Show that its equations of motion in S’ are given by

x = u't cos & y = u't' sin ¢ zZ=0.
(b) In the S-frame, the corresponding velocity u and angle 8 will be given
by the equations
x = ut cos 6 y = ut sin z=0.

Justify this statement. (c) Show, using the Lorentz transformation equa-
tions, that the magnitude and direction of the velocity in § is given by

u'? + v2 4+ 2u'veos & — (u'2v2/c?) sin2 @'
[1 + (u'v/c?) cos 8]

u’ sin 8'\/1 — B2

ucosd + v

u? =

and tan 8 =

(d) How is this result related to the relativistic equation for the aber-
ration of light, Eq. 2-27a? (Hint. What is v’ in the case of light?) (e) Show
that the expression for u? in part (c) is identical to that obtained by using
Egs. 2-18 and 2-19 with u? = u,? + u,2.

(a) Show that, with 42 = u,’?2 + u,/? and u? = u,? + u,?, we can write

9 s _ €3(c? — u?)(c? — v?)
2 —u? = - —
(c? + u,'v)?

(b) From this result show that if 4’ < ¢ and v < ¢, then u must be less
than c. That is, the relativistic addition of two velocities, each less than
c, is itself a velocity less than c. (c) From this result, show that if v’ = ¢
or v = ¢, then u must equal c. That is, the relativistic addition of any
velocity to the velocity of light merely gives again the velocity of

light [Ref. 19].

Consider a radioactive nueleus moving with uniform veloeity 0.05¢
relative to the laboratory. (a) The nucleus decays by emitting an elec-
tron with a speed 0.8¢ along the direction of motion (the common x-x’
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axis). Find the velocity (magnitude and direction) of the electron in the
lab frame, S. (b) The nucleus decays by emitting an electron with speed
0.8¢c along the positive y’-axis. Find the velocity (magnitude and direc-
tion) of the electron in the lab frame. (c) The nucleus decays by emitting
an electron with a speed 0.8c along the positive y-axis (i.e., perpendicu-
lar to the original motion of the nucleus in the lab frame). Find the
speed of the electron in the lab frame and the direction of emission in
the original rest frame of the nucleus, §'.

39. Suppose that event A4 causes event B in frame S, the effect being propa-
gated with a speed greater than c. Show, using the velocity addition
theorem, that there exists an inertial frame S’, which moves relative
to S with a velocity less than ¢, in which the order of these events would
be reversed. Hence, if concepts of cause and effect are to be preserved,
it is impossible to send signals with a speed greater than that of light.

40. A stick at rest in S has a length L and is inclined at an angle 6 to the
x-axis (see Fig. 2-12). Find its length L’ and angle of inclination &' to
the x-axis as measured by an observer in §’ moving at a speed v rela-
tive to S along the x-x’ axes.

Fig 2-12. Problem 40

41. An object moves with speed u at an angle @ to the x-axis in system S.
A second system S’ moves with speed v relative to S along x. What speed
v’ and angle &' will the object appear to have to an observer in §'?

42. Derive the relativistic acceleration transformation
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in which a, = du,/dt and a,’ = du,’/dt’. [Hint.
duy/dt’ = (du,/dt)(dt/dr’).]

Imagine a source of light emitting radiation uniformly in all directions
in rest-frame §’. Find the distribution of radiation in the laboratory
frame S in which the source moves at a speed #c. (Hint. Find the cor-
responding angle 8 for § = 0, 30, 60, 90, 120, 150, and 180°. A polar
graph plot of the data would be helpful.) Can you guess why this phe-

nomena is often referred to as the “headlight effect”?

. A, on earth, signals with a flashlight every six minutes. B is on a space

station that is stationary with respect to the earth. C is on a rocket travel-
ing from A to B with a constant velocity of 0.6¢ relative to 4 (see Fig.
2-13). (@) At what intervals does B receive the signals from A4? (b) At
what intervals does C receive signals from A4? (c) If C flashes a light using
intervals equal to those he received from A, at what intervals does B
receive C’s flashes?

Fig 2-13. Problem 44

. A radar transmitter (T) is fixed to a system Sz which is moving to the

right with speed v relative to system S; (see Fig. 2-14). A timer in S,
having a period 7 (measured in Sp) causes transmitter T to emit radar
pulses, which travel at the speed of light, and are received by R, a
receiver fixed to S;. () What would be the period (7) of the timer rela-
tive to observers 4 and B, spaced a distance vr apart? (b) Show that the
receiver R would observe the time interval between pulses arriving from
Sz not as 7 or as 7g but as ¥ = 79\/(c + v)/(c — v). (c) Explain why the
observer at R measures a different period for the transmitter than do
observers 4 and B who are in his own reference frame. (Hint. Compare
the events measured by R to the events measured by 4 and B. What is
meant by the proper time in each case?)
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Fig 2-14. Problem 45

46. In the case of wave propagation in a medium, the Doppler shifts for the
case of source moving through medium and observer moving through
medium are different, whereas for light in vacuo the two situations are
equivalent. Show that if we take the geometric mean of the two former
results, we get exactly the relativistic Doppler shift (see Section 40-5,
Ref. 10).

47. A rocketship is receding from the earth at a speed of 0.2¢. A light in the
rocketship appears blue to passengers on the ship. What color would it
appear to be to an observer on the earth?

48. Give the wavelength shifts in the relativistic longitudinal Doppler effect
for the sodium D, line (5896 A) for source and observer approaching at
relative velocities of 0.1c, 0.4¢c, 0.8c. Is the classical (first-order) result
a good approximation?

49. Give the wavelength shift in the relativistic Doppler effect for the
6563 A H, line emitted by a star receding from the earth with a relative
veloeity 1073¢, 1072¢, and 107 1c. Is the classical (first-order) result a
good approximation?

50. Give the wavelength shift, if any, in the Doppler effeet for the sodium
D, line (5890 A) emitted from a source moving in a circle with con-
stant speed 0.1c measured by an observer fixed at the center of the circle.
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Chapter Three

Relativistic Dynamics

3.1 Mechanics and Relativity

In Chapter One we saw that experiment forced us to the conclusion
that the Galilean transformations had to be replaced and the basic laws
of mechanics, which were consistent with those transformations, needed
to be modified. In Chapter Two we obtained the new transformation
equations, the Lorentz transformations, and examined their implications
for kinematical phenomena. Now we must consider dynamic phenomena
and find how to modify the laws of classical mechanics so that the new
mechanics is consistent with relativity.

Basically, classical Newtonian mechanics is inconsistent with relativity
because its laws are invariant under a Galilean transformation and not
under a Lorentz transformation. This formal result is plausible, as well,
from other considerations. For example, in Newtonian mechanics a force
can accelerate a particle to indefinite speeds, whereas in relativity the
limiting speed is ¢. Another difficulty with classical mechanics is that
it permits action-at-a-distance forces while requiring action and reaction
forces to be equal. Such equality of action and reaction has no meaning
in relativity except for contact forces, because the simultaneity of sepa-
rated events is relative.

For example, in classical mechanics, we may say that two bodies on a fric-
tionless surface connected by a light stretched spring are subject to equal but
opposite forces at the same instant. In relativity, where simultaneity of sepa-
rated events is a relative concept, “the same instant” differs from one inertial
observer to another. Unless the action and reaction are contact forces (so that
the interacting particles are not separated) we cannot give meaning to them
independent of the frame of reference used.

The electrostatic force, which seems to be an action-at-a-distance one, can
be treated instead as a field phenomenon. That is, the source charge sets up
a field and the test charge interacts with the field at its location. Other appar-
ent action-at-a-distance forces can similarly be treated as field phenomena.
The net effect of relativistic considerations then is simply that we abandon
the action-at-a-distance vicw, which is easily done with little sacrifice in
classical physics.

110
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In seeking a new law of motion that is consistent with relativity, we
therefore exclude “action-at-a-distance” forces. But we can include
collision phenomena (contact forces) or field phenomena (charges in an
electromagnetic field), for example, neither of which involve the action-
at-a-distance concept. In either case, when we obtain a law of motion
that is invariant under a Lorentz transformation, we must also insure
that it reduces to the Newtonian form as v/¢ — 0 since, in the domain
where v/¢c < 1, Newton’s laws are consistent with experiment. Thus, the
relativistic law of motion will be a generalization of the classical one.

We shall proceed by studying collisions first. Here we assume that the
interaction between particles takes place only during an infinitesimally
short time interval in which the particles have negligible separation (i.c.,
the range of forces is short compared to the dimensions of the system).
During the collision the particles are accelerated, but before and after
the interaction there is no acceleration. The laws of conservation of
momentum and energy are valid classically during this interaction. If we
require that these conservation laws also be valid relativistically (i.e.,
invariant under a Lorentz transformation) and hence that they be
general laws of physics, we must modify them from the classical form in
such a way that they also reduce to the classical form as v/c — 0. In this
way, we shall obtain the relativistic law of motion.

We could also proceed by studying the motion of charged particles in
an electromagnetic field. In a sense, relativity was constructed in sucha
way as to preserve the laws of electromagnetism, so that the electromag-
netic forces would be expected to be invariant under a Lorentz transfor-
mation. Since all forces must have the same invariant form, this approach
would also yield the relativistic law of motion. However, to proceed in
this way, we first need to know how the electric and magnetic fields
transform. We shall examine this later. Here we simply assert that the
collision approach and the electromagnetic field approach lead to the
same form of the relativistic equation of motion. Let us now arrive at
this through collisions.

3.2 The Need to Redefine Momentum

The first thing we wish to show is that if we want to find a quantity
like momentum (for which there is a conservation law in classical phys-
ics) that is also subject to a conservation law in relativity, then we cannot
use the same expression for momentum as the classical one. We must,
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instead, redefine momentum in order that a law of conservation of
momentum in collisions be invariant under a Lorentz transformation.

Let us first analyze an elastic collision between two identical bodies as
seen by different inertial observers, S and §’, according to Newtonian
mechanics. We choose the collision (Fig. 3-1) to be highly symmetrical
in §’: the bodies, say 4 and B, have initial velocities that are equal in
magnitude but opposite in direction, the total momentum being zero.
That is, uys" = —uys’ and uzy’ = —u,g'. Since the collision is elastic,
the final velocities have the same magnitude as the initial velocities, the
total momentum after collision remaining zero. We have w,/ =
—Up' =Uys = —wuyg’ and wuyy' = Uy’ = Ug' = —u,g. That is,
observer S’ notes that the y’-components of velocity for the bodies simply

o7 s’
—V
B uyg' UyB'&
uyg’g i //// Us’
//
(0 Pt x’
- = - -’
Uy - ’\\’ Uy
+— -
* []_\'A' UxA
(a)
¥y S
B UxB UyH U\’B
uyﬁg : e
(6} — - x
Uya
Uva
(uss=0)
A
(b)

Fig 3-1. A particular elastic collision as viewed by (a) observer " and (b) ob-
server S Here, small letters (u) refer to before the collision, capital letters (U)
refer to after the collision The subscripts (4 and B) denote the particle and
(x and +) the component The values in §’ are primed, those in $ are not
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reverse their signs during the collision, the x’-components remaining
unchanged.

As seen by observer S, the reference frame S’ is moving to the right
with a speed v. We deliberately choose

V=ug = —uy (3-1)

so that the body 4 has no x-component of motion in frame S (see Fig.
3-1b). The y-components of velocity should be unaffected by the trans-
formation, according to Newtonian mechanics, and momentum should
still be conserved in the collision as viewed by S. That is, u,y = w4,
wp = ug, uyy = —Uyy and uy;g = —U,p The momentum lost by
body A4, 2mu,,, equals that gained by body B, 2mu,p, so that in
magnitude

2muUA = 2muy3 (3-2)
and, because the bodies have identical mass m, we conclude that
Uyq = UyB. (3-3)

These are the Newtonian results.

Now, let us see whether these results are consistent with the Lorentz
transformations. They are not, for they contradict the relativistic velocity
transformations. If we use the equations in Table 2-2 we find that rela-
tivity requires, for body B,

uyp V1 — B (3-4)

’
u,p =
v
1 — uzpv/c?

whereas for body A4, for which u;4 = 0,

' = /1 — B2. (3-5)

Hence, the y-components of velocity are affected by the relativistic
transformations. For one thing, they do not have the same values in one
frame as in the other, but, more important, if they are equal to one
another in magnitude in one frame, they are not necessarily equal to one
another in the other frame. In fact, assuming as before that u,g" = u,,’,
we find by combining and rearranging Eqs. 3-4 and 3-5, that

_ 1
Uyg = uyB—l E—Ch (3-6)

in contradiction to the Newtonian result, Eq. 3-3. Hence, the changes in
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the y-component velocities have different magnitudes in one frame than
in the other during the collision. The result is that, if we compute mo-
mentum according to the classical formulas p = mu and p’ = mv/,
then when momentum is conserved in a collision in one frame it is not
conserved in the other frame.

This result contradicts the basic postulate of special relativity that
the laws of physics are the same in all inertial systems. If the conserva-
tion of momentum in collisions is to be a law of physics, then the classical
definition of momentum cannot be correct in general. We notice that
the disagreement between Egs. 3-3 and 3-6 becomes trivial when
urg € cand v < ¢, so that it is at high speeds that the Newtonian formu-
lation of the momentum conservation law breaks down. We need a
generalization of the definition of momentum, therefore, that reduces
to the classical result at low speeds.

In the next section, we shall show that it is possible to preserve the
form of the classical definition of the momentum of a particle, p = mu,
where p is the momentum, m the mass, and u the velocity of a particle,
and also to preserve the classical law of the conservation of momentum
of a system of interacting particles, providing that we modify the classical
concept of mass. We need to let the mass of a particle be a function of its
speed u, thatis, m = mgo/ \/m, where myg is the classical mass and
m is the relativistic mass of the particle. Clearly, as u/c tends to zero,
m tends to mo. The relativistic momentum then becomes p = mu =
mou/\/1 — B2 and reduces to the classical expression p = mou as 8 — 0.
Let us now deduce these results.

3.3 Relativistic Momentum

In Eq. 3-2, based on momentum conservation, we assumed that
the mass m was the same for each body, and, in this way, we were led to
the (incorrect) result that the y-component velocities had equal magni-
tude. True, the bodies were identical when placed side by side at rest.
However, since the measured length of a rod and the measured rate of
a clock are affected by the motion of the rod or the clock relative to the
observer, it may be that the measured mass of a body also depends on
its motion with respect to the observer. In that case the form of the
Newtonian momentum still could be correct so that, for example, we
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could rewrite Eq. 3-2 as
2mauys = 2mpuyp. 3-7)

The masses are now labelled as m,4 and mg, however, to suggest that they
may have different values.

Bodies 4 and B, in Fig. 3-1b, do travel at different speeds in the S-
frame and, if we accept the relativistic result (Eq. 3-6) for the speeds,
we obtain

mB:mAﬂzL (3-8)
uyB 1 — u,pv/c?

by combining Eqgs. 3-6 and 3-7. Hence, the relativistic masses, m4 and mg,
are not equal if the relativistic conservation of momentum law is to have
the same form as the Newtonian law. It remains to find how the relativ-

istic mass must vary with the speed.
We can simplify Eq. 3-8 by eliminating v. Recall that v = u,5’ (Eq. 3-1)
and that u,g" is related to u,p by the Lorentz velocity transformation

(Table 2-2)

ug (= v) = _UsB—V
“ 1 — u.pv/c?

Solving for v, we get

v = :2 (1 — VI = (/9.
rB

If we substitute this expression for v into Eq. 3-8 we obtain

my
V1 = (uzs/0)?

We can find how the relativistic mass of either particle varies with the

mp —

speed in a simple manner by considering a special case of the collision
in which the y-y" velocity components are made to approach zero. Then,
the particles’ speeds will be identical to the magnitude of their respective
x-component velocities. This is illustrated in Fig. 3-2a and 3-2b. Observer
S’ simply sees two bodies moving past each other making a grazing col-
lision; observer S sees body A at rest and body B moving past it, at a
speed u.p, again making a grazing collision. Equation 3-9 must apply to
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y s
VvV,
_I »
B
O' e" x,
A
(a)
y S
B
O ® x
A
(b)

Fig 3-2. The same collision as in Fig 3-1 for the limiting
case in which uys" = uyg’ = 0

this grazing collision as well as to others because we put no restriction on
the value of u,/ in deriving it.

Since body 4 is at rest in S its mass m,4 must be the ordinary Newtonian
mass which we now call the rest mass and denote by my. This is the
same as the mass of body B when body B is at rest, the two bodies being
identical. However, in S, body B is moving with a speed u.g, which we
can simply call u; its mass mp, which we can call the relativistic mass and
denote by m, will not be mo. From Eq. 3-9 we obtain

m=——t (3-10)

iy
which tells us how the relativistic mass m of a body moving at a speed u
varies with u. We see at once that when u = 0, the body then being at
rest, we obtain m = my, the rest mass. More generally, as u/c — 0, we
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find m — my, which is the Newtonian limit of the more general expres-
sion for the relativistic mass m.

Hence, if we want to preserve the form of the classical momentum
conservation law while requiring that the law be relativistically invariant,
we must define the mass of a moving body by Eq. 3-10. That is, momen-
tum still has the form mu, but mass is defined as m = mo/\ﬁ_———m
Note that u is the speed of the body relative to S, which we can regard as
the laboratory frame, and that u has no connection necessarily with
changing reference frames. By accepting Eq. 3-10 as our definition of
the mass of a moving body, we implicitly assume that the mass of a body
does not depend on its acceleration relative to the reference frame, al-
though it does depend on its speed. Mass remains a scalar quantity in the
sense that its value is independent of the direction of the velocity of the
body. The rest mass myq is often called the proper mass, for it is the mass
of the body measured, like proper length and proper time, in the inertial
frame in which the body is at rest.

We have presented above a derivation of an expression for relativistic
momentum which obviously centers around a very special case. For
example, the velocity of the particle (B) is parallel to the relative S-S’
velocity and the derivation depended only upon invoking conservation
of momentum in the y-direction. Such a derivation enables us to make
an educated guess as to what the general result may be. We have avoided
rather involved general derivations which, however, lead to exactly the
same results. When the general case is done, u becomes the absolute
value of the velocity of the particle; thatis, u? = u;? + u,® + u.?

To complete our particular deduction, we need to carry our argument
two steps further. First, using the expression for momentum which we
have tentatively derived, we can demonstrate explicitly that if the mo-
mentum of a system of interacting particles is conserved in one inertial
frame S, then (using the Lorentz transformation) it is conserved in any
other inertial frame S’ (see Problem 43). In fact, it turns out that this
form of a momentum is the only one that does have this property. Sec-
ond, this momentum conservation law is an experimental fact; that is,
experiment proves this relativistic law to be true. Not only have we found
a definition of momentum that conserves this quantity in the theory,
but the theory is in harmony with physical experiment.

Hence, to conclude, in order to make the conservation of momentum
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in collisions a law that is experimentally valid in all reference frames, we

must define momentum, not as mou, but as

mou
. AE— (3-11)
P V1 — u?/c?
The components of the momentum then are
_mews o mowy o mows
b= fcwe - ficwee T i-wee
(3-12)

which we write out explicitly to emphasize that the magnitude u of the
total velocity appears in the denominator of each component equation.

# Example 1. For what value of u/c (= B) will the relativistic mass of a parti-
cle exceed its rest mass by a given fraction f7
From Eq. 3-10 we have

f_m—mo_ m __1—_1
- mo mo \/1—B2
which, solved for B, is
B = VIC +f)
141

The table below shows some computed values, which hold for all particles
regardless of their rest mass.

f B

0.001 (0.1 percent) 0.014
0.01 0.14
0.1 0.42
1 (100 percent) 0.87
10 0.994
100 0.999 ¢

3.4 Alternative Views of Mass in Relativity

The student, in his readings in relativity, is likely to encounter two
different interpretations of the relativistic momentum. Therefore, it will avoid
confusion later to present here an explanation of these different interpreta-
tions. This will show that neither treatment is wrong but that the differences
are a matter of taste.

The classical momentum has components such as p, = mo (dx/dt). If, in
relativity, we wish to continue to regard momentum as a product of a mass
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and an ordinary velocity, then we must modify the mass and write p, =
m(dx/dt) where m, called the relativistic mass, is mg/\/1 — 2. This is the
view that we presented in earlier sections.

However, we can choose to regard the mass as an invariant scalar quantity
which gives the inertial property of a body. Then, in the relativistic expression
for momentum, we connect the factor 1/1/1 — 2 with the ordinary velocity
instead of with the mass. That is, we can write p, = mo(dx/dr) in which
dx/dr is the x-component of a relativistic velocity. Here, the mass mq is an
invariant and the proper time interval d7 is also an invariant. Such a formula-
tion is useful because it emphasizes invariant quantities. Furthermore, it is
consistent with the basic philosophy of relativity, in this sense: relativity
modifies our concepts of time and space, so that kinematic quantities, such
as velocity, are expected to change, whereas properties of bodies not directly
relevant to time and space (such as charge and mass) should remain unaf-
fected. If, for example, we compare the classical expression for momentum,
pr = moldx/dt), with this form of the relativistic expression for momentum,
pr = moldx/dr), the difference between them is seen to be caused not by any
difference in the value of the mass but, instead, by the difference between
proper time d7 and nonproper time di. Indeed, it should be noted that,
whether we identify the factor 1/1/1 — 2 with the mass or with the velocity,
the origin of this factor in collision measurements is kinematical; that is, it
is caused by the relativity of time measurements.

Nevertheless, there are advantages of a pedagogic nature to using the con-
cept of relativistic mass. Both the momentum (mu) and the total energy (mc?),
as we shall see later, have simple, familiar forms in terms of relativistic mass
m, although (see Question 3) we cannot simply replace mg of every classical
formula by m to obtain a correct relativistic formula. Also, as u — ¢, m — o
in the relativistic mass formulation and this gives a plausible explanation for
the limiting specd ¢ that a body can acquire; its inertia increases with velocity
making it harder to increase the velocity further. Finally, the constancy of the
proper mass of a body turns out to be confined to perfectly elastic collisions,
a rare situation in practice; since proper mass can vary (a matter that we dis-
cuss later in Section 3-6), it seems less objectionable than otherwise to speak
of a relativistic mass that varies with the speed. We shall continue to use the
term “‘rest mass’ for mg, and the term “relativistic mass” for m.

3.5 The Relativistic Force Law and the Dynamics of a Single Particle
Newton’s second law must now be generalized to

F:i( )=‘_I(L> (3-13)

P
dt dt \\/1 — u?/¢c?
in relativistic mechanics. When the law is written in this form we can
immediately deduce the law of the conservation of relativistic momen-
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tum from it; when F is zero, p = mou/\/l——u—z/c7 must be a constant.
In the absence of external forces, the momentum is conserved. Further-
more, when F as defined by Eq. 3-13 is not zero, we can easily derive the
result (see Problem 44) that if, for a system of interacting particles, the
total relativistic momentum changes by an amount AP, then this change
is equal to the total impulse SF dt given to the system. Hence, the force
defined by Eq. 3-13 has the general properties we seek. Notice that this
new form of the law, Eq. 3-13, is not equivalent to writing F = ma =
(mo/\/1 — u?/c%)(du/dt), in which we simply multiply the acceleration
by the relativistic mass.

We find also that experiment agrees with Eq. 3-13. When, for example,
we investigate the motion of high-speed charged particles, it is found that
the equation correctly describing the motion is

g(E +u X B) = i( (3-14)

mou )
dt ’

V1 — u?/c?

which agrees with Eq. 3-13. Here, g(E + u X B) is the Lorentz electro-
magnetic force, in which E is the electric field, B is the magnetic field,
and u is the particle velocity, all measured in the same reference frame,
and ¢ and mg are constants that describe the electrical (charge) and
inertial (rest mass) properties of the particle, respectively. Notice that
the Lorentz force law of classical electromagnetism remains valid rela-
tivistically, as we should expect from the discussion of Chapter One.

Later we shall turn to the question of how electric and magnetic fields,
and forces, transform from one Lorentz frame to another. For the mo-
ment, however, we confine ourselves to one reference frame (the labora-
tory frame) and develop other concepts in mechanics, such as work and
energy, which follow from the relativistic expression for force (Eq. 3-13).
We shall confine ourselves to the motion of a single particle. In succeed-
ing sections we shall consider many-particle systcms.

In Newtonian mechanics we defined the kinetic energy, K, of a particle
to be equal to the work done by an external force in increasing the speed
of the particle from zero to some valuc u. That is,

K: ll:llF.dl

=y
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where F - dl is the work done by the force F in displacing the particle
through dl. For simplicity, we can limit the motion to one dimension,
say x, the three-dimensional case being an easy extension (see Prob-
lem 8). Then, classically,

e = [ o€ dx = [ o duE = mo [ = o
K_u:0 Fdx—fm(dt)dx_jmodudt_mﬁ) udu = tmou?.

Here we write the particle mass as mg to emphasize that, in Newtonian
mechanics, we do not regard the mass as varying with the speed, and we
take the force to be mga = mo(du/di).

In relativistic mechanics, it proves useful to use a corresponding defini-
tion for kinetic energy in which, however, we use the relativistic equa-
tion of motion, Eq. 3-13, rather than the Newtonian one. Then, rela-
tivistically,

_fumg, _ 7 _ ﬂ
K = "o Fdx _fjlz(mu) dx _f(l(mu) 7

tu_Uu

:f (mdu + udm) u :J (mudu + u?2dm) (3-15)

u=40

in which both m and u are variables. These quantities are related, fur-

thermore, by Eq. 3-10, m = mo/\/1 — u?/c?, which we can rewrite as
m¢? — m2u? = mgy2c2.
Taking differentials in this equation yields
2mct dm — m22u du — u?2mdm = 0,
which, on division by 2m, can be written also as
mudu 4+ u2dm = ¢2 dm.

The left side of this equation is exactly the integrand of Eq. 3-15. Hence,
we can write the relativistic expression for the kinetic energy of a particle
as

u—_u m—-m

ctdm = (:zf dm = mc? — moc?. (3-16a)

m=m,

K=

u=»{
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By using Eq. 3-10, we obtain equivalently

K= m0c2[+ 1]. (3-16b)

V1 — u2/c? -

Also, if we take mc? = E, where E is called the total energy of the parti-
cle—a name whose aptness will become clear later—we can express

Eqs. 3-16 compactly as
E = moc2 + K 3-17)

in which mgc? is called the rest energy of the particle. The rest energy
(by definition) is the energy of the particle at rest, when u = 0 and
K = 0. The total energy of the particle (Eq. 3-17) is the sum of its rest
energy* and its kinetic energy.

The relativistic expression for K must reduce to the classical result,
#¥mou?, when u/c € 1. Let us check this. From

K = moc?[(1/ V1 — u?/c?) — 1]

A (N

the binomial theorem expansion in (u/c) gives

K:mocz[l-}—l(—u—)z-}——?’—(l)‘}+...—l]
2 \¢ 8 \c

= $mou?,
in which we take only the first two terms in the expansion as significant
when u/c < 1, thereby confirming the Newtonian limit of the relativistic
result.

It is interesting to notice also that, as u — ¢, in Eq. 3-16b, the kinetic
energy K tends to infinity. That is, from Eq. 3-15, an infinite amount of
work would need to be done on the particle to accelerate it up to the
speed of light. Once again we find ¢ playing the role of a limiting velocity.
Note also from Eq. 3-16a, which permits us to write K = (m — myg) ¢2,
that a change in the kinetic energy of a particle is related to a change in
its (inertial) mass.

*In classical physics, the energy of a single particle is defined only to within an arbitrary constant.
Relativity fixes this arbitrary constant so that the energy of a particle at rest is taken to be Fy =
moc? The physical meaning of this (see Section 3-0) i~ that even a particle that is not in motion has
a rest energy. given by moc?.
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We often seek a connection between the kinetic energy K of a rapidly
moving particle and its momentum p. This can be found by eliminating
u between Eq. 3-16b and Eq. 3-11. The student can verify (Problem 10)
that the result is

(K + moc?)2 = (po)? + (mpc?)? (3-18a)
which, with the total energy E = K + mqc?, can also be written as
E2 = (pc)? + (moc?)2. (3-18b)

The right triangle of Fig. 3-3 is a useful mnemonic device for remember-
ing Eqs. 3-18.

The relationship between K and p (Eq. 3-18a) should reduce to the
Newtonian expression p = \/mfor u/c € 1. To see that it does, let
us expand Eq. 3-18a, obtaining

K2 + 2Kmgc? = p2¢2.

When u/c £ 1, the kinetic energy, K, of a moving particle will always
be much less than its rest energy, moc? (see Problem 7). Under these
circumstances, the first term on the left above (K?) can be neglected in
comparison with the second term (2K mgc?), and the equation becomes

P = V2ZmyK, as required.

moc2

Fig 3-3. A mnemonic device, using a right tri-
angle and the Pythagorean relation, to help in
remembering the relations between toal energy
E, rest energy moc?, and momentum p The
relation is E2 = (pc)? + (moc?)2. Shown also
is the relation, £ = moc? + K, between total
energy, rest energy and kinetic energy K. The
student can show that sin § = 8 and sin ¢ =

V1 — B2, where 8 = u/c.
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The relativistic expression, Eq. 3-18b, often written as

E = ¢\/p? + mo?c?, (3-19)

is useful in high-energy physics to calculate the total energy of a particle
when its momentum is given, or vice versa. By differentiating Eq. 3-19
with respect to p, we can obtain another useful relation.

dE _ pe pe? pe?

dp B V/mo2cZ + p? - c\/mo?c® + p2 T E
But with E = mc? and p = mau this reduces to
dE _
dp

u. (3-20)

As a final consideration in the relativistic dynamics of a single particle,
we look at the acceleration of a particle under the influence of a force.

In general, the force is given by F = dp/dt = %(mu) or
dt

F=mdu ,dm (3-21)

de dt
We know that m = E/¢2 so that

dm 1 dE 1 d 1 dK
d - Ed @d ™) =5y
But dK _(F-d) p d_ o
dt dt dt
so that d—m:l,F°u.
dt c?

We can now substitute this into Eq. 3-21 and obtain

du u(F - u)
F=m—+4+ —.
T + c?
The acceleration a is defined by a = du/dt so that the general expression

for acceleration is

a=9_F_ u (g, (3-22)

dt m mc?

What this equation tells us at oncc is that, in general, the acceleration a
is not parallel to the force in relativity, since the last term above is in the

direction of the velocity u.
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There are two simple but useful cases, however, in which the accelera-
tion is parallel to the force. One case is that in which the force F is paral-
lel to the velocity u, so that a is parallel both to u and F. Here the particle
moves in a straight line, such as when a charged particle starts from rest
in a uniform electric field. Since a, F, and u are all parallel, we can write
Eq. 3-21 in this special case as F = m(du/dt) + u(dm/dt); and, by sub-
stituting m = mg/ \/l_—_u—z/ﬁ, we shall find (see Problem 11) that F =
moa/(1 — u?/¢?)32, To fix in our mind that this result applies when
F and a are parallel to the velocity u, we shall write it as

= Sy ©

The quantity mo/(1 — u?/c?)3/2 is sometimes called the “longitudinal
mass.”

Another case in which a is parallel to F is that in which the force F
is perpendicular to the velocity u, for then F-u = 0 and Eq. 3-22 be-
comes a = F/m = F\/1 — u2/c%2/mg. The force on a charged particle
moving with velocity u in a magnetic field B (i.e., F = qu X B), exem-
plifies this case. Here, to fix in our mind that this result applies when F
and a are perpendicular to the velocity u, we shall write it as

mgo
7 a_]_’
V1 — u2/c?

suggesting the name “transverse mass™ for the quantity mo/\/1 — u?/c%.

F,

# Example 2. (a) What is the kinetic energy acquired by a particle of charge ¢
starting from rest in a uniform electric field when it falls through an electro-
static potential difference of V' volts? The work done on the charge g by the
electric field E in a displacement dl is

dW = ¢E - dl.

Let the uniform field be in the x-direction so that E - dl = E, dx and
W = [ qE, dx.

Now E; = — (dV/dx), where V is the electrostatic potential, so that

dv
W= —f qSdx = —qde: —q(Vy— V)
=q(Vi — V) =4qVo

where V) is the difference between the initial potential V; and the final poten-
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tial ;. The kinetic energy acquired by the charge is equal to the work done
on it by the field so that

K = qVo. (3-23)

Notice that we have implicitly assumed that the charge ¢ of the particle is a
constant, independent of the particle’s motion.

(b) Assume the particle to be an electron and the potential difference to be
104 volts. Find the kinetic energy of the electron, its speed, and its mass at the
end of the acceleration.

The charge on the electronise = —1.602 X 10719 coulomb. The potential
difference is now a rise, ¥; — ¥y = — 104 volts, a negative charge accelerating
in a direction opposite to E. Hence, the kinetic energy acquired is

K = qVy = (—1.602 X 10719)(—10%) joules = 1.602 X 10715 joules.
From Eq. 3-16, K = mc% — mgc?, we obtain
K

?z(m—mo)

or
(1.602 X 10715 joules/8.99 X 1016 m2/sec?) = m — mo = 1.78 X 10732
)

and, with mg = 9.109 X 10731 kg, we find the mass of the moving electron
to be

m = (9.109 4+ 0.178) X 10731 kg = 9.287 x 10731 kg.

Notice that m/mg = 1.02, so that the mass increase due to the motion is about
2 percent of the rest mass.

From Eq. 3-10, m = mo/\/1 — u2?/c?, we have

- f =11 - (Gam) ] =
= =11 =11 - {—— = 0.038
c? [ ( m 9.287

or u = 0.195¢ = 5.85 X 107 m/sec.

The electron acquires a speed of about one-fifth the speed of light.
These are the relativistic predictions. We shall see below that they are con-
firmed by direct experiment.

Example 3. (a) Show that, in a region in which therc is a uniform magnetic
field, a charged particle entering at right angles 10 the field moves in a circle
whose radius is proportional to the particle’s momentum.

Call the charge of the particle ¢ and its rest mass mo. Let its velocity be u,
The force on the particle is then

F=quXxB

which is at right angles both to u and 10 B, the magnetic field. Hence, from
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Eq. 3-22, the acceleration,

a= E =91, X B,

m m
is in the same direction as the force. Because the acceleration is always at
right angles to the particle’s velocity u, the speed of the particle is constant
and the particle moves in a circle. Let the radius of the circle be r, so that the
centripetal acceleration is u?/r. We equate this to the acceleration obtained
from above, @ = quB/m, and find

tu_u_2
m - r
or r:%:—;}%—. (3-24)

Hence, the radius is proportional to the momentum p( = mu).

Notice that both the equation for the acceleration and the equation for the
radius (Eq. 3-24) are identical in form to the classical results, but that the rest
mass my of the classical formula is replaced by the relativistic mass m =
mo/\/1 — u?/c2.

How would the motion change if the initial velocity of the charged particle
had a component parallel to the magnetic field?

(b) Compute the radius, both classically and relativistically, of a 10 Mev
electron moving at right angles to a uniform magnetic field of strength 2.0
webers/m2,

Classically, we have r = mou/qB. The classical relation between kinetic
energy and momentum is p = \/2mgK so that

= /2 X 9.1 X 10731 kg X 10 Mev X 1.6 X 10713 joule/Mev
= 17 X 10722 kg m/sec.

Then

_mou _ p 17 x 10722
- qB - qB_ 1.6 X 10719 x 2.0
= 5.3 X 1073 meter = 0.53 cm.

meter

Relativistically, we have r = mu/qB. The relativistic relation between
kinetic energy and momentum (Eq. 3-18a) may be written as

p= %\/(K T mocH? — (mocd).

Here, the rest energy of an electron, mgc?, equals 0.51 Mev, so that

_ 1
P =355 108
= 5.6 X 10721 kg — m/sec.

V10 + 0.51)% — (0.51)2%% (116 X 10713 joule/Mev)
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Then

mu _ p 5.6 X 10721
qB - qB T 16 X 10719 x 2.0
= 1.8 X 1072 meter = 1.8 ¢m.

meter

Experiment bears out the relativistic result (see below). ¢

The first experiments in relativistic dynamics, by Bucherer [1], made
use of Eq. 3-24. Electrons (from the B-decay of radioactive particles)
enter a velocity selector, which determines the speed of those that
emerge, and then enter a uniform magnetic field, where the radius of
their circular path can be measured. Bucherer’s results are shown in
Table 3-1.

1ABLE 3-1 BUCHERER’S RESULTS

u/c e/m(= u/rB) in coul/kg i(Z m\/]+T/cz) in coul/kg
(Measured) (Measured) (Computed)
0.3173 1.661 x 1011 1.752 x 1011
0.3787 1.630 x o1 1761 x 101
0.4281 1.590 x 1011 1.760 x Lo
0.5154 1.511 x 10U 1.763 x 1011
0.6870 1.283 x 101! 1.767 x 101

The first column gives the measured speeds in terms of the fraction
of the speed of light. The second column gives the ratio e/m computed
from the measured quantities in Eq. 3-24 as e/m = u/rB. It is clear
that the value of e/m varies with the speed of the electrons. The third
column gives the calculated values of e/m\/—l—TZ/c2 = e/myg, which
are seen to be constant. The results are consistent with the relativistic
relation

mol
r=—
gB~\/1 — u?/c?
rather than the classical relation r = mou/qB and can be interpreted

as confirming Eq. 3-10, m = mo/\/1 — u?/c?, for the variation of mass

with speed.* Many similar experiments have since becn performed,

*These results verify not only that relativity predicts the correct functional form for m(u) but also
that the value of the limiting speed (¢) i~ 3 X 10! em/wee
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greatly extending the range of u/c and always resulting in confirmation
of the relativistic results (see Fig. 3-4).

The student may properly ask why, in measuring a variation of e/m
with speed, we attribute the variation solely to the mass rather than to
the charge, for instance, or some other more complicated effect. We
might have concluded, for example, that e = e m Actually,
we have implicitly assumed above that the charge on the electron is in-
dependent of its speed. This assumption is a direct consequence of rela-
tivistic electrodynamics, wherein the charge of a particle is not changed
by its motion. That is, eharge is an invariant quantity in relativity. This
is plausible, as a little thought shows, for otherwise the neutral character
of an atom, say, would be upset merely by the motion of the electrons
in it. As a clincher, of course, we turn to experiment which not only
verifies relativity theory as a whole but also confirms directly this specific
result of the constancy of e (see Refs. 2 and 3 for an analysis of such an

experiment).
w 19
=
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8 18 ° -
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Fig 3-14. Experimental verification of the relativistic mass formula.
Experimental points are shown for u/c ranging from 0 32 t6 0.82 (a) The

ratio e/mo = e/m\/1 — ué/c? (b) The ratio m/mo = 1//1 — u?/c?
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The relations used in Example 2, above, are tested directly in a recent
experiment by Bertozzi [4]. Electrons are accelerated to high speed in
the electric field of a linear accelerator and emerge into a vacuum cham-
ber. Their speed can be measured by determining the time of flight in
passing two targets of known separation. As we vary the voltage of the
accelerator, we can plot the values of eV, the kinetic energy of the emerg-
ing electrons, versus the measured speed u. In the experiment, an
independent check was made to confirm the relation K = eV. This is
accomplished by stopping the electrons in a collector, where the kinetic
energy of the absorbed electrons is converted into heat energy which
raises the temperature of the collector, and determining the energy re-
leased per electron by calorimetry. It is found that the average kinetic
energy per electron before impact, measured in this way, agrees with
the kinetic energy obtained from eV.

In Fig. 3-5, we show a plot of the results. Here, on the ordinate, is
plotted u? versus 2K/myg, on the absicca. At low energies, the experi-
mental results (solid curve) agree with the classical prediction (dashed
curve), K = dmou? (i.e., 2K/my = u?). However, as the energy rises,
we find that 2K/mgy > u2. In fact, the measured values of u were always
less than c, regardless of how high the energy became, so that the experi-
mental curve approaches but never reaches the dotted line corresponding

12
K = }mou? (Classical prediction)
10
c2 >
8 K = moc?|(1/V1 - u?fc?) ~ 1]

0 25 50 75 100 125 150 175
2K, 10" m?/sec?
Fig. 3-5. Bertozzi’s experimental points (dots) are seen to fit the relativistic

expression (solid line) rather than the classical expression (dashed line) for
kinetic energy K versus u?
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to u = c. We see that to attain a given speed we need more kinetic
energy than is classically predicted and that, by extrapolation, we would
need an infinite energy to accelerate the electron to the speed of light.
The experimental curve fits the relativistic prediction of Eq. 3-17,

K = moc2(+ 1),

V1 — u?/c? -

and can be regarded as another confirmation of the relativistic mass for-
mula of Eq. 3-10, m = mg \/i——uz/?

The student should note carefully that the relativistic formula for
kinetic energy is not 4mu?; this shows the danger, mentioned earlier,
in assuming that we can simply substitute the relativistic mass for the
rest mass in generalizing a classical formula to a relativistic one. This is

not so for the kinetic energy.

3.6 The Equivalence of Mass and Energy
In Section 3-3 we examined an elastic collision, that is, a collision

in which the kinetic energy of the bodies remained constant. Now let
us consider an inelastic collision. In particular, consider two identical
bodies of rest mass mg, each with kinetic energy K as seen by a particular
observer §’, which collide and stick together forming a single body of
rest mass M. The situation before and after the collision in the S’-frame
is shown in Fig. 3-6: here, before collision, bodies 4 and B each have a
speed u’, with velocities oppositely directed and along the x'-axis; the
combined body C, formed by the collision, is at rest in §’, as required
by conservation of momentum. In another reference frame S, moving
with respect to §’ with a speed v(= u') to the left along the common
x-x' axis, the combined body C will have a velocity of magnitude v
directed to the right along x. Body A4 will be stationary before collision
in this frame and body B will have a speed ug. The situation in the
S-frame is shown in Fig. 3-7.

The velocity ug in the S-frame can be obtained from the relativistic
velocity transformation equation, Eq. 2-18, as

u 4 u + u

= = = 2u' /(1 2 /,2).
"B 14+ u'v/c? 1+ u'2/c2 W/l + u%/c%)
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)

Fig. 3-6. A particular inelasue olluion as vicwed by b
server 8’ (a) before the collisi m and (b) after the eollision.

()
Fig 3-7. The same collision as in Fig 3-6 as viewed by ob-

server S, (a) before the collision, and (b) after the collision
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The relativistic mass of B in the S-frame is

mo _ mo(l + u%/¢%)
VI —ugt/2 (1 —u'2/c)

as the student should verify. In S, the combined mass C travels at a speed

mpgp =

v(= u’) after collision, since it was stationary in S’. Hence, applying
conservation of relativistic momentum in the x-direction in this frame
(the y-component of momentum is automatically conserved), we have

(before) = (after)

o ug + 0 = Mo

0 S —Y
V1 — ug?/c? V1 — v2/c2

With v = u’ and ug as given above, this becomes

mo(l 4 u'2/c?) 2u’ _ My’
(1 — u'?/c?) (1 4+ u'?/c?) - V1 — u'?/c?
2
whence My=—""70 (3-25)

V1= u2/cZ
The rest mass of the combined body is not the sum of the rest masses
of the original bodies (2mg) but is greater by an amount

My — 2mo = 2m0(+ 1). (3-26a)

V1 — u2/c2 B

Before the collision, the bodies had kinetic energy in $’ equal to

K.+ Kg = 2K = 2m002(+ - 1) (3-26b)
Vo wia
but all the kinetic energy disappeared on collision. In its place, after the
collision, there appears some form of internal energy, such as heat energy
or excitation energy. We now see that this extra internal energy results in
the rest mass (inertia) of the combined body being greater than the total
rest mass (inertia) of the two separate bodies. Thus, rest mass is equiva-
lent to energy (rest-mass energy) and must be included in applying the
conservation of energy principle. This result follows from the Lorentz
transformation and the conservation of momentum principle which were
used in arriving at it.
From Eqs. 3-26a and 3-26b we see that K, + Kg = (Mo — 2mg)c?,
which shows directly, in this case, that the energy associated with the
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increase in rest mass after the collision, Amgc?, equals the kinetic energy
present before the collision. We can say, then, that although in an inelas-
tic collision kinetic energy alone is not conserved, total energy is con-
served. The total energy includes rest-mass energy plus kinetic energy.
Furthermore, the conservation of total energy is equivalent to the con-
servation of relativistic mass. We prove this below, after which we shall

draw some important conclusions.

® Example 4. (a) Show that, in both frames S and &', the total energy is con-
served in the completely inelastic collision of Figs. 3-6 and 3-7.

Consider first the S'-frame (Fig. 3-6).

Before the collision the total energy is

2(moc? + K) = 2moc2/\/1 — u'2/c2.

After the collision the total energy is

M()cz = (%)62 = 2m002/\/1 —_ u'z/cz.

Hence, the total energy is conserved in the collision in frame §'.
Now consider the S-frame (Fig. 3-7).
Before the collision, the total energy is

moc? + (moc? + Kp) = 2moc? + myc? [+ _ l]
AV 1 - u32/62
2t/ Drme?
= 2”’002 + m()62 [ ] = .
L— w2/ )™ 1= w?/e)

After the collision, the total energy is

2 2 1
Myc? + K, = o c? o c? [ 1],

owze . " imere e

which, with v = u’, becomes

2my 2my 1 2mgc?
—_— 2 c? — 1] =" .
V1 — u'?/c? V1 — u'2/c? V1 — u'2/c? (1 — u'2/c?)
Hence, the total energy is conserved in the eollision in frame S.
(b) Show that the relativistic mass is also conserved in each frame.

Consider first the S’-frame (Fig. 3-6).

Before the collision the relativistic mass is

my my 2my

+ = .
VI—wZE  I— @ 1=u?e
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After the collision the relativistic mass is the same as the rest mass, for
Uy = 0; that is,
2702 2meo
Mo/ VT = U7/ = JVT= 0= —
VI — 2/
Hence, the relativistic mass is conserved in the collision in frame S’.
Now consider the S-frame (Fig. 3-7).
Before the collision the relativistic mass is

,2/02

m 1 + u'2/c? 2m
mo + 0 =m0+m( /c?) 0

V1 — ug?/c? (1 — u'z/cz) (1 — u'2/c?)

After the collision the relativistic mass is

7 _ 2mg
Mo/ T = 7/ = (—,W)/m e

Hence, the relativistic mass is conserved in the collision in frame S. ¢

We have seen that the conservation of total energy is equivalent to the
conservation of (relativistic) mass. That is, the invariance of energy
implies the invariance of (relativistic) mass. Mass and energy are equiva-
lent; they form a single invariant that we can call mass-energy. Simply
by multiplying the mass equations above by the universal constant c2,
we obtain numerically the corresponding energy equations. The relation

E = mc? (3-27)

expresses the fact that mass-energy can be expressed in energy units (E)
or equivalently in mass units (m = E/c?). In fact, it has become common
practice to refer to masses in terms of electron volts, such as saying that
the rest mass of an electron is 0.51 Mev, for convenience in energy cal-
culations.* Likewise, particles of zero rest mass (such as photons, see
below) may be assigned an effective mass equivalent to their energy.
Indeed, the mass that we associate with various forms of energy really
has all the properties that we have given to mass heretofore, properties
such as inertia, weight, contribution to the location of the center of mass
of a system, and so forth. We shall exhibit some of these properties later
in the chapter (see also Ref. 5).

*It should be emphasized that mass is not numerically equal to energy, for their units are different
However, they are physically equivalent quantities which correspond to one another. It is some-
what like the correspondence between the height of a mercury column and the air pressure.
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Equation 3-27, E = mc?, is, of course, one of the famous equations of
physics. It has been confirmed by numerous practical applications and
theoretical consequences. Einstein, who derived the result originally in
another context, made the bold hypothesis that it was universally appli-
cable. He considered it to be the most significant consequence of his
special theory of relativity.

If we look back now at our single-particle equations (Section 3-4), we
see that they are consistent with the conclusions we draw from two-body
collisions. There we defined the total energy of a particle as mc? and
gave it the symbol E. Then we used the relation E = mc? (below Eq.
3-21) and found that dm/dt = (1/¢?)(dK/dt). This can be expressed

also as

dK odm
—_— = 2= 3.28
dt ¢ dt ( )

which states that a change in the kinetic energy of a particle causes a
proportionate change in its (relativistic) mass. That is, mass and energy
are equivalent, their units* differing by a factor ¢2.

If the kinetic energy of a body is regarded as a form of external energy,
then the rest-mass energy may be regarded as the internal energy of the
body. This internal energy consists, in part, of such things as molecular
motion, which changes when heat energy is absorbed or given up by the
body, or intermolecular potential energy, which changes when chemical
reactions (such as dissociation or recombination) take place. Or the in-
ternal energy can take the form of atomic potential energy, which can
change when an atom absorbs radiation and becomes excited or emits
radiation and is deexcited, or nuclear potential energy, which can be
changed by nuclear reactions. The largest contribution to the internal
energy is, however, the total rest-mass energy contributed by the “fun-
damental” particles, which is regarded as the primary source of internal
energy. This too, may change, as, for example, in electron-positron cre-
ation and annihilation (see Problems 31, 37, and 38). The rest mass (or
proper mass) of a body, therefore, is not a constant, in general. Of course,
if there are no changes in the internal energy of a body (or if we consider

*A convenient identity (see Problem 28) is ¢2 = (3 X 10% m/sec)? = 931 Mev/amu
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a closed system through which energy is not transferred) then we may
regard the rest mass of the body (or of the system) as constant.

This view of the internal energy of a particle as equivalent to rest mass
suggests an extension to a collection of particles. We sometimes regard
an atom as a particle and assign it a rest mass, for example, although we
know that the atom consists of many particles with various forms of
internal energy. Likewise, we can assign a rest mass to any collection of
particles in relative motion, in a frame in which the center-of-mass is
at rest (i.e., in which the resultant momentum is zero). The rest mass of
the system as a whole would include the contributions of the internal
energy of the system to the inertia.

Returning our attention now to collisions or interactions between
bodies, we have seen that regardless of the nature of the collision the
total energy is conserved and that the conservation of total energy is
equivalent to the conservation of (relativistic) mass. In classical physics
we had two separate conservation principles: (1) the conservation of
(classical) mass, as in chemical reactions, and (2) the conservation of
energy. In relativity, these merge into one conservation principle, that
of conservation of mass-energy. The two classical laws may be viewed
as special cases which would be expected to agree with experiment only
if energy transfers into or out of the system are so small compared to
the system’s rest mass that the corresponding fractional change in rest
mass of the system is too small to be measured.

# Example 5. One atomic mass unit (1 a.m.u.) is equal to 1.66 X 10727 kg
(approximately). The rest mass of the proton (the nucleus of a hydrogen atom)
is 1.00731 a.m.u. and that of the neutron (a neutral particle and a constituent
of all nuclei except hydrogen) is 1.00867 a.m.u. A deuteron (the nucleus of
heavy hydrogen) is known to consist of a neutron and a proton. The rest mass
of the deuteron is found to be 2.01360 a.m.u. Hence, the rest mass of the
deuteron is less than the combined rest masses of neutron and proton by

Amg = [(1.00731 + 1.00867) — 2.01360] a.m.u. = 0.00238 a.m.u.,
which is equivalent, in energy units, to

Amoc? = (0.00238 X 1.66 X 10727 kg)(3.00 X 108 m/sec)?
= 3.57 X 10713 joules = 2.22 X 106 ev
= 2.22 Mev.
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When a neutron and a proton at rest combine to form a deuteron, this exact
amount of energy is given off in the form of electromagnetic (gamma) radia-
tion. If the deuteron is to be broken up into a proton and a neutron, this same
amount of energy must be added to the deuteron. This energy, 2.22 Mev, is
therefore called the binding energy of the deuteron.

Notice that

Amg _ 0.00238
M, _ 2.01360

= 1.18 X 107% = 0.12 percent.

This fractional rest-mass change is characteristic of the magnitudes that are
found in nuclear reactions.

Example 6. The binding energy of a hydrogen atom is 13.58 ev. That is, the
energy one must add to a hydrogen atom to break it up into its constituent
parts, a proton and an electron, is 13.58 ev. Thc rest mass of a hydrogen atom,
Mp, is 1.00797 a.m.u. The change in rest mass, Amo, when a hydrogen atom
is ionized is

13.58 ev _
13.58 ev — = 1.46 X 10-8 a.m.u.
V= 931 x 166 ev/am.u. X a.m.u
so that
Amo 146 X 10-8 _ ]
- — 145 X 10-8 = 1.45 X 10-6 .
M, 1.008 X X pereen

Such a fractional change in rest mass is actually smaller than the experimental
error in measuring the ratio of the masses of proton and electron, so that in
practice we could not detect the change. Thus, in chemical reactions, we could
not have detected changes in rest mass and the classical principle of conserva-
tion of (rest) mass is practically correct.

Example 7. Consider the following thought experiment. A rectangular tube
of mass M and length L is at rest in a frame S. A pulse of electromagnetic
radiation of energy E is emiticd at one end of the tube and subsequently ab-
sorbed at the other end. Show that the inertia associated with this radiation
ism = E/c2.

The situation is depicted in Fig. 3-8. The pulse of electromagnetic radiation
is emitted to the right. From Maxwell’s electromagnetic theory a momentum
p = E/c is associated with this radiation, so that, to conserve momentum, the
tube recoils to the left at a speed v. If m represents the mass to be associated
with the radiant energy, then the mass of the recoiling tube is M — m and
the conservation of momentum in S requires

M — myp = E.
[o4
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L
A
(@)
v c
uT —
)
B
(c) ol X e

Fig. 3-8. (@) A rectangular tube of length L and mass M
at rest in frame S. (b) A pulse of radiation is emitted at 4
to the right and the tube recoils with speed v to the left.
(¢) The radiation is absorbed at B, in the right end of the
tube, bringing the tube to rest after it has moved a recoil
distance x.

The time of flight of the pulse of radiation, whose speed is ¢, is t =
(L — x)/c, which is the same as the time of recoil of the tube ¢t = x/v, where
x is the distance of the recoil. Combining these, we get

Since the forces are all internal, the eenter of mass of the system does not
change during the process of emission and absorption. If m is the effective
mass transferred by the radiation, the center of mass will not change if
Mx = mL (the student should be able to show this), or

o Mx
L3

We combine the above equations and solve for m as follows. Using

x _  E/c

L —-x M—m
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we find
‘= EL/(M — m)¢? EL/c?
T 1+ E/CM—-—m)” (M—m) + E/c?

Then, inserting m = x(M/L), we find

_ ME/c?
T M —m) + E/c®’

m

whose solution is m = E/c2.

If we think more deeply about the thought experiment, we shall conclude
that this analysis of it violates the spirit of relativity. How does the right end
of the tube get the “message” to start moving to the left after the left end re-
coils? To “beat” the emitted pulse of radiation, this message must travel faster
than light. If the tube moved as a rigid body, the message would travel with
infinite speed. Certainly the whole tube does not recoil rigidly, so what is the
meaning of v?

What happens, in fact, is that the “recoil signal™ travels as an elastic wave
along the walls of the tube, with the speed of sound, and arrives at the right
end after the pulse of radiation does. But, by then, the pulse has been absorbed
and another signal travels back as an elastic wave to the front end. Hence, the
tube vibrates and is not rigid at all. A correct analysis of this situation, al-
though obviously involved, leads to the same basic result obtained in the
example. ¢

Einstein deduced the result of Example 7 in another way. Let the
tube be at rest in the laboratory, but let it contain radiant (electromag-
netic) energy of amount E in thermodynamic equilibrium with the walls.
Now, radiant energy exerts a pressure on the walls of the tube and, in
this particular case (equilibrium), the total force on one wall annuls that
on the opposite wall. If, however, the tube is accelerated in a forward
direction by an applied force, the radiation reflected off the rear wall
during this acceleration will change its momentum more than that
reflected off the front. The result is that the radiation exerts a net force
on the tube, resisting its acceleration and contributing to the inertia of
the tube exactly as much as a mass m = E/c? would.*

In a paper [6] entitled “Does the Inertia of a Body Depend upon its
Energy Content,” Einstein writes:

“If a body gives off the energy E in the form of radiation, its mass
diminishes by E/c2. The fact that the energy withdrawn from the body
becomes energy of radiation evidently makes no difference, so that we

*See Example 9 and Ref 7 for still another derivation of E = me?
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are led to the more general conclusion that the mass of a body is a meas-
ure of its energy content. . . . It is not impossible that with bodies whose
energy-content is variable to a high degree (e.g., with radium salts) the
theory may be successfully put to the test. If the theory corresponds to
the facts, radiation conveys inertia between the emitting and absorbing

bodies.”

Experiment has abundantly confirmed Einstein’s theory.

Today, we call such a pulse of radiation a photon and may regard it as
a particle of zero rest mass. The relation p = E/c, taken from classical
electromagnetism, is consistent with the result of special relativity for
particles of “zero rest mass” since, from Eq. 3-19, E = c\/m
we find that p = E/c when mo = 0. This is consistent also with the fact
that photons travel with the speed of light since, from the relation E =
me2 = mocz/\/TT/cz, the energy E would go to zero as my — 0 for
u < c. In order to keep E finite (neither zero nor infinite) as mo — 0, we
must let u — c. Strictly speaking, however, the term zero rest mass is a
bit misleading because it is impossible to find a reference frame in which
photons (or anything that travels at the speed of light) are at rest (see
Question 12). However, if mg is determined from energy and momentum
measurements as mg = \/(E/c?)2 — (p/c)?, then my = 0 when (as fora
photon*) p = E/c.

The result, that a particle of zero rest mass can have a finite energy

and momentum and that such particles must move at the speed of light,
is also consistent with the meaning we have given to rest mass as internal
energy. For if rest mass is internal energy, existing when a body is at
rest, then a “body” without mass has no internal energy. Its energy is all
external, involving motion through space. Now, if such a body moved at
a speed less than ¢ in one reference frame, we could always find another
reference frame in which it is at rest. But if it moves at a speed c in one
reference frame, it will move at this same speed c in all reference frames.
It is consistent with the Lorentz transformation then that a body of zero
rest mass should move at the speed of light and be nowhere at rest.

*For students who are unfamiliar with the relation p = E/c, found in electromagnetism, the argu-
ment can be run in reverse Start with the relativistic relation £ = mocz/m This implies
that E approaches infinity if u = c, unless mg = 0. Therefore photons, which by definition have
u = ¢, must have mo = 0 Then from E = c[p? + mo2c?]1/2 it follows that photons must satisfy
the relation p = E/c That this same result is found independently in classical electromagnetism
illustrates the consistency between relativity and classical electromagnetism
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# Example 8. The earth receives radiant energy from the sun at the rate of
1.34 X 103 watts/m?2. At what rate is the sun losing rest mass due to its radia-
tion? The sun’s rest mass is now about 2.0 X 1030 kg,

If we assume that the sun radiates isotropically, then the total solar-
radiation rate equals the radiant energy passing per unit time through a sphere
having the radius r of the mean earth-sun separation, 1.49 X 1011 m, or

[1.34 X 103 watts/meter?][4a (1.49 X 1011 meters)?] = 3.92 X 1026 watts.
Since mass/time equals (energy/time)/(energy/mass), we find, from
¢z = E/m = 8.99 X 1016 joules/kg,

3.92 X 1026 joules/sec
8.99 % 1016 joules/kg

that

= 4.36 X 109 kg/sec

is the rate of loss of solar rest mass.
At this rate, the fractional decrease of solar rest mass is

4.36 X 109 kg/sec X 3.14 X 107 sec/yr
2.0 X 1030 kg

= 6.8 X 10—14/)’1'.

#» Example 9. We present here an “ele-
8 mentary derivation of the equivalence
of mass and energy” attributable to
Einstein [7].

Consider a body B at rest in frame S
(Fig. 3-9a). Two pulses of radiation,
each of energy E/2, are incident on B,
0 * one pulse moving in the + x-direction,
the other in the —ax-direction. These
pulses are absorbed by B, whose energy
therefore increases by an amount E;
from symmetry considerations, B must
stay at rest in S. Now consider the same
process relative to S’, which moves with
a constant speed v relative to S in the

o ] Y negative y-direction. Here (Fig. 3-9b)

Yoy B moves in the positive y’-direction with

(b) speed v. The pulses of radiation are here

directed upward in part, making an

Fig 3-9. (a) Body B is at rest in S. Two angle o with the «’-axis. The velocity of

pulses of radiation are incident upon it B remains unchanged in S’ after absorp-

in the directions shown by the arrows tion of the radiation since, as we have

{6y Ik S,_’ whiih vipves FElinye S with seen, B stays at rest in S during this

speed o in the negative y-direction, body

B moves at speed v along 47y and the process:

pulses are directed up at an angle o from Now let us apply the law of conserva-
the x’-axis, as shown by the arrows. tion of momentum to the process in §.
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The momentum of B in §" is Mv (from classical mechanics) along the positive
y'-direction. Each pulse of radiation has energy E/2 and momentum E/2¢
(from classical electromagnetism), the y’-components being E/2c¢ sin a.
Hence, before absorption takes place, the y'-component of momentum of the
system is
My 4+ 2 (ﬁ) sin a.
2c
After absorption, body B has mass M’ and its momentum is M'v along the

positive y’-directi(m. Equating y'-(:omp()nems of momentum before absorp-
tion to those after absorption we have

Mv + Esin o= Mv.
cC

Now, since v € ¢, sin @« = a = v/c (the classical aberration result) so that

Ev

My 4+ === Mnu
cc
Hence M+£=M'
o2
or M'—M:E,.

o2

The energy increase E of body B, therefore, is connected to its mass increase,

AM =M — M, as
E = AMc2.

In what way (if at all) did Einstein use special relativity theory in this deriva-
tion? What approximations were made? ¢

3.7 The Transformation Properties of Momentum, Energy, Mass, and

Force

In Section 3-5 we investigated the dynamics of a single particle
using the relativistic equation of motion that was found to be in agree-
ment with experiment for the motion of high-speed charged particles.
There we introduced the relativistic mass and the total energy, including
the rest-mass energy. However, all the formulas that we used were appli-
cable in one reference frame, which we called the laboratory frame.
Often, as when analyzing nuclear reactions, it is useful to be able to
transform these relations to other inertial reference frames, like the
center-of-mass frame. Therefore, we present here the relations that con-

nect the values of the momentum, energy, mass, and force in one frame S
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to the corresponding values of these quantities in another frame ',
which moves with uniform velocity v with respect to S along the common
x-x" axes. We shall thereby gain some new insights into relativity. In later
sections of the text, we shall use some of these results.*

We begin with a relation (easily verified; see Problem 37, Chapter
Two) between the velocity of u of a particle in S and its velocity u’ in §,
namely
c2(c2 — u'?)(c? — v?)

(c® + u,'v)?

If we divide throughout by ¢2, invert, and take the square root, we find

€2 — y2 —

to ol
1 _ 14+ uv/c ’ (3-29)
VI —u2/cz /1 = u'2/c2 \/1 —1v2/c?
an equality that proves to be useful.
We now can easily obtain the transformations for the components of

momentum and for the energy. In frame S we have (by definition)

pe = moll; by = mou,

r = — y — T

V1 — u2/c? V1 — u?/c?
mou, _ moc?

= — F= —u-———.
p- V1 — u2/c? V1 — u2/c?

In frame S’ the corresponding quantities are (by definition)

p r m()uz‘, p o mouy'
: VI — w2/’ Y VI — u?/c?’
, mou,’ E— moc?

pe = VI— uZ/’ VI =%
Using Eq. 3-29 and the transformation equations for the velocity com-

ponents (Eqs. 2-18 to 2-20), the student can easily verify that the rela-

tions between these quantities are

P = V1 — v2/c? Pe c2
Py =Py
Pz = Pz”
1 (E" + vps) (3-30a)

- V1 — v2/c?

*The instructor may prefer to postpone this section until he considers the material of Chapter Four
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The inverse relations, obtained by sending v to —v and interchanging

primed and unprimed quantities, are

Py = Pw
P = pa
E=—o> _(E_ . (3-30b)

Equations 3-30a and 3-30b are the transformations for the components
of momentum and the energy. We summarize them in Table 3-2.

If these results are compared to the original Lorentz transformations
involving x, v, z, t and x/, y/, 2, t' (see Table 2-1), we find a striking
analogy (see Problem 39 and Question 18). The quantities p;, py, p-, and
E/c? transform exactly as the space-time coordinates x, y, z, and t of a
particle transform. This is an excellent way to remember the transfor-

mations. For example,

r_ x — vl

V1 — v2/c?

and ps = Pz — V2T v(E/?) .
VT —v2/c?

_t— (v/A)x

VT3

E _ (B/c) — (o/cAps

and
c? VI = v2/c?

TABLE 3-2 THE RELATIVISTIC TRANSFORMATION FOR
MOMENTUM AND ENERGY

f_ Pr— Ev/c? pe = pr + E'v/c?
Ps V90— v2/c? V1 — v2/c2
Py =Py Pv=py
p: = p: p: = p;

K = E— vps E — E + vEr’
V1 — v2/c? V1~ v/
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When relativity is put into its four-dimensional (space-time) form, a
four-vector momentum naturally emerges whose “time” component is
the energy. We have already seen in many equations of special rela-
tivity (e.g., Eqgs., 3-18 to 3-20) the interdependence of energy E and
momentum p of a particle. Perhaps the deepest connection between
energy and momentum in relativity is this: If energy and momentum
are conserved in an interaction according to one inertial observer, then
necessarily energy and momentum are conserved in this interaction
according to any other inertial observer; furthermore, if momentum is
conserved, then energy must also be conserved. These results emerged
in our study of collisions in Section 3-6. They can be shown to follow
explicitly from the transformation equations (Eqs. 3-30) (see Problem
45). This emphasizes the internal consistency of the rclativistic defini-
tions of momentum and energy.

Notice that the transformation equations for the mass follow directly
from the energy transformations. That is, E = mc® where m =
mo/\/1 — u2/c? and E' = m'c2 where m’ = mo\/1 — u'2/c?, so that,
from the equations relating E and E’, we have

I I 2
m = L+ usv/c (3-31a)

V1 — v/t

and its inverse
m(l — u;/'v/c?)
V1= v2/cz

Equations 3-31a and 3-31b are the transformation equations for the mass.

7

(3-31b)

Finally, we present the transformation equations for force.* In frame
S, we have

Fo= Sy, F= L), Fo=Lu,

whereas the corresponding quantities in frame S’ are

__d
dr

mug), F/ =), F =

F,’ =
T dt’

These are related by

*See Ref 8 for a derivation
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u,’v u,’v
Fob=F, +—%Y F' 4+ %2 F/
‘ ! (02+ urlv) v (02 + u.r’U) ‘
V1 —?/c? Fr
v (1 + u'v/c?) v
VI —v%/c? F
T+ wv/ed) T

and the inverse relations are

z

uyv u,v
14 r4
F, —

F, = F, — F,

(c? — u;'v) (c? — ugv)

— 22/02
F, = V1 — v2/¢ F

v

T 1 — ug/c?)
VT,
° T (1 — uv/c?)

These can be written more compactly by letting 1/1/1 — v2/c2 = y
and by using the dot product of u and F. Thus,

F, + (v/cAu' - F F/
F, = , Fp=
(1 + uv/c?) y(1 + u;'v/c?)
F 7
F,=— % 3-32
*T YA+ wv/cd) (3-324)
and
— 2 .
F/ — F, — (v/c?)u-F ’ F/ = F, ,
(1 — uzv/c?) Y(1 — uzv/c?)
F,
F,; = £ (3-32b)

Y(l — uv/c?)

Equations 3-32a and 3-32b are the transformation equations for the
components of force. As a check, note in the Newtonian limit where
v/c £ 1, these equations reduce to F = F’, as required.

An interesting aspect of these equations is that the force in one frame,
F, for instance, is related to the power developed by the force in another
frame, u’ - F. This is analogous to the dependence of p;, in Eq. 3-30, on
E'. Tt suggests that just as energy and momentum are related when rela-
tivity is put in four-dimensional (space-time) form, so may power and
force be related. Indeed, we can easily show that a fourth relation belong-

ing in Eqgs. 3-32 involves the power, namely
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_ lll . F/ + UFz-’

B 1+ u.r’U/cz)

and the inverse relation

P — u*F — oF,
(1 — uzv/c?)’

All this suggests the great generalizing nature of relativity theory. It is
relevant to an issue in the history of classical mechanics wherein the
effect of a force over time, F dt = dp, was regarded as the significant
measure of a force by some, whereas the effect of a force over distance,
Fdx = dE, was regarded as the significant quantity by others. That is,
F can be regarded as the time rate of change of momentum, dp/dt, or
the space rate of change of energy, dE/dx. In the relativistic equations
both concepts are used, for F,” depends not only on F, = dp/dt but also
on F - u, which has the form (dE/dx) - (dx/dt).

Finally, let us look at a special case of Eqs. 3-32, which is both useful
and simple. Consider a particle at rest instantaneously in the S'-frame,
where it is subject to a force with components F;', F,/, and F,’. Since
u’ = 0, in this proper frame, the force transformations become

F,=F/
F, = F—y = F/\/1 — v?/c?
Y

'
F, = F = F,)\/1 — v2/c? (3-33)
Y
where F;, F,, and F, are the components of force in some other (non-
proper) frame. Notice that the force in the particle’s instantaneous rest
frame is greater than the corresponding force in any other frame.

The method of obtaining the force transformations, although alge-
braically involved, is straightforward in principle, for we simply use
transformation equations that are already known and understood. The
purpose in writing down the force transformations will become clearer
in the next chapter, where we investigate how the numerical value of
electric and magnetic fields depends upon the frame of the observer.
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Questions

1.
2

10.

11.

14.

15.

Does F equal ma in relativity? Does ma equal % (mu) in relativity?

Distinguish between a variable-mass problem in classical physics and
the relativistic variation of mass.

Can we simply substitute m for mg in classical equations to obtain the
correct corresponding relativistic equation? Give examples.

Suppose F is neither parallel nor perpendicular to u. Can F and a then
be parallel? (Hint. Consider u = 0.)

We found that F and a are parallel either when F is parallel to u or when
F is perpendicular to u. In view of the fact that we can always resolve F
into two such components, why is F not always parallel to a?

Any force can be resolved into two components, one along the line of
motion and the other perpendicular to the line of motion. Can the result-
ing acceleration, then, be predicted from the longitudinal and transverse
mass relations?

Can a body be accelerated to the speed of light? Explain.

Explain how it happens, in Example 4, that although total energy is con-
served in each frame, the value assigned to the total energy in S does not
equal numerically the value in S’

We have seen that, in an elastic collision between two spheres, both the
rest mass of the sphere and its relativistic mass before collision are
equal to the corresponding quantities after collision. What happens to
these quantities during the collision? (Hint. The impulsive forces ex-
erted by the spheres on one another are equivalent to a changing internal
elastic potential energy.)

How would you expect the relativistic variation of mass to affect the
performance of a cyclotron?

Is it truc that a particle that has energy must also have momentum? What
if the particle has no rest mass?

If photons have a speed ¢ in one reference frame, can they be found at
rest in any other frame? Can photons have a speed other than ¢?

Radiation, being a transfer of energy, involves a transfer of mass and
carries momentum. Hence, radiation should exert pressure on bodies it
falls upon. Give some examples.

Under what circumstances is the rest (or proper) mass of a body a con-
stant quantity? Under what circumstances can we speak of a varying
proper mass?

A hot metallic sphere cools off on a scale. Does the scale indicate a change
in rest mass?
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16. What role does potential energy play in the equivalence of mass and
energy?

17. A spring is kept compressed by tying its ends together tightly. It is then
placed in acid and dissolves. What happens to its stored potential energy?

18. Show that momentum is analogous to displacement in the sense that
momentum is obtained from displacement merely by multiplication by
an invariant factor mo/drt. Show, similarly, that energy is analogous to
time in the sense that energy is obtained from time merely by multiplica-
tion by an invariant factor moc?/dt (see Sections 3-4 and 3-7).

Problems

1. Consider a box at rest with sides a, b, and ¢, as shown in Fig. 3-10. Its
rest mass is mg, and its rest mass per unit volume is pp = mo/abc.
(@) What is the volume of the box as viewed by an observer moving rela-
tive 1o the box with speed u in the x-direction? (b) What is the mass
measured by this observer? (c) What is the density of the box, in terms
of pg, as measured by this observer?

y

Fig 3-10.

2. Consider the following elastic collision: particle A has rest mass mg and
particle B has rest mass 2my; before the collision, particle A moves in the
+ x-direetion with a speed of 0.6¢ and particle B is at rest; after the col-
lision, particle A is found to be moving in the + y-direction, and particle
B is found to be moving at an angle § to the + x-direction. Write down
the three equations (do not solve them) from which we could dctermine
the angle § and the speeds of A and B after the collision.

3. What is the speed of an electron whose kinctic energy equals its rest
energy? Does the result depend on the mass of the electron?
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. The average lifetime of p-mesons at rest is 2.3 X 1076 sec. A laboratory

measurement on gi-mesons yields an average lifetime of 6.9 X 1076 sec.
(a) What is the speed of the mesons in the laboratory? (b) The rest mass
of a p-meson is 207 m,. What is the effective mass of such a meson when
moving at this speed? (¢) What is its kinetic energy? What is its
momentum?

. An eleetron is accelerated in a synehrotron to an energy of 1.0 Bev.

(a) What is the effective mass of this electron in terms of its rest mass?
(b) What is the speed of this electron in terms of the speed of light?
(c) What are the answers to (a) and (b) if the energy of the electron is
1.0 Mev instead?

. Compute the speed of (a) electrons and (b) protons which fall through

an electrostatic potential difference of 10 million volts. (¢) What is the
ratio of relativistic mass to rest mass in each case?

. Prove that if u/c € 1, the kinetic energy K of a moving particle will

always be much less than its rest energy moc?.

8. Derive the relation K = (m — mg)c? for motion in three dimensions.

10.

11.

12.

13.

14.

. Prove that, in Fig. 3-3,sin0 = u/c = Band thatsin¢ = /1 — u?/c? =

V1 — B2
(@) Verify Eq. 3-18a eonnecting K and p by eliminating u between Eqs.

3-11 and 3-16b. (b) Derive the following useful relations between p, E,
K, and my for relativistie particles, starting from Eqs. 3-18a and 3.18b.

(D K = cv/mo?c2 + p? — moc?.
VK2 + 2moc2K
@ p= YT
— p2p2
Q) mo = —VEZZI’W
c
Show (when F is parallel to u) that substitution of m = mo//1 — u?/c?
into F = m(du/dt) + u(dm/dt) leads to F = moa/(1 — u?/c?)3/2,

Show that, although a and F are not parallel in general (Eq. 3-22), the
angle between them is always less than 90°.

(@) What potential differenee will accelerate electrons to the speed of
light, according to elassical physics? (b) With this potential difference,
what speed would an electron acquire relativistically? (c) What would its
mass be at this speed? Its kinetic energy?

A charge q at x = 0 accelerates from rest in a uniform electric field E,
which is directed along the positive x-axis.
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15.

16.

17.

18.

19.

20.

(a) Show that the acceleration of the eharge is given by

2\ 3/2
a,:g—li(l—u) .
mo

=3
(b) Show that the veloeity of the charge at any time ¢ is given by

_ qEt/mo
V1 + (gEt/mgc)?

(c) Show that the distance the charge moves in a time ¢ is given by

x = moc? (/1 + (gEt/moc)? — 1).

qE

(d) Show that when ¢ is large, u; approaches c, and x approaches ct.
(e) Show that if gEt/mo < ¢ we obtain the classical results for a;, u.,
and x.

(a) Show that when u/c < 1/10 or when K/mgc? < 1/ 200 the classical
expressions for kinetic energy and momentum, that is, K = $mou? and
p = mou, may be used with an error of less than 1 percent. (b) Show that
when u/c > 99/100 or when K/moc? > 7, the relativistie relation p =
E/c for a zero rest-mass particle may be used for a partiele of rest mass my
with an error of less than 1 percent.

(a) Show that a particle which travels at the speed of light must have a
zero rest mass. (b) Show that for a particle of zero rest mass, u = ¢, K =

E,andp = E/c.

Make a plot of the total energy E versus the momentum p for a particle
of rest mass myg for the eases (a) elassieal particle (b) relativistic particle
and (c) zero rest-mass particle. (d) In what region does curve (b) approach
eurve (a) and in what region does curve (b) approach curve (c)? (e) Ex-
plain briefly the physical signifieanee of the intercepts of the eurves with
the axes and of their slopes (derivatives).

A 0.50 Mev electron moves at right angles to a magnetic field in a path
whose radius of curvature is 2.0 em. (@) What is the magnetic induction
B? (b) By what factor does the effective mass of the electron exceed its
rest mass?

A cosmic-ray proton of energy 10 Bev approaches the earth in its equa-
torial plane in a region where the earth’s magnetie induction has a value
5.5 X 1075 webers/m2. What is the radius of its curved path in that
region?

Show that the angular frequency of a charge moving in a uniform mag-
netic field is given by w = (gB/m)\/1 — u?/c?. (b) Compare this with
the classical result upon which some cyclotron designs are based and
explain qualitatively how the design must be modified relativistically.



21.

22,

23.

24.

25.
26.
28.

28.

29,

30.

Problems 153

The general magnetic field in the solar system is 2 X 10719 tesla (a tesla
is one weber/meter?). Find the radius of curvature of a 10 Bev cosmic-
ray proton in such a field. Compare this radius to the radius of the earth’s
orbit around the sun.

Ionization measurements show that a particular charged particle is
moving with a speed given by 8 = u/c = 0.71, and that its radius of
curvature is 0.46 m in a field of magnetic induction of 1.0 tesla. Find the
mass of the particle and identify it.

In a high-energy collision of a primary cosmic-ray particle near the top
of the Earth’s atmosphere, 120 km above sea level, a 7+ meson is created
with a total energy of 1.35 X 105 Mev, travelling vertically downward.
In its proper frame it disintegrates 2.0 X 1078 sec after its creation. At
what altitude above sea level does the disintegration occur? The 7-meson
rest-mass energy is 139.6 Mev.

The “effective mass” of a photon (bundle of electromagnetic radiation of
zero rest mass and energy hv) can be determined from the relation m =
E/c2. Compute the “effective mass™ for a photon of wavelength 5000 A
(visible region), and for a photon of wavelength 1.0 R (X-ray region).

Using data in Example 8, find the pressure of solar radiation at the earth.
What is the equivalent in energy units of one gram of a substance?

A ton of water is heated from the freezing point to the boiling point. By
how much, in kilograms and as a percentage of the original mass, does
1ts mass increase?

(a) Prove that 1 a.m.u. = 931.5 Mev/c2. (b) Find the energy equivalent
to the rest mass of the electron, and to the rest mass of the proton.

(a) How much energy is released in the explosion of a fission bomb con-
taining 3.0 kg of fissionable material? Assume that 0.1 percent of the rest
mass is eonverted to released energy. (b) What mass of TNT would have
to explode to provide the same energy release? Assume that each mole of
TNT liberates 820,000 calories on exploding. The molecular weight
of TNT is 0.227 kg/mole. (c) For the same mass of explosive, how much
more effective are fission explosions than TNT explosions? That is, com-
pare the fractions of rest mass converted to released energy for the two
cases,

The nucleus C12 consists of six protons (H!) and six neutrons (n) held in
close assoeiation by strong nuclear forces. The rest masses are

C12  12.000000 a.m.u.,
H1 1.007825 a.m.u.,
n 1.008665 a.m.u.

How much energy would be required to separate a C12 nucleus into its
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31.

32.

33.

34.

35.

36.

37.

constituent protons and neutrons? This energy is called the binding
energy of the C!2 nucleus. (The masses are really those of the neutral
atoms, but the extranuclear electrons have relatively negligible binding
energy and are of equal number before and after the breakup of C12)

A positron and an electron at rest in frame S combine and annihilate one
another, produeing two photons. (a) What is the energy and momentum
of each photon in this frame? What quantities are conserved in this proc-
ess? (b) Prove that the positron and electron cannot combine to produce
only one photon.

A body of rest mass my, travelling initially at a speed 0.6c, makes a com-
pletely inelastic collision with an identical body initially at rest. (a) What
is the speed of the resulting single body? (b) What is its rest mass?

An excited atom of mass m, initially at rest in frame S, emits a photon
and recoils. The internal energy of the atom decreases by AE and the
energy of the photon is hv. Show that hv = AE (1 — AE/2mc?).

The nucleus of a carbon atom initially at rest in the laboratory goes from
one state to another by emitting a photon of energy 4.43 Mev. The atom
in its final state has a rest mass of 12.0000 atomic mass units. (1 a.m.u.
eorresponds to 931.478 Mev). (a) What is the momentum of the carbon
atom after the decay, as measured in the laboratory? (b) What is the
kinetic energy, in Mev, of the carbon atom after the decay, as measured
in the laboratory system?

A body of mass m at rest breaks up spontaneously into two parts, having
rest masses my and my and respective speeds v; and v2. Show that m >
my + ma, using conservation of mass-energy.

A charged 7-meson (rest mass = 273 m,) at rest decays into a neutrino
(zero rest mass) and a p-meson (rest mass = 207 mg). Find the kinetic
energies of the neutrino and the p-meson.

A gamma ray creates an electron-positron pair. (a) Show directly that,
without the presence of a third body to take up some of the momentum,
energy and momentum cannot both be conserved. (Hint. Set the energies
equal and show that this leads to unequal momenta before and after the
interaction.) (b) Show the result of part (a) by employing the relativity
postulates. (Hint. The gamma ray must have at least an energy of 2 mgc?
to create the pair. Suppose that, in frame S, this condition is satisfied.
What would an observer in frame S’, moving away from the photon, see?)
(¢} Show the result of part (a) directly from the diagram of Problem 17.

We can see from this problem that pair creation cannot occur in free
space. In order to satisfy the conservation laws, as well as to explain an
interesting paradox suggested by (b), there must be another body around
to take up some of the recoil momentum of the interaction.
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A gamma ray (passing near a nucleus) creates an electron-positron pair,
which enter a magnetic field whose intensity is 0.10 weber/m2. The mag-
netic field is perpendieular to the flight paths of both particles, which
are observed to be circular arcs of radii 4.0 em and 10.0 cm respectively.
(a) Find the energy of the ineident gamma ray. (b)) Would the energy
calculated above be different if the observed radii were the same when
the particles moved in a plane inclined at 30° to a magnetic field of the
same value? Explain briefly.

Using Eq. 3-29 and the transformation equations for the velocity compo-
nents (Eqs. 2-18 through 2-20), derive the transformation equations for
the components of momentum and the energy, Eqs. 3-20a and 3-20b.

. The quantity ¢2t2 — (x2 4+ y2 + z2) of an event is an invariant (the same
q y y

for all observers) equal to ¢272, where 7 is the proper time. That is, ¢212 —
% + y? + 2%) = 22 — (x'2 + y'2 4+ 2'?) = ¢272. Show that, analo-
gously, the quantity (E?/c¢?) — (p,2 + p,2 + p.?) for a particle is an in-

variant equal to mo?c2.

An electron moves in the positive x-direction in frame S at a speed v =
0.8c. (@) What are its momentum and its energy in frame S? (b) Frame S’
moves to the right at a speed 0.6¢ with respect to S. Find the momentum
and energy of the electron in this frame,

Consider electromagnetic radiation to consist of photons, that is, particles
of zero rest mass and of energy E = hv. Show that the Doppler and aber-
ration formula of Chapter Two can be obtained from the transformation
laws for the components of momentum and the energy (Table 3-2).

For a system of interacting particles, in the absence of external forces,
the laws of momentum and energy in S can be written as Zjmu; =
constant and 2;m;c? = constant, where the relativistic mass is m; =

moi/\/ 1 — u;i2/c? for the ith particle. Show that if these laws are true in
S, then (using the Lorentz transformation) they are true (in form) in §'.

. Show that when F (as defined by Eq. 3-13) is not zero, then if, for a

system of interacting particles, the total relativistic momentum changes
by an amount AP, this change is equal to fF dt, the total impulse given
to the system.

. (a) Write the transformation equations for momentum and energy (see

Table 3-2) in terms of the differences (Ap;, Ap,, and Ap,) in initial and
final components of momenta, and the difference (AE) in initial and final
energy of a system of interacting particles. Justify your procedure.
(b) Now show that if momentum and energy are conserved in frame S
(i.e., Ap; = Ap, = Ap, = AE = 0) they are also conserved in frame §'.
(c) Show finally that, if momentum is conserved, then energy must be
conserved. Compare this result to that of Problem 3 of Chapter One.
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Chapter Four
Relativity and Electromagnetism

4.1 Introduction

We have seen how kinematics and dynamics must be generalized
from their classical form to meet the requirements of special relativity.
And we have seen the role that optical experiments played in the develop-
ment of relativity theory and the new interpretation that is given to such
experiments. It remains to investigate classical electricity and magnetism
in order to discover what modifications need to be made there because
of relativistic considerations. We shall confine our investigation to elec-
tromagnetic fields in vacuum.

Classical electromagnetism is consistent with special relativity. Max-
well’s equations are invariant under a Lorentz transformation and do not
need to be modified. Indeed, Lorentz originally arrived at his transforma-
tion equations by requiring the invariance of Maxwell’s equations. In a
statement [1] sent to a meeting in 1952 honoring the centenary of
Michelson’s birth, Albert Einstein wrote:

“The influence of the crucial Michelson-Morley experiment upon my
own efforts has been rather indirect. I learned of it through H. A.
Lorentz’s decisive investigation of the electrodynamics of moving bodies
(1895) with which I was acquainted before developing the special theory
of relativity . . . . What led me more or less directly to the special theory
of relativity was the conviction that the electromotive force acting on a
body in motion in a magnetic field was nothing else but an electric field.”

Hence, we could confine our considerations to the proof of the invari-
ance of Maxwell’s equations (as is done in Section 4-7) and end the dis-
cussion there. However, this would rob us of the real merits of the
relativistic approach to electromagnetism. Relativity gives us a new point
of view that enhances our understanding of electromagnetism. And the
techniques of relativity are often much simpler than the classical tech-
niques for solving electromagnetic problems, so that relativity theory is
also a practical aid in problem solving. In the succeeding sections, we
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shall give examples of the relativistic point of view and its practicality.

The following is a problem that suggests at once the possible value of
such considerations. Consider a charge that is in motion in an inertial
reference frame S. This charge, which we may call the source charge g,
sets up a field of magnetic induction B. Let another charge, called a test
charge ¢;, move through this field with a velocity u. Then the test charge
will experience a magnetic force F,, = q;(u X B) in the S-frame. Now,
consider an observer in an inertial frame S’ which moves relative to S,
either with the velocity u of the test charge or with the velocity of the
source charge in S. In either one of these frames there will be no mag-
netic force, for either the velocity of the test charge is zero, or the source
charge is at rest and there is no magnetic field; hence, F;,’ = 0. But
inertial frames are equivalent; none is preferred over another. Then is
there or isn’t there a magnetic force? The resolution of this paradox is
simple in relativistic terms. We shall return to it later.

4.2 The Interdependence of Electric and Magnetic Fields

Paradoxes such as the one just raised are resolved by the fact,
shown so clearly in relativity, that magnetic fields and electric fields have
no separate meaning; instead, we have the single concept of an electro-
magnetic field. A field that is purely electric, or purely magnetic, in one
frame, for example, will have both electric and magnetic components in
another frame, in general. All this can be shown directly when we find
how the field vectors E and B transform from one frame to another
(Section 4-3). Before we do that, however, it is instructive to examine,
in a semiquantitative way, a current-carrying wire viewed from two iner-
tial frames. This will give us some insight into the interdependence of
electric and magnetic fields.

We begin by considering a volume element containing charge. For
simplicity, let the volume element be a cube whose edges have rest length
lp and let there be N electrons in the cube. The charge in the cube is Ne,
then, and the charge density (the charge per unit volume) is pp =
Ne/ly3. If the charges are at rest in frame S’ then there will be no current
in S” and the current density* (current per unit cross-sectional area) will

*The current density is related to the current by i = (j + dS, where j is the (vector) current density,
dS is a (vector) element of surface area of a conductor, and i i~ the current The current is the flux
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be jo = 0. Now, consider the volume element from a frame S in which it
moves with velocity u. Again, for simplicity, take u to be in the direction
of one edge of the cube. This edge will have the measured length
lo\/l——uT/c2 in S whereas the transverse edges will measure [y each.
Hence, the volume of the cube in S is [y3 \/m However, the
number of electrons and the charge on each do not change, so that the
S observer will find a charge density p = Ne/lo3m Combin-
ing this with po, we obtain

p=—P (41)

V1 — u?/c? .

The charges move with the velocity u in S so that j, the measured current
density there (the current per unit cross-sectional area), will be the
charge density of the cube times the velocity of the cube; that is,

j = pu = Neu/l3\/1 — u?/c2. Combining this with pg, we obtain
pou

1= VI = uZ/c?

If we had considered a current density j with components j,, j,, and j,,

(4-2)

we obviously would have obtained the general result

jo = Pous = Pouy
) V1 — u2/c2’ v V1 — u2/02’
Pou Po

p= (4-3)

e T N

Now we notice a very interesting analogy. The relation between cur-
rent density and charge density is similar to that between momentum
and energy and to that between space and time coordinates. In fact, just
as c?2 — (x2 + y? 4+ 22) is an invariant quantity equal to ¢272, and just
as c¢2m? — (p;2 + p,® + p.?) is an invariant quantity equal to ¢2mg?2 (see
Problem 3-40, for example), so we can analogously derive an invariant
quantity formed from j and p. It is easily shown (Problem 4-1) that

of the vector j over the surface In the case we are considering, the current is distributed uniformly
across a eonductor of cross-sectional area A( = 1y?) so that i = j4 or j = i/4 Thatis, j is constant
over the (vector) surface of the integration and at right angles to it The current density is current
per unit cross-sectional area.
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c2p2 — (jz2 + j,2 + j:2) = c?po®. The three analogous relations above
may be written simply as

2 — r2 = %12,
Em? — p? = 2m?,
and c2p? — j2 = ¢2py?.

In fact, Eqs. 4-1 and 4-2 can also be written as

Po . Po
=—m and = —p.
= e Y= mo? (4-3)
We see at once then that the quantities j and p transform exactly as p and
m, respectively. Hence, from Eqs. 3-30, we immediately obtain the trans-

formation equations

., — pv ., . .y .
Jz =\/]1I—T2/7, Jv = Jy- Je = Je

’ p— vj.’t/cz

p = == v2/c2’ (4-4a)
and their inverses
je=—dEELY oy =i
F A ) v — Jy 2 — Jz
V1 — v3/c?
! L3 2
p = Pt/ (4-4b)

V1= #/cZ’
As usual, we assume that frame S’ moves with a velocity v with respect
to frame S along their common x-x" axes.

We shall now use these relations to analyze the fields around a current-
carrying wire. Consider a long straight wire (frame S) in which free
electrons move with a (drift) velocity u to the right. We take the number
of free electrons per unit volume, n, to be equal to the number of posi-
tive ions per unit volume, so that the net charge in any volume element
of the wire is zero. Because of these circumstances, the separation
between electrons must be the same as the separation between positive
ions (see Fig. 4-1). The positive charge, however, is at rest in frame S
whereas the electrons are in motion.

Let us write down the charge density and the current density in S. The
negative-charge density (caused by electrons) is p~ = — ne, where e is the
magnitude of an electronic charge, whereas the positive-charge density
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+ + + + +

e s s T i
u u u u u

Fig 4-1. One-dimensional schematic drawing of current-
carrying wire at rest in frame S The positive ions are at rest
and the free electrons move at constant speed u to the right.
The system is electrically neutral, the (measured) separa-
tion between electrons being equal to that between positive
1ons

(caused by the ions) is p* = + ne. The net charge density, p = p~ + ot
is zero. As for the current density, we have j,~ = —neu = p~u and
jzt = 0,s0 that j» = j,* + j.~ = p

Now we consider the situation in S’, an inertial frame moving with
speed v to the right relative to S. This observer will declare that the posi-
tive charge is in motion (to the left) but, what is more interesting, he will
find that the wire is not electrically neutral. For, consider the charge
density, obtained from Eq. 4-4a, in §’. We have, in general,

e R Ly
V1 — v2/c? V1 — v2/c?

and with j;~ = p~u and j,* = 0, we obtain

p

—r — (1 _ vu’/cz) +7 p+
P = p— and pV = —re——.
V1 — v2/c? VI — v2/c2
Substituting p~ = —ne and p* = + ne, we get for the net charge den-
Sity, [pr — p+l + p_r]’
, ne ne(l — vu/c?) _ newvu/c?

P Ao Vi-ode  Ji-#je
which is positive and not zero. The primed observer finds the wire to be
positively charged.

Let us summarize the results. In the S-frame, the net charge density
is zero and there is no observed electric field; there is a net current den-
sity, however, so that a magnetic field B exists around the wire. Hence,
in the S frame there is only a magnetic field. In the S'-frame, on the other
hand, there is a positive net charge density as well as a current density
so that both an electric field E’ and a magnetic field B’ exist. This specific
example illustrates the general result that whether an electromagnetic
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field is purely magnetic or purely electric, or electric and magnetic, de-
pends on the inertial frame in which the sources are observed.

With the qualitative insight of this example in mind, we now seek the
result of the general case: given an electromagnetic field having values
E’ and B’ for its electric and magnetic components in one inertial frame
("), how do we obtain the values E and B of the corresponding field in
another inertial frame (S)? Once we obtain this result, we shall be able
to apply it to familiar problems, including “paradox” problem of Sec-
tion 4-1.

The student may wonder what the origin is of the net positive-charge density
in 8’ in the above example. The origin is the relativity of simultaneity. In some
respects, the situation is like the length contraction of relativistic kinematics.
Let us see how this is so. First, consider the wire before we apply an emf, that
is, before there is a current. Both the positive ions and the electrons are sta-
tionary in S; the positive-charge density and negative-charge density are equal,
and the wire is electrically neutral. Now apply an emf such that, in S, all the
electrons begin moving in the same way at the same instant.* In a circular turn
of wire, for example, this can be achieved by plunging a magnet through its
center. Then, in S, the wire remains neutral, for the separation between elec-
trons remains the same as before (see Problem 21 and Question 4). But what
is the situation in S§'? Here the positive ions are moving and the measured
separation of the ions is contracted compared to the rest separation, thereby
increasing the positive-charge density. Likewise, the measured separation of
the electrons in 8" may be increased (here the electrons can be at rest if
v = u, for example) thereby decreasing the negative-charge density. In this
respect, the separation between adjacent positive ions may be considered as
a moving rod and the separation between adjacent electrons as another mov-
ing rod; the two observers, S and §’, disagree on the simultaneity of the meas-
urements on the end-point positions, thereby measuring different separations.
This leads to different measured charge densities so that a net positive-charge
density results in §' if the net charge density is zero in S. What about charge
invariance then? Is the total charge in §’ different than that in S? No, it is not.
In a complete circuit, the direction of motion of the electrons is different in
different parts of the circuit. Hence, one segment of the wire may be posi-
tively charged in S’ and another segment negatively charged (see Question 3).
The circuit as a whole, however, remains clectrically neutral.

*Notice that this is not the way particles in a rod behave when the rod is pushed from a rest position
at one end It takes time for the signal to get to each particle and successive particles start moving
later in time
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4.3 The Transformation for E and B

The electromagnetic (or Lorentz) force on a particle of charge ¢
moving with velocity u, at a point and a time at which the electric field
is E and the magnetic field is B, is

F = q(E + u X B).

Although the electric force does not depend on the motion of the test
charge, the magnetic force does. However, the motion of a particle de-
pends on the frame in which it is described, so that we should not be
surprised that the fields also depend on the frame in which they are de-
scribed. We shall derive the field transformations here from special cases,
the results, however, being quite generally true.

We saw (Section 3-6) that the force transformation equations between
a frame S and another frame §’, in which the particle experiencing the
force is instantaneously at rest, is

F,=F,,

F ?

F, = F/\/1 = ¥/ = L, (3-33)
Y
F ?

F,= F/\/1Z /2 = -2,

Consider a particle of charge ¢ to be instantaneously at rest in S, wherein
there is an electric field E’ and a magnetic field B’. The electromagnetic
force on the particle will be F' = gE’, there being no magnetic force on
a particle at rest. In frame S the corresponding force is given by
F = q(E + v X B), for in this frame the charge has a velocity v, the
velocity of S’ relative to S. We take v to be along the common x-x" axes
so that v, = vand v, = v, = 0.

Let us now use Eqs. 3-33, one at a time. We find, with (v X B), =
vB, — v:B, = 0, that F; = q[E; + (v X B);] = qE; and F,’ = qE,’.
Then, the equation F;" = F; gives us ¢E;' = qE;, and we have

E, =E,
as the transformation equation for E;’.
Using the y-component equation, we obtain qE,'/y=q[E,+ (v X B),]

or, since (v X B), = v,B; — v,B, = vB,, the transformation equation
for £ is

E/ = y(E, — vB,).
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Similarly, from the z-component equation we obtain the transformation
equation for E;’, namely

E) = y(E, + vB,).

Hence, we can summarize the transformation for the electric field

components as

E' =E, E.,=E;/
E) = y(E, — vB,) E, = y(E,/ + vB)) (4-5)
E; = y(E; + vB)) E, = y(E, — vB))).

The left-hand set of equations was just derived. The right-hand set gives
the inverse equations, obtained by sending v to —v and interchanging
primes and unprimes.

Actually, the restriction that the relative velocity v of S’ with respect
to S be along the x-axis is unnecessary, because the orientation of this
axis is arbitrary. If, instead, we introduce components of the fields
parallel (||) and perpendicular (L) to the direction of the relative
velocity, then we can write these transformations quite generally as

E)’ = E,

, (46)
and E'=v[E + (v X B)]

which assert that the component of E parallel to the relative velocity of
the two frames is unchanged, whereas the components of E perpendicular
to the relative velocity transform to mixed electric and magnetic fields.

Now let us investigate the transformation of the magnetic field com-
ponents. Again we pick a relatively simple case whose results are never-
theless general. As before, the relative motion of the two frames, S and
S’, is along the common x-x" axes. Consider a particle of charge ¢ moving
in the S’ frame in the y’-direction only, with speed u’. Then, with
u' = u,)/, the force in §', F' = q(E’ + u’ X B’), has components F,’ =
q(E; + u,/B,), F)/ = qE,, and F, = q(E;/ — u,/B,’) in the primed
frame (§’). To get the force in S, we first must know what the particle’s
velocity is in this unprimed (S) frame. Here we need the velocity trans.
formation equations, Eqs. 2-18 to 2-20, from which we find u, = v,
u, = u,'/y, and u, = 0. That is, although in S’ the particle moves only
along the y’-direction, in S the particle velocity has a component along x
as well as along y. Hence, the force F = ¢(E 4+ u X B) in S has com-
ponents F, = q(E; + u,B;), F, = q(E, — vB;), and F, = ¢(E, +
vB, — u,B;).
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Now that we have the components of force in each inertial frame, we
must substitute them into the general force transformation equations
(Eqgs. 3-32a or 3-32b) to obtain relations between the fields. If we do this,
and use also Egs. 4-5, relations already derived, we shall find (see
Problem 3) that B, = B, and B, = y[B, — (v/c?)E,]. In order to find
how the y-component of the magnetic field transforms, we would need
to let the charge move in the z'-direction instead of in the y’-direction.
We would find (see Problem 3), by a similar procedure, that B, =
Y[B, + (v/c?)E;]. Hence, we can summarize the transformations for the

magnetic field components as
Bz, = B,

B,/ = y(B,, + %Ez) y = y(B,,’ - —”Ez’) 4-7)
C

B/ =(B.—LE) B.=ro(B+L8/)
C C

Once again, we need not restrict the relative velocity v of S’ with
respect to S to be along the x-axis. Taking the field components parallel
and perpendicular to the direction of the relative velocity, we can write
these transformations quite generally as

B’ = B,
and B =1|B — L x By @9

which assert that the components of B parallel to the relative velocity of
the two frames is unchanged, whereas the components of B perpendicu-
lar to the relative velocity transform to mixed magnetic and electric
fields.

There is a similarity between the transformation for E (Eq. 4-5 or
Eq. 4-6) and those for B (Eq. 4-7 or Eq. 4-8), with only a sign difference
and a factor ¢? in the B equations compared to those for E.

As a good consistency check, the student can show (see Problem 10)
that Eqs. 4-5 and 4-7 have the property that the first three equations in
each set may be inverted (solved for the unprimed fields in terms of the
primed ones) to yield the last three equations in each set. To do this,
however, we must consider the six as a set, not two sets of three each.
In this way, we can justify explicitly the procedure for obtaining the
inverse transformations by merely replacing v and —v and interchang-
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TABLF §-1 RELATIVISTIC TRANSFORMATIONS FOR THE ElI ECTROMAGNETIC FIELD

E,/ = E, E, =E/

k) = y(E, — vB)) Ey = Y(E/ + vB;)
E; = y(E, + vB,) E. = Y(E.'— vB,)
B, = B; B: = B

B, = y(B, + vE./c?) B, = (B — vE//c?)
B, = ¥(B, — vEy/Cz) B, = y(B, + vEyl/Cz)

ing primes and unprimes. And, at the same time, we see in another way
the interdependence of E and B, since our transformation law relates
all six components of E and B rather than giving us two separate laws
of transformation, one for E and one for B. Electric and magnetic fields
cannot exist independently as separate quantities but are interdepend-
ent.*

We summarize the transformation for the electromagnetic field in

Table 4-1.

# Example 1. (a) Suppose that an electromagnetic field is purely electric in
inertial frame S; that is, E = 0 but B = 0. Describe this field in inertial

frame S'.
From Eqgs. 4-6 and 4-8 we find that, in §’,

Ey' = E, B'=0

E'=yE B'=— C—‘;(v X E),

wxE =vxE = XE  _vyxE
But Y Y
v X E’

c?

Hence B':BL’.—__—ZY(vxE): —
¢

There is a magnetic field B’ in the primed frame, as well as an electric field E’,
so that what appears to observer S as a pure electric field E appears to observer
S’ as both an electric and a magnetic field.
(b) Suppose that an electromagnetic field is purely magnetic in inertial
frame S; that is, E = 0 but B == 0. Describe this field in inertial frame §'.
From Eqs. 4-6 and 4-8 we find that, in §',

E'=0 B/ =B,
E'=vy(v X By B, = yB

*Although E, B, or any combination of them do not form a four-vector, we can combine E and B to

form a single quantitv. a four tensor, called the electromagnetic field tensor
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But va:val:VXBl:VXB,
Y Y

Hence EE=E'=y(vXB)=vxDB.

There is an electric field E’ in the primed frame, as well as magnetic field B,
so that what appears to observer S as a pure magnetic field B appears to ob-

~
N

server 8 as both an electric and a magnetic field.

This example relates directly to Einstein’s comment “that the electromotive
force acting on a body in motion in a magnetic field (is) nothing else but an
electric field.” ¢

We have seen directly in the transformation equations that electric
and magnetic fields do not have separate existences. These equations also
suggest a very practical benefit. We may be able to solve difficult prob-
lems by choosing a reference system in which the answer is easier to find
and then transforming the results back to the system we deal with in the
laboratory. We illustrate this in succeeding sections.

4.4 The Field of a Uniformly Moving Point Charge

Consider a particle of charge ¢ moving with uniform velocity u in
frame S. We wish to calculate the electric and magnetic fields in S caused
by this moving charge. We can get an exact solution to this problem in a
simple way by choosing an inertial frame S’ in which this charge is at
rest at the origin and in which, therefore, the field is merely the static
electric field of a point charge. Then we use the transformation equations
for the electromagnetic field and immediately obtain the fields corre-
sponding to the charge moving in S.

In Fig. 4-2 we show the charge q at rest at the origin of S, moving
relative to S with a velocity u along the common x-x” axis. Let the posi-
tion of the charge along the x-axis at time ¢ be given by X = ut, so that
in S the space coordinates of q are (X,0,0). Now the field of the charge
in §’ (it’s rest frame) is purely electric, that is,

r/

E=-1
4meg 1’3

B =0, 4-9)

the electric field lines diverging from q with spherical symmetry, as in
Fig. 4-3a. Here,

F= (22 4 y'2 4 Z2)12 (4-10)
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i y
S ._u{> S
X =ut a ’
0 "o Bx
z 2"

Fig 4-2. Charge g, at rest in § at the origin (', is at the position (X, 0, 0) in S
where X = ut

(a) (]

Fig. 4-3. (a) The electric field lines diverge from ¢ with spherical sym-

metry in its rest frame (b) In a frame in which ¢ moves with high speed,
the electric field lines concentrate in the transverse direction

is the distance from O’ to the point at which the field strength is meas-
ured.* The field depends inversely on the square of r’, as required by
Coulomb’s law.

In order to obtain the fields E and B in inertial frame S, corresponding
to the moving charge, we simply use the transformation equations,
Egs. 4-5 and 4-7. We should note first, however, that r’ has components
(x",y’,%") and that the field in S must be expressed in terms of x, y, and z.

*We emphasize that the coordinates (X,Y,Z), which here equal (12.0.0), are the coordinates of the
source of the field (i e , the source charge) whereas the coordinates (x.v,z) are those of the point at
which the field is being evaluated We can relate the space-time field point (x,3.z.0) in $ to the same

st

space time field point (¥",v".z,t) in the § via the Lorentz transformations
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Hence, we must use the Lorentz transformation equations also, so that,

for example,
= (2 4 Y2+ V2 = [y — u)? 4 y? 4 2212

where Y = 1/\/1 — u?/c2. Then, with

B = Bo= i
and B =L
Eq. 4-5 gives
E, = E, — qx qy(x — ut)

T Ameor'® - dmeo[y2(x — ut)® 4 y2 4 z2)3/2 ;

or, with X = ut giving the location of the charge in S,

E, = qy(x — X)
T Ameolyix — X)2 + y2 4 z2]3/2
E, = Yy 411
Y7 4meolyi(x — X)2 + y2 + 22372 ( )
qy=

7 dmeo[yix — X)2 + y2 4 22|32

give the electric field components at the point x, y, z in the S frame.

Similarly, the components of the magnetic field B in S follow ex-
plicitly from substituting E’ and B’ into the transformation equations for
the magnetic field components (Eq. 4-7). Actually, from (the inverse
of ) Eq. 4-8 we obtain at once B = 0 and B, = (u X E)/c?, or (since
u is along the x-axis)

2 4-12)

If we want the components of B at the field point x, y, z, we substitute
the equations for E, and E, given above into

B, = 0,
B,= — ~E, (4-13)
62
and B, = —iE,,.
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Equations 4-11 and 4-13 are the exact expressions for the electric and
magnetic fields of a uniformly moving charge and our problem is solved.
Notice that, because X = ut, these fields depend upon the time ¢ as well
as on x, y, and z. Notice, too, the symmetric appearance of y in these
expressions.

It is interesting to investigate how the electric field, which is a radial,
inverse square, spherically symmetric field in the rest (S') frame, appears
in the S-frame. Consider the field at the instant, ¢ = 0, that the moving
charge is at the origin 0 of frame S; at other instants the field will look
the same, although translated to the right by an amount ut. With
X(= ut) = 0, Egs. 4-11 reduce to

E = qrr 414
Ameg[y2x2 + y2 + 22)3/2 (4-14)

Hence, E is still a radial field, directed out along r. [B, incidently, is per-
pendicular to the plane formed by E and u, as given in Eq. 4-12.] Is the
electric field still an inverse square one and still spherically symmetric?
Let € be the angle made by r with the x-axis, so that x = r cos 6 and
y2 4+ 22 = r? sin? 0. Then, with 8 = u/c and y = 1//1 — j82, the
student can easily show that y2x2 4+ y2 + 22 = r2y%(1 — 82 sin? 0).
Substituting this into Eq. 4-14., we obtain

q(1 — B?) r

= —. 4-15
4meore(1l — B2 sin2 0)3/2 r ( )

Hence, the field is an inverse square one, insofar as its dependence on
the radial distance r goes as 1/r2, but the strength of the field at a given
radial distance depends on the direction and the field is not spherically
symmetric.

# Example 2. Calculate the strength of the electric field from Eq. 4-15 for the
limiting cases (a) § = 0°, (b) @ = 90°, and (c) 8 = 0.

(a) @ = 0 means directly in front of the charge along its line of motion.
This is equivalent to calculating E,. Then, with sin? 6 = 0., we obtain

Ey 1 __a - py

T 4aregr?

(b) 8 = 90° means perpendicular to the x-axis, or perpendicular to the line
of motion, and is equivalent to calculating E, . Then, with sin2 § = 1,
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E q L

T 47r€0r2 \/1 - BZ'

Hence, for a high-speed charged particle (i.e., for 82 not negligible) E; is
small and E| is large compared to the static field. In Fig. 4-3b we show this
relativistic effect, the electric field lines concentrating in the transverse
directions,

(c) When 8 = 0, we obtain, from Eq. 4-15,

E:4_W3€7()7 and E =E,.

Hence, if the charged particle is a low-speed one (i.e., 8 < 1) the electric field
components are approximately equal to those of the static field in Fig. 4-3a. ¢

The results of the previous example can be related to the invariance
of the charge. The quantity of charge is defined by Gauss’ law, ¢ =
€0 E - dS. If the charge ¢ is invariant, then by definition the electric
flux over a surface enclosing the charge (the integral above) must be in-
variant. Imagine now a cylindrical pillbox (Fig. 4-4a) enclosing the
charge in frame ', the axis of the cylinder being along the x-x” axes. Sur-
faces perpendicular to x” (i.e., the flat end surfaces whose surface area
vectors are directed along x-x") do not contract as seen by S, for whom the
pillbox is in motion (Fig. 4-4b). But surfaces parallel to x" (i.e., the cylin-
drical surface whose surface area vectors are perpendicular to x”) do con-

be—L —>
(@ (b)
Fig. 4-4. Gauss’ law as applied to a moving charge The charge ¢ is surrounded by a Gaus-

V1-67L

sian surface in the shape of a pillbox The flux through the sides of the box is the same
measured in either frame, as is the flux through the ends of the box.
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tract, their area changing by a factor \/1‘——,32 = 1/v. Compared to its
rest shape, the pillbox appears compressed to S. The electric flux through
the surfaces of the pillbox must be the same for each observer, however, if
charge is to be invariant. That is, if ¢ = ¢’ then § E-dS = § E’- dS".
A simple way in which this result can be achieved is to require that the
flux through the end surfaces remain the same and that the flux through
the cylindrical surfaces remain the same. Then, E; = E,, the electric
field components along the common x-x’ axes being unchanged because
the flat end surfaces are unchanged; and E, = yE,/ and E, = YE./, the
electric field components perpendicular to x-x" changing to S by a factor
Y because the cylindrical surface area changed to S by a factor 1/y. That
charge is invariant in our example, and that the flux invariance is
achieved in the simple way we considered, follow from the fact that our
results are identical to the transformation equations (Eqs. 4-5), which
were the starting point of our example. For a charge stationary in §’,
wherein B = 0, we obtain, from Egs. 4-5, E; = E,/, E, = yE,, and
E, = YE,, exactly as above.

4.5 Forces and Fields Near a Current-Carrying Wire
We return now to the current-carrying wire discussed in Section
4-2. There we used such a wire to show the interdependence of electric
and magnetic fields; the description of the field depends on the inertial
frame in which the sources are observed. Here we shall use the field
transformations, which relate these different descriptions of the same
field, and examine the forces on a test charge in the field outside the wire.
Consider a test charge g at rest in frame S outside a long straight sta-
tionary wire carrying a current. It simplifies the algebra to characterize
the charges in the wire in terms of a linear charge density A (charge per
unit length) rather than, as before, in terms of a volume charge density p
(charge per unit volume). Let the current be caused by the motion of
electrons in the wire and let their drift velocity be u. The positive ions
are at rest in frame S, but their linear charge density A* is equal to the
linear charge density A~ of the moving electrons. The current in frame S
is simply i = A~u, its direction being opposite to the motion of the
electrons.
Because there is no net charge density, that is, because A = A" +
A~ = 0, there is no electric field outside the wire in frame S. (If A were
not equal to zero, the electric ficld would be given by E = (A/27¢g) /r,
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where r is the perpendicular distance from the wire, and would be
radially directed.) However, there is a magnetic field outside the wire,
given by B = (po/2m)i/r, forming concentric circles around it (see Fig.
4-5). Hence, with i = A~u, we have

E=0 and B = —M)\_u
2mr
as the fields in frame S. What is the force on the test charge in these
fields? It is zero; for the electric field is zero (no electric force) and the
test charge is not moving (no magnetic force).

Consider the situation in frame S’ which moves relative to S at a
velocity v = u, such that, in this frame, the electrons in the wire are at
rest. The force transformation laws tell us at once that the force on the
charge in S’ must also be zero; but we know that if a charge does not
accelerate in one inertial frame, it does not accelerate in any inertial
frame, so this result is expected. What is interesting here is that in S’
there is an electric field (see Section 4-2), so there must be an electric

Fig. 4-5. A long straight stationary wire carrying a current sets up a magnetic field B in frame
S Electrons of linear charge density A~ drift with speed u along the positive x-direction. The
eurrent, i = A u, is direeted along the negative x-direetion. A test charge ¢ is at rest on the y-axis
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force on g; if the net force is zero then there must also be a magnetic
force which cancels the electric force. This is now possible, of course,
because in S’ the test charge is not at rest but is moving. We can prove
that F' = 0 by direct application of the transformation for E and B.
Let the charge be at some point on the y-axis in frame S (see Fig. 4-5).
At this point, since there is no electric field in S,
E, =0, E, =0, E, =0,
B,=0, B,=0, B =_lA™
27r
where the minus sign on B, indicates that B points along the negative
z-direction. Now, with v = u, let us find the components of E” and B’ in
the primed frame from Egs. 4-5 and 4-7. We have, from Eqs. 4-5,
ES=E, =0
‘U.())\_u

A_
By = 8, — uB) = 7{0 + ) = yurl?
2ar 2ar

E/ = y(E, + uB) = y(0 + 0) = 0.

The electric field points along y' away from the wire and the electric
force on charge ¢ in S’ is directed along the positive y’-direction with a
magnitude of

Fy = qE = Wuzﬁ_

2arr

The magnetic field components, from Eqs. 4-7, are

B:r, =B, =0
u
B/ = y(By +—2Ez) = y(0 + 0) = 0
c
A u oAU
B/ = y(B,,, — iEy) = y(_“" - 0) = P22
c? 2qr 2qr

In §, charge ¢ moves to the left (along x') with speed u so that, with B,
along the negative z-direction, the magnetic force is directed toward the
wire along with negative y'-direction with a magnitude

A A
Fg' =|q(v X B)| = quy 202 — gyuz 12

mr 2qr

Hence, the net force F’ = Fg' + Fg' = 0, as we set out to prove.
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The student should now be able to resolve the paradox presented in
Section 4-1, for in frame S’ there is a magnetic force on the test charge
whereas in frame S there is not a magnetic force on the test charge,
exactly the situation presented earlier.

Notice that, throughout, we have assumed the invariance of electric
charge; that is, the charge was taken to be the same as measured by each
inertial observer (¢ = ¢'). This is not only confirmed by the consistency
of all the results based on this assumption and the agreement of such re-
sults with experiment, but also by direct experimental confirmation of

charge invariance (see, for example, Refs. 2).

4.6 Forces Between Moving Charges

As a final example of the insights into electromagnetism that are
provided by relativity theory, we consider two particles of equal charge q
moving with equal uniform velocity u. Let u be along the x-axis of frame
S and let the particles have the same x-coordinate, for simplicity, their
separation being r (see Fig. 4-6a). We expect the charges to exert forces
upon one another, a repulsive electrical force and an attractive magnetic
force. Are these forces equal?

Guided by our earlier example, we pick another inertial frame S’ in
which the problem is simpler. Let $’ move with uniform velocity v = u
relative to S along the common x-x" axis, so that the charges are at rest
in §’ (see Fig. 4-6b). Here, there is no magnetic force at all and the elec-

—> 9@
[ ]
r r
b |
O 7@
0 * o =
(a) )

Fig 4-6. (a) Two particles of equal charge ¢ move with equal uniform velocity u in
frame S, their separation being r (b) The same situation in S, which moves relative to S
with a velocity v = u.
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trical force is a repulsion; the charges would tend to move apart along
the y’-direction, each exerting a force on the other of magnitude

1 ¢

LA—
F/ = Amey r2
The force on the upper charge is + F,’ and that on the lower charge is
—F,/. Notice once again that charge invariance is assumed. Notice also
that the separation r is unchanged by the transformation from S to S’ (it
is measured in the y or y’ direction, and y’ = y).

Now let us use the force transformation equations (Egs. 3-33) in which
a particle is at rest instantaneously in the S'-frame, subject to a force with
components F,', F)/, and F,/, to obtain the force components F;, F,, and
F acting on the particle in the S-frame. We know that in inertial frame S,
in which the charges are in motion, there will be both magnetic and elec-
trical forces on each particle, but what will the net force be? From Eq.
3-33 we find, for the force on the upper charge, that

F,=F/ =0
Fzzel/Y:O

2
and F,=F,//y=F/\V1 = /= 1"—r2 VI = 02/
€D

Hence, the net force is in the positive y-direction. The charged particles
repel one another and the electrical force of repulsion must exceed the
magnetic force of attraction.

This example is rich in insights. Notice, for example, that only when
v = ¢ does the net force become zero, so that the charges repel in all
inertial frames, that is, the electric force is always greater than the mag-
netic force. Although the magnitude of the net force depends on the
frame, the net force is always repulsive. Also, when v — 0, we return
to the static result wherein only an electric force exists. Clearly, then,
the magnetic force, which exists only when v £ 0, is a second-order effect
compared to the electrical force, for its effect enters as the square of the
ratio of the velocity of the charges to the velocity of light, that is, it enters
as (v/c)2.

In this example, we start with Coulomb’s law for the forces between
electrostatic charges (in frame §’) and calculate magnetic forces produced
by moving charges as well (in frame S). All we assumed were the force
transformations of special relativity and the invariance of charge. We
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did not use the electromagnetic field component transformations. Hence,
the deepest insight given by this example is that magnetic forces can be
interpreted as relativistic forces; they are that part of the force, trans-
formed from the rest frame, which depends on the velocity of the test
charge relative to the observer. To put it all in another way, if all we knew
in electromagnetism was Coulomb’s law, then, by using special relativity
and the invariance of charge, we could prove that magnetic fields must
exist. The magnetic field enters relativity in a most natural way as a
field that is produced by a source charge in motion and that exerts a force
on a test charge that depends on its velocity relative to the observer. The
Lorentz force law is found to apply, and Maxwell’s equations and the
transformation equations of the electromagnetic field can then all be
deduced. In this way, electromagnetism can be derived from relativity
theory, the exact opposite of the historical development of these
subjects.*

If we had considered the more general case in which the two charges
had different uniform velocities, we would have found that the magnetic
force, compared to the electric force, is smaller by a factor uv/c2, where
v is the speed of the source charge and u that of the test charge. We
might wonder how we can observe magnetic forces at all, then, when u
and v are ordinary speeds; the electric forces would entirely mask the
magnetic forces, in practice, it seems. The answer, of course, is that we
can eliminate the electrical forces entirely in many situations, leaving
the magnetic force as the only one observed. The current-carrying wire
is an example in point, for although there are many charges present,
they are equally positive and negative, so that no electric field exists. The
moving electrons set up a magnetic field which exerts forces on charges
moving through it. Actually, the magnetic forces can be reasonably large
(as you know from simple freshman laboratory apparatus) because of
the largeness of Avogadro’s number (there are so many moving elec-
trons). Indeed, considering that electron drift velocities are so small,
about 1 mm/sec (see, for example, Ref. 4), and that the magnetic force
can be regarded as a relativistic effect, the statement that relativity is
important only for speeds near that of light must be taken with a grain
of salt.

*see Ref 3 for a complete development of this approach



178 Chapter Four RELATIVITY AND ELECTROMAGNETISM

4.7 The Invariance of Maxwell’s Equations

Let us review what we have done in relativistic dynamics. By con-
sideration of mechanical collisions and the Lorentz transformation
equations, we derived the relativistic force and its transformation from
one inertial frame to another. Then, by taking the Lorentz force law,
F = q[E + (u X B)], as the correct force between moving charges, and
assuming that electric charge is invariant, we derived the transformation
formulas for the E and B fields.

Now, we can do the following, as well. We can start with the Lorentz
transformation equations and require that Maxwell’s equations should
be relativistically invariant. We can then derive what the transformation
formula for the E and B fields must be in order to satisfy this require-
ment. We shall find that we get the same result as before.

Thus, once again special relativity is shown to be internally consistent.
But more than that, this constitutes a proof that the force transforma-
tions that we derived by considering collisions applies as well to electro-
magnetic forces. Indeed, once we have shown explicitly that Maxwell’s
equations transform correctly, we have fully solved the original problem
of special relativity. Let us now show how this can be done.

We begin by writing down Maxwell’s equations in differential form
[see Ref. 5]. They are

e divE =p (4-16)

div B = 0, 4-17)

curl B = po(j + €9 0E/01), (4-18)

and curl E = — 9B/ot. (4-19)

Equations 4-17 and 4-19 do not contain the quantities €, po, p, or j and
have the same form in vacuum as in a material medium. They contain
only the field quantities E and B. It will be simpler to work with them
to show how the invariance of Maxwell’s equations can be proved. We
confine our discussion to those equations, therefore, but assert that a
similar procedure* gives the same results starting from Eqs. 4-16 and
4-18.

The spatial components of the vector equations (Eqs. 4-19 and 4-17)
can be written as

*We would have to use the transformations for the current density j and the charge density p (see
Fqs 4-4a and 4-4b) in this case, as well as the Lorentz equations
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g, g = _ 2B (4-20)
dy dz o
0 0 oB
—E, ——E, = —-* 4-21
oz = ox ot @21)
Og _2pg - 9B (4-22)
ox dy o
and 9 -+ iBy + lez = 0. (4-23)
ox dy 0z

These equations are a set of coupled partial differential equations in-
volving the components of the E field (E;E,E;) and the B field
(B:,By,B;) and apply at a point x, y, z and a time ¢ in the inertial frame S.
We now require that they have the same form in inertial frame §’, which
moves at uniform velocity v relative to S along the common x-x’ axes.
That is, we require that at the space-time coordinates x’, y’, 2/, ¢ in §’,
which corresponds (by means of the Lorentz transformations) to x, y, z, ¢
in S, these same fields, now designated E’ and B’, be related by

curl E' = — 0B’ /ot 4-19")
and divB' =0 4-17)

or, in component form, by

oE; 0E,/ _ 0B/

= , (4-20')
oy’ 0z ot’
oFE, _ oF, _ 0B, ’ 4-21')
0z’ ox’ or’
aEy _ aEI — aBz , (4-221)
ox' dy’ ot
and 0B; + aB‘f + an = 0. 4-23")
ox' oy 0z

We need to know the relation between partial differentiation with
respect to one set of variables (x,y.z,t) and the corresponding partial
differentiation with respect to the other set of variables (x',y’,2’,t).
The variables themselves are related by the Lorentz transformation
equations (see Table 2-1), which we can write compactly, with y =
l/m, asx’ = y(x — o),y =y,z =z, and ¢’ = y(t — xv/c?).
The relation for d/0x is
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dfox=22 0 L O 0 050 000 4oy
ox 0x ox Oy 0x 0z ox ot

with corresponding relations for /9y, 9/0z, and 0/0t (simply replace

x by y, z, or t, respectively). However, we find from the Lorentz equa-

tions that
a 4 ! ’ 4
x=% iX—ZO, az:O, and at:—ﬂ
ox ox ox ox c?
so that
0 ( ) v 0 )
o _ - . 4-25
ox ¥ ox' c? ot ( )

In the same way, we find

o _ 0 w2
oy ay
0 0
— = 4-27
0z 0z’ ( )
X
and 9 y( 0 _ ¢ ) (4-28)
ot ot ‘x'

The next step is make these substitutions into Eqs. 4-20 through 4-23.
We find, on doing this for Eq. 4-21, for example, that this equation
becomes

0

oz’

0 0 vE,
E, — gx_,‘ [Y(E; + vB))] = — ot I:Y(Bu + 2 )] (4-29)

If Eq. 4-21 is to be invariant in form, then in S it must be Eq. 4-21’,

. Jd .,
%E —%L; = -8y
If we put
E;/ = E,
E,; = y(E, + vB))
and B/ = y(By + ”i)
c

then Eqs. 4-29 and 4-21" are identical. But these relations are exactly
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the transformations for the electromagnetic field components that we
found before (see Table 4-1).

In the same way, if we substitute the partial differentiation relations
into Eq. 4-22 and require that the result be identical to Eq. 4-22’, we find

E; =E,
E/ = y(E, — vB))
and B, = y(Bz — v_E,,)
2

which also are transformations found before (Table 4-1). To complete
the process, we must find how B, transforms, for we have all the other
relations of transformation of the electromagnetic field. We find this by
substituting Eqs. 4-25 through 4-28 into the remaining Maxwell equa-
tions, Eqs. 4-20 and 4-23. After some manipulation, we find that Eq. 4-20
becomes Eq. 4-20" and that Eq. 4-23 becomes Eq. 4-23’ if we set

’
:t:Bz

which completes the set of relations of transformation of the field
components.

Hence, when we transform the space-time coordinates by means of the
Lorentz transformation equations, we find that Maxwell’s equations are
invariant in form, providing that the electromagnetic field transforms, as
deduced earlier from other considerations, according to Table 4-1.

4.8 The Possible Limitations of Special Relativity

We have now completed our original program of finding the trans-
formation (the Lorentz transformation) which keeps the velocity of light
constant and finding the invariant form of the laws of mechanics and
electromagnetism. The (Einstein) principle of relativity appears to apply
to all* the laws of physics.

Although, on the basis of present knowledge, special relativity theory
is as consistent with cxperiment as is any part of physics, we cannot be
certain, of course, that it too will not give way eventually to another
theory. Particularly in the domain of the very small (elementary particle
physics) or the very large (cosmology), new levels of understanding may

*Not only the elec tromagnetic force but all forces whose properties we know can be put into a rela

tivistically invariant form
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emerge that require a revision of our basic assumptions. And, just as rela-
tivity involved a radical departure from Newtonian ideas but can be re-
garded as a logical extension of them, so a new theory may have the same
attributes compared to relativity. The same critical probing and analysis
that characterized the birth and development of relativity is now being
brought to bear in the subatomic and astronomical domains.
Blokhintsev [6], for example, suggests that there might exist an ele-
mentary interval which serves as a scale for that region of space-time in
which the structure of space-time may differ from that in the relativistic
domain. Such an interval may be associated with the region of space-time
near a system of interacting elementary particles or with the physical
vacuum. In such a situation, we can check experimentally the conse-
quences or assumptions of relativity, such as causality and the homo-
geneity and isotropy of space-time. Blokhintsev concludes as follows:

“Experimental data available to present day physics are restricted to
dimensions a9 > (§/Mc)(Mc?/E) ~ 10715 ¢m in the laboratory coordi-
nate system. . . . The set of facts which are known in this domain does not
contradict relativistic kinematics, and on the average this kinematics
holds with an accuracy of approximately 1 per cent. The dependence of
mass on velocity has been verified with considerable greater accuracy
(up to 0.01 per cent). [However] possible large (but of low probability)
deviations from relativistic kinematics remain uninvestigated . . . they
could be due to a violation of homogeneity or isotropy of space-time on
a small scale. Such deviations could occur within limits of = 1 per cent.
More disturbing is the situation with local field theory which is closely
related to the assumed form of geometry and to causality. If the indi-
cated disagreement between theory and experiment is confirmed, it
would serve as a serious foundation for a radical revaluation of the basic
postulates of contemporary theory. In view of the importance of this
problem it is necessary to make the measurements still more accurate

and to perfect the calculations.”

Questions

1. If total charge is an invariant quantity (the same in all inertial frames)
how can it be that a neutral wire in one frame appears to be eharged in
another frame?
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. In the example discussed in Section 4-2, where the current in S is caused

by electron motion, we found the charge density in S’ to be positive. Sup-
pose that u and v, instead of being parallel, were antiparallel. Would the
charge density in §' still be positive? Would it be different from that in §?

. Explain earefully how the S’ observer can find vne segment of a com-

plete circuit positively charged and another segment negatively charged,
all segments appearing neutral to the S observer. (See Problem 21 and
Topical Appendix A.)

If a current is started in a circuit by closing the switch to a battery in it,
will all the eonduction electrons begin moving at the same instant? How
is this analogous to the motion of particles in a rod that is being pushed,
or pulled, at one point from a rest position? In such a circuit, what hap-
pens to charge densities (before and after the switeh is closed) and to
charge conservation? (See Problem 21 and Topical Appendix A.)

. In Example 2, does the ease § = 180° differ from the case § = 0°7 Does

the case § = 270° differ from the case § = 90°?

Resolve the apparent paradox between the requirement E;" = E; of Eq.
4-6 and the result of Example 2, part a. (Hint. Consider the relativity of
simultaneity and the relation between r and r'.)

If magnetic fields are of the second order compared to electrical forces,
why is it that we observe magnetic forces without great difficulty?

Historically, relativity arose from electromagnetic theory. Considering
that they are in complete agreement, could electromagnetic theory have
been developed starting with relativity as given? What minimum infor-
mation would we need other than relativity?

. Does each new level, from the supermacroscopic to the submicroscopic

domain, necessarily require a revision of the theory found adequate at
an adjacent level? Could a level be defined by the need for a new theory
there? That is, does it make any sense to talk about different levels if the
same theory is equally applicable to each?

Problems

1.

2.

Show directly that ¢2p? — (j;* + j,? + j.?} is an invariant quantity equal
to ¢2pg2.

The nonrelativistic limit of Eqs. 4-4 (i.e., the results when v/c < 1) gives
p = p’ and j; = j;’ 4 p’'v. Check this and interpret the terms physically.

. Carry out the operations indicated prior to Egs. 4-7 to confirm the results

of the magncti(' component transformation.

Prove that Eqs. 4-6 are consistent with (equivalent to) Egs. 4-5. Do like-
wise for Eqs. 4-8 and Egs. 4-7.
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5.

o

10.

11.

12.

13

What is the nonrelativistic limit of the transformation equations for the
electromagnetic field listed in Table 4-17 Do your results make sense

physically?

Show that E? — ¢2B? is an invariant quantity under a Lorentz transfor-
mation. Then argue that, if E = ¢B in one inertial frame, E = ¢Bin any
other inertial frame, and that if E > ¢B in one inertial frame, then
E' > ¢B' in any other inertial frame.

Show that E + B is an invariant quantity under a Lorentz transformation.
Then argue that if the electric and magnetic fields are perpendicular to
one another in one inertial frame, they are perpendicular in all frames.

(a) Evaluate the invariants E? — ¢2B? and E « B for a plane electromag-
netie wave in vacuum. (b) Show that plane waves in one inertial frame
transform to plane waves in another inertial frame.

Show that for a given electromagnetic field. we can find an inertial frame
in which either E = 0 (if E < ¢B) or B = 0 (if E > ¢B) at a given point
if, and only if, E+ B = 0 at that point. That is, if (and only if) E and B
are perpendicular to one another, we can find a frame in which we have
either no electric field or else no magnetic field. Use the results of earlier
problems (6 and 7) and the field component transformations.

Show explicitly that the inverse transformations in Table 4-1 follow
directly from inversion of the original transformations (i.e., solve for the
unprimed fields in terms of the primed ones).

Show (from Eqs. 4-12 and 4-14) that («)

_ qu X r
T Ameoc?y2r|l — (u2/c2) sin? G]3 2

and that (b), in the limit of low speeds, this expression (using
¢ = 1/ \/o€o) reduces to the Biot-Savart law,
o qu Xr

B—=+"1
4 rs

Plot the magnitude of the electric field of a high-speed charged partiele
as a function of the angle § made with the direction of motion of the
charge, for a given distance r (see Eq. 4-15). Assume 8 = v/c = 0.95
and take 0 < 8 < 90°.

Refer to Fig. 4-3b in which the electrie field of a high-speed charge is
shown not to be spherically symmetric. Show that the electrostatic result
¢ E - dl = 0 does not hold so that the electric field is not conservative.
Is there a changing magnetic field connected with the moving charge?
Would you expect E to be conservative then?
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16.

17.

18.

19.
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A particle of charge ¢ moves with uniform velocity u in inertial frame S.
Consider a frame 8, moving with uniform velocity u relative 10 S, in
which the charge is at rest and the force on the charge is F' = ¢gE’. Show
that the force on the particle in frame S is the Lorentz force,
F = ¢(E 4+ u X B). by using the tranformations for the components
of force and the transformations for the components of E and B.

Use the force transformations to show that, if the source charge (the
source of the field) moves with speed v relative 1o a test charge (the charge
acted on by the field), either toward or away from it along the line con-
necting the two charges, the force on the test charge is (1 — v2/c¢?) times
the ordinary Coulomb foree. (Hint. Transform from a frame in which
the source charge is at rest and remember the space contraction effeet.)

Use the force transformations to show that, if the source charge moves
with a speed v relative to a test charge at right angles to their transverse
separation, the force on the test charge, at the instant the line connecting
them is at right angles to v, is 1/1/1 — v2/¢? times the ordinary Coulomb

force. Compare this to the results of the previous problem.

Prove the result in Section 4-5 that F = 0 required F* = 0 by using the
force transformations rather than the field component transformations.

In the example in the text of two charges, at rest in frame S’ (the proper
frame) separated by a distance r’, viewed in a frame S (the laboratory
frame) moving perpendicular to the line conneeting the charges with a
speed v, notice that the mutual force is smaller in the laboratory frame
than in the proper frame. Find the force in both the laboratory frame
and in the proper frame for twe electrons moving along the axis of a

linear accelerator in parallel paths separated by 5.00 X 1079 meter at
speeds given by 8 = v/c = 0.999.

Consider the example of two charges at rest in frame S’ separated by a
distance r’. Transform the static Coulomb force found there to a frame
S which moves parallel to the line connecting the charges with a speed v
and find the mutual force measured in this frame.

Consider two long parallel wires separated by a distance 2a and bearing
equal and opposite uniform charge distributions (see Fig. 4-7). In frame
S, at rest with respect to the wires, there is no current flowing and the
linear charge density is A.

(a) Calculate the electric and magnetic fields in frame S at a point P
midway between the wires.

(b) Frame S’ moves at a velocity v parallel to the length of the wires
(the x direction). Find the linear charge density A’ and the eurrent in the
wires i’ (if any) as measured in frame S'.

(¢) Using the results of (b), calculate the electric and magnetic fields
measured in frame S’ at a point midway between the wires.
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(d) Using the field transformation equations and the results of (a),
calculate the electric and magnetic fields measured in frame S’ at a point
midway between the wires. Does this result agree with your answer to (¢)?

Consider the space-time diagram (see Topical Appendix A) of the current
in a segment of wire, Fig. 4-8.

(a) Show that the world lines of the electrons are parallel to the ct axis
before the emf is applied at t = 0.

(b) Show that the world lines of the electrons are inclined to the ct axis
after the emf is applied at ¢t = 0.

(¢) Show that the world lines of the positive ions are parallel to the ¢
axis when t < Oandt > 0.

(d) Show that the diagram corresponds to all electrons starting to move
simultaneously in S.

(e) Show that, in S, the separation of electrons is the same after the
motion begins as before.

(f) Show that in S’ the farther out electrons are from 0 the sooner they
start moving.

(g) Show that in S’ the separations are different from those in S, the
positive ions being closer and the electrons farther apart. (The wire has
a positive charge density in §’, although neutral in S.)

(h) Finally, consider another segment of the circuit in which the elec-
trons move in S opposite to the direction shown in the diagram. Draw in
the world lines for ¢ >> 0 and show that this segment of the wire has a
negative density in §’, although neutral in S.
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Supplementary Topic A

The Geometric Representation
of Space-Time

A-1 Space-Time Diagrams

In classical physics, the time coordinate is unaffected by a trans-
formation from one inertial frame to another. The time coordinate, ¢, of
one inertial system does not depend on the space coordinates, x, y, z
of another inertial system, the transformation equation being ¢ = ¢. In
relativity, however, space and time are interdependent. The time coordi-
nate of one inertial system depends on both the time and the space coor-
dinates of another inertial system, the transformation equation being
¢ = [t — (/c?x]/\/1 — v?/c%. Hence, instead of treating space and
time separately, as is quite properly done in classical theory, it is natural
in relativity to treat them together. H. Minkowski [1] was first to show
clearly how this could be done.

In what follows, we shall consider only one space axis, the x-axis, and
shall ignore the y and z axes. We lose no generality by this algebraic
simplification and this procedure will enable us to focus more clearly on
the interdependence of space and time and its geometric representation.
The coordinates of an event are given then by x and ¢. All possible space-
time coordinates can be represented on a space-time diagram in which
the space axis is horizontal and the time axis is vertical. It is convenient
to keep the dimensions of the coordinates the same; this is easily done by
multiplying the time ¢ by the universal constant c, the velocity of light.
Let ct be represented by the symbol w. Then, the Lorentz transformation
equations (see Table 2-1) can be written as follows:

, x — PBw .= x + Bw’

X =

VI— B VI- B (A1)
w w — Bx w + B«
e w = —
VI— B2 V1- B2
Notice the symmetry in this form of the equations.
To represent the situation geometrically, we begin by drawing the x

188
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w=ct
World line
of particle
|6/
|\7
|
I/ World line
{ // of lightwave
|
0 x
Fig A-1.

and w axes of frame S orthogonal (perpendicular) to one another (Fig.
A-1). If we wanted to represent the motion of a particle in this frame,
we would draw a curve, called a world line, which gives the loci of space-
time points corresponding to the motion.* The tangent to the world line

at any point, being dx/dw = 1 (dx/d1), is always inclined at an angle
c

less than 45° with the time axis. For this angle (see Fig. A-1) is given by
tan @ = dx/dw = u/c and we must have u < ¢ for a material particle.
The world line of a light wave, for which u = c, is a straight line making
a 45° angle with the axes.

Consider now the primed frame (S’) which moves relative to S with
a velocity v along the common x-x” axis. The equation of motion of S
relative to S can be obtained by setting x’ = 0 (which locates the origin
of §'); from Eq. A-1, we see that this corresponds to x = Bw (= vt). We
draw theline x’ = 0 (that is, x = Bw) on our diagram (Fig. A-2) and note
that, since v < ¢ and 8 < 1, the angle which this line makes with the
w-axis, ¢(= tan~1 B), is less than 45°. Just as the w-axis corresponds to
x = 0 and is the time axis in frame S, so the line x’ = 0 gives the time axis

* Minkowski referred to space-time as “"the world.” Hence, events are world points and a collection
of events giving the history of a particle is a world line. Physical laws on the interaction of par-
ticles can be thought of as the geometric relations between their world lines. In this sense,
Minkowski may be said to have geometrized physics.
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w’ in §'. Now, if we draw the line w’ = 0 (giving the location of clocks
which read ¢ = 0 in §’), we shall have the space axis x’. That is, just as
the x-axis corresponds to w = 0, so the x'-axis corresponds to w’ = 0.
But, from Eq. A-1, w’ = 0 gives us w = fx as the equation of this axis
on our w-x diagram (Fig. A-2).* The angle between the space axes is the
same as that between the time axes.

From Fig. A-2, we see that in four-space (x,y,z,t) the Lorentz equa-
tions involve transforming from an orthogonal system to a nonorthogonal
system. We can use this representation to show the relativity of simulta-
neity and to give a geometrical interpretation of the space-contraction
and time-dilation effects, as well as to illustrate their reciprocal nature.
To do all this clearly, let us first represent the situation on a new diagram
(Fig. A-3). Here we draw the two branches of the hyperbola w? — x2 =
1, and the two branches of the hyperbola x2 — w? = 1. These lines,
whose meaning will soon be clear, approach asymptotically the 45° light
ray world-lines. We also draw in the x, w axes of S and the x’, w’ axes of §'.

The space-time point Py is the intersection of the right branch of
hyperbola x2 — w? = 1 with the x"-axis given by w = Bx. Hence, Py is
on both these lines and its coordinates (obtained by combining the equa-
tions of the lines) are
* For simplicity, we deal only with the quadrant in which x and w are positive. A light wave proceed-

ing to increasing values of x as time goes on bisects the v-w axes in the third quadrant (x and w both
negative) as well as the first quadrant. A light wave proceeding to decreasing values of x as time
goes on bisects the x-w axes in the second and fourth quadrants (see. e g. the dashed lines of Fig
A-3). Similar extensions and additions apply to the world line of a particle and to the primed axes

when negative space-time coordinates are involved or when the primed frame moves in the oppo-
site direction (8 < 0) relative to the unprimed one
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B 1

w = m and x = \/T——,Bz . (A-2)
But, comparison of Eq. A-2 with Eq. A-1 shows that Eq. A-2 represents
unit length (i.e., x' = 1) and zero time (i.e., w’ = 0) in the S’ frame.
That is, the interval 0P; gives unit length along the x’-axis. Similarly,
the space-time point Pz is the intersection of the upper branch of hyper-
bola w2 — x2 = 1 with the w’-axis given by x = Bw. Hence, P3 is on
both these lines and its coordinates (obtained by combining the equa-
tions of the lines) are

1 B
w= 7 and x = \/1_——,82_ (A-3)
Comparison of Eq. A-3 with Eq. A-1 shows that Eq. A-3 represents unit
time (i.e., w’ = 1) and zero length (i.e., ' = 0) in the S’ frame. That is,
the interval OP; gives unit time along the w’-axis.

The hyperbolas are often referred to as calibration curves. Consider
the upper hyperbola, for example. At x = 0, we have w = 1,‘which (in
units of ct) is unit time in S. At any other point x we have ¢212 — x2 =
(2 — x2/c?) = 272 = 1. Thus, points on the upper hyperbola give
unit time on the clock at rest in §’; that is, the proper time in units of e7
is equal to one. Whatever the relative velocity of S’ to S, the intersection
of the time axis with this hyperbola will give the unit time in §'. Simi-
larly, for the right hyperbola we have x = 1 at w = 0, which is unit
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length in S (measured from the origin). At any other value of w, points on
the hyperbola represent unit length at rest in a frame §', the velocity of
S’ relative to S being determined by the inclination of the space axis,
which intersects the hyperbola at the point in question.

Let us suppose now that we observe events from two inertial frames,
S and §’, whose relative velocity we know. The hyperbolic calibration
curves determine the unit time interval and unit length interval on the
axes of these frames; once the hyperbolas have served this purpose, we
can dispense with them. In Fig. A-4 we show the calibration of the axes
Sand §', the unit time interval along w’ being a longer line segment than
the unit time interval along w and the unit length interval along x’ being a
longer line segment than the unit length interval along x. The first thing
we must be able to do is to determine the space-time coordinates of an
event, such as P, from the Minkowski diagram. To find the space coordi-
nate of the event, we simply draw a line parallel to the time axis from P to
the space axis. The time coordinate is given similarly by a line parallel
to the space axis from P to the time axis. The rules hold equally well for
the primed frame as for the unprimed frame. In Fig. A-4, for example,
the event P has space-time coordinates x = 3, w = 2.5 in S (dashed
lines), and space-time coordinates x’ = 2, w’ = 1.5 in §’ (dotted lines).
It is as though the rectangular grid of coordinate lines of S (Fig. A-5a)
become squashed toward the bisecting 45° line when the coordinate
lines of S’ are put on the same graph (Fig. A-5b); clearly the Lorentz
equations transform an orthogonal system to a nonorthogonal one.

w
v
5_
4
(=05
4 4
3
3_
YA .
2 1 x
2 4
' 3
14 PP |
Py 2 |
1 |
T T H T T x
1 2 3 4 5



Section A.2 Simultaneity, Contraction, and Dilation 193

A-2  Simultaneity, Contraction, and Dilation

Now we can easily show the relativity of simultaneity. As meas-
ured in §', two events will be simultaneous if they have the same time
eoordinate w’. Hence, if the events lie on a line parallel to the x"-axis
they are simultaneous to §'. In Fig. A-6, for example, events Q1 and Q2
are simultaneous in §’; they obviously are not simultaneous in S, occur-
ring at different times w; and wy there. Similarly, two events Ry and Ry,
which are simultaneous in S, are separated in time in S'.

w ’
w
wyl— — — — — ——»
2 e
wb——— —
1 P Ql
///
W'
Ry Ry x’
— — — o — —e
// -
// //
// //
-
-
///
-
-
x
0

Fig. A-6.
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As for the space contraction, consider Fig. A-7a. Let a meter stick be
at rest in the S-frame, its end points being at x = 3 and x = 4, for ex-
ample. As time goes on, the world-line of each end point traces out a
vertical line parallel to the w-axis. The length of the stick is defined as
the distance between the end points measured simultaneously. In S, the
rest frame, the length is the distance in S between the intersections of
the world lines with the x-axis, or any line parallel to the x-axis, for these
intersecting points represent simultaneous events in S. The rest length is
one meter. To get the length of the stick in S’, where the stick moves, we
must obtain the distance in S’ between end points measured simulta-
neously. This will be the separation in S’ of the intersections of the world
lines with the x’-axis, or any line parallel to the x'-axis, for these intersect-
ing points represent simultaneous events in S’. The length of the (mov-
ing) stick is clearly less than one meter in S'. (see Fig. A-7a).

Notice how very clearly Fig. A-7a reveals that it is a disagreement
about the simultaneity of events that leads to different measured lengths.
Indeed, the two observers do not measure the same pair of events in de-
termining the length of a body (e.g., the S-observer uses E; and Es, say,
whereas the S’-observer would use E; and Ej3, or E2 and Ej) for events
which are simultaneous to one inertial observer are not simultaneous to
the other (see Ref. 2 for a forceful presentation of this point). We should
also note that the x’-coordinate of each endpoint decreases as time goes
on (simply project from successive world-line points parallel to w’ onto
the x’-axis), consistent with the fact that the stick which is at rest in S
moves towards the left in §',

w w w w
E3
4 /E/l Ey i
-7 _-1E,
T - /I' T - :” %
e ®
3 - 3
i (8 =05) i (B =05)
2 2
1 < 1.00 > 1 0.87
T T x T T T T x

0 1 2 3 4 0 1 2 3 4

(a) (b)

Fig. A-7.
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The reciprocal nature of this result is shown in Fig. A-7b. Here, we
have a meter stick at rest in S" and the world lines of its end points are
parallel to w’ (the end points are always at x” = 3 and x" = 4, say). The
rest length is one meter. In S, where the stick moves to the right, the
measured length is the distance in S between intersections of these world
lines with the x-axis, or any line parallel to the x-axis. The length of the
(moving) stick is clcarly less than one meter in S (see Fig. A-7b).

It remains now to demonstrate the time-dilation result geometrically.
For this purpose consider Fig. A-8. Let a clock be at rest in frame S,
ticking off units of time there. The solid vertical line in Fig. A-8, at
x = 2.3, is the world line corresponding to such a single clock. Ty and T
are the events of ticking at w (= ¢t) = 2 and w (= ct) = 3, the time
interval in S between ticks being unity. In §', this clock is moving to the
left so that it is at a different place there each time it ticks. To measure
the time interval between events T; and T3 in ', we use two different
clocks, one at the location of event Ty and the other at the location of
event Ty. The difference in reading of these clocks in §’ is the difference
in times between T} and T2 as measured in S’. From the graph, we see
that this interval is greater than unity. Hence, from the point of view of
S’, the moving S-clock appears slowed down. During the interval that
the S-clock registered unit time, the S’-clock registered a time greater
than one unit.

The reciprocal nature of the time-dilation result is also shown in Fig.
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A-8. The student should construet the detailed argument. Here a clock
at rest in S’ emits ticks U; and Us separated by unit proper time. As
measured in S, the corresponding time interval exceeds one unit.

A-3 The Time Order and Space Separation of Events

We can also use the geometrical representation of space-time to
gain further insight into the concepts of simultaneity and the time order
of events which we discussed in Chapter Two. Consider the shaded area
in Fig. A-9, for example. Through any point P in this shaded area,
bounded by the world lines of light waves, we can draw a w’-axis from
the origin; that is, we can find an inertial frame S’ in which the events
O and P occur at the same place (" = 0) and are separated only in time.
As shown in Fig. A-9, event P follows event O in time (it comes later on
S’ clocks), as is true wherever event P is in the upper half of the shaded
area. Hence, events in the upper half (region 1 on Fig. A-10) are abso-
lutely in the future relative to O and this region is called the Absolute
Future. If event P is at a space-time point in the lower half of the shaded
area (region 2 on Fig. A-10) then P will precede event O in time. Events
in the lower half are absolutely in the past relative to O and this region
is called the Absolute Past. In the shaded regions, therefore, there is a
definite time order of events relative to O for we can always find a frame
in which O and P occur at the same place; a single clock will determine
absolutely the time order of the event at this place.

w W
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Consider now the unshaded regions of Fig. A-9. Through any point Q
we can draw an x’-axis from the origin; that is, we can find an inertial
frame S’ in which the events O and Q occur at the same time (v’ =
ct’ = 0) and are separated only in space. We can always find an inertial
frame in which events O and Q appear to be simultaneous for space-time
points Q that are in the unshaded regions (region 3 of Fig. A-10), so that
this region is called the Present. In other inertial frames, of course, O and
Q are not simultaneous and there is no absolute time order of these
events but a relative time order, instead.

If we ask about the space separation of events, rather than their time
order, we see that events in the present are absolutely separated from O,
whereas those in the absolute future or absolute past have no definite
space order relative to O. Indeed, region 3 (present) is said to be “space-
like” whereas regions 1 and 2 (absolute past or future) are said to be
“timelike.” That is, a world interval such as OQ is spacelike and a world
interval such as OP is timelike.

The geometrical considerations that we have presented are connected
with the invariant nature of proper time, that is, with the relation

dr2 = di?2 — (1/c%)(dx? + dy? + dz?). We can illustrate as follows. In
1
(12 — )% = (.2 — t1)® — gl(xz —x1)2 + (2 — y1)? + (32 — z1)?]

let subscript one refer to the origin (5 = 0 = x1 = y; = z1) and let
subseript two refer to any other space-time point, so that
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x2+y2+z2

2 — g2
T =1 >

c

Now, in our case, we have ignored y and z so that the appropriate expres-
sion is 72 = t2 — x2/c2%. We can write this conveniently as c272 =
c?t2 — x? which, in our terminology, is simply ¢272 = w? — x2. The
quantity ¢72 is an invariant, that is, w? — x2 = w2 — x'2 for the same
two events. Hence, the quantity —c272, which we shall call 62, is also
invariant. We have then the two relations:

272 = w? — x2
and 0?2 = x2 — w2

Now consider Figs. A-9 and A-10. In regions 1 and 2 we have space-
time points for which w > x (that is, ¢t > x), so that 272 = w? —
x2 > 0. The proper time is a real quantity, c272 being positive, in these
regions. In regions 3 we have space-time points for which x > w (that is,
x > ct), so that ¢272 = w? — x2 < 0. The proper time is an imaginary
quantity, ¢272 being negative, in these regions. However, the quantity o
is real here for 62 = x2 —w? > 0 in regions 3. Hence, either 7 or o is
real for any two events (i.e., the event at the origin and the event else-
where in space-time) and either 7 or 6 may be called the space-time inter-
val between the two events. When 7 is real the interval is called “time-
like”; when o is real the interval is called “spacelike.” Because 0 and 7
are invariant properties of two events, it does not depend at all on what
inertial frame is used to specify the events whether the interval between
them is spacelike or timelike.

In the spacelike region we can find a frame in which the two events
are simultaneous, so that o can be thought of as the spatial interval be-
tween the events in that frame (i.e., 62 = 22 — w? = x"2 — w'2. But
w’ = 01in §' so that ¢ = x'). In the timelike region we can find a frame
in which the two events occur at the same place, so that 7 can be thought
of as the time interval between the events in that frame (i.e., 72 = 2 —
x2/c?) = t'2 — (x'2/c?). Butx’ = 0in S’ so that 7 = ¢).

What can we say about points on the 45° lines? For such points, x = w.
Therefore, the proper time interval between two events on these lines
vanishes, for ¢272 = w? — x2 = 0 if x = w. We have seen that such lines
represent the world lines of light rays and give the limiting velocity
(v = ¢) of relativity. On one side of these 45° lines (shaded regions in
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Fig. A-9) the proper time interval is real, on the other side (unshaded
regions), it is imaginary. An imaginary value of 7 would correspond to a
velocity in excess of c. But no signals can travel faster than c. All this is
relevant to an interesting question that can be posed about the unshaded
regions.

In this region, which we have called the Present, there is no absolute
time order of events; event O may precede event Q in one frame but
follow event Q in another frame. What does this do to our deep-seated
notions of cause and effect? Does relativity theory negate the causality
principle? To test cause and effect, we would have to examine the events
at the same place so that we could say absolutely that Q followed O, or
that O followed Q, in each instance. But in the Present, or spacelike,
region these two events occur in such rapid succession that the time dif-
ference is less than the time needed by a light ray to traverse the spatial
distance between two events. We cannot fix the time order of such events
absolutely, for no signal can travel from one event to the other faster
than c. In other words, no frame of reference exists with respect to which
the two events occur at the same place; thus, we simply cannot test
causality for such events even in principle. Therefore, there is no viola-
tion of the law of causality implied by the relative time order of O and
events in the spacelike region. We can arrive at this same result by an
argument other than this operational one. If the two events, O and Q, are
related causally, then they must be capable of interacting physically. But
no physical signal can travel faster than ¢ so that events O and Q cannot
interact physically. Hence, their time order is immaterial for they can-
not be related causally. Events that can interact physically with O are in
regions other than the Present. For such events, O and P, relativity gives
an unambiguous time order. Therefore, relativity is completely con-
sistent with the causality principle.

Questions and Problems
1. Derive equations A-1, A-2, and A-3.

2. Two inertial observers, with physically identical sets of clocks synchro-
nized by the same procedures, are in relative motion. Each observer finds,
on measurement, that the other observer’s clocks run slow. Explain this
apparent paradox.

3. Read again problems 10 and 11 of Chapter Two. (a) Draw a world dia-
gram for the problem, including on it the world lines for observers 4, B,
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10.

C, D, and E. Label the points AD, BD, AC, BC, and EC. (b) Show, by
means of the diagram, that the clock at A4 records a shorter time interval
for the events AD, AC than do clocks at D and C. (c) Show that, if ob-
servers on the cart try to measure the length DC by making simultaneous
markings on a measuring stick in their frame, they will measure a length
shorter than the rest length DC. Explain this result in terms of simul-
taneity using the diagram.
For convenience, in the above problem, take v = %¢.

In addition to timelike and spacelike intervals, we might talk about
“lightlike” intervals. What value would 7 or ¢ have for such intervals?
Explain.

Do Problem 12, Chapter Two by means of a Minkowski diagram. Check

your results by calculating the invariants ¢272 or g2.

Do Problem 13, Chapter Two, by means of a Minkowski diagram. Check

your results by calculating the invariants ¢272 or 02.

The world diagrams drawn in the text have been from the point of view
of the unprimed frame. Consider a system S’ moving at speed v = 3¢ 10
the right relative to system S. (a) Draw the world diagram for these two
frames from the point of view of the primed frame S’ (i.e., make the
x'-ct’ axes the orthogonal ones. Note that the velocity of the S frame
with respect to the S’ frame is —v). (b) Verify that the three phenomena
—relativity of simultaneity, length contraction, and time dilation—still

hold.

Given a system §' moving to the right relative to S at a speed #¢, and
another system S” moving to the right relative to S at a speed 4c, (a) using
the Minkowski diagram find the velocity of S relative to frame §'.
(b) Repeat with S” moving at a speed +4c relative to S. (Hint: construct
lines of constant x” and ¢’ on the diagram. Using this gridwork of lines,
find the slope of the world line for 8 = 4 and for 8 = 3.)

Do Problem 21, Chapter 4.
Discuss Questions 3 and 4, Chapter 4.
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Supplementary Topic B
The Twin Paradox

B-1 Introduction

Much has been written recently on what is called the twin paradox,
or the clock paradox [see Ref. 1]. Einstein, in 1911 [2], specifically
predicted that:

“If we placed a living organism in a box ... one could arrange that the
organism, after any arbitrary lengthy flight, could be returned to its
original spot in a scarcely altered condition, while corresponding orga-
nisms which had remained in their original positions had already long
since given way to new generations. For the moving organism the lengthy
time of the journey was a mere instant, provided the motion took place

with approximately the speed of light.”

If the stationary organism is a man and the traveling one is his twin, then
the traveler returns home to find his twin brother much aged compared
to himself. The paradox centers around the contention that, in relativity,
either twin could regard the other as the traveler, in which case each
should find the other younger—a logical contradiction. This contention
assumes that the twins’ situations are symmetrical and interchangeable,
an assumption that is not correct. Furthermore, the accessible experi-
ments have been done and support Einstein’s prediction. In succeeding
sections, we look with some care into the many aspects of this problem.

B-2 The Route Dependence of Proper Time

Consider a space-time diagram (Fig. B-1a) which is relevant to our
problem. We can connect events P and Q by different possible world
lines (1 and 2 in Fig. B-1a). We are not surprised that the distance trav-
eled between P and Q (the odometer reading) depends on the route we
take. It is also true, however, that the time recorded by the traveling
clocks depends on the route taken. Let us illustrate this result directly.
The time recorded by a clock attached to the object tracing out a world
line is the proper time. We have seen (Eq. 2-12) that the relationship
between the proper time 7 and the time ¢ is dr = dt\/1 —v2/c2. For

201
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motion in one space dimension we can write this also as dr =

Vdi2 — dx2/c?. The elapsed proper time between events P and Q then
is simply

Ar = (9 Ve — 22 (B-1)
r c2

where we integrate along the (world line) path from P to Q. Consider now
the particular case, Fig. B-1b, in which one world line represents a clock
at rest on the x-axis; this gives a vertical line. Suppose now that we have
a second path by which an identical second clock is taken from P to Q.
Such a clock moves away from the first one and then returns to it, the
clocks being coincident at P and at Q. The elapsed proper time along
the first world line is

2
At = I?\/ dtz—dx—zz l?\/dtz— :L?dt:tq—th
c

for dx is zero along this path and the proper time coincides with the time
interval, t9 — tp, recorded by the rest clocks. Along the second world
line, however, the elapsed proper time is

a = ¢ V=TT
A" will not equal Ar. In fact, since dx? is always positive, we find that
At < Ar. (B-2)

The clocks will read different times when brought back together, the
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traveling clock running behind (recording a smaller time difference than)
the stay-at-home clock.

We should note here that the x-t frame is an inertial frame. The motion
of the traveling clock is represented in this frame by a curved world line,
for this clock undergoes accelerated motion rather than motion with
uniform velocity. It could not return to the stationary clock, for example,
without reversing its velocity. The special theory of relativity can predict
the behavior of accelerated objects as long as, in the formulation of the
physical laws, we take the view of the inertial (unaccelerated) observer.
This is what we have done so far. A frame attached to the clock traveling
along its round-trip path would not be an inertial frame. We could refor-
mulate the laws of physics so that they have the same form for acceler-
ated (noninertial) observers—this is the program of general relativity
theory—but it is unnecessary to do so to explain the twin paradox. All
we wish to point out here is that the situation is not symmetrical with
respect to the clocks (or twins); one is always in a single inertial frame
and the other is not.

B-3 Space-Time Diagram of the “Twin Paradox”

In our earlier discussions of time dilation, we spoke of “moving
clocks running slow.” What is meant by that phrase is that a clock mov-
ing at a constant velocity u relative to an inertial frame containing syn-
chronized clocks will be found to run slow by the factor \/m
when timed by those clocks. That is, to time a clock moving at constant
velocity relative to an inertial frame, we need at least two synchronized
clocks in that frame. We found this result to be reciprocal in that a single
S’-clock is timed as running slow by the many S-clocks, and a single
S-clock is timed as running slow by the many S’-clocks.

The situation in the twin paradox is different. If the traveling twin
traveled always at a constant speed in a straight line, he would never get
back home. And each twin would indeed claim that the other’s clock
runs slow compared to the synchronized clocks in his own frame. To get
back home—that is, to make a round trip—the traveling twin would have
to change his velocity. What we wish to compare in the case of the twin
paradox is a single moving clock with a single clock at rest. To do this
we must bring the clocks into coincidence twice—they must come back
together again. It is not the idea that we regard one clock as moving and
the other at rest that leads to the different clock readings, for if each of
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two observers seems to the other to be moving at constant speed in a
straight line they cannot absolutely assert who is moving and who is not.
Instead, it is because one clock has changed its velocity and the other
has not that makes the situation unsymmetrical.

Now you may ask how the twins can tell who has changed his velocity.
This is clearcut. Each twin can carry an accelerator. If he changes his
speed or the direction of his motion, the acceleration will be detected.
We may not be aware of an airplane’s motion, or a train’s motion, if it is
one of uniform velocity; but let it move in a curve, rise and fall, speed up
or slow down and we are our own accelerometer as we get thrown around.
Our twin on the ground watching us does not experience these feelings—
his accelerometer registers nothing. Hence, we can tell the twins apart by
the fact that the one who makes the round-trip experiences and records
accelerations whereas the stay-at-home does not.

A numerical example, suggested by Darwin [3], is helpful in fixing
the ideas. We imagine that, on New Year’s Day, Bob leaves his twin
brother Dave, who is at rest on a space ship floating in free space. Bob,
in another space ship, fires rockets that get him moving at a speed of 0.8¢
relative to Dave and by his own clock travels away for three years. He
then fires more powerful rockets that exactly reverse his motion and gets
to Dave after another three years by his clock. By firing rockets a third
time he comes to rest beside Dave and compares clock readings. Bob’s
clock says he has been away for six years, but Dave’s clock says ten years
have elapsed. Let us see how this comes about.

First, we can simplify matters by ignoring the effect of the accelera-
tions on the traveling clock. Bob can turn off his clock during the three
acceleration periods, for example. The error thereby introduced can be
made very small compared to the total time of the trip, for we can make
the trip as far and as long as we wish without changing the acceleration
intervals. It is the total time that is at issue here in any case.* We do not
destroy the asymmetry, for even in the ideal simplification of Fig. B-2
(where the world lines are straight lines rather than curved ones) Dave
is always in one inertial frame whereas Bob is definitely in two different

*An analogy is that the total distance traveled by two drivers between the same two points, one along
the hypotenuse of a right triangle and the other along the other two sides of the triangle. can be
quite different. One driver always moves along a straight line whereas the other makes a right turn
to travel along two straight lines. We can make the distance between the two points as long as we
wish without altering the fact that only one turn must be made The difference in mileage traveled
by the drivers certainly is not acquired at the turn that one of them makes.
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inertial frames—one going out (0.8¢) and another coming in (—0.8¢).

Let the space ships be equipped with identical clocks which send out
light signals at one-year intervals. Dave receives the signals arriving from
Bob’s clock and records them against the annual signals of his own clock;
likewise, Bob receives the signals from Dave’s clock and records them
against the annual signals of his clock.

In Fig. B-2, Dave’s world line is straight along the ct-axis:, heisatx = 0
and we mark off ten years (in terms of ct), a dot corresponding to the
annual New Year’s Day signal of his clock. Bob’s world line at first is a
straight line inclined to the ct-axis, corresponding to a ct’-axis of a frame
moving at +0.8¢ relative to Dave’s frame. We mark off three years (in
terms of ct’), a dot corresponding to the annual New Year’s Day signal
of his clock. After three of Bob’s years, he switches to another inertial
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frame whose world line is a straight line inclined to the ct-axis, corre-
sponding to the ct”-axis of a frame moving at —0.8c¢ relative to Dave’s
frame. We mark off three years (in terms of ct”), a dot corresponding to
the annual New Year’s Day signal of his clock. Note the dilation of the
time interval of Bob’s clock compared to Dave’s.

Let us now draw in the light signals from Bob’s clock. From each dot
on Bob’s world line we draw a straight line inclined 45° to the axes (cor-
responding to a light signal of speed ¢) headed back to Dave on the line
at x = 0. There are six signals, the last one emitted when Bob returns
home to Dave. Likewise, the signals from Dave’s clock are straight lines,
from each dot on Dave’s world line, inclined 45° to the axes and headed
out to Bob’s spaceship. We see that there are ten signals, the last one
emitted when Bob returns home to Dave.

How can we confirm this space-time diagram numerically? Simply by
the Doppler effect. As the clocks recede from each other, the frequency
of their signals is reduced from the proper frequency by the Doppler
effect. In this case the Doppler factor (see Eq. 2-29) is

c—v c—08c _ /02 _ /1 _1
c+v c+ 08¢ 18 9 3

Hence, Bob receives the first signal from Dave after three of his years,
just as he is turning back. Similarly, Dave receives messages from Bob
on the way out once every three of his years, receiving three signals in
nine years. As the clocks approach one another, the frequency of their
signals is increased from the proper frequency by the Doppler effect. In
this case the Doppler factor (see Eq. 2-28) is

c+ v 1.8
vV e—wv v 0.2 \/_

Thus, Bob receives nine signals from Dave in his three-year return
journey. Altogether, Bob receives ten signals from Dave. Similarly, Dave
receives three signals from Bob in the last year before Bob is home.
Altogether, Dave receives six signals from Bob.

There is no disagreement about the signals: Bob sends six and Dave
receives six; Dave sends ten and Bob receives ten. Everything works out,
each seeing the correct Doppler shift of the other’s clock and each agree-
ing to the number of signals that the other sent. The different total times
recorded by the twins corresponds to the fact that Dave sees Bob recede
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for nine years and return in one year, although Bob both receded for
three of his years and returned for three of his years. Dave’s records will
show that he received signals at a slow rate for nine years and at a rapid
rate for one year. Bob’s records will show that he received signals at a
slow rate for three years and at a rapid rate for another three years. The
essential asymmetry is thereby revealed by a Doppler effect analysis.
When Bob and Dave compare records, they will agree that Dave’s clock
recorded ten years and Bob’s recorded only six. Ten years have passed
for Dave during Bob’s six-year round trip.

B-4 Some Other Considerations

Will Bob really be four years younger than his twin brother? Since
for the word “clock” we could have substituted any periodic natural
phenomena, such as heart-beat or pulse rate, the answer is yes. We might
say that Bob lived at a slower rate then Dave during his trip, his bodily
functions proceeding at the same slower rate as his physical clock.
Biological clocks behave in this respect the same as physical clocks. There
is no evidence that there is any difference in the physics of organic
processes and the physics of the inorganic materials involved in these
processes. If motion affects the rate of a physical clock, we expect it to
effect a biological clock in the same way.

It is of interest to note the public acceptance of the idea that human
life processes can be slowed down by refrigeration, so that a correspond-
ing different aging of twins can be achieved by temperature differences.
What is paradoxical about the relativistic case, in which the different
aging is due to the difference in motion, is that since (uniform) motion
is relative, the situation appears (incorrectly) to by symmetrical. But,
just as the temperature differences are real, measurable, and agreed upon
by the twins in the foregoing example, so are the differences in motion
real, measurable, and agreed upon in the relativistic case—the changing
of inertial frames, that is the accelerations, are not symmetrical. The re-
sults are absolutely agreed upon.

Although there is no need to invoke general relativity theory in ex-
plaining the twin paradox, the student may wonder what the outcome of
the analysis would be if we knew how to deal with accelerated reference
frames. We could then use Bob’s space ship as our reference frame, so
that Bob is the stay-at-home, and it would be Dave who, in this frame,
makes the round-trip space journey. We would find that we must have a
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gravitational field in this frame to account for the accelerations that Bob
feels and the fact that Dave feels no accelerations even though he makes
a round trip. If, as required in general relativity, we then compute the
frequency shifts of light in this gravitational field, we come to the same
conclusion as in special relativity [see Ref. 4].

B-5 An Experimental Test

The experiments accessible to us are not those of spacemen
traveling at speeds near that of light; they are instead radioactive nuclei
whose change in ticking (photon decay rate) at different speeds can be
measured to an extremely high accuracy. A radioactive source of gamma
ray photons can be tuned to resonance with an absorber of such photons
to within a very sharp frequency interval (Mossbauer effect). A source
(radioactive iron-57 nuclei) mounted at the center of a rotor and a reso-
nant absorber on the perimeter are used, the measurements being made
as a function of the angular velocity of the rotor. The experiment can
be analyzed in the inertial frame of the source using special relativity
or in the reference frame of the accelerated absorber using general rela-
tivity. The measurements may be regarded as a transverse Doppler effect
or a time dilation produced by gravitation, each expressing the same fact
that the clock that is accelerated is slowed down compared to the clock
at rest. One twin stays at home; the other literally makes a round trip.
The results of these experiments [Refs. 5 to 7] show that a group of radio-
active nuclei on the perimeter of the turning rotor undergo fewer decays
than an identical set of radioactive nuclei at rest at the center of the
rotor. The round-trip twin ages less than his stay-at-home brother and,
within the limits of experimental error, by exactly the amount predicted
by relativity theory.

Questions and Problems

1. A straight-line path between two points in (Euclidean) space is of shorter
length than a curved path connecting these points. Is a straight world line
between two events in (Minkowski) space of shorter or longer proper
time than a curved world line connecting these same events? Explain.

2. Is asymmetric aging associated with acceleration? Explain your answer.

3. Explain (in terms of heartbeats, physical and mental activities, and so on)
why the younger returning twin has not lived any longer than his own
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proper time even though stay-at-homes may say that he has. Hence, ex-
plain the phrase “you age according to your own proper time.”

Time dilation is a symmetric (reciprocal) effect. The twin-paradox result
is asymmetric (nonreciprocal). In what sense are these effects related?
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Supplementary Topic C

The Principle of Equivalence
and General Relativity

C-1 Introduction
We have seen that special relativity requires us to modify the clas-
sical laws of motion. However, the classical laws of electromagnetism,
including the Lorentz force law, remain valid relativistically. What about
the gravitational force, that is, Newton’s law of gravitation—does rela-
tivity require us to modify that? Despite its great success in harmonizing
the experimental observations, Newton’s theory of gravitation is suspect
conceptually if for no other reason than that it is an action-at-a-distance
theory (see Section 3-1). The gravitational force of interaction between
bodies is assumed to be transmitted instantaneously, that is, with infinite
speed, in contradiction to the relativistic requirement that the limiting
speed of a signal is c, the velocity of light. And there are worrisome fea-
tures about the interpretation of the masses in the law of gravitation. For
one thing, there is the equality of inertial and gravitational mass, which
in the classical theory, is apparently an accident [see Ref. 1]. Surely there
must be some physical significance to this equality. For another thing, the
relativistic concept of mass-energy suggests that even particles of zero
rest mass will exhibit masslike properties (e.g., inertia and weight). But
such particles are excluded from the classical theory. If gravity acts on
them, we must find how to incorporate this fact in a theory of gravitation.
In 1911 Einstein advanced his principle of equivalence, which became
the starting point for a new theory of gravitation. In 1916, he published
his theory of general relativity, in which gravitational effects propagate
with the speed of light and the laws of physics are reformulated so as
to be invariant with respect to accelerated (noninertial) observers. The
equivalence principle is strongly confirmed by experiment. Let us ex-
amine this first.

C-2 The Principle of Equivalence

Consider two reference frames: (1) a nonaccelerating (inertial) ref-
erence frame S in which there is a uniform gravitational field, and (2) a
reference frame S’, which is accelerating uniformly with respect to an
inertial frame but in which there is no gravitational field. Two such

210
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frames are physically equivalent; that is, experiments carried out under
otherwise identical conditions in these two frames should give the same
results. This is Einstein’s principle of equivalence.

For example, imagine a spaceship to be at rest in an inertial reference
frame S in which there is a uniform gravitational field, say at the surface
of the earth. Inside the spaceship, objects that are released will fall with
an acceleration, say g, in the gravitational field; an object which is at
rest, such as an astronaut sitting on the floor, will experience a force
opposing its weight. Now let the spaceship proceed to a region of outer
space where there is no gravitational field. Its rockets are accelerating
the spaceship, our new frame §’, with a = —g with respect to the iner-
tial frame S. In other words, the ship is accelerating away from the earth
beyond the region where the earth’s field (or any other gravitational
field) is appreciable. The conditions in the spaceship will now be like
those in the spaceship when it was at rest on the surface of the earth.
Inside the ship an object released by the astronaut will accelerate down-
ward relative to the spaceship with an acceleration g. And an object at
rest relative to the spaceship, for instance, the astronaut sitting on the
floor, will experience a force indistinguishable from that which balanced
its weight before. From observations made in his own frame, the astro-
naut could not tell the difference between a situation in which his ship
was accelerating relative to an inertial frame in a region having no gravi-
tational field and a situation in which the spaceship was unaccelerated
in an inertial frame in which a uniform gravitational field existed. The
two situations are exactly equivalent.

Indeed, it follows that if a body is in a uniform gravitational field—
such as an elevator in a building on earth—and is at the same time
accelerating in the direction of the field with an acceleration whose mag-
nitude equals that due to the field—such as the same elevator in free fall
—then particles in such a body will behave as though they are in an
inertial reference frame with no gravitational field. They will be free of
acceleration unless a force is impressed on them. This is the situation
inside an artifieial earth satellite in which objects released by the astro-
naut will not fall relative to the satellite (they appear to float in space)
and the astronaut himself will be free of the force which countered the
pull of gravity before launching (he feels weightless).

Einstein pointed out that, from the prineiple of equivalence, it fol-
lows that we cannot speak of the absolute acceleration of a reference
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frame, only a relative one, just as it followed from the special theory of
relativity that we cannot speak of the absolute velocity of a reference
frame, only a relative one. This analogy to special relativity is a formal
one, for there is no absolute acceleration provided that we grant that
there is also no absolute gravitational field. It also follows from the prin-
ciple of equivalence (it is not an accident) that inertial mass and gravita-
tional mass are equal (see Question 1).

C-3 The Gravitational Red Shift

Now let us apply the principle of equivalence to see what gravita-
tional effects there might be that are not accounted for in the classical
theory. Consider a pulse of radiation (a photon) emitted by an atom A at
rest in frame S (a space ship at rest on the earth’s surface, e.g.). A uniform
gravitationl field g is directed downward in S, the photon falling down a
distance d through this field before it is absorbed by the detector D (see
Fig. C-1a). To analyze what effect gravity has on the photon, let us con-
sider the equivalent situation, shown in Fig. C-15. Here we have an atom
and a detector separated by a distance d in a frame S’ in which there is no
gravitational field, the frame S’ (a spaceship in outer space, e.g.) acceler-
ating uniformly upward relative to S with @ = g. When the photon is
emitted, the atom has some speed u in this frame. The speed of the de-
tector, when the photon reaches it, is u 4+ at, where ¢ is the time of flight
of the photon. But (see Question 2) t is (approximately) d/c anda = g
so that the detector’s speed on absorption is u + gd/c. In effect, the
detector has an approach velocity relative to the emitter of v = g d/c,
independent of u. Hence, the frequeney received, »', is greater than that
emitted, », the Doppler formula giving us

r_ \/c+U :\/M =14 gd/c. (C-1)
v c—v ¢c—gd/c

(a) (b)
Fig C-1.
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By the principle of equivalence, we should obtain this same result in
frame S. In this frame, however, 4 and D are at rest and there is no
Doppler effect to explain the increase in frequency. There is a gravita-
tional field, however, and the result in S’ suggests that this field might
act on the photon. Let us explore this possibility by ascribing to the
photon a gravitational mass equal to its inertial mass, E/c%. Then, in
falling a distance d in a gravitational field of strength g, the photon gains
energy (E/c?)g d. How can we connect the energy E to the frequency v?
In the quantum theory, the connection is E = hv, where h is a constant
called Planck’s constant. For the moment, let us use this relation so that
the energy of the photon on absorption at D is its initial emission energy
plus the energy gained in falling from A4 to D, or hv + (hv/c?)g d. If we
call this absorption energy E' = hv/, then we have

hvg d
hv = hv + ng
[
v gd
— =142 C-2
or " + 2 (C-2)

the same result obtained in frame S’ (Eq. C-1).

Actually, it is not necessary to use quantum theory. We can show in
relativity itself that E is proportional to », because it follows, from the
relativistic transformation of energy and momentum, that the energy in
an electromagnetic pulse changes by the same factor as its frequeney
when observed in a different reference frame (see Question 3). The con-
clusion then is that, in falling through a gravitational field, light gains
energy and frequency (its wavelength decreases and we say it is shifted
toward the blue). Clearly, had we reversed emitter and detector, we
would have concluded that in rising against a gravitational field light loses
energy and frequency (its wavelength increases and we say it is shifted
toward the red).

The predicted fractional change in frequency, (" — »)/v or Av/v, is
gd/c?, and even with d being the distance from sea level to the top of
the highest mountains on earth, its value is only about 10712, Neverthe-
less, Pound and Rebka [2] in 1960 were able to confirm the prediction
using the 74 ft high Jefferson tower at Harvard! For such a small dis-
tance we have

Av gd (9.8 m/sec?)(22.5 m)

=== =25 10715,
7 c? (3 X 108 m/sec)? X
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an incredibly small effect. By using the Mossbauer effect (which permits
a highly sensitive measurement of frequency shifts) with a gamma ray
source, and taking admirable care to control the competing variables,
Pound and Rebka observed this gravitational effect on photons and con-
firmed the quantitative prediction. Their result, comparing experimental
observation to theoretical calculation, was

(Ay)exp

= 1.05 # 0.10.
(Ay)theory

In a subsequent refinement of the original experiment, Pound and

Snider [3] in 1965 found

(AV)exp

= 0.9990 == 0.0076.
(A”)theory

We can easily generalize our result (Eqs. C-1 and C-2) to photons
emitted from the surface of stars and observed on earth. Here we assume
that the gravitational field need not be uniform and that the result de-
pends only on the difference in gravitational potential between the source
and the observer. Then, in place of gd we have GM;/R,, where M, is the
mass of the star of radius R,, and because the photon loses energy in
rising through the gravitational field of the star, we obtain
GM, )

R (C-3)

V’;v(l—

This effect is known as the gravitational red shift, for light in the visible
part of the spectrum will be shifted in frequency toward the red end.
This effect is distinct from the Doppler red shift from receding stars.
Indeed, because the Doppler shift is much larger, the gravitational red
shift has not been confirmed with certainty.

C-4 General Relativity Theory

Let us return to Fig. C-1a in which D measures a greater frequency
than A4 emits. It may appear strange that a frequency can increase with
no relative motion of source and detector. After all, D surely receives
the same number of vibrations that 4 sent out. Even the distance of sepa-
ration remains constant between A4 and D, so how do we interpret the
measured frequency increase? The answer, once again, is that there is a
disagreement about time. That is, frequency is the number of vibrations
per unit time so that the frequency difference must be due to a time
difference; the rate of A’s clock must differ from the rate of D’s clock.
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We say that clocks in the region of high gravitational potential run faster
than those in a region of low gravitational potential. Let the emitting
atom be the clock, for example, its rate being the frequency of radiation.
Then the higher up in the gravitational field the atom is, the higher its
frequency appears to be to D (i.e., compared to the same atom radiating
at D). Similarly, if we rcverse A and D, then the lower down in the gravi-
tational field the atom is the lower its frequency appears to be to D (i.e.,
compared to the same atom radiating at D). It is the frequency shifts
produced by the (equivalent) gravitational fields that lead us to the same
result in the “twin-paradox” as that obtained in special relativity when
we take the point of view of the noninertial frame rather than the inertial
one (see Ref. 4 of Appendix B).

It was Einstein who postulated the principle of the equivalence of a
system in a uniform gravitational field to a uniformly accelerated refer-
ence system for all physical processes. He, too, derived the result that
the rate of clocks is slower in regions of lower gravitational potential than
in regions of higher gravitational potential. Furthermore, he called
attention to the gravitational red shift required from the theory and to
the need to ascribe gravitational mass m = E/c? to an energy E. Still
another of his results was that the direction of the velocity of light is not
constant in a gravitational field; indeed, light rays bend in a gravitational
field because of their gravitational mass and Einstein predicted that this
bending would cause a displacement in the position of fixed stars that are
seen near the edge of the sun.

From all this, we see that special relativity can only be correct in the
absence of a gravitational field, since the definition of simultaneity upon
which the Lorentz transformations are based is contradicted by the
dependence of the velocity of light and of the rate of clocks on the gravi-
tational potential. Hence, a more general theory is needed* which takes
into account the principle of equivalence and which generalizes even
that principle to nonuniform (inhomogeneous) gravitational fields.
Furthermore, gravitational effects themselves must be treated by a field
theory in which the propagation speed is finite. In a series of papers [4]
Einstein formulated such a general theory of relativity.

We shall mention only some features of general relativity theory. The

* Just as Galilean relativity is a special case of Einstein’s special relativity. so special relativity is a
special case of general relativity The gravitational field (as near the earth) is usually so weak that
there are no observable discrepancies between special relativity and general relativity. In most
cases we operate in the special relativistic limit of general relativity
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subject is clearly beyond the scope of a book at this level. ** First, inho-
mogeneous gravitational fields can be transformed away, or imitated, by
having at each point in the field a different accelerated frame that re-
places the local (infinitesimal) field there. In such local frames, the
special theory of relativity is valid so that the invariance of the laws of
physics under a Lorentz transformation applies to infinitesimal regions.
Second, through an invariant space-time metric that follows from this,
we can link geometry to gravitation and geometry becomes non-
Euclidean. That is, the presence of a large body of matter causes space-
time to warp in the region near it so that space-time becomes non-
Euclidean. This warping is equivalent to the gravitational field. The
curvature of space-time in general relativity replaces the gravitational
field of classical theory. Hence, the geometry of space-time is determined
by the presence of matter. In this sense, geometry becomes a branch of
physics. The fact that special relativity is valid in small regions corre-
sponds to the fact that Euclidean geometry is valid over small parts of a
curved surface. In large regions, special relativity and Euclidean geome-
try need not apply so that the world lines of light rays and inertial motion
need not be straight; instead, they are geodetic, that is, as straight as
possible. Third, the laws of physics are postulated to be invariant with
respect to transformations between all reference frames, however they
move. Hence, all observers are equivalent. Finally, a specific theory of
gravitation is proposed, consistent with the other requirements, in which
gravitational effects propagate with the speed of light.

Other specific theories of gravitation have been proposed in recent
times (see Ref. 6, e.g.). The Einstein Theory has the appeal of being the
simplest in form. And theories at variance with some of the basic features
of general relativity are also advocated [7 and 8]. All of these theories
are difficult to put to the test of experiment (see Refs. 9 and 10 for sum-
maries and interpretation of the experiments). Two major predictions of
Einstein’s theory are (1) that the precession of the perihelion of the
planet Mercury (Fig. C-2a) should differ from the classical prediction,
the difference being about 43 seconds of arc per century, and (2) that the
positions of stars whose light passes near the edge of the sun (observed,
say, during a solar eclipse) should be displaced (due to deflection by the
gravitational field of the sun) by 1.75 seconds of arc from their positions

** See Refs 5 for some good elementary discussions,
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True

Apparent
position

A
position

(a)

/@ Observer

Fig. C-2. (a) A planet moving in a precessing orbit about a fixed center of force.
The perhelion, or point of closest approach, shifts by an angle 6 after each ex-
cursion. In the case of Mercury, the orbit is nearly circular and the precession
of perhelion is very small—only 5600 seconds of arc per century All but about
40 seconds of this is due to the gravitational attractions of the other planets and
can be deduced classically. The remainder is in agreement with Einstein’s gen-
eral theory. (b) Light passing the sun from a star to the earth is deflected toward
the sun, making the star appear displaced away from the sun by an angle
Ap = 175 seconds of arc. The drawing is schematic only, obviously not to

scale,

observed at night (Fig. C-2b). The experimental results are compatible
with Einstein’s predictions. In the case of the first prediction the results
are known to great accuracy but interpretations other than Einstein’s
have been advanced. In the case of the second prediction, the aceuracy
of the results is uncertain. Much experimental work is now underway
to clarify the situation. There is universal agreement, however, that
Einstein’s equivalence principle (confirmed, e.g., by Pound’s experi-
ments) is valid. As for his specific theory of gravitation, the story is still

unfolding,
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The general theory of relativity is one of the greatest intellectual
achievements of all time. Its originality and unorthodox approach exceed
that of special relativity. And far more so than special relativity, it was
almost completely the work of a single man, Albert Einstein. The philo-
sophic impact of relativity theory on the thinking of man has been pro-
found and the vistas of science opened by it are literally endless. To
quote Max Born [5]: “The idea first expressed by Ernst Mach, that the
inertial forces are due to the total system of fixed stars, suggests the appli-
cation of the theory of general relativity to the whole universe. This step
was actually made by Einstein in 1917, and from that time dates the
modern development of cosmology and cosmogony, the sciences of the
structure and genesis of the cosmos. This development is still in full
swing and rich in important results, though far from final conclusions.”

Questions and Problems

1. Starting from the fact that all bodies that are free of forces move with
uniform velocity relative to an inertial frame, then considering the mo-
tion of these bodies in an accelerated frame, and finally using the princi-
ple of equivalence, show that all bodies fall with the same acceleration
in a uniform gravitational field—hence, the equality of inertial and
gravitational mass.

2. Why is the relation t = d/c, used for the photon’s time of flight in frame
S’ of Fig. C-1b, only approximate, rather than exact?

3. Prove that special relativity is consistent with quantum physies in regard
to the proportionality of E and » for a photon.

4. Can gravity be regarded as a "fictitous” force, arising from the accelera-
tion of one’s reference frame relative to an inertial reference frame,
rather than a “real” force?
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Answers to Problems

Chapter 1
15. (a) Same, (b) sound, (c) bullet.
Chapter 2
1. (a) 4.00 X 10713 gec; (b) zero.
4. &’ = 2520 km, y’ = 10 km, 2’ = 1 km, ' = —7.70 X 1074 sec.
5. (@) 45/c = 1.5 X 1077 sec; (b) 190/c = 6.3 X 1077 sec; (c) 170/c = 5.7 X 1077
sec.

6. (a) 0.0447¢ = 1.44 X 107 m/sec; (b) 0.141c = 4.23 X 107 m/sec; (c) 0.436¢ =
1.31 X 108 m/sec.
9, (a) No, (b) \/%[(n — x2)%2 + (y1 — y2)2 + (z1 — z2)?]V2.
10. (a) AD, AC; (b) At\/1 — B2; (c) No, BC before 4D.
12. (a) Yes, v = ¢/2 in the direction of positive x, 519 m
13. (a) 3.74 sec, (b) zero sec, (c) undefined.
15. (a) u = ¢/3, (b) ¢/3.
18. (@) AL/Ly = 2.2 X 10712 m, (b) 4.54 X 105 sec = 5.26 days.
19. (@) L — Ly = 640 X 1075 km.
20. Exceeds speed limit by 40 mph. 21. 212 X 1072 m,
22. (a) 0.866c = 2.60 X 108 m/sec; (b) ship’s clocks will go half as fast.
23. (a) Yes, (b) v = 0.9999990c.
24. (a) 3.94 X 107 m/sec, (b) 2.54 X 1075 sec.
26. (a) 1.67m, (b) 1.67 m.
27. (a) (1) zero; (ii) 517 m; (iii) 1420 m; (iiii) 4840 m.
(b) (i) zero; (ii) 414 m; (iii) 622 m; (iiii) 683 m.
28. 199, 947 m. 29, 0.99c.
33. 0.946c. 34. One part in 10°.
38. (a) 0.817¢ in the direction of positive x;
(b) 0.801c, 86.4° from the x-axis;
(¢) 0.799c, 86.4° from the x'-axis.
L= LyT— oG tan g = 200 _
40. L' = L\/1 — B2 cos? 6; tan @ =P
+_ [t + v2 + 2uv cos @ — (uv/c)? sinZ §]1/2
- 1 + (uv/c) cos 8
an @ =4 sin 8 \/1 — (v/c)?
v+ ucosl ’
. (@) 6 min, (b) 12 min, (¢) 6 min.
. (@) 1o/ /1 = B2 47. Green.
. () 560 A; (ii) 2040 A; (iii) 3930 A.
. () 13 A (ii) 66 A, (iii) 690 A.
AN = 29 &

4]1. u

EE&GE
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Chapter 3

1. (a) abe /1 — B2, (b) mo/\/1 — B2 (e) pl:_rpi?'
3. 0.867¢c, no.

4. (a) 0.948¢ = 2.84 x 108 m/sec; (b) 621 me: () 212 Mev, 1.62 X 10719 kg-m/sec.
5. (a) 1962 mg; (b) 0.99999987c; (c) 2.96 m., v = 0942¢.
6. (a) 0.99882c; (b) 0.1¢; (0) 20.6 (electron), 1.01 (proton).
13. (a) 2.56 X 105 volts; (b) 0.6¢; (c) 1.43 x 10730 kg, 4.1 x 10714,
18. (a) 0.145 webers/m2, (b) 1.98. 19. 663 km.
2]1. 1.82 x 1020 m 22. 267 m,; pi meson
23. 114.2 km above sea level.
24, (a) 4.42 X 10738 kg; (b) 2.208 x 10732 kg.
25. 4.4 % 1076 nt/m2, 26. 5.02 X 1026 Mev.
27, Am = 4.22 X 10712 kg; 4.64 X 10713%,
28. (b) 0.51 Mev (electron); 938.2 Mev (proton)
29. (a) 2.7 X 1014 joules, (b) 1.79 x 107 kg.
30. 92,162 Mev.
31. 0.51 Mev; 2.72 X 10722 kg-m/sec. 32. (a) ¢/3: (b) 2.12 my,.
34. (a) 2.36 X 10721 kg-m/sec; (b) 8.78 X 1074 Mev.
36. 29.58 Mev (neutrino); 4.22 Mev (muon).
38. (a) 4.38 Mev.
41. (a) 3.63 X 1022 kg-m/sec; 0.850 Mev.
(b) p;/ = L.15 X 10722 kg-m/sec; p,’ = p;" = 0; 0.552 Mev.

Chapter 4
8. (a) zero for both.
18. F,/ = 922 % 10712 nt; F, = 4.12 X 10 nt

A ,BI:B,I:BZ:();

20. (a) E,=E, =0, E, = p—

) XN =Av; i’ = YAy
) Ef =E =0,E,/ = N Br=n' =0 B = -
T€ga

Ta

Supplementary Topic A
8. (a) —¢/3, (b) —c/7.



Index

Aberration, concept, 28 29
refutation of “ether drag”. 29 30
relativistic formulation, 84- 89
Acceleration, detection, 204
particle under the influence of a force, 124
125
reference frame, 207, 211-212
transformation of, classical, 10
transformation of, relativistic, 84
Action at a distance, 110-111
Addition of velocities, see Velocity transfor
mation

Binding energy, 137-138

Blokhintsev, D 1. quotation from, 182

Bondi. Herman. quotation from, 37-38, 95 96
Born, Max. quotation from, 88 89

Causality. 106, (Problem 39). 199
Charge, relativistic invariance, 129, 171 172
Charge density, dependence on inertial frame
of reference. 161
and simultaneity, 162
transforniation, relativistie, 158-160
Conservation of energy, as a law of physies,
11, 45 (Problem 4)
connection with momentum conservation,
146
total energy, 133-135
Conservation of mass, connection with mo-
mentum conservation. 45 (Problem 3)
equivalence to energy conservation, 133-
135
Conservation of momentum, as a law of
physics, 45 (Problem 2, 3)
connection with energy conservation, 146
failure of the classical expression. 111-114
relativistic expression, 117-118
Current density, as a four-vector, 159-160
definition. 138 (footnote)
transformation. relativistic, 159 160

De Sitter experiment, 34, 48 (Problem 14)
Doppler effect, relativistic. 89 91

Doppler effect, interpretation of transverse
Doppler effect in terms of time dilation,
90-91

Double star observations, 34, 48 (Problem 14)

Finstein, Albert, 38-43
quotations from, 2, 35, 42, 43, 140-141,
142-143, 157, 201
Electromagnetic field, of a current-carrying
wire, 172-175
as a four-tensor, 166 (footnote)
interdependence of the electric and mag-
netic field, 161-162, 166-167
interpretation of the interdependence of
the E and B fields, 176-177
transformation, relativistic, 163-166
of two moving charges, 175-177
of a uniformly moving point charge, 167-
170
Emission theories, 33-34, 45 (Question 16)
Energy, conservation, see conservation of
energy
as a four-vector component, 146
equivalence with mass, 131-135, 138-143
internal, 136-137, 141
kinetic, classical, 120-121
relativistic, 121-122
rest, 122
rest mass, 136-137
total, 122
transformation, relativistic, 144-145
Equivalence of mass and energy, 131-135,
138-143
Fquivalence principle, 210-211
Ether, classical concept, 16, 18-19
drag, 28
Event, 3

Fizeau experiment, 30-32

Force, near a current-carrying wire, 172-175
as a four-vector, 147-148
magnetic, interpretation of, 176-177
between moving charges, 175-177
relativistic expression, 119, 124-125
transformation, relativistic. 146- 147
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Frames of reference, accelerated, 207, 211-
212
equivalent, 13, 37, 96, 210-211
inertial, 3, 35, 36, 95-96
preferred, 13, 16-17
proper, 63
relation to the observer, 44 (Question 7)
Fresnel drag, 30-31, 47 (Problem 13)
relativistic treatment, 81
Future, absolute, 196-197

Galilean transformation, 5
General relativity, Supplementary Topic C
Geometric representation, accelerated motion,
203
charges on wire, 186 (Problem 21)
coordinates of an event, 192
length contraction, 194
motion of a particle, 189
relativity of simultaneity, 193
space-time, 188ff
time dilation, 195
velocity transformation, 200 (Problem 8)
Gravitation, and field theory, 215
and light, 212, 213, 214, 217 (Figure C-2)
mass, see Mass
perihelion of Mercury, 217 (Figure C-2)
red shift, 214
trouble with the Newtonian picture, 210

Headlight effect, 98 (Question 28), 107 (Prob-
lem 43)

Homogeneity of space and time, 56

Hyperbolic calibration curves, 190-192

Inelastic collisions, and the equivalence of
mass and energy, 131-137
Inertial frame, definition, 3
equivalence of, 13, 37, 96

Invariance, electromagnetic wave equation and

the Galilean transformation, 46 (Prob-
lem 8)

of the electromagnetic wave equation under

a Lorentz transformation, 100 (Prob-
lem 7)

Maxwell’s equations and the Galilean trans-

formation, 17

of Maxwell's equations under a Lorentz
transformation, 178-181

of Newton’s laws under a Galilean trans-
formation, 10-11, 13-15

Invariance, of a plane wave under the electro-
magneuc field transformations, 184
(Problem 6, 7, 8)

Invariants, charge, 129, 171-172, 176

electric flux, 171-172
of the Galilean transformation, 7, 10-11
proper time, 197
of relativity, 93
space-time interval, 155 (Problem 40), 198
speed of light, 36
and transformation laws, 15-16
Ives and Stilwell experiment, 90

Kennedy-Thorndike experiment, 27
Klein, Martin, quotations from, 39, 42

Length, 62, 69-71, 97 (Question 10)
contraction, 101 (Problem 11), 194-195
measurement of, 6, 7, 194
proper, 63
reality of length contraction, 93-94
transverse, 66-67
unit length on a Minkowski diagram, 191

Light, aberration, see Aberration
effective mass, 135
emission from a moving object, 98 (Ques-

tion 28), 107 (Problem 43)
in a gravitational field, 212, 213, 214, 217
(Figure C-2)
paradox 97 (Question 6)
see also Photons; Velocity of light
Linear transformation, 57
Lorentz-Fitzgerald contraction, 26-27, 97
(Question 9)

Lorentz force, 120, 163

Lorentz transformation, consequences, 65-66
formal derivation, 56-61
physical derivation, 102 (Problem 17)
requirements, 38
synchronization constant, 96 (Question 5),

97 (Question 14), 99 (Problem 3)

Mass, inertial and gravitational, 210, 212, 213,
218 (Problem 1)
longitudinal, 125
proper, 117
relativistic, 114-117
rest, 116
rest mass as internal energy, 136-137
as a scalor invariant, 118-119
transformation, relativistic, 146
transverse, 125



Mass-energy equivalence, 131 135, 138-141,
142-143
Maxwell’s equations, and the Galilean trans-
formation, 17
invariance under a Lorentz transformation,
178-181
Michelson-Morley experiment, 18, 19-24
Minkowski diagram, Supplementary Topic A
see also Geometric representation
Momentum, conservation, see Conservation of
momentum,
as a four-vector, 146, 150 (Question 18)
inadequacy of the classical concept, 111-
114
relativistic, 114-118
transformation, relativistic, 144-145
Mossbauer effect, as a test for general relativ-
istic effects, 214
as a test of the twin paradox, 208
*Moving clocks run slow,” 77-78, 203

Newton, Isaac, quotations from, 16, 50 (foot-

note)

Observer 78-79

Past, absolute, 196-197
Phase difference in synchronizing two clocks,
64, 71-73
Photon, 141
in a gravitational field, 212-213
Pi meson decay, 75-77
Power, relation to force, 147-148
Present, 197
Principle, of constancy of the velocity of light,
36
of equivalence, 210-211
of Newtonian relativity, 13
of relativity, 35
Proper, see Frames of reference: Length; Mass,
and Time

Reference frames, see Frames of reference
Relativity, and common sense, 91-96
Einstein principle of, 35-36, 37, 95-96
general, Supplementary Topic
Newtonian principle of, 13
postulates of, 35-36
of simulwaneity, 52-55, 74, 193
special, see Special relativity
Rigid bodies, 94-95. 140
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Shankland, R S, quotation from, 50
Simultaneity, definition, 50-52
and length measurements, 6-7, 194
in the motion of charges, 162
relativity of, 52-55, 74, 193
Space-time diagrams, Supplementary Topic A
see also Geometnic representation
Space-time intervals, as an invariant, 155
(Problem 40), 198
spacelike, 197, 198
timelike, 197, 198
Special relativity, domain of validity, 4, 215,
216
possible limitation, 181-182
see also Relativity
Synchronization of clocks, one frame, 50-52
phase difference for moving clocks, 64

Time, biological and physical, 207
classical concept, 6, 50
dilation, 63-64, 67-69, 77-78, 195
dilation and the Doppler effect, 90-91
in a gravitational field, 214-215
proper, 63-64, 107 (Problem 45)
invariance of. 93, 197
route dependence of, 201-203
relativity of interval measurements, 55-56
unit time on a Minkowski diagram, 191
see also Simulaneity
Time order of events, 196-197, 199
Transformation equations, acceleration, classi-
cal, 10
relativistie, 84
charge density, 160
current density, 160
electromagnetic fields, 166 (Table 4-1)
energy, 145
force, 147
Galilean, 5
Lorentz, 60
mass, 146
momentum, 145
velocity, Supplementary Topic B
classical, 8, 83 (Table 2-2)
Twin paradox, experimental test, 208

Velocity of light, constancy principle, 36
and emission theories, 33-35
and the Galilean transformation, 16
as a limiting speed, 1, 80, 82, 91-92, 119,
122

in moving media, 30-31
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Velocity of light, and synchronization, 51-52
Velocity transformation, classical, 8
geometric representation, 200 (Problem 8)
relativistic, 79-83
successive colinear transformations, relativ-

istic, 104 (Problem 35)

Visual appearance of a moving object, 78 79

Weisskopf, V F . quotation from, 78-79

Whitrow. G J.. quotation from, 97 (Ques-
tion 13)

World line. 189



