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I dedicate this book to my students: my continuous interactions with them

have led to a deeper understanding of optics.
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The first laser was fabricated in 1960, and since then there has been a renaissance in the field of optics. From optical amplifiers

to laser physics, fiber optics to optical communications, optical data processing to holography, optical sensors to DVD technol-

ogy, ultrashort pulse generation to super continuum generation, optics now finds important applications in almost all branches

of science and engineering. Indeed, to recognize the tremendous applications of light in our everyday lives, United Nations

General Assembly proclaimed 2015 as the International Year of Light (IYL 2015) and to celebrate this, numerous events were

organized globally.

In addition to numerous practical applications of light, it is said that it was the quest to understand the �nature of light� that

brought about the two revolutions in science: the development of quantum mechanics which began with an attempt to under-

stand the �light quanta�, and the starting point of the special theory of relativity was Maxwell�s equations which synthesized the

laws of electricity and magnetism with those of light. Because of all this, an undergraduate course in optics has become a �must�

not only for students of physics but also for students of engineering. Although, it is impossible to cover all areas in a single book,

this book attempts to give a comprehensive account of a large number of important topics in this exciting field and should meet

the requirements of a course on optics meant for undergraduate students of science and engineering.

Organization of the Book

The book attempts to give a balanced account of traditional optics as well as some of the recent developments in this field. The

plan of the book is as follows:

� Chapter 1 gives a brief history of the development of optics. I have always felt that one must have a perspective of the

evolution of the subject that she or he wants to learn. Optics is such a vast field that it is extremely difficult to give a

historical perspective of all the areas. My own interests lie in fiber optics, and hence there is a bias toward the evolution

of fiber optics and related areas. In the process, I must have omitted the names of many individuals who made important

contributions to the growth of optics. Fortunately, there is now a wealth of information available through the Internet;

I have also included a number of references to various books and websites.

� Chapter 2 gives a brief historical evolution of different models describing the nature of light. It starts with the

corpuscular model of light and then discusses the evolution of the wave model and the electromagnetic character of

light waves. We next discuss the early twentieth-century experiments, which could only be explained by assuming a

particle nature of light, and we end with a discussion on �wave-particle duality.�

� Chapters 3 to 6 cover geometrical optics. Chapter 3 starts with Fermat�s principle and discusses ray tracing through

graded index media; explaining in detail the phenomena of mirage and looming, ray propagation through graded index

optical waveguides, and reflection from the ionosphere. Chapter 4 covers ray tracing in lens systems and Chapter 5

discusses the matrix method in paraxial optics which is used in the industry. Chapter 6 gives a brief account of

aberrations.

� Chapters 7 to 12 discuss the origin of refractive index and the basic physics of wave propagation including Huygens�

Principle. Many interesting experiments (such as the redness of the setting Sun, water waves, etc.) are discussed. The

concepts of group velocity and the dispersion of an optical pulse as it propagates through a dispersive medium are

discussed in detail. Self-phase modulation, which is one of the phenomena leading to the super continuum generation,

is also explained.

� Chapters 13 to 16 cover the very important and fascinating area of interference and many beautiful experiments

associated with it�the underlying principle is the superposition principle, which is discussed in Chapter 13. Chapter

14 discusses interference by division of the wave front including the famous Young�s double-hole interference

experiment. In Chapter 15, interference by division of amplitude is discussed, which allows us to understand the colors

of thin films and applications such as antireflection films. The basic working principle of the Fiber Bragg Gratings

��ipegi2�y
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(usually abbreviated as FBG) is discussed along with some of their important applications in the industry. In the same

chapter, the Michelson interferometer is discussed for which Michelson received the 1907 Nobel Prize in Physics in

1907. Chapter 16 discusses the Fabry�Perot interferometer which is based on multiple-beam interference and is

characterized by a high resolving power and, hence, finds applications in high-resolution spectroscopy.

� Chapter 17 discusses the basic concept of temporal and spatial coherence. The ingenious experiment of Michelson,

which used the concept of spatial coherence to determine the angular diameter of stars, is discussed in detail. Topics

such as optical beats and Fourier transform spectroscopy are also discussed.

� Chapters 18, 19, and 20 cover the very important area of diffraction and discuss the principle behind topics such as

the diffraction divergence of laser beams, resolving power of telescopes, laser focusing, X-ray diffraction, Fourier

optics and spatial frequency filtering.

� Chapter 21 discusses the underlying principle of holography and some of its applications. Dennis Gabor received the

1971 Nobel Prize in Physics for discovering the principle of holography.

� Chapters 22 to 24 cover the electromagnetic character of light waves. All chapters have been significantly revised in

the 6th edition. Chapter 22 discusses the polarization phenomenon and propagation of electromagnetic waves in

anisotropic media including first-principle derivations of wave and ray velocities. Phenomena such as optical activity

and Faraday rotation (and its applications to measuring large currents) are explained from first principles. In Chapter

23, starting with Maxwell�s equations, the wave equation is derived which led Maxwell to predict the existence of

electromagnetic waves and to propound that light is an electromagnetic wave. Reflection and refraction of

electromagnetic waves by a dielectric interface are discussed in Chapter 24. Results derived in this chapter directly

explain phenomena such as polarization by reflection, total internal reflection, evanescent waves, and Fabry�Perot

transmission resonances.

� Chapter 25 covers the particle nature of radiation, for which Einstein received the 1921 Nobel Prize. The chapter also

discusses the Compton Effect (for which Compton received the 1927 Nobel Prize in Physics), which established that

the photon has a momentum equal to h /c.

� Chapter 26 is a new chapter and discusses the basic concepts of quantum theory, solutions of the Schrödinger equation,

Entanglement and Bell�s inequality.

� Chapter 27 is on lasers�a subject of tremendous technological importance. The basic physics of optical amplifiers and

of lasers along with their special characteristics is also discussed.

� Chapters 28 to 30 discuss waveguide theory and fiber optics, an area that has revolutionized communications and has

found important applications in sensor technology. Chapter 28 (which has also been considerably revised) discusses the

light guidance property of the optical fiber (using ray optics) with applications in fiber-optic communication systems;

the chapter also gives a very brief account of fiber-optic sensors. Chapter 29 discusses basic waveguide theory and

concept of modes with Maxwell�s equations as the starting point. Chapter 30 discusses the propagation characteristics

of single-mode optical fibers, which are now extensively used in optical communication systems.

� In 1905 Einstein put forward the special theory of relativity which is considered one of the revolutions of the 20th

century. The starting point of the Special Theory of Relativity was Maxwell�s equations, which synthesized the laws of

electricity and magnetism with those of light. Chapters 31, 32 and 33 describe briefly the important consequences of

the special theory of relativity, i.e., time dilation, length contraction, the mass-energy relation, and Lorentz

transformations.

� Very often a good photograph clarifies an important concept and also sustains the student�s interest in the subject. It is

with this intention that we have given a few colored photographs (in the beginning of the book) that describe important

concepts in optics.

In summary, the book discusses some of the important topics that have had a tremendous impact in the growth of

science and technology.

Other Important Features of the Book

� A large number of figures correspond to actual numerical calculations, which were generated using software such as

GNUPLOT and Mathematica. There are also some diagrams which give a three-dimensional perspective of the

phenomenon.
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� Most chapters start with important milestones in the area. This gives a historical perspective of the topic.

� All important formulae have been derived from first principles so that the book can also be used for self-study.

� Numerous worked out examples are scattered throughout the book to help clarify difficult concepts.

� Each chapter ends with a summary of important results derived in the chapter.

Experiments in fiber optics

My own research interests are in the general area of fiber optics. I have found that there are many beautiful experiments in fiber

optics, which are not very difficult to set up, that allow us not only to understand difficult concepts but also to find very

important applications. For example,

� Chapter 10 discusses in great detail the dispersion of an optical pulse as it propagates through a dispersive medium. This

is an extremely important concept. The chapter also discusses self-phase modulation (usually abbreviated as SPM) that

is probably the simplest nonlinear optical phenomenon which can be easily understood from first principles. Indeed,

when a monochromatic laser pulse propagates through a special optical fiber, SPM (along with other phenomena) can

lead to the awesome super continuum generation; we discuss this in Chapter 10.

� The working of a Fiber Bragg Grating (usually abbreviated as FBG) is a beautiful application of the interference

phenomenon, and FBGs find very important applications in sensors and other optical devices. In Chapter 15, the basic

physics of an FBG is discussed along with its very important application in temperature sensing at places where no other

device would work.

� The experiment on Faraday rotation in optical fibers (discussed in Chap. 22) allows one to understand the concept of

rotation of plane of polarization in the presence of a longitudinal magnetic field. This experiment finds important

application in the industry for measuring very large currents (about 10,000 amperes or more). The theory of Faraday

rotation is also given from first principles. In Chapter 22, the change in the state of polarization (usually abbreviated as

SOP) of a light beam as it propagates through an elliptic core single-mode optical fiber has been discussed; the

experiment not only allows one to understand the changing SOP of a beam propagating through a birefringent fiber, but

also helps one to understand the radiation pattern of an oscillating dipole.

� Erbium-doped fiber amplifier (usually abbreviated as EDFA) and fiber lasers are discussed in Chapter 27. The working

of an EDFA allows one to easily understand the concept of optical amplification.

� Optical fibers with parabolic index variation are used in optical communication systems. Ray paths in such fibers and

their dispersion characteristics are of great importance. This is discussed from first principles in Chapters 3 and 28.

� Chapters 28 through 30 are on waveguide theory and fiber optics, an area that has revolutionized communications and

finds important applications in sensor technology. Optical fibers are now widely used in endoscopy, display illumination,

and sensors, and of course the most important application is in the field of fiber-optic communication systems. We

discuss all this in Chapter 28. Chapter 29 discusses basic waveguide theory (and concept of modes) with Maxwell�s

equations as the starting point. The chapter allows one to understand the transition from geometrical optics to wave

optics, which happens to be similar to the transition from classical mechanics to quantum mechanics. Chapter 30

discusses the waveguiding properties of single-mode optical fibers, which are now extensively used in optical

communication systems. The prism film coupling experiment (discussed in Chapter 29) allows one to understand the

concept of quantization, an extremely important concept in physics and electrical engineering.

There are many such examples scattered throughout the book, and each example is unique and not usually found in

other textbooks.

Online Resources for Instructors

Various resources are available to instructors for this text, including solutions to end-of-chapter problems, lecture Power Points

and the text images in PowerPoint form. All these can be found at the text�s website: http://www.mhhe.com/ghatak/optics6
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PHOTOGRAPHS

Fig. 1 A paraboloidal satellite dish.

[Photograph courtesy: McGraw-Hill Digital Access Library].

Fig. 2 Fully steerable 45 m paraboloidal dishes of the Giant
Metrewave Radio Telescope (GMRT) in Pune, India. The GMRT

consists of 30 dishes of 45 m diameter with 14 antennas in the

Central Array. [Photograph courtesy: Professor Govind Swarup,
GMRT, Pune].

Fig. 3 This is actually
2
not a reflection in the ocean, but

the miraged (inverted) image of the Sun�s lower edge. A

few seconds later (notice the motion of the bird to the left
of the Sun), the reflection fuses with the erect image. The

photographs were taken by Dr. George Kaplan of the U.

S. Naval Observatory and are on the Naval Observatory
and are on the website http://mintake.sdsu.edu/GF/explain/

simulations/infmir/Kaplan_photos.html created by Dr. A

Young. [Photographs used with kind premissions from Dr.
Kaplan and Dr. Young.]

Fig. 5 If we are looking at the ocean on a cold day, we find that
the air near the surface of the water is cold and it gets warmer as

we go up. Thus, as we go up, the refractive index decreases

continuously and because of curved ray paths, one will observe
an inverted image of the ship (at a greater height) as shown in

the figure above; this is known as the superior mirage.

Fig. 7 Ray paths in a graded index medium characterized by a

refractive index variation which decreases parabolically in the

transverse direction. Because of focusing properties, it has many
important applications.
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Fig. 4 A typical mirage as seen on a hot road on a warm day.
Photograph adapted from http://fizyka.phys.put.poznan.p1/~peiransk/

Physics%20Around%20Us%20UsAir%20%mirror.jpg. [The Photograph

was taken by
Professor Piotr

Pieranski of Ponz

Universty of
Technology in

Poland; used with

permission from
Professor Pieranski].

Fig. 6 A house in the archipelago with a superior mirage.

Figure adapted from http://virtual.finland.fi/netcomm/news/
showarticle.asp?intNWSAID=25722. [Photograph was taken by Dr. Pekka

Parviainen in Turku, Finland; used with kind permission from

Dr. Parviainen].
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Fig. 8 A parallel beam of white light is incident on a lens.

Different wavelengths of light have slightly differing focal

lengths leading to chromatic aberration.

Fig. 9 The non circular shape of the setting sun. [Photograph
courtesy McGraw Hill Digital Access Library.]

Fig. 10 The Earth rising over moon surface in a computer
altered image. [Photograph courtesy: McGraw Hill Digital Library].

Fig. 11 Full moon over landscape at dusk. Notice the blue sky

and the red glow of the setting Sun. Both phenomena are due to

Rayleigh scattering. [Photograph courtesy: McGraw Hill Digital Library].

Fig.  14 Supercontinuum white light source. Laser pulses of 6ps duration are incident on a
special optical fiber characterized by a very small mode field diameter which leads to very

high intensities. Because of the high intensities we have SPM (Self-Phase Modulation) and

other non-linear effects; these non-linear effects result in the generation of new frequencies.
In this experiment, the entire visible spectrum gets generated which can be observed by

passing the light coming out of the optical fiber through a grating. The repetition rate of the

laser pulses is 20 MHz. The wavelengths generated range from 460 nm to 2200 nm.
[Photograph courtesy : Fianium, UK.].
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Fig. 12 The glass on the right contains distilled water and the
glass on the left glass contains distilled water with few drops of

milk. Because of scattering, the laser beam can be easily seen as it

traverses through the liquid. Figure adapted from http://silver-
lightning.com/tyndall/. [The Photograph was taken by Mr. Marshall

Dudley; used with kind permission from Mr. Marshall Dudley].

Fig. 13 Propagation of a pulse
through a material characterized by
negative group velocity. The peak
of the transmitted pulse appears to
emerge from the material medium
before the peak of the incident
pulse enters the medium. It may be
seen that the pulse appears to move
backward in the medium. Such
backward propagation has been
observed in the laboratory. The
plots are based on a simple model
that assumes that all spectral
components of the pulse propagate
without loss at the same group
velocity. [Adapted from  and
Gauthier, Controlling the velocity of
light pulses, Science, 326, 1074 (2009);
used with permission from Professor

 and Professor Gauthier].
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Fig 16 Refraction of a spherical wave at an interface. The diagram

is by Dr. Oleg Alexandrov and is in public domain.

Fig. 17 Two slit experiment demonstrating the interference

phenomenon. [Photograph courtesy: McGraw Hill Digital Library].

Fig. 21 Wings of these butterflies have naturally occurring multiple stacks of
layers; interference of light reflected from the multiple layers is responsible for

their beautiful colors. [Adapted from J.C. Gonzato and B. Pont�s article � A

phenomenological representation of iridescent colors in butterfly wings� in http://
www.labri.fr/perso/gonzato/Articles/GONZATO_Butterfly_WSCG2004.pdf].
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Fig. 15 Supercontinuum

generation by 350 fs laser

pulses (at  1060 nm
wavelength) as it passes

through a Photonic Crystal

Fiber. Notice the color of
light changing as the

pulses propagate through

the fiber. The output is
passed through a prism to

generate the

supercontinuum.  The
fiber was fabricated at

CGCRI, Kolkata and the
experiment was carried out by Dr. Shyamal Bhadra and Mr. John
McCarthy in Professor Ajoy Kar�s Laboratory at Heriot Watt

University in Edinburgh. [Photograph courtesy: Dr. Shyamal Bhadra

of CGCRI, Kolkata].

Fig. 18 The top photograph

is a glass lens without anti-
reflective coating and the

bottom photograph is of  a

lens with anti-reflective
coating. Note the reflection of

the photographer in the top

lens and the tinted reflection
in the bottom. [Photograph

taken by Justin Lebar; used with

kind permission from Mr Lebar].

Fig. 20 The substation of Powergrid Corporation of
India (near Kolkata, India) where the FBG temperature

sensors have been installed. In the photograph, the

author is with Dr. Tarun Gangopadhyay and Mr. Kamal
Dasgupta. [Slide Courtesy: Dr. Gangopadhyay and Mr.

Dasgupta, CGCRI, Kolkata].

Fig. 19 FBG-based temperature sensor

system on 400 KV power conductor at
Subhashgram substation of Powergrid

Corporation of India. [Slide Courtesy:

Dr. Tarun Gangopadhyay and Mr. Kamal
Dasgupta, CGCRI, Kolkata.]
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Fig. 24 Image of the binary star Zeta Bootis by a 2.56 m
telescope aperture; the Airy disc around each of the stars can be

seen. [The photograph is by Dr. Bob Tubbs; used with kind permission

from Dr. Tubbs].
Fig. 25 Arrangement for obtaining the X-ray diffraction

pattern of a crystal. [Photograph courtesy: McGraw Hill Digital

Access Library].

Fig. 23 The laser beam, launched from VLT´s 8.2-metre Yepun

telescope, crosses the sky and creates an artificial star at 90 km
altitude in the high Earth´s mesosphere. Notice that the

spreading of the beam is extremely small. [Photograph by Dr. G

Huedepohl. The photograph (in the public domain) is adapted from
http://www.eso.org/public/images/gerd_huedepohl_4/].

Fig. 26 Actual photographs with two Polaroids at different angles

of relative orientation. (a) If the two Polaroids are parallel to each
other, almost the entire light passes through. (b) when the two

Polaroids are oriented at  with respect to each other about 50% of

the light passes through; this is because . (c) when the two Polaroids
are at right angles to each other (notice the position of the blue dot)

almost no light will pass through. [Photographs adapted from

http://www.a-levelphysicstutor.com/about.php; used with kind permission
from Dr. Alan J. Reed.]

Fig. 27 (a) (commercially available) polarized sunglass blocks the

horizontal component and allows only the vertical component to

pass through. (b) If the sunlight is incident on the water surface at
an angle close to the Brewster angle, then the reflected light will be

almost polarized and if we now wear polarized sunglasses, the

glare, i.e., the light reflected from the water surface will not be seen.
Polarized sunglasses are often used by fishermen to remove the

glare on the surface and see the fish inside water.
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Fig. 22 If an obstacle with a small gap is placed in the tank the

ripples emerge in an almost semicircular pattern; the small gap

acting almost like a point source. If the gap is large however,
the diffraction is much more limited. Small, in this context,

means that the size of the obstacle is comparable to the

wavelength of the ripples. [Drawing by Ms. Theresa Knott; used
with her kind permission].
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Fig. 28 (a) A photograph on the road with ordinary glasses. (b)

If we use polarized lenses, the glare can be considerably reduced.
[Photographs adapted from www.esaver.com.my/

index.php?option=com_content&view=article&id=95&Itemid=220]

Fig. 29 If the sunlight is
incident on the water

surface at an angle close to

the Brewster angle, then
the reflected light will be

almost  polarized. (a) If the

polaroid allows the (almost
polarized) reflected beam

to pass through, we see the

glare from water surface.
(b) The glare can be

blocked by using a vertical

polarizer and one can see
the inside of the water.

[Figure adapted from http://

polarization.com/water/
water.html. Photographs were

taken by Dr. J Alcoz; used

with kind permission from
Dr. Alcoz].

(a)

(b)

Fig. 31 Typical double image of a sentence in a printed text. The

ordinary image is fixed, while the upper extraordinary image is
shifted and can rotate. [Photograph courtesy Professor Vasudevan

Lakshminarayanan and adapted from The sunstone and polarised

skylight: ancient Viking navigational tools  by G. Ropars, A. Le Flocha
and V. Lakshminarayanan, Contemporary Physics, 2014].

Fig. 32 Circularly polarized light. The drawing is by Dr Dave and

is in the public domain.

[Animation of circularly polarized light can be seen at
http://en.wikipedia.org/wiki/

File:Circular.Polarization.Circularly.Polarized.Light_Left.Hand.Animation.

305x190.255Colors.gif]

Fig. 30 When an unpolarized light beam is incident
normally on a calcite crystal, it usually splits up into
two linearly polarized beams. [Photograph courtesy
Professor Vasudevan Lakshminarayanan and adapted
from The sunstone and polarised skylight: ancient Viking
navigational tools by G. Ropars, A. Le Flocha and V.
Lakshminarayanan, Contemporary Physics, 2014.]



Opticsxxiv
u

C   M

Y   K

C   M

Y   K

Fig. 34 As experimental setup to measure Faraday rotation in optical fibers because of large current
passing through a conductor. Photograph courtesy: Professor Chandra Sakher, IIT Delhi.

Fig. 35 (a) The electromagnetic spectrum; gamma rays have the highest frequency (and the shortest wavelength) and radio waves have the
lowest frequency (and the longest wavelength). All wavelengths travel with an identical velocity in vacuum. Photograph courtesy: McGraw Hill
Digital Access Library. (b) Wavelengths associated with the visible portion of the electromagnetic spectrum (which is sensitive to the retina of
our eye) ranges from about 0.4 µm (blue region of the spectrum) to about 0.7 µm (red region of the spectrum), the corresponding frequencies
are about 750 THz and 420 THz; 1 THz = 10IP Hz. A wavelength of 0.5 µm corresponding to the bluish green region of the spectrum has a
frequency of 600 THz and a wavelength of 0.6 µm (corresponding to the reddish yellow green region of the spectrum) has a frequency of
500 THz.

Fig. 33 Schematic of an actual Wollaston prism. The prism
separates an unpolarized light beam into two linearly polarized

beams. It consists of two calcite prisms (so that the optic axes are

perpendicular to each other), cemented together with Canada
balsam. A commercially available Wollaston prism has divergence

angles from 15° to about 45°.
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Fig. 37 A helium-neon laser demonstration at the

University of Paris. The glowing ray in the middle is an
electric discharge producing light in much the same way

as a neon light. It is the gain medium through which the

laser passes, not the laser beam itself, which is visible
there. The laser beam crosses the air and marks a red

point on the screen to the right. [Photograph by Dr David

Monniaux; used with kind permission of Dr  Monniaux.]

Fig. 38 A compact EDFA (Erbium Doped Fiber Amplifier)
manufactured by NUPHOTON Technologies. It provides up to

16 dBm output power and has a 70 mm  43 mm  12 mm footprint;

the size can be estimated by the 25 cent coin on the side. The unit
works at 3.3V with a power consumption < 1.5 W. [Photograph

courtesy: Dr Ramadas Pillai of  NUPHOTON Technologies.]
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Fig. 36 An apparatus for performing Bell test. The photon 
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Fig. 39 The first ruby laser.

Fig. 40 Laser Drilling in Concrete at RRCAT using 1 kW

Nd:YAG Laser. [Photograph courtesy:  Dr. Brahma Nand Upadhyay,

Raja Ramanna Centre for Advanced Technology, Indore.]

Fig. 41 Total internal reflection of a laser beam at the interface of
water and air. [Photograph adapted from

http://ecphysicsworld.blogspot.in/2012/03/total-internal-reflection.html ]

Fig. 42 Guidance of light beam through an optical fiber held by a
hand; the light scattered out of the fiber is due to Rayleigh

scattering. [Photograph courtesy McGraw Hill Digital Library.]

Fig. 43 A step index multimode fiber illuminated by HeNe

laser with bright output light spot. The light coming out of the

optical fiber is primarily due to Rayleigh scattering. [The fiber
was produced at the fiber drawing facility at CGCRI, Kolkata; figure

courtesy Dr Shyamal Bhadra and Ms Atasi Pal].
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Fig. 45 A stomach ulcer as seen through an endoscope.

(Photograph courtesy: United States Information, Service, New Delhi).

Fig.  46 The optical tweezer: When the diameter of a trapped particle

is significantly greater than the wavelength of light, the trapping
phenomenon can be explained using ray optics. As shown in the

figure, individual rays of light emitted from the laser will be refracted

as it enters and exits the dielectric bead. As a result, the ray will exit in
a direction different from which it originated. Since light has a

momentum associated with it, this change in direction indicates that

its momentum has changed. When the bead is displaced from the
beam center (right image), the larger momentum change of the more

intense rays cause a net force to be applied back toward the center of

the laser; thus the bead is held near  the center of the laser beam.
[Writeup and photographs courtesy: Ronald Koebler; used with his

permission].

Fig. 47 A focused laser beam, in addition to keeping the bead

in the center of the laser, also keeps the bead in a fixed axial
position. The momentum change of the focused rays causes a

force towards the laser focus, both when the bead is in front (left

image) or behind (right image) the laser focus. The bead will
stay slightly behind the focus. Standard tweezers work with the

trapping laser propagating in the direction of gravity. [Writeup

and photographs courtesy Dr. Ronald Koebler; used with his kind
permission].

Fig. 44 (a) Commercially available 8mm/11mm
solid core end glow cable with black PVC jacket. [Ref.

http://www.aliexpress.com. (b) Wrapped in optical fiber

carrying sunlight from the roof. The person shown is
Jeff Muhs who at Oak Ridge National Laboratory

developed this solar technology; adapted from

http : / /web .ornl .gov/ in fo /ornlreview/v38_1_05/
article09.shtml]

(b)

(a)(a)

(b)
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Velocity of electromagnetic waves in free space 299792458 m/sc

Magnetic permeability of free space 7 2 2
0 4 10 Ns C

Dielectric permittivity  of free space 
12 2 1 2

0 2
0

1
8.8542... 10 C N m

c

Planck constant –346.626 070 040(81)  10 J·s h

Reduced Planck constant 34
1.054 571 800(13) 10 J·s 

2

h

Electron charge 
191.602 176 565(35) 10 C eq

Electron mass 319.109 382 91(40) 10 kg em

Proton mass 
271.672 621 777(74) 10 kg pm

   191 eV 1.60218 10 J

Gravitational constant 11 3 1 26.67408(31) 10 m kg sG



Optics is the study of light that has always fascinated

humans. In his famous book, On The Nature of Light,

Vasco Ronchi wrote:

Today we tend to remember only Newton and Huygens

and consider them as the two great men who laid the

foundations of physical optics. This is not really true

and perhaps this tendency is due to the distance in time

which as it increases tends to strengthen the contrast

and to reduce the background. In reality, the discussion

on the nature of light was fully developed even before

these two men were born F F F

It is with this perspective that I thought it would be

appropriate to give a very brief history of the development

of optics. For those who want to know more of the history,

fortunately, there is a wealth of information that is now

available through the Internet.

Archytas (428�347 fg) was a Greek philosopher, mathemati-

cian, astronomer, and statesman. It is said that he had

propounded the idea that vision arises as the effect of an

invisible �fire� emitted from the eyes so that on encounter-

ing objects it may reveal their shapes and colors.

Euclid, also known as Euclid of Alexandria, was a Greek

mathematician who was born between the years of 320 and

324 fg. In his Optica, (about 300 fg) he noted that light

travels in straight lines and described the law of reflection.

He believed that vision involves rays going from the eyes

to the object seen, and he studied the relationship between

the apparent sizes of objects and the angles that they

The test of all knowledge is experiment. Experiment is the sole judge of scientific "truth". . . .
There are theoretical physicists who imagine, deduce, and guess at new laws, but do not
experiment; and then there are experimental physicists who experiment, imagine, deduce and
guess.

�Richard Feynman in Feynman Lectures on Physics
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Chapter
One

subtend at the eye. It seems that Euclid�s work on optics

came to the West mainly through medieval Arabic texts.

Hero (or Heron) of Alexandria (c.10�70 eh) lived in

Alexandria, Roman Egypt, and was a teacher of mathematics,

physics and mechanics at the University of Alexandria. He

wrote Catoptrica, which described the propagation of light,

reflection, and the use of mirrors.

Claudius Ptolemaeus (c. 90�(c.90�168 eh) known in English

as Ptolemy, was a mathematician and astronomer who lived

in Roman Egypt. Ptolemy�s Optics is a work that survives

only in a poor Arabic translation and in Latin translation of

the Arabic. In it, he wrote about properties of light, includ-

ing reflection, refraction, and color. He also measured the

angle of refraction in water for different angles of incidence

and made a table of it.

A
�

ryabhatta (476�550 eh) is the first of the great mathematician-

astronomers of the classical age of Indian mathematics and

Indian astronomy. According to the ancient Greeks, the eye was

assumed to be a source of light; this was also assumed by the

early Indian philosophers. In the fifth century, Aryabhatta reiter-

ated that it was light arriving from an external source at the retina

that illuminated the world around us.

Ibn al-Haytham (965�1039 eh), often called as Alhazen, was

born in Basra, Iraq (Mesopotamia). Alhazen is considered

the father of optics because of the tremendous influence of

his Book of Optics (Arabic: Kitab al-Manazir, Latin: De

Aspectibus or Perspectiva). Robert S. Elliot wrote the

following about the book:

Ch_1.p65 6/17/2016, 11:56 AM1
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Alhazen was one of the ablest students of optics of

all times and published a seven-volume treatise on

optics which had great celebrity throughout the

medieval period and strongly influenced Western

thought, notably that of Roger Bacon and Kepler.

This treatise discussed concave and convex

mirrors in both cylindrical and spherical

geometries, anticipated Fermat�s law of least time,

and considered refraction and the magnifying

power of lenses. It contained a remarkably lucid

description of the optical system of the eye, which

study led Alhazen to the belief that light consists of

rays which originate in the object seen, and not in

the eye, a view contrary to that of Euclid and

Ptolemy.

Alhazen had also studied the reverse image formed by

a tiny hole and indicated the rectilinear propagation of light.

In fact, in December 2013, the United Nations General

Assembly proclaimed the year 2015 as the International

Year of Light (IYL 2015) and since January 2015, there have

been numerous events celebrating the Year of Light. And,

one of the main reasons for 2015 being chosen as the

International Year of Light was the fact that in 1015, exactly

1000 years back, Alhazen wrote the first book on Optics.

There are many books written on the work of Alhazen;

some discussion on Alhazen's work can be found in

Ref. 1.1.

Erazmus Ciolek Witelo (born c. 1230 and died around

1275) was a theologian, physicist, natural philosopher,

and mathematician. Witelo called himself, in Latin,

Turingorum et Polonorum filius, meaning �a son of Po-

land and Thuringia.� Witelo wrote an exhaustive

10-volume work on optics entitled Perspectiva, which

was largely based on the work of Ibn al-Haytham and

served as the standard text on the subject until the

seventeenth century (Refs. 1.2�1.4).

Leonardo da Vinci (April 15,

1452�May 2, 1519), some

people believed, was the first

person to observe diffraction.

Although Alhazen had

studied the reverse image formed

by a tiny hole, the first detailed

description of the pinhole camera

(camera obscura) was given in

the manuscript Codex atlanticus

(c. 1485) by Leonardo da Vinci,

who used it to study perspective.

Johannes Kepler (Dec. 27,

1571 � Nov. 15, 1630) was a

German mathematician, as-

tronomer, and astrologer,

and a key figure in the

seventeenthcentury astro-

nomical revolution. In 1604,

he published the book, Ad

Vitellionem Paralipomena,

Quibus Astronomiae pars

Optica Traditur. An English translation (by William H.

Donahue) has recently been published as Johannes Kepler

Optics. The announcement (see Ref. 1.5) says, �Optics was a

product of Kepler�s most creative period. It began as an at-

tempt to give astronomical optics a solid foundation, but

soon transcended this narrow goal to become a complete re-

construction of the theory of light, the physiology of vision,

and the mathematics of refraction. The result is a work of ex-

traordinary breadth whose significance transcends most

categories into which it might be placed.�

Hans Lippershey (1570�1619) was a Dutch eyeglass maker.

Many historians believe that in 1608, Lippershey saw two

children playing with lenses in his shop and discovered

that images were clearer when seen through two lenses.

This inspired Lippershey to the creation of the first tele-

scope. Some historians credit Galileo Galilei for the

invention of the first telescope. Many historians believe

that Lippershey also invented the compound microscope;

however, there is controversy on that. See Ref. 1.6.

Galileo Galilei (Feb. 15, 1564�Jan. 8, 1642) is often referred

to as the father of modern physics. In 1609, Galileo was

among the first to use a refracting telescope as an

instrument to observe stars and planets. The improvements

to the telescope and consequent astronomical observations

were his breakthrough achievements. He became the first

man to notice the craters of the moon, and to discover the

sunspots, the four large moons of Jupiter, and the rings of

Saturn. In 1610, he used a telescope as a compound

microscope, and he made improved microscopes in 1623

and after. This appears to be the first clearly documented

use of the compound microscope.

Willebrord Snel van Royen (1580�1626) was a Dutch as-

tronomer and mathematician. In 1621, he discovered the law

of refraction that is referred to as Snell�s law.

Pierre de Fermat (Aug. 17, 1601�Jan. 12, 1665) was a French

mathematician and never went to college. In a letter to

Cureau de la Chambre (dated January 1, 1662), Fermat

©
P

ix
ta

l/
a
g

e
F

o
to

s
to

c
k

©
P

ix
ta

l/
a
g

e
F

o
to

s
to

c
k

Ch_1.p65 6/17/2016, 11:56 AM2



History of Optics IFQ
u

showed that the law of refraction can be deduced by

assuming that the path of a refracted ray of light was that

which takes the least time! Fermat�s principle met with

objections. In May 1662, Clerselier, an expert in optics,

wrote: The principle you take as a basis for your proof, to

wit, that nature always acts by the shortest and simplest

path, is only a moral principle, not a physical one�it is

not and can not be the cause of any effect in nature.

René Descartes (Mar. 31, 1596�Feb. 11, 1650) was a highly

influential French philosopher, mathematician, scientist,

and writer. Descartes, in his book entitled Dioptrique

(1638), gave the fundamental laws of propagation of light,

the laws of reflection and refraction. He also put forward

the corpuscular model, regarding lumen as a swarm of

spherical corpuscles (see Refs. 1.7 and 1.8). In Ref. 1.8, it

has been shown that �Descartes insightful derivation of

Snell�s law is seen to be largely equivalent to the

mechanical-particle or corpuscular derivation often

attributed to Newton (who was seven years old at

Descartes� death).�

Francesco Maria Grimaldi (Apr. 2, 1618�Dec. 28, 1663).

Around 1660, Grimaldi discovered the diffraction of light

and gave it the name diffraction, which means �breaking

up.� He interpreted the phenomenon by stating that light

had to consist of a very fine fluid of some sort in a state

of constant vibration. He laid the groundwork for the

later invention of diffraction grating. He formulated a

geometrical basis for a wave theory of light in his Physico-

mathesis de lumine (1666). It was this treatise which

attracted Isaac Newton to the study of optics. Newton

discussed the diffraction problems of Grimaldi in Part III of

his Opticks (1704); Robert Hooke observed diffraction in

1672. For more details see Ref. 1.9.

Robert Hooke (Jul. 18, 1635�Mar. 3, 1703). In his 1664 book

Micrographia, Robert Hooke was the first to describe

�Newton�s rings.� The rings are named after Newton be-

cause Newton explained it (incorrectly) in a communication

to the Royal Society in December 1675 and presented it in

detail in his book Opticks (1704). Hooke had also observed

the colors from thin sheets of mica which was much later

explained through interference of light.

Rasmus Bartholin (Latinized Erasmus Bartholinus; Aug.

13, 1625�Nov. 4, 1698) was a Danish scientist. In 1669, he

discovered double refraction of a light ray by calcite and

wrote a 60-page memoir about the results; the explanation

came later. See Ref. 1.10.

Christiaan Huygens (Apr. 14,

1629�Jul. 8, 1695) was a Dutch

mathematician, astronomer, and

physicist. In 1678, in a communi-

cation to the Académie des

Sciences in Paris, he proposed

the wave theory of light and in

particular demonstrated how

waves might interfere to form a

wave front, propagating in a

straight line. In 1672, Huygens gave the theory of double

refraction which was discovered by Bartholinus in 1669. In

1690, he produced his famous book on optics, Traite de la

Lumiere; the English translation of the book is now

available as a Dover reprint (Ref. 1.11), and the entire book

can be read at the website given in Ref. 1.12.

Ole Christensen Rømer (Sep. 25, 1644�Sep. 19, 1710) was a

Danish astronomer who in 1676 made the first quantitative

measurements of the speed of light.

Isaac Newton (Jan. 4, 1643�Mar.

31, 1727) is considered one of

the greatest figures in the his-

tory of science. In addition to

his numerous contributions to

science and mathematics, he

made a systematic study of light

and published it in the form of a

book in 1704. The fourth edition

of the book is available as a Do-

ver reprint (Ref. 1.13) and also in

the website given in Ref. 1.14.

In this book, Newton describes his experiments, first re-

ported in 1672, on dispersion, or the separation of light into

a spectrum of its component colors. Grimaldi had earlier ob-

served light entering the shadow of a needle�Newton

explained this by saying that the needle exerts a force that

�pulled� the light from the straight-line path. Hooke had

earlier observed the colors from thin sheets of mica�

Newton explained this by �fits of easy transmission and

reflection� of the light rays.

Thomas Young (Jun. 13, 1773�May 10, 1829) was an

English scientist. In 1801, Young demonstrated the wave

nature of light through a simple two-hole interference

experiment; this experiment is considered one of 10 most

beautiful experiments in physics (Refs. 1.15 and 1.16).
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Thomas Young used his wave theory to explain the colors

of thin films (such as soap bubbles); and relating color to

wavelength, he calculated the approximate wavelengths of

the seven colors recognized by Newton. In 1817, he

proposed that light waves were transverse and thus

explained polarization. For more details see Refs. 1.17�1.18.

François Jean Dominique Arago (Feb. 26, 1786�Oct. 2,

1853) was a French mathematician, physicist, astrono-

mer, and politician; he became the twenty-fifth Prime

Minister of France. In 1811, Arago observed the rota-

tion of the plane of polarization in quartz. In 1818,

Poisson deduced from Fresnel�s theory the necessity of

a bright spot at the center of the shadow of a circular

opaque obstacle. With this result, Poisson had hoped

to disprove the wave theory; however, Arago experi-

mentally verified the prediction. Although this spot is

usually referred to as the Poisson spot, many people

call it Arago�s spot.

Joseph von Fraunhofer (Mar. 6, 1787�Jun. 7, 1826) was a

German optician. In 1814, Fraunhofer invented the

spectroscope and discovered 574 dark lines appearing in

the solar spectrum; these lines are referred to as Fraunhofer

lines. In 1859, Kirchhoff and Bunsen explained these lines

as atomic absorption lines. In 1823, Fraunhofer published

his theory of diffraction. He also invented the diffraction

grating and demonstrated accurate measurement of the

wavelength.

Augustin-Jean Fresnel (May 10, 1788�Jul. 14, 1827) was a

French physicist. Fresnel contributed significantly to the estab-

lishment of the wave theory of light. In 1818, he wrote a memoir

on diffraction for which in the following year he received the prize

of the Académie des Sciences at

Paris. In 1819, he was nominated

Commissioner of Lighthouses,

for which he was the first to

construct a special type of lens,

now called a Fresnel lens, as

substitutes for mirrors. By the

year 1821, he showed that polar-

ization could be explained only

if light was entirely transverse.

Joseph Nicephore Niepce (Mar.7, 1765�Jul. 5, 1833) was a

French inventor and in 1925, he produced world�s first

known photograph.

Michael Faraday (Sep. 22, 1791�Aug. 25, 1867) contributed

significantly to the fields of electromagnetism and

electrochemistry. Faraday had established that a changing

magnetic field produces an electric field. This relation

subsequently was one of the four equations of Maxwell

and is referred to as Faraday�s law. In 1845, Faraday

discovered the phenomenon that is now called

the Faraday rotation. In

this experiment, the plane

of polarization of linearly

polarized light (propagating

through a material medium)

gets rotated by the applica-

tion of an external magnetic

field aligned in the direction

of propagation. The experi-

ment established that mag-

netic force and light were

related. Faraday wrote in

his notebook: �I have at

last succeeded in . . .

magnetising a ray of light.�

Etienne-Louis Malus (Jul. 23, 1775�Feb. 24, 1812) was a

French engineer, physicist, and mathematician.

David Brewster (Dec. 11, 1781�Feb. 10, 1868) was a

Scottish scientist.

In 1809, Malus had published his discovery of the

polarization of light by reflection; however, he was unable

to obtain the relationship between the polarizing angle and

refractive index. In 1811, David Brewster repeated the

experiments of Malus for many materials and realized that

when a ray is polarized by reflection, the reflected ray

makes an angle of 90° with the refracted ray; he promptly

called this Brewster�s law! Malus is best known for the law

named after him which states that the intensity of light

transmitted through two polarizers is proportional to the

square of the cosine of the angle between the polarization

axes of the polarizers. In 1810, Malus published his theory

of double refraction of light in crystals.

James Clerk Maxwell (Jun. 13,

1831�Nov. 5, 1879) was an

outstanding Scottish mathe-

matician and theoretical

physicist. Around 1865, Max-

well showed that the laws

of electricity of magnetism

can be described by four

partial differential equations;

these equations are known as

Maxwell�s equations and appeared in his book A Treatise

on Electricity and Magnetism, published in 1873. Maxwell

also predicted the existence of electromagnetic waves
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(which were later observed by Hertz) and showed that the

speed of propagation of electromagnetic waves is approxi-

mately equal to the (then) measured value of the speed of

light; this made him predict that light must be an electro-

magnetic wave. In 1864, he wrote:

This velocity is so nearly that of light that it

seems we have strong reason to conclude that

light itself (including radiant heat and other ra-

diations) is an electromagnetic disturbance in

the form of waves propagated through the elec-

tromagnetic field according to electromagnetic

laws.

This synthesis represents one of the great scientific

achievements of the nineteenth century. In 1931 (during the

birth centenary celebration of Maxwell), Max Planck had

said: (Maxwell�s theory) . . . remains for all time one of the

greatest triumphs of human intellectual endeavor. Albert

Einstein had said. (The work of Maxwell was) . . . the most

profound and the most fruitful that physics has

experienced since the time of Newton. For more details

about Maxwell, see Ref. 1.19. Some of the original papers of

Maxwell can be seen in the website in Ref. 1.20.

John William Strutt usually referred to as Lord Rayleigh

(Nov. 12, 1842�Jun. 30, 1919). John Tyndall (Aug. 2, 1820 �

Dec. 4, 1893) was an Irish natural philosopher. In 1869, John

Tyndall had discovered that when light passes through a

transparent liquid with small particles in suspension (such as a

small amount of milk put in water), the shorter blue

wavelengths are scattered more strongly than the red; thus

from the side, the color looks blue and the light coming out

straight appears reddish. Many people call this Tyndall

scattering, but it is more often referred to as Rayleigh

scattering because Rayleigh studied this phenomenon in

great detail and showed (in 1871) that scattering is inversely

proportional to the fourth power of the wavelength

(see Ref. 1.21). Thus the blue color is scattered 10 times more

than the red color (because the red color has a wavelength

which is about 1.75 times the wavelength of blue). This is the

reason why the sky appears blue. Although violet has an even

smaller wavelength, the sky does not appear violet because

there is very little violet in the sunlight! Some of the scientific

papers of Lord Rayleigh can be seen at the website given in

Ref. 1.22. Lord Rayleigh received the 1904 Nobel Prize in

Physics.

In 1854, John Tyndall demonstrated light guidance in

water jets, duplicating but not acknowledging Babinet (see

Ref. 1.23 for more details).

Heinrich Rudolf Hertz (Feb. 22, 1857�Jan. 1, 1894) was a

German physicist after whom the Hertz, the SI unit of

frequency, is named. To quote from Ref. 1.24:

In 1888, in a corner of his physics classroom at the

Karlsruhe Polytechnic in Berlin, Hertz generated

electric waves using an electric circuit; the circuit

contained a metal rod that had a small gap at its

midpoint, and when sparks crossed this gap violent

oscillations of high frequency were set up in the rod.

Hertz proved that these waves were transmitted

through air by detecting them with another similar

circuit some distance away. He also showed that

like light waves they were reflected and refracted

and, most important, that they traveled at the same

speed as light but had a much longer wavelength.

These waves, originally called Hertzian waves but

now known as radio waves, conclusively confirmed

Maxwell�s prediction on the existence of electromag-

netic waves, both in the form of light and radio

waves.

Hertz was a very modest person; after the discovery he

said: This is just an experiment that proves Maestro

Maxwell was right, we just have these mysterious

electromagnetic waves that we cannot see with the naked

eye. But they are there. So, what next? asked one of his

students at the University of Bonn. Nothing, I guess. Hertz

later said: I do not think that the wireless waves I have

discovered will have any practical application.

We should mention here that in 1842 (when Maxwell was

only 11 years old) the U.S. physicist Joseph Henry had

magnetized needles at a distance of over 30 ft (with two

floors, each 14 in. thick) from a single spark. Thus, though

Joseph Henry was not aware of it, he had produced and

detected electromagnetic waves; for more details see e.g.,

the book by David Park (Ref. 1.25) and the original collection

of Henry�s papers referenced in Park�s book.

Hertz was also the first scientist to observe the photoelectric

effect. In 1887, while receiving the electromagnetic waves in a

coil with a spark gap, he found that the maximum spark length

was reduced when the apparatus was put in a black box (this is

so because the box absorbed the ultraviolet radiation which

helped the electrons to jump across the gap). Hertz reported the

observations but did not pursue further and also did not make

any attempt to explain them. In 1897, J. J. Thomson discovered

electrons, and in 1899, he showed that electrons are emitted

when light falls on a metal surface. In 1902, Philip Lenard

observed that (1) the kinetic energy of the emitted electrons was

independent of the intensity of the incident light and (2) the

energy of the emitted electron increased when the frequency of

the incident light was increased.

Alexander Graham Bell (Mar. 3, 1847�Aug. 2, 1922) was

born and raised in Edinburgh, Scotland he emigrated to

Canada in 1870 and then to the United States in 1871. The

photophone was invented jointly by Alexander Graham Bell
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and his assistant Charles Sumner Tainter on February 19,

1880. Bell believed the photophone was his most important

invention.

Albert Abraham Michelson (Dec. 19, 1852�May 9, 1931)

was born in Strelno, Prussia, and moved to the United

States at the age of 2. Michelson built the famous

interferometer which was later called the Michelson

interferometer. He was awarded the 1907 Nobel Prize in

Physics (the first American to receive the Nobel Prize in

Science) for his optical precision instruments and the

spectroscopic and metrological investigations carried out

with their aid. In the presentation speech, the President of

the Royal Swedish Academy of Sciences said: . . . Your

interferometer has rendered it possible to obtain a non-

material standard of length, possessed of a degree of

accuracy never hitherto attained. By its means we are

enabled to ensure that the prototype of the meter has

remained unaltered in length, and to restore it with

absolute infallibility, supposing it were to get lost. In 1887,

he and Edward Morley carried out the famous Michelson�

Morley experiment, which proved that ether did not exist.

David Park (Ref. 1.25) has written: He (Michelson) was 34

when he established that ether cannot be found; he made

delicate optical measurements for 44 more years and to

the end of his days did not believe there could be a wave

without some material substance to do the waving.

Maurice Paul Auguste Charles Fabry (Jun. 11, 1867�Jul. 9,

1945) and Jean-Baptiste Alfred Pérot (Nov. 3, 1863�Nov.

28, 1925) were French physicists. In 1897, Fabry and Pérot

published their important article on what we now call the

Fabry�Pérot interferometer. For more details about them

see Ref. 1.26.

Albert Einstein (Mar. 14, 1879�

Apr. 18, 1955) was an out-

standing theoretical physicist.

Einstein is best known for his

theory of relativity and specifi-

cally mass-energy equivalence

E = mcP. Einstein in 1905 put

forward that light consists of

quanta of energy; this eventually

led to the development of quan-

tum theory. In 1917, in a paper entitled, On the Quantum

Theory of Radiation, Einstein, while rederiving Planck�s law,

was able to predict the process of stimulated emission, and

almost 40 years later, this prediction led to the development of

the laser. He received the 1921 Nobel Prize in Physics for his

services to Theoretical Physics, and especially for his expla-

nation of the photoelectric effect. Some of Einstein�s early

papers can be found in the website in Ref. 1.27.

Geoffrey Ingram Taylor (Mar. 7, 1886�Jun. 27, 1975) in 1909

demonstrated interference fringes by using an extremely

feeble light source; this led the Nobel Prize�winning

physicist P. A. M. Dirac to make the famous statement,

Each photon then interferes only with itself. Taylor has

often been described as one of the great physical scientists

of the twentieth century. For more details, see Ref. 1.28.

William Henry Bragg (Jul. 2, 1862�Mar. 10, 1942) and

William Lawrence Bragg (Mar. 31, 1890�Jul. 1, 1971).

William Lawrence Bragg (the son) discovered the most

famous Bragg�s law, which makes it possible to calculate

the positions of the atoms within a crystal from the way in

which an X-ray beam is diffracted by the crystal lattice. He

made this discovery in 1912, during his first year as a

research student in Cambridge. He discussed his ideas with

his father (William Henry Bragg), who developed the X-ray

spectrometer in Leeds. In 1915, father and son were jointly

awarded the Nobel Prize in Physics for their services in the

analysis of crystal structure by means of X-rays. The

collaboration between father and son led many people to

believe that the father was the inventor of Bragg�s law; of

course, the son was never happy with such remarks!

Arthur Holly Compton (Sep. 10, 1892�Mar. 15, 1962) in 1922

found that the energy of an X-ray or gamma ray photon

decreases due to scattering by free electrons. This

discovery, known as the Compton effect, demonstrates the

corpuscular nature of light. Compton received the 1927

Nobel Prize in Physics for his discovery of the effect named

after him. The research papers of Compton can be found in

the website given in Ref. 1.29.

Louis de Broglie (Aug. 15, 1892�Mar. 19, 1987) was a

French physicist. In 1924, de Broglie (pronounced in French

as de Broy) formulated the de Broglie hypothesis, claiming

that all matter, not just light, has a wave-like nature; he

related wavelength to the momentum. De Broglie�s formula

was confirmed three years later for electrons with the

observation of electron diffraction in two independent

experiments. De Broglie received the 1929 Nobel Prize in

Physics for his discovery of the wave nature of electrons.

In the presentation speech it was mentioned:

Louis de Broglie had the boldness to maintain that

. . . matter is, by its nature, a wave motion. At a time

when no single known fact supported this theory,

Louis de Broglie asserted that a stream of electrons
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which passed through a very small hole in an

opaque screen must exhibit the same phenomena

as a light ray under the same conditions.

Paul Adrien Maurice Dirac (Aug. 8, 1902�Oct. 20, 1984)

and Werner Karl Heisenberg (Dec. 5, 1901�Feb. 1, 1976)

were both celebrated theoretical physicists. Heisenberg was

one of the founders of quantum mechanics and is also well

known for discovering one of the central principles of

modern physics, the Heisenberg uncertainty principle,

which he developed in an essay published in 1927. The

uncertainty principle (which can be derived directly from

the axioms of quantum mechanics) can be used to explain

the diffraction of a photon (or an electron). Dirac can be

considered as the creator of the complete theoretical

formulation of quantum mechanics. Albert Einstien said that

it was �Dirac to whom in my opinion we owe the most

logically perfect presentation of quantum mechanics.�

Chandrasekhara Venkata Raman (Nov. 7, 1888�Nov. 21, 1970)

and Kariamanikkam Srinivasa Krishnan (Dec. 4, 1898�Jun.

13, 1961) on February 28, 1928, observed the Raman effect in

several organic vapors such as pentane, which they called

�the new scattered radiation.� Raman made a newspaper

announcement on February 29, and on March 8, 1928 he

communicated a paper entitled �A Change of Wavelength in

Light Scattering to Nature,� which was published on April

21, 1928. Although in the paper he acknowledged that

the observations were made by K. S. Krishnan and himself,

the paper had Raman as the author, and therefore the

phenomenon came to be known as the Raman effect

although many scientists (particularly in India) kept on

referring to it as the Raman�Krishnan effect. Subsequently,

there were several papers written by Raman and Krishnan.

Raman got the 1930 Nobel Prize in Physics for �his work on

the scattering of light and for the discovery of the effect

named after him.� At about the same time, Landsberg and

Mandel�shtam (in Russia) were also working on light

scattering, and according to Mandel�shtam, they observed

the Raman lines on February 21, 1928. But the results were

presented in April 1928, and it was only on May 6, 1928, that

Landsberg and Mandel�shtam communicated their results to

the journal Naturwissenschaften. But by then it was too

late! Much later, scientists from Russia kept calling

Raman scattering as Mandel�shtam�Raman scattering. For a

nice historical account of Raman effect, see Ref. 1.30. In 1928,

the Raman effect was discovered; 70 years later it has

become an important mechanism for signal amplification in

optical communication systems. Today we routinely talk

about Raman amplification in optical fibers.

Dennis Gabor (Jun. 5, 1900, Budapest�Feb. 9, 1979,

London). In 1947, while working in the area of electron

optics at British Thomson-Houston Co. in the United

Kingdom, Dennis Gabor invented holography. He was

awarded the 1971 Nobel Prize in Physics for his invention

and development of the holographic method. However, the

field of holography advanced only after development of the

laser in 1960. The first holograms that recorded 3D objects

were made by Emmett Leith and Juris Upatnieks in

Michigan, United States, in 1963 and Yuri Denisyuk in the

Soviet Union.

Charles Hard Townes (Jul. 28, 1915) and (his sister�s

husband) Arthur Leonard Schawlow (May 5, 1921�Apr. 28,

1999) are both U.S. physicists. Nikolay Gennadiyevich Basov

(Dec. 14, 1922�Jul. 1, 2001) was a Russian physicist and

educator. Aleksandr Mikhailovich Prokhorov (Jul. 11,

1916�Jan. 8, 2002) was a Russian physicist born in Australia.

Gordon Gould (Jul. 17, 1920�Sep. 16, 2005), was a U.S.

physicist. The most important concept in the development of

the laser is that of stimulated emission, which was introduced

by Einstein in 1917. It took over 35 years to realize

amplification through stimulated emission primarily because

stimulated emission was long regarded as a purely theoretical

concept which never could be observed, because under

normal conditions absorption would always dominate over

emission. According to Townes, he conceived the idea of

amplification through population inversion in 1951

(see Ref. 1.31); and in early 1954, Townes, Gordon, and

Zeiger (at the Physics Department of Columbia University)

published a paper on the amplification and generation of

electromagnetic waves by stimulated emission. They coined

the word maser for this device, which is an acronym for

microwave amplification by stimulated emission of radiation.

Around the same time, Basov and Prochorov at the Lebedev

Institute in Moscow independently published papers about

the maser. In 1958, Schawlow and Townes published a paper

entitled �Infrared and Optical Masers� in Physical Review

showing how stimulated emission would work with much

shorter wavelengths and describing the basic principles of

the optical maser (later to be renamed a laser), initiating this

new scientific field. Townes, Basov, and Prokhorov shared

the 1964 Nobel Prize in Physics for their fundamental work in

the field of quantum electronics, which has led to the

construction of oscillators and amplifiers based on the

maser-laser principle. Half of the prize was awarded to

Townes and the other half jointly to Basov and Prokhorov.

Schawlow got the Nobel Prize much later; he shared the 1981

Nobel Prize in Physics with Nicolaas Bloembergen and Kai

Siegbahn for their contributions to the development of laser

spectroscopy. However, many people believe that Gordon
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Gould (while a graduate student at Columbia University) is

the inventor of the laser. On the first page of Gould�s laser

notebook (written in November 1957) he coined the acronym

LASER and described the essential elements for constructing

the laser. In fact, the term laser was first introduced to the

public in Gould�s 1959 conference paper �The LASER, Light

Amplification by Stimulated Emission of Radiation.� Gould

for 30 years fought the United States Patent and Trademark

Office for recognition as the inventor of the laser; see, e.g.,

the books by Taylor (Ref. 1.32) and by Bertolotti (Ref. 1.33).

A portion of Bertolotti�s book can be read at the website

given in Ref. 1.34.

Theodore Harold Maiman (Jul. 11, 1927�May 5, 2007). In  A

Century of Nature: Twenty-One Discoveries that Changed

Science and the World, (Ref. 1.35), C. H. Townes wrote an article

entitled �The First Laser� (Ref. 1.36). In this article, Townes

wrote:

Theodore Maiman made the first laser operate on

16 May 1960 at the Hughes Research Laboratory

in California, by shining a high-power flash lamp

on a ruby rod with silver-coated surfaces. He

promptly submitted a short report of the work to

the journal Physical Review Letters, but the editors

turned it down. Some have thought this was because

Physical Review had announced that it was

receiving too many papers on masers�the longer-

wavelength predecessors of the laser�and had

announced that any further papers would be

turned down. But Simon Pasternack, who was an

editor of Physical Review Letters at the time, has

said that he turned down this historic paper

because Maiman had just published, in June 1960,

an article on the excitation of ruby with light, with

an examination of the relaxation times between

quantum states, and that the new work seemed to

be simply more of the same. Pasternack�s reaction

perhaps reflects the limited understanding at the

time of the nature of lasers and their significance.

Eager to get his work quickly into publication,

Maiman then turned to Nature, usually even more

selective than Physical Review Letters, where the

paper was better received and published on 6

August.

On December 12, 1960, Ali Javan, William Bennett, and

Donald Herriott produced, for the first time, a continuous

laser light (at 1.15 m) from a gas laser. (Refs. 1.37 and 1.38).

In 1961, within one year of the development of the first

laser, Elias Snitzer and his coworkers developed the first

fiber-optic laser. Snitzer also invented both neodymium-

and erbium-doped laser glass; see, e.g., Refs. 1.39 and 1.40.

C. Kumar N. Patel developed the carbon dioxide laser in

1963; it is now widely used in industry for cutting and

welding and also in surgery. See Ref. 1.41.

In 1966, in a landmark theoretical paper (published in

Proceedings of IEE), Charles Kuen Kao and George

Hockham of Standard Telecommunications Laboratories in

the United Kingdom pointed out that the loss in glass

fibers was primarily caused by impurities and therefore it

was not a fundamental property of the fiber itself. They said

that if the impurities could be removed, the loss could be

brought down to about few decibels per kilometer�or may

be even less. If this could be achieved, then (to quote from

Ref. 1.42) �the new form of communication medium . . .

compared with existing coaxial cable and radio systems, has

a larger information capacity and possible advantages in

basic material cost.� After this paper, scientists in the

United States, United Kingdom, France, Japan, and

Germany started working on purifying glass, and the first

breakthrough was reported in 1970. Charles Kao received

half of the 2009 Nobel Prize in Physics for �ground breaking

achievements concerning the transmission of light in fibers

for optical communication�.

In 1970, Corning Glass Works scientists Donald Keck,

Robert Maurer, and Peter Schultz successfully prepared the

first batch of optical fiber with sufficiently low loss as to make

fiber-optic communication a reality�this breakthrough was

the starting point of the fiber-optic revolution; see Ref. 1.43. In

about 10 more years, as research continued, optical fibers

became so transparent that more than 95% of the signal

power would pass after propagating through 1 km of the

optical fiber.

Semiconductor lasers that operate continuously at room

temperature were first fabricated in May 1970 by Zhorev

Alferov and his group in Leningrad, and in June 1970, by

Izuo Hayashi and Morton Panish at Bell Labs (Ref. 1.44).

This was a major turning point toward the development of

the fiber-optic communication system. Alferov shared the

2000 Nobel Prize in Physics.

In 1978, the photosensitivity of germanium-doped-core

optical fibers was discovered by Kenneth Hill while

working at the Communications Research Centre in Ottawa,

Canada. He also demonstrated the first in-fiber Bragg

grating (see Ref. 1.45).

The erbium-doped fiber amplifier (usually abbreviated as

EDFA) was invented in 1987 by a group including David

Payne, R. Mears, and L. Reekie, from the University of

Southampton, and a group from AT&T Bell Laboratories,

including E. Desurvire, P. Becker, and J. Simpson.

The EDFA brought about a revolution in fiber-optic

communication systems.
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For the rest of my life, I will reflect on what light is
�Albert Einstein, ca 1917

All the fifty years of conscious brooding have brought me no close to the answer to the question,
'What are light quanta?' Of course today every rascal thinks he knows the answer, but he is
deluding himself.

�Albert Einstein, 1951
B

Chapter
Three

PFI sx��yh�g�syx

Ever since man could see, he has been wanting to know as to

what light is? In this chapter we will briefly discuss the

evolution of various theories of light. We will start with the

corpuscular model of light which is usually attributed to

Isaac Newton. This will be followed by a discussion on the

wave model of light which was first put forward by Christiaan

Huygens around 1678. Initially no one believed in the wave

theory of Huygens; it got established only in 1801 when

Thomas Young performed the very famous two-hole

interference experiment. Because of this experiment,

scientists started believing in the wave theory of light;

however, they wondered about the nature of these waves

and as to how it could propagate through vacuum. Then

came Maxwell�s equations which described the laws of

electricity and magnetism. Maxwell showed that wave like

equations are solutions of these equations. This resulted in

�re�2s�2vsqr�X
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Chapter
Two

the prediction of electromagnetic waves. From his theory,

Maxwell calculated the velocity of electromagnetic waves

and found that this value was very close to the

experimentally determined value of the speed of light.

This led him to say (around 1864) that �light was an

electromagnetic wave�. Maxwell�s electromagnetic theory

explained numerous experimental results and therefore,

towards the end of the nineteenth century, physicists

thought that one had finally understood what light really

was; namely, that light was an electromagnetic wave.

Then in 1905 Albert Einstein, in his year of miracles (1905),

suggested that light can be emitted or absorbed only in

discrete amounts (= h ), he called them �quanta of energy�

which were later called �photons�; here h(  6.626  10�34 Js)

is the Planck�s constant and  is the frequency. Using his

�quanta of energy�, Einstein wrote down his famous

�photoelectric equation� which was verified to a tremendous

degree of accuracy by Robert Millikan. Later Arthur Compton

LO 1: explain the corpuscular model and wave model of light.

LO 2: know about Maxwell�s electromagnetic waves.

LO 3: understand the displacement associated with the light wave.

LO 4: describe particle nature of radiation and interpret wave-particle duality.

LO 5: explain Heisenberg�s uncertainty principle as a consequence of wave-particle duality.

LO 6: understand single slit diffraction of electrons and photons.

LO 7: interpret probabilistic interpretation of matter waves.

LO 8: demonstrate interference pattern using Young�s double hole experiment.

LO 9: understand polarization association with photons.

* The author found this quotation in Emil Wolf�s article on ��Einstein�s Researches on the Nature of Light�� Optics News, 5, No. 1,
pp 24-39 (1997).
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(in 1923) explained his scattering experiments by assuming

that Einstein�s light quanta carried energy h  and momentum

h /c where c ( 3  108 m/s) is the speed of light in free space.

In 1924, de Broglie proposed that just as light exhibited

wave-like and corpuscular behavior; electrons, protons,

(which have very well defined mass and charge and therefore

were thought of as particles) must show wave-like behavior

also which was later confirmed by very beautiful diffraction

experiments by Clinton Davisson and Lester Germer around

1927 and also independently around the same time by G.P.

Thomson. This �wave-particle duality� led to the

development of quantum theory.

PFP �ri2 gy����g�ve�
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In his book entitled OPTICKS (Ref. 2.1 see Fig. 2.1) Isaac

Newton put forward the corpuscular model of light according

to which a luminous body emits a stream of particles in all

directions. Newton wrote

Are not the rays of light very small bodies emitted

from shining substance?

The particles were assumed to be very tiny so that when two

light beams overlap, a collision between the two particles

rarely occurs. Using the corpuscular model, he explained the

laws of reflection by considering the elastic reflection of a

particle by a plane surface. In order to understand refraction

we consider the incidence of a particle at a plane surface

(y = 0) as shown in Fig. 2.2; we are assuming that the motion

is confined to the x-y plane. The trajectory of the particle is

determined by the conservation of the x-component of the

momentum (p sin ) where  is the angle that the direction of

propagation makes with the y-axis. The conservation

condition leads to the following equation:

p
1
 sin

1
 = p

2
 sin 

2
(2.1)

where the angles 1 and 2 are defined in Fig. 2.2. The above

equation directly gives Snell�s law

1

2

sin

sin
 = 2 2

1 1

p

p

v

v

(2.2)

Many believe that the corpuscular model of light was

known much before Newton. According to Joyce & Joyce

(Ref. 2.2), Rene Descartes, in 1637, derived Snell�s law using

a corpuscular model of light; an English translation of

Descartes� original paper appears in Ref. 2.2. Newton was

only about eight years old when Descartes (1596�1650) died

and therefore Descartes did not get the corpuscular model

from Newton! Also, according to Wikipedia1,

the corpuscular theory of light, arguably set

forward by Pierre Gassendi and Thomas Hobbes

states that light is made up of small discrete

particles called �corpuscles� (little particles)

which travel in a straight line with a finite

velocity� About a half-century after Gassendi,

Isaac Newton used existing corpuscularian

theories to develop his particle theory of the

physics of light.

Gassendi�s work was early 17th century, much before

Newton. According to Newton, corpuscles of different sizes

give rise to the sensation of different colors at the retina of

the eye. He explained the prismatic spectrum by assuming

that particles of different sizes refract at different angles. He

showed that light is composed of different spectral colors

and white light is formed by mixing light of different colors.

Newton discussed the corpuscular model of light in his book

(see Ref. 2.1) which was first published in 1704; this book

LO 1

1 See http://en.wikipedia.org/wiki/Corpuscular_theory_of_light.

Fig. 2.1 The front covers of the first edition (1704) of
OPTICKS: OR, A Treatise of the Reflexions,
Refractions, Inflexions and Colours of LIGHT by
Sir Isaac Newton.



What is Light: A Brief History PFQ
u

became very famous and was extensively used because of

which the corpuscular theory of light is usually attributed to

Newton. Perhaps the two most important experimental facts

which led to the early belief in the corpuscular model of light

were:

(a) the rectilinear propagation of light which results in the

formation of sharp shadows, and

(b) that light could propagate through vacuum.

However, as careful experiments later showed, shadows

were not perfectly dark; some light does enter the geometrical

shadow which is due to the phenomenon of diffraction. This

phenomenon is essentially due to the wave character of light

and cannot be explained on the basis of the simple

corpuscular model. Diffraction effects are usually difficult to

observe because the wavelength associated with light waves

is extremely small.

We may mention here that if we are below the shade of a

building then under the shade we can always read a book �

the light that enters the shadow is not due to diffraction but

due to scattering of light by air molecules. This phenomenon

of scattering is also responsible for the blue color of the sky

and the red color of the setting sun (see Figs. 9 and 11 in the

Prelim pages). If the earth did not have an atmosphere, then

the shadows would have been extremely dark which is indeed

the case on the surface of the moon (see Fig. 2.3). Since the

moon has almost no atmosphere, there is no air there which

can scatter light and therefore the shadows would be

extremely dark and we would never be able to read a book in

our own shadow! And also, on the surface of the moon, the

sky appears perfectly dark (see Fig. 2.3). Once again, even

on the surface of the moon, a very small amount of light does

enter the geometrical shadow because of diffraction.

Fig. 2.3 A photograph of the man on the moon. Notice the
dark sky. [Photograph courtesy: United States
Information Service, New Delhi].

PFQ �ri2 �e�i2 wyhiv

What is a wave? A wave is propagation of disturbance.

When we make a sharp needle vibrate in a calm pool of water,

a circular pattern spreads out from the point of impact (see

Fig. 2.4). The vibrating needle creates a disturbance that

propagates outwards. In this propagation, the water

molecules do not move outward with the wave; instead they

move in nearly circular orbits about an equilibrium position.

Once the disturbance has passed a certain region, every

drop of water is left at its original position. This fact can

easily be verified by placing a small piece of wood on the

Fig. 2.2 Refraction of a corpuscle.

LO 1

Fig. 2.4 Water waves spreading out from a vibrating
point source. [Adapted from the website
http://www.colorado.edu/physics/2000/
waves_particles/waves.html]
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surface of water. As the wave passes, the piece of wood

comes back to its original position. Further, with time the

circular ripples spread out, i.e., the disturbance (which is

confined to particular region at a given time) produces a

similar disturbance at a neighboring point at a slightly later

time with the pattern of disturbance roughly remaining the

same. Thus

Propagation of disturbances (without any

translation of the medium in the direction of

propagation) is termed as a wave.

Also, waves carry energy; in this case the energy is in the

form of kinetic energy of water molecules. All waves are

characterized by certain properties such as wavelength and

frequency. In order to understand this, we consider the

propagation of a transverse wave on a string. Consider

yourself holding one end of a string, the other end being

held tightly by another person so that the string does not

sag. If we make the end of the string oscillate up and down

motion  times per second, then we will observe the

propagation of a periodic disturbance towards the other end

of the string (see Fig. 2.5). The displacement of the string is

in the x direction and can be represented by a sine or cosine

function:

x(z, t) = a sin (kz � t) = a sin [k(z � vt)] (2.3)

with

y(z, t) = 0 (2.4)

where

v  
k

and  = 2 (2.5)

Fig. 2.5 A transverse wave is propagating along the
+x-axis on a string; the solid and dashed curves
show the displacements at t = 0 and at a later time
t = t respectively.

The quantity a represents the maximum displacement of

the particle (from its equilibrium position) and is known as

the amplitude of the wave. Equations (2.3) and (2.4) describe

a transverse wave propagating in the z-direction. In Fig. 2.5

we have plotted the displacement x (as a function of z) at

t = 0 and at t = t; the two curves are the snapshots of the

string at the two instants. The displaced curve (which

corresponds to the instant t = t) can be obtained by

displacing the curve corresponding to t = 0 by a distance

v t; thus 
k

v  represents the velocity of the wave

(propagating in the + z direction). Further, it can be seen from

Fig. 2.5 that, at a particular instant, any two points separated

by a distance

 = 
2

k
(2.6)

have identical displacements. This distance is known as the

wavelength. Also, at a particular value of z (say = z
0
), the

displacement

x(z0, t) = �a sin ( t + 0) = �a sin (2 t � 0) where 0  kz0

oscillates with frequency  which represents the number of

oscillations that a particle carries out in one second. Similarly,

the equation

x(z, t) = a sin ( t + kz) = a sin [k(z + vt)] (2.7)

would represent a wave propagating in the � z direction with

the same speed v = /k.

Christiaan Huygens, a Dutch physicist and a

contemporary of Isaac Newton, was the first scientist who in

1678, in a communication to the Academie des Science in

Paris, proposed that light is a wave phenomenon. Huygens

described his wave theory in great detail in his famous book

on optics: Traite de la Lumiere which was published in 1690;

the English translation of the book is now available as a

Dover reprint (see Fig. 2.6 and Ref. 2.3). Using the wave

model, Huygens could explain the laws of reflection and

refraction (see Chapter 12). However, so compelling was

Newton�s authority that it is said that

people around Newton had more faith in his

corpuscular theory than Newton himself

No one believed in Huygens� wave theory until 1801,

when Thomas Young performed the famous interference

experiment which could only be explained on the basis of a

wave model of light. In order to understand the phenomenon

of interference, we go back to the experiment describing

water waves (see Fig. 2.4). Now, when there are two (or more)

sources (like two sharp needles vibrating together as shown
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in Figs. 2.7), then the resultant displacement of water

molecules will be the sum of the displacements produced by

each of the wave�this is known as the principle of

superposition. Thus, if one wave produces a displacement of

1 mm in the upward direction (from its equilibrium position)

and the other wave produces a displacement of 1 mm in the

downward direction, then the resultant displacement will be

zero. We say that at that point, waves arrive �out of phase�

and interfere destructively. Similarly, if one wave produces a

displacement of 1 mm in the upward direction and the other

wave also produces a displacement of 1 mm in the upward

direction, then the resultant displacement will be 2 mm (in the

upward direction). We say that at that point waves arrive �in

phase� and interfere constructively. Figure 2.7 shows the

interference of two waves emanating from two point sources

(vibrating in phase) in a water tank. We will discuss this in

more detail in Chapter 14.

In 1801, Thomas Young (see Fig. 2.8) carried out a very

beautiful experiment demonstrating the interference

phenomenon establishing without any doubt the wave nature

of light. There are regions where the two waves (emanating

from the holes) interfere destructively (to produce a dark

fringe) and similarly, there are regions where the two waves

interfere constructively to produce a bright fringe. The

formation of these fringes is characteristic of wave

phenomena and the superposition principle; we will discuss

this in detail in Chapter 14. Thomas Young�s interference

experiment is considered as one of the 10 most beautiful

experiments in Physics (see Ref. 2.4). To quote from Dennis

Gabor�s Nobel Lecture (see Ref. 2.5).

The wave nature of light was demonstrated

convincingly for the first time in 1801 by Thomas

Young by a wonderfully simple experiment�He let

a ray of sunlight into a dark room, placed a dark

screen in front of it, pierced with two small

pinholes, and beyond this, at some distance a white

screen. He then saw two darkish lines at both sides

of a bright line, which gave him sufficient

Fig. 2.6 The  Dover reprint of Treatise on Light by
Christiaan Huygens; this is an English translation
of his famous  book on Optics: Traite de la Lumiere.

\

Fig. 2.7 The actual interference pattern produced from two
point sources vibrating in phase in a ripple tank
(After PSSC PHYSICS; used with permission).

Fig. 2.8 Thomas Young�s set up of the interference experi-
ment that he carried out in 1801. The waves
emanating from the two holes interfere to form
the interference fringes on the screen. Diagram
adapted from the Dennis Gabor�s Nobel Lecture:
http://nobelprize.org/nobel_prizes/physics/lau-
reates/1971/gabor-lecture.pdf
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encouragement to repeat the experiment, this time

with spirit flame as light source, with a little salt in

it, to produce the bright yellow sodium light. This

time he saw a number of dark lines, regularly

spaced; the first clear proof that light added to

light can produce darkness. This phenomenon is

called interference. Thomas Young had expected it

because he believed in the wave theory of light.

The formation of interference fringes on the screen can

never be explained on the basis of a simple corpuscular

model of light. Figure 2.9 shows a gun emitting tiny particles

(like bullets) which reach the backstop either through

hole # 1 or through hole # 2. Thus the particles can pass

though only one of the holes and therefore the intensity

pattern when both holes are open will be

I = I1 + I2 (2.8)

where I
1
 represents the intensity when hole # 1 is open (and

hole # 2 is closed), and I2 represents the intensity when hole

# 2 is open (and hole # 1 is closed). Thus the fact that

light added to light can produce darkness

(see Dennis Gabor�s quotation above) can never be explained

on the basis of a simple particle model of light. By measuring

the fringe width, Young could calculate the wavelength of

light waves which was about 0.6 m. Because of the

smallness of the wavelength, it was difficult to carry out

interference experiments using visible light.

Fig. 2.9 If there are bullets passing through a double slit
apparatus, then the bullets will pass through
either slit No. 1 or slit No. 2 and no interference
pattern will be observed; diagram adapted from
The Feynman Lectures on Physics Vol. III
(Ref. 2.6).

In the first half of the nineteenth century, there were many

experiments which demonstrated interference and diffraction

phenomena which could only be explained by using the wave

theory of light. Thus the wave theory got well established;

however, it was argued that a wave (like sound waves or

water waves) would always require a medium and therefore

scientists could not understand how light could propagate

through vacuum. Physicists could calculate the interference

and diffraction patterns but they could not figure out what

the �displacement associated with the wave propagation�

would be. Subsequently an �all pervading� elastic ether

theory was developed�the ether would be present even in

vacuum. Poisson, Navier, Cauchy and many other physicists

contributed to the development of the ether theory which

also necessitated the development of the theory of elasticity.

There were considerable difficulties in the explanation of the

models and since we now know that ether does not exist, we

will not go into the details of the �ether� theory.

2.4 MAXWELL�S ELECTROMAGNETIC

WAVES

The nineteenth century also saw the development of

electricity and magnetism. In 1820, Oersted (often written as

Ørsted) discovered that electric currents create magnetic

fields and in 1926 Ampere discovered the law relating the

magnetic field to the current; this law (usually referred to as

Ampere�s law) was later written in the form of a vector

equation by Maxwell. Then, around 1830, Faraday carried out

experiments which showed that

a time varying magnetic field induces an

electromotive force

which is now referred to as Faraday�s law; this law was also

later written in the form of a vector equation by Maxwell.

Around 1860, Maxwell generalized Ampere�s law by stating

that not only electric currents create magnetic fields, but

a time varying electric field can also create a

magnetic field

�like between the plates of a capacitor when it gets charged

or discharged. In his book on electricity and magnetism (see

Fig. 2.10), Maxwell summed up all the laws of electricity and

magnetism in the form of equations -- which are now known

as Maxwell�s equations; these equations are based on

experimental laws. Feynman writes (Ref. 2.7):

All of electromagnetism is contained in Maxwell�s

equations� Untold numbers of experiments have

confirmed Maxwell�s equations. If we take away the

scaffolding he used to build it, we find that

Maxwell�s edifice stands on its own.

LO 2
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Fig. 2.10 Maxwell�s  book on Electricity & Magnetism in
which he wrote the laws of electricity and magnetism
and predicted the existence of electromagnetic waves.

In Chapter 23, we will discuss Maxwell�s equations and will

show that these equations have solutions

0

0

ˆ( , ) cos ( )

ˆ( , ) cos ( )

z t E kz t

z t H kz t

E x

H y
(2.9)

where

0 0 0 0/H E , and
12 2 1 2

0 ( 8.8542 C N m )

and 
7 2 2

0 ( 4 Ns /C )  represent respectively the

dielectric permittivity and the magnetic permeability of free

space. Equation (2.9) describes propagating electromagnetic

waves (see Fig. 2.11). Thus from the laws of electricity and

magnetism, Maxwell predicted the existence of

electromagnetic waves, and by substituting the above

solutions in Maxwell�s equations he showed that the velocity

(in free space) would be given by

c = 
8

0 0

1
3 10 m/s

k
(2.10)

Thus Maxwell not only predicted the existence of

electromagnetic waves, he also predicted that the speed of

the electromagnetic waves in air should be about 3.107 

108 m/s. He found that this value was very close to the

measured value of the speed of light which according to the

measurement of Fizeau in 1849 was 3.14858  108 m/s. The

sole fact that the two values were very close to each other

led Maxwell to propound (around 1865) his famous

electromagnetic theory of light in his famous book [see

Fig. 2.10]; according to Maxwell,

light waves are electromagnetic waves

This was one of the great unifications in physics. Max Planck

had said

� (Maxwell�s theory) remains for all time one of

the greatest triumphs of human intellectual

endeavor

Associated with a light wave are changing electric and

magnetic fields; the changing magnetic field produces a time

and space varying electric field and the changing electric

field produces a time and space varying magnetic field, and

this results in the propagation of the electromagnetic wave

even in vacuum (see Fig. 2.11).

Fig. 2.11 An x-polarized electromagnetic wave propagating
through free space.

In 1888, Heinrich Hertz carried out beautiful experiments

which could produce and detect electromagnetic waves of

frequencies smaller than those of light. These waves were

produced by discharging electrically charged plates through

a spark gap. The frequency of the emitted electromagnetic

waves could be calculated by knowing the inductance and

capacitance of the circuit. Hertz also produced standing

electromagnetic waves by getting them reflected by a metal

sheet. He could calculate the wavelength of the waves and

knowing the frequency, he showed that the speed of the

electromagnetic waves (in air) was the same as that of light:

velocity of electromagnetic waves

=   3  108 m/s (2.11)

Using a collimated electromagnetic wave, and getting it

reflected by a metal sheet he could demonstrate the laws of

reflection (see Sec. 13.2). Hertz�s experimental results

provided dramatic confirmation of Maxwell�s electromagnetic

theory. In addition, there were so many other experimental

results, which were quantitatively explained by using
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Maxwell�s theory that towards the end of the nineteenth

century, physicists thought that one had finally understood

what light really was, i.e., light was an electromagnetic wave.

2.5 WHAT IS THE

DISPLACEMENT ASSOCIATED

WITH THE LIGHT WAVE?

Sound waves require a medium to propagate from one point

to the other�in fact, when sound waves propagate in air, air

molecules execute vibrations which transport energy from

one point to the other and the displacement associated with

a sound wave is the actual displacement of the air molecules.

Thus, sound waves cannot propagate in vacuum. Similarly,

the displacement associated with a propagating water wave

is the actual displacement of the water molecules and the

displacement associated with a transverse wave propagating

on a string is the actual displacement of each point on the

string. Since light waves could propagate through vacuum,

one of the main difficulties associated with the wave theory

of light was the question that what is the displacement

associated with the light wave? Because of this, as

mentioned earlier, an �all pervading ether� theory was

developed�i.e., ether exists even in vacuum�this led to

great difficulties; we will not go into details of this because

we now know that ether does not exist.

According to Maxwell�s electromagnetic theory, there are

oscillating electric and magnetic fields associated with the

propagating electromagnetic wave [see, e.g., Eq. (2.9)]. These

fields are present even in vacuum. Thus,

the displacement associated with the propagating

light wave is the electric field which oscillates in

time with a certain frequency

We could have equally well chosen the magnetic field as

the displacement associated with the propagating

electromagnetic wave because associated with a time varying

electric field there is always a time varying magnetic field. We

may mention that the concept of the field was first

introduced by Michael Faraday; what Faraday said was that

if there is an electric charge in vacuum, it creates an electric

field in the space that surrounds it, and this field will exert a

force on any other charge placed in the field.

PFT �ri2 gyxgi��2 yp
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If we move one end of a string up and down then a

transverse wave is generated [see Fig. 2.5]. Each point of the

string executes a sinusoidal oscillation in a straight line

(along the x-axis) and the wave is known as a linearly

polarized wave or, an x-polarized wave. It is also known as

a plane polarized wave because the string is always confined

to the x-z plane. The string can also be made to vibrate in the

y-z plane and the wave is known as a y-polarized wave.

Equation (2.9) describes an electromagnetic wave

(propagating along the z-direction) for which the electric field

oscillates in the x-direction (see Fig. 2.11) and hence Eq. (2.9)

is said to describe an x-polarized wave. We will discuss more

on polarization in Chapter 22.
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In 1897 J J Thomson discovered electrons and in 1899 he

showed that electrons are emitted when light falls on a metal

surface. In 1902 Philip Lenard observed that

(i) the kinetic energy of the emitted electrons was inde-

pendent of the intensity of the incident light, and

(ii) that the energy of the emitted electron increased when

the frequency of the incident light was increased.

which cannot be explained by a theory based on the wave

model of light. With the very successful Maxwell�s

electromagnetic wave theory in the background, Einstein, in

his year of miracles (1905) published a paper (Ref. 2.8 and

reprinted in Ref. 2.9), in which he proposed that light can be

emitted or absorbed only in discrete amounts, called quanta;

the energy of each quanta is given by

E = h (2.12)

Einstein interpreted the photoelectric effect experiment by

stating that the emission of a photoelectron was the result of

the interaction of a single quantum (i.e., of the photon) with

an electron. In his Autobiographical Notes (Ref. 2.10),

Einstein later wrote

� radiation energy consists of indivisible

quanta of energy h  which are reflected undivided

.. that radiation must, therefore, possess a kind of

molecular structure in energy, which of course

contradicts Maxwell�s theory.

It was only in 1926 that Gilbert Lewis, an American chemist,

coined the word �photon� to describe Einstein�s �localized

energy quanta�. Einstein�s theory predicted that the maximum

kinetic energy of the emitted electron, Tmax is given by

Tmax = h(  � 
c
) Einstein�s photoelectric equation (2.13)
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where  is the frequency of the incident radiation and 
c
 the

critical frequency. The above equation is often referred to as

Einstein�s photoelectric equation. In a later paper Einstein

had also written that the momentum of his light quantum was

given by

p = =
h h

c
(2.14)

Around 1914, Robert Millikan carried out a series of

experiments very carefully verifying Eq. (2.13); we will

discuss details of Millikan�s experiment in Chapter 25. In his

1924 Nobel lecture, Millikan said (see Ref. 2.11)

Einstein�s equation is one of exact validity (always

within the present small limits of experimental

error) and of very general applicability, is perhaps

the most conspicuous achievement of Experimental

Physics during the past decade.

Nevertheless, in 1917 Millikan had written in his book (Ref.

2.12) that although the equation derived by Einstein agrees

extremely well with experiments

the physical theory upon which the equation is

based is wholly untenable and a bold, not to say

reckless, hypothesis.

Thus, although Millikan believed in the correctness of the

Einstein equation, he did not believe in Einstein�s �localized

energy quanta�. Even in 1913 Max Planck did not believe in

Einstein�s �localized energy quanta�. It was for this reason

that when the Nobel Prize was finally awarded to Einstein, it

was neither for his theory of relativity nor for his concept of

the �light quantum�. After a large number of unsuccessful

nominations, Einstein finally received the 1921 Nobel Prize in

Physics for his services to Theoretical Physics, and

especially for his explanation of the photoelectric effect.

Einstein lived until 1955 when his special (and general)

theories of relativity were very well established�and the

question that still remains unanswered is: Why Einstein

never got the Nobel Prize for his theory of relativity?

Friedman has written a nice book on the politics involved in

the award of the Nobel Prize�see Ref. 2.13.

In 1923 Arthur Compton carried out beautiful scattering

experiments which could be explained only by assuming that

the energy and momentum of the photon were given by

Eqs. (2.12) and (2.14) respectively; detailed analysis of

Compton scattering is given in Sec. 25.3. It was only after

Compton�s experiment that everyone started believing in

Einstein�s �localized energy quanta�. Compton received the

1927 Nobel Prize in Physics for this experiment.

Although Newton had described light as a stream of

particles, this view had been completely superseded by the

wave picture of light, a picture that culminated in the

electromagnetic theory of Maxwell. The revival of the particle

picture now posed a severe conceptual problem, one of

reconciling wave and particle like behavior of radiation. To

quote from Ref. 2.14:

Owing to Einstein�s paper of 1905, it was primarily

the photoelectric effect to which physicists referred

as an irrefutable demonstration of the existence of

photons and which thus played an important part

in the conceptual development of quantum

mechanics.

2.8  WAVE  PARTICLE  DUAITY

The electron was discovered in 1897 by J J Thomson; the

mass and charge of the electron is known to a tremendous

degree of accuracy:

m
e

= 9.1093897  10�31 kg

q
e

= �1.60217733  10�19 C

and, it can be deflected by an electric (or a magnetic) field.

Thus, on the back of our mind, we picture the electron (and

similarly the proton or the alpha particle,�) as a tiny particle

with definite mass and charge. Also, cloud chamber

experiments were carried out by C.T.R. Wilson (during the

early years of the twentieth century), which had clearly

shown the particle-like behavior of alpha and beta particles.

These particles are emitted by radioactive elements and when

they pass through supersaturated vapor, they form tracks of

condensed droplets; tracks of fast moving protons are

shown in Fig. 2.12. C.T.R. Wilson was awarded the 1927

Nobel Prize in Physics for his method of making the paths of

electrically charged particles visible by condensation of

vapor. The existence of continuous tracks suggests that

electrons, protons, alpha particles,� can be regarded as

minute particles moving with high speed. Further, the fact

that electrons, protons,� could be deflected by electric and

magnetic fields and also the fact that one could accurately

determine the ratio of their charge to mass suggest very

strongly that they are tiny particles. This view remained

unchallenged for a number of years.

In 1924, de Broglie wrote his PhD thesis in which he

proposed that just as light exhibited wave-like and

corpuscular-like behavior, matter (like electrons, protons,..)

must show wavelike behavior also. He argued that the

relation
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Fig. 2.12 A bubble-chamber picture of a 25-GeV proton
beam impinging on a hydrogen atom and
producing new particles; photograph adapted
from Ref. 2.15.

 = 
h

p
(2.15)

[see Eq. (2.14)] should be applied for electrons, protons,

alpha particles .. as well. Using the above relation, de Broglie

showed that the circumference of a Bohr orbit contains

integral number of wavelengths (see Sec. 26.5). In 1927 (after

de Broglie�s work), Davisson and Germer studied the

diffraction of electrons from single crystals of nickel and

showed that the diffraction patterns could be explained if the

electrons were assumed to have a wavelength given by the

de Broglie relation [see Eq. (2.15)]. Shortly afterwards, in

1928, G.. P. Thomson carried out electron diffraction

experiments by passing electrons through thin

polycrystalline metal targets (see Sec. 18.10 for more details).

The diffraction pattern consisted of concentric rings similar

to the Debye-Scherrer rings obtained in the X-ray diffraction

pattern. By measuring the diameters of the rings and from the

known structure of the crystals, Thomson calculated the

wavelength associated with the electron beam which was in

agreement with the de Broglie relation [Eq. (2.15)]. In 1937,

Davisson and Thomson shared the Nobel Prize for their

experimental discovery of the diffraction of electrons by

crystals. In Fig. 2.13 we have shown the diffraction patterns

(known as Debye Scherrer rings) produced by scattering of

Fig. 2.13 The diffraction pattern of aluminum foil produced
(a) by X-rays, and (b) by electrons; notice the simi-
larity in the diffraction patterns. Photographs
courtesy McGraw Hill Digital Access Library.

X-rays [see Fig. 2.13 (a)], and by scattering of electrons [see

Fig. 2.13 (b)] by an aluminum foil. The two figures clearly

show the similarity in the wave-like properties of X-rays and

of electrons.

We may note that the wave nature of electrons (or

protons,�) were predicted by Louis de Broglie in 1924 and

the experiments which demonstrated wave nature of matter

were performed much later. Louis de Broglie was awarded the

1929 Nobel Prize in Physics for his discovery of the wave

nature of electrons�see also Sec. 26.5.

PFW �ri2 �xgi��esx��
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The reconciliation of the corpuscular nature with the wave

character of light (and also of the electron) has been brought

about through the modern quantum theory; and perhaps the

best-known consequence of wave-particle duality is the

uncertainty principle2 of Heisenberg which can be stated as

follows:

If the x-coordinate of the position of a particle is

known to an accuracy x, then the x-component of

the momentum cannot be determined to an

accuracy better than p
x  

 h/ x, where h is the

Planck�s constant.

Alternatively, one can say that if x and p
x
 represent the

accuracies with which the x-coordinate of the position and

the x-component of the momentum can be determined, then

the following inequality must be satisfied

x p
x
  h (2.16)

2 We may mention here that the uncertainty principle can be derived from the solutions of the Schrodinger equation (see sec. 26.7).
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We do not feel the effect of this inequality in our

everyday experience because of the smallness of the value

of Planck�s constant ( 6.6  10�27 erg sec). For example, for a

tiny particle of mass 10�6 gm, if the position is determined

within an accuracy of about 10�6 cm, then according to the

uncertainty principle, its velocity cannot be determined

within an accuracy better than v  6  10�16 cm/sec. This

value is much smaller than the accuracies with which one can

determine the velocity of the particle. For a particle of a

greater mass, v will be even smaller. Indeed, had the value

of Planck�s constant been much larger, the world would have

been totally different. In a beautifully written book, Gamow

(Ref. 2.16) has discussed what our world would be like if the

effect of the uncertainty principle were perceivable by our

senses.

PFIH �ri2 �sxqvi2 �vs�
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We will now show how the diffraction of a light beam (or an

electron beam) can be explained on the basis of the

corpuscular nature of radiation and the uncertainty principle.

Consider a long narrow slit of width b as shown in Fig. 2.14.

Now, one can always choose the distance between the

source and the slit large enough so that p
x
 can be assumed

to have an arbitrarily small value. For example, for the source

at a distance d, the maximum value of p
x
 of the photons

approaching the slit will be

p
x
  =

b h b
p
d c d

which can be made arbitrarily small by choosing a large

enough value of d. Thus, we may assume the light source to

be sufficiently far away from the slit so that the photons

approaching the slit can be assumed to have momentum only

in the y-direction. Now, according to the particle model of

radiation, the number of particles reaching the point P (which

lies in the geometrical shadow) will be extremely small;

further, if we decrease the width of the slit, the intensity

should decrease, which is quite contrary to the experimental

results because we know that the beam undergoes diffraction

and the intensity at a point like P would normally increase if

the width of the slit is made smaller. Thus, the classical

corpuscular model is quite incapable of explaining the

phenomenon of diffraction. However, if we use the

uncertainty principle in conjunction with the corpuscular

model, the diffraction phenomenon can be explained in the

following manner: When a photon (or an electron) passes

through the slit, one can say that

x  b

Fig. 2.14 Diffraction of an electron by a narrow slit of
width b.

which implies that we can specify the position of the photon

to an accuracy b. If we now use the uncertainty principle, we

would have

p
x
  

h

b
(2.17)

i.e., just by making the photon pass through a slit of width b,

the slit imparts a momentum in the x-direction which is h/b.

It may be pointed out that before the photon entered the slit,

p
x
 (and hence p

x
) can be made arbitrarily small by putting

the source sufficiently far away. Thus, we may write p
x
  0.

It would however be wrong to say that by making the photon

pass through the slit, p
x
 x is zero; this is because of the

fact that p
x
  0 before the photon entered the slit. After the

photon has entered the slit, it is confined within a distance b

in the x-direction and hence p
x
  h/b. Further, since before

the photon entered the slit p
x
  0, we will therefore have

xp   x

h
p

b

But p
x
 = p sin , where  is the angle that the photon

coming out of the slit makes with the y-axis (see Fig. 2.14).

Thus,

sin   
h

pb
(2.18)

The above equation predicts that the possibility of a

photon traveling at an angle  with the y-direction is
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inversely proportional to the width of the slit, i.e., smaller the

value of b, greater is the value of  and greater is the

possibility of the photon to reach deep inside the geometrical

shadow. This is indeed the diffraction phenomenon. Now, the

momentum of a photon is given by p = h/ ; thus, Eq. (2.18)

becomes

sin   
b

(2.19)

which is the familiar diffraction theory result as will be

discussed in Sec. 18.3. We can therefore say that the wave-

particle duality is a consequence of the uncertainty principle

and the uncertainty principle is a consequence of the wave-

particle duality. Further, as mentioned earlier, de Broglie had

suggested that the equation  = h/p is not only valid for

photons but is also valid for all particles like electrons,

protons, neutrons, etc. Indeed, the de Broglie relation has

been verified by studying the diffraction patterns produced

when electrons, neutrons, etc., pass through a single crystal;

the patterns can be analyzed in a manner similar to X-ray

diffractions (see Sec. 18.10). In Fig. 2.15, we show the

experimental data of Shull (Ref. 2.17) who studied the

Fraunhofer diffraction of neutrons by a single slit and his

experimental results agree with the intensity distribution as

predicted by the wave theory with  = h/p.

Fig. 2.15 Angular broadening of a neutron beam by small
slits. [After Ref. 2.17].
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In the previous section, we have seen that if a photon passes

through a slit of width b, then the momentum imparted in the

x-direction (which is along the width of the slit) is  h/b. The

question arises whether we can predict the trajectory of an

individual photon. The answer is no. We cannot say where

an individual photon will land up on the screen; we can only

predict the probabilities of arrival of the photon in a certain

region of the screen. We may, for example, say that the

probability for the arrival of the photon in the region lying

between the points A and B (see Fig. 2.14) is 0.65. This would

imply that if the experiment was carried out with a large

number of photons, about 65% of them would land up in the

region AB; but the fate of an individual photon can never be

predicted. This is in contrast to Newtonian mechanics where

the trajectories are always predetermined. Also, if we place a

light detector on the screen, then it will always record one

photon or none and never half a photon. This essentially

implies the corpuscular nature of the radiation. However, the

probability distribution is the same as predicted by the wave

theory and therefore if one performs an experiment with a

large number of photons (as is indeed the case in most

experiments) the intensity distribution recorded on the

screen is the same as predicted by the wave theory; we

explicitly show this in Sec. 26.8.

In order to explicitly show that diffraction is not a many

photon phenomenon, Taylor in 1909 carried out a beautiful

experiment which consisted of a box with a small lamp which

casts the shadow of a needle on a photographic plate (see

Fig. 2.16). The intensity of light was so weak that between

the slit and the photographic plate, it was almost impossible

to find two photons (see Example 2.1). In fact, to get a good

fringe pattern, Taylor made an exposure lasting several

months. The diffraction pattern obtained on the

photographic plate was the same as predicted by the wave

theory.

The corpuscular nature of radiation and the fact that one

cannot predict the trajectory of an individual photon can be

seen from Fig. 2.17, which consists of series of photographs

showing the quality of pictures obtainable from various

number of photons (Ref. 2.18). The photograph clearly shows

that the picture is built up by the arrival of concentrated

packets of energy and the point at which a particular photon

will arrive is entirely a matter of chance. The figure also

shows that the photograph is featureless when a small

number of photons are involved and as the number of
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photons reaching the photographic plate increases, the

intensity distribution becomes the same as would be

predicted by the wave theory. To quote Feynman:

�it would be impossible to predict what would

happen. We can only predict the odds! This would

mean, if it were true, that physics has given up on

the problem of trying to predict exactly what will

happen in a definite circumstance. Yes! physics has

given up. We do not know how to predict what

would happen in a given circumstance, and we

believe now that it is impossible�that the only

thing that can be predicted is the probability of

different events. It must be recognized that this is a

retrenchment in our earlier idea of understanding

nature. It may be a backward step, but no one has

seen a way to avoid it.

A somewhat similar situation arises in radioactivity.

Consider a radioactive nucleus having a half-life of say 1

hour. If we start with 1000 such nuclei, then on an average

500 of them would undergo radioactive decay in 1 hour and

about 250 of them in the next 1 hour and so on. Thus,

although to start with, all nuclei are identical, some nuclei

would decay in the very first minute and some nuclei can

survive for hours without undergoing radioactive decay.

Thus, one can never predict as to which nucleus will

undergo decay in a specified period; one can only predict

the probability of its undergoing decay in a certain interval

of time and this probability can be calculated using quantum

theory.

PFIP ex2 �xhi���exhsxq2 yp
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We consider the two-hole interference experiment similar to

that performed by Young (see Fig. 2.18). A weak light source

S0 illuminates the hole S and the light emerging from the

holes S1 and S2 produces the interference pattern on the

screen PP . The intensity is assumed to be so weak that in

the region between the planes AB and PP  there is almost

never more than one photon (see Example 2.1). Individual

photons are also counted by a detector on the screen PP

and one finds that the photons initially arrive at random

points�but when a very large number of photons are

detected, the intensity distribution has a pattern similar to

that shown in Fig. 2.8 (see also Fig. 14.10).

Smoked
Glass

Weak
Source Slit

Needle Photographic
Plate

Fig. 2.16 Schematic of the experimental arrangement of
Taylor to study the diffraction pattern produced
by a weak source. The whole apparatus was placed
inside a box.

(a)

(c)

(e)

(b)

(d)

(f)

Fig. 2.17 Photographs showing the quality of a picture ob-
tainable from various numbers of photons
(a): 3  102Q photons,
(b):1.2  10R2photons,
(c):9.3  10R2photons
(d):7.6  10S2photons
(e):3.6  10T2photons  and
(f):2.8  10U2photons.
[After Ref. 2.18; used with permission].
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Fig. 2.18 Young�s double hole experimental arrangement
for obtaining the interference pattern. S

H
 repre-

sents a point source.

The corpuscular nature of the radiation is evident from its

detection in the form of a single photon and never a fraction

of a photon. Quantum theory tells us that a photon passes

through both the holes (S
1
 and S

2
) simultaneously. This is

not the splitting of the photon into two halves but only

implies that if we wish to find out through which hole the

photon passed, then half the time it will be found to have

passed through the hole S1 and half the time through S2. The

photon is in a state which is a superposition of two states,

one corresponding to the disturbance emanating from hole

S
1
 and the other to the one emanating from hole S

2
. The

superposed state will give rise to a probability distribution of

arrival of the photons which is similar to the intensity

distribution obtained by considering the superposition of

two waves. In his famous 1966 Messenger Lecture at

Cornell3, Richard Feynman has beautifully discussed the 2

hole interference pattern; in this lecture on the double hole

experiment with electrons, Feynman says that �� electrons

arrive in lumps�just like tiny bullets; however, the

probability of arrival of the electrons is the same as predicted

by the wave theory�; in Sec. 26.9 we have calculated this

probability distribution by solving the Schrödinger equation.

It may be noted that if we had employed a device (like a

microscope) which would have determined which hole the

photon had passed through, then the interference pattern on

the screen would have been washed out. This is a

consequence of the fact that a measurement always disturbs

the system. This is very nicely discussed in Ref. 2.6. Thus,

we may say that the photons would arrive as discrete

packets of energy but the probability distribution (on the

screen) will be proportional to the intensity distribution

predicted by using a wave model.

In a recent paper, Tonomura and his co-workers (Ref. 2.19)

have demonstrated the single electron build up of an

interference pattern. Their results are shown in Fig. 2.19. It

may be seen that when there are very few electrons they

arrive randomly; however, when a large number of electrons

are involved, one obtains an intensity distribution similar to

the one predicted by wave theory. The corpuscular nature of

the electron is evident from its detection in the form of a

single electron and never a fraction of an electron. The

question arises that whether the electron (or the proton) is a

wave or a particle. The correct answer is �it is neither a

particle nor a wave�. To quote Feynman (Ref. 2.6):

So it really behaves like neither (neither a

particle nor a wave). Now we have given up. We

say: �it is like neither�. There is one lucky break,

however�electrons behave just like light. The

quantum behavior of atomic objects (electrons,

protons, neutrons, photons, and so on) is the same

for all, they are all �particle-waves�, or whatever

you want to call them.

While discussing the double slit interference experiment

with electrons, Feynman said in his lectures (Ref. 2.6):

We choose to examine a phenomenon which is

impossible, absolutely impossible, to explain in

any classical way, and which has in it the heart of

quantum mechanics. In reality, it contains the only

mystery.

Sometime back, Professor Robert Crease, (currently at the

State University of New York at Stony Brook and the

historian at Brookhaven National Laboratory), asked

physicists to nominate the most beautiful experiment of all

time. Based on the nominations, �Young�s light-interference

experiment� was chosen as one the 10 most beautiful

experiments of all time4 . The list of 10 experiments was

ranked according to popularity, and the first on the list was

the �Double-slit electron diffraction�, which demonstrated

the quantum nature of the physical world.

PFIQ �ri2 fiew2 ��vs��i�
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We next assume light from a single photon source incident

on a beam splitter [see Fig. 2.20(a)]. An ideal beam splitter is

3 This lecture is now available on You Tube; see
https://www.youtube.com/watch?v=OCFX_NHBefl&list=PLkRNg_MaGlonq2qBm2GkZMNQJIQbe547L&index=6 I
suggest all students to listen to this beautiful lecture.

4 see http://physics-animations.com/Physics/English/top10.htm.

LO 9



What is Light: A Brief History PFIS
u

a partially silvered glass plate such that 50% of the light is

reflected and 50% of the light is transmitted. We have two

single photon detectors D1 and D2; we find that either the

detector D1 clicks or the detector D2 clicks�never do both

at the same instant of time. Quantum theory tells us that

before the photon gets detected (either by the detector D1 or

by D2), the photon is in both the beams. The photon does

not split into two halves�but when the photon gets

detected, it collapses (from being in both the beams) to being

detected by one of the detectors. This �collapsing� is unique

to quantum theory. The photon gets detected either by the

detector D
1
 or by D

2
 (never by both); there is half probability

that it will be detected by the detector D
1
 and half probability

that it will be detected by the detector D
2
. No one can predict

beforehand as to which detector will detect the photon.

According to Zeilinger (Ref. 2.20), who is one of the great

authorities in quantum optics, this indeterminateness

is one of the most important discoveries ever made

in physics. Just imagine what physics, or science in

general, does. We have tried for centuries to look

deeper and deeper into finding causes and

explanations, and suddenly, when we go to the very

depths, to the behavior of individual quanta, we

find that this search for a cause comes to an end.

There is no cause. In my eyes, this fundamental

indeterminateness of the universe has not really

been integrated into our world view yet.

This indeterminateness greatly bothered Einstein. He

always felt that science should be deterministic. Although he

was very impressed by the tremendous success of the

quantum theory, he wrote to his friend Max Born

Quantum Mechanics is certainly imposing. But an

inner voice tells me that it is not yet the real thing.

... I am, at any rate, convinced that God does not

play dice�

(a)

(b)

(c)

(d)

(e)

Fig. 2.19 Buildup of the electron interference pattern. Num-
ber of electrons in (a), (b), (c), (d) and (e) are 10,
100, 3000, 20000 and 70000 respectively. (Adapted
from   Ref. 2.19; used with permission).

@�A

Fig. 2.20 (a) A light beam splits into 2 beams by a beam
splitter. DI and DP are single photon detectors. (b)
Whenever the detector DI clicks, we generate  the
number 0 and  whenever the detector DP clicks, we
generate the number  1. The  set of random
numbers generated in (b) has been adapted from
Ref. 2.20.
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This is one of the rare occasions when Einstein was not

quite right. As Zeilinger writes (Ref. 2.20) Well, I believe that

the Lord actually loves to play dice.

In fact we can use this indeterminateness to generate

random numbers. If we assume that whenever the detector

D
1
 clicks, we create the number 0 and whenever the detector

D2 clicks, we create the number 1, then as the photons get

detected we create a set of random numbers as shown in Fig.

2.20 (b). Computer scientists use complex algorithms to

generate random numbers. However, since they are based on

calculations, after a large number, they would repeat itself;

this repetition may be after 2100 numbers, therefore they are

referred to as pseudo random number generators. But this is

not the case with the quantum random number generator

discussed above. Hence quantum random number generators

find very important applications in computer science. To

quote from Ref. 2.21:

we present the realization of a physical quantum

random number generator based on the process of

splitting a beam of photons on a beam splitter, a

quantum mechanical source of true randomness.

By utilizing either a beam splitter or a polarizing

beam splitter, single photon detectors and high

speed electronics the presented devices are

capable of generating � a continuous stream of

random numbers at a rate of 1 Mbit/s.

For example, a company is selling a product by the name

of QUANTIS which they claim to be True Random Number

Generator Exploiting Quantum Physics; see Fig. 2.21. For

more details see Ref. 2.20 and 2.21.
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Let us consider an ordinary light beam falling on a Polaroid

P1 as shown in Fig. 2.22; a Polaroid is a plastic-like material

used for producing linearly polarized light�see Sec. 22.4. In

general, an ordinary light beam (like the one coming from a

sodium lamp or from the sun) is unpolarized, i.e., the electric

vector (in a plane transverse to the direction of propagation)

keeps changing its direction in a random manner [see Fig.

2.22]. When such a beam is incident on a Polaroid, the

emergent light is linearly polarized with its electric vector

oscillating in a particular direction as shown in Fig. 2.22. The

direction of the electric vector of the emergent beam will

depend on the orientation of the Polaroid. We assume the

pass-axis of the Polaroid P1 to be parallel to the x-axis (see

Fig. 2.22); i.e., if an unpolarized beam (or, a beam with

arbitrary state of polarization) propagating in the z-direction

is incident on the polarizer, then the emergent wave will be

x-polarized. We next consider the incidence of the x-polarized

beam on the Polaroid P2 whose pass axis makes an angle 

with the x-axis as shown in Fig. 2.22. If the amplitude of the

incident electric field is E
0
, then the amplitude of the wave

emerging from the Polaroid P
2
 will be E

0
 cos  and thus the

intensity of the emerging beam will be given by

I = I
0
 cos2 (2.20)

where I
0
 represents the intensity of the emergent beam when

the pass axis of P
2
 is also along the x-axis (i.e., when  = 0).

Equation (2.20) is known as the Law of Malus. Thus, if a

linearly polarized beam is incident on a Polaroid and if the

Polaroid is rotated about the z-axis, then the intensity of the

emergent wave will vary according to the above law. The

Polaroid P1 acts as a polarizer and the second Polaroid acts

as an analyzer.

Fig. 2.22 An unpolarized light beam gets x-polarized after
passing through the polaroid P

I
, the pass axis of

the second polaroid P
P22

makes an angle q with the
x-axis. The intensity of the emerging beam will
vary as cos P .

Fig. 2.21 A commercial product generating random num-
bers exploiting quantum physics; adapted from
http://www.idquantique.com/component/con-
tent/article.html?id=9

LO 9
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One can associate a certain state of polarization with

every photon. Thus the photons coming out of the Polaroid

P1 (in Fig. 2.22) will be x-polarized. The question now arises

as to what will happen to a x-polarized photon if it is incident

on the Polaroid P2 whose pass-axis makes an angle  with

x-axis. The answer is that the probability for the photon to

pass through the Polaroid is cos2  and if the experiment is

conducted with N photons (and if N is very large) then about

N cos2  photons will pass through; one cannot predict the

fate of an individual photon. We will discuss more

experiments using polarized photons in Chapter 26.

Example 2.1 Let a source (with  = 5  10�5 cm) of power

1 W be used in the experimental arrangement shown in Fig. 2.10.

(a) Calculate the number of photons emitted by the source per
second.

(b) Assume the radii of the holes S, S
1
 and S

2
 to be 0.02 cm and

S
0
S = SS

1
 = SS

2
 = 100 cm and the distance between the

planes AB and PP  to be also 100 cm. Show that in the region
between the planes AB and PP  one can almost never find

two photons.

Solution:

(a) The energy of each photon will be

h = 

34 8

7

6.6 10 (J.s) 3 10 (m/s)
=

5 10 (m)

hc

 4  10�19 J

Thus, the number of photons emitted per second will be

19

1W

4 10 J
= 2.5  1018

(b) The number of photons passing through the hole S will
approximately be

18 2

2

2.5 10 (0.02)

4 (100)
 = 2.5  1010 per second

similarly, the number of photons passing through either S
1 or

S2 will approximately be

10 2

2

2.5 10 2 (0.02)

2 (100)
 = 1000 per second

where we have assumed that after passing through S, the photons
are evenly distributed in the hemisphere; this is strictly not correct
because the diffraction pattern is actually an Airy pattern (see
Chapter 18)�nevertheless, the above calculations are qualitatively
correct. The distance between the planes AB and PP  is 100 cm
which will be traversed by a photon in time  3  10�9s. Thus,
approximately every thousandth of a second a photon enters the
region and the space is traversed much before the second photon
enters. Therefore, in the region between AB and PP  one will
(almost) never find two photons. This is somewhat similar to the
case when, on an average, 100 persons pass through a room in one
year and the time that each person takes to cross the room is 1s,
thus it will be highly improbable to have two persons
simultaneously in the room.

Problems

2.1 An electron of energy 200 eV is passed through a circular
hole of radius 10�4 cm. What is the uncertainty introduced
in the momentum and also in the angle of emergence?

[Ans: p ~ 5  10�24 g cm/s;  6  10�6 radians]

2.2 In continuation of the previous problem, what would be
the corresponding uncertainty for a 0.1 g lead ball thrown
with a velocity 103 cm/sec through a hole 1 cm in radius?

[Ans:   5  10�30 radians]

2.3 A photon of wavelength 6000 Å is passed through a slit of
width 0.2 mm

(a) Calculate the uncertainty introduced in the angle of
emergence.

(b) The first minimum in the single slit diffraction pattern
occurs at sin�1( /b) where b is the width of the slit.
Calculate this angle and compare with the angle
obtained in part (a).

2.4 A 50 W bulb radiates light of wavelength 0.6 m. Calculate
the number of photons emitted per second.

[Ans: 3  1020 photons/s]

2.5 Calculate the uncertainty in the momentum of a proton
which is confined to a nucleus of radius equal to 10�13 cm.
From this result, estimate the kinetic energy of the proton
inside the nucleus and the strength of the nuclear
interaction. What would be the kinetic energy for an
electron if it had to be confined within a similar nucleus?

2.6 The lifetime of the 2P state of the hydrogen atom is about
1.6  10�9 s. Use the time energy uncertainty relation to
calculate the frequency width .

[Ans: 6  108 s�1]
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Now in the further development of science, we want more than just a formula. First we have an

observation, then we have numbers that we measure, then we have a law which summarizes all

the numbers. But the real glory of science is that we can find a way of thinking such that the

law is evident. The first way of thinking that made the law about the behavior of light evident

was discovered by Fermat in about 1650, and it is called the principle of least time, or Fermat's

principle.

�Richard Feynman in Feynman Lectures on Physics, Vol. I

FERMAT�S PRINCIPLE AND

ITS APPLICATIONS

Chapter
Three

Important Milestones

140 AD Greek physicist Claudius Ptolemy measured the angle of refraction in water for different angles of incidence

in air and tabulated it.

1621 Although the aboveEmentioned numerical table was made in 140 AD, it was only in 1621 that Willebrord Snell,

a Dutch mathematician, discovered the law of refraction which is now known as Snell�s law.

1637 Descartes derived Snell's law; his derivation assumed corpuscular model of light.

1657 Pierre de Fermat enunciated his principle of �least time� and derived Snell's law of refraction and showed

that if the velocity of light in the second medium is less, the ray would bend towards the normal, contrary

to what is predicted by the �corpuscular theory�.

of the aperture becomes very small (
~

 0.1 mm) then the

pattern obtained on SS  ceases to have well-defined

boundaries. This phenomenon is known as diffraction and is

a direct consequence of the finiteness of the wavelength

(which is denoted by ). In Chapters 18, 19 and 20 we will

discuss the phenomenon of diffraction in great detail and will

show that the diffraction effects become smaller with the

decrease in wavelength and indeed in the limit of   0, the

diffraction effects will be absent, and even for extremely small

diameters of the aperture, we will obtain a well-defined

LO 1: state Fermat's principle and its modified version.

LO 2: derive laws of reflection and refraction from Fermat's principle.

LO 3: describe various phenomena by solving the ray equation.

LO 4: obtain ray paths in inhomogeneous media.

LO 5: calculate  the time taken by the rays in propagating through a parabolic index medium.

QFI sx��yh�g�syx LO 1

The study of the propagation of light in the realm of

geometrical optics employs the concept of rays. To

understand what a ray is, consider a circular aperture in front

of a point source P as shown in Fig. 3.1. When the diameter

of the aperture is quite large (~ 1 cm), then on the screen SS ,

one can see a patch of light with well-defined boundaries.

When we start decreasing the size of the aperture, then at

first the size of the patch starts decreasing, but when the size
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shadow on the screen SS . Therefore, in the zero wavelength

limit one can obtain an infinitesimally thin pencil of light; this

is called a ray. Thus, a ray defines the path of propagation of

the energy in the limit of the wavelength going to zero. Since

light has a wavelength of the order of 10�5 cm, which is small

compared to the dimensions of normal optical instruments

like lenses, mirrors, etc., one can, in many applications,

neglect the finiteness of the wavelength. The field of optics

under such an approximation (i.e., the neglect of the

finiteness of the wavelength) is called geometrical optics.

The field of geometrical optics can be studied by using

Fermat's principle which determines the path of the rays.

According to this principle, the ray will correspond to that

path for which the time taken is an extremum in comparison

to nearby paths, i.e., it is either a minimum or a maximum or

stationary*. Let n(x, y, z) represent the position-dependent

refractive index. Then

ds

c n/
= 

n ds

c

will represent the time taken to traverse the geometric path

ds in a medium of refractive index n. Here, c represents the

speed of light in free space. Thus, if  represents the total

time taken by the ray to traverse the path AB along the curve

C (see Fig. 3.2) then

= 
1

c
ni

i

dsi = 
1

c
n ds

A
C

B

s (3.1)

where dsi represents the ith arc length and ni the

corresponding refractive index; the symbol A
C

B  below

the integral represents the fact that the integration is from

the point A to B through the curve C. Let  be the time taken

along the nearby path AC B (shown as the dashed curve in

Fig. 3.2), and if ACB indeed represents the path of a ray, then

 will be either less than, greater than or equal to  for all

nearby paths like AC B. Thus according to Fermat's principle,

out of the many paths connecting the two points, the light

ray would follow that path for which the time taken is an

extremumF Since c is a constant, one can alternatively define

a ray as the path for which

n ds

A
C

B

s (3.2)

is an extremum**; the above integral represents the optical

path from A to B along C; i.e., the ray would follow the path

for which

n ds

A B

s = 0 (3.3)

where the left-hand side represents the change in the value

of the integral due to an infinitesimal variation of the ray

path. We may mention here that according to the original

statement of Fermat:

The actual path between two points taken by a

beam of light is the one which is traversed in the

least time.

The above statement is incomplete and slightly incorrect.

The correct form is:

The actual ray path between two points is the one

for which the optical path length is stationary with

respect to variations of the path.

This is expressed by Eq. (3.3) and in this formulation, the ray

paths may be maxima, minima or stationary.

From the above principle one can immediately see that in

a homogenous medium (i.e., in a medium whose refractive

P

A

B

S

S¢

Fig. 3.1 The light emitted by the point source P is allowed
to pass through a circular hole and if the diameter
of the hole is very large compared to the wave-
length of light, then the light patch on the screen
SS  has well-defined boundaries.

* The entire field of classical optics (both geometrical and physical) can be understood from Maxwell�s equations, and of course,

Fermat�s principle can be derived from Maxwell�s equations (see Refs. 3.1 and 3.2).

** A nice discussion on the extremum principle has been given in Chapter 26 of  Ref. 3.3.

C

ds

B

A

C¢

Fig. 3.2 If the path ACB represents the actual ray path then
the time taken in traversing the path ACB will be an
extremum in comparison to any nearby path AC B.
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index is constant at each point), the rays will be straight lines

because a straight line will correspond to a minimum value of

the optical path connecting two points in the medium. Thus

referring to Fig. 3.3, if A and B are two points in a homog-

enous medium, then the ray path will be along the straight

line ACB because any nearby path like ADB or AEB will

correspond to a longer optical path.

QFP ve��2 yp2 �ipvig�syx2 exh

�ip�eg�syx2 p�yw
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To obtain the laws of reflection and refraction from Fermat�s

principle, consider a plane mirror MN as shown in Fig. 3.4.

We have to determine the path from A to B (via the mirror)

which has the minimum optical path length. Since the path

would lie completely in a homogenous medium, we need to

minimize only the path length. Thus we have to find that path

APB for which AP + PB is a minimum. To find the position of

P on the mirror, we drop a perpendicular from A on the mirror

and let A  be a point on the perpendicular such that AR =

RA ; thus AP = PA  and AQ = A Q where AQB is another path

adjacent to APB. Thus we have to minimize the length A PB.

Clearly, for A PB to be a minimum, P must be on the straight

line A B. Thus, the points A, A , P and B will be in the same

plane and if we draw a normal PS at P then this normal will

also lie in the same plane. Simple geometric considerations

show that

APS = SPB

Thus for minimum optical path length, the angle of

incidence i( = APS) and the angle of reflection

r (= SPB) must be equal and the incident ray, the reflected

ray and the normal to the surface at the point of incidence on

the mirror must be in the same planeF These form the laws of

reflection. It should be pointed out that, in the presence of

the mirror there will be two ray paths which will connect the

points A and B; the two paths will be AB and APB. Fermat's

principle tells us that whenever the optical path length is an

extremum, we will have a ray, and thus, in general, there may

be more than one ray path connecting two points.

To obtain the laws of refraction, let PQ be a surface

separating two media of refractive indices n1 and n2 as

shown in Fig. 3.5. Let a ray starting from the point A,

intersect the interface at R and proceed to B along RB.

Clearly, for minimum optical path length, the incident ray, the

refracted ray and the normal to the interface must all lie in the

same plane. To determine that point R for which the optical

path length from A to B is a minimum, we drop perpendiculars

AM and BN from A and B respectively on the interface PQ.

Let AM = h1, BN = h2 and MR = x. Then since A and B are

fixed, RN = L � x, where MN = L is a fixed quantity. The

optical path length from A to B, by definition, is

x

L

M N

R
QP

A

h1

h2

B

n2

n1

q1

q1

q2

q2

L    x–

Fig. 3.5 A and B are two points in media of refractive
indices n1 and n2. The ray path connecting A and B
will be such that n1 sin 1 = n2 sin 2.

R
M N

QP

S

A

A¢

B

Fig. 3.4 The shortest path connecting the two points A and
B via the mirror is along the path APB where the
point P is such that AP, PS and PB are in the same
plane and APS = SPB; PS being the normal to
the plane of the mirror. The straight line path AB is
also a ray.

C

D

A

E

B

Fig. 3.3 Since the shortest distance between two points is
along a straight line, light rays in a homogenous
medium are straight lines; all nearby paths like AEB
or ADB will take longer times.
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Lop = n1 AR + n2 RB

= n1 x h2
1
2  +  n2 ( )L x h2

2
2 (3.4)

To minimize this, we must have

dL

dx

op
= 0

i.e., 1 2

2 2 2 2
1 2

( )

( )

n x n L x

x h L x h
= 0 (3.5)

Further, as can be seen from Fig. 3.5

sin 1 = 
x

x h
2

1
2

and sin 2 = 
( )

( )

L x

L x h2
2
2

Thus, Eq. (3.5) becomes

n1 sin 1 = n1 sin 2 (3.6)

which is the Snell�s law of refraction.

The laws of reflection and refraction form the basic laws

for tracing light rays through simple optical systems, like a

system of lenses and mirrors, etc.

Example 3.1 Consider a set of rays, parallel to the axis, inci-

dent on a paraboloidal reflector (see Fig. 3.6). Show by using

Fermat's principle, that all the rays will pass through the focus of the

paraboloid; a paraboloid is obtained by rotating a parabola about its

axis. This is the reason why a paraboloidal reflector is used to

focus parallel rays from a distant source, like in radio astronomy

(see Figs. 3.7 and 3.8).

P
Q

S

A

B

L

L¢

C

Q¢

Fig. 3.6 All rays parallel to the axis of a paraboloidal reflec-
tor pass through the focus after reflection (the line
ACB is the directrix). It is for this reason that anten-
nas (for collecting electromagnetic waves) or solar
collectors are often paraboloidal in shape.

Solution: Consider a ray PQ, parallel to the axis of the parabola,

incident at the point Q (see Fig. 3.6). In order to find the reflected

ray, one has to draw a normal at the point Q and then draw the

reflected ray. It can be shown from geometrical considerations that

the reflected ray QS will always pass through the focus S. How-

ever, this procedure will be quite cumbersome and as we will show,

the use of Fermat�s principle leads us to the desired results imme-

diately.

To use Fermat�s principle, we try to find out the ray connecting

the focus S and an arbitrary point P (see Fig. 3.6). Let the ray path

be PQ S. According to Fermat's principle, the ray path will corre-

spond to a minimum value of PQ  + Q S. From the point Q  we

drop a perpendicular Q L , on the directrix AB. From the definition

of the parabola it follows that Q L  = Q S. Thus,

Fig. 3.7 A paraboloidal satellite dish. [Photograph courtesy:
McGraw-Hill Digital Access Library. A color photograph
of the above figure appears as Fig. 1 in the prelim pages].

Fig. 3.8 Fully steerable 45 m paraboloidal dishes of the Gi-
ant Metrewave Radio Telescope (GMRT) in Pune,
India. The GMRT consists of 30 dishes of 45 m di-
ameter with 14 antennas in the Central Array.
[Photograph courtesy: Professor Govind Swarup,
GMRT, Pune. A color photograph of the above figure
appears as Fig. 2 in the prelim pages].
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PQ  + Q S = PQ  + Q L

Let L be the foot of the perpendicular drawn from the point P

on AB. Then, for PQ  + Q L  to be a minimum, the point Q should

lie on the straight line PQL, and thus the actual ray which connects

the points P and S will be PQ + QS where PQ is parallel to the axis.

Therefore, all rays parallel to the axis will pass through S and con-

versely, all rays emanating from the point S will become parallel to

the axis after suffering a reflection.

Example 3.2 Consider an elliptical reflector whose foci are

the points S1 and S2 (see Fig. 3.9). Show that all rays emanating

from the point S1 will pass through the point S2 after undergoing a

reflection.

S1 S2Q

P

Fig. 3.9 All rays emanating from one of the foci of an
ellipsoidal reflector will pass through the other
focus.

Solution: Consider an arbitrary point P on the ellipse (see

Fig. 3.9). It is well known that S1P + S2P is a constant and there-

fore, all rays emanating from the point S1 will pass through S2.

(Notice that here we have an example where the time taken by the

ray is stationary, i.e., it is neither a maximum nor a minimum but

has a constant value for all points lying on the mirror.) As a corol-

lary, we may note the following two points:

(a) Excepting the rays along the axis, no other ray (emanating

from either of the foci) will pass through an arbitrary point

Q which lies on the axis.

(b) The above considerations will remain valid even for an ellip-

soid of revolution obtained by rotating the ellipse about its

major axis.

Because of the above-mentioned property of elliptical reflectors,

they are often used in laser systems. For example, in a ruby laser

(see Sec. 27.3) one may have a configuration in which the laser rod

and the flash lamp coincide with the focal lines of a cylindrical re-

flector of elliptical cross section; such a configuration leads to an

efficient transfer of energy from the lamp to the ruby rod.

Example 3.3 Consider a spherical refracting surface SPM

separating two media of refractive indices n1 and n2 (see Fig. 3.10).

The point C represents the center of the spherical surface SPM.

Consider two points O and Q such that the points O, C and Q are

in a straight line. Calculate the optical path length OSQ in terms of

the distances x, y, r and the angle  (see Fig. 3.10). Use Fermat�s

principle to find the ray connecting the two points O and Q. Also,

assuming the angle  to be small, determine the paraxial image of

the point O.

[Note: We reserve the symbol R to represent the radius of curva-

ture of a spherical surface which will be positive (or negative)

depending upon whether the center of curvature lies on the right (or

left) of the point P. The quantity r represents the magnitude of the

radius of curvature which, for Fig. 3.10, happens to be R. Similarly,

the quantities x and y are the magnitudes of the distances; the sign

convention is discussed later on in this problem.]

Solution: From the triangle SOC, we have

OS = [(x + r)2 + r2 � 2(x + r) r cos ]
½

 x r x r x r r
2 2 2

2

2 2 2 1
2

1
2

+ + − + −
%
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2
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2

2
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1
2
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x
θ  x r
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+ +%

'
(
0

1

2

1 12 2θ

where we have assumed  (measured in radians) to be small so that

we may use the expression

cos  1
2

2

−
θ

and also make a binomial expansion. Similarly, by considering the

triangle SCQ, we would have

SQ y r
r y

− −
%
'&

(
0)

1

2

1 12 2θ

Thus the optical path length OSQ is given by

Lop = n1 OS + n2 SQ

2 21 2 2 1
1 2

1
( )

2

n n n n
n x n y r

x y r
(3.7)

For the optical path to be an extremum we must have

dL

d

op

θ
= 0 = r

n

x

n

y

n n

r

2 1 2 2 1+ −
−1

32
4
65
θ (3.8)

S

M

QO IC

qP

n2n1

x
r

y

y0

Fig. 3.10 SPM is a spherical refracting surface separating
two media of refractive indices n

1
 and n

2
. C

represents the center of the spherical surface.
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Thus, unless the quantity inside the square brackets is zero we

must have  = 0 implying that the only ray connecting the points O

and Q will be the straight line path OPQ which also follows from

Snell's law because the ray OP hits the spherical surface normally

and should proceed undeviated.

On the other hand, if the value of y was such that the quantity

inside the square brackets was zero, i.e., if y was equal to y0 such

that

n

y

n

x
2

0

1+ = 
n n

r
2 1−

(3.9)

then dLop /d  would vanish for all values of ; of course,  is

assumed to be small�which is the paraxial approximation. Now, if the

point I corresponds to PI = y0 (see Fig. 3.10) then all paths like OSI

are allowed ray paths implying that all (paraxial) rays emanating

from O will pass through I and I will, therefore represent the paraxial

image point. Obviously, all rays like OSI (which start from O and

pass through I) take the same amount of time in reaching the point I.

We should mention that Eq. (3.9) is a particular form of the

equation determining the paraxial image point

2 1n n

uv
= 

2 1n n

R
(3.10)

with the sign convention that all distances measured to the right of

the point P are positive and those to its left negative. Thus u = �x,

v = +y and r = +R.

In order to determine whether the ray path OPQ corresponds

to minimum time or maximum time or stationary, we must deter-

mine the sign of d 2Lop/d
2 which is given by

d L

d

2

2

op
= r

n

x

n

y

n n

r

2 1 2 2 1+ −
−1

32
4
65

= r n
y y

2
2

0

1 1
−

Obviously, if y > y0 (i.e., the point Q is on the right of the

paraxial image point I) d2Lop /d 2 is negative and the ray path OPQ

corresponds to maximum time in comparison with nearby paths

and conversely. On the other hand, if y = y0, d
2Lop/d 2 will vanish

implying that the extremum corresponds to stationarity. Thus, in

the paraxial approximation, all rays emanating from the point O will

take the same amount of time in reaching the point I.

Alternatively, one can argue that if I is the paraxial image point

of P then

n1 OP + n2 PI = n1 OS + n2 SI

Thus, when Q lies on the right of the point I, we have

n1 OP + n2 PQ = n1 OS + n2 (SI � PI + PQ)

= n1 OS + n2 (SI + IQ)

  > n1 OS + n2 SQ

implying that the ray path OPQ corresponds to a maximum.

Similarly, when Q lies on the left of the point I then the ray path

OPQ corresponds to a minimum and when Q coincides with I, we

have the stationarity condition.

Example 3.4 We again consider refraction at a spherical

surface; however, the refracted ray is assumed to diverge away from

the principal axis (see Fig. 3.11). Let us consider paraxial rays and

let I be a point (on the axis) such that n1 OS � n2 SI is independent

of the point S. Thus, for paraxial rays, the quantity

n1 OS � n2 SI is independent of (3.11)

and is an extremum. Let P be an arbitrary point in the second

medium and we wish to find the ray path connecting the points O

and P. For OSP to be an allowed ray path

Lop = n1 OS + n2 SP should be an extremum

or

Lop = (n1 OS � n2 SI) + n2 (IS + SP) should be

an extremum

where we have added and subtracted n2 SI. Now, the point I is such

that the first quantity is already an extremum thus, the quantity SP

+ SI should be an extremum and therefore it should be a straight

line. Thus the refracted ray must appear to come from the point I.

We may therefore say that for a virtual image, we must make the

quantity

n1 OS � n2 SI (3.12)

an extremum.

QFQ �e�2 �e�r�2 sx2 ex

sxrywyqixiy��

wihs�w  LO 3

In an inhomogeneous medium, the refractive index varies in a

continuous manner and, in general, the ray paths are curved.

For example, on a hot day, the air near the ground has a

higher temperature than the air which is much above the

surface. Since the density of air decreases with increase in

temperature, the refractive index increases continuously as

we go above the ground. This leads to the phenomenon

known as mirage. We will use Snell's law (or Fermat's

principle) to determine the ray paths in an inhomogeneous

medium. We will restrict ourselves to the special case when

the refractive index changes continuously along one

direction only; we assume this direction to be along the

x-axis.

P
S

O

q
I

n2

n1

Fig. 3.11 The refracted ray is assumed to diverge away from
the principal axis.
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The inhomogeneous medium can be thought of as a

limiting case of a medium consisting of a continuous set of

thin slices of media of different refractive indices�see

Fig. 3.12(a). At each interface, the light ray satisfies Snell's

law and one obtains [see Fig. 3.12(a)]

n1 sin 1 = n2 sin 2 = n3 sin 3 = ... (3.13)

Thus, we may state that the product

n(x) cos (x) = n(x) sin (x) (3.14)

is an invariant of the ray path; we will denote this invariant

by 
~

. The value of this invariant may be determined from

the fact that if the ray initially makes an angle 1 (with the

z-axis) at a point where the refractive index is n1, then the

value of 
~

 is n1 cos 1. Thus, in the limiting case of a

continuous variation of refractive index, the piecewise

straight lines shown in Fig. 3.12(a) form a continuous curve

which is determined from the equation

n(x) cos (x) a2n1 cos 12a2 (3.15)

implying that as the refractive index changes, the ray path

bends in such a way that the product n(x) cos2 (x) remains

constant [see Fig. 3.12(b)]. Equation (3.15) can be used to de-

rive the ray equation (see Sec. 3.4).

3.3.1 The Phenomenon of Mirage*

We are now in a position to qualitatively discuss the forma-

tion of a mirage. As mentioned earlier, on a hot day the

refractive index continuously decreases as we go near the

ground. Indeed, the refractive index variation can be approxi-

mately assumed to be of the form

n(x)  n0 + kx 0 < x < few meters (3.16)

where n0 is the refractive index of air at x = 0 (i.e., just above

the ground) and k is a constant. The exact ray paths (see

Example 3.8) are shown in Fig. 3.13.

We consider a ray which becomes horizontal at x = 0. At

the eye position E (x = xe), if the refractive index is ne, and if

at that point the ray makes an angle e with the horizontal

then

~
= n0 = ne ecos (3.17)

Usually e << 1 so that

n

ne

0 = cos e e1
1

2
2

e

%
'&

(
0)

2 1 0n

ne

(3.18)

At constant air pressure

(n0 � 1)T0  (ne � 1)Te (3.19)

From Eq. (3.19), we get

1
1

1
0n

ne

= 1
0

T

T
e

or

n n

n
e

e

0 = 
n

n

T

T
e

e

e%
'&

(
0)

1
1

0

so that

e  2 1
1

1
0

%
'&

(
0)
%
'&

(
0)n

T

Te

e (3.20)

On a typical hot day, the temperature near road surface

T0 323 K (= 50 °C) and, about 1.5 m above the ground,

Te  303 K (= 30 °C). Now, at 30 °C, ne  1.00026 giving

2000

0

2

P

3

400 600 800 1000 1200
z (m)

x
(m

)

C

W

B

M
R1 R2

E

B¢

W¢

Fig. 3.13 Ray paths in a medium characterized by a linear
variation of refractive index [see Eq.(3.16)] with
k  1.234  10�5 m�1. The object point is at a height
of  1.5 m and the curves correspond to + 0.2°, 0°,
�0.2°, �0.28°, �0.3486° and �0.5° The shading
shows that the refractive index increases with x.

* For more details, see Refs. 3.4�3.8.
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f3 q3
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q1
f1
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n4

z
z

x

ds
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dz

q

Fig. 3.12 (a) In a layered structure, the ray bends in such a
way that the product ni cos i  remains constant.
(b) For a medium with continuously varying
refractive index, the ray path bends in such a way
that the product n(x) cos (x) remains constant.
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e 5.67 10�3 radians  0.325°. In Fig. 3.13, we have shown

rays emanating (at different angles) from a point P which is

1.5 m above the ground; thus each ray has a specified value

of the invariant 
~

 (= n1 cos 1). The figure shows that when

the object point P and the observation point E are close to

the ground, the only ray path connecting points P and E will

be along the curve PME and that a ray emanating horizon-

tally from the point P will propagate in the upward direction

as PC as shown in the figure. Thus, in such a condition, the

eye at E will see the mirage and not see the object directly at

P. We also find that there is a region R2 where none of the

rays (emanating from the point P) reaches; thus, an eye in

this region can neither see the object nor its image. This is

therefore called the shadow region. Furthermore, there is

also a region R1 where only the object is directly visible and

the virtual image is not seen.

We should mention here that the bending up of the ray

after it becomes parallel to the z-axis cannot be directly

inferred from Eq. (3.15) because at such a point,  = 0 and

one may expect the ray to proceed horizontally beyond the

turning point as shown by a dotted line in Fig. 3.13; the point

at which  = 0 is known as the turning point. However, from

considerations of symmetry and from the reversibility of ray

paths, it immediately follows that the ray path should be

symmetrical about the turning point and hence bend upF

Physically, the bending of the ray can be understood by

considering a small portion of a wave front such as W (see

Fig. 3.13); the upper edge will travel with a lesser speed in

comparison with the lower edge, and this will cause the wave

front to tilt (see W ) making the ray to bend. Furthermore, a

straight line path like BB  does not correspond to an

extremum value of the optical path.

We next consider a refractive index variation which satu-

rates to a constant value as x  :

n2 (x) = n0
2 + n2

2 (1 � e� x); x > 0 (3.21)

where n0, n2 and  are constants and once again, x repre-

sents the height above the ground. The refractive index at x

= 0 is n0 and for large values of x, it approaches (n0
2 + n2

2)1/2.

The exact ray paths are obtained by solving the ray equation

(see Example 3.10) and are shown in Figs. 3.14 and 3.15; they

correspond to the following values of various parameters:

n0 = 1.000233, n2 = 0.45836

and = 2.303 m�1 (3.22)

The actual values of the refractive index for parameters

given by the above equation are not very realistic�never-

theless, it allows us to understand qualitatively the ray paths

in a graded index medium. Figures 3.14 and 3.15 show the ray

paths emanating from points that are 0.43 m and 2.8 m above

the ground respectively. In Fig. 3.14, the point P corresponds

to a value of the refractive index equal to 1.06455 (= n1) and

different rays correspond to different values of 1, the angle

that the ray makes with the z-axis at the point P. From

Fig. 3.14 we again see that when the object point P and the

observation point E are close to the ground, the only ray

path connecting points P and E will be along the curve PME

and that a ray emanating horizontally from the point P will

propagate in the upward direction, shown as PC in Fig. 3.14.

Thus, in such a condition, the eye at E will see the mirage

and not see the object directly at P. However, if points P and

E are much above the ground (see Fig. 3.15), the eye will see

the object almost directly (because of rays like PCE) and will

also receive rays appearing to emanate from points like P . It

may be readily seen that different rays do not appear to come

from the same point and hence the reflected image seen will

have considerable aberrations. Once again, there is a shadow

region R2 where none of the rays (emanating from the point

P) reaches there; thus, an eye in this region can neither see

the object nor its image. The actual formation of mirage is

shown in Figs. 3.16 and 3.17.
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R2

M
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z m( )n x( )
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Fig. 3.14 Ray paths in a medium characterized by Eqs. (3.21) and (3.22). The object point is at a height of
1/ ( 0.43 m) and the curves correspond to 1 (the initial launch angle) = + /10, 0, � /60, � /30,
� /15 and � /10. The shading shows that the refractive index increases with x.
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Fig. 3.16 A typical mirage as seen on a hot road on a
warm day. [Photograph adapted from http://fizyka.
phys.put.poznan.pl/~pieransk/Physics%20Around%
20Us/Air%20mirror.jpg. A color photograph of the
above figure appears as Fig. 4 in the prelim pages; used
with permission from Professor Piernaski].

Fig. 3.17 This is actually not a reflection in the ocean, but the
miraged (inverted) image of the Sun�s lower edge.
A few seconds later (notice the motion of
the bird to the left of the Sun!), the reflection fuses
with the erect image. The photographs were taken
by Dr. George Kaplan of the U. S. Naval Observa-
tory and are on the Naval Observatory�s website.
[Ref: http://mintaka.sdsu.edu/GF/explain/simulations/
infmir/Kaplan_ photos.html. A color photograph of the
above figure appears as Fig. 3 in the prelim pages. Used
with permissions from Dr. Kaplan and Dr. Young].

Example 3.5 As an example, for an object shown in

Fig. 3.14, let us calculate the angle at which the ray should be

launched so that it becomes horizontal at x = 0.2 m. Now,

at x = 0.2 m, n(x) = 1.03827

Thus, if 1 represents the angle that the ray makes with the

z-axis at the point P (see Fig. 3.14) then

n1 cos 1 = 1.03827  cos 0

implying

1  13°

Further, for the ray which becomes horizontal at x = 0.2 m the

value of the invariant is given by

~
β   1.03827

Example 3.6 In Fig. 3.15, the object point corresponds to

x = 2.8 m where n(x)  1.1. Thus for a ray launched with 1 = � /8,

~
β  = 1.1 cos 1 = 1.01627

Thus if the ray becomes horizontal at x = x2 then

n (x2) = 
~
β  = 1.01627

and

x2 = − −
−1

3
2
2

4

6
5
5

1
1

2
2 0

2

2
2α

ln
( )n x n

n

 0.073 m

3.3.2 The Phenomenon of Looming

The formation of mirage discussed above occurs due to

increase in the refractive index of air above the hot surface.

On the other hand, above cold sea water, the air near the

water surface is colder than the air above it and hence there

R1
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C
E

M
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Fig. 3.15 Ray paths in a medium characterized by Eqs. (3.21) and (3.22). The object point is at a height of 2.8 m
and the curves correspond to 

1
 (the initial launch angle) = 0, � /60, � /30, � /16, � /11, � /10

and � /8. The shading shows that the refractive index increases with x.
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is an opposite temperature gradient. A suitable refractive

index variation for such a case can be written as

n2
(x) = n0

2 + n2
2 e

� x
(3.23)

The equation describing the ray path is discussed in

Problem 3.13. We assume the values of n0, n2 and  to be

given by Eq. (3.22). For an object point P at a height of 0.5 m,

the ray paths are shown in Fig. 3.18. If the eye is at E, then it

will receive rays appearing to emanate from P . Such a

phenomenon in which the object appears to be above its

actual position is known as looming. It is commonly

observed in viewing ships over cold sea waters (see Figs.

3.19 and 3.20). Moreover, since no other rays emanating from

P reach A, the object cannot be observed directly.

3.3.3 The Graded Index Atmosphere

One of the interesting phenomena associated with imaging in

a graded index medium is the non-circular shape of the setting

or the rising sun (see Fig. 3.21 and Fig. 9 in the prelim pages).

This can easily be understood in the following manner: The

refractive index of the air gradually decreases as we move

outwards. If we approximate the continuous refractive index

gradient by a finite number of layers (each layer having a

specific refractive index) then the ray will bend in a way similar

to that shown in Fig. 3.22. Thus the sun (which is actually

at S) appears to be in the direction of S . It is for this reason

that the setting sun appears flattened and also leads to the

E

P¢

P

0
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1

2

5 10 15

z m( )

x
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)

n
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)

1
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.0
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1
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Fig. 3.18 Ray paths corresponding to the refractive index distribution given by Eq. (3.23) for an object
at a height of 0.5 m; the values of n0, n2 and  are given by Eq. (3.22).

Fig. 3.19 If we are looking at the ocean on a cold day, we
find that the air near the surface of the water is
cold and  it gets warmer as we go up. Thus, as
we go up, the refractive index decreases continu-
ously and because of curved ray paths, one will
observe an inverted image of the ship (at a
greater height) as shown in the figure above; this
is known as the superior mirage. [A color photoraph
of the above figure appears as Fig. 5 in the prelim
pages].

Fig. 3.20 A house in the archipelago with a superior mirage.
[Figure adapted from http://virtual.finland.fi/netcomm/
news/showarticle.asp?intNWSAID=25722. A color
photograph of the above figure appears as Fig. 6 in the
prelim pages. Used with permission from Dr. P.
Parviainen].
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fact that the days are usually about 5 minutes longer than

they would have been in the absence of the atmosphere.

Obviously, if we were on the surface of the moon, the rising

or the setting sun would not only look white but also circular

in shape!

QFR �ri2 �e�2 i��e�syx2 exh

s��2 �yv��syx�  LO 4

In this section, we will derive the ray equation, the solution

of which will give the precise ray paths in an inhomogeneous

medium. We will restrict ourselves to the special case when

the refractive index changes continuously along only one

direction, which we assume to be along the x-axis. This me-

dium can be thought of as the limiting case of a medium

comprising a continuous set of thin slices of media of

different refractive indices. As discussed earlier, for a con-

tinuously varying refractive index, the product n(x) cos (x)

is an invariant of the ray path which we denote by 
~

:

n(x) cos (x) = 
~

(3.24)

Furthermore, for a continuous variation of refractive

index, the piecewise straight lines shown in Fig. 3.12(a) forms

a continuous curve as in Fig. 3.12(b). If ds represents the

infinitesimal arc length along the curve, then

(ds)2 = (dx)2 + (dz)2

or

ds

dz

%
'

(
0

2

= 
dx

dz

%
'

(
0

2

 + 1 (3.25)

Now, if we refer to Fig. 3.12(b), we find that

dz

ds
= cos  = 

~

( )n x
(3.26)

Thus Eq. (3.25) becomes

dx

dz

%
'

(
0

2

= 
n x2

2

( )
~  �1 (3.27)

For a given n(x) variation, Eq. (3.27) can be integrated to

give the ray path x(z); however, it is often more convenient to

put Eq. (3.27) in a slightly different form by differentiating it

with respect to z:

2
2

2

dx

dz

d x

dz
= 

1
2

2

~
dn

dx

dx

dz

or
d x

dz

2

2
= 

1

2 2

2

~
dn

dx
(3.28)

Both, Eqs. (3.27) and (3.28), represent rigorously correct ray

equations when the refractive index depends only on the x-

coordinate.

Example 3.7 As a simple application of Eq. (3.28), let us

consider a homogeneous medium for which n(x) is a constant. In

such a case, the RHS of Eq. (3.28) is zero and one obtains

d x

d z

2

2
= 0

Integrating the above equation twice with respect to z, we obtain

x = Az + B

which is the equation of a straight line, as it ought to be in a homo-

geneous medium.

Example 3.8 We next consider the ray paths in a medium

characterized by the following refractive index variation

Fig. 3.21 The non-circular shape of the setting sun.

S

S¢

EARTH

Fig. 3.22 Because of refraction, light from S appears to
come from S .
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n(x) = n0 + kx (3.29)

For the above profile, the ray equation [Eq. (3.28)] takes the form

d x

dz

2

2
= 

1

2 2

2

~
β

dn

dx
 = 

k
~
β 2

[n0 + k x]

or

d X

dz

2

2
= 2 X(z) (3.30)

where

X  x + 
n

k
0  and  = 

k
~
β

(3.31)

Thus the ray path is given by

x(z) = �
n

k
0  + C1 e

z + C2 e
� z

(3.32)

where the constants C1 and C2 are to be determined from initial

conditions. We assume that at z = 0, the ray is launched at x = x1

making an angle 1 with the z-axis; thus

x(z = 0) = x1

and
dx

dz z=0

 = tan 1

Elementary manipulations would give us

C1 = 
1

2

1
1 0 1 1x

k
n n+ +1

32
4
65

( sin )θ (3.33)

and

C2 = 
1

2

1
1 0 1 1x

k
n n+ −1

32
4
65

( sin )θ (3.34)

where n1 = n0 + kx1 represents the refractive index at x = x1 and we

have used the fact that

~
β = n1 cos 1 (3.35)

Figure 3.13 shows the ray paths as given by Eq. (3.32) with x1 =

1.5 m, n1 = 1.00026 and k  1.234  10�5 m�1.

3.4.1 Ray Paths in Parabolic
Index Media

We consider a parabolic index medium characterized by the

following refractive index distribution:

n2(x) = n1
2 � 2 x2

(3.36)

We will use Eq. (3.27) to determine the ray paths. Equation

(3.27) can be written as

dx

n x2 2( )
~s = ± 

1
~ dzs (3.37)

Substituting for n2(x), we get

dx

x x0
2 2s = s dz (3.38)

where

x0 = 
1

1
2 2

n
~

(3.39)

and

= ~ (3.40)

Writing x = x0 sin  and carrying out the straightforward

integration, we get

x = ± x0 sin [ (z � z0)] (3.41)

We can always choose the origin such that z0 = 0 so that the

general ray path would be given by

x = ± x0 sin z (3.42)

We could have also used Eq. (3.28) to obtain the ray path.

Now, in an optical waveguide the refractive index distribution

is usually written in the form*:

n x n
x

a
x a

n n x a

2
1
2

2

2
2

1
2

1 2

1 2

( ) , | |

( ), | |

= core

= = cladding

%
'

(
0

1
32

4
65

@

A
u

Bu
(3.43)

The region |x|< a is known as the core of the wave guide and

the region |x|> a is usually referred to as the claddingF Thus,

= 
n

a
1 2

(3.44)

In a typical parabolic index fiber,

n1 = 1.5,  = 0.01 , a = 20 m (3.45)

giving

n2  1.485

and

 1.0607  104 m�1

Typical ray paths for different values of 1 are shown in

Fig. 3.23. Obviously, the rays will be guided in the core if

n2 < 
~

 < n1. When 
~

 = n2, the ray path will become horizon-

tal at the core-cladding interface. For 
~

 < n2, the ray will be

incident at the core-cladding interface at an angle and the ray

will be refracted away. Thus, we may write

* Ray paths in such media are of tremendous importance as they readily lead to very important results for parabolic index fibers which

are extensively used in fiber-optic communication systems (see Sec. 27.7).
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n2 <
~

 < n1 Guided rays

~
 < n2 Refracting rays (3.46)

In Fig. 3.23, the ray paths shown correspond to

z0 = 0 and 1 = 4°, 8.13° and 20°;

the corresponding values of 
~

 are approximately 1.496

(> n2), 1.485 (= n2) and 1.410 (< n2)�the last ray undergoes

refraction at the core�cladding interface. It may be readily

seen that the periodical length zp of the sinusoidal path is

given by

zp = 
2

 = 
2

2

1a cos
(3.47)

Thus, for the two rays shown in Fig. 3.23 (with 1 = 4° and

8.13°), the values of zp would be 0.8864 mm and 0.8796 mm,

respectively. Indeed, in the paraxial approximation, cos 1  1

and all rays have the same periodic length. In Fig. 3.25, we

have plotted typical paraxial ray paths for rays launched

along the z-axis. Different rays (shown in the figure) corre-

spond to different values of 
~

.

q1 = 8.13°

q1 = 20°

q1 = 4°

10

z(mm)

x
(

m
)

m

zp
–0.02

0.02

0

Core

Cladding

Fig. 3.23 Typical ray paths in a parabolic index medium
for parameters given by Eq.(3.45) for 1 = 4°, 8.13°
and 20°.

Four interesting features may be noted:

(i) In the paraxial approximation (
~

  n1) all rays

launched horizontally come to a focus at a particular

point. Thus the medium acts as a converging lens of

focal length given by

f  
2 2

a
(3.48)

(ii) Rays launched at different angles with the axis (see,

for instance, the rays emerging from point P) get

trapped in the medium and hence the medium acts like

a �guide�. Indeed such media are referred to as optical

waveguides and their study forms a subject of great

contemporary interest.

(iii) Ray paths would be allowed only in the region where
~

 is less than or equal to n(x) [see Eq. (3.26)].

Further, dx/dz would be zero (i.e., the ray would

become parallel to the z-axis) when n(x) equals 
~

;

this immediately follows from Eq. (3.27).

(iv) The rays periodically focus and defocus as shown in

Fig. 3.25. In the paraxial approximation, all rays

emanating from P will focus at Q and if we refer to our

discussion in Example 3.3, all rays must take the same

time to go from P to Q. Physically, although the ray

PLQ traverses a larger path in comparison to PMQ, it

does so in a medium of �lower� average refractive

index�thus the greater path length is compensated

for by a greater �average speed� and hence all rays

take the same time to propagate through a certain

distance of the waveguide (see Sec. 3.4.2 for exact

calculation). Therefore, parabolic index waveguides

are extensively used in fiber-optic communication

systems (see Sec. 28.7).

We may mention here that Gradient-Index  GRIN) lenses,

characterized by parabolic variation of refractive index in the

transverse direction, are now commercially available and find

many applications (see Fig. 3.24). For example a GRIN lens can

be used to couple the output of a laser diode to an optical fiber;

the length of such a GRIN lens would be zP/4 (see Fig. 3.25);

typically zP  few cm and the diameter of the lens would be few

millimeters. Such small-size lenses find many applications.

Similarly, a GRIN lens of length zP/2 can be used to transfer col-

limated light from one end of the lens to the other.

Fig. 3.24 Ray paths in a graded index medium character-
ized by a refractive index variation which
decreases parabolically in the transverse direc-
tion.  Because of focusing properties, it has many
important applications. [A color photograph of the
above figure appears as Fig. 7 in the prelim pages].



OpticsQFIT
u

P

L

M

Q

0 1
zp

z (mm)

0

–20

20

x
(

m
)

m

Fig. 3.25 Paraxial ray paths in a parabolic index medium.
Notice the periodic focussing and defocussing
of the beam.

3.4.2 Transit Time Calculations
in a Parabolic Index Waveguide

In this section, we will calculate the time taken by a ray to

traverse a certain length through a parabolic index

waveguide as described by Eq. (3.36). Such a calculation is

of considerable importance in fiber-optic communication

systems (see Sec. 28.7). As shown in Sec. 3.4.1, the ray path

(inside the core) is given by

x = x0 sin z (3.49)

where x0 and  have been defined through Eqs. (3.39) and

(3.40). Let d  represent the time taken by a ray to traverse the

arc length ds [see Fig. 3.12 (b)]:

d = 
ds

c n x/ ( )
(3.50)

where c is the speed of light in free space. Since

n x
dz

ds
( ) = 

~

[see Eq. (3.26)] we may write Eq. (3.50) as

d = 
1 2

c
n x dz~ ( )

= 
1

1
2 2 2

c
n x dz~ [ ]

or d = 
1

1
2 2

0
2 2

c
n x z dz~ [ sin ] (3.51)

where in the last step we have used Eq. (3.49). Thus if (z)

represents the time taken by the ray to traverse a distance z

along the waveguide, then

(z) = 
n

c
dz

x

c

z
dz

z z

1
2

0

2
0
2

0

1 2

2~ ~
cos ( )

s s

= 
1 1

2 2

1

2
21

2 2
0
2

2
0
2

c
n x z

x

c
z~ ~ sin

1

32
4

65

or (z) = 

2 2
2 2 1
1

( )1
[ ] sin 2

42

n
n z z

cc
(3.52)

where we have used Eq. (3.39). When 
~
β  = n1 (which

corresponds to the ray along the z-axis)

(z) = 
z

c n/ 1

(3.53)

This is what we should have expected as the ray will always

travel with speed c/n1. For large values of z, the second term

on the RHS of Eq. (3.52) would make a negligible contribution

to (z) and we may write

(z)  
1

2
1
2

c

n
z

~
~

1

3
2
2

4

6
5
5

(3.54)

Now, if a pulse of light is incident on one end of the

waveguide, it would, in general, excite all rays and since

different rays take different amounts of time, the pulse will

get temporally broadened. Thus, for a parabolic index

waveguide, this broadening will be given by

= (
~

 = n2) � (
~

 = n1)

or = 
z

c

n n

n

zn

c2 2
1 2

2

2

2 2( )
(3.55)

where in the last step we have assumed

 
n n

n

n n

n
1
2

2
2

1
2

1 2

22
(3.56)

For the fiber parameters given by Eq. (3.45), we get

 0.25 ns/km (3.57)

We will use this result in Chapter 28.

Example 3.9 We next consider the ray paths in a medium

characterized by the following refractive index variation:

n2(x) = n1
2 x < 0

= n1
2 � gx x > 0 (3.58)

Thus, in the region x > 0, n2(x) decreases linearly with x and

Eq. (3.28) takes the form
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d x

d z

2

2
= −

g

2
2~

β

The general solution of which is given by

x(z) = −
g

4
2~

β
 z2 + K1 z + K2 (3.59)

Consider a ray incident on the origin (x = 0, z = 0) as shown in

Fig. 3.26. Thus,

K2 = 0 and
~
β  = n1 cos 1 (3.60)

Further,

dx

dz z = 0

= K1 = tan 1 (3.61)

Thus the ray path will be given by

x(z)

= <

= − − < <

= − − >

(tan )

~ ( )

~ ( )

θ

β

β

1

2 0 0

0
2 0 0

0

4
0

4

z z
gz

z z z z

gz
z z z z

(3.62)

q1 = 60°

q1 = 30°

q1 = 20°

q1 = 45°

–2

–2

0

2

0 2 4 6

z m( )

x
m(

)

Fig. 3.26 Parabolic ray paths (corresponding to 
1
 = 20°,

30°, 45° and 60°) in a medium characterized by
refractive index variation given by Eq. (3.58).
The ray paths in the region x < 0 are straight
lines.

where

z0 = 
2 1

2
n

g
 sin 2 1

Thus, in the region 0 < z < z0, the ray path is a parabola. Typical

ray paths are shown in Fig. 3.26, the calculations correspond to

n1 = 1.5, g = 0.1 m�1

and different rays correspond to

1 = 
π π π π
9 6 4 3

, , and

3.4.3 Reflections from the Ionosphere

The ultraviolet rays in the solar radiation result in the

ionization of the constituent gases in the atmosphere

resulting in the formation of what is known as the

ionosphere. The ionization is almost negligible below a

height of about 60 km. Because of the presence of the free

electrons (in the ionosphere), the refractive index is given by

[see Eq. (7.76)]:

n
2(x) = 1 � 

N x q

m

e ( )
2

0
2

(3.63)

where

Ne(x) represents the number of electrons/unit volume

in m�3

x represents the height above the ground in meters

represents the angular frequency of the

electromagnetic wave

q 1.60  10�19 C represents the charge of the

electron

m 9.11  10�31 kg represents the mass of the

electron, and

0 8.854  10�12  10�12 C2/N�m2 represents the

dielectric permittivity of vacuum

Thus, as the electron density starts increasing from 0

(beyond the height of 60 km) the refractive index starts

decreasing and the ray paths would be similar to that

described in Example 3.9.

If nT represents the refractive index at the turning point

(where the ray becomes horizontal) then (see Fig. 3.27)

~
= cos 1 = nT (3.64)

Thus if an electromagnetic signal is sent from the point A

(at an angle2 1) is received at the point B, one can determine

the refractive index (and hence the electron density) of the

ionospheric layer where the beam has undergone the

reflection. This is how the short-wave radio broadcasts2( 2

20 m)2 sent at a particular angle from a particular city (say

London) would reach another city (say New Delhi) after

undergoing reflection from the ionosphereF Further, for

normal incidence,  = /2 and nT = 0 implying
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Fig. 3.27 Reflection from the E region of the ionosphere.
The point T represents the turning point. The
shading shows the variation of electron density.

Ne(xT) = 
m

q

0
2

2
(3.65)

In a typical experiment, an electromagnetic pulse (of

frequency between 0.5 and 20 MHz) is sent vertically

upwards and if the echo is received after a delay of t

seconds, then

t  
2h

c
(3.66)

where h represents the height at which it undergoes reflec-

tion. Thus, if electromagnetic pulse is reflected from the E

0
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E
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u
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a
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h
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ig
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t
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m
)

Frequency of the exploring waves in MHz

Fig. 3.28 Frequency dependence of the equivalent height of reflection from the E and F regions of the
ionosphere. [Adapted from Ref. 3.9].

layer of ionosphere (which is at a height of about 100 km),

the echo will be received after about 670 s. Alternatively, by

measuring the delay t, one can determine the height (at

which the pulse gets reflected) from the following relation

h  
c

2
t (3.67)

In Fig. 3.28, we have plotted the frequency dependence of

the equivalent height of reflection (as obtained from the

delay time of echo) from the E and F regions of the

ionosphere. From the figure we find that at  = 4.6  106 Hz,

echoes suddenly disappear from the 100 km height. Thus,

Ne(100 km)  
m

q

0
2

2

2( )

 
911 10 8854 10 2 4 6 10

16 10

31 12 6 2

19 2

. . ( . )

( . )

 2.6  1011 electrons/m3

If we further increase the frequency, the echoes appear

from the F region of the ionosphere. For more details of the

studies on the ionosphere, the reader is referred to one of

the most outstanding texts on the subject by Professor S. K.

Mitra [Ref. 3.9].

Example 3.10 In this example, we will obtain the solution

of the ray equation for the refractive index variation given by

n2(x) = n0
2 + n2

2 (1 � e� x) (3.68)
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Substituting in Eq. (3.27), we would obtain

± dz = 

~

(
~

)
/

β

β α

dx

n n n e x
0
2

2
2 2

2
2

1 2
+ − − −

= 

~

[ ]

/

/

β α

α
e dx

n K e

x

x

2

2
2 1 21−

or ± dz = 
2

12
2 1 2

~

( ) /

β

αK n

dΦ

Φ −
(3.69)

where K = 
1

2
0
2

2
2 2 1 2

n
n n(

~
)

/+ − β (3.70)

and (x) = K e x/2
(3.71)

The + and � sign in Eq. (3.69) correspond to a ray going up and a

ray going down respectively. Further,

~
β = n1 cos 1 (3.72)

where 1 is the angle that the ray initially makes with the z-axis at

x = x1, z = 0 and n1 = n(x1). Carrying out the elementary integration,

we get

x(z) = 
2 1

α
γln cosh ( )

K
C z±1

32
4
65

(3.73)

where = 
α

β

K n2

2
~ (3.74)

which gives us the ray path. Since x = x1 at z = 0 (the initial point)

C = 
1 1 21

γ
α

cosh ( )
/−

Ke
x

(3.75)

Further,

K e x1/2 = 
n n

n n n

p

p

0
2 2 2

0
2 2

1
2

1 2
+ −

+ −

1

3

2
2

4

6

5
5

~ /
β

(3.76)

Thus for a ray launched horizontally at x = x1, C = 0. Typically

ray paths (for different values of 1) are shown in Figs. 3.14 and

3.15.

QFS �ip�eg�syx2 yp2 �e��2 e�
�ri2 sx�i�pegi2 fi��iix
ex2 s�y��y�sg2 wihs�w
exh2 ex2 exs�y��y�sg
wihs�w 2  LO 5

In this section, we will use Fermat�s principle to determine

the direction of the refracted ray for a ray incident at the

interface of an isotropic and an anisotropic medium*. We

may point out that in an isotropic medium the properties

remain the same in all directions; typical examples are glass,

* A proof for the applicability of Fermat�s principle in anisotropic media has been given by Newcomb (Ref. 3.10); the proof, however,

is quite complicated. Ray paths in biaxial media are discussed in Ref. 3.11.

water and air. On the other hand, in an anisotropic medium,

some of the properties (such as speed of light) may be

different in different directions. In Chapter 22, we will

consider anisotropic media in greater detail; we may mention

here that when a light ray is incident on a crystal like calcite,

it (in general) splits into two rays known as ordinary and

extraordinary rays. The velocity of the ordinary ray is the

same in all directions. Thus the ordinary ray obeys Snell�s

laws but the extraordinary ray does not. We will now use

Fermat's principle to study the refraction of a ray when it is

incident from an isotropic medium into an anisotropic

medium�both media are assumed to be homogeneous.

In a uniaxial medium, the refractive index variation for the

extraordinary ray is given by [see Eq. (22.121)]

n2( ) = no
2 cos2  + ne

2 sin2 (3.77)

where no and ne are constants of the crystal and  represents

the angle that the ray makes with the optic axis. Obviously,

when the extraordinary ray propagates parallel to the optic

axis (i.e., when  = 0), its speed is c/no and when it propa-

gates perpendicular to the optic axis (  = /2) its speed is c/ne.

3.5.1 Optic Axis Normal to the Surface

We first consider the particularly simple case of the optic axis

being normal to the surface. Referring to Fig. 3.29, the optical

path length from A and B is given by

Lop = n1[h1
2 + (L � x)2]1/2 + n( )[h2

2 + x2]1/2
(3.78)

where n1 is the refractive index of medium I and we have

assumed the incident ray, the refracted ray and the optic axis

to lie in the same plane. Since

O
p
ti
c

a
x
is

I

II

P
x

i

n1

h2

h1

A

B

Q

q

L    x–

c n/ o

c n/ e

Fig. 3.29 The direction of the refracted extraordinary ray
when the optic axis (of the uniaxial crystal) is
normal to the surface.



OpticsQFPH
u

cos  = 
h

h x

2

2
2 2 1 2( ) /

and sin = 
x

h x( ) /
2
2 2 1 2

we have

Lop = n1 [h1
2 + (L � x)]1/2 + [no

2h2
2 + ne

2 x2]1/2 (3.79)

For the actual ray path, we must have

dL

dx

op
= 0

implying

n L x

h L x

1

1
2 2 1 2

( )

[ ( ) ] /
= 

n x

n h n x

e

o e

2

2
2
2 2 2

1 2/

or

n1 sin i = 
n r

n n r

e

o e

2

2 2 2
1 2

tan

tan
/

(3.80)

where we have used the fact that the

angle of refraction r = and tan r = 
x

h2

.

Simple manipulations give us

tan r = 
n n i

n n n i

o

e e

1

2
1
2 2

sin

sin

(3.81)

using which we can calculate the angle of refraction for a

given angle of incidence (when the optic axis is normal to the

surface). As a simple example, we assume the first medium to

be air so that n1 = 1. Then

tan r = 
n i

n n i

o

e e

sin

sin2 2
 (when n1 = 1) (3.82)

If we assume the second medium to be calcite, then

no = 1.65836, and ne = 1.48641

Thus for i = 45°, we readily get

r  31.1°

It may be seen that if no = ne = n2 (say) then Eq. (3.80) simpli-

fies to

n1 sin i = n2 sin r (3.83)

which is nothing but Snell's law.

3.5.2 Optic Axis in the Plane
of Incidence*

We next consider a more general case of the optic axis mak-

ing an angle  with the normal; however, the optic axis is

assumed to lie in the plane of incidence as shown in

Fig. 3.30. We may mention here that in general, in an aniso-

tropic medium, the refracted ray does not lie in the plane of

incidence. However, it can be shown that if the optic axis lies

in the plane of incidence then the refracted ray also lies in

the plane of incidence. In the present calculation, we are as-

suming this and finding the direction of the refracted ray for

a given angle of incidence. Now, the optical path length from

A to B (see Fig. 3.30) is given by

Lop = n1[h1
2 + (L � x)

2
]
1/2

 + n( )[h2
2 + x

2
]
1/2

(3.84)

S1 S2
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r
qf

xI

II

h1

A

Q
B

h2

n1

n( )q

Optic axis

L    x–

L

Fig. 3.30 The direction of the refracted extraordinary ray
when the optic axis (of the uniaxial crystal) lies
in the plane of incidence making an angle  with
the normal to the interface.

Since = r � , we have

n2( ) = no
2 cos2 (r � ) + ne

2 sin2 (r � )

= no
2 (cos r cos  + sin r sin )2 +

ne
2 (sin r cos  � cos r sin )2

= no
2 

h

h x

x

h x

2

2
2 2

2
2 2

2
1

3

2
2

4

6

5
5

cos sin  +

n
x

h x

h

h x
e
2

2
2 2

2

2
2 2

2
1

3

2
2

4

6

5
5

cos sin

Thus,

n( ) = 
1

2
2 2

h x

 [no
2 (h2 cos  + x sin )2

+ ne
2 (x cos  � h2 sin )2]1/2 (3.85)

and

Lop = n1[h1
2 + (L � x)2]1/2 +

   [no
2 (h2 cos  + x sin )2 + ne

2 (x cos  � h2 sin )2]1/2

(3.86)

* May be skipped in the first reading.



Fermat�s Principle and its Applications QFPI
u

For the actual ray path, we must have

dL

dx

op
= 0

implying

n L x

h L x

1

1
2 2 1 2

( )

[ ( ) ] /
=

 
n h x n x h

n h x n x h

o e

o e

2
2

2
2

2
2

2 2
2

2 1 2

( cos sin ) sin ( cos sin ) cos

[ ( cos sin ) ( cos sin ) ] /

or n1 sin i = 
n n

n n

o e

o e

2 2

2 2 2 2 1 2

cos sin sin cos

[ cos sin ]
/

(3.87)

For given values of the angles i and , the above equa-

tion can be solved to give the values of  and hence the

angle of refraction r (=  + ).

Some interesting particular cases may be noted.

(i) When no = ne = n2, the anisotropic medium becomes

isotropic and Eq. (3.87) simplifies to

n1 sin i = n2 sin (  + ) = n2 sin r

which is nothing but Snell's law.

(ii) When  = 0, i.e., the optic axis is normal to the sur-

face, Eq. (3.87) becomes

n1 sin i = 
n

n n

e

o e

2

2 2 2 2 1 2

sin

[ cos sin ]
/

= 
n r

n r n r

e

o e

2

2 2 2 2 1 2

sin

[ cos sin ] /
(3.88)

where we have used the fact that r = . The above

equation is identical to Eq. (3.80).

(iii) Finally, we consider normal incidence, i.e., i = 0. Thus,

Eq. (3.87) gives us

no
2 cos  sin  + ne

2 sin  cos  = 0

or

no
2 cos (r � ) sin  + ne

2 sin (r � ) cos  = 0

or

cos r [no
2 cos  sin  � ne

2 sin  cos ]

+ sin r [no
2 sin2  + ne

2 cos2 ] = 0

or

tan r = 
( ) sin cos

sin cos

n n

n n

e o

o e

2 2

2 2 2 2
(3.89)

Equation (3.89) shows that in general r  0 (see Fig. 3.31).

We may mention here that, for normal incidence, the above

analysis is valid for an arbitrary orientation of the optic axis;

the refracted (extraordinary) ray lies in the plane containing

the normal and the optic axis. Furthermore, for normal

incidence, when the crystal is rotated about the normal,

the refracted ray also rotates on the surface of a cone [see

Fig. 22.16(b)].

Fig. 3.31 For normal incidence, in general, the refracted
extraordinary ray undergoes finite deviation.
However, the ray proceeds undeviated when the
optic axis is parallel or normal to the surface.

Reverting to Eq. (3.89) we note that when the optic axis is

normal to the surface (  = 0) or when the optic axis is parallel

to the surface but lying in the plane of incidence (  = /2),

r = 0 and the ray goes undeviated.

Summary

u The slightly modified version of Fermat's principle is, the

actual ray path between two points is the one for which the

optical path length is stationary with respect to variations of

the path.

u Laws of reflections and Snell's law of refraction (n1 sin

1 = n2 sin 2, where 1 and 2 represent the angles of inci-

dence and refraction) can be derived from Fermat's principle.

u For an inhomogeneous medium characterized by the refrac-

tive index variation n(x), the ray paths [x(z)] are such that

the product n(x) cos (x) remains constant, here (x) is the

angle that the ray makes with the z-axis; this constant is

denoted by 
~
β which is known as the ray invariant. The exact

ray paths are determined by solving either of the equations:

dx

dz
= ±

−n x
2 2( )

~

~
β

β

or
d x

dz

2

2
= 

1

2
2

2

~
( )

β

dn x

dx

where the invariant 
~
β  is determined from the initial launching

condition of the ray.
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u Ray paths obtained by solving the ray equation can be used

to study mirage, looming and also reflections from the

ionosphere.

u Continuous variation is observed in refractive index in an

inhomogeneous medium whereas it is constant at every place

in homogeneous medium.

u In the paraxial approximation, cos theta is equal to one and

all rays have the same periodic length.

u In a parabolic index medium n2 (x) = n 1
2 � 2x2, the ray paths

are sinusoidal:

x(z) = ± x0 sin z

where  = 
1
~
β

, x0 = 
1

1
2 2

γ
βn −
~

 and we have assumed z = 0

where x = 0. Rays launched at different angles take

approximately the same time in propagating through a large

length of the medium.

u Fermat's principle can be used to study refraction of rays at

the interface of an isotropic medium and an anisotropic me-

dium.

u Speed of an extraordinary ray travelling parallel to optic axis

is c/n0 whereas it is c/ne when it propagates perpendicularly.

Problems

In the first three problems, we will use Fermat�s principle

to derive laws governing paraxial image formation by

spherical mirrors.

3.1 Consider an object point O in front of a concave mirror

whose center of curvature is at the point C. Consider an

arbitrary point Q on the axis of the system and using a

method similar to that used in Example 3.3, show that the

optical path length Lop (= OS + SQ) is approximately given

by

Lop  x y r
x y r

+ + + −
1
32

4
65

1

2

1 1 22 2θ (3.90)

where the distances x, y and r and the angle  are defined in

Fig. 3.32;  is assumed to be small. Determine the paraxial

image point and show that the result is consistent with the

mirror equation

M

qQ C O

S

y
r

x
P

Fig. 3.32 Paraxial image formation by a concave mirror.

1 1

u v
= 

2

R
(3.91)

where u and v are the object and image distance and R is the

radius of curvature with the sign convention that all dis-

tances to the right of P are positive and to its left negative.

3.2 Fermat's principle can also be used to determine the

paraxial image points when the object forms a virtual im-

age. Consider an object point O in front of the convex

mirror SPM (see Fig. 3.33). Assume the optical path length

Lop to be OS � SQ; the minus sign occurs because the rays

at S point away from Q (see Example 3.4). Show that

Lop  OS SQ x y r
x y r

1

3
2

4

6
5

1

2

1 1 22 2
   (3.92)

where the distances x, y and r and the angle  are defined in

Fig. 3.33. Show that the paraxial image is formed at y = y0

which is given by

1 1

0x y
− = −

2

r
(3.93)

and is consistent with Eq. (3.91). [Which the object

distance u is positive, the image distance v and the radius

of curvature R are negative since the image point and the

center of curvature lie on the left of the point P.]

O

S

M

C Q P

r

y x

Fig. 3.33 Paraxial image formation by a convex mirror.

3.3 Use Fermat's principle to determine the mirror equation for

an object point at a distance less than R/2 from a concave

mirror of radius of curvature R.

3.4 Consider a point object O in front of a concave refracting

surface SPM separating two media of refracting indices n1

and n2 (see Fig. 3.34); C represents the center of curvature.

In this case also one obtains a virtual image. Let Q represent

an arbitrary point on the axis. We now have to consider the

optical path length Lop = n1 OS � n2 SQ; show that it is

given by

Lop = n1 OS � n2 SQ

 n1 x � n2 y � 
1

2
 r2 

n

y

n

x

n n

r
2 1 2 1 2− −

−1
32

4
65
θ

(3.94)
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Also show that the above expression leads to the paraxial

image point which is consistent with Eq. (3.10); we may

note that u, v and R are all negative quantities because they

are on the left of the refracting surface.

3.5 If we rotate an ellipse about its major axis we obtain what

is known as an ellipsoid of revolution. Show by using

Fermat's principle that all rays parallel to the major axis of

the ellipse will focus to one of the focal points of the

ellipse (see Fig. 3.35), provided the eccentricity of the el-

lipse equals n1/n2.

[Hint: Start with the condition that

n2 AC  = n1 QB + n2 BC

and show that the point B (whose coordinates are x and y)

lies on the periphery of an ellipse].

n2

n1

O C¢CA

Q B

Fig. 3.35 All rays parallel to the major axis of the ellipsoid
of revolution will focus to one of the focal points
of the ellipse provided the eccentricity = n

1
/n

2
.

3.6 C is the center of the reflecting sphere of radius R (see Fig.

3.36). P1 and P2 are two points on a diameter equidistant

from the center. (a) Obtain the optical path length P1O +

OP2 as a function of , and (b) find the values of  for

which P1OP2 is a ray path from reflection at the sphere.

3.7 SPM is a spherical refracting surface separating two media

of refractive indices n1 and n2. (see Fig. 3.35). Consider an

object point O forming a virtual image at the point I. We

assume that all rays emanating from O appear to emanate

from I so as to form a perfect image. Thus, according to

Fermat's principle, we must have

n1 OS � n2 SI = n1 OP � n2 PI

q

P1 P2C

R

O

Fig. 3.36 A spherical reflector.

where S is an arbitrary point on the refracting surface. As-

suming the right-hand side to be zero, show that the

refracting surface is spherical, with the radius given by

r = 
n

n n
1

1 2+
 OP (3.95)

Thus show that

n1
2d1 = n2

2 d2 = n1n2r (3.96)

where d1 and d2 are defined in Fig. 3.37. (see also Fig. 4.12

and Sec. 4.10).

d2

d1 r

PCOI

Sn1

n2

Fig. 3.37 All rays emanating from O and getting refracted
by the spherical  surface SPM appear to come
from I.

QO C

M

P

q

n1 n2

x

y
r

Fig. 3.34 Paraxial image formation by a concave refract-
ing surface SPM.
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[Hint: We consider a point C which is at a distance d1 from

the point O and d2 from the point I. Assume the origin to be

at O and let (x, y, z) represent the coordinates of the point

S. Thus,

n1 (x
2 + y2 + z2)1/2 � n2 (x

2 + y2 + 2)1/2

= n1 (r + d1) � n2 (r + d2) = 0

where  = d2 � d1. The above equation would give the equa-

tion of a sphere whose center is at a distance of n2r/n1

(= d1) from O.]

3.8 Referring to Fig. 3.38, if I represents a perfect image of the

point O, show that the equation of the refracting surface

(separating two media of refractive indices n1 and n2) is

given by

n1 [x
2 + y2 + z2]1/2 + n2 [x

2 + y2 + (z2 � z)2]1/2

= n1 z1 � n2 (z2 � z1) (3.97)

where the origin is assumed to be at the point O and the

coordinates of P and I are assumed to be (0,0, z1) and

(0,0, z2) respectively. The surface corresponding to Eq.

(3.97) is known as a Cartesian oval.

PO I

M

S

Fig. 3.38 The Cartesian oval. All rays emanating from O
and getting refracted by SPM pass through I.

3.9 For the refractive index variation given by Eqs. (3.21) and

(3.22), a ray is launched at x = 0.43 m making an angle � /

60 with the z-axis (see Fig. 3.14). Calculate the value of x

at which it will become horizontal. [Ans: x  0.41 m]

3.10 For the refractive index variation given by Eqs. (3.21) and

(3.22), a ray is launched at x = 2.8 m such that it becomes

horizontal at x = 0.2 m (see Fig. 3.15). Calculate the angle

that the ray will make with the z-axis at the launching

point.

[Ans: 1  19°]

3.11 Consider a parabolic index medium characterized the fol-

lowing refractive index variation:

n2(x) = n
x

a1
2

2

1 2− %
'

(
0

1

3
2

4

6
5Δ |x| < a

= n1
2(1 � 2 ) = n2

2 |x| > a

Assume n1 = 1.50, n2 = 1.48,  a = 50 m. Calculate the

value of .

(a) Assume rays launched on the axis at z = 0 (i.e., x = 0

when z = 0) with
~
β  = 1.495, 1.490, 1.485, 1.480, 1.475 and 1.470

In each case, calculate the angle that the ray initially

makes with the z-axis ( 1) and plot the ray paths. In

each case, find the height at which the ray becomes

horizontal.

(b) Assume-rays incident normally on the plane z = 0 at

x = 0, ±10 m, ±20 mm, ±30 m,  and ±40 m. Find

the corresponding values of 
~
β , calculate the focal

length for each ray and qualitatively plot the ray

paths.

3.12 In an inhomogeneous medium the refractive index is given

by

n2(x) = 1 + 
x

L
for x > 0

= 1 for x < 0

Write down the equation of a ray (in the x�z plane) passing

through the point (0, 0, 0) where its orientation with

respect to x-axis is 45°.

2

2
 ( ) = 

4

z
x z

L
zAns:

3.13 For the refractive index profile given by Eq. (3.23), show

that Eq. (3.27) can be written in the form

± 
α

β

K n1 2

2
~  dz = 

dG

G1 2−
(3.98)

where

K1 = 

~
β2

0
2

2

− n

n
and G(x) = K1 e

x/2 (3.99)

Integrate Eq. (3.98) to determine the ray paths.

3.14 Consider a graded index medium characterized by the

following refractive index distribution:

n2(x) = n1
2 sech2 gx (3.100)
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Substitute in Eq. (3.27) and integrate to obtain

x(z) = 
1

g
 sinh�1 

n
gz

1
2 2−

1

3

2
2
2

4

6

5
5
5

~

~ sin
β

β
(3.101)

Note that the periodic length

zp = 
2π
g

is independent of the launching angle (see Fig. 3.39) and all

rays rigorously take the same amount of time in propagat-

ing through a distance zp in the z-direction.

[Hint: While carrying out the integration, make

the substitution:  = 

~

~
β

βn1
2 2−

 sinh gx]
0

–3

–2

–1

0

1

2

3

2 4 6 8 10 12

x
(m

m
)

z (mm)

Fig. 3.39 Ray paths in a graded index medium character-
ized by Eq. (3.100).
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In this chapter, we will study the formation of an image by

simple optical systems, assuming the optical system to be

made up of a number of refracting surfaces like a

combination of lenses.* In order to trace a ray through such

The use of plane and curved mirrors and of convex and concave lenses were discovered inde-

pendently in China and in Greece. References to burning mirrors go back almost to the start

of history, and it is possible that Chinese and Greek knowledge were both derived from a

common source in Mesopotamia, India or Egypt� Pythagoras, Greek philosopher and math-

ematician (6th century BC), suggested that light consists of rays that, acting like feelers, travel

in straight lines from the eye to the object and that the sensation of sight is obtained when these

rays touch the object. In this way, the more mysterious sense of sight is explained in terms of

the intuitively accepted sense of touch. It is only necessary to reverse the direction of these rays

to obtain the basic scheme of modern geometrical optics. The Greek mathematician Euclid

(300 fg), who accepted the Pythagorean idea, knew that the angle of reflected light rays from

a mirror equals the angle of incident light rays from the object to the mirror. The idea that light

is emitted by a source and reflected by an object and then enters the eye to produce the

sensation of sight was known to Epicurus, another Greek philosopher (300 fg). The

Pythagorean hypothesis was eventually abandoned and the concept of rays traveling from the

object to the eye was finally accepted about eh 1000 under the influence of an Arabian

mathematician and physicist named Alhazen.

�The New Encyclopedia Britannica, Vol. 23

Alhazen had used spherical and parabolic mirrors and was aware of spherical aberration. He

also investigated the magnification produced by lenses and atmospheric refraction. His work

was translated into Latin and became accessible to later European scholars.

�From the Internet

�ip�eg�syx2exh2�ipvig�syx

f�2��ri�sgev2���pegi�

Chapter
Four

an optical system, it is necessary only to apply Snell�s laws

at each refracting surface which are as follows:

(a) the incident ray, the refracted ray and the normal (to

the surface) lie in the same plane; and

(b) if 
I
 and 

P
 represent the angles of incidence and

refraction, respectively, then

* The optical system may also consist of mirrors, in which case, the reflection of rays should also be taken into account (see Sec. 4.3).

LO 1: describe the image formation at spherical surface.

LO 2: learn the formation of paraxial image by thin lens.

LO 3: derive the Newtonian lens formula in image formation.

LO 4: apply the principles of aplanatism in optical devices.

LO 5: define the sine condition.
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sin

sin
1

2

= 
n

n
2

1

(4.1)

where n
I
 and n

P
 are the refractive indices of the two media

(see Fig. 4.1). Although there is no additional physics in-

volved (other than the Snell�s laws) in the tracing of rays, the

design of even a simple optical system involves tracing

many rays and therefore considerable numerical computa-

tions. Nowadays, such numerical computations are usually

done on a high-speed computer. It may be of interest to note

that optical designers were among the first to make use of

electronic computers when they were introduced in the early

1950s.

RFP �ip�eg�syx2 e�2 e2 �sxqvi

��ri�sgev2 ���pegi  LO 1

We will first consider refraction at a spherical surface SPM

separating two media of refractive indices nI and nP (see

Fig. 4.1(a)). Let C represent the center of curvature of the

spherical surface. We will consider a point object O emitting

rays in all directions. We will use Snell�s laws of refraction to

determine the image of the point O. We may mention that not

all rays emanating from O converge to a single point; how-

ever, if we consider only those rays which make small angles

with the line joining the points O and C then all rays do con-

verge to a single point I [see Fig. 4.1(a)]. This is known as the

paraxial approximation and according to Fermat�s principle,

all paraxial rays take the same amount of time to travel from

O to I (see Example 3.3).

Now, in terms of the angles defined in Fig. 4.1(a) we have

I
 =  + 

I
and

P
 =  � 

P

We next make use of the paraxial approximation, viz., all

angles 
I
, 

P
, 

I
, 

P
 and  are small, so that we may write

sin 
I

tan 
I I

 etc.

where the angles are obviously measured in radians. Thus,

we have

sin 
I I

 =  + 
I

tan  + tan 
I

h

r

h

x
(4.2)

and

sin P P =  � P tan  � tan P

h

r

h

y
(4.3)

where the distances h, x, y and r are defined in Fig. 4.1(a) and

we have assumed that the foot of the perpendicular (D) is

very close to the point P so that OD OP = x, ID IP = y,

etc. We now use Eqs. (4.1) � (4.3) to obtain (in the paraxial

approximation):

nI

h

r

h

x

%
'

(
0 = nP

h

r

h

y

%
'&

(
0)

or

n

y

n

x
2 1 = 

n n

r
2 1 (4.4)

Fig. 4.1 (a) Paraxial image formation by a spherical refract-
ing surface separating media of refractive indices n1

and n2. O represents the object point and I the
paraxial image point. (b) corresponds to positive u.

4.2.1 The Sign Convention

Before we proceed further, we should state the sign

convention which we will be using throughout in the book.

We refer to Fig. 4.1(a) and consider the point P as the origin

of the co-ordinate system. The sign convention is as follows:

1. The rays are always incident from the left on the

refracting (or reflecting) surface.

2. All distances to the right of the point P are positive

and distances to the left of the point P are negative.

Thus in Fig. 4.1 (a), the object distance u is a negative
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quantity and the image distance v and the radius of

curvature R are positive quantities. For u to be posi-

tive, we must have a situation like the one shown in

Fig. 4.1(b); in the absence of a refracting surface, the

rays converge to a point to the right of  P.

3. The angle that the ray makes with the axis is positive if

the axis has to be rotated in the anticlockwise direction

(through the acute angle) to coincide with the ray. Con-

versely, if the axis has to be rotated in the clockwise

direction (through the acute angle) to coincide with the

ray, then the slope angle is negative. Thus in

Fig. 4.1(a), if 
I
 and 

P
 are the angles that the rays OS

and SI make with the axis, then 
I
 = 

I
 and 

P
 = �

P
;

I
, 

P
 and  represent the magnitudes of the angles. (If

the final result does not depend on the angles, then it

is more convenient to use the magnitude of the angles

as has indeed been done in Sec. 4.2). In Fig. 4.1(b),

both I and P are negative quantities.

4. The angle that a ray makes with the normal to the

surface is positive if the normal has to be rotated in

the anticlockwise direction (through the acute angle)

to coincide with the ray, and conversely. Thus, in

Fig. 4.1 (a), I and P are positive quantities.

5. All distances measured upward from the axis (along a

perpendicular to the axis) are positive, and all dis-

tances measured in the downward direction are

negative.

4.2.2 The Gaussian Formula for a
Single Spherical Surface

If we now use the sign convention discussed above, then for

the ray diagram shown in Fig. 4.1(a), u = �x, v = y and R = r.

Thus Eq. (4.4) becomes

n n

u
2 1

v
= 
n n

R
2 1 (4.5)

which gives the image point due to refraction at a spherical

surface (see also Eq. 3.10 of the previous chapter).

Equation (4.5) is known as the Gaussian formula for a single

spherical surface. It should be noted that, corresponding to

Fig. 4.1(a), u is negative and v positive, whereas for

Fig. 4.1(b) u and v are both positive.

Example 4.1 Consider a medium of refractive index 1.5

bounded by two spherical surfaces S
I
P
I
M

I
 and S

P
P
P
M

P
 as shown in

Fig. 4.2. The radii of curvature of the two surfaces are 15 and 25 cm

with their centers at C
I
 and C

P
, respectively. There is an object at

a distance of 40 cm (from P
I
) on the line joining C

I
 and C

P
. Deter-

mine the position of the paraxial image.

Solution: We first consider refraction by S
I
P
I
M

I
. Obviously

u = � 40 cm, R = + 15 cm, n
I
 = 1.0 and n

P
 = 1.5. Thus,

1 5 1

40

.

v
+ = 

0 5

15

.
 v = +180 cm

In the absence of the second surface, the image is formed at O

at a distance of 150 cm from P
P
. O  now acts as a virtual object and

since it is to the right of S
P
P
P
M

P
 we have, while considering refrac-

tion by the second surface, u = + 150 cm, R = �25 cm, n
I
 = 1.5 and

n
P
 = 1.0. Thus,

1 0 1 5

150

. .

v
− = +

0 5

25

.

giving

v = +33 1
3

 cm

and a real image is formed on the right of P
P
 at a distance of

33 1
3

cm.

We should point out that while considering refraction by

a single surface (as in Fig. 4.1), the axis of the system is de-

fined by the line joining the object point O and the center of

curvature C; thus any ray from the point O (like OS) will be in

the plane containing the axis and the normal at the point S

and consequently, the refracted ray will always intersect the

axis. On the other hand, if there is second refracting surface

(like in Fig. 4.2 or as in a lens) then the line joining the two

1
3

33

180
30

25

15
40

O

P1 P2

S2
S1

M2M1

C2 C1 I

n = 1.0 1.5 1.0

O¢

Fig. 4.2 Paraxial image formation by a medium of refractive index 1.5 bounded by two spherical sur-
faces S1P1M1 and S2P2M2. All distances are measured in centimeters.
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centers of curvature is defined as the axis. In the latter case,

as can be readily seen, not all rays from an off-axis point will

intersect the axis and after refraction at the second surface

will, in general, not remain confined to a single plane; these

rays are known as skew rays. Rays which remain confined to

a plane (containing the axis) are known as meridional rays;

obviously, all rays emanating from a point on the axis are me-

ridional rays.

RFQ �ipvig�syx2 f�2 e2 �sxqvi

��ri�sgev2 ���pegi

We next consider the imaging of a point object O by a spheri-

cal mirro r SPM (see Fig. 4.3) in the paraxial approximation;

the point C represents the center of curvature. We proceed

in a manner exactly similar to that in Sec. 4.2 and we refer to

Fig. 4.3 to obtain

S

h

D

M

ICO

a1
a2b

f2

f1

x

r

y

f f1 2=

P

Fig. 4.3 Paraxial image formation by a spherical reflecting
surface SPM.

I =  � I

h

r

h

x
and

P = P � 
h

y

h

r

where the distances x, y, h and r are defined in Fig. 4.3. Since

I = P (the law of reflection), we get

1 1

x y
= 

2

r
(4.6)

If we again use the sign convention that all the distances

to the right of P are positive and those to its left negative,

then u = � x, v = � y and R = � r; thus we obtain the mirror

equation

1 1

u v
= 

2

R
(4.7)

which is the same as was derived by using Fermat�s principle

(see Problem 3.1). It is interesting to note that if we set n
P
 =

� n
I
 in Eq. (4.5), we get Eq. (4.7). This follows from the fact

that Snell�s law of refraction Eq. (4.1) becomes the law of re-

flection if we have n
P
 = � n

I
.

We illustrate the use of Eq. (4.7) through an example.

Example 4.2 Consider an optical system consisting of a

concave mirror S
I
P
I
M

I
 and convex mirror S

P
P
P
M

P
 of radii of curva-

tures 60 cm and 20 cm, respectively (see Fig. 4.4). We would like

to determine the final image position of the object point O which is

at a distance of 80 cm from the point P
I
, the two mirrors being

separated by a distance of 40 cm.

P
2

I
2

P
1

S
2

S
1

80

60

40

40

20
M
1

M
2

CO

Fig. 4.4 Paraxial image formation by an optical system
comprising a concave mirror S1P1M1 and a convex
mirror S

2P2M2.

We first consider the imaging by S
I
P
I
M

I
; since u = � 80 cm and

R = � 60 cm (because both O and C are on the left of P
I
), we have

− +
1

80

1

v
=2� 2

60
v = � 48 cm

In the absence of the mirror S
P
P
P
M

P
, a real image will be formed

at I
I
 which now acts as a virtual object for S

P
P
P
M

P
. Since I

I
 is to the

left of P
P
, we have (considering imaging by S

P
P
P
M

P
), u = � 8 cm and

R = � 20 cm, giving

1 1

8v
− =2� 2

20
v = + 40 cm

Thus, the final image is formed on the right of S
P
P
P
M

P
 at a dis-

tance of 40 cm, which happens to be the point P
I
.
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A medium bounded by two spherical refracting surfaces is

referred to as a spherical lens. If the thickness of such a lens

(shown as t in Fig. 4.5) is very small compared to object

and image distances, and to the radii of curvature of the

refracting surfaces then the lens is referred to as a thin

spherical lens. In general, a lens may have non-spherical

refracting surfaces (e.g., it may have cylindrical surfaces).

However, most lenses employed in optical systems have

spherical refracting surfaces. Therefore, we will simply use

the term �lens� to imply a spherical lens. Different types of

lenses are shown in Fig. 4.6. The line joining the centers of

curvature of the spherical refracting surfaces is referred to as

the axis of the lens.

In this section, we will consider the paraxial image forma-

tion by a thin lens. The corresponding considerations for a

thick lens will be discussed in Problem 4.6.

We consider a point object O on the axis of a (thin) lens

as shown in Fig. 4.5. The lens is placed in a medium of refrac-

tive index n
I
 and the refractive index of the material of the

lens is n
P
. Let R

I
 and R

P2
be the radii of curvature of the left

and right surfaces of the lens; for the lens shown in Fig. 4.5,

RI is positive and RP is negative. In order to determine the

position of the image, we will consider successive refractions

at the two surfaces; the image formed by the first surface is

considered as the object (which may be real or virtual) for

the second surface. Thus, if the second refracting surface

had not been there, the image of the point O would have

been formed at Q whose position (given by v ) is determined

from Eq. (4.8) (see also Eq. (4.5))

n n

u
2 1

v
= 
n n

R
2 1

1

(4.8)

where u is the object distance which is negative for the

object point O shown in the figure. Obviously if v  is

positive, then the point Q lies to the right of the surface and

if v  is negative then Q lies to the left of the surface. The

point Q now acts as the (virtual) object for the second

refracting surface and the final image is formed at I whose

position is determined from the equation

n1

v
 � 

n2

v
= 
n n

R
1 2

2

(4.9)

In Eqs. (4.8) and (4.9) the distances are measured from the

center of the lens P; this is justified because the lens has

been assumed to be thin. Adding Eqs. (4.8) and (4.9), we get

1 1

v u
= (n � 1) 

1 1

1 2R R

%
'&

(
0)

(4.10)

where

n
n

n
2

1

Equation (4.10) is known as the thin lens formula and is

usually written in the form

1 1

v u
= 

1

f
(4.11)

where f, known as the focal length of the lens, is given by

1

f
= (n � 1) 

1 1

1 2R R

%
'&

(
0)

(4.12)

For a lens placed in air (which is usually the case),

n > 1 and if [(1/R
I
) � (1/R

P
)] is a positive quantity then

the focal length is positive and the lens acts as a con-

verging lens [see Fig. 4.7(a)]. Similarly, if (1/R
I
) � (1/R

P
)

is a negative quantity then the lens acts as a diverging

lens (see Fig. 4.7(b)). However, if the double convex lens is

placed in a medium whose refractive index is greater than that

of the material of the lens, then the focal length becomes

negative and the lens acts as a diverging lens [see Fig.

4.7(c)]; similarly for the double concave lens [see Fig. 4.7(d)].

t

y¢

y
x

O C2
C1 I Q

n1n1

n2

Fig. 4.5 Image formation by a thin lens. The line joining the two centers of curvature is known as the
axis of the lens [u = �x, v  = y  v = y].
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(a)

> 0

< 0

R

R
1

2

(b)

< 0

> 0

R

R
1

2

(c)

< 0

< 0

R

R
1

2

(d)

> 0

> 0

R

R
1

2

Fig. 4.6 Signs of R
1
 and R

2
 for different lens types.

n1

n1

n1

n1

n1

n1

n1

n1

n2

n2

n2

n2

(a)

(c)

(b)

(d)

n n2 1>

n n2 1<

Fig. 4.7 (a) and (b) correspond to the situation when the
refractive index of the material of the lens is
greater than that of the surroundings and there-
fore a biconvex lens acts as a converging lens and
a biconcave lens acts as a diverging lens. (c) and
(d) correspond to the situation when the refractive
index of the material of the lens is smaller than
that of the surrounding medium and therefore a
biconvex lens acts as a diverging lens and a bicon-
cave lens as a converging lens.

RFS �ri2 ��sxgs�ev2 pygs2 exh

pygev2 vixq�r�2 yp2 e

vix�

For a converging lens, the first principal focus is defined as

the point (on the axis) such that a ray passing through that

point will, after refraction through the lens, emerge parallel to

the axis�see ray 1 in Fig. 4.8(a); the point FI is the first

principal focus. For a diverging lens, the ray which (in the

absence of the lens) would have passed through the first

principal focus emerges, after refraction by the lens, as a ray

parallel to the axis�see ray 1 in Fig. 4.8(b). The point F
I
 is

the first principal focus and its distance from the lens

(denoted by fI) is known as the first focal length of the lens.

Obviously, f
I
 is negative for a converging lens and positive

for a diverging lens.

We next consider a ray which travels parallel to the axis

[see ray 2 in Figs. 4.8(a) and (b)]. For a converging lens the

point at which the ray will intersect the axis [shown as FP in

Fig. 4.8(a)] is known as the second principal focus of the

lens. Similarly, for a diverging lens, the point at which the ray

would have intersected the axis (if produced backwards) is

the second principal focus [see the point FP in Fig. 4.8(b)].

The distance of the second principal focus from the lens is

known as the second focal length and is denoted by fP. As

can be seen from Fig. 4.8, fP is positive for a converging lens

and negative for a diverging lens.

For a thin lens placed in a medium such that the refractive

indices on both sides of the lens are the same (nQ = nI in

Fig. 4.8), the values of  f
I
 and f

P
 can be readily obtained by

considering the thin lens formula [see Eq. (4.10)] and one gets

1

2f
= � 

1

1f
 = ( )n

R R

%
'&

(
0)

1

3
2

4

6
51

1 1

1 2

 = 
1

f
(4.13)

However, if nQ  nI then the thin lens formula assumes the

form as given in Eq. (4.14) (see also Problem 4.2):

n n

u
3 1

v
= 
n n

R

n n

R
2 1

1

3 2

2

(4.14)

Now, when v = , u = fI (ray 1 in Fig. 4.8), we have

1

1f
= 

1

3
2

4

6
5

1

1

2 1

1

3 2

2n

n n

R

n n

R
(4.15)

Similarly, when u = � , v = fP (ray 2 in Fig. 4.8) we have

1

2f
= 

1

3

2 1

1

3 2

2n

n n

R

n n

R

1

32
4

65
(4.16)

Once we know f
I
 and f

P
 (and therefore the positions of the

first and second principal foci) the (paraxial) image can be

graphically constructed from the following rules:
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(i) A ray passing through the first principal focus will,

after refraction, emerge parallel to the axis [see ray 1

in Figs. 4.8(a) and (b)]

(ii) A ray parallel to the axis will, after refraction, either

pass through or appear to come from (depending on

the sign of f
P
) the second principal focus [see ray 2 in

Figs. 4.8(a) and (b)]

(iii) A ray passing through the center of the lens P will

pass through undeviated* [see ray 3 in Figs. 4.8(a)

and (b)]
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Let x
I
 be the distance of the object from the first principal

focus F
I
 (x

I
 will be positive if the object point is on the right

of F
I
 and conversely) and let x

P
 be the distance of the image

from the second principal focus FP as shown in Figs. 4.8(a)

and (b). Considering similar triangles in Fig. 4.8(a), we have

y

y
= 

f

x
1

1

(4.17)

and

y

y
= 
x

f
2

2

(4.18)

where the vertical distances are positive if measured above

the line and negative if measured below the line (see

Sec. 4.2.1). Equations (4.17) and (4.18) give

fI2fP = xIxP (4.19)

* This follows from the fact that, for a thin lens, when u = 0, v is also equal to zero [see Eqs. (4.10) and (4.14)].
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Fig. 4.8 (a) Paraxial imaging by a converging lens; x1, f1 and u are negative quantities and x2, f2, and v are
positive quantities. (b) Paraxial imaging by a diverging lens; here x1, f2, u and v are negative quan-
tities and x2 and f1 are positive quantities.

which is known as the Newtonian lens formula. It may be

noted that for a diverging lens [see Fig. 4.8(b)], Eqs. (4.17)

and (4.18) would be

y

y
= 

f

x
1

1

 = 
x

f
2

2

which are identical to Eqs. (4.17) and (4.18).

When the thin lens has the same medium on the two

sides, then using Eq. (4.13) we have

x
I
x

P
= � f P  (4.20)

showing that x
I
 and x

P
 must be of opposite signs. Thus, if

the object lies on the left of the first principal focus, then the

image will lie on the right of the second principal focus, and

vice versa.

RFU ve�i�ev2 weqxspsge�syx

The lateral magnification m is the ratio of the height of the

image to that of the object. Considering either Fig. 4.8(a) or

(b) we readily get

m = 
y

y
 = 

v

u
 = 

f x

f x
2 2

1 1

 = � 
f

x
1

1

 = � 
x

f
2

2

(4.21)

where we have made use of Eqs. (4.17) and (4.18). Obviously,

if m is positive, the image is erect [as in Fig. 4.8(b) and

conversely if m is negative, the image is inverted as in

Fig. 4.8(a)].

The magnification can also be calculated as the product of

the individual magnifications produced by each of the
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refracting surfaces; referring to Fig. 4.9, the magnification

produced by a single refracting surface is given by

m = 
y

y

and considering triangles AOC and ICB, we get

y

y
= 

v R

u R
 = 

1

1

R
u

R

v

(4.22)

Now, Eq. (4.5) gives us

n

n u
2

1

v
= 
n n

n R
2 1

1

v

and

u n

nv

1

2

= 
n n

n

u

R
2 1

2

B
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(– )y ¢

–u
R

P

v

0

y

A

Fig. 4.9 Imaging of an object of height y by a spherical
refracting surface.

Substituting for v/R and u/R in Eq. (4.22), we get

m = 
y

y
 = 

n

n u
1

2

v
(4.23)

Thus, if mI and mP represent the magnifications produced

by the two refracting surfaces in Fig. 4.8, then

m = 
n

n u
1

2

v

and

mP = 
n

n
2

1

v

v

where v  represents the distance of the image formed by the

first refracting surface. Thus,

m = mImP = 
v

u
(4.24)

consistent with Eq. (4.21).

Example 4.3 Consider a system of two thin lenses as shown

in Fig. 4.10. The convex lens has a focal length of +20 cm and the

concave lens has a focal length of �10 cm. The two lenses are sepa-

rated by 8 cm. For an object of height 1 cm (at a distance of 40 cm

from the convex lens), calculate the position and size of the image.

(The same problem will be solved again in Chapter 5 by using the

matrix method.)

Solution: Let us first calculate the position and size of the image

formed by the first lens:

u = � 40 cm, f = +20 cm

Therefore, using Eq. (4.11), we get

1

v
= 

1 1

u f
+  = �

1

40

1

20
+  = +

1

40

Thus, v = +40 cm and m
I
 = �1; the image is of the same size but

inverted. This image acts as a virtual object for the concave lens

with u = +32 cm and f = �10 cm. Thus,

1

v
= 

1

32

1

10
−  = � 

22

320

giving

v ~  � 14.5 cm

F2 F1F1

+20 –10

40

20

20

14.5

8

Fig. 4.10 Paraxial imaging by an optical system consisting of a converging lens of focal length 20 cm
and a diverging lens of focal length �10 cm separated by 8 cm. All distances in the figure are
in centimeters.
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Further,

m
P

= �
320 22

32

/
 = � 

1

2 2.

Thus,

m = m
I
m

P
 = +

1

2 2.

The final image is formed at a distance of 14.5 cm on the left of

the concave lens. The image is virtual, erect and smaller in size by

a factor of 2.2.
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In Sec. 4.2, while discussing image formation by a single

refracting surface we had made use of the paraxial

approximation, i.e., we had considered rays which made small

angles with the axis. In this approximation, it was found that

the images of point objects are perfect, i.e., all rays

emanating from a given object point were found to intersect

at one point which is the image point. If we had considered

rays which make large angles with the axis, then we would

have observed that, in general, (after refraction) they do not

pass through the same point on the axis (see Fig. 4.11) and a

perfect image is not formed. The image is said to be afflicted

with aberrations. However, for a given spherical surface,

there exist two points for which all rays emanating from one

point intersect each other at the other point. This point is at

a distance equal to nP2|R|/nI from the center of the spherical

surface and a virtual image is formed at a distance of nI|R|/nP

from the center [see Figs. 4.12(a) and (b)]. This can be easily

proved by using Fermat�s principle (see Problem 3.7) or by

using geometrical methods (see Sec. 4.10). The two points are

said to be the aplanatic points of the sphere and are utilized

in the construction of aplanatic lenses (see Fig. 4.13) which

are used in wide aperture oil immersion microscope

objectives. The points O and I are the aplanatic points of the

spherical surface of radius R
P
 (see Fig. 4.13). Thus,
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n n2       1<
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I C0

n1 n2

n n2       1>
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2
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r
n

n
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(b)

Fig. 4.12 O and I represent the aplanatic points of a spherical surface, i.e., all rays emanating from
O appear to come from I; (a) and (b) correspond to n2 < n1 and n2 > n1, respectively.

O P C II¢

S2

S1
n1 n2S

Fig. 4.11 The point I represents the paraxial image point of the object point O formed by a spherical refracting surface
SPM. However, if we consider non-paraxial rays like OS

1
 (which make large angles with the axis) then the

refracted ray, in general, will not pass through the point I �this leads to aberrations in the image.
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OP
P

= |R
P
| 1 1
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1
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n

n
(4.25)

and

IPP = |RP| 1 2

1

1

3
2

4

6
5

n

n
(4.26)

Now, the radius of curvature of the first surface (= RI)

is such that the point O coincides with its center of curva-

ture. Hence, all rays emanating from O hit the first surface

normally and move on undeviated. Therefore, for all practical

purposes, we may assume O to be embedded in a medium of

refractive index nP. A perfect (virtual) image of O is formed

at I.

4.8.1 The Oil Immersion Objective

The principle of aplanatism has a very important application

in microscope objectives where one is interested in having

as wide a pencil of light as possible without causing any

aberrations. We refer to the optical system shown in Fig.

4.14. The hemispherical lens L
I
 is placed in contact with a

drop of oil whose refractive index is the same as that of the

lens. The object O is immersed in the oil and the distance OC

is made equal to n
Q
|R

I
|/n

P
 so that the point O is the aplanatic

point with respect to the hemispherical surface, which is why

a perfect (virtual) image is formed at II. Now LP is an

aplanatic lens with respect to the object point at II and

therefore, a perfect image of II is formed at I. The lateral

magnifications caused by the refracting surface RI and lens

LP are

mI = 
n I P

n OP
2 1 1

3 1

( )

( )
(4.27)

and

m
P

= 
n IP

n I P
4 3

5 1 3

( )

( )
(4.28)
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n n

n
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Ω ΩR2

Ω ΩR1

Fig. 4.13 The aplanatic lens. The object point O is at the center of curvature of the first surface S1P1M1.
The points O and I are the aplanatic points of the spherical surface S2P2M2�thus a perfect
(virtual) image is formed at I.

Aplanatic
lens L2

R3

R2

R1

P3P2

n4n3

n2n2

n1
n5

P1COI1I

Fig. 4.14 The oil immersion objective. The points O and I
1
 are the aplanatic points corresponding to the

hemispherical surface of radius R
1
; the lens L

2
 acts as an aplanatic lens for the (virtual) object

at I
1
.
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Thus, the oil immersion objective reduces considerably

the angular divergence of the rays and results in an increase

in lateral magnification without introducing spherical aberra-

tion. We should, however, mention that a perfect image is

formed only of one point and, therefore, nearby points have

some aberrations. Moreover, oil immersion objectives have a

certain degree of chromatic aberration.

RFW �ri2 ge��i�sex2 y�ev

In general, for two points to form perfect images of

each other, the refracting surface is not, in general, spherical.

Figure 4.15 shows the two points O and I such that all rays

emanating from O (and allowed by the system) intersect

each other at the other point I. Thus the curve SPM shown

in Fig. 4.15 is the locus of the point S such that

nIOS + nPSI = constant (4.29)

The refracting surface is obtained by revolving the curve

shown in the figure (Fig. 3.38) about the z-axis (see also

Problem 3.8). The refracting surface is known as a Cartesian

oval.

When the object point is at infinity, the surface becomes

an ellipsoid of revolution (see Problem 3.5) and under certain

circumstances the surface is spherical; however, the image is

then virtual [see Figs. 4.12(a) and (b)].

Z
O P I

M

Sn1 n2

Fig. 4.15 The refracting surface (known as the Cartesian
oval) is such that all rays emanating from the
point O intersect at I.

RFIH qiywi��sgev2 ��yyp2 py�
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In this section, we will show the existence of aplanatic points

using geometrical considerations. We consider a spherical

refracting surface SPM of radius r separating two media of

refractive indices nI and nP (see Fig. 4.16). We will assume nP

< nI and define

= 
n

n
1

2

(4.30)

where  > 1. The point C represents the centre of the spheri-

cal surface SPM. With C as center, we draw two spheres of

S
Q

b

a

n1

n2

q1q2

O C P

M

r

I

O¢

I¢

r/m

mr

Fig. 4.16 Geometrical construction for the derivation of aplanatic points. SPM is the refracting the
surface of radius r. The inner and outer spheres are of radii r/  and r, respectively. O and I

are the aplanatic points.
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radii r and r/  as shown in Fig. 4.16. Let IOCP represent

any common diameter of the three spheres intersecting the

outer and inner spheres at I and O, respectively. From the

point O, we draw an arbitrary line hitting the refracting sur-

face at the point S. We join I and S and extend the line further

as SQ. If we can show that

sin

sin
= 

1
(4.31)

for all values of 
I
, then all rays emanating from the point O

will appear to come from I, and O and I will be the aplanatic

points for the spherical refracting surface SPM. Now,

IC

CS
= 

r

r
 = (4.32)

and

CS

OC
= 

r

r/
 =  = 

IC

CS
(4.33)

Thus, the two triangles SOC and SIC are similar, and

therefore,

= P and  = ISC = I (4.34)

Now, considering the triangle SOC, we have

sin

sin 1

= 
r

r

/
 = 

1
(4.35)

and using Eq. (4.34), we get

sin

sin
= 

1
 = 

n

n
2

1

(4.36)

proving that O and I are aplanatic points. We also have

sin

sin

1

2

= 
sin

sin
 = 

n

n
1

2

(4.37)

It is obvious that the points O  and I  will also be aplanatic

and therefore, the image formed by a small planar object at O

will be sharp even for the off-axis points. The system is said

to be free not only from spherical aberration but also from

coma. Furthermore, the linear magnification is given by

m
I I

O O

r

r/  = 
P
 = 

n

n
1

2

2
%
'&

(
0)

(4.38)
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We consider a general optical system as shown in

Fig. 4.17. We assume that the point O (on the axis of the

system) is perfectly imaged at I, i.e., all rays emanating from

O intersect each other at I. This implies that the optical

system has no spherical aberration corresponding to O. We

next consider a slightly off-axis point O  (directly above O)

and, according to the sine-condition, for O  to be sharply

imaged at I we must have*

n

n
1 1

2 2

sin

sin
= 
y

y
2

1

 = linear magnification (4.39)

where 
I
 and 

P
 are defined in Fig. 4.17. Thus, the linear mag-

nification will be constant if the ratio sin 
I
/sin 

P
 is constant

* It may be noted that if we use Eqs. (4.37) and (4.38), we get

m2a2

y

y
2

1
2a2

n

n
1

2

2

2a2

n

n
1

2

1

2

sin

sin

consistent with Eq. (4.39).
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Fig. 4.17 The optical system images perfectly the points O and O  at I and I, respectively.
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for all points on the refracting surface and the image will be

free from the aberration known as coma. It is of interest to

note that according to Eq. (4.39) perfect imaging of (nearby)

off-axis points requires a condition to be satisfied by rays

from an on-axis point. Also, when the condition given by

Eq. (4.39) is satisfied, sharp imaging of a nearby point on the

axis (like O
I
) is not obtained; indeed the condition for sharp

imaging of O and O
I
 is quite different.

4.11.1 Proof of the Sine ConditionB

We refer to Fig. 4.17. We will assume that the axial point O is

perfectly imaged at I and will use Fermat�s principle to

determine the condition for perfect imaging of the nearby

off-axis point O . The ray O BI is parallel to the ray OAI and

the ray O D
I
 is parallel to OC

I
. Now, since I is the image of

the point O, we have

OPL[OA
I
A

P
I] = OPL[OC

I
C

P
I] (4.40)

where OPL stands for the optical path length. Further

OPL[O B
I
B

P
I ] = OPL[O D

I
D

P
I ] (4.41)

Now, the rays O B
I
 and OA

I
 meet at infinity and therefore

OPL[O B
I
B

P
F] = OPL[OA

I
A

P
F] (4.42)

We next consider the triangle FII

FI = [FIP + |yP|
P]IGP = FI 1

1

2

2
2

2

1

3
2
2

4

6
5
5

| |y

FI

Thus,

FI FI (4.43)

where we are assuming that |y
P
| is small enough so that terms

proportional to |y
P
|P can be neglected. If we add Eqs. (4.42)

and (4.43), we get

OPL[O BIBPI ] = OPL[OAIAPI ]

= OPL[OC
I
C

P
I ] (4.44)

Since the left-hand side of the above equation is OPL

[O D
I
D

P
I ], we get

OPL[O D
I
D

P
I ] = OPL[OC

I
C

P
I] (4.45)

Now, the rays 3 and 4 meet at infinity and intersect at F ,

so that

OPL[GDIDPF ] = OPL [OCICF ] (4.46)

where the point G is the foot of the perpendicular drawn from

the point O on ray 4. We subtract Eq. (4.45) from Eq. (4.46) to

obtain

OPL[F I ] � OPL[GO ] = OPL[F I] (4.47)

or

nP(F I ) � nI(GO ) = nP(F I)

or

nI(GO ) = nP(F I  � F I) (4.48)

But

GO = yI sin I (4.49)

and

F I  � F I HI (�y
P
) sin (�

P
) (4.50)

where H is the foot of the perpendicular from the point I on

ray 4. Substituting the above two equations in Eq. (4.48), we

get

n

n
1 1

2 2

sin

sin
= 
y

y
2

1

 = linear magnification (4.51)

showing that the linear magnification is constant if the ratio

sin
I
/sin

P
 is constant for all points on the refracting

surface. The sine condition is of extensive use in the design

of optical systems.

Summary

u Consider refraction at a spherical surface separating two

media of refractive indices n
I
 and n

P
. For a point object at a

distance |u | on the left, the paraxial image is formed at a

distance v where

n n

u
2 1

v
−  = 

n n

R
2 1−

The sign convention is as follows:

1. The rays are always incident from the left on the

refracting surface.

2. All distances to the right of the refracting surface are

positive and distances to the left of the refracting

surface are negative.

u For a thin lens of refractive index n (placed in air), let R
I
 and

R
P
 be the radii of curvature of the left and right surfaces of

the lens; then the image distance is given by

1 1

v
−
u

 = (n � 1) 
1 1

1 2R R
−

which is usually referred to as the 'thin-lens formula'; the

quantity f is known as the focal length of the lens.

u If refractive index of the medium is more than the refractive

index of double concave or convex lens, then the focal length

of the lens becomes negative.

Newtonian lens formula is represented as

f
I
f
P
 = x

I
x
P

u For a given spherical surface, there are two points for which

all rays emanating from one point intersect each other at the
* For a rigorous proof of the sine condition, See Ref. 4.3.



OpticsRFIR
u

other point. This point is at a distance equal to n
P
| R |/n

I
 from

the center of the spherical surface and a virtual image is

formed at a distance of n
I
| R |/n

P2
from the center. The two

points are said to be the aplanatic points of the sphere and

are utilized in the construction of aplanatic lenses.

u For two points to form perfect images of each other, the

refracting surface is a Cartesian oval.

u The linear magnification will be constant if the ratio sin qI/

sin qP is constant for all points on the refracting surface and

the image will be free from the aberration known as coma.

Problems

4.1 (a) Consider a thin biconvex lens (as shown in Fig. 4.18)

made of a material whose refractive index is 1.5. The

radii of curvature of the first and second surfaces

(R
I
 and R

P
) are +100 and � 60 cm, respectively. The

lens is placed in air (i.e., n
I
 = n

Q
 = 1). For an object at

a distance of 100 cm from the lens, determine the

position and linear magnification of the (paraxial)

image. Also calculate x
I
 and x

P
 and verify Newton�s

formula [Eq. (4.20)].

[Ans: x
I
 = �25 cm and x

P
 = +225 cm]

(b) Repeat the calculations of the above problem when

the object is at a distance of 50 cm.

4.2 Consider a thin lens (made of a material of refractive index

n
P
) having different media on the two sides; let n

I
 and n

Q
 be

the refractive indices of the media on the left and on the right

of the lens, respectively. Using Eq. (4.5) and considering

successive refractions at the two surfaces, derive Eq. (4.14).

4.3 Referring again to Fig. 4.18, assume a biconvex lens with

|R
I
| = 100 cm, |R

P
| = 60 cm with n

I
 = 1.0 but n

Q
 = 1.6. For

u = �50 cm determine the position of the (paraxial) image.

Also determine the first and second principal foci and verify

Newton�s formula. Draw the ray diagram.

[Ans: x
I
 = 250 cm, x

P
 = 576 cm]

4.4 (a) In Fig. 4.18, assume the convex lens to be replaced by

a (thin) biconcave lens with |R
I
| = 100 cm and |R

P
| =

60 cm. Assume n
I
 = n

Q
 = 1 and n

P
 = 1.5. Determine

the position of the image and draw an approximate ray

diagram for u = �100 cm.

(b) In (a), assume n
I
 = n

Q
 = 1.5 and n

P
 = 1.3. Repeat the

calculations and draw the ray diagram. What is the

qualitative difference between the systems in (a)

and (b)?

n2n1 n3

R1

R2

Fig. 4.18

4.5 Consider an object of height 1 cm placed at a distance of

24 cm from a convex lens of focal length 15 cm (see Fig.

4.19). A concave lens of focal length �20 cm is placed

beyond the convex lens at a distance of 25 cm. Draw the

ray diagram and determine the position and size of the final

image.

[Ans: Real image at a distance of 60 cm from the

concave lens.]

24 25

+15 –20

Fig. 4.19 An optical system consisting of a thin convex and
a thin concave lens. All distances are measured
in centimeters.

4.6 Consider a thick biconvex lens whose magnitude of the ra-

dii of curvature of the first and second surfaces are 45 and

30 cm, respectively. The thickness of the lens is 5 cm and

the refractive index of the material, it is made of, is 1.5. For

an object of height 1 cm at  distance of 90 cm from the first

surface, determine the position and size of the image. Draw

the ray diagram for the axial point of the object.

[Ans: Real image at a distance of 60 cm

from the second surface.]

4.7 In Problem 4.6, assume that the second surface is silvered so

that it acts like a concave mirror. For an object of height 1 cm

at a distance of 90 cm from the first surface, determine the

position and size of the image and draw the ray diagram.

[Ans: Real image at a distance of about 6.2cm

from the first surface. (Remember the sign convention.)]

4.8 Consider a sphere of radius 20 cm of refractive index 1.6

(see Fig. 4.20). Show that the paraxial focal point is at a dis-

tance of 6.7 cm from the point P
P
.



Refraction and Reflection by Spherical Surfaces RFIS
u

20

n = 1.6 n = 1.0

Fig. 4.20

4.9 Consider a hemisphere of radius 20 cm and refractive index

1.5. Show that parallel rays will focus at a point 40 cm

from P
P
 (see Fig. 4.21).

1.5

20

40

P2

Fig. 4.21

4.10 Consider a lens of thickness 1 cm, made of a material of

refractive index 1.5, placed in air. The radii of curvature of

the first and second surfaces are +4 cm and �4 cm, respec-

tively. Determine the point at which parallel rays will

focus.

[Ans: At a distance of about 4.55 cm from the

second surface.]
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Let us consider a ray PQ incident on a refracting surface SQS

separating two media of refractive indices n
1
 and n

2
 (see

Fig. 5.1). Let NQN  denote the normal to the surface. The

direction of the refracted ray is completely determined from

the following conditions:

(a) the incident ray, the refracted ray and the normal lie in

the same plane; and

(b) if 
1
 and 

2
 represent the angles of incidence and

refraction respectively, then

sin

sin

1

2

= 
n

n
2

1

(5.1)

Optical systems, in general, are made up of a large number of

refracting surfaces (like in a combination of lenses) and any

ray can be traced through the system by using the above

conditions. In order to obtain the position of the final image

due to such a system, one has to calculate step-by-step the

position of the image due to each surface and this image will

act as an object for the next surface. Such a step-by-step

analysis becomes complicated as the number of elements of

an optical system increases. We shall, in this chapter,

develop the matrix method which can be applied with ease

under such situations. This method indeed lends itself to

direct use in computers for tracing rays through complicated

optical systems.

In dealing with a system of lenses we simply chase the ray through the succession of lenses. That

is all there is to it.

�Richard Feynman in Feynman Lectures on Physics

�ri2we��s�2wi�ryh

sx2�e�e�sev2y��sg�

Chapter
Five

Q

SN

N¢

S¢

P

C

q1
q2

n2
n1

Fig. 5.1 Refraction of a ray by a surface SQS  which sepa-
rates two media of refractive indices n1 and n2;
NQN  denotes the normal at the point Q. If the re-
fracting surface is spherical then the normal NQN
will pass through the centre of curvature C.

Before we describe the matrix formulation of geometric

optics it is necessary to mention the rule of matrix multiplica-

tion and the use of matrices for solving linear equations. A

(m  n) matrix has m rows and n columns and has (m  n)

elements; thus the matrix

A = 
a b c

d e f

%
'&

(
0)

(5.2)

has 2 rows and 3 columns and has 2 3 = 6 elements.

A(m n) matrix can be multiplied only to a (n  p) matrix to

obtain a m  p matrix. Let

* The author thanks Professor K. Thyagarajan for his help in writing this chapter.

LO 1: calculate the effect of translation and refraction on paraxial rays.

LO 2: define unit planes using elements of system matrix.

LO 3: obtain the position of nodal points in an optical system.

LO 4: analyze the combination of lenses using matrix formulation.
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B = 

g

h

i

%

'

&
&

(

0

)
)

(5.3)

represent a (2  1) matrix. Then the product

AB = 
a b c

d e f

g

h

i

%
'&

(
0)

%

'

&
&

(

0

)
)

 = 
( )

( )

ag bh ci

dg eh fi

%
'&

(
0)

(5.4)

will be a (2  1) matrix, and the product BA has no meaning.

If we define a (2  3) matrix

A = 
%
'&

(
0)

a b c

d e f

then A = A

if and only if a  = a, b  = b, c  = c, d  = d, e  = e and

f  = f, i.e., all the elements must be equal. The set of two

equations

x ay by

x cy dy

1 1 2

2 1 2

=

=

@
A
B

(5.5)

can be written in the following form:

x

x

1

2

%
'&

(
0)

= 
( )

( )

ay by

cy dy

1 2

1 2

%
'&

(
0)

 = 
a b

c d

y

y

%
'&

(
0)
%
'&

(
0)

1

2

(5.6)

the last step follows from the rule of matrix multiplication.

Further, if we have

and
y ez fz

y gz hz

1 1 2

2 1 2

=

=

@
A
B

(5.7)

then

y

y

1

2

%
'&

(
0)

= 
e f

g h

z

z

%
'&

(
0)
%
'&

(
0)

1

2

(5.8)

Consequently,

x

x

1

2

%
'&

(
0)

= 
a b

c d

e f

g h

z

z

%
'&

(
0)
%
'&

(
0)
%
'&

(
0)

1

2

(5.9)

or X = BZ, (5.10)

where X and Z represent (2  1) matrices:

X  
x

x

1

2

%
'&

(
0)

, Z  
z

z

1

2

%
'&

(
0)

, (5.11)

and B represents a (2  2) square matrix

B = 
a b

c d

e f

g h

%
'&

(
0)
%
'&

(
0)

= 
[ ] [ ]

[ ] [ ]

ae bg af bh

ce dg cf dh

%
'&

(
0)

(5.12)

Equations (5.9) and (5.12) tell us that

and
x ae bg z af bh z

x ce dg z df dh z

1 1 2

2 1 2

=

=

( ) ( )

( ) ( )

@
A
B

(5.13)

which can be verified by direct substitution. We will now use

the matrix method to trace paraxial rays through a cylindri-

cally symmetric optical system.

SFP �ri2 we��s�2 wi�ryh

We will consider a cylindrically symmetric optical system

similar to the one shown in Fig. 5.2. The axis of symmetry is

chosen as the z-axis. We will be considering only paraxial

rays in this chapter; non-paraxial rays lead to what are known

as aberrations which will be discussed in Chapter 6.

In the paraxial approximation, we may confine ourselves

to rays which pass through the axis of the system; these rays

remain confined to a single plane. Such a ray can be

specified by its distance from the axis of the system and the

angle made by the ray with the axis; for example, in Fig. 5.2,

the point P on the ray is at a distance x
1
 from the axis and

makes an angle 
1
 with the axis. The quantities (x

1
, 

1
)

z

x2
x1

P

P¢ M¢

M
Q

Y

a1

a2

D

Fig. 5.2 In a homogeneous medium the ray travels in a straight line.

LO 1
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represent the coordinates of the ray. However, instead of

specifying the angle made by the ray with the z-axis, we will

specify the quantity.

= n cos  (= n sin )

which represents the product of the refractive index with the

sine of the angle that the ray makes with the z-axis this quan-

tity is known as the optical direction cosine.

Now, when a ray propagates through an optical system, it

undergoes only two operations: (a) translation and (b)

refraction. The rays undergo translation when they

propagate through a homogeneous medium as in the region

PQ (see Fig. 5.2). However, when it strikes an interface of two

media, it undergoes refractionF We will now study the effect

of translation and of refraction on the coordinates of the ray.

(a) Effect of Translation2Consider a ray traveling in a homo-

geneous medium of refractive index n
1
 which is initially at a

distance x
1
 from the z-axis and makes an angle 

1
 with the

axis (see point P in Fig. 5.2). Let (x
2
, 

2
) represent the coordi-

nates of the ray at the point M (see Fig. 5.2). Since the

medium is homogeneous, the ray travels in a straight line

and, therefore,

2
= 

1
(5.14)

Further, if PP  and MM  are perpendiculars on the axis and if

P M  = D, then

x
2

= x
1
 + D tan 

1
(5.15)

Since we are interested only in paraxial rays, 
1
 is very small

and hence we can make use of the approximation

tan 
1
~

1
, where 

1
 is measured in radians. Thus, Eq. (5.15)

reduces to

x
2
~ x

1
 + 

1
D (5.16)

If
1

= n
1 1

(5.17)

and
2

= n
2 2

(5.18)

then, using Eqs. (5.14) and (5.17), we get

and
2 1

2 1
1

1

=

=x x
D

n

@
A
u

Bu
,

(5.19)

which may be combined into the following matrix equation:

2

2x

%
'&

(
0)

= 
1 0

11

1

1D n x/

%
'&

(
0)
%
'&

(
0)

(5.20)

Thus, if a ray is initially specified by a (2  1) matrix with

elements 
1
 and x

1
, then the effect of translation through a

distance D in a homogeneous medium of refractive index n
1
,

is completely given by the 2  2 matrix

T = 
1 0

11D n/

%
'&

(
0)

(5.21)

and the final ray is given by Eq. (5.20). The matrix T is known

as the translation matrix. Notice that

det T = 
1 0

11D n/
 = 1 (5.22)

(b) Effect of Refraction We will now determine the matrix

which would represent the effect of refraction through a

spherical surface of radius of curvature R. Consider the ray

AP intersecting a spherical surface (separating two media of

refractive indices n
1
 and n

2
 respectively) at the point P and

getting refracted along PB (see Fig. 5.3). If 
1
 and 

2
 are the

angles made by the incident and the refracted ray with the

normal to the surface at P (i.e., with the line joining P to the

centre of curvature C), then according to Snell�s law

n
1
 sin 

1
= n

2
 sin 

2
(5.23)

a2
a1 q2

f1

f1

q1 P

C

B

N

A

x

R

n1 n2

Fig. 5.3   The refraction of a ray at a spherical surface.

Since we are dealing with paraxial rays, one can make use of

the approximation sin  ~  . Thus, Eq. (5.23) reduces to

n
1 1

~  n
2 2

(5.24)

From Fig. 5.3 it follows that

1
= 

1
 + 

1
and

2
 = 

1
 + 

2
(5.25)

where 
1
, 

2
 and 

1
 are respectively the angles that the

incident ray, the refracted ray and the normal to the surface

make with the z-axis. Also, since 
1
 is small, we may write

1
= 

x

R
(5.26)

Now, from Eqs. (5.24) and (5.25), we get

n
1
(

1
 + 

1
) ~  n

2
(

1
 + 

2
)
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or

n
2 2

~  n
1 1

 � 
n n

R
x2 1 (5.27)

where we have used Eq. (5.26). Thus,

2
= 

1
 � Px (5.28)

where

P = 
2 1n n

R
(5.29)

is known as the power of the refracting surface. Also, since

the height of the ray at P, before and after refraction,  is the

same (i.e., x
2
 = x

1
) we obtain, for the refracted ray,

2

2x

%
'&

(
0)

= 
1

0 1

1

1

%
'&

(
0)
%
'&

(
0)

P

x
(5.30)

Thus, refraction through a spherical surface can be

characterized by a 2  2 matrix:

� = 
1

0 1

%
'&

(
0)

P
(5.31)

It may be noted here that

det � = 
1

0 1

P
 = 1 (5.32)

In general, an optical system made up of a series of lenses,

can be characterized by the refraction and translation

matrices.

If a ray is specified by 
1

1x

%
'&

(
0)

 when it enters an optical

system and is specified by 
2

2x

%
'&

(
0)

 when it leaves the system,

then one can, in general, write

2

2x

%
'&

(
0)

= 
b a

d c x

%
'&

(
0)
%
'&

(
0)

1

1

(5.33)

where the matrix

S = 
b a

d c

%
'&

(
0)

(5.34)

is called the system matrix and is determined solely by the

optical system. The negative signs in some of the elements of

S have been chosen for convenience. Since the only two op-

erations a ray undergoes in traversing through an optical

system are refraction and translation, the system matrix is, in

general, a product of refraction and translation matrices.

Also, using the property that the determinant of the product

of matrices is the product of the determinant of the matrices,

we obtain

det S = 1 (5.35)
i.e.,

bc � ad = 1 (5.36)

We should mention here that the quantities b and c are

dimensionless. The quantities a and P have the dimension of

inverse length and the quantity d has the dimension of length.

In general, the units will not be given; however, it will be

implied that a and P are in cm
�1

 and d is in cm.

5.2.1 Imaging by a Spherical
Refracting Surface

As a simple illustration of the use of the matrix method, we

consider imaging by a spherical surface separating two media

of refractive indices n
1
 and n

2
 (see Fig. 5.4); the same

problem was discussed in the previous chapter using the

standard geometrical method. Let (
1
, x

1
), ( , x ), ( , x ) and

(
2
, x

2
) represent the coordinates of the ray at O, A  (just

before refraction), A  (just after refraction) and at I

respectively.

–u v

A¢

P

A¢¢

O x( , )l1 1 I( , )l2 2x

Fig. 5.4 Imaging by a spherical refracting surface
separating two media of refractive indices
n1 and n2.

We will be using the analytical geometry sign convention

so that the coordinates on the left of the point P are negative

and coordinates on the right of P are positive (see Sec. 4.2.1). Thus,

%
'&

(
0)x

= 
1 0

11

1

1

%
'&

(
0)
%
'&

(
0)u n x/

%
'&

(
0)x

= 
1

0 1

%
'&

(
0)
%
'&

(
0)

P

x

2

2x

%
'&

(
0)

= 
1 0

12v/n x

%
'&

(
0)
%
'&

(
0)

or

2

2x

%
'&

(
0)

= 
1 0

1

1

0 1

1 0

12 1

1

1v/ /n

P

u n x

%
'&

(
0)
%
'&

(
0)
%
'&

(
0)
%
'&

(
0)

Simple manipulations give

2

2x

%
'&

(
0)

= 

1

1 1

1

2 1 1 2

1

1
%
'&

(
0)

%
'&

(
0)

%

'

&
&
&

(

0

)
)
)

%
'&

(
0)

Pu

n

n

Pu

n

u

n

P

P

n
xv v

(5.37)
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from which we obtain

x
2

= 
v v

n

Pu

n

u

n

P

n
x

2 1 1
1

2
11 1

%
'&

(
0)

1

3
2

4

6
5

1

32
4

65
(5.38)

For a ray emanating from an axial object point (i.e., for x
1
 = 0)

the image plane is determined by the condition x
2
 = 0. Thus

Eq. (5.38) the coefficient of 
1
 should vanish and, therefore,

u

n1
= 

v

n

Pu

n2 1

1
%
'&

(
0)

or

n n

u
2 1

v

= P = 
n n

R
2 1 (5.39)

which is the same as derived in the previous chapter. Hence,

on the image plane

2

2x

%
'&

(
0)

= 

1

0 1

1

2

1

1

%

'

&
&
&

(

0

)
)
)

%
'&

(
0)

Pu

n
P

P

n
xv

(5.40)

giving

x
2

= 1
2

%
'&

(
0)

vP

n
 x

1

Thus, the magnification is given by

m = 
x

x
2

1

 = 1 � vP

n2

which on using Eq. (5.39) gives

m = 
n

n u
1

2

v

That is consistent with Eq. (4.23).

5.2.2 Imaging by a Coaxial Optical System

We will next derive the position of the image plane for an

object plane, which is at distance �D
1
 from the first refract-

ing surface of the optical system (see Fig. 5.5). Let the image

be formed at a distance D
2
 from the last refracting surface.

Now, according to our sign convention, for points on the left

of a refracting surface, the distances will be negative and for

points on the right of the refracting surface the distances will

be positive, thus D
1
 is an intrinsically negative quantity. Fur-

ther, if D
2
 is found to be positive the image is real and is

formed on the right of the refracting surface; on the other

hand, if D
2
 is found to be negative, the image will be virtual

and will be formed on the left of the last refracting surface.

Let us consider a ray O P starting from the point O  which

lies in the object plane. Let QI  be the ray emerging from the

last surface; the point I  is assumed to lie on the image

plane�see Fig. 5.5 (the point I is the paraxial image of the

point O and the image plane is defined to be the plane which

contains the point I and is normal to the axis). Let (
1
, x

1
), ( ,

x ), ( , x ) and (
2
, x

2
) represent the coordinates of the ray

at O , P, Q and I , respectively. Then

%
'&

(
0)

%
'&

(
0)
%
'&

(
0)

%
'&

(
0)

%
'&

(
0)
%
'&

(
0)

%
'&

(
0)

%
'&

(
0)
%
'&

(
0)

@

A

u
u
u

B

u
u
u

x D x

x

b a

d c x

x D x

=

=

=

1 0

1

1 0

1

1

1

1

2

2 2

Thus,

2

2x

%
'&

(
0)

 = 
1 0

1

1 0

12 1

1

1D

b a

d c D x

%
'&

(
0)
%
'&

(
0)
%
'&

(
0)
%
'&

(
0)

(5.41)

x2

I

I¢
O¢

D2–D1
O

x1

x¢
x¢¢

Q

P

Fig. 5.5 The object point O is at a distance (�D1) from the first refracting surface. The paraxial image is
assumed to be formed at a distance D2 from the last refracting surface.
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where the first and the third matrices on the RHS correspond

to translations by distances D
2
 and (�D

1
), respectively (in a

medium of refractive index unity); the second matrix corre-

spond to the system matrix of the optical system. Carrying

out the matrix multiplications, we obtain

2

2x

%
'&

(
0)

= 
b aD a

bD aD D cD d c aD x

%
'&

(
0)
%
'&

(
0)

1

2 1 2 1 2

1

1

(5.42)

Thus,

x
2
 = (bD

2
 + aD

1
D
2
 � cD

1
 � d)

1
 + (c � aD

2
) x

1

For a ray emanating from the axial object point (i.e., for

x
1
 = 0) the image plane is determined by the condition

x
2
 = 0. Thus, for the image plane we must have

bD
2
 + aD

1
D
2
 � cD

1
 � d = 0 (5.43)

which would give us the relationship between the distances

D
1
 and D

2
. Thus, corresponding to the image plane, we have

2

2x

%
'&

(
0)

= 
b aD a

c aD x

%
'&

(
0)
%
'&

(
0)

1

2

1

10
(5.44)

For x
2
  0, we obtain

x
2

= (c � aD
2
)x

1

Consequently, the magnification of the system, M = 2x

x1

%
'&

(
0)

would be given by

M = 
x

x
2

1

 = c � aD
2

(5.45)

Further, since

b aD a

c aD

1

20
= 1

we obtain

b + aD
1

= 
1

2c aD
 = 

1

M
(5.46)

Hence, if x
1
 and x

2
 correspond to object and image planes,

then for a general optical system we may write

2

2x

%
'&

(
0)

= 
1

0

1

1

/ M a

M x

%
'&

(
0)
%
'&

(
0)

(5.47)

Example 5.1 Obtain the system matrix for a thick lens and

derive the thin lens and thick lens formulae.

Solution: Let us consider a lens of thickness t and made of a

material of relative refractive index n (see Fig. 5.6). Let R
1 and R2

be the radii of curvatures of the two surfaces. The ray is assumed

to strike the first surface of the lens at P and emerge from the point

Q; let the coordinates of the ray at P and Q be

λ1

1x
and

λ2

2x
(5.48)

where 
1
 and 

2
 are the optical direction cosines of the ray at P and

Q, x
1
 and x

2
 are the distances of the points P and Q from the axis

(see Fig. 5.6). The ray, in propagating from P to Q, undergoes two

refractions [one at the first surface (whose radius of curvature

is R1) and the other at the second surface (whose radius of curature

is R2)] and a translation through a distance* t in a medium of

refractive index n. Thus,

λ2

2x
= 

1

0 1

1 0

1

1

0 1

2 1 1

1

− −P

t n

P

x/

λ
(5.49)

where

P1 = 
n

R

− 1

1

and P2 = 
1

2

− n

R
 = �

n

R

− 1

2

(5.50)

R1 R2

–D1 D2

O

P
Q

It

n

x1 x2

Fig. 5.6 A paraxial ray passing through a thick lens of
thickness t.

represent the powers of the two refracting surfaces. Thus, our sys-

tem matrix is given by

S = 
b a

d c

−

−

%
'&

(
0)

 = 
1

0 1

1 0

1

1

0 1

2 1−%
'&

(
0)
%
'&

(
0)

−%
'&

(
0)

P

t n

P

/

= 
1 1

1

2
1 2 1

1

− − − −

−

P t

n
t

n

P P
t

n
P

t

n
P

(5.51)

For a thin lens, t  0 and the system matrix takes the following

form:

S = 
1

0 1

1 2− −P P
(5.52)

Thus for a thin lens,

a = P1 + P2, b = 1, c = 1 and d = 0 (5.53)

Substituting the above values of a, b, c and d in Eq. (5.43), we obtain

D2 + (P1 + P2) D1D2 � D1 = 0,

* Note that since we are dealing with paraxial rays, the distance between P and Q is approximately t.
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or

1 1

2 1D D
− = (P1 + P2)

= (n � 1) 
1 1

1 2R R
−

%
'&

(
0)

(5.54)

or

1 1

2 1D D
− = 

1

f
(5.55)

where

f2a 
1 2

1

+P P
= 

–1

1 2

1 1
( – ) –1n

R R
(5.56)

represents the focal length of the lens. Equation (5.55) is the well-

known thin lens formula. (The signs of R
1 and R2 for different kinds

of lenses are shown in Fig. 5.7). Thus the system matrix for a thin

lens is given by

S = 
1

1

0 1

−%

'
&&

(

0
))f (5.57)

(a)

>

<

R O

R O
1

2

(b)

<

>

R O

R O
1

2

(c)

<

<

R O

R O
1

2

(d)

>

>

R O

R O
1

2

Fig. 5.7 Signs of R1 and R2 for different lens types.

For a thick lens, we have from Eq. (5.51)

a P P
t

n
P b

P t

n

c
t

n
P d

t

n

= =

= =

1 2 1
2

1

1 1

1

+ − −

− −

,

,

(5.58)

If we substitute the above values for a, b, c and d in Eq. (5.43), we

get the required relation between D1 and D2; however, for thick

lenses, it is more convenient to define the unit and the nodal planes

which we shall do in the following sections.

SFQ �xs�2 �vexi�

Unit planes are two planes, one each in the object and the

image space, between which the magnification M is unity,

i.e., any paraxial ray emanating from the unit plane in the ob-

ject space will emerge at the same height from the unit plane

in the image space. Thus, if d
u1

 and d
u2

 represent the dis-

tances of the unit planes from the refracting surfaces (see

Fig. 5.8)* we obtain from Eq. (5.46):

b + ad
u1

= 
1

2c adu

 = 1 (5.59)

or d
u1

= 
1 b

a
(5.60)

d
u2

= 
c

a

1
(5.61)

Hence, the unit planes are determined completely by the

elements of the system matrix S.

It will be convenient to measure distances from the unit

planes. Thus, if u is the distance of the object plane from the

first unit plane and v is the distance of the corresponding

* Obviously, if we consider U
1
 as an object plane, then U

2
 is the corresponding image plane.

– = –du1
1 – b

a
du2 =

c – 1
a

–D1 D2

U1 U2

–u v

Object
plane

First unit
plane

Second unit
plane

Image
plane

Fig. 5.8 U1 and U2 are the two unit planes. A ray emanating at any height from the first unit plane will
cross the second unit plane at the same height.

LO 2
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image plane from the second unit plane (see Fig. 5.8), we

would obtain

D
1

= u + d
u1

 = u + 
1 b

a
(5.62)

and

D
2

= v + d
u2

 = v + 
c

a

1
(5.63)

Now, from Eq. (5.43) we have

D
2

= 
d cD

b aD
1

1

(5.64)

Substituting for D
1
 and D

2
 from Eqs. (5.62) and (5.63), we get

v + 
c

a

1
= 

d cu
c b

a
b au b

( )

( )

1

1

or

v = 
ad bc c au c au

a au

( ) ( ) ( )

( )

1 1 1

1

= 
au

a au( )1
(5.65)

where we have used the condition that

det S = bc � ad = 1 (5.66)

On simplification, we obtain

1 1

v u
= a (5.67)

Thus 1/a represents the focal length of the system if the dis-

tances are measured from the two unit planes. For example, for

a thick lens one obtains [using Eqs. (5.58), (5.60) and (5.61)]:

d
u1

= 
P t

n
P P

t

n
P

2

1 2 1

1

1
%
'

(
0

1
32

4
65

(5.68)

and

d
u2

= �
t

n

P

P P
t

n
P

1

1 2 11
%
'

(
0

1
32

4
65

(5.69)

For a thick double convex lens with |R
1
| = |R

2
|

P
1

= P
2
 = 

1n

R
(5.70)

where R = |R
1
| = |R

2
|. Thus,

d
u1

= 
t

n t

n

n

R

t

n

1

2
1 21

32
4
65

~ (5.71)

and

d
u2

= � 
t

n t

n

n

R

t

n

1

2
1 21

32
4
65

~ (5.72)

where we have assumed t << R which is indeed the case for

most thick lenses. The positions of the unit planes are shown

in Fig. 5.9. In order to calculate the focal length we note from

Eq. (5.67) that

1

f
= a = P

1
 + P

2
1 1

%
'

(
0

t

n
P (5.73)

where we have used Eq. (5.58). Thus,

1

f
= (n � 1) 

1 1 1

1 2

2

1 2R R

n t

nR R

%
'&

(
0)

( )
(5.74)

t
n

t
n

Fig. 5.9 Unit planes of a thick biconvex lens.

SFR xyhev2 �vexi�

Nodal points are two points on the axis which have a relative

angular magnification of unity, i.e., a ray striking the first

point at an angle  emerges from the second point at the

same angle (see Fig. 5.10). The planes which pass through

these points and are normal to the axis are known as nodal

planes.

To determine the position of the nodal points, we con-

sider two axial points N
1
 and N

2
 at distances d

n1
 and d

n2
 from

the two refracting surfaces respectively (see Fig. 5.10). From

the definition of nodal points, we require that a ray incident

at an angle 
1
 on the point N

1
 emerge from the optical sys-

tem at the same angle 
1
 from the other point N

2
. Since we

have assumed the media on either side of the system to have

the same refractive index, this condition requires the equality

of 
1
 and 

2
. Also, since we are considering an axial object

point, x
1
 = 0, we get from Eq. (5.44)

2
= (b + ad

n1
)

1
 = 

1
(5.75)

Thus,

b + ad
n1

= 1 (5.76)
or

d
n1

= 
1 b

a
(5.77)
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Comparing this with Eq. (5.60) we find that d
n1

 = d
u1

. This

has arisen because of the equality of the indices of refraction

on either side of the optical system. Similarly, we can get

d
n2

= 
c

a

1
(5.78)

a

a

a

aN1

N2–dn1

dn2

Optical

system

(a)

(b)

N1

N2

Fig. 5.10 N1 and N2 denote the two nodal points of an
optical system. The nodal points can also lie
inside the optical system as shown in (b).

Thus, when the media on either side of an optical system

have the same refractive index (which is indeed the case for

most optical systems), the nodal planes coincide with the

unit planes. In general, if we know the elements of the system

matrix S (i.e., if we know a, b, c and d which are also called

the Gaussian constants of the system), one can obtain all the

properties of the system.

Example 5.2 Consider a thick equiconvex lens (made of a

material of refractive index 1.5) of the type shown in Fig. 5.9. The

magnitudes of the radii of curvature of the two surfaces is 4 cm.

The thickness of the lens is 1 cm and the lens is placed in air.

Obtain the system matrix and determine the focal length and the

positions of unit planes.

Solution:

R
1
 = + 4 cm R

2
 = � 4 cm t = 1 cm

Both surfaces have equal power

P
1 = P2 = 

n

R

− 1

1

 = 
0 5

4

.
 = 0.125 cm�1

Thus, the system matrix is from Eq. (5.51)

1
0 125 1

1 5
0 125 0 125 1

1

1 5
0 125

1

1 5
1

0 125

1 5

−
×

− − − ×

−

.

.
. .

.
.

.

.

.

= 
0 9167 0 240

0 6667 0 9167

. .

. .

−

Thus,

a = 
1

f
 = 0.24 f ~  4.2 cm

b = 0.9167 = c, d = �0.6667

Using Eqs. (5.60) and (5.61), we get the positions of the unit planes

d
ul

= 
1

0 35
−

−
b

a
~ . cm

d
u2 = 

c

a

−
− −

1
0 35~ . cm

Thus the unit planes are as shown in Fig. 5.9. The nodal planes

coincide with the unit planes because the lens is immersed in air.

Example 5.3 Consider a sphere of radius 20 cm of refractive

index 1.6 (see Fig. 5.11). Find the positions of the paraxial focal

point and the unit planes.

Solution: The matrices from the first refracting surface to the

image plane are given by

Second Refraction Transmission Refraction

surface at second through  at the

to image surface glass first surface

1 0

1v

%
'&

(
0)

1 1 16 20

0 1

( . )/−%
'&

(
0)

1 0

40 16 1/ .

%
'&

(
0)

1 16 1 20

0 1

− −%
'&

(
0)

( . )/

= 
1 0

1

0 25 0 0375

25 0 25v

%
'&

(
0)

−%
'&

(
0)

. .

.

= 
0 25 0 0375

25 0 25 0 25 0 0375

. .

. . .

−

+ −v v

40 cm

v = 6.7 cm

F

Fig. 5.11 Imaging by a sphere of radius 20 cm and
refractive index 1.6.
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Thus at the image plane, the ray coordinates are

λ2

2x

%
'&

(
0)

= 
0 25 0 0375

25 0 25 0 25 0 0375

1

1

. .

. . .

−

+ −

%
'&

(
0)
%
'&

(
0)v v

λ

x

This gives us

x2 = (25 + 0.25 v) 1 + (0.25 � 0.0375 v) x1

To determine the focal distance v, consider a ray incident parallel to

the axis for which 1 = 0. The focal plane would be that plane for

which x
2
 is also zero. This gives us

0.0375 v = 0.25 or v = 6.7 cm

The system matrix elements are

a = 
1

f
 = 0.0375 cm�1 f ~ .− 26 7 cm

b = 0.25, c = 0.25, d = �25 cm

The unit planes are given by

d
u1 = 

1 − b

a
 = 20 cm

and d
u2 = 

c

a

− 1
 = �20 cm

Thus, both the unit planes pass through the center of the sphere.

SFS e2 ����iw2 yp2 ��y2 �rsx

vix�i�

We finally use the matrix formulation for the analysis of a

combination of two thin lenses of focal lengths f
1
 and f

2

separated by a distance t. The system matrix for the

combination of the two lenses can be obtained by noting

that the matrix of the two lenses are [see Eq. (5.57)]

1
1

0 1
1

%

'
&
&

(

0
)
)

f and
1

1

0 1
2

%

'
&
&

(

0
)
)

f (5.79)

and the matrix for translation through a distance t (in air) is

1 0

1t

%
'&

(
0)

(5.80)

Thus, the system matrix S is given by

S = 
1

1

0 1

1 0

1

1
1

0 1
2 1

%

'
&
&

(

0
)
)
%
'&

(
0)
%

'
&
&

(

0
)
)

f
t

f

= 

1
1 1

1

2 1 2 1 2

1

%
'&

(
0)

%
'&

(
0)

%
'&

(
0)

%

'

&
&
&
&

(

0

)
)
)
)

t

f f f

t

f f

t
t

f

(5.81)

Thus,

a
f f

t

f f
b

t

f

c
t

f
d t

= =

= =

1 1
1

1

1 2 1 2 2

1

@

A
u

B
u

,

,
(5.82)

As already noted, the element a in the system matrix repre-

sents the inverse of the focal length of the system. Thus, the

focal length of the combination is

1

f
= 

1 1

1 2 1 2f f

t

f f
 = a (5.83)

The positions of the unit planes are given by [see Eqs. (5.60)

and (5.61)]

d
u1

= 
1 b

a
 = 

t f

f2

d
u2

= 
c

a

1
 = �

t f

f1
(5.84)

It is easy to see that if we have a system of four thin lenses,

we simply have to multiply seven matrices [four of them

being of the type given by Eq. (5.79) and three of them of the

type given by Eq. (5.80)].

Example 5.4 Consider a lens combination consisting of a

convex lens (of focal length + 15 cm) and a concave lens (of focal

length � 20 cm) separated by 25 cm (see Fig. 5.12 and Problem

4.5). Determine the system matrix elements and the positions of

the unit planes. For an object (of height 1 cm) placed at a distance

of 27.5 cm from the convex lens, determine the size and position of

the image.

40/3
25

1015

27.5

+15 –20

Fig. 5.12

Solution:

f1 = + 15 cm f2 = � 20 cm t = 25 cm

Thus, using Eq. (5.82), we readily get

a = 
1

10
 = 

1

f
, b = 

45

20
, c = �

2

3
, d = �25

LO 4
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and

d
u1 = 

1 − b

a
 = � 12.5 cm, d

u2 = 
c

a

− 1
 = �

50

3
 cm

Thus, the distance of the object from the first unit plane is given by

u = �27.5 � (�12.5) = �15 cm

Since f = + 10 cm, we get [using Eq. (5.67)]

v = 30 cm

which represents the distance of the image plane from the second

unit plane. Thus the image is at a distance of 30 � (50/3) = 40/3 cm

from the concave lens. The magnification is given by

M = 
v

u
 = �2

Example 5.5 Consider a system of two thin lenses as shown

in Fig. 4.10. For a 1-cm tall object at a distance of 40 cm from the

convex lens, calculate the position and size of the image.

Solution: Let v be the distance of the image plane from the

concave lens. Thus the matrix, which when operated on the object

column matrix gives the image column matrix, is given by

Concave Concave Convex Convex Object

lens to lens lens to lens to convex

image cocave lens  lens

1 0

1v

%
'&

(
0)

1 1 10

0 1

+%
'&

(
0)

/ 1 0

8 1

%
'&

(
0)

1 1 20

0 1

−%
'&

(
0)

/ 1 0

40 1

%
'&

(
0)

= 
1 0

1

2 2 0 01

32 0 6v +

. .

.

= 
2 2 0 01

2 2 32 0 6 0 01

. .

. . .v v+ +

%
'&

(
0)

The image plane would correspond to

32 + 2.2 v = 0

or v
~ .− −14 5 cm

i.e., it is at a distance of 14.5 cm to the left of the concave lens. If

we compare this with Eq. (5.45), we obtain

M = 0.6 + 0.01 v = 0.6 � 0.01 
32

2 2.
 = +

1

2 2.

Example 5.6 In the above example, determine the system

matrix and hence the positions of the unit planes. Finally, use

Eq. (5.67) to determine the position of the image.

Solution: The system matrix is given by

S = 
1 1 10

0 1

1 0

8 1

1 1 20

0 1

/ /−

= 
9 5 1 100

8 3 5

/ /

/

%
'&

(
0)

Thus,

a = �
1

100
f = �100 cm

b = 
9

5
, c = 

3

5
, d = �8

If we now use Eqs. (5.60 and (5.61), we have

d
u1 = 

1 − b

a
 = 80 cm

and d
u2

= 
c

a

− 1
 = 40 cm

Thus the first unit plane is at a distance of 80 cm to the right of the

convex lens and the second unit plane is at 40 cm to the right of the

concave lens. The object distance from the first unit plane is

therefore given by

u = �(80 + 40) = �120 cm

We now use Eq. (5.67) to obtain

1

v

= a + 
1

u
 = �

1

100
 � 

1

120
 = � 

22

1200

v = � 
600

11
 cm

Thus, the image is at 54.5 cm to the left of the second unit plane or

at 14.5 cm to the left of the concave lens as shown in Fig. 4.10. The

magnification is

M = 
v

u
 = + 

1

2 2.

Summary

u In the paraxial approximation, we may confine ourselves to

rays which pass through the axis of the system; these rays

remain confined to a single plane. Such a ray can be specified

by its distance from the axis of the system x, and the quantity

 = n sin  which represents the product of the refractive

index with the sine of the angle that the ray makes with

z- axis.

u If a ray is initially specified by a (2  1) matrix with elements

1 and x1, then the effect of translation through a distance D

in a homogenous medium of refractive index n
1
, is given by

λ 2

2x
= T

λ1

1x

where the translation matrix T is given by

T = 
1 0

11D n/

u The effect of refraction through a spherical refracting surface

(separating media of refractive indices n
1
 and n

2
) is given by

 
λ 2

2x
= � 

λ1

1x

where the refraction matrix is given by

� = 
1

0 1

−%
'&

(
0)

P
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with

P = 
n n

R
2 1−

.

u By successive application of the above matrices, one can

study paraxial imaging by a coaxial optical system.

u In an optical system, unit planes are two planes, one each in

the object and the image space, between which the

magnification M is unity, i.e., any paraxial ray emanating

from the unit plane in the object space will emerge at the

same height from the unit plane in the image space.

u Nodal points are two points on the axis, which have a

relative angular magnification of unity, i.e., a ray striking the

first point at an angle  emerges from the second point at the

same angle. The planes that pass through these points and

are normal to the axis are known as nodal planes.

u To determine the focal length of multiple lenses, for instance

4, we simply have to multiply 7 matrices, of which 4 are

system matrices and 3 are matrices for translation.

Problems

5.1 Consider a system of two thin convex lenses of focal

lengths 10 and 30 cm separated by a distance of 20 cm in

air.

(a) Determine the system matrix elements and the posi-

tions of the unit planes.

(b) Assume a parallel beam of light incident from the left.

Use Eq. (5.67) and the positions of the unit planes to

determine the image point. Using the unit planes draw

the ray diagram.

[Ans: (a) a = 1/15, b = 1/3, c = �1, d = �20; the first

convex lens is in the middle of the two unit planes. (b) The

final image is virtual and is 15 cm away (on the left) from

the second lens.]

5.2 Consider a thick biconvex lens whose magnitudes of the

radii of curvature of the first and second surfaces are 45 cm

and 30 cm, respectively. The thickness of the lens is 5 cm

and the refractive index of the material of the lens is 1.5.

Determine the elements of the system matrix and positions

of the unit planes and use Eq. (5.67) to determine the im-

age point of an object at a distance of 90 cm from the first

surface.

[Ans: a = 0.02716, b = 0.9444, c = 0.9630, d = �3.3333,

d
u1 = 2.0455, d

u2 = �1.3636. Final image at a distance of

60 cm from the second surface.]

5.3 Consider a hemisphere of radius 20 cm and refractive index

1.5. If H1 and H2 denote the positions of the first and

second principal points, then show that AH1 = 13.3 cm and

that H2 lies on the second surface as shown in Fig. 5.13.

Further, show that the focal length is 40 cm.

H1A H2 F2

Fig. 5.13

5.4 Consider a thick lens of the form shown in Fig. 5.14. The

radii of curvature of the first and second surfaces are �

10 cm and + 20 cm, respectively and the thickness of the

lens is 1.0 cm. The refractive index of the material of the

lens is 1.5. Determine the positions of the principal planes.

[Ans: d
u1

 = 20/91 cm, d
u2

 = 40/91 cm]

U1 U2

Fig. 5.14

5.5 Consider a combination of two thin lenses of focal lengths

f1 and f2 separated by a distance (f1 + f2). Show that the

angular magnification of the lens combinations (which is

just 
λ

λ

2

1

 = 
α

α

2

1

) is given by �f
1
/f

2
. Interpret the negative

sign in the expression for magnification.

5.6 Consider a spherical refracting surface as shown in Fig.

4.12. Using matrix method show that for an object at a dis-

tance of 1 2

1

+
n

n
r from the surface, the image is virtual

and at a distance of 1 1

2

+
%
'&

(
0)

n

n
 r from the surface.
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In Chapter 4, while studying the formation of images by
refracting surfaces and thin lenses, we had made the
assumption that the object point does not lie far away from
the axis of the optical system and that the rays taking part in
image formation are essentially those which make small
angles with the axis of the system. In practice, neither of the
above assumptions is true; one in fact has to deal with rays
making large angles with the axis. The domain of optics
dealing with rays lying close to the optical axis and making
small angles with it is called paraxial optics. We had found
that in the realm of paraxial optics, the images of objects were
perfect, i.e., all rays emanating from a single object point
converged to a single image point and the magnification of
the system was a constant of the optical system,
independent of the particular ray under consideration. Since
in real optical systems, non-paraxial rays also take part in
image formation, the actual images depart from the ideal
images. This departure leads to what are known as
aberrations.

Geometrical optics is either very simple or else it is very complicated...... If one has an actual,

detailed problem in lens design, including analysis of aberrations, then he has to simply trace the

rays through the various surfaces using the law of refraction and find out where they come out

and see if they form a satisfactory image. People have said that this is too tedious, but today, with

computing machines, it is the right way to do it. One can set up the problem and make the

calculation one ray after another very easily. So the subject is really ultimately quite simple, and

involves no new principles.

�Richard Feynman in Feynman Lectures on Physics, Vol. I
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Chapter

Six

It can be shown that the primary aberrations of any
rotationally symmetric system can be specified by five coef-
ficients. The five coefficients represent the spherical
aberration, coma, astigmatism, curvature of field and distor-
tion. These are called the Seidal aberrations. Since these
aberrations are present even for light of a single wavelength,
they are also called monochromatic aberrations. In this
chapter, we will consider the five kinds of aberrations sepa-
rately and discuss the effect on the image when each one of
them is present separately.

It should be mentioned that if a polychromatic source (like
white light) is used for image formation (which is indeed the
case for many optical instruments) then, in general, the
images will be colored; this is known as chromatic

aberration. Physically, chromatic aberration is due to the
dependence of the refractive index of the material of the lens
on wavelength of the radiation under consideration. Since
image formation is accompanied by refraction at refractive index
discontinuities, the wavelength dependence of the refractive
index results in the colored image. For a polychromatic
source, different wavelength components (after refraction)

LO 1: explain the phenomenon of chromatic aberration.
LO 2: describe the combined effect of defocusing and spherical aberration.
LO 3: illustrate the coma aberration suffered during image formation.
LO 4: understand the origin of astigmatism for object point lying away from the axis.
LO 5: understand the aberration due to non-uniform magnification of image.
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proceed along different directions and form images at
different points; this leads to colored images. Since chromatic
aberration is the easiest to understand, we would discuss
this first. This will be followed by a discussion of
monochromatic aberrations.

TFP gr�ywe�sg

efi��e�syx

Let us consider a parallel beam of white light incident on a
thin convex lens as shown in Fig. 6.1. Since blue light gets
refracted more than red light, the point at which the blue light
would focus is nearer the lens than the point at which the
red light would focus. Thus, the image will appear to be
colored; it may be mentioned that this aberration is
independent of the five Seidel aberrations to be discussed in
later sections.

Fig. 6.1 When white light consisting of a continuous range
of wavelengths is incident on a lens, then each
wavelength refracts by different amounts; this leads
to chromatic aberration (see also Fig. 8 in the pre-
lim pages). This aberration is independent of five
Seidel aberrations.

For the case of a thin lens, the expression for chromatic
aberration can easily be derived. The focal length of a thin
lens is given by

1

f
 = (n � 1) 1 1

1 2R R

%
'&

(
0)

(6.1)

If a change of n by n (the change of n is due to the
change in the wavelength of the light) results in a change of
f by f then we obtain by differentiating Eq. (6.1)

� 
f

f 2
= n 

1 1

1 2R R

%
'&

(
0)

 = 
n

n f1

1

i.e., f = � f 
n

n 1
(6.2)

which represents the chromatic aberration of a thin lens. If nb
and nr represent the refractive indices for the blue and red
colours respectively, then

fr � fb = f 
n n

n
b r%

'&
(
0)1

(6.3)

would represent the chromatic aberration.

6.2.1 The Achromatic Doublet

We will first consider an optical system of two thin lenses
made of different materials placed in contact with each other.
For example, one of the lenses may be made of crown glass
and the other of flint glass. We will find the condition for this
lens combination to have the same focal length for the blue
and red colors. Let nb, ny and nr represent the refractive
indices for the material of the first lens corresponding to the
blue, yellow and red colors, respectively. Similarly, nb , ny
and nr  represent the corresponding refractive indices for the
second lens. If fb and fb  represent the focal lengths for the
first and the second lens corresponding to the blue color,
and if Fb represents the focal length of the combination of
the two lenses (placed in contact), then

1

Fb
= 

1 1

f fb b

 = (nb � 1) 1 1

1 2R R

%
'&

(
0)

+ (nb  � 1)
1 1

1 2

%
'&

(
0)R R

(6.4)

where R1 and R2 represent the radii of curvatures of the first
and second surface for the first lens and, as before, the
primed quantities refer to the second lens. Thus, we may
write

1

Fb
= 

n

n f

n

n f
b b1

1

1 1

1

1
(6.5)

where

1

f
(n � 1) 1 1

1 2R R

%
'&

(
0)

,

1

f
 (n  � 1) 1 1

1 2

%
'&

(
0)R R

(6.6)

n  
n nb r

2
  ny, n   

n n
nb r
y2

(6.7)

f and f  represent the focal lengths of the first and second
lens corresponding to a mean color which is around the

LO 1
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yellow region. Similarly, the focal length of the combination
corresponding to the red color would be given by

1

Fr
= 

n

n f

n

n f
r r1

1

1 1

1

1
(6.8)

For the focal length of the combination to be equal for
blue and red colours, we must have

n

n f

n

n f
b b1

1

1 1

1

1
= 

n

n f

n

n f
r r1

1

1 1

1

1

or

f f
= 0 (6.9)

where

 = 
n n

n
b r

1
and  = 

n n

n
b r

1
(6.10)

are known as the dispersive powers. Since  and  are both
positive, f and f must be of opposite signs for the validity of
Eq. (6.9). A lens combination which satisfies Eq. (6.9) is known
as an achromatic doublet (see Fig. 6.2). It may be mentioned
that if the two lenses are made of the same material, then  =

 and Eq. (6.9) would imply f = � f ; such a combination will
have an infinite focal length. Thus, for an achromatic doublet
the two lenses must be of different materials.

Crown Flint

Fig. 6.2 An achromatic doublet.

Example 6.1 An achromatic doublet of focal length 20 cm is

to be made by placing a convex lens of borosilicate crown glass in

contact with a diverging lens of dense flint glass. Assuming nr =

1.51462, nb = 1.52264, n r = 1.61216 and n b = 1.62901, calculate

the focal length of each lens; here the unprimed and the primed

quantities refer to the borosilicate crown glass and dense flint glass

respectively.

Solution:

n
n nb r+

2
 = 

1 52264 1 51462

2

. .+
 = 1.51863

n
′ + ′n nb r

2
=

1 62901 1 61216

2

. .+
= 1.62058

Thus,

= 
1 52264 1 51462

1 51863 1

. .

.

−

−
 = 0.01546

and

= 
1 62901 1 61216

1 62058 1

. .

.

−

−
 = 0.02715

Substituting in Eq. (6.9), we obtain

0 01546 0 02715. .

f f
+

′
= 0

or
f

f ′
= � 0.56942

Now, for the lens combination to be of focal length 20 cm, we

must have

1 1

f f
+

′
= 

1

20

or

1

f
 [1 � 0.56942] = 

1

20

or f = 20  0.43058 = 8.61 cm

and

f = � 
f

0 56942.
 ~  � 15.1 cm

6.2.2 Removal of Chromatic Aberration
of a Separated Doublet

Let us consider two thin lenses of focal lengths f and f  and
separated by a distance t (see Fig. 6.3). The focal length of
the combination F, would be

f f¢

t

Fig. 6.3 The separated doublet.

1

F
= 

1 1

f f

t

f f
(6.11)

The focal length of the first lens would be given by

1

f
= (n � 1) 1 1

1 2R R

%
'&

(
0)

(6.12)

with a similar expression for 1/f . If f and n represent the
changes in the focal length and in the refractive index due to
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a change  in the wavelength, then by differentiating
Eq. (6.12), we obtain

f

f 2
= n 

1 1

1 2R R

%
'&

(
0)

 = 
n

n f( )1

Thus, differentiating Eq. (6.11), we obtain

F

F
2

= � 
f

f

f

f

t

f

f

f

t

f

f

f2 2 2 2

= 
n

n f

n

n f

t

f

n

n f

t

f

n

n f( ) ( ) ( ) ( )1 1 1 1

= 
f f

t

f f
 (  + ) (6.13)

where, as before,  and  represent the dispersive powers.
Consequently, for the combination to have the same focal
length for blue and red colors, we should have

t

f f

( )
= 

f f

or t = 
f f

(6.14)

If both the lenses are made of the same material, then  = 
and the above equation simplifies to

t = 
f f

2
(6.15)

implying that the chromatic aberration is very small if the
distance between the two lenses is equal to the mean of the
focal lengths. This is indeed the case for the Huygens�
eyepiece.

TFQ wyxygr�ywe�sg
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6.3.1 Spherical Aberration

Let a beam of light parallel to the axis be incident on a thin
lens (see Fig. 6.4). The light rays after passing the lens bend
towards the axis and cross the axis at some point. If we
restrict ourselves to the paraxial region, then we can see that
all rays cross the z-axis at the same point which is at a
distance fp from the lens; fp represents the paraxial focal
length of the lens. If one does not restrict to the paraxial
region, then in general, rays which are incident at different
heights on the lens, hit the axis at different points. For
example, for a convex lens, the marginal rays (which are

A

B

FM

FP

f fP M–

Longitudinal
spherical
aberration

Lateral
spherical
aberration

FMFP

(a)

(b)

Fig. 6.4 (a) For a converging lens the focal point for mar-

ginal rays lies closer to the lens than the focal

point for paraxial rays. The distance between the

paraxial focal point and the marginal focal point

is known as the longitudinal spherical aberration

and the radius of the image at the paraxial focal

plane is known as the lateral spherical aberration.

The combined effect of defocusing and spherical

aberration leads to the formation of a circle of

least confusion, where the image would have the

minimum diameter. (b) The spherical aberration

of a diverging lens.

incident near the periphery of the lens) focus at a point
closer than the focal point of paraxial rays [see Fig. 6.4(a)].
Similarly, for a concave lens, rays which are incident farther
from the axis appear to be emerging from a point which is
nearer to the lens [see Fig. 6.4(b)]. The point at which the
paraxial rays strike the axis (FP) is called the paraxial focus

and the point at which the rays near the periphery strike is
called the marginal focus (FM). The distance between the
two foci is the measure of spherical aberration in the lens.
Thus if O represents an axial object, then different rays

LO 2
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emerging from the object converge to different points;
consequently, the image of a point object will not be a point.
The distance along the axis between the paraxial image point
and the image corresponding to marginal rays (i.e., rays
striking the edge of the lens) is termed longitudinal spherical

aberration. Similarly, the distance between the paraxial image
point and the point at which the marginal ray strikes the
paraxial image plane is called the lateral spherical aberration

[see Fig. 6.4(a)]. The image on any plane (normal to the z-
axis) is a circular patch of light; however, as can be seen from
Fig. 6.4(a), on a plane AB the circular patch has the least
diameter. This is called the circle of least confusion (see Fig.
6.5). It may be mentioned that for an object lying on the axis
of a cylindrically symmetric system (like a system of coaxial
lenses), the image will suffer only from spherical aberration.
All other off-axis aberrations like coma, astigmatism, etc., will
be absent.

Fig. 6.5 The spherical aberration of a convex lens. [Photo-
graph courtesy: Dr. K.K. Gupta].

To see how the rays hitting the refracting surface at differ-
ent heights could focus to different points on the axis, let us
consider the simple case of a plane refracting surface as shown
in Fig. 6.6. Let the plane of the refracting surface be chosen as
the plane z = 0. Let P be the object point. The z-axis is chosen
to be along the normal (PO) from the point P to the surface.
The plane z = 0 separates two media of refractive indices n1

and n2 (see Fig. 6.6); in the figure we have assumed n2 > n
I
.

Consider a ray PM incident on the refracting surface (from the
object) at a height h as shown in Fig. 6.6. The refracted ray
appears to emerge from the point Q. We assume the origin to
be at the point O. Let the z-coordinates of the points P and Q
be z0 and z1, respectively. Obviously, both z0 and z1 would be
negative quantities and the distances OP and OQ would be �
z0 and �z1, respectively (see Fig. 6.6). We have to determine z1

in terms of z0. From Snell�s law we know that

h

M

OP z
b

b

a

Q

–z1

–z0

n1 n2

z = 0

Fig. 6.6 Refraction at a plane surface.

sin = n sin (6.16)

where  and  are the angles that the incident and refracted
rays make with the z-axis and

n = 
n

n
2

1

(6.17)

Now, from Fig. 6.6 we have

(�z1) = h cot  = 
h

sin
sin1

2

or

z1 = � 
nh

nsin
sin1

1
2

2

1
2%

'&
(
0)

(6.18)

where we have used Eq. (6.16). Since

sin = 
h

h z
2

0
2

(6.19)

we obtain

z1 = � 
nh

h
h z

n

h

h z
( )

( )

/

/

2
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2 1 2

2

2

2
0
2

1 2

1
11

3
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2
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6
5
5

(6.20)

or

z1 = �n |z0| 1
2
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2

1 2
1

3
2
2

4

6
5
5
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2
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n z
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(6.21)

The value of z1 given in Eq. (6.21) is an exact expression
in terms of z0. It can at once be seen that the image distance,
z1, is a complicated function of the height h, at which the ray
strikes the refracting surface. In the limit of h  0, i.e., for
paraxial rays, we get

z1 = � n|z0| (6.22)

which is the expression for the image distance in the paraxial
region. To the next order of approximation, assuming |h/z0|
<< 1, we get

z ~  � n|z0| 1
2

1
2

2

0
2

2

2
0
2

1

3
2

4

6
5
1

3
2

4

6
5

h

z

h

n z
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~  � n|z0| 1
2

1
2

0
2 2

2
1

3
2

4

6
5

h

z n
n( ) (6.23)

Thus the aberration is given by

z = � 

2

02 | |

h

n z
 (n2 � 1) (6.24)

Equation (6.24) gives the longitudinal spherical aberra-
tion. The negative sign implies that the non-paraxial rays
appear to emanate from a point which is farther away from
the paraxial image point.

From the above example, it can be seen that even a single
plane refracting surface suffers from spherical aberration.
Thus, spherical refracting surfaces and thin lenses must also
suffer from spherical aberration.

The calculation of the spherical aberration even for a
single spherical refracting surface is quite cumbersome (see,
e.g., Ref. 6.5); therefore, we just give the final results:

z = � 
( )n n

n
z

n n

n R

R z
2 1

2
0

2 1

1

2
0

2

2
1

1 1

%
'&

(
0)

%
'&

(
0)

 

 
%
'&

(
0)

n n

n z R
2 1

1 0

1
h2 (6.25)

A B C

n1 n (> )n2 1

– Z0

– R

Normal

Fig. 6.7 The aplanatic points of a spherical refracting
surface.

where R represents the radius of curvature of the surface, n1

and n2 represent the refractive indices of the media on the
left and right of the spherical surface (see Fig. 6.7). For a
plane surface R = , Eq. (6.25) reduces to Eq. (6.24) with
n = n2/n1.

Example 6.2   Consider a spherical refracting surface of radius

R. Show that for a point A [see Fig. 6.7(b)] such that

z
H

= 
n n

n
1 2

1

+
 R (6.26)

the spherical aberration is zero. Notice that both R and z
H
 are nega-

tive quantities. The corresponding image point B is at a distance

n n

n
2 1

2

−
 z

H
. The points A and B are known as the aplanatic points

and are utilized in microscope objectives.

Solution: For z
H
 = 

n n

n
1 2

1

+
 R, one of the factors in Eq. (6.25)

vanishes and the spherical aberration is zero. Indeed, it can be

rigorously shown that all rays emanating from the point A appear

to diverge from the point B (see also Sec. 4.8).

Example 6.3   Consider a refracting surface obtained by

revolving an ellipse about its major axis. Show that all the rays

parallel to the major axis will focus at one of the foci if the

eccentricity of the ellipse is equal to n
I
/n

P
.

[Hint: The eccentricity of the ellipse is given by

= 
OF

a
 = 1

2

2

1
2

−
b

a

where a and b are the semi-major and semi-minor axes, respec-

tively (see Fig. 6.8). If we assume n1(QP) + n2(PF) = n2(BF), then

show that the coordinates of the point P (x, y) will satisfy the equa-

tion of the ellipse.].

Q

BOFA

P x  y( , )n1

n2

Fig. 6.8 Figure for Example 6.3.

In a similar manner, for a set of rays incident parallel to the
axis, one can show that the coefficient of spherical aberra-
tion of a thin lens made of a material of refractive index n and
placed in air, with the surfaces having radii of curvatures R1

and R2, would be given by

A = � 
f n

n

( )1

2
2
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1 1
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2 1
3R

P
R

P n
R

( ) (6.27)
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where

P =
1

f
 = 

1 2

1 1
( 1)n

R R
(6.28)

represents the power of the lens. The coefficient A is such
that when it is multiplied by the cube of the height of the ray
at the lens, one obtains the lateral spherical aberration. Thus,
the lateral spherical aberration for rays hitting the lens at a
height h would be

Slat = Ah3 = � 
f n h

n
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2
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2
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The longitudinal spherical aberration which corresponds
to the difference between the marginal focal length and the
paraxial focal length would be given by

Slong = Ah2f

= � 
( )n f h

n

1

2

2 2

2
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(6.30)

For a converging lens, Slong will always be negative
implying that the marginal rays focus closer to the lens.

For a thin lens of given power (i.e., of a given focal
length), one can define a quantity q, called the shape factor,
by the following relation:

q = 
R R

R R
2 1

2 1

(6.31)

where R1 and R2 are the radii of curvatures of the two
surfaces. For a given focal length of the lens, one can control
the spherical aberration by changing the value of q. This
procedure is called bending of the lens. Figure 6.9 shows the
variation of spherical aberration with q for n = 1.5,  f = 40 cm
(i.e., P = 0.025 cm�1) and h = 1 cm. It can be seen that for
values of q lying near q ~  + 0.7, the (magnitude of the)
spherical aberration is minimum (but not zero). Thus, by
choosing proper values of the radii, the spherical aberration
can be minimized. It may be mentioned that the value
q = +1 implies R2 =  and hence it corresponds to a plano-
convex lens with the convex side facing the incident light.
On the other hand, for a plano-convex lens with the plane
side facing the incident light R1 = and q = �1. Thus the
spherical aberration is dependent on how the deviation is
divided between the surfaces.

–2.0 –1.0 1.0 2.00

Coma

q

0.10

–0.10

–0.20

–0.30
S
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rr
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Fig. 6.9 Variation of spherical aberration and coma with
the shape factor of a thin lens with n = 1.5, f =
40 cm and h = 1 cm. For calculating the coma we
have assumed tan  = 1, i.e., rays make an angle of
45° with the axis.

The physical reason for the minimum of |Slong| to occur at
q ~  0.7 is as follows: It has already been mentioned before
that (for a converging lens) the marginal rays undergo a large
deviation which results in the spherical aberration [see
Fig. 6.4 (a)]. As such we should expect the spherical
aberration to be minimum when the angle of deviation  [see
Fig. 6.10 (a)] is minimum. As in the case of the prism [see Fig.
6.10 (b)], this would occur when the deviations suffered at
each of the refracting surfaces are exactly equal, i.e.,

1 = 2; (  = 1 + 2) (6.32)

Indeed for q = 0.7, the deviations suffered at each of the
surface are equal and one obtains minimum spherical
aberration.
Using the criterion of equal deviation discussed above, we
will determine the separation between two thin lenses which
would lead to minimum spherical aberration. Let L1 and L2 be
two lenses of focal lengths f1 and f2 respectively separated
by a distance x (see Fig. 6.11). If 1 and 2 represent the
deviations of the ray at the two lenses, then for minimum
spherical aberration, we get

1 = 2 (6.33)

To obtain an expression for the deviation suffered by a
ray when it encounters a lens, we refer to Fig. 6.12 where a
ray PA gets refracted along AQ after suffering a deviation
through an angle . From triangle PAQ, we can see that
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h h

uv

= h
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 = 
h

f
(6.34)

L2L1

C2 C DC1

h2h1

B

A

x

q1

q2

f x1 –

f1

Fig. 6.11 Condition for minimum spherical aberration
for a combination of two thin lenses.

where we have used the paraxial relation

1 1

v u
= 

1

f
(6.35)

q

h

A

P Qq1 q2

(–  )u
v

Fig. 6.12 Calculation of the angle of deviation.

The quantity u is an intrinsically negative quantity. Thus
Eq. (6.33) becomes

h

f
1

1

= 
h

f
2

2

(6.36)

From similar triangles AC1D and BC2D (see Fig. 6.11), we can
write

h

f
1

1

= 
h

f x
2

1

(6.37)

If we use Eqs. (6.6) and (6.7), we obtain

x = f1 � f2 (6.38)

Thus, the spherical aberration of a combination of two thin
lenses is minimum when their separation is equal to the
difference in their focal lengths. Indeed, in the Huygens
eyepiece (see Fig. 6.13), the focal length of the field lens is 3f

where f represents the focal length of the eye lens. The
distance between the two lenses is 2f. We can immediately
see that the conditions for achromatism [see Eq. (6.15)] and
minimum spherical aberration [see Eq. (6.38)] are
simultaneously satisfied. Since the eyepiece as a whole is
corrected and the individual lenses are not, the image of the
cross wires (which are placed in the plane PQ) will show
aberrations. A discussion of the procedure for reducing the
aberrations in various optical instruments requires a very
detailed analysis involving the tracing of the rays, which is
beyond the scope of this book.

It should be mentioned that even when the system is free
from all aberrations the image of a point object will still not

d1

d2

d

(a)

(b)

d1

d2

d

A

B C

Fig. 6.10 (a) Refraction at the two refracting surfaces of a
thin lens; the diagram is exaggerated to show
clearly the angles. (b) For a prism, the minimum
deviation position corresponds to 1 = 2.

3f
f

P

Q

2f

f

Fig. 6.13 The Huygens eyepiece.
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be a point because of diffraction effects (see Sec. 18.3). For
example, if a perfectly spherical wave is emanating from a
lens, the ray theory predicts a point image whereas the
diffraction theory (which takes into account the finiteness of
the wavelength) predicts that the image formed in the image
plane will be an Airy pattern [see Sec. 18.3], and the first

dark ring will occur at a distance of 
1.22 f

D
 from the paraxial

image point (see Fig. 6.14) where D is the diameter of the exit
pupil. The Airy pattern shown in Fig. 6.14 is highly
magnified. For example, for  = 5000 Å, D = 5 cm, f = 10 cm,
the radii of the first and second dark rings in the Airy pattern
will be about 0.00012 mm and 0.00022 mm, respectively (see
Sec. 18.3). The spatial extent of the Airy pattern will become
larger with decrease in the value of D. Often one uses a
�stop� to restrict to the paraxial region; however, if the
diameter of the �stop� is made very small then the diffraction
effects would dominate. Indeed, a camera gives best image
when f/D  5.6; at high apertures aberrations degrade the
image and at low apertures diffraction degrades the image.

6.3.2 Coma

As mentioned earlier for a point object lying on the axis the
image will suffer only from spherical aberration. For off-axis
points, the image will also suffer from coma, astigmatism,
curvature of field and distortion. The first off-axis aberration
is coma, i.e., for points lying very close to the axis, the image
will suffer from spherical aberration and coma only. In this
section, we will briefly discuss the effect of coma, assuming
that all other aberrations are absent.
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Fig. 6.14 A perfectly spherical wave (converging on the plane PP ) will produce an Airy pattern in the image plane.

* It must be mentioned that a proper understanding of the aberrations can only be obtained by a careful and thorough mathematical

analysis. This, however, is beyond the scope of this book. Interested readers may look up Refs. 6.1 and 6.3.

The effect of coma is schematically shown in Fig. 6.15(a).
The rays which proceed near the axis of the lens focus at a
point different from that of the marginal rays. Thus, it
appears that the magnification is different for different parts
of the lens. It may be mentioned that if we consider the image
formation by different zones of a lens, then the spherical
aberration arises due to the fact that different zones have
different powers and coma arises due to the fact that
different zones have different magnifications. In Fig. 6.15(a),
we have shown only those rays which lie in the meridional
plane, i.e., that plane containing the optical axis and the
object point. To see the shape of the image one has to
consider the complete set of rays.* In Fig. 6.15(b), we have
shown a three-dimensional perspective in which we have
considered a set of rays which hit the lens at the same
distance from the center. Rays which intersect the lens at
diametrically opposite points focus to a single point on the
paraxial image plane. These different pairs of rays focus to
different points in the image plane such that these foci lie on
a circle. The radius of the circle and the distance at which the
center lies from the ideal image point measures the coma. As
the radius of the zone [shown as h in Fig. 6.15 (b)] increases,
the center of the circle also shifts away from the ideal image.
Thus the composite image will have a form as shown in Fig.
6.15 (c). The image of a point object thus has a comet-like
appearance and hence the name coma (see Fig. 6.16).

For a parallel bundle of rays incident on a lens and in-
clined at an angle  with the z-axis (see Fig. 6.17), one can
show that the coma in the image is given by (see, e.g.,
Ref. 6.1):
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(a)

(b)
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Fig. 6.15 The image formation in the presence of coma. In
(a), we have shown only those rays which lie in
the meridional plane, (b) a three-dimensional
perspective is shown. In (c), we have shown the
composite image.

Fig. 6.16 Image of a point source showing coma. [After
H.F. Meiners, Physics Demonstration Experiments,
Vol. ll, The Ronald Press Co., New York, 1970; used
with permission].

q

Fig. 6.17 Parallel rays (inclined at an angle  with the axis)
incident on a thin lens.
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In Fig. 6.9, we have plotted the variation of coma with the
shape factor q. It can immediately be seen that for a lens with
q = +0.8, coma is zero. It can also be seen that both spherical
aberration and coma are close to a minimum for a plano-
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convex lens (with the convex side facing the incident light)
for which q = 1.0 and as such plano-convex lenses are
extensively used in eyepieces.

We may mention here that in Sec. 4.11 we had derived the
Abbe sine condition which when satisfied, the optical
system is free from spherical aberration and coma.

6.3.3 Astigmatism and Curvature

of Field

When an optical system is free from spherical aberration and
coma then the system will image sharply those object points
lying on or near the axis. But for points far away from the
axis, the image of a point will not be a point and then the
optical system is said to be afflicted with astigmatism.

Consider an object point P far away from the axis. The
plane containing the axis and the object point is called the
meridional plane and the plane perpendicular to the
meridional plane (containing the axis) is called the sagittal

plane. Figure 6.18 shows the image formation when the
optical system suffers from astigmatism only. The rays in the
meridional plane converge at a different point as compared
to those in the sagittal plane. For example, rays PA and PB

focus at the point T and rays PC and PD focus at a point S
which is different from T. Since at the point T, the rays in the
sagittal plane have not still focused, one in fact has a focal

line which is normal to the meridional plane. This focal line T
is called the tangential focus. Similarly since at S, the rays in
the meridional plane have defocussed, one obtains a focal
line lying in the tangential plane; this is called the sagittal

focal line. The distance between S and T is a measure of
astigmatism.

To see the origin of astigmatism one observes that for a
point on the axis (when the lens is free from other aberra-
tions) the wavefront emerging from the lens is spherical and
thus as the wavefront progresses, it converges to a single
point. But when the object point is non-axial, then the emerg-
ing wavefront is not spherical and thus as the wavefront
converges, it does not focus to a point but to two lines,
which are normal to each other and called the tangential and
the sagittal focal lines. Somewhere between the two focal
lines, the image is circular in shape and is called the circle of
least confusion.

The distance between the tangential and the sagittal foci
increases as the object point moves away from the axis.
Thus, the tangential foci and the sagittal foci of points at
different distances from the axis lie on two surfaces as shown
in Fig. 6.19. The optical system will be said to be free from
astigmatism when the two surfaces coincide. But even when
they coincide it can be shown that the resultant image
surface will be curved. This defect of the image is termed
curvature of the field.
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Fig. 6.18 Image formation in the presence of astigmatism.
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As an example of image formation in the presence of
astigmatism, consider a spoked wheel coaxial with the lens
axis as shown in Fig. 6.20(a). Since on the T-surface the
image of a point source is a line perpendicular to the
meridional plane, on the T-surface, the complete rim of the
wheel will be in focus while the spokes will be out of focus
as shown in Fig. 6.20(b). Similarly, since on the S-surface the
image of a point is a line in the meridional plane, the spokes
will be in focus and the rim will not be in focus as shown in
Fig. 6.20(c).

T Surface S Surface

(a) (b) (c)

Fig. 6.20 (a) Spoked object coaxial with the axis of the lens;
(b) and (c) show images on the T-surface and
S-surfacem, respectively.

TFR hs��y��syx

The last of the Seidel aberrations is called distortion and is
caused by non-uniform magnification of the system. When
we discussed spherical aberration we had mentioned that for
a point object on the axis of the optical system, the images
will suffer only form spherical aberration. Similarly, if we have

a pinhole on the axis at any plane of the optical system (see
Fig. 6.21), then the image will suffer only from distortion.
This is because of the fact that corresponding to any point
in the object plane, only one of the rays emanating from this
point will pass through the pinhole; consequently, all other
aberrations will be absent. Obviously, for such a
configuration, each point will be imaged as a point but if the
system suffers from non-uniform magnification, the image will
be distorted. This can be illustrated if we consider the
imaging of four equally spaced points A, B, C and D which
are imaged as A , B , C  and D , respectively. Mathematical
analysis shows that 3

Xd = Mx0 + E(x0
2 + y0

2) x0 (6.40)

and

Yd = My0 + E(x0
2 + y0

2) y0 (6.41)

where (x0, y0) and (Xd, Yd) represent the coordinates of the
object and the image point, respectively, M represents the
magnification of the system and E represents the coefficient
of distortion. Figure 6.22(b) corresponds to a negative value
of E and is known as barrel distortion. The distortion of the
image can be easily understood if we consider the imaging of
a square grid as shown in Fig. 6.22. Assuming unit magnifi-
cation (i.e., M = 1), the points having coordinates (0, 0),
(h, 0), (2h, 0), (3h, 0), (0, h), (0, 2h), (0, 3h), (h, h), (h, 2h), (2h,
h),...are imaged at (0, 0), (h + Eh3, 0), (2h + 8Eh3, 0), (3h +
27Eh3, 0), (0, h + Eh3), (0, 2h + 8Eh3), (0, 3h + 27Eh3), (h +
Eh

3, h + Eh3), (h + Eh3, 2h + 8Eh3), (2h + 8Eh3, h + Eh3), .. .
respectively. If the reader actually plots these points, then
for E < 0, he would obtain a figure like the one shown in Fig.
6.22(b). Similarly for E > 0, he would obtain Fig. 6.22(c).
Notice that each point is imaged at a point, but the image is
distorted because of non-uniform magnification.

A
B
C
D

A¢
B¢
C¢
D¢

Fig. 6.21 In the presence of a pinhole on the axis, the im-
age suffers only from distortion.
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Fig. 6.19 Tangential and sagittal foci.
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Summary

u For a polychromatic source, different wavelength

components (after refraction) proceed along different

directions and form images at different points; this leads to

chromatic aberrations. If we consider two thin lenses made

of different materials placed in contact with each other, the

focal length of the combination will be the same for blue and

red colors  if

ω ω

f f
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are known as the dispersive powers. Further,
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where nb, ny and nr  represent the refractive indices for the

material of the first lens corresponding to the blue, yellow

and red colors respectively. Similarly, nb , ny  and nr

represent the refractive indices for the second lens. Since 

and  are both positive, f and f  must be of opposite signs.

u For an achromatic doublet to be functional, the two lenses

must be of different materials.

In a separated doublet, chromatic aberration is greatly

reduced if w = w  and the distance between the two lenses

is equal to the mean of the focal length.

u For a lens, the marginal rays (which are incident near the

periphery of the lens) focus at a point which is different

than the focal point of paraxial rays. The distance along the

axis between the paraxial image point and the image

corresponding to marginal rays (i.e., rays striking the edge

of the lens) is termed longitudinal spherical aberration.

(0,0)

E < 0 E > 0

(b)(a) (c)

Fig. 6.22 (a) shows the object, (b) represents the image when E < 0 and (c) when E > 0.

u The spherical aberration of a combination of two thin

lenses is a minimum when their separation is equal to the

difference in their focal lengths.

u Coma is the first off axis aberrations suffered by the image

formed due to point object lying very close to the axis.

u For a non-axial object point, the emerging wave front is not

spherical and doesn�t focus.

u Distortion is caused due to presence of pinhole on the axis.

Problems

6.1 Consider a plane glass slab of thickness d made of a

material of refractive index n, placed in air. By simple

application of Snell�s law obtain an expression for the

spherical aberration of the slab. What are other kinds of

aberrations that the image will suffer from?

[Ans: Spherical aberration = �
( )n dh

n u

2 2

3 2

1

2

−
, where h is the

height at which the ray strikes the slab, and u is the

distance of the object point from the front surface of the

slab.]

6.2 Why can�t you obtain an expression for the spherical

aberration of a plane glass slab from Eq. (6.27) by tending

R
I
, R

P
 to ?

6.3 Obtain an expression for the chromatic aberration in the

image formed by a plane glass slab.

1 1

r b

d
n n

Ans:

6.4 Does the image formed by a plane mirror suffer from any

aberration?

6.5 Calculate the longitudinal spherical aberration of a thin

plano-convex lens made of a material of refractive index 1.5

and whose curved surface has a radius of curvature of

10 cm, for rays incident at a height of 1 cm. Compare the

values of the aberration when the convex side and the plane

side face the incident light.

[Ans: (a)  � 0.058 cm; (b)  � 0.225 cm]
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6.6 Consider a lens made up of a material of refractive index

1.5 with a focal length 25 cm. Assuming h = 0.5 cm and

 = 45°, obtain the spherical aberration and coma for the

lens for various values of the shape factor q and plot the

variation in a manner similar to that shown in Fig. 6.9.

6.7 An achromatic cemented doublet of focal length 25 cm is to

be made from a combination of an equiconvex flint glass lens

(nb = 1.50529, nr = 1.49776) and a crown glass lens

(nb = 1.66270, nr = 1.64357). Calculate the radii of

curvatures of the different surfaces and the focal lengths of

each of the two lenses.

[Ans: R
I
 = 14.2 cm = � R

P
 = � R

I
; R

P
  �42 cm]
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The most fundamental vibration associated with wave motion
is the simple harmonic motion; in Sec. 7.2 we will discuss
simple harmonic motion and in Sec. 7.3 we will discuss the
effects (on the vibratory motion) due to damping. If a peri-
odic force acts on a vibrating system, the system undergoes
what are known as forced vibrations; in Sec. 7.4, we will
study such vibrations which will allow us to understand the
origin of refractive index (see Sec. 7.5) and even Rayleigh
scattering (see Sec. 7.6), which is responsible for the red
color of the setting (or rising) sun and blue color of the sky;
see the color photos (Figs. 9 and 11) in the prelim pages of the
book.

The correct picture of an atom, which is given by the theory of wave mechanics, says that, so

far as problems involving light are concerned, the electrons behave as though they were

held  by springs. So we shall suppose that the electrons have a linear restoring force which,

together with their mass m, makes them behave like little oscillators, with a resonant frequency

H
. ������. The electric field of the light wave polarizes the molecules of the gas,

producing oscillating dipole moments. The acceleration of the oscillating charges radiates new

waves of the field. This new field, interfering with the old field, produces a changed field

which is equivalent to a phase shift of the original wave. Because this phase shift is

proportional to the thickness of the material, the effect is equivalent to having a different phase

velocity in the material.

�Richard Feynman in  Feynman Lectures on Physics, Vol. I

�sw�vi2re�wyxsg2wy�syxD
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A periodic motion is a motion which repeats itself after
regular intervals of time and the simplest kind of periodic
motion is a simple harmonic motion in which the
displacement varies sinusoidally with time. In order to
understand simple harmonic motion, we consider a point P
rotating on the circumference of a circle of radius a with an
angular velocity  (see Fig. 7.1). We choose the center of the
circle as our origin and we assume that at t = 0 the point P
lies on the x-axis (i.e., at the point P0). At an arbitrary time t
the point will be at the position P where POP0 = t.

LO 1: explain the concept of simple harmonic motion.
LO 2: interpret the effect of damping on SHM.
LO 3: understand the relationship between damping and resonance.
LO 4: understand the basic principle behind the origin of refractive index.
LO 5: describe the phenomenon of Rayleigh scattering.

vy I



OpticsUFR
u

P0P2

B

O

a

A
x

P1

P3

y

P

wt

Fig. 7.1 The point P is rotating in the anticlockwise direction
on the circumference of a circle of radius a, with
uniform angular velocity . The foot of the
perpendicular on any one of the diameters executes
simple harmonic motion. P0 is the position of the
point at t = 0.

Let A be the foot of the perpendicular from the point P on
the x-axis. Clearly, the distance

OA = a cos t (7.1)

and as the point P rotates on the circumference of the circle,
the point A moves to and fro about the origin on the diam-
eter. When the point P is at P1, then the foot of the
perpendicular is at O. This can also be seen from Eq. (7.1)
because when P coincides with P1, t = /2 and hence a cos

t = a cos /2 = 0. As the point still moves further, the foot
of the perpendicular would lie on the other side of the origin
and thus OA would be negative as is also evident from
Eq. (7.1) because t would then be greater than /2. When P
coincides with P2, then OA = OP2 = �a. When the point P
moves from P2 to P3, OA starts decreasing and it finally
becomes zero when P coincides with P2. After P crosses P3,
OA starts increasing again and finally acquires the value a
when P coincides with P0. After crossing the point P0, the
motion repeats itself.

A motion in which the displacement varies sinusoidally
with time [as in Eq. (7.1)] is known as a simple harmonic mo-

tion. Thus, when a point rotates on the circumference of a

circle with a uniform angular velocity, the foot of the perpen-

dicular on any one of its diameters will execute simple

harmonic motion. The quantity a is called the amplitude of

the motion, and the period of the motion, T, will be the time
required to complete one revolution. Since the angular veloc-
ity is , the time taken for one complete revolution will be
2 / . Thus,

T = 
2

(7.2)

The inverse of the time period is known as the frequency:

v = 1

T
 = 

2

or

= 2 v (7.3)

It should be pointed out that we could as well have stud-
ied the motion of the point B, which is the foot of the
perpendicular from the point P on the y-axis. The distance
OB is given by (see Fig. 7.1)

OB = y = a sin t (7.4)

We had conveniently chosen t = 0 as the time when P was
on the x-axis. The choice of the time t = 0 is arbitrary and we
could have chosen time t = 0 to be the instant when P was at
P  (see Fig. 7.2). If the angle P OX =  then the projection on
the x-axis at any time t would be given by

OA = x = a cos ( t + ) (7.5)

O A
x

y

P¢

P

q

wt

Fig. 7.2 At t = 0, the point P is at P  and therefore, the
initial phase is .

The quantity ( t + ) is known as the phase of the motion

and  represents the initial phase. It is obvious from the
above discussion that the value of  is quite arbitrary and
depends on the instant from which we start measuring time.

We next consider two points P and Q rotating on the
circle with the same angular velocity and P  and Q  be their
respective positions at t = 0. Let the angles P OX and

Q OX be  and  respectively (see Fig. 7.3). Clearly, at an
arbitrary time t, the distance of the foot of the perpendiculars
from the origin would be
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xP = a cos ( t + ) (7.6a)

xQ = a cos ( t + ) (7.6b)

The quantity

( t + ) � ( t + ) =  � (7.7)

represents the phase difference between the two simple
harmonic motions and if  �  = 0 (or an even multiple of )

Equation (7.10) shows that the acceleration of the particle
is proportional to the displacement and the negative sign
indicates that the acceleration is always directed towards the
origin. Equation (7.10) can be used to define the simple
harmonic motion as the motion of a particle in a straight line
in which the acceleration is proportional to the displacement
from a fixed point (on the straight line) and always directed
towards the fixed point. (Here the point x = 0 is the fixed point
and is usually referred to as the equilibrium position.) If we
multiply Eq. (7.10) by the mass of the particle, then we obtain
the following expression for the force acting on the particle:

F = mf = �m 2 x
or

F = �kx (7.11)

where k (= m 2) is known as the force constant. We could
have equally well started from Eq. (7.11) and obtained simple
harmonic motion. This can easily be seen by noting that
since the force is acting in the x�direction, the equation of
motion would be

m
d x

dt

2

2
= F = �kx

or

d x

dt

2

2
 + k
m

 x = 0

or

d x

dt

2

2
 + 2x = 0 (7.12)

where 2 = k/m. The general solution of Eq. (7.12) can be
written in the form

x = A sin t + B cos t (7.13)

which can be rewritten in either of the following forms:

x = a sin ( t + ) (7.14)

or
x = a cos ( t + ) (7.15)

which describes a simple harmonic motion.

7.2.1 Examples of Simple
Harmonic Motion

In this section we will discuss three simple examples of
simple harmonic motion.

(a) The simple pendulum The simplest example of simple
harmonic motion is the motion of the bob of a simple
pendulum in the gravitational field. If the bob of the
pendulum is displaced slightly from the equilibrium position
(see Fig. 7.4) then the forces acting on the bob are the

O BA
x

y

P¢

Q¢

Q
P

q

f

Fig. 7.3 The points A and B execute simple harmonic
motions with the same frequency . The initial
phases of A and B are  and , respectively.

the motions are said to be in phase, and if  �  = (or an
odd multiple of ) the motions are said to be out of phase. If
we choose a different origin of time, the quantities  and 
would change by the same additive constant; consequently,
the phase difference (  � ) is independent of the choice of
the instant t = 0.

Thus, the displacement of a particle, which executes
simple harmonic motion, can be written as

x = a sin ( t + ) (7.8)

Therefore, the velocity and the acceleration of the particle
would be given by the following equations:

v = dx
dt

 = a  cos ( t + ) (7.9)

and

f = 
d x

dt

2

2
 = �a 2 sin ( t + )

or

f = 
d x

dt

2

2
 = � 2 x (7.10)
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gravitational force mg acting vertically downwards and the
tension T, in the direction B A. In the equilibrium position
(AB) the tension is equal and opposite to the gravitational
force. However, in the displaced position the tension T is not
in the direction of the gravitational force and if we resolve
the gravitational force along the direction of the string and
perpendicular to it, we see that the component mg cos 
balances the tension in the string and the component mg sin
 is the restoring force. The motion of the bob is along the

arc of a circle but if the length of the pendulum is large and
the angle  is small, the motion can be assumed to be
approximately in a straight line [see Fig. 7.4(b)]. Under such
an approximation, we may assume that this force is always
directed towards the point B and the magnitude of this force
will be*

mg sin  mg 
x

l
(7.16)

Thus the equation of motion will be

F = m
d x

dt

2

2
 = �mg x

l
(7.17)

or

d x

dt

2

2
 + 2 x = 0 (7.18)

q
q

A

B
B

h
B¢

B¢

mg

Fs x

l
l

A

T

(a) (b)

Fig. 7.4 (a) The forces on the bob of the pendulum when
it is displaced from its equilibrium position. The
restoring force is F

s
 which is equal to mg sin . (b)

If the angle  is small, the motion of the bob can
be approximately assumed to be in a straight
line.

where 2 = g/l. Equation (7.18) is of the same form as
Eq. (7.12); thus the motion of the bob is simple harmonic with
its time period given by the following equation:

T = 
2

 = 2
l

g
(7.19)

The expression for the time period is accurate (i.e., the
motion is approximately simple harmonic) as long as  

~
4°.

We next consider the motion of two identical simple
pendulums vibrating with the same amplitude a (see Fig. 7.5).
Let, at t = 0, the bob of one of the pendulums be at its extreme
right position, moving towards the right [Fig. 7.5(b)]. If we
measure the displacement from the equilibrium positions of
the pendulums, then the displacements would be given by

x1 = a cos t

x2 = a sin t = a cos –
2

t (7.20)

Thus, the two bobs execute simple harmonic motion with a
phase difference of /2 and in fact the first pendulum is
ahead in phase by /2. In Fig. 7.5(b), if the bob was moving
towards the left, then the equation of motion would have
been

x2 = �a sin t = a cos t%
'

(
02

(a) (b)

Fig. 7.5 (a) and (b) show the motion of two identical
pendulums which are vibrating with the same
amplitude but having a phase difference of /2.
The small circles denote the position of the bobs
at t = 0.

and then the second pendulum would have been ahead of
phase by /2. Since, in general, the displacement of the bob
of the pendulum can be written as

x = a cos ( t + ), (7.21)

* We will be assuming that  is small so that sin   , where  is in radians. The above approximation is valid for  
~

0.07 radians
(  4°).
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the velocity of the particle would be given by

dx

dt
= �a  sin ( t + ) (7.22)

Thus, the kinetic energy of the mass would be

T = 
1

2

2

m
dx

dt

%
'

(
0

= 
1

2
 ma2 2 sin2 ( t + ) (7.23)

Comparing Eqs. (7.21) and (7.23), we see that when the
particle is at its extreme positions, the kinetic energy is zero
and when the particle passes through equilibrium position,
the kinetic energy is maximum. At the extreme positions, the
kinetic energy gets transformed into potential energy. From
Fig. 7.4(a) it can immediately be seen that

Potential energy, V = mgh = mgl (1 � cos )

= mgl 2 sin2 
2

 2 mgl
2

2
%
'

(
0

[  measured in radians]

 1

2
 mgl

x

l

%
'

(
0

2

 = 
1

2
m
g

l

%
'&

(
0)

x2

= 
1

2
 m 2 x2 (7.24)

or

V = 
1

2
 m 2 a2 cos2( t + ) (7.25)

where we have used the fact that 2 = g/l. We may mention
that the expression for potential energy could have been
directly written down by noting the fact that if the potential
energies at x and at x + dx are V and V + dV, then

dV = �F dx = + kx dx (7.26)

Thus,

V = kx dx

x

0

s  = 1

2
 kx2 (7.27)

where we have assumed the zero of the potential energy to
be at x = 0. Thus, the total energy E would be given by

E = T + V = 
1

2
 m 2 a2 (7.28)

which, as expected, is independent of time. We can also see
from Eq. (7.26) that the energy associated with the simple
harmonic motion is proportional to the square of the ampli-
tude and the square of the frequency.

(b) Vibrations of a mass held by two stretched springs

Another simple example is the motion of a mass m, held by
two stretched springs on a smooth table as shown in Fig. 7.6.
The two springs are of natural length l0 [Fig. 7.6(a)] and cor-
responding to the equilibrium position of the mass, the
lengths of the stretched springs are l. If the mass is displaced
slightly from the equilibrium position, then the resultant force
acting on the mass will be

F = k [(l � x) � l0] � k [(l + x) � l0]

= �2 k x (7.29)

where k represents the force constant of the spring. Once
again we get a force which is proportional to the
displacement and directed towards the equilibrium position
and consequently, the motion of the mass on the frictionless
table will be simple harmonic in nature.

Fig. 7.6 Two springs of natural length l
0
 [see (a)] are

stretched to a length l [see (b)] to hold the mass. If
the mass is displaced by a small distance x from
its equilibrium position [see (c)], the mass will
execute simple harmonic motion.

(c) Vibrations of a stretched string When a stretched
string (as in a sonometer) is made to vibrate in its fundamen-
tal mode (see Fig. 7.7), then each point on the string executes
simple harmonic motion with different amplitudes but having
the same initial phase. The displacement can be written in the
form

y = a sin 
L
x

%
'

(
0  cos t (7.30)

The amplitude is therefore zero at x = 0 and at x = L and is
maximum at x = L/2. On the other hand, if the string is vibrat-
ing in its first harmonic, then each point on the first half of
the string vibrates out of phase with each point on the other
half.
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L

Fig. 7.7 When a string clamped at both the ends is made to
vibrate in its fundamental mode, all particles
execute simple harmonic motions with same
frequency and same initial phase but having
different amplitudes.

UFQ hew�ih2 �sw�vi

re�wyxsg2 wy�syx

In Sec. 7.2, we had shown that for a particle executing SHM,
the equation of motion will be of the form

d x

dt

2

2
 + 0

2 x(t) = 0 (7.31)

the solution of which is given by

x(t) = A cos ( 0 t + ) (7.32)

where A represents amplitude and 0 the angular frequency
of motion. Equation (7.32) tells us that the motion will
continue forever. However, we know that in actual practice
the amplitude of any vibrating system (like that of a tuning
fork) keeps on decreasing and eventually the system stops
vibrating. Similarly, the bob of a pendulum comes to rest after
a certain period of time. This phenomenon is due to the
presence of damping forces which come into play when the
particle is in motion. For a vibrating pendulum, the damping
forces are primarily due to the viscosity of the surrounding
medium. Consequently, the damping forces will be much
larger in liquids than in gases. In general, the exact
dependence of the damping force on the velocity of the
particle is quite complicated; however, as a first
approximation we may assume it to be proportional to the
velocity of the particle. This is also consistent with the fact
that there are no damping forces acting on the particle when
it is at rest. In this model, the equation of motion will be given
by

m
d x

dt

2

2
= �

dx

dt
 � k0 x (7.33)

where the constant  determines the strength of the damping
force; the force constant is now denoted by k0 to avoid con-
fusion with the wave vector k. Equation (7.33) can be
rewritten in the form

d x

dt

2

2
 + 2 K dx

dt
 + 0

2 x(t) = 0 (7.34)

where

2K = 
m

and 0 = 
k

m
0 (7.35)

In order to solve Eq. (7.34) we introduce a new variable
(t) which is defined by the following equation:

x(t) = (t) e�Kt (7.36)

Thus,

dx

dt
= 
d

dt
K t e

Kt1
32

4
65

( )

and

d x

dt

2

2 = 
d

dt
K
d

dt
K t e Kt

2

2

2
2

1

3
2
2

4

6
5
5

( )

On substitution in Eq. (7.34) we get

d

dt

2

2
 + ( 0

2 � K2) (t) = 0 (7.37)

Equation (7.37) is similar to Eq. (7.31); however, depending
on the strength of the damping force, the quantity ( 0

2 � K2)
can be positive, negative or zero. Consequently, we must
consider three cases.

Case I ( 0
2 > K2)

If the damping is small, 0
2 is greater than K2, and the

solution of Eq. (7.37) would be of the form

(t) = A cos 0
2 21

32
4
65

K t (7.38)

or

x(t) = Ae�Kt cos 0
2 21

32
4
65

K t (7.39)

where A and  are constants which are determined from the
amplitude and phase of the motion at t = 0. Equation (7.39)
represents a damped simple harmonic motion (see Fig. 7.8).
Notice that the amplitude decreases exponentially with time

and the time period of vibration %
'

(
02 0

2 2K  is

greater than in the absence of damping.

vy P
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654321

–0.5

0.5

1

0

–1

t s( )

x
t(
)

Fig. 7.8 The exponential decrease of amplitude in a
damped simple harmonic motion. The figure

corresponds to 2

0
2 2

K

 = 1s and K = 0.5 s�1.

Case II  (K2 > 0
2)

If the damping is too large, K2 is greater than 0
2, and

Eq. (7.37) should be written in the form

d

dt

2

2
 � (K2 � 0

2) (t) = 0 (7.40)

the solution of which is given by

(t) = A exp K t
2

0
21

32
4
65

 +

B exp 1
32

4
65

K t
2

0
2

(7.41)

Thus,

x(t) = A exp %
'

(
0

1
32

4
65

K K t
2

0
2  +

B exp %
'

(
0

1
32

4
65

K K t
2

0
2 (7.42)

and we can have two kinds of motion; one in which the dis-
placement decreases uniformly to zero, or the other, in which
the displacement first increases, reaches a maximum and then
decreases to zero (see Fig. 7.9). In either case, there are no
oscillations and the motion is said to be overdamped or dead

beat. A typical example is the motion of a simple pendulum in
a highly viscous liquid (like glycerine) where the pendulum
can hardly complete a fraction of the vibration before coming
to rest.

Case III (K2 = 0
2)

When K2 = 0
2, Eq. (7.37) becomes

d

dt

2

2
= 0 (7.43)

20
0

0.5

1

4

t s( )

x
t(
)

Fig. 7.9 The variation of displacement with time in an
overdamped motion. The solid and the dashed
curves correspond to B = 0 and B = �A/2,
respectively [see Eq. (7.42)]. In carry-ing out the
calculations we have assumed K = 2 s�1 and

K
2

0
2  = 1 s�1.

the solution of which is given by

= At + B (7.44)

Thus,
x(t) = (At + B) e�Kt (7.45)

The motion is again non�oscillatory and is said to
correspond to critical damping.

UFR py�gih2 �sf�e�syx�

We consider the effect of a periodic sinusoidal force (see
also Sec. 8.3) on the motion of a vibrating system. If the
frequency of the external force is  then the equation of
motion would be [see Eq. (7.33)]:

m
d x

dt

2

2
= F cos t � dx

dt
 � k0 x (7.46)

where the first term on the RHS represents the external force;
the other terms are the same as in Eq. (7.33). Equation (7.46)
is rewritten in the form*

d x

dt

2

2
 + 2K 

dx

dt
 + 0

2 x(t) = G cos t (7.47)

* Notice that the RHS of Eq. (7.47) is independent of x; such an equation is said to be an inhomogeneous equation. An equation of the
type given by Eq. (7.34) is said to be homogeneous.
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where G = F/m and other symbols have been defined in
Sec. 7.3. For the particular solution of Eq. (7.47) we try

x(t) = a cos ( t � ) (7.48)

Thus,

dx

dt
= �a  sin ( t � )

and

d x

dt

2

2
= �a

2 cos ( t � )

Substituting the above forms for x(t), dx/dt and d2x/dt2 in
Eq. (7.47), we obtain

�a 2 cos ( t � ) � 2K a  sin ( t � ) + a 0
2 cos ( t � )

= G cos [( t � ) + ] (7.49)

where we have written G cos t as G cos [( t � ) + ].
Thus,

a ( 0
2 � 2) cos ( t � ) � 2 K a  sin ( t � )

= G cos ( t � ) cos  � G sin ( t � ) sin (7.50)

For Eq. (7.50) to be valid for all values of time we must
have

a ( 0
2 � 2) = G cos (7.51)

2 K a = G sin (7.52)

If we square and add, we get

a = 
G

K( )
/

0
2 2 2 2 2

1 2

4

(7.53)

Further

tan = 
2

0
2 2

K

( )
(7.54)

Since K,  and a are positive,  is uniquely determined by
noting that sin  should be positive, i.e.,  must be either in
the first or in the second quadrant.

To the solution given by Eq. (7.48), we must add the
solution of the homogeneous equation, Eq. (7.34). Thus,
assuming 0

2 to be greater than K2 (i.e., weak damping), the
general solution of Eq. (7.47) will be of the form

x(t) = Ae�Kt cos 0
2 21

32
4
65

K t  + a cos ( t � )

(7.55)

The first term on the RHS represents the transient solution
(corresponding to the natural vibrations of the system) which

eventually dies out. The second term represents the steady
state solution which corresponds to the forced vibrations im-
posed by the external force. Notice that the frequency of the
forced vibrations is the same as that of the external force.

7.4.1 Resonance

The amplitude of the forced vibration,

a = 
G

K( )
/

0
2 2 2 2 2

1 2

4

(7.56)

depends on the frequency of the driving force and is a maxi-
mum when ( 0

2 � 2)2 + 4K2 2 is a minimum, i.e., when

d

d
 [( 0

2 � 2)2 + 4K2 2] = 0

or

2( 0
2 � 2) (�2 ) + 8K2 = 0

or

= 0 1
2

2

0
2

1 2
1

3
2
2

4

6
5
5

K
/

(7.57)

Thus the amplitude is maximum* when  is given by
Eq. (7.57). This is known as amplitude resonance. When
damping is extremely small, the resonance occurs at a
frequency very close to the natural frequency of the system.
The variation of the amplitude with  is shown in Fig. 7.10.
Notice that as the damping decreases, the maximum becomes
very sharp and the amplitude falls off rapidly as we go away
from the resonance. The maximum value of a is given by

amax = 
G

K K
K

( )

/

2 4 1
22 2 2

0
2

2

0
2

1 2
%

'&
(

0)
1

3
2
2

4

6
5
5

= 
G

K K2 0
2 2

1 2/
 = 

G

K K2
2 2

1 2/
(7.58)

Thus, with increase in damping, the maximum occurs at lower
values of  and the resonance becomes less sharper.

In order to discuss the phase of the forced vibrations, we
refer to Eq. (7.54) from where we find that for small damping

* There is no resonance condition when  K2  1
2 0

2.
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the phase angle is small unless it is near resonance. For
 = 0, tan  =  and  is /2; i.e., the phase of forced vibra-

tions is /2 ahead of the phase of the driving force. As the
frequency of the driving force is increased beyond 0, the
phase also increases and approaches  (see Fig. 7.11).

p
2

q

0
0.0 2.5 5.0 7.5 10.0

p

w (sec )
–1

w0
–1

= 5.0 sec

3 sec
–1

2 sec
–1

K = 1 sec
–1

Fig. 7.11 The dependence of the phase of the forced
vibration on the frequency of the driving force.

All the salient features of forced vibrations can be easily
demonstrated by means of an arrangement shown in
Fig. 7.12. In the figure, AC is a metal rod with a movable bob
B and LM is a simple pendulum with a bob at M. The metal
rod and the simple pendulum are suspended from a string PQ

as shown in Fig. 7.12. With B at the bottom, when the rod AC

is set in motion, the pendulum LM also vibrates. As the bob
B is moved upwards, the time period decreases and the
frequency of the rod becomes closer to the natural frequency
of the simple pendulum and eventually the resonance
condition is satisfied. At resonance, the amplitude of
vibration of the simple pendulum is maximum and the phase
difference between the vibrations is nearly /2, i.e., when the
metal rod is at its lowest position and moving towards right,
the simple pendulum is at the extreme left position. If the bob
B is further moved upward, the frequency increases and the
amplitude of the forced vibrations decreases.

B M

A

C

P
L

Q

Fig. 7.12 An arrangement for demonstration of forced
vibrations.

UFS y�sqsx2 yp2 �ip�eg�s�i

sxhi�

In this section, we will study the origin of refractive index.
We know that an atom consists of a heavy positively charged
nucleus surrounded by electrons. In the simplest model of
the atom, the electrons are assumed to be bound elastically
to their rest positions. Thus, when these electrons are dis-
placed by an electric field, a restoring force (proportional to
the displacement) will act on the electrons which will tend to
return the electrons to their rest positions. In this model, the
equation of motion for the electron, in the presence of an
external electric field E, would be

m
d

dt

2

2

x
 + k0 x = �qE (7.59)

4
0

0.2

0.4

0.6

5 6 7

K = 0

K = 0.2

K = 0.5

K = 1

K = 2

w0
–1

= 5.0 s

w (s )
–1

a
/G

Fig. 7.10 The variation of amplitude with the frequency of
the external driving force for various values of
K. The calculations correspond to 0 = 5 s�1 and
the values of K are in sec�1. Notice that with
increase in damping, the resonance occurs at a
smaller value of .
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or

d

dt

2

2

x
 + 0

2 x = �
q

m
E (7.60)

where x represents the position of the electron, m and �q

represent the mass and charge of the electron (q  + 1.6 

10�19 C), k0 the force constant and 0 k m0 /R W  represents

the frequency of the oscillator. We assume

E = x  E0 cos (kz � t) (7.61)

i.e., the field is in the x-direction having an amplitude E0 and

propagating in the + z direction; x  represents the unit vector
in the x-direction and k = 2 / ,  representing the wavelength.
Thus

d x

dt

2

2
 + 0

2 x = �
qE

m
0  cos(kz � t) (7.62)

where we have replaced the vectors by the corresponding
scalar quantities because the displacement and the electric
field are in the same direction. Except for the damping term,
Eq. (7.62) is similar to Eq. (7.46) and therefore, the solution
corresponding to the forced vibrations will be given by*

x = �
q E

m

0

0
2 2

( )
 cos (kz � t) (7.63)

In the simplest model of the atom, the center of the nega-
tive charge (due to the electrons) is assumed to be at the
center of the nucleus. In the presence of an electric field, the
center of the negative charge gets displaced from the
nucleus which results in a finite value of the dipole moment
of the atom. In particular, if we have a positive charge +q at
the origin and a negative charge �q at a distance x, then the
dipole moment would be �qx; thus, if there are N dispersion-
electrons** per unit volume then the polarization (i.e., dipole
moment per unit volume) would be given by

P = �Nq x = 
Nq

m

2

0
2 2

( )
 E

=  E (7.64)

where

= 
Nq

m

2

0
2 2

( )
(7.65)

is known as the electric susceptibility of the material. The
dielectric permittivity is therefore given by (see Chapter 23)

= 0 + (7.66)

or

0

= 1 + 
Nq

m

2

0 0
2 2

( )
(7.67)

Now, / 0 is the dielectric constant, which is equal
to the square of the refractive index (see Chapter 23).
Thus,

n2 = 1 + 
N q

m

2

0 0
2

2

0
2

1

1
1

3
2
2

4

6
5
5

(7.68)

showing that the refractive index depends on the frequency;
this is known as dispersion. Assuming that the characteristic
frequency 0 lies in the far ultraviolet [see Eq. (7.74)]***, the

quantity 1
2

0
2

1
1

3
2
2

4

6
5
5

 is positive in the entire visible region.

Further, as  increases, n2 also increases, i.e., the refractive
index increases with frequency; this is known as normal dis-

persion. If we further assume / 0 << 1, then

1
2

0
2

1
1

3
2
2

4

6
5
5

 1 + 
2

0
2

and

n2  1 + 
N q

m

2

0 0
2

2

0
2

1
1

3
2
2

4

6
5
5

 1 + 
N q

m

c N q

m

2

0 0
2

2 2 2

0 0
4

0
2

4 1
(7.69)

*** This also follows from the fact that according to classical electrodynamics, an oscillating dipole vibrating with requency 0 will radiate

electromagnetic waves with frequency 0; and as an example if we consider hydrogen, then 0  13.6 eV from which one obtains

0  2  1016 s�1. This frequency corresponds to the far ultraviolet.

* Notice that in the absence of damping (i.e., when  = 0),  = 0; see Eq. (7.54).
 ** The number of �dispersion-electrons� in a molecule of an ideal gas is the valence number of the molecules. This number is 2 for H

2
,

6 for N
2
, etc.
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where 0 = 2 c/  is the free space wavelength. Equation
(7.69) can be written in the form

n2 = A + 
2
0

B
(7.70)

which is the well-known �Cauchy relation�. For hydrogen,
the experimental variation of n

2 with 0 is approximately
given by the following relation:

n2 = 1 + 2.721  10�4 + 
211 10

18

0
2

.
(7.71)

where the wavelength is measured in meters; the above num-
bers correspond to 0° C and 76 cm of Hg [see Ref. 7.9]. Thus,

N q

m

2

0 0
2

= 2.721  10�4 (7.72)

and

4
2 2 2

0 0
4

c N q

m
= 2.11  10�18 m2 (7.73)

If we divide the second equation by the first, we would get

4
2 2

0
2

c
= 

211 10

2 721 10

18

4

.

.

or v0 = 0

2
  3  1015 s�1 (7.74)

which is indeed in the ultraviolet region. One can eliminate

0 from Eqs. (7.72) and (7.73) to obtain

N q

c m

2

2 2
04

 3  1010 m�2 (7.75)

Now at NTP, 22400 cc of H2 contains 6  1023 molecules;
thus,

N = 2  
6 10

22400 10

23

5
 m�3  5  1025 m�3

where the factor 2 arises from the fact that a hydrogen mol-
ecule consists of two electrons. Hence,

N q

c m

2

2 2
04

 
5 10 16 10

4 9 10 885 10 91 10

25 19 2

2 16 12 31

( . )

. .

 4  1010 m�2

which qualitatively agrees with Eq. (7.75).
For a gas of free electrons (as we have in the upper atmo-

sphere) there is no restoring force and we must set 0 = 0.

Thus, the expression for the refractive index becomes
[see Eq. (7.67)]

n
2 = 1 � 

N q

m

2

0
2

(7.76)

where N represents the density of free electrons. Equation
(7.75) shows that the refractive index is less than unity; how-
ever, this does not imply that one can send signals faster
than the speed of light in free space (see Chapter 10). To
quote Feynman:

For free electrons, 0 = 0 (there is no elastic

restoring force). Setting 0 = 0 in our dispersion

equation yields the correct formula for the index of

refraction for radiowaves in the stratosphere, where

N is now to represent the density of free electrons

(number per unit volume) in the stratosphere. But

let us look again at the equation, if we beam

X-rays on the matter, or radiowaves (or any electric

waves) on free electrons, the term ( 0
2 � 2) become

negative, and we obtain the result that n is less that

one. That means that the effective speed of the waves

in the substance is faster than c! Can that be

correct? It is correct. In spite of the fact that it is

said that you cannot send signals any faster than

the speed of light, it is nevertheless true that the

index of refraction of materials at a particular

frequency can be either greater or less than 1.

Equation (7.76) is usually written in the form

n2 = 1 � 
p%

'&
(

0)

2

(7.77)

where

p = 
N q

m

2

0

1 2
%

'&
(

0)

/

(7.78)

is known as the plasma frequency. Notice that for  < p, the
refractive index is purely imaginary which gives rise to at-
tenuation and for  > p, the refractive index is real. Indeed
in 1933, Wood discovered that alkali metals are transparent
to ultraviolet light. For example, for sodium if we assume that
the refractive index is primarily due to the free electrons and
that there is one free electron per atom then

N = 
6 10 0 9712

22 99

23
.

.
  2.535  1022 cm�3

where we have assumed that the atomic weight of Na is 22.99
and its density is 0.9712 g/cm3. Substituting the values of
m  9.109  10�31 kg, q  1.602  10�19 C and 0  8.854 
10�12 C/N-m2 we would get
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p =
2 c

p

%

'&
(

0)
  2098 Å

Thus for  < 2098 Å, the refractive index of Na becomes
real and the metal would become transparent; the corre-
sponding experimental value is 2100 Å. The theoretical and
experimental values of p for Li, K and Rb are discussed in
Problem 7.7.

As mentioned above, Eq. (7.76) gives the correct depen-
dence of the refractive index of the stratosphere for
radiowaves; in Sec. 3.4.3 we had used Eq. (7.76) to study
reflection of electromagnetic waves by the ionosphere.

Returning to Eq. (7.68), we note that as   0, the
refractive index tends to . This is due to the fact that we
have neglected the presence of damping forces in our
treatment. If we do take into account the damping forces, Eq.
(7.62) would modify to [see Eq. (7.46)]

m
d x

dt

2

2
 + 

dx

dt
 + k0 x = qE0 cos (kz � t) (7.79)

In order to derive an expression for the refractive index, it
is more convenient to rewrite the above equation in the form

d x

dt

2

2
 + 2K 

dx

dt
 + 0

2 x = 
qE

m
0  ei(kz � t) (7.80)

where the solution of Eq. (7.79) will be the real part of the so-
lution of Eq. (7.80). The solution of the homogeneous equation
will give the transient behavior which will die out as t  
(see Sec. 7.4); the steady state solution will correspond to
frequency . Thus, if we substitute a solution of the type

x(t) = A ei(kz � t) (7.81)

in Eq. (7.80), we would obtain

(� 2 � 2 iK  + 0
2) A = 

qE

m
0

or*

A = 
q E

m i K

0

0
2 2

2[ ]
(7.82)

Thus, we get

P = 
N q

m i K

2

0
2 2

2[ ]
 E (7.83)

The electric susceptibility would therefore be given by

= 
N q

m i K

2

0
2 2

2[ ]

Thus,

n2 = 
0

 = 1 + 
0

= 1 + 
N q

m i K

2

0 0
2 2

2[ ]
(7.84)

Notice that the refractive index is complex, which implies
absorption of the propagating electromagnetic wave. Indeed,
if we write

n =  + i (7.85)

where  and  are real numbers, then the wave number k,
which equals n /c, would be given by

k = (  + i ) 
c

(7.86)

If we consider a plane electromagnetic wave propagating
in the +z direction, then its z and t dependence would be of
the form exp [i(kz � t)]; consequently

E = E
H
 ei(kz � t)

= E
H
 exp i i

c
z t( )

7
8
9

@
A
B

1
32

4
65

= E
H
 exp

%
'&

(
0)

1

3
2

4

6
5i t

z

c c
z (7.87)

which shows an exponential attenuation of the amplitude.
This should not be unexpected because damping causes a
loss of energy.

In order to obtain expressions for  and , we substitute
the expression for n from Eq. (7.85) in Eq. (7.84) to obtain

(  + i )2

= 1 + 
N q i K

m i K i K

2
0
2 2

0 0
2 2

0
2 2

2

2 2

( )

( ) ( )

or

2 � 2 = 1 + 
N q

m K

2
0
2 2

0 0
2 2 2 2 2

4

( )

[( ) ]
(7.88)

and

2 = 
N q

m

2

0

2

40
2 2 2 2 2

K

K[( ) ]
(7.89)

The above equations can be rewritten in the form

2 � 2 = 1 � 
[ ( )]

2 2
1

(7.90)

* Notice that A is complex; however, if we substitute the expression for A from Eq. (7.82) in Eq. (7.81) and take the real part we would
get the same expression for x(t) as we had obtained in Sec. 7.4.
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and

2  = 
1

1
2 2

[ ( )]
(7.91)

where we have introduced the following dimensionless
parameters:

 = 
N q

m

2

0 0
2

; = 
2

0
2

0
2

and  = 
2

0

K

 The qualitative variations of 2 � 2 and 2  with  are
shown in Fig. 7.13. It can be easily shown that at  = �  and
at  = + , the function ( 2 � 2) attains its maximum and
minimum values respectively.

0 2.0–2.0

h k
2 2

– 2 hk

Ω =
−F

HG
I

KJ
w w

w

2
0
2

0
2

Fig. 7.13 Qualitative variation of ( 2 � 2) and 2  with .

It should be pointed out that, in general, an atom can
execute oscillations corresponding to different resonant
frequencies and we have to take into account the various
contributions. If 0, 1, � represent the resonant frequencies
and if f j represents the fractional number of electrons per unit
volume whose resonant frequency is j, Eq. (7.84) would get
modified to the following expression:*

n2 = 1 + 
N q

m

f

i K

j

j jj

2

0
2 2

2[ ]
(7.92)

where Kj represents the damping constant corresponding
to the resonant frequency j. Indeed, Eq. (7.92) describes
correctly the variation of refractive index for most gases. Fig-
ure 7.14 shows the dependence of the refractive index of
sodium vapor around 0 = 5800 Å. Since D1 and D2 lines

occur at 5890 Å and 5896 Å, one should expect resonant
oscillations around these frequencies. This is indeed borne
out by the data shown in Fig. 7.14. The variation of the re-
fractive index can be accurately fitted with the formula,

n2 = 1 + 
A

v v

B

v v
2

1
2 2

2
2

(7.93)

where we have neglected the presence of damping forces
which is justified except when one is very close to the reso-
nance.
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(   – 1) 10n
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n.10
12

509.5509.0508.5

D1 D2

Fig. 7.14 The measured variation of refractive index of so-
dium with frequency around the D1 and D2 lines.
The measurements are of Roschdestwensky. [The
figure has been adapted from Ref. 7.1].

In a liquid, the molecules are very close to one another
and the dipoles interact between themselves. If we take this
interaction into account, we would get**

n

n

2

2

1

2
= 
N q

m

f j

jj

2

0
2 23

(7.94)

where we have neglected the presence of damping. For
liquids, whose molecules do not have a permanent dipole
moment (e.g., H2, O2, etc.) Eq. (7.94) gives a fairly accurate
description. However, liquids whose molecules posses
permanent dipole moments (e.g., H2O) one has to carry out a
different analysis.

UFT �e�visqr

�ge��i�sxq

We end this chapter by giving a brief account of Rayleigh
scattering; the phenomenon of scattering is demonstrated in

* Quantum mechanics also gives a similar result (see, for example, Ref. 7.6).
** See, for example, Ref. 7.1. Notice that when n is very close to unity (i.e., for a dilute fluid), Eq. (7.94) reduces to Eq. (7.92).
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Fig. 12 of the prelim pages. Throughout our analysis, we will
assume that each scattering center behaves independently�
an assumption which will be valid for a gas where the
average interatomic spacing is greater than the wavelength.

As discussed in Sec. 7.5, the incident electric field E pro-
duces a dipole moment given by [see Eqs. (7.64) and (7.65)]

p = 
q

m

2

0
2 2

( )
 E (7.95)

where 0 represents the natural frequency of the atom. To
keep the analysis simple, we are neglecting the effect of
damping although it can be taken into account without much
difficulty. Now, an oscillating dipole given by

p = p0 e
�i t (7.96)

radiates energy at a rate (see Sec. 23.5.1)

P = 
4

0
2

0
3

12

p

c
(7.97)

or

P = 
4

0
3

4

2
0
2 2 2 0

2

12 c

q

m
E

( )
(7.98)

Thus if N represents the number of atoms per unit vol-
ume, then the total energy radiated away (per unit volume)
would be N P .

We assume the electromagnetic wave to be propagating
along the x-direction. The intensity of the wave is given by
[see Sec. 23.6]

I = 
1

2
 0 cE0

2 (7.99)

Thus, the change in the intensity of the electromagnetic
wave as it propagates through a distance dx is given by

dI = �N P  dx

or
dI

I
= � dx (7.100)

where

= 
N

c

q

m

4

0
2 4

4

2
0
2 2 2

6 ( )
(7.101)

The integration of Eq. (7.100) is simple:

I = I0 e
� x (7.102)

implying that  represents the attenuation coefficient. For
most atoms 0 lies in the ultraviolet region, for example, for

the hydrogen atom 0  few electron volts. Thus, if we
assume  << 0, then   becomes proportional to 4 or

 
1
4

(7.103)

which represents the famous 1/ 4 Rayleigh scattering law
and is responsible for the blue color of the sky (because it is
the blue component which is predominantly scattered); see
Fig. 11 in the prelim pages. Similarly, the blue component of
the light coming from the setting sun is predominantly
scattered out resulting in the red color of the setting sun;
see Fig. 9 in the prelim pages. Indeed, if the color of the
setting (or rising) sun is deep red, one can infer that the
pollution level is high. Now, for a gas

n2 � 1 = 
N q

m

2

0 0
2 2

( )
(7.104)

[See Eq. (7.68)]. For air, since the refractive index is very close
to unity, we may write

n � 1  
N q

m

2

0 0
2 2

2 ( )
(7.105)

using which, Eq. (7.101) can be written in the following con-
venient form:

= 2

3

4

N c

%
'

(
0

 (n � 1)2

= 
2

3

4k

N
 (n � 1)2; k = 

c
(7.106)

For air at NTP, the quantity n � 1  2.78  10�4 in the entire
region of the visible spectrum. With N  2.7  1019

molecules/cm3 we obtain

L = 1  = 27 km, 128 km and 188 km

for  = 4000 Å (violet), 5900 Å (yellow) and 6500 Å (red),
respectively. The quantity L represents the distance in which
the intensity decreases by a factor of e.

We may conclude this chapter by mentioning that in the
1929 edition of Encylopaedia Britannica, Lord Rayliegh wrote
in an article on SKY:

�u�X The apparent covering of the atmosphere,

the overarching heaven� It is a matter of common

observation that the blue of the sky is highly vari-

able, even on days that are free from clouds. The

color usually deepens toward the zenith and also

with the elevation of the observer� Closely associ-

ated with the color is the polarization of light from

the sky. This takes place in a plane passing through

the sun, and attains a maximum about 90º therefrom.
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In Fig. 10 (in the prelim pages) we have shown as to how
the sky and Earth will look like on the surface of the Moon;
the sky will look black (see also Fig. 2.3) because there is no
atmosphere and therefore no Rayleigh scattering.

Summary

u The most fundamental vibration associated with wave mo-

tion is the simple harmonic motion.

u When a point rotates on the circumference of a circle with a
uniform angular velocity, the foot of the perpendicular on any
one of its diameters will execute simple harmonic motion.

u The time period of the simple pendulum is equal to 2 /W

where, W is the angular velocity. T = 2 (l/g)1/2.

u When an external sinusoidal force is applied to a vibrating
system, we have what is known as forced vibrations. In
steady state, the frequency of the forced vibrations is the
same as that of the external force.

u At resonance, the amplitude of vibration of the simple pen-
dulum is maximum and the phase difference between the
vibrations is nearly /2.

u For w < wp, the refractive index is purely imaginary which
gives rise to attenuation and for w > wp, the refractive index

is real.

u When a lightwave interacts with an atom, we may assume
the electrons to behave like oscillators with resonant fre-
quency 0. The electric field of the lightwave polarizes the
molecules of the gas, producing oscillating dipole moments
from which one can make a first principle calculation of the

refractive index to obtain

n2( )  1 + 
Nq

m iK

2

0 0
2 2 2ε ω ω ω( )− −

where m is the mass of the electron, q the magnitude of the
charge of the electron, N is the number of electrons per unit
volume and K is the damping constant. Because of the fact
that an oscillating dipole radiates energy, the lightwave gets

attenuated; this leads to the famous 
1
4
λ

 Rayleigh scattering

law which is responsible for the red color of the rising sun

and blue color of the sky.
u The sky from moon surface will look black due to no atmo-

sphere and thus Rayleigh scattering.

Problems

7.1 The displacement in a string is given by the following

equation:

y(x, t) = a cos
2

2
π

λ
πx v t−

%
'

(
0

where a,  and v represent the amplitude, wavelength and

the frequency of the wave. Assume a = 0.1 cm,  = 4 cm,

 = 1 sec�1. Plot the time dependence of the displacement
at x = 0, 0.5 cm, 1.0 cm, 1.5 cm, 2 cm, 3 cm and 4 cm.
Interpret the plots physically.

Ans: y(x = 3.0, t) = �y(x = 1.0, t) because the

two points are 
λ

2
 apart; etc.

7.2 The displacement associated with a standing wave on a
sonometer is given by the following equation:

y(x, t) = 2a sin
2π

λ
x

%
'

(
0  cos 2 vt

If the length of the string is L then the allowed values of 

are 2L, 2L/2, 2L/3, � (see Sec. 13.2). Consider the case
when  = 2L/5; study the time variation of displacement in
each loop and show that alternate loops vibrate in phase
(with different points in a loop having different ampli-
tudes) and adjacent loops vibrate out of phase.

7.3 A tunnel is dug through the earth as shown in Fig. 7.15. A
mass is dropped at the point A along the tunnel. Show that
it will execute simple harmonic motion. What will the time

period be?

Ans: The time period will be T = 2
R

g
.

A B

R

O

x

Fig. 7.15 Figure for Problem 7.3.

7.4 A 1 g mass is suspended from a vertical spring. It executes

simple harmonic motion with period 0.1 sec. By how much
distance had the spring stretched when the mass was
attached?

[Ans: x  0.25 cm]

7.5 A stretched string is given simultaneous displacement in the
x� and y� directions such that

x(z, t) = a cos
2

2
π

λ
πz v t−

%
'

(
0

and

y(z, t) = a cos
2

2
π

λ
πz v t−

%
'

(
0

Show that the string will vibrate along a direction making

an angle /4 with the x and y axes.



OpticsUFIV
u

7.6 In Problem 7.5, if

x(z, t) = a cos
2

2
π

λ
πz v t−

%
'

(
0

and

y(z, t) = a sin
2

2
π

λ
πz v t−

%
'

(
0

what will be the resultant displacement?

7.7 As mentioned in Sec. 7.5, alkali metals are transparent to
ultraviolet light. Assuming that the refractive index is
primarily due to the free electrons and that there is one free

electron per atom, calculate p =
%

'&
(

0)
2π

ω

c

p

 for Li, K and Rb.

You may assume that the atomic weights of Li, K and Rb
are 6.94, 39.10 and 85.48, respectively and that the
corresponding densities are 0.534, 0.870 and 1.532 g/cm3.
Also, the values of various physical constants are:
m = 9.109  10�31 kg, q = 1.602  10�19 C and 0 = 8.854

 10�12 C/N-m2.

[Ans: 1550 Å, 2890 Å and 3220 Å; the corresponding
experimental values are 1551 Å, 3150 Å and 3400 Å,

respectively].

7.8 (a) In a metal, the electrons can be assumed to be
essentially free. The drift velocity of the electron

satisfies the following equation

m
d

d t

v

 + mvv = F = �q E
H
 e�i t

where v represents the collision frequency. Calculate
the steady state current density (J = �Nqv) and show
that the conductivity is given by

( ) = 
Nq

m v i

2
1

− ω

(b) If r represents the displacement of the electron, show

that

P = �Nqr = �
Nq

m i v

2

2
( )ω ω+

 E

which represents the polarization. Using the above

equation show that

( ) = 1 � 
N q

m i v

2

0
2

ε ω ω( )+

which represents the dielectric constant variation for a

free electron gas.

7.9 Assuming that each atom of copper contributes one free
electron and that the low frequency conductivity  is about
6  107 mhos/metre, show that   4  1013 s�1. Using this
value of , show that the conductivity is almost real for
< 1011 s�1. For  = 108 s�1 calculate the complex dielectric
constant and compare its value with the one obtained for
infrared frequencies.

It may be noted that for small frequencies, only one of
the electrons of a copper atom can be considered to be free.
On the other hand, for X-ray frequencies all the electrons
may be assumed to be free (see Problems 7.10, 7.11 and
7.12). Discuss the validity of the above argument.

7.10 Show that for high frequencies (  >> ) the dielectric
constant (as derived in Problem 7.8) is essentially real with

frequency dependence of the form

= 1 � 
ω

ω

p
2

2

where p = 
N q

m

2

0

1 2

ε

/

 is known as the plasma frequency.

The above dielectric constant variation is indeed valid for
X-ray wavelengths in many metals. Assuming that at such
frequencies all the electrons can be assumed to be free,
calculate p for copper for which the atomic number is 29,
mass number is 63, and density is 9 g/cm3.

[Ans: ~9  1016 sec�1]

7.11 For sodium, at  = 1 Å, all the electrons can be assumed to
be free; under this assumption show that p  3  1016 s�1

and n2  1 and the metal will be completely transparent.

7.12 In an ionic crystal (like NaCl, CaF
2
, etc.), one has to take

into account infrared resonance oscillations of the ions and

Eq. (7.68) modifies to

n2 = 1 + 
N q

m

pN q

M

2

0 1
2 2

2

0 2
2 2ε ω ω ε ω ω( ) ( )−

+
−

where M represents the reduced mass of the two ions and

p represents the valency of the ion (p = 1 for Na+, Cl�;
p = 2 for Ca++, F2

� �). Show that the above equation can be

written in the form*

n2 = n2 + 
A A1

2
1
2

2
2

2
2λ λ λ λ−

+
−

where n2  = 1 + 
A A1

1
2

2

2
2

1 = 
2

1

π

ω

c
, 2 = 

2

2

π

ω

c

A
1

= 
N q

c m

2

2 2
04π ε

 
1

4, A
2
 = 

p N q

c M

2

2 2
04π ε

 
2

4

* Quoted from Ref. 7.9; measurements are of Paschen.
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7.13 The refractive index variation for CaF2 (in the visible region

of the spectrum) can be written in the form*

n2 = 6.09 + 
612 10

8 88 10

510 10

126 10

15

2 15

9

2 9

.

.

.

.

×

− ×
+

×

− ×

−

−

−

−
λ λ

where  is in meters

(a) Plot the variation of n2 with  in the visible region.
(b) From the values of A1 and A2 show that m/M  2.07 

10�5 and compare this with the exact value.
(c) Show that using the constants A1, A2, 1 and 2 we

obtain n 2  5.73 which agrees reasonably well with
the experimental value given above.

7.14 (a) The refractive index of a plasma (neglecting collisions)
is approximately given by (see Sec. 7.6)

n2 = 1 � 
ω

ω

p
2

2

where

p = 
N q

m

2

0

1 2

ε

/

  56.414 N1/2 s�1

is known as the plasma frequency. In the ionosphere,
the maximum value of N0 is  1010�1012 electrons/m3.
Calculate the plasma frequency. Notice that at high
frequencies n2  1; thus high frequency waves (like the
one used in TV) are not reflected by the ionosphere.
On the other hand, for low frequencies, the refractive
index is imaginary (like in a conductor�see Sec. 24.3)
and the beam gets reflected. This fact is used in long
distance radio communications (see Fig. 3.20).

(b) Assume that for x  200 km, N = 1012 electrons/m3

and that the electron density increases to 2  1012

electrons/m3 at x  300 km. For x < 300 km, the
electron density decreases. Assuming a parabolic
variation of N, plot the corresponding refractive index

variation.

[Ans: For 2  105 m < x < 4  105 m,

n2(x)  1 � 
6 10

15

2

.4 ×

ω
[1 � 5  10�11

(x � 3  105)2 where  is measured

in s�1 and x in m.]
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Fourier series and Fourier integrals are extensively used in

the theory of vibrations and waves. As such, we devote this

chapter to the study of Fourier series and Fourier integrals.

The results obtained will be used in subsequent chapters.

Now, according to Fourier�s theorem, any periodic vibration

can be expressed as a sum of the sine and cosine functions

whose frequencies increase in the ratio of natural numbers.

Thus, a periodic function with period T, i.e.,

f(t + nT) = f(t); n = 0, ± 1, ± 2, �; (8.1)

can be expanded in the form,

f(t) = 
1

2

2 2
0

1 1

a a
n

T
t b

n

T
tn

n

n

n

%
'&

(
0)

%
'&

(
0)

cos sin

=
1

2 0

1 1

a a n t b n tn

n

n

n

cos ( ) sin ( ) (8.2)

where

= 
2

T
(8.3)

represents the fundamental frequency. Actually, for the ex-

pansion to be possible, the function f(t) must satisfy certain

... Reimann (in one of his publications in 1867) asserts that when Fourier, in his first paper to the

Paris Academy in 1807, stated that a completely arbitrary function could be expressed in such a

series, his statement so surprised Lagrange that he denied possibility in the most definite terms.

It should also be noted that he (Fourier) was the first to allow that the arbitrary function might

be given by different analytical expressions in different parts of the interval.

�H.A. Carslaw (1930)

py��si�2�i�si�2exh

e��vsge�syx�

Chapter
Eight

conditions. The conditions are that the function f (t) in one

period (i.e., in the interval t
H
 < t < t

H
 + T) must be (a) single

valued, (b) piecewise continuous (i.e., it can have at most a

finite number of finite discontinuities) and (c) can have only

a finite number of maxima and minima. These conditions are

known as Dirichlet's conditions and are almost always satis-

fied in all problems that one encounters in physics.

The coefficients a
n
 and b

n
 can easily be determined

by using the following properties of the trigonometric func-

tions:

cos cosn t m t dt

t

t T

0

0

s = 
0

2

if

if

m n

T m n

7
8
9 /

(8.4)

sin sinn t m t dt

t

t T

0

0

s = 
0

2

if

if

m n

T m n

7
8
9 /

(8.5)

sin cosn t m t d t

t

t T

0

0

s = 0 (8.6)

The above equations can easily be derived. For example,

for m = n,

LO 1: express a periodic function as a Fourier series.

LO 2: apply Fourier series in analyzing transverse vibrations of a plucked string.

LO 3: employ Fourier series in forced vibrations of a damped oscillator.

LO 4: use Fourier integral to define the Fourier transform of a function.

LO 1



OpticsVFP
u

cos cosn t m t d t

t

t T

0

0

s = cos
2

0

0

n t dt

t

t T

s

= 
1

2
1 2

0

0

[ cos ]s n t d t

t

t T

 = 
T

2

Similarly, for m  n

cos cosn t m t d t

t

t T

0

0

s

= 
1

2
0

0

[cos ( ) cos ( ) ]n m t n m t d t

t

t T

s

= 
1

2

1

( )
sin ( )

n m
n m t

1

3
2

4

6
5

1

0

0

( )
sin ( )

n m
n m t

t

t T

 = 0

In order to determine the coefficients a
n
 and b

n
 we first mul-

tiply Eq. (8.2) by dt and integrate from t
H
 to t

H
 + T :

f t dt

t

t T

( )

0

0

s  =
1

2 0

0

0

a dt

t

t T

s sa n t dtn

t

t T

n

cos

0

0

1

sb n t dtn

t

t T

n

sin

0

0

1

 = 
T

2
 a

H

where we have used Eqs. (8.4) and (8.6) for m = 0. Thus,

a
H

= 
2

0

0

T
f t dt

t

t T

( )s (8.7)

Next, if we multiply Eq. (8.2) by cos (m t) dt and integrate

from t
H
 to t

H
 + T we would obtain

f t m t d t

t

t T

( ) cos ( )

0

0

s  = 
1

2 0

0

0

a m t d t

t

t T

cos ( )s  +

a m t n t dtn

t

t T

n

cos ( ) cos ( )

0

0

1
s  +

b m t n t dtn

t

t T

n

cos ( ) sin ( )

0

0

1
s

= 
T

2
 a
m

where we have used Eqs. (8.4) and (8.6). We may combine

the above equation with Eq. (8.7) to write

a
n
 = 

2

0

0

T
f t n t d t

t

t T

( ) coss ; n = 0, 1, 2, 3, � (8.8)

Similarly,

b
n
 = 

2

0

0

T
f t n t d t

t

t T

( ) sins ; n = 1, 2, 3, � (8.9)

It should be pointed out that the value of t
H
 is quite

arbitrary. In some problems, it is convenient to choose

t
H

= �T/2

then

a
n
 = 

2

2

2

T
f t n t d t

T

T

( ) cos ;

/

/

s n = 0, 1, 2, �

and

b
n
 = 

2

2

2

T
f t n t dt

T

T

( ) sin ;

/

/

s  n = 0, 1, 2, �

Such a choice is particularly convenient when the func-

tion is even (i.e., f(t) = f(�t)) or odd (i.e., f(t) = �f (� t)). In the

former case, b
n
 = 0 whereas in the latter case, a

n
 = 0. In some

problems, it is convenient to choose t
H
 = 0.

Example 8.1 Consider a periodic function of the form

f t t t

f t n f t

( )

( ) ( )

= for

=

− < < +

+

@
A
B

τ τ

τ2
@VFIHA

(see Fig. 8.1). Such a function is referred to as a saw tooth function.

In this example, we will expand the above function in a Fourier se-

ries. Now, since f(t) is an odd function of t, a
n
 = 0 and

b
n

= 
2

T
f t n t dt( ) sin ( )ω

τ

τ

−

+

s

= 
1
2

0
τ

ω

τ

t n t dtsin ( )s
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Notice that the periodicity is 2  and, therefore,  = / .

Carrying out the integration we obtain

b
n

= 
2 1 1

0
τ ω

ω
ω ω

ω

τ

− +
t

n
n t

n n
n tcos sin

= −
2τ

π
π

n
ncos  = ( )−

+1
21n

n

τ

π
@VFIIA

–3 –2 –1 0 1 2 3

f
t(
) S2

S1S3 t
t

Fig. 8.1 The saw tooth function; S1, S2 and S3 represent
the partial sums corresponding to the saw tooth
function.

Thus,

f (t) = 
2 1 1

1 2

τ

π
ω

( )
sin

, ,...

−
+

=

∑
n

n
n

n t

= 
2 1

2
2

1

3
3

τ

π
ω ω ωsin sin sin ...t t t− + −1

32
4
65

@VFIPA

In Fig. 8.1, we have also plotted the partial sums which are given

by

S
I

= 
2

2
τ

π
ωsin ;t S  = 

2 1

2
2

τ

π
ω ωsin sint t−1

32
4
65

S
Q

= 
2 1

2
2

1

3
3

τ

π
ω ω ωsin sin sint t t− +1

32
4
65

It can be seen from the figure that as n increases, the sum S
n

approaches the function f(t).

Example 8.2 In this example, we will Fourier expand the

function defined by the following equations:

f (t) = �A for � 
T

2
 < t < 0

= +A for 0 < t < + 
T

2
@VFIQA

and

f (t + T) = f (t)

The function is plotted in Fig. 8.2. Once again the function is an

odd function; consequently a
n
 = 0 and

b
n

= 
2
2

0

2

T
A n t dt

T

sin ( )

/

ωs  = 
4 1

0

2A

T n
n t

T

ω
ω−cos

/

= 
2

1
A

n
n

π
π[ cos ]−  = 

2
1 1

A

n

n

π
[ ( ) ]− −

Thus,

f (t) = 
2 1

1 1

1 2 3

A

n
n t

n

n
π

ω− −

=

∑ ( ) sin

, , ,...

= 
4 1

3
3

1

5
5

A
t t t

π
ω ω ωsin sin sin ...+ + +1

32
4
65

The partial sums

S
I

= 
4A

t
π

ωsin ; S
P
 = 

4 1

3
3

A
t t

π
ω ωsin sin+%

'
(
0

S
Q

= 
4 1

3
3

1

5
5

A
t t t

π
ω ω ωsin sin sin+ +1

32
4
65

are also plotted in Fig. 8.2.

–1.5 –0.5 0 0.5 1–1 1.5

f
t(
)

S1

S2

S3
t
T

Fig. 8.2 A plot of the periodic step function defined by
Eq. (8.13). S1, S2 and S3 represent the correspond-
ing partial sums.

VFP ��ex��i��i �sf�e�syx�

yp2e2 �v�guih2 ���sxq

An interesting application of the Fourier series lies in study-

ing the transverse vibrations of a plucked string.

Let us consider a stretched string, fixed at the two ends A

and B. One of the ends (A) is chosen as the origin. In the

equilibrium position of the string, it is assumed to lie along

the x-axis (see Fig. 8.3). A point of the string is moved

upwards by a distance d; the corresponding shape of the

string is shown as dashed line in Fig. 8.3. If the displacement

occurs at a distance a from the origin, the equation of the

string (in its displaced position) would be given by the

following equation:

LO 2
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y = 
d

a
 x for 0 < x < a

= 
d

L a
 (L � x) for a < x < L (8.14)

where L represents the length of the string. Now, if the

string is released from this position at t = 0, we would

like to determine the shape of the string at any subsequent

time.

A B x

y

L
a

d

Fig. 8.3 The plucked string; AB represents the equilibrium
position. The dashed lines show the displaced
position at t = 0.

We will show in Sec. 11.6 that the displacement y(x, t)

satisfies the following wave equation:

2

2

y

x
= 

1
2

2

2
v

y

t
(8.15)

where v = T /R W  represents the speed of the transverse

waves, T being the tension in the string and , the mass per

unit length. We would like to solve Eq. (8.15) subject to the

following boundary conditions:

(a) y = 0 at x = 0 and x = L for all values of t (8.16)

(b) At t = 0

(i)
y

t
 = 0 for all values of x. (8.17)

(ii) y(x, t = 0) = 
d

a
 x for 0 < x < a

= 
d

L a
 (L � x) for a < x < L (8.18)

Assuming a time dependence of the form cos t (or

sin t),

y(X, t) = X(x) cos t

we obtain

d X

d x

2

2
= � 

2

2
v

X x( )

or

d X

d x

2

2
 + kPX(x) = 0 (8.19)

where

k = 
v

(8.20)

The solution of Eq. (8.19) is simple*:

X(x) = A sin kx + B cos kx (8.21)

Thus,

 y(x, t) = (A sin kx + B cos kx) (C cos t + D sin t)

Now,

y x t
x

( , )
0

= 0 for all values of t

* Rigorously, we should proceed by using the method of separation of variables; thus we assume

y(x, t) = X(x) T(t)

where X(x) is a function of x alone and T(t) is a function of t alone. Substituting in Eq. (8.15), we get

1 2

2X x

d X

dx( )
= 

1 1
2

2

2
v T t

d T

dt( )
 = �kP

Since the term 
1 2

2X

d X

d x
 is a function of x alone and the term   

1 1
2

2

2
v T

d T

dt
 is a function of t alone, each term must be equal to a constant

which we have put equal to  �kP. Thus,

d T

d t

2

2
 + PT(t) = 0

and

d X

d x

2

2
 + kPX(x) = 0

where

= kv
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Thus, B = 0 and we obtain

y(x, t) = sin kx [C cos t + D sin t]

where we have absorbed A in C and D. Since

y x t
x L

( , ) = 0 (for all values of t)

we must have

sin kL = 0

or

kL = n ; n = 1, 2, 3, � (8.22)

Thus, only discrete values of k (and hence of ) are

permissible; these are given by

k
n

= 
n

L
; n = 1, 2,... (8.23)

giving

n
= 

n

L

v
; n = 1,2,... (8.24)

Equation (8.24) gives the frequencies of the various

modes of the string. The mode corresponding to the lowest

frequency (n = 1) is known as the fundamental mode.

Thus the solution of Eq. (8.15) satisfying the boundary

condition given by Eq. (8.16) would be given by

y(x, t) = sin [ cos sin ]

, , ,...

k x C t D tn n n n n

n 1 2 3

(8.25)

Differentiating partially with respect to t, we get

y

t
t 0

 = sin [ sink x C tn n n n

n

 +

n n n

t

D tcos ]

0

= n n n

n

D k xsin (8.26)

Since

y

t
t 0

= 0 for all values of x

we must have

D
n

= 0 for all n

Thus,

y(x, t) = C k x tn n n

n

sin cos

, , ,...1 2 3

(8.27)

or

y(x, 0) = C
n

L
xn

n

sin
%
'&

(
0)

(8.28)

The above equation is essentially a Fourier series and in

order to determine C
n
, we multiply both sides of Eq. (8.28) by

sin
m

L
x

%
'&

(
0)

dx and integrate from 0 to L to obtain:

C
m

= 
2

0

0
L

y x
m

L
x dx

L

( , ) sin
%
'&

(
0)s (8.29)

where we have used the relation

sin sin
n x

L

m x

L
dx

L

0

s  = 
0

2

if

if

m n

L m n

7
8
9 /

(8.30)

[see Eq. (8.5)]. Substituting the expression for y(x, 0) from

Eq. (8.18), we obtain

C
n
 =

2

0
L

d

a
x

n

L
x dx

a

sin
%
'

(
0

1

3

2
2 s  +

d

L a
 ( ) sinL x

n

L
x dx

a

L
%
'&

(
0)

4

6

5
5s

=
2 2

2 2

dL

a L a n

n

L
a

( )
sin

%
'&

(
0)

On substituting in Eq. (8.27), we finally obtain

y(x, t) =
2

2

2

dL

a L a( )
 

1
2

1 2 3
n

n

L
a

n

sin

, , ,...

%
'&

(
0)

 

sin cos
n

L
x

n v

L
t

%
'&

(
0)

%
'&

(
0)

(8.31)

Equation (8.31) can be used to determine the shape of the

string at an arbitrary time t. If the string is plucked at the

centre (i.e., a = L/2), terms corresponding to n = 2, 4, 6, � are

absent (i.e., the even harmonics are absent) and Eq. (8.31)

simplifies to

y(x, t) = +1

2 2
( )

8 1
–1

(2 – 1)

m

m

d

m
 

(2 – 1)
sin

m x

L
 

(2 – 1) ( )
cos

m t

L
(8.32)



OpticsVFT
u

VFQ e��vsge�syx2 yp2 py��si�

�i�si�2 sx2 py�gih

�sf�e�syx�

Let us consider the forced vibrations of a damped oscillator.

The equation of motion would be

m
d y

dt

dy

dt
k y

2

2 0 = F(t) (8.33)

where  represents the damping constant (see Sec. 7.3) and

F represents the external force. It has been shown in Sec. 7.4

that if  > 0 and

F(t) = F
H
 cos (pt + ) (8.34)

then the steady state solution of Eq. (8.33) is a simple

harmonic motion with the frequency of the external force. If

F(t) is not a sine or cosine function, a general solution of

Eq. (8.33) is difficult to obtain; however, if F(t) is periodic

then we can apply Fourier's theorem to obtain a solution of

Eq. (8.33). For example, let

F(t) =  t for �  < t < (8.35)

and

F(t + 2n ) = F(t); n = 1, 2, �

The Fourier expansion of such a function was discussed in

Example 8.1 and is of the form,

F(t) = F n tn

n

sin

= 
2

 
( )

sin

, ,...

1

3

2
2

4

6

5
5

1 1

1 2

n

n
n

n t (8.36)

We next consider the solution of the differential equation

m
d y

dt

dy

dt
k yn n

n

2

2 0 = F
n
 sin n t

or

d y

dt
K

dy

dt
yn n
n

2

2 0
2

= A
n
 sin n t (8.37)

where

K
m

k

m
; 0

2 0

and

A
n

= 
F

m
n  = 

( )1 21n

n m
(8.38)

The steady state solution of Eq. (8.37) will be of the form

y
n

= C
n
 sin n t + D

n
 cos n t

and the solution of Eq. (8.33) will be of the form

y = yn
n

(8.39)

In order to determine C
n
 and D

n
 we substitute the above

solution in Eq. (8.37) to obtain

�nP P [C
n
 sin n t + D

n
 cos n t]

+ n K [C
n
 cos n t � D

n
 sin n t]

+
H

P [C
n
 sin n t + D

n
 cos n t] = A

n
 sin n t

Thus,

and
( )

( )

0
2 2 2

0
2 2 2 0

@
A
B

n C n K D A

n D n K C

n n n

n n

=

=
(8.40)

Solving the above equations, we get

D
n

= � 
n K

n n K
An

( )0
2 2 2 2 2 2 2

and

C
n

= 0
2 2 2

0
2 2 2 2 2 2 2

n

n n K
An

( )

Thus, the steady state solution can be written in the form

y = G n tn n

n

sin ( ) (8.41)

where the amplitude G
n
 is given by

G
n

= ( ) /
C Dn n

2 2 1 2

= 
A

n n K

n

[( ) ] /
0
2 2 2 2 2 2 2 1 2

(8.42)

VFR �ri2 py��si�

sx�iq�ev

In Sec. 8.1, we had shown that a periodic function can be

expanded in the form,

f(t) = 
1

2 0

1

a a n t b n tn n

n

[ cos sin ] (8.43)

where

a
n

= 
2

T
f t n t dt

t

t T

o

o

( ) coss (8.44)

LO 3

LO 4
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b
n

= 
2

T
f t n t dt

t

t T

o

o

( ) sins (8.45)

and

T = 
2

(8.46)

On substituting the above expressions for a
n
 and b

n
 in

Eq. (8.43) we get [we must replace t by t  in Eqs. (8.44) and

(8.45)]:

f (t) =
1

2

2

T
f t dt

T

T

( )

/

/

s  +

2

1
T

n t

n

cos1
32

 f t n t dt

T

T

( ) cos

/

/

s
2

2

4

6

5
5s

2

2

2

T
n t f t n t dt

T

T

sin ( ) sin

/

/

(8.47)

or

f (t) =
1

2
s f t dt

s

s

( )

/

/

s  +

s
f t n s t t dt

s

s

n

( ) cos [ ( )]

/

/

s
1

(8.48)

where

s
2

T
 = 

We let T   so that s  0; notice that when T  , the

function is no more periodic. Thus, if the integral

f t dt( )s
exists (i.e., if it has a finite value) then the first term on the

RHS of Eq. (8.48) would go to zero. Further, since

F s d s( )

0

s = lim ( )
s

n

F n s s
0

1

(8.49)

we have

f (t) = 
1

0

f t s t t d t d s( ) cos [ ( )]

1

3

2
2

4

6

5
5ss (8.50)

Equation (8.50) is known as the Fourier integral. Since the

cosine function inside the integral is an even function of s,

we may write

f (t) = 
1

2
f t s t t d t d s( ) cos [ ( )]

1

3

2
2

4

6

5
5ss (8.51)

Further, since sin [s(t � t )] is an odd function of s,

i
f t s t t d t ds

2
( ) sin [ ( )]

1

3

2
2

4

6

5
5ss  = 0 (8.52)

If we add (or subtract) the above two equations, we will

get

f (t) = 
1

2
f t e d t di t t( ) ( )ss (8.53)

where we have replaced s by . Equation (8.53) is usually

referred to as the Fourier integral theorem. Thus, if

F( ) s
1

2
f t e dt

i t
( ) (8.54)

then

f (t) s
1

2
F e di t( ) (8.55)

The function F( ) is known as the Fourier transform of f (t).

For a time dependent function f(t), F( ) is usually referred to

as its frequency spectrum. Equations (8.54) and (8.55) are

also written in the form

F( ) = 
1

2
f t e d ti t( )s (8.56)

with

f (t) = F e di t( )s (8.57)

We can also write

G(k) = 
1

2
f x e dx

i k x
( )s (8.58)

with

f (x) = G k e dki k x( )s (8.59)

where k is often referred to as spatial frequency�a concept

that is extensively used in Fourier Optics [see Chapter 19].

In the next chapter, we will introduce the Dirac delta func-

tion and rederive Eqs. (8.54)�(8.59) and work out a few

examples to illustrate the physics and applications of the
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Fourier transform. In Chapter 10, we will use Fourier trans-

forms to study the propagation of optical pulse in dispersive

and non-linear media.

Summary

u A periodic function with period T, i.e.,

f (t + nT) = f(t); n = 0, ±1, ±2, ...

can be expanded in the form

f (t) = 
1

2
a
H
 + a

n

T
t b

n

T
tn n

nn

cos sin
2 2

11

π π
+

=

∞

=

∞

∑∑

= 
1

2
a
H
 + a n t b n tn n

nn

cos( ) sin ( )ω ω+

=

∞

=

∞

∑∑
11

where

= 
2π

T

represents the fundamental frequency. The above infinite

series is known as the Fourier series and the coefficients a
n

and b
n
 are given by

a
n

= 
2

0

0

T
f t n t

t

t T

( ) cos ;ω

+

s n = 0,1,2,3, ...

and

b
n

= 
2

0

0

T
f t n t

t

t T

( ) sin ;ω

+

s n = 0,1,2,3, ...

u Transverse vibrations of a plucked string and forced

vibrations in damped oscillator can be studied by using

Fourier series.

u For a time dependent function f(t), its Fourier transform is

defined by the equation

F( )  
1

2π
ω

f t e dt
i t

( )
±

−∞

+∞

s
u Fourier integral is given by the following equation:

0

1
( ) = ( ) cos [ ( )]f t f t s t t dt ds

Then

F(t)  f e d
i t

( )ω ω
ω

−∞

+∞

s

Problems

8.1 Consider a periodic force of the form,

F(t) = F
H
 sin t for 0 < t < T/2

= 0 for T/2 < t < T

and

F(t + T) = F(t)

where

= 
2

T

Show that

F(t) =
1 1

20 0F F tsin

2
F t t0

1

3
2

1

15
4cos cos ...

%
'

(
0

One obtains a periodic voltage of the above form in a

half-wave rectifier. What will be the Fourier expansion

corresponding to full wave rectification?

8.2 In quantum mechanics, the solution of the one

dimensional Schrödinger equation for a free particle

is given by

(x, t) = 
1

2

2

2
a p e d p

i
p x

p

m
t

( )s
where p is the momentum of the particle of mass m.

Show that

a(p) = 
1

2
0( , )x e dx

i
px

s

8.3 In continuation of Problem 8.2, if we assume

(x, 0) = 
1

2
2 1 4

2

2 0
( )

exp exp
/

1

3
2
2

4

6
5
5

1
32

4
65

x i
p x

then show that

a(p) = 
2

2

1 4
2

2 0
2

2

%

'&
(

0)
1

3
2
2

4

6
5
5

/

exp ( )p p

Also show that

( , )x dx0
2

s  = 1 = a p dp( )
2

s

Indeed | (x, 0) |P dx represents the probability of

finding the particle between x and x + dx and |a(p)|P

dp represents the probability of finding the

momentum between p and p + dp and we would have

the uncertainty relation

x p ~ 
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The Dirac delta function is defined through the equations

(x � a) = 0 x  a (9.1)

a

a

−

+

s
α

β

(x � a)dx = 1 (9.2)

where ,  > 0. Thus, the delta function has an infinite value

at x = a such that the area under the curve is unity. For an

arbitrary function that is continuous at x = a, we have

a

a

−

+

s
α

β

f(x) (x � a)dx = f(a)

a

a

−

+

s
α

β

(x � a)dx [using Eq. (9.1)]

= f(a) (9.3)

It is readily seen that if x has the dimension of length,

(x � a) would have the dimension of inverse length.

Similarly, if x has the dimension of time then (x � a) would

have the dimension of (time)�1.

Strictly of course, (x) is not a proper function of x, but can be regarded only as a limit of a

certain sequence of functions. All the same one can use (x) as though it were a proper function

for practically all the purposes of quantum mechanics without getting incorrect results. One

can also use the differential coefficients of (x), namely, (x), (x),� which are even more

discontinuous and less �proper� than (x) itself.

�P.A.M. Dirac in The Physical Interpretation of Quantum Dynamics,

Proceedings of the Royal Society of London (A), 113, 621�641 (1926)

�ri2hs�eg2hiv�e2p�xg�syx
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Chapter
Nine

WFP �i��i�ix�e�syx�2 yp

�ri2 hs�eg2 hiv�e

p�xg�syx

There are many representations of the Dirac delta function.

Perhaps the simplest representation is the limiting form of the

rectangle function R (x) defined through the following

equation:

R (x) = 
1

2σ
for a �  < x < a + 

= 0 for |x � a| > (9.4)

The function R (x) is plotted in Fig. 9.1 for various values

of . Now,

s R (x)dx = 
1

2σ
σ

σ

a

a

−

+

s dx = 1 (irrespective of the value of )

For   0, the function R (x) becomes more and more

sharply peaked but the area under the curve remains unity.

In the limit of   0, the function R (x) has all the properties

of the delta function and we may write

(x � a) = lim
σ →0

 R (x)

LO 1: desrcibe different representations of the Dirac delta function.

LO 2: describe delta function as a distribution.

LO 3: state the conditions satisfying Fourier integral theorem.

LO 4: analyze multi-dimensional form of Fourier transformation.

LO 1
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0 1 2 3 4
x

0

2

4

6

8

10

12

14

s = 0.04

s = 0.1

s = 0.4

Rectangle function

R
x

s
(

)

Fig. 9.1 Plots of R (x) for a = 2 and  = 0.4, 0.1 and 0.04. In
each case, the area under the curve is unity. For

  0, the function R (x) has all the properties of
the Dirac delta function.

Now,

−∞

+∞

s f(x) R (x)dx = 
1

2σ
σ

σ

a

a

−

+

s f(x)dx (9.5)

We assume the function f(x) to be continuous at x = a. Thus

when   0, in the infinitesimal interval a � < x < a + ,

f (x) may be assumed to be a constant [= f(a)] and taken out

of the integral. Thus,

−∞

+∞

s f(x) (x � a) dx = lim
σ →

−∞

+∞

s0
f (x) R (x)dx

= lim
σ σ→0

1

2
f(a) 

a

a

→

+

s
σ

σ

dx

= f(a)

WFQ sx�iq�ev �i��i�ix�e�syx
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An extremely important representation of the Dirac delta

function is through the following integral:

(x � a) = 
1

2π
− ∞

+ ∞

s e ik(x�a)dk (9.6)

In order to prove Eq. (9.6) we first note that

1

2

g

g

e ik(x�a)dk = 
sin ( )

( )

g x a

x a

−

−π
(9.7)

In Appendix B, we have shown that

sin gx

xπ
− ∞

+ ∞

s dx = 1; g > 0 (9.8)

irrespective of the value of g which is assumed to be greater

than zero. Further,

lim
sin

x

gx

x→0
= g

Thus for a large value of g, the function

sin ( )

( )

g x a

x a

−

−π

is very sharply peaked around x = a (see Fig. 9.2; see also

Fig. 17.16(b)) and has a unit area under the curve irrespective

of the value of g; thus in the limit of g , it has all the

properties of the delta function and we may write

–2

0

2

4

6

4321

g = 5

g = 20

sin [ ( – 2)/ ( – 2)]g x xp

x

Fig. 9.2 Plots of the function 
sin ( )

( )

g x a

x a

−

−

1

3
2

4

6
5π

 for a = 2 and

g = 5, 20. In each case, the area under the curve is
unity. For g  , the function is very sharply
peaked at x = a and has all the properties of Dirac
delta function.

(x � a) = lim
sin ( )

( )g

g x a

x a→∞

−

−π
 = lim

g
g

g

→∞
−

+

s
1

2π
 e ik(x�a) dk (9.9)

from which Eq. (9.6) readily follows.

WFR hiv�e2 p�xg�syx2 e�

e2 hs���sf��syx

The delta function is actually a distribution. In order to

understand this, let us consider the Maxwellian distribution

N(E) dE = N0 
2 1

3 2π ( ) /kT
E1/2 e

E

kT
−

dE (9.10)

where k represents the Boltzmann�s constant, T the absolute

temperature and m the mass of each molecule. In Eq. (9.10),

N (E) dE represents the number of molecule whose energies

lie between E and E+ dE. The total number of molecules is

given by N0

LO 2
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0

∞

s N(E)dE = N0

2 1
3 2

0
π ( )

/
kT

∞

s E1/2 e�E/kT dE

= N0 
2

1

2

0
π

x

∞

s e�xdx

where x = E/kT. The integral is 
3

2
%
'

(
0  = 

1

2
π . Thus,

0

∞

s N(E)dE = N0

It may be noted that whereas N0 is just a number, the

quantity N(E) has dimensions of (energy)�1. Obviously, if we

ask ourselves how many molecules have the precise energy

E1 the answer would be zero. This is a characteristic of a dis-

tribution. On the other hand, in addition to the distribution

given by Eq. (9.10), if we do have N1 molecules all of them

having the same energy E1, the corresponding distribution

function would be given by

N(E) = N0

2 1
3 2π ( ) /kT

E1/2e

E

kT
−

 + N1 (E � E1) (9.11)

where (E � E1) represents the Dirac delta function and has

the dimensions of inverse energy.

WFS py��si�2 sx�iq�ev

�riy�iw

In the previous section, we have shown the following

integral representation of the Dirac delta function:

(x � x ) = 
1

2π
− ∞

+ ∞

s e ik(x�x ) dk (9.12)

Since

f(x) = 

−∞

+∞

s (x � x ) f(x )dx (9.13)

we may write

f(x) = 
1

2π
−∞

+∞

−∞

+∞

ss e ik(x�x ) f(x ) dx  dk (9.14)

Thus, if we define

F(k) = 
1

2π
− ∞

+ ∞

s f(x) e�ikx dx (9.15)

then

f(x) = 
1

2π
− ∞

+ ∞

s F(k) e+ikx dk (9.16)

The function F(k) is known as the Fourier transform of the

function f(x) and Eq. (9.16) enables us to calculate the

original function from the Fourier transform. Equation (9.14)

represents what is known as the Fourier Integral Theorem

that is valid when the following conditions are satisfied (see,

e.g. References 8.4 and 8.5)

1. The function f (x) must be a single valued function of

the real variable x throughout the range �  < x < . It

may however have a finite number of finite

discontinuities.

2. The integral 
−∞

+∞

s | f(x)|dx must exist.

From Eq. (9.14) it is obvious that in Eqs. (9.15) and (9.16)

there is no reason why the factors eikx and e�ikx cannot be

interchanged, i.e., we could have defined

F(k) = 
1

2π
−∞

+∞

s f(x) e+ ikx dx (9.17)

then

f(k) = 
1

2π
− ∞

+ ∞

s F(x) e�ikx dx (9.18)

However, in all of what follows we will use the definitions

given by Eqs. (9.15) and (9.16).

Example 9.1 As an example we consider a Gaussian

function given by

f(x) = A exp
1

3
2

4

6
5

x
2

22
(9.19)

Its Fourier transform is given by

F(k) = 
A

2π
− ∞

+ ∞

s e�x2/2 2
 e�ikxdx

or

F (k) = A exp −1
32

4
65

1

2

2 2
k σ (9.20)

where we have made use of the following integral (see Appendix A):

e�ax2+b xdx =  exp
2

4
; Re  > 0 (9.21)
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As can be seen from Eq. (9.20) the function F(k) is also

Gaussian; thus the Fourier transform of a Gaussian is a

Gaussian. We may note that the Gaussian function given by Eq.

(9.19) has a spatial width given by [see Fig. 9.3(a)]

x ~ 

Its Fourier transform, F (k) has a width given by [see Fig. 9.3 (b)]

k ~ 
1

σ
(9.22)

f x( )

x

(a)

Dx ~ s

F k( )

k

(b)

Dk ~
1
s

Fig. 9.3 (a) The Gaussian function f (x) as given by
Eq. (9.19). (b) The Fourier transform of the
Gaussian function is also a Gaussian in the k-space
[see Eq. (9.20)].

Thus,

x k ~ 1 (9.23)

which is a general characteristic of the Fourier transform pair.

Example 9.2 As another example, we calculate the Fourier

transform of the rectangle function

f(x) = rect
x

a
%
'

(
0  = 

1
1

2

0
1

2

, | |

, | |

x a

x a

<

>

7

8
u

9
u

(9.24)

Its Fourier transform will be given by (see Fig. 9.4)

F (k) = 
1

2
2

2

π
−

+

s
a

a

/

/

e�ikx dx

F (k) = 
2 2

π
sin( / )ka

k
(9.25)

Once again, the rectangle function has a width x = a and its

Fourier transform has a width

k ~ 
π
a

giving x k ~ 1. Equation (9.25) can be written in the form

F (k) = 
a

2π
sinc (9.26)

where

 
ka

2
(9.27)

and

sinc x  
sin x

x
(9.28)

– /2a a/2x

f x( )

(a)

2p
a

–
2p
a

k

(b)

F k( )

Fig. 9.4 (a) The rectangle function. (b) The Fourier trans-
form of the rectangle function.

is known as the �sinc function�. Using Eq. (9.16), we can write

rect
x

a
%
'

(
0 = 

1

2 2π π

a

− ∞

+ ∞

s sin  eikxdk

or

rect
X

2
%
'

(
0 = 

2 1

2π π
ξ ξξ

−∞

+∞

s
1

3

2
2
2

4

6

5
5
5

sinc e d
i X

(9.29)

where

X  
x

a /2
(9.30)

Thus, the Fourier transform of the sinc function is π / 2  times

the rectangle function:

F
sin x

x

%
'

(
0 = 

π
2

rect
k

2
%
'

(
0 (9.31)

For a time dependent function, we can write the Fourier trans-

form in the following form [see also Sec. 8.4]:

F[f(t)] = F( ) = 
1

2 s f(t) e i t dt (9.32)
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The inverse Fourier transform will then be given by

f(t) = 
1

2 s F( ) e i t  d (9.33)

The above equations are nothing but Eqs. (9.15) and (9.16)

with x and k replaced by t and , respectively. The function

F( ) is usually referred to as the frequency spectrum of the

time dependent function f (t).

Example 9.3 As an example, we consider the Fourier trans-

form of the Gaussian function (see Fig. 9.5)

f(t) = A exp −
%

'&
(

0)
t

t

2

0
2

(9.34)

Dt

t

f t( )

w

F( )w

Dw ~
1

Dt

Fig  9.5 The Fourier transform of a Gaussian temporal
function is a Gaussian function in the frequency
space.

Thus, the Fourier transform is given by [using Eq. (9.32)]

F( ) = 
A

2π
− ∞

+ ∞

s exp −
%

'&
(

0)
t

t

2

0
2

e�i tdt

= 
At0

2
exp −

%
'&

(
0)

ω2
0
2

4

t
 (9.35)

where we have used the integral given by Eq. (9.21). The function

F( ) [as given by Eq. (9.35)] is also plotted in Fig. 9.5. We denote

the full width at half maximum (usually abbreviated as FWHM) of

f(t) by t; thus at t = 
1

2
t, the function f(t) attains half of its

maximum value:

1

2
A = A exp −

%

'&
(

0)
( )Δt

t

2

0
2

4

Thus,

t = 2 ln2 t0  1.67 t0

Similarly, if  denotes the FWHM of F( ), then [see Fig. (9.5)]

= 
4 2

0

ln

t
  

3 34

0

.

t
(9.36)

Thus, if a time dependent function f(t) has a temporal width t,

then its Fourier transform F( ) will have a spectral width

 ~ 
1

Δt
(9.37)

giving the uncertainty relation [see also Example 10.4 and Sec. 17.6]

 t  1 (9.38)

The above equation may be compared with the relation

x k ~ 1 derived above.

WFT �ri2 ��yE2 exh2 �r�iiE

hswix�syxev2 py��si�

��ex�py�w

One can generalize the analysis of Sec. 9.4 to two or three

dimensions. For example, the two-dimensional Fourier trans-

form of a function f(x, y) is defined through the equation

F(u, v) = 
1

2π
− ∞

+ ∞

− ∞

+ ∞

ss  f(x, y)e i(ux + vy) dxdy (9.39)

where u and v are referred to as spatial frequencies. The

inverse transform would be given by

f(x, y) = 
1

2π
− ∞

+ ∞

− ∞

+ ∞

ss F(u, v)
( )i ux y

e
v

dudv (9.40)

We will use Eqs. (9.39) and (9.40) in Sec. 19.9. Similarly, we

can define the three-dimensional Fourier transform

F(u, v, w) = 
1

2
3 2

( )
/π

− ∞

+ ∞

− ∞

+ ∞

− ∞

+ ∞

sss  f (x,  y, z)e i(ux + vy +wz)dxdydz

(9.41)

with its inverse Fourier transform given by

f(x, y, z) = 
1

2
3 2

( )
/π

− ∞

+ ∞

− ∞

+ ∞

− ∞

+ ∞

sss  F(u, v, w)
( )i ux y wz

e
v

dudvdw

(9.42)

9.6.1 The Convolution Theorem

The convolution of two functions f(x) and g(x) is defined by

the relation,

f(x)* g(x) = 

−∞

+∞

s f(x ) g(x � x )dx  = g(x)* f(x) (9.43)

The convolution has this important property:

The Fourier transform of the convolution of two functions

is 2π  times the product of their Fourier transforms.

LO 4
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The proof is as follows:

F(f(x)* g(x)) = 
1

2π
− ∞

+ ∞

s dxe�ikx dx f x g x x′ ′ − ′
1

3

2
2

4

6

5
5

−∞

+∞

s H S I T

= 2
1

2
π

π
d x f x e

ikx′ ′
1

3

2
2

4

6

5
5

− ′

−∞

+∞

s H S

  
1

2π
d x g x x e

ik x x
− ′

1

3

2
2

4

6

5
5

− − ′

−∞

+∞

s I T

In the second equation, we substitute (x � x ) by  to obtain

F( f(x)* g(x)) = 2π F(k) G(k)

where F(k) and G(k) are Fourier transforms of f (x) and g(x),

respectively. The convolution can be used to obtain the

Fourier transforms of the product of two functions:

F(f(x)g(x)] = 
1

2π
− ∞

+ ∞

s f(x) g(x)e�ikx dx

= 
1

2π
− ∞

+ ∞

s dx g(x) e�ikx
1

2π
F k e dkik x( )′ ′

1

3

2
2

4

6

5
5

′

−∞

+∞

s

= 
1

2π
− ∞

+ ∞

s dk F(k )
1

2π
dx g x e i k k x( ) ( )− − ′

−∞

+∞

s
1

3

2
2

4

6

5
5

= 
1

2π
− ∞

+ ∞

s F(k )G(k � k )dk

Thus,

F(f(x) g(x)) = 
1

2π
F(k)* G(k)

The above result tells us that the Fourier transform of the

product of two functions is 
1

2π
 times the convolution of

their Fourier transforms.

Summary

u The Dirac delta function is defined through the equations

(x � a) = 0 x  a

and for a well-behaved function f(x), which is continuous at

x = a

− ∞

+ ∞

s f(x) (x � a) dx = f(a)

u For N1 molecules all with equal energy E1, the distribution

function is given by

1/2
0 1 13/2

2 1
( ) = ( )

( )

E

kTN E N E e N E E
kT

u For a time dependent function f(t), its Fourier transform is

defined by the equation

    F( ) = 
1

2π
− ∞

+ ∞

s f(t) e i t dt

Then,

F(t) = 

− ∞

+ ∞

s f( ) e i tdt

u The Fourier transform of the Gaussian function

f (t) = A exp −
%

'&
(

0)
t

t

2

0
2

is given by

F( ) = 
At

e

t

0 4

2

2
0
2

π

ω
−

u In general, if a function has a temporal spread of t, then its

Fourier transform F( ) will have a spectral spread

  1/ t.

u The two-dimensional Fourier transform of a function f(x, y)

is defined through the equation,

F(u, v) = 
1

2π
− ∞

+ ∞

− ∞

+ ∞

s s f(x, y) e i(ux+vy) dxdy

where u and v are referred to as spatial frequencies. The

inverse transform would be given by

f(x, y) = 
1

2π
− ∞

+ ∞

− ∞

+ ∞

s s F (u, v)
( )i u x ye v

 dudv

u The convolution of two functions f(x) and g(x) is defined by

the relation

f(x)* g(x) = 

− ∞

+ ∞

s f(x ) g(x � x )dx  = g(x)* f(x)

The Fourier transform of the convolution of two functions is

2π  times the product of their Fourier transforms.

Problems

9.1 Consider the Gaussian function

G (x)  
1

2σ π
exp −

−1

3
2

4

6
5

( )x a
2

22σ
;  > 0
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Using Eq. (9.21) show that 

− ∞

+ ∞

s G (x)dx = 1. Plot G (x) for

a = 2 and  = 1.0, 5.0 and 10.0. Hence show that

(x � a) = lim
σ σ π→0

1

2
 exp −

−1

3
2

4

6
5

( )x a
2

22σ
  (9.44)

which is the Gaussian representation of the delta function.

9.2 Consider the ramp function defined by the following

equation:

F (x) = 

0
1

2
1

for

for

for

x a

x a x a

x a

< −

− + − <

> +

7

8
u

9
u

σ

σ
σ σ

σ

( ) | | (9.45)

Show that 
dF

dx
 = R (x), where R (x) is the rectangle

function defined by Eq. (9.4). Taking the limit   0, show

that (x � a) = 
d

dx
H(x � a) where H(x � a) is the unit step

function. Thus we get the following important result:

If a function has a discontinuity of  at x = a then its

derivative (at x = a) is (x � a).

9.3 Consider the symmetric function

(x) = A exp (�K|x |)

Show that

(x) = K2 (x) � 2AK (x)

9.4 Consider the function f(t) = Ae�tP/2 P

 ei H
t

Calculate its Fourier spectrum F( ) = 
1

2π −∞

+ ∞

s f(t)e�i tdt

and evaluate approximately t. Evaluate f(t) using the

expression for F( ).

9.5 Calculate the Fourier transform of the following functions

(a) f(x) = Aeik0
x |x | < L/2

= 0 x | > L/2

(b) f(x) = A exp
| |1

32
4
65

x

L

In each case, make an estimate of x and k interpret physi-

cally.

9.6 Show that the convolution of two Gaussian functions is

another Gaussian function:

exp * exp−
%

'&
(

0)
1

3
2
2

4

6
5
5

−
%

'&
(

0)
1

3
2
2

4

6
5
5

x

a

x

b

2

2

2

2

= ab
π

a b2 2

1 2

+

/

exp −
+

%

'&
(

0)
x

a b

2

2 2
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When we switch on a light source and quickly put it off, we
produce a pulse. This pulse propagates through a medium
with what is known as the group velocity, which will be dis-
cussed in this chapter. In addition, as the pulse propagates,
it undergoes distortion which will also be discussed.* A
study of this distortion of optical pulses is a subject of great
importance in many areas; in particular, it has very important
significance in fiber-optic communication systems which will
be briefly discussed in Chapters 28 and 30.

IHFP q�y��2 �ivygs��

Let us consider two plane waves (having the same amplitude
A) with slightly different frequencies  +  and  � 
propagating along the +z direction:

In a perfect wave, you cannot say when it starts, so you cannot use it for a timing signal. In order

to send a signal you have to change the wave somehow, make a notch in it, make it a little bit

fatter or thinner. That means that you have to have more than one frequency in the wave, and it

can be shown that the speed at which signals travel is not dependent upon the index alone, but

upon the way that the index changes with the frequency.

�Richard Feynman in Feynman Lectures on Physics, Vol. I

q�y��2�ivygs��2exh

��v�i2hs��i��syx

Chapter
Ten

Important Milestone

1672 Isaac Newton reported to the Royal Society his observations on the dispersion of sunlight as it passed

through a prism. From this experiment, Newton concluded that sunlight is composed of light of different

colours which are refracted by glass to different extents.

1(z, t) = A t k k zcos ( ) ( ) (10.1)

2(z, t) = A t k k zcos ( ) ( ) (10.2)

where k + k and k � k are the wave numbers correspond-
ing to the frequencies  +  and  � , respectively. The
superposition of the two waves will be given by

(z, t) = A t k k zcos [( ) ( ) ]

A t k k zcos [( ) ( ) ]

or

(z, t) = 2A t k z t k zcos ( ) cos[( ) ( ) ] (10.3)

In Fig. 10.1(a), we have shown the variation of the rapidly
varying cos( t � kz) term at t = 0; the distance between two
consecutive peaks is 2 /k. In Fig. 10.1(b), we have shown the
variation of the slowly varying envelope term, represented

* This chapter assumes a knowledge of waves which will be discussed in the next chapter. May be, the reader would like to go through
Chapter 11 first before going through this chapter.

LO 1: explain the concept of group velocity.
LO 2:: illustrate group velocity of a wave packet using Guassian pulse.
LO 3: discuss the chirping of a dispersed pulse.
LO 4: interpret the effect of self phase modulation on frequency.

LO 1
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cos kz

cos ( )Dk z

z

(a)

(b)

Fig. 10.1 (a) Variation of the rapidly varying cos ( t � kz) term at t = 0; the distance between two
consecutive peaks is 2 /k. (b) Variation of the slowly varying envelope term, represented by
cos [( )t �( k)z], at t = 0. The distance between two consecutive peaks is 2 / k.

Y( ,   = 0)z  t

Y D( ,   = )z  t t

z

(a)

(b)

Fig. 10.2 (a) and (b) show the variation of (z, t) at t = 0 and at t = t; the envelope moves with the
group velocity / k.

by cos [( )t � ( k) z] at t = 0; the distance between two
consecutive peaks is 2 / k . In Fig. 10.2(a) and (b), we have
plotted (z, t) at

t = 0 and t = t

Obviously, the rapidly varying first term moves with the
velocity

vp = 
k

(10.4)

and the slowly varying envelope [which is represented by
the second term in Eq. (10.3)] moves with velocity

vg = 
k

(10.5)

The quantities vp and vg are known as the phase velocity

and the group velocity, respectively. The group velocity is a
concept of great importance; indeed in the next section, we
will rigorously show that a temporal pulse travels with the
group velocity given by

vg = 
1

/dk d
(10.6)

Now, in a medium characterized by the refractive index
variation n( )

k( ) = 
c

n( ) (10.7)
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Thus,

1

vg

= dk

d
 = 1

c
n

dn

d
( )

1
32

4
65

(10.8)

In free space n( ) = 1 at all frequencies; hence

vg = vp = c (10.9)

Returning to Eq. (10.8), we may mention that it is customary
to express in terms of the free space wavelength 0 which is
related to  through the following equation:

= 2

0

c
(10.10)

Thus,

dn

d
= 

dn

d

d

d0

0  = 0
2

02 c

dn

d
(10.11)

or

1

vg

= 1 0 0
0c

n
dn

d
( )

1

3
2

4

6
5 (10.12)

The group index ng is defined as

ng = 
c

gv
 = n

dn

d
( )0 0

0

(10.13)

In Table 10.1, we have tabulated n( 0), dn/d 0 and ng( 0)
for pure silica as a function of the free space wavelength 0.
In Fig. 10.3, we have plotted (for pure silica) the wavelength
variations of the group velocity vg; we may notice that the
group velocity attains a maximum value at 0  1.27 m. As
we will show later in this chapter (and also in Chapter 28),
this wavelength is of great significance in optical communi-
cation systems.

Example 10.1 For pure silica the refractive index variation

in the wavelength domain 0.5 m < 0 < 1.6 m can be assumed to

be given by the following approximate empirical formula:

n( 0)  C a
a

0 0
2

0
2

− +λ
λ

(10.14)

where C0  1.451, a  0.003 and 0 is measured in m. [A more
accurate expression for n( 0) is given in Problem 10.6]. Simple

algebra shows

ng( 0) = C a
a

0 0
2

0
2

3
+ +λ

λ
(10.15)

Thus at 0 = 1 m,

n( 0)  1.451

and

ng( 0)  1.463

indicating that the difference between group and phase velocities is
about 0.8%. More accurate values of n( 0) and ng( 0) (as obtained
by using the expression given in Problem 10.6) are given in

Table 10.1.

Using Table 10.1 we find that in pure silica, for

0 = 0.80 m, vg = c/ng = 2.0444  108 m/s

and for

0 = 0.85 m, vg = c/ng = 2.0464  108 m/s

implying that (for 0 < 1.27 m) higher wavelength
components travel faster; similarly for 0 > 1.27 m lower
wavelength components travel faster. Now, every source of
light would have a certain wavelength spread, which is
usually referred to as the spectral width of the source. Thus,
a white light source (like coming from the sun) would have a
spectral width of about 3000 Å; on the other hand, a light
emitting diode (usually abbreviated as LED) would have a
spectral width of about 25 nm and a typical laser diode
(usually abbreviated as LD) operating around 1.3 m would
have a spectral width of about 2 nm; this spectral width is
usually denoted by 0. Since each wavelength component
(of a pulse) will travel with a slightly different group velocity
it will, in general, result in the broadening of the pulse. In
order to calculate this broadening, we note that the time
taken by a pulse to traverse a length L of the dispersive
medium is given by

= 
L

gv
 = L

c
n

dn

d
( )0 0

0

1

3
2

4

6
5 (10.16)
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Fig. 10.3 Variation of the group velocity vg with
wave-length for pure silica.
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Since the RHS depends on 0, Eq. (10.16) implies that
different wavelengths will travel with different group
velocities in propagating through a certain length of the
dispersive medium. Thus, the pulse broadening will be given
by

m = d

d 0
0

= 
1

3
2
2

4

6
5
5

L

c

d n

d

0

0
0
2

2

0
2

(10.17)

The quantity m is usually referred as material dispersion

because it is due to the material properties of the medium�
hence the subscript m. In Eq. (10.17), the quantity inside the
square brackets is dimensionless. Indeed, after propagating
through a length L of the dispersive medium, a pulse of
temporal width 0 will get broadened to f where

f
2  0

2 2

mI T (10.18)

In the next section, we will explicitly show this for a
Gaussian pulse. From Eq. (10.17), we see that the broadening
of the pulse is proportional to the length L traversed in the

medium and also to spectral width of the source 0. We
assume

0 = 1nm = 10�9m and L = 1 km = 1000 m

and define the dispersion coefficient as (see Sec. 28.10.3)

Dm = m

L

d n

d0 0
0
2

2

0
2

41

3
10

%

'&
(

0)
ps/ km.nm (10.19)

where 0 is measured in m and we have assumed
c  3  108 m/s. The quantity Dm is usually referred as the
material dispersion coefficient (because it is due to the ma-
terial properties of the medium) and hence the subscript m on
D. A medium is said to be characterized by positive disper-
sion when Dm is positive and it is said to be characterized by
negative dispersion when Dm is negative.

We may mention here that the spectral width of a pulse is
usually due to the intrinsic spectral width of the source�
which for a typical LED is about 25 nm and for a commercially
available laser diode is about 1�2 nm. On the other hand, for
a nearly monochromatic source, the intrinsic spectral width
could be extremely small and the actual spectral width of a

Table 10.1 Values of n, ng and Dm for pure silica*.

0 ( m) n( 0)
dn

d
0

 ( m�1) ng ( 0)
d n

d

2

0
2

 ( m�2) Dm (ps/nm.km)

0.70 1.45561 �0.02276 1.47154 0.0741 �172.9

0.75 1.45456 �0.01958 1.46924 0.0541 �135.3

0.80 1.45364 �0.01725159 1.46744 0.0400 �106.6

0.85 1.45282 �0.01552236 1.46601 0.0297 �84.2

0.90 1.45208 �0.01423535 1.46489 0.0221 �66.4

0.95 1.45139 �0.01327862 1.46401 0.0164 �51.9

1.00 1.45075 �0.01257282 1.46332 0.0120 �40.1

1.05 1.45013 �0.01206070 1.46279 0.0086 �30.1

1.10 1.44954 �0.01170022 1.46241 0.0059 �21.7

1.15 1.44896 �0.01146001 1.46214 0.0037 �14.5

1.20 1.44839 �0.01131637 1.46197 0.0020 �8.14

1.25 1.44783 �0.01125123 1.46189 0.00062 �2.58

1.30 1.44726 �0.01125037 1.46189 �0.00055 2.39

1.35 1.44670 �0.01130300 1.46196 �0.00153 6.87

1.40 1.44613 �0.01140040 1.46209 �0.00235 10.95

1.45 1.44556 �0.01153568 1.46229 �0.00305 14.72

1.50 1.44498 �0.01170333 1.46253 �0.00365 18.23

1.55 1.44439 �0.01189888 1.46283 �0.00416 21.52

1.60 1.44379 �0.01211873 1.46318 �0.00462 24.64

* The numerical values in the Table have been calculated using the refractive index variation as given in Ref. 10.2 (see Problem 10.6).



Group Velocity and Pulse Dispersion IHFS
u

pulse is determined from its finite duration (such a pulse is
often referred to as a Fourier transformed pulse). Thus, a
20 ps (Fourier transformed) pulse will have a spectral width

v  
1

20 10
5 10

12

11 Hz

implying

0  0
2

0 4
v

c
. nm

We may see that

d n

d

2

0
2

 0

around 0  1.27 m. Indeed the wavelength 0  1270 nm is
usually referred to as the zero material dispersion wave-

length and it is because of low material dispersion, the
second and third generation optical communication systems
operated around 0  1300 nm; more details will be given in
Sections 28.10 and 28.11.

Example 10.2 In the I-generation optical communication

system, one used LED�s with 0  0.85 m and 0  25 nm. Now

at 0  0.85 m

d n

d

2

0
2λ

 0.030 ( m)�2

giving

Dm  �85 ps/km.nm

the negative sign indicating that higher wavelengths travel faster
than lower wavelengths. Thus for 0  25 nm, the actual broaden-
ing of the pulse will be

m  2.1 ns/km

implying that the pulse will broaden by 2.1 ns after traversing

through 1 km of the silica fiber.

Example 10.3 In the IV-generation optical communication

systems, one uses laser diodes with 0 = 1.55 m and 0  2 nm.
Now at 0  1.55 m

d n

d

2

0
2λ

 0.0042 ( m)�2

giving

Dm  +21.7 ps/km.nm

the positive sign indicating that higher wavelengths travel slower
than lower wavelengths. (Notice from Table 10.1 that for 0 
1.27 m, ng increases with 0). Thus for 0  2 nm, the actual
broadening of the pulse will be

m  43 ps/km

implying that the pulse will broaden by about 43 ps after travers-

ing through 1 km of the silica fiber.
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The displacement corresponding to a one�dimensional plane
wave propagating in the +z direction can be written in the
form

E(z, t) = Aei( t � kz) (10.20)

where A represents the amplitude of the wave and

k( ) = 
c

n( ) (10.21)

n being the refractive index of the medium. The wave
described by Eq. (10.20) is said to describe a monochromatic
wave which propagates with the phase velocity given by

vp = 
k

 = c

n
(10.22)

We may mention here that, in general, A may be complex and
if we write

A = | A |ei

then Eq. (10.20) becomes

E = | A |ei( t � kz + )

The actual displacement is the real part of E and is, therefore,
given by

Actual electric field = Re(E)
= | A | cos( t � kz + ) (10.23)

The plane wave represented by Eq. (10.20) is a practical
impossibility because at an arbitrary value of z, the displace-
ment is finite for all values of t; for example,

E(z = 0, t) = Ae+i t ; � < t < (10.24)

which corresponds to a sinusoidal variation for all values of
time. In practice, the displacement is finite only over a certain
domain of time and we have what is known as a wave packet.
A wave packet can always be expressed as a superposition
of plane waves of different frequencies:

E(z, t) = A e d
i t k z

( )s (10.25)

Obviously,

E(z = 0, t) = A e di t( )s (10.26)

Thus, E(z = 0, t) is the Fourier transform of A( ) and using
the results of the previous chapter, we obtain

LO 2
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A( ) = 1

2
Es (z = 0, t) e�i t dt (10.27)

Thus, if E(z = 0, t) we know we can determine E(z, t) using
the following recipe:

We first determine A( ) from Eq. (10.27), substitute it in
Eq. (10.25) and carry out the resulting integration.

Example 10.4 Gaussian Pulse: As an example, we consider

a Gaussian pulse for which we may write

E(z = 0, t) = E e e

t

i t
0

2

0
2

0

−
+τ ω

(10.28)

If we substitute Eq. (10.28) in Eq. (10.27), we would obtain

A( ) = 
E

e e dt

t

i t0

2

2

0
2

0

π
τ ω ω

−
− −

s
= 

E0 0
0

2
0
2

2

1

4

τ

π
ω ω τexp ( )− −1

32
4
65

(10.29)

where we have used

e dx
x x− +

−∞

+∞

s
α β2

= 
π
α

β α
e

2 4/
(10.30)

(see Appendix A). In general, A( ) can be complex and as such one
defines the power spectral density

S( ) = | A( ) |2 (10.31)

For the Gaussian pulse

S ( ) = 
E0
2

0
2

0
2

0
2

4

1

2

τ
π

ω ω τexp ( )− − (10.32)

In Fig. 10.4 (a), we have plotted the function

E e t

t

0 0

2

0
2

−
τ ωcos

[which is the real part of Eq. (10.28)] for a 20 fs pulse ( 0 =
20  10�15s) corresponding to 0 = 1 m ( 0  6   1014 Hz); the
corresponding spectral density function S( ) is plotted in
Fig. 10.4(b). As can be seen, S( ) is a very sharply peaked function
of  around  = 0. The full width at half maximum of S( )
(usually abbreviated as FWHM) is denoted by ; thus at

= ω ω0
1

2
± Δ

S( ) attains half of its maximum value; the value of  is obtained

from the following equation:

1

2
= exp

( )
−

1

3
2
2

4

6
5
5

Δω τ2 0
2

8

or

FWHM =  = 2 2 2 2 35

0 0

ln .
(10.33)

Thus the Gaussian pulse of temporal width 20 fs has a frequency
spread  given by

 1.18  1014 Hz (10.34)

Thus,

Δω
ω0

 0.06

We may mention here that in order to have clarity in the
figure we have chosen a very small value of 0; usually 0

has a much larger value. A larger value of 0 will imply a much
smaller value of  (resulting in greater monochromaticity of
the pulse) and obviously Fig. 10.4(b) will be much more
sharply peaked. We will discuss this in greater detail in the
chapter on coherence (Chapter 17).

Returning to Eq. (10.25), we consider the following cases:

10.3.1 Propagation in a Non�Dispersive
Medium

For electromagnetic waves, the free space is a non-dispersive
medium in which all frequencies propagate with the same
velocity c; thus,

k( ) = 
c

and Eq. (10.25) can be written in the form

 (z, t) = A e d
i z ctc( )

( )

s (10.35)

The right-hand side is a function of (z � ct) and thus
any pulse would propagate with velocity c without
undergoing any distortion. Thus, for the Gaussian pulse
given by Eq. (10.28).

E(z, t) = 
2

0

2 2
0

0
( )

exp exp ( )
z ct

E i z ctcc
(10.36)

which represents a distortionless propagation of a Gaussian
pulse in a non-dispersive medium*; in Fig. 10.5 we have
shown the distortionless propagation of a 20 fs pulse.

10.3.2 Propagation in a Dispersive
Medium

For a wave propagating in a medium characterized by the re-
fractive index variation n( ), we will have

* While Eq. (10.36) follows directly from Eq. (10.35), it is left as an exercise to the reader to show that if we substitute for A( ) from
Eq. (10.29) in Eq. (10.35), we would readily get Eq. (10.36).
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k( ) = 
c

n( )

Now, in most problems, A( ) is a very sharply peaked
function [see, e.g., Fig. 10.4(b)] so that we may write

E(z, t)  A e d
i t k z

( )
[ ( ) ]s

0

0

(10.37)

because for  > 0 +  and for  < 0 � , the function
A( ) is negligibly small. In this tiny domain of integration,
we may make a Taylor series expansion of k( )

k( ) = k
dk

d
( ) ( )0 0

0

 +

         
1

2 0
2

2

2

0

( )
d k

d
(10.38)
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Fig. 10.4 (a) A 20 fs (= 20  10�15 s) Gaussian pulse corresponding to 0 = 1 m. (b) The corresponding frequency
spectrum which is usually a very sharply peaked function around  = 0.
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or

k( ) = k
g

0 0 0
21 1

2v

( ) ( ) (10.39)

where

k0  k( 0) (10.40)

1

vg

 
dk

d
0

(10.41)

and

 
d k

d

2

2

0

(10.42)

We may mention here that we have now defined vg
through Eq. (10.41)�we will show below that the envelope
of the pulse moves with velocity vg which is the group
velocity. Now, if we retain only the first two terms on the RHS
of Eq. (10.39), then Eq. (10.37) would give us

E(z, t) A i k z z t d
g

( ) exp 1
32

4
65s 0

0

vR W (10.43)

where we have replaced the limits from �  to +  because, in
any case, the contribution from the region |  � 0| >  is
going to be extremely small. Writing

t = (  � 0)t + 0t (10.44)

Eq. (10.43) can be rewritten in the form

E(z, t)  e A e d
i t k z z ti

g g( ) ( )
( )0 0 s

Phase Term

Envelope Term

v
v

(10.45)

where

  � 0 (10.46)

We see that in the envelope term, z and t do not appear
independently but only as z � vgt ; thus, the envelope of the
pulse moves undistorted with the group velocity

vg = 
1

0
( / )dk d

(10.47)

Thus, if we neglect  [and other higher order terms in
Eq. (10.39)], the pulse moves undistorted with group velocity
vg.

Next, if we take into account all the three terms in
Eq. (10.39), we would obtain

E(z, t) 

e
i t k z

A i t
z i

z d
g

( )
( )exp0 0

2
2%

'&
(

0)
1

3
2
2

4

6
5
5s

Phase Term

Envelope Term

v

(10.48)

For the Gaussian pulse [see Eq. (10.28)], A ( ) is given by
Eq. (10.29); if we now substitute A( ) in the above equation
and use Eq. (10.30) to carry out the integration, we would
readily obtain

E(z, t) = 
E

ip
e

t
z

ip

i t k z g0

2

0
2

1 1
0 0

+
−

−
%

'&
(

0)

+

1

3

2
2
2

4

6

5
5
5

−( )
exp

( )

ω

τ

v

(10.49)

where

p
2

0
2

z
(10.50)

The corresponding intensity distribution would be given
by

I(z, t) = 
I

z

t
z

z

g0

0

2

2

2

τ τ τ( )/
exp

( )
−

−
%

'&
(

0)
1

3

2
2
2

4

6

5
5
5

v

(10.51)

–25 0 25

z = 0 z z= 0

t fs( )

Fig. 10.5 Distortionless propagation of a Gaussian pulse in a non-dispersive medium.
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where
2(z)  0

2(1 + p2) (10.52)

In Fig. 10.6, we have plotted the time variation of the
intensity at different values of z. From Eq. (10.52), we find
that as the pulse propagates it undergoes temporal
broadening. We define the pulse broadening  as

= 

2 2
0( )z

= | p | 0 = 
0

2| | z
(10.53)

Now

= 
d k

d

2

2
 = 

d

d c
n

dn

d

1
0

0

%
'&

(
0)

1

3
2

4

6
5

= 1

0
0 0

0

0

c

d

d
n

dn

d

d

d
( )

1

3
2

4

6
5

= 0

2 0
2

2

0
2

2 c

d n

d

1

3
2
2

4

6
5
5

(10.54)

where the quantity inside the square brackets is dimension-
less. Further, since the spectral width of the Gaussian pulse
is given by [see Eq. (10.33)]

 2

0

(10.55)

we may write

1

0

 1
2

1

2

2

0
2 0

c
(10.56)

Substituting for 0 from Eq. (10.56) and for  from
Eq. (10.54) in Eq. (10.53), we get

= 
z

c

d n

d0
0
2

2

0
2 0 (10.57)

which is identical to the result obtained in the earlier section
[see Eq. (10.17)].

Example 10.5 As an example, we assume 0 = 1.55 m.

For pure silica, at this wavelength (see Table 10.1)

d n

d

2

0
2λ

 �0.004165 ( m)�2

Thus,

 −
×

× ×
× ×

−155 10

2 9 10
155 155 0 004165

6

16

.
[ . . . ]

π

 �2.743  10�26 m�1s2

For a 100 ps pulse propagating through a 2 km long fiber

 
2 2 743 10 2 10

10

26 3

10

× × × ×−

−

.

( )
  1.1 ps

On the other hand, for a 10 fs pulse, at z = 2 z0 = 4 mm, we will
have

  22 fs

implying

f  [ 0
2 + ( )2]1/2  25 ps

showing that a 10 fs pulse doubles its temporal width after

propagating through a very small distance (see Figs. 10.7 and 10.8).

–25 0 25 9752.21 19504.4

50 fs 50 fs 50 fs
t (fs)

0.5

1

I
(

,
)

z
t

z = 0

z z= 0

z z= 2 0

Fig. 10.6 The time variation of the intensity at different values of z . Notice the temporal broadening of the pulse.
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10.3.3 The Chirping of the Dispersed

Pulse

If we carry out simple manipulations, Eq. (10.49) can be
written in the form,

E(z, t) =
E

z

0

0
1 2[ ( ) / ] /

 

2

2
exp

( )

g

z

z
t

v

 

exp [i ( (z, t) � k0z] (10.58)

–25 250

50 fs

9752

50 fs

19504

50 fs

t (fs)

0

0.5

1
R

e
(

,
)

E
z

t
z z= 2 0

z z= 0

z = 0

Fig. 10.7 The temporal broadening of a 10 fs unchirped Gaussian pulse (
0
 = 1.55 m) propagating through

silica. Notice that since dispersion is positive, the pulse gets down chirped.

z z= 0

z = 0 z z= 2 0

0 25–25
t (fs)

Fig. 10.8 If a down-chirped pulse is passed through a medium characterized by negative dispersion, it will
get compressed until it becomes unchirped and then it will broaden again with opposite chirp.
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where the phase term is given by

(z, t) = 0

2

11

2
t t

z
p

g

%

'&
(

0)v

tan (10.59)

and

(z) = 
p

p0
2 21( )

(10.60)

Equation (10.59) represents the phase term and the instan-
taneous frequency is given by

(t) = 
t

 = 0 2
%

'&
(

0)
t

z

gv
(10.61)

showing that (t) changes within the pulse. The frequency
chirp is therefore given by

= (t) � 0 = 2 t
z

g

%

'&
(

0)v

(10.62)

Example 10.6 In continuation of Example 10.5, we assume

0 = 1.55 m and consider the chirping produced in a 100 ps pulse
propagating in pure silica at z = 2 km. Now,

p = 
2
0

2 z  = 
26 3

12 2

2 2.743 10 2 10

(100 10 )

 �0.011

At

t
z

g

−
v

= �50 ps

(i.e., at the front end of the pulse)

 12

2
0

2

2
( 50 10 )

(1 )

p

p

 
12

12 2

2 0.011 50 10

(100 10 )

= +1.1  108 Hz

Thus at the leading edge of the pulse, the frequencies are slightly
higher which is usually referred as �blue shifted�. Notice

Δω
ω0

 9  10�8

at

t = 
z

gv
,  = 0

and at

t
z

g

−
v

= +50 ps

(i.e., at the trailing edge of the pulse)

  � 1.1  108 Hz

Thus, at the trailing edge of the pulse, the frequencies are

slightly lower which is usually referred as �red-shifted�.

From Example 10.6, we can conclude the following:
For positive dispersion (i.e., negative value of ), p and 

will also be negative implying that the instantaneous
frequency (within the pulse) decreases with time (we are of
course assuming z > 0); this is known as a down-chirped

pulse in which the leading edge of the pulse (t < z/vg) is blue-

shifted (i.e., it has frequency higher than 0 ) and the
trailing edge of the pulse (t > z/vg) is red-shifted (i.e., it has
frequency lower than 0).

This is shown in Fig. 10.7 where at t = 0, we have an
unchirped pulse. As the pulse propagates further, it will get
further broadened and also get further down chirped.

From Eq. (10.61), it can be readily seen that at negative
values of z, p (and therefore ) will be positive and the lead-

ing edge of the pulse (t <  z/vg) will be red-shifted (i.e., it will
have frequency lower than 0) and the trailing edge of the
pulse (t > z/vg) will be blue-shifted (i.e., it will have frequency
higher than 0) see also Fig. 30.9.

This implies that we will have an up-chirped pulse. Thus,
if an up-chirped pulse is passed through a medium character-
ized by positive dispersion, it will get compressed until it
becomes unchirped and then it will broaden again with oppo-
site chirp.

Similarly, we can discuss the case of negative dispersion
(implying a positive value of ). If a down-chirped pulse is
passed through a medium characterized by negative disper-
sion, it will get compressed until it becomes unchirped and
then it will broaden again with opposite chirp (see Fig. 10.8).

Propagation of a pulse through a material characterized by
negative group velocity is shown in Fig. 13 in the prelim
pages of the book.

IHFR �ivpE�re�i

2 wyh�ve�syx

It may be mentioned that as a pulse propagates through a
dispersive medium, the frequency spectrum remains the
same�i.e., no new frequencies are generated. Different
frequencies superpose with different phases to distort the
temporal shape of the pulse (see Problem 10.10). New
frequencies are generated when the medium is non-linear�
we will briefly discuss this here.

LO 4
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The refractive index of any material is a constant only for
small intensities of the propagating laser beam. If the
intensities are large, the refractive index variation is
approximately given by

n ~  n0 + n2I (10.63)

where n2 is a constant and I represents the intensity of the
beam. For example, for fused silica, n0 ~  1.47 and n2 ~  3.2 
10�20 m2/W. Further, if the effective area of the light beam is
Aeff , then the intensity is given by

I = P

Aeff

(10.64)

where P is the power associated with the light beam. Now in
a single mode fiber, the spot size w of the beam is about 5 m
(see Sec. 30.4.2). Thus the effective* cross-sectional area of
the beam, Aeff  w2  50 m2. For a 5 mW laser beam
propagating through such a fiber, the resultant intensity is
given by

I = P

Aeff

  
5 10

50 10

3

12 2

W

m
 = 108 W/m2 (10.65)

Thus, the change in refractive index is given by

n = n2I ~  3.2  10�12 (10.66)

Although this is very small, but when the beam propa-
gates over an optical fiber over long distances (a few
hundred to a few thousand kilometers), the accumulated non-
linear effects can be significant. That is the great advantage
of the optical fiber � the beam remains confined to a very
small area for long distances!

We consider a laser pulse (of frequency 0) propagating
through an optical fiber; the effective propagation constant
is given by

k = 0
0 2c

n n I[ ]

 = 0
0 2c

n n
P t

Aeff

1

3
2

4

6
5

( )
(10.67)

Thus, for such a propagating beam, the phase term is
approximately given by

e+i( 0t�kz) = exp
( )%

'&
(

0)
7
8
u

9u

@
A
u

Bu

1

3
2
2

4

6
5
5

i t
c

n n
P t

A
z

eff
0

0
0 2  = e+i

where the phase  is defined as

 (z,t)  0t � 0

c
n n

P t

Aeff
0 2

%

'&
(

0)
( )

z (10.68)

We can define an instantaneous frequency as [see
Eq. (10.61)]:

(t)  
t

 = 0 � g 
dP t

dt

( )
z

where

 g = 
n

c Aeff

2 0  = 
2 2

0

n

Aeff

(10.69)

For Aeff  50 m2, 0  1.55 m and  n2  3.2  10�20 m2/W,
g  2.6  10�3 W�1 m�1.

Now, for a Gaussian pulse propagating with group
velocity vg [see Eq. (10.51)]:

P(z,t) = P0 

2

2
0

2

exp
g

z
t

v

where we have neglected dispersion [ i.e., p = 0 in
Eqs. (10.49) and (10.52)]. Thus,

(t) = 0

2

02 2
0 0 0

2
2

1 exp
g

g

z
t

gz z
P t

v

v

For 0 = 1.55 m

0 = 
2

0

c
 = 

2 3 10

155 10

8

6
.

 1.22  1015 s�1

Further, for P0 = 15 mW, 0 = 20 fs and z = 200 km

0

2
0 0

2

g

gzP z
t

v

= 
2 2 6 10 2 10 15 10

122 10 20 10

3 5 3

15 15 2

.

. ( ) g

z
t

v

 3.2  1013

g

z
t

v

 +0.64 for t � 
g

z

v

  20 fs (trailing edge of the pulse)

 �0.64 for t � 
g

z

v

  �20 fs (front end of the pulse)

Thus, the instantaneous frequency within the pulse
changes with time leading to chirping of the pulse as shown
in Fig. 10.9. This is known as self-phase modulation (usually
abbreviated as SPM). Note that since the pulse width has not
changed, but the pulse is chirped, the frequency content of
the pulse has increased. Thus, if we take the Fourier trans-
form of Eq. (10.58) no new frequencies will be generated.
However, if the phase term is given by Eq. (10.68) and if we
take the Fourier transform, new frequencies will be gener-
ated. Thus, SPM leads to generation of new frequencies.
Indeed by passing a pulse through a fiber characterized by
very small cross-sectional area (so that the value of g is
large) it is possible to generate the entire visible spectrum
(see Fig. 10.10 and Fig. 14 in the prelim pages).* Values adapted from Ref. 10.2.
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–50 0 50

100 fs100 fs

z = 0 z = 200 km

Fig. 10.9 Due to self-phase modulation, the instantaneous frequency within the pulse changes with time
leading to chirping of the pulse. Calculations correspond to P

0
  = 15 mW, 

0
 = 1550 nm, 

0
 = 20 fs,

Aeff  = 5 m2 and vg = 2  108 m/s.

Fig. 10.10 Supercontinuum white light source. Laser pulses of 6ps duration are incident on a special
optical fiber characterized by a very small mode field diameter which leads to very high
intensities. Because of the high intensities, SPM (Self-Phase Modulation) and other non-linear
effects can be observed; these non-linear effects result in the generation of new frequencies. In
this experiment, the entire visible spectrum gets generated which can be observed by passing
the light coming out of the optical fiber through a grating. The repetition rate of the laser
pulses is 20 MHz. The wavelengths generated range from 460 nm to 2200 nm. [Photograph
courtesy Fianium, UK. A color photo appears as Fig. 14 in the prelim pages].
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Summary

u When we switch a light source on and off, we produce a

pulse. This pulse propagates through a medium with what is

known as the group velocity, which is given by

vg = 
1

dk d/ ω

For a medium characterized by the refractive index variation

n( )

k ( ) = 
ω
c

n( ),

the group velocity is given by

1

vg

= 
1

c
n

dn

d
( )λ λ

λ0 0
0

−

where 0 is the wavelength in free space and c 

(3 108 m/s) is the speed of light in free space.

u Different wavelengths will travel with different group veloci-
ties in propagating through a certain length of the dispersive

medium.

u After traversing through a distance L in a dispersive medium,

a pulse will broaden by an amount

tm = −
L

c

Δλ

λ
0

0

λ
λ

0
2

2

0
2

d n

d

1

3
2
2

4

6
5
5

where 0 is the spectral width of the source; the subscript

m denotes that the fact we are considering material disper-

sion. The dispersion coefficient is given by

Dm = 
2

2m
0 2

0 0 0

1

3

t d n

L d
  104 ps/km.nm

where 0 is measured in m and we have assumed c  3 
108 m/s. For example, for silica, at 0 = 1.55 m , d2n/d 0

2 
�0.00416 m�2 and Dm  +22 picoseconds per kilometer
(length of the medium) per nanometer (spectral width of the

source). On the other hand, for silica 
d n

d

2

0
2λ

  0  around

0  1.27 m. Indeed the wavelength 0  1.27 m is usually
referred to as the zero material dispersion wavelength and it
is because of low material dispersion, the second and third
generation optical communication systems operated around

0  1.3 m.

u For a Gaussian pulse

E(z = 0, t) = E0 exp −
%

'&
(

0)
t
2

0
2τ

 e+ i
0
t

the temporal width after propagating through a distance z is

given by (z) = 0 1 2+ p ; thus the temporal broadening is

given by

= τ τ2
0
2

( )z −  = |p | 0

where

p = 
2

20
2

0
2 0

2
2

0
2τ

λ

π
λ

λ
⋅

1

3
2
2

4

6
5
5
⋅

c

d n

d
z

Thus at 0  1.55 m, for a 0  100 ps pulse (propagating

in pure silica),   0.55 ps/km.

u If an up-chirped pulse is passed through a medium

characterized by positive dispersion, it will get compressed
until it becomes unchirped and then it will broaden again
with opposite chirp.

u When a pulse propagates through a dispersive medium, the

frequency spectrum remains the same, no new frequencies
are generated. The different frequencies superpose with

different phases to distort the temporal shape of the pulse.

Problems

10.1 Using the empirical formula given by Eq. (10.14) calculate

the phase and group velocities in silica at 0 = 0.7 m,
0.8 m, 1.0 m, 1.2 m and 1.4 m. Compare with the (more
accurate) values given in Table 10.1.

[Ans: n( 0)  1.456, 1.454, 1.451, 1.449, 1.455; ng( 0) 
1.4708, 1.4670, 1.4630, 1.4616, 1.4615].

10.2 For pure silica, we may assume the empirical formula

n( 0)  1.451 � 0.003 λ
λ

0
2

0
2

1
−

%

'&
(

0)

where 0 is measured in m.
(a) Calculate the zero dispersion wavelength.
(b) Calculate the material dispersion at 800 nm in

ps/km.nm.
[Ans: 1.32 m; �101 ps/km.nm]

10.3 Let

n( 0) = n0 + A 0

where 0 is the free space wavelength. Derive expressions
for phase and group velocities.

[Ans: vg = c/n0]
10.4 Consider a LED source emitting light of wavelength 850 nm

and having a spectral width of 50 nm. Using Table 10.1,
calculate the broadening of a pulse propagating in pure silica.

[Ans: 4.2 ns/km]

10.5 In 1836, Cauchy gave the following approximate formula to
describe the wavelength dependence of refractive index in
glass in the visible region of the spectrum

n( ) = A + 
B

λ 0
2

Now (see also Table 12.2)

n

n

( ) .

( ) .

λ

λ
1

2

1 50883

1 51690

=

=
for borosilicate glass

@
A
B
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n

n

( ) .

( ) .

λ

λ
1

2

1 45640

1 46318

=

=
for vitreous quartz

where 1 = 0.6563 m and 2 = 0.4861 m.
(a) Calculate the values of A and B.
(b) Using the Cauchy formula calculate the refractive index

at 0.5890 m and 0.3988 m and compare with the cor-
responding experimental values:

(i) (1.51124 and 1.52546) for borosilicate glass and
(ii) (1.45845 and 1.47030) for vitreous quartz.

[Ans: (a) For borosilicate glass A = 1.499,

B  4.22 10�15 m2 giving n = 1.51120

at  = 0.5890 m, and n = 1.52557 at

  = 0.3988 m; for vitreous quartz
A = 1.44817, B  3.546  10�15 m2]

10.6 The refractive index variation for pure silica in the wave-
length region 0.5 m < 0 < 1.6 m is accurately described
by the following empirical formula:

n( 0) = C0 + C1 0
2 + C2 0

4 + 
C

l

3

0
2( )λ −

+ 
C

l

C

l

4

0
2 2

5

0
2 3

( ) ( )

where C0 = 1.4508554, C1 = �0.0031268, C2 = � 0.0000381,
C3 = 0.0030270, C4= �0.0000779, C5 = 0.0000018,
l = 0.035 and 0 is measured in m. Develop a simple
program to calculate and plot n( 0) and d 2n/d 0

2 in the
wavelength domain 0.5 < 0 < 1.6 m and compare with the
results given in Table 10.1.

10.7 (a) For a Gaussian pulse given by

E = E0 e

t2

0
2

 ei
H
t

the spectral width is approximately given by

 
1

0τ

Assume 0 = 8000 Å.

Calculate 
Δω
ω 0

 for 0 = 1 ns and for 0 = 1 ps.

(b) For such a Gaussian pulse, the pulse broadening is given

by  = 
2

0

z

τ
| | where  = 

d k

d

2

2ω
. Using Table 10.1,

calculate  and interpret the result physically.

[Ans: (a) 
Δω
ω0

  4  10�7 and 4  10�4;

(b)   3.62  10�26 m�1 s2;
  0.072 and  72 ps/km for

0 = 1 ns and 1 ps, respectively]
10.8 As a Gaussian pulse propagates the frequency chirp is given

by

= 
2

10
2 2

p

p
t

z

gτ ( )+
−

%

'&
(

0)v

where p is defined in Eq. (10.50). Assume a 100 ps (= 0)

pulse at 0 = 1 m. Calculate the frequency chirp 
Δω
ω 0

 at

t � z/vg = �100 ps, �50 ps, +50 ps and +100 ps. Assume z
= 1 km and other values from Table 10.1.

[Ans: 
Δω
ω0

  �4.5  10�8, �2.25  10�8, +2.25  10�8 and

+4.5  10�8 at (t � z/vg) = �100 ps,

�50 ps, +50 ps and +100 ps, respectively].

10.9 Repeat the previous problem for 0 = 1.5 m; the values of

0 and z remain the same. Show that the qualitative difference
in the results obtained in the previous and in the present
problem is the fact that at  = 1 m we have negative dis-
persion and the front end is red shifted (  is negative) and
the trailing end is blue shifted. The converse is true at

 = 1.5 m where we have positive dispersion.
10.10 The frequency spectrum of E(0, t) is given by the function

A( ). Show that the frequency spectrum of E(z, t) is simply

A( )e�ik( )z

implying that no new frequencies are generated�different
frequencies superpose with different phases at different val-
ues of z.

10.11 The time evolution of a Gaussian pulse in a dispersive me-
dium is given by

E(z, t) = 
E

ip

0

1 +
ei(

H
t�k

H
z) exp −

−
%

'&
(

0)

+

1

3

2
2
2
2

4

6

5
5
5
5

t
z

ip

gv

2

0
2 1τ ( )

where p  
2

0
2

γ

τ

z
. Calculate explicitly the frequency spectrum

of E(0,t) and E(z,t) and show that the results agree with that
of Problem 10.10.
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In this chapter, we will discuss the phenomenon of waves. A

wave is propagation of a disturbance. For example, when we

drop a small stone in a calm pool of water, a circular pattern

spreads out from the point of impact. The impact of the stone

creates a disturbance which propagates outwards. In this

propagation, the water molecules do not move outward with

the wave; instead they move in nearly circular orbits about

an equilibrium position. Once the disturbance has passed a

certain region, every drop of water is left at its original posi-

tion. This fact can easily be verified by placing a small piece

of wood on the surface of water. As the wave passes, the

piece of wood makes oscillations and once the disturbance

has passed, the wood comes back to its original position.

Further, with time the circular ripples spread out, i.e., the dis-

turbance (which is confined to a particular region at a given

time) produces a similar disturbance at a neighboring point

at a slightly later time with the pattern of disturbance roughly

remaining the same. Such propagation of disturbances

(without any translation of the medium in the direction of

propagation) is termed as a wave. It is also seen that the wave

If you are dropping pebbles into a pond and do not watch the spreading rings, your occupation

should be considered as useless�, said the fictional Russian philosopher, Kuzma Prutkoff. And,

indeed we can learn much by observing these graceful circles spreading out from the punctured

surface of calm water.

�Gamow and Cleveland

�e�i2��y�eqe�syx2exh

�ri2�e�i2i��e�syx
Chapter
Eleven

carries energy; in this case, the energy is in the form of

kinetic energy of water molecules.

We will first consider the simplest example of wave

propagation, viz., the propagation of a transverse wave on a

string. Consider yourself holding one end of a string, the

other end being held tightly by another person so that the

string does not sag. If you move the end of the string up and

down a few times then a disturbance is created which

propagates towards the other end of the string. Thus, if we

take a snapshot of the string at t = 0 and at a slightly later

time t, then the snapshots will roughly* look like the ones

shown in Figs. 11.1 (a) and (b). The figures show that the

disturbances have identical shapes except for the fact that

one is displaced from the other by distance v t where v
represents the speed of the disturbance. Such a propagation

of a disturbance without its change in form is a characteristic

of a wave. The following points may, however, be noted:

(a) A certain amount of work is done when the wave is

generated and as the wave propagates through the

string, it carries with it a certain amount of energy which

is felt by the person holding the other end of the string.

* We are assuming here that as the disturbance propagates through the string, there is negligible attenuation and also no change in the

shape of the disturbance.

LO 1: define sinusoidal waves and their basic features.

LO 2: calculate the energy transported during wave propagation.

LO 3: illustrate the existence of waves by solving the one-dimensional wave equation.

LO 4: derive wave equations for transverse and longitudinal waves.

LO 5: construct the general solution of one-dimensional wave equation by separation of variables.
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(b) The wave is transverse, i.e., the displacement of the

particles of the string is at right angles to the direction

of propagation of the wave.

Referring back to Figs. 11.1 (a) and (b), we note that the

shape of the string at the instant t is similar to its shape at

t = 0, except for the fact that the whole disturbance has trav-

eled through a certain distance. If v represents the speed of

the wave then this distance is simply v t. Consequently, if

the equation describing the rope at t = 0 is y(x) then at a later

instant t, the equation of the curve would be y(x � vt) which

simply implies a shift of the origin by a distance vt. Similarly,

for a disturbance propagating in the �x direction, if the equa-

tion describing the rope at t = 0 is y(x), then at a later instant

t the equation of the curve would be y(x + vt).

Example 11.1 Study the propagation of a semicircular pulse

in the +x direction whose displacement at t = 0 is given by the

following equations:

y(x, t = 0) = [R2 � x2]1/2 |x|  R

= 0 |x|  R (11.1)

Solution: For a wave propagating in the +x direction the depen-

dence of y(x, t) on x and t should be through the function (x � vt).

Consequently,

y(x, t) = [R2 � (x � vt)2]1/2 | x � vt |  R

= 0 |x � vt |  R (11.2)

The shape of the pulse at t = 0 and at a later time t
0
 is shown in

Fig. 11.2. Equation (11.2) immediately follows from the fact that

y(x, t) has to be of the form y(x � vt) and at t = 0, y(x, t) must be

given by Eq. (11.1).

Example 11.2 Consider a pulse propagating in the minus

x-direction with speed v. The shape of the pulse at t = t
0
 is given by

y(x, t = t0) = 
b

a x x

2

2
0

2+ −( )
(11.3)

(Such a pulse is known as a Lorentzian pulse.) Determine the shape

of the pulse at an arbitrary time t.

Solution: The shape of the pulse at t = t
0
 is shown in

Fig. 11.3 (a). The maximum of the displacement occurs at x = x
0
.

Since the pulse is propagating in the �x direction, at a later time t,

the maximum will occur at x0 � v(t � t0). Consequently, the shape of

the pulse at an arbitrary time t would be given by

v

x

x

t = 0

t t= D

y x t( , )

(a)

(b)

Fig. 11.1 A transverse wave is propagating along the +x-axis on a string; (a) and (b) show the displacements
at t = 0 and t = t, respectively.
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y(x, t) = 
b

a x x t t

2

2
0 0

2+ − + −[ ( )]v
(11.4)

Equation (11.4) could have been written down directly from

Eq. (11.3) by replacing x by x + v(t � t0).

IIFP �sx��yshev2 �e�i�X

gyxgi��2 yp2 p�i��ixg�

exh2 �e�ivixq�r

Till now we have been considering the propagation of a

pulse which lasts for a finite amount of time. We will now

consider a periodic wave in which the displacement y(x, t) has

the form

y(x, t) = a cos [k (x  vt) + ] (11.5)

where the upper and lower signs correspond to waves propa-

gating in the +x and �x directions, respectively. Such

a displacement is indeed produced in a long-stretched string

at the end of which a continuously vibrating tuning fork is

placed. The quantity  is known as the phase of the wave (see

Chapter 7). We may, without loss of generality, assume  = 0.

Thus, for a wave propagating in the +x direction

y(x, t) = a cos k(x � vt) (11.6)

In Fig. 11.4, we have plotted the dependence of the displace-

ment y on x at t = 0 and at t = t. These are given by

y(x) = a cos kx at t = 0

and (11.7)

y(x) = a cos k(x � v t) at t = t

The two curves are the snapshots of the string at the two

instants. It can be seen from the figure that, at a particular

instant, any two points separated by a distance

= 2 /k (11.8)

have identical displacements. This distance is known as the

wavelength. Further, the displaced curve (which corresponds

to the instant t = t) can be obtained by displacing the curve

corresponding to t = 0 by a distance v t; this shows that

the wave is propagating in the +x direction with speed v. It

can also be seen that the maximum displacement of the

particle (from its equilibrium position) is a, which is known

as the amplitude of the wave.

Fig. 11.4 The curves represent the displacement of a string
at t = 0 and at t = t, respectively when a sinusoi-
dal wave is propagating in the +x-direction.

In Fig. 11.5, we have plotted the time dependence of the

displacement of the points characterised by x = 0 and

x = x. These are given by

and
y t a t x

y t a t k x x x

( ) cos

( ) cos ( )

= at =

= at =

0 @
A
B

(11.9)

where

= k v (11.10)

y

y

x

x

t t= 0

v

v

v (  – )t    t0

(a)

(b)

Fig. 11.3 The propagation of a Lorentzian pulse along the
minus x-axis; (a) and (b) show the shape of the
pulse at t = t

H
 and at a later instant t, respectively.

R

R

v

y

y

x

x

t = 0

t t= 0

(a)

(b)

v t0

Fig. 11.2 The propagation of a semicircular pulse along
the +x-axis; (a) and (b) show the shape of the
pulse at t = 0 and at a later time tH, respectively.

LO 1
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The curves correspond to the time variation of the displace-

ment of the two points. Corresponding to a particular point,

the displacement repeats itself after a time

T = 2 / (11.11)

which is known as the time period of the wave. The quantity

v = 1/T (11.12)

is known as the frequency of the wave and represents the

number of oscillations that a particle carries out in one sec-

ond. It can be seen from the two curves in Fig. 11.5, that the

two points x = 0 and x = x execute exactly similar vibrations

except for a phase difference of k x. In fact, any two points

on the string execute simple harmonic motions with the same

amplitude and same frequency but with a phase difference of

kx
0
 where x

0
 represents the distance between the two points.

Clearly if this distance is a multiple of the wavelength, i.e.,

x
0

= ml, m = 1, 2, ...

then

kx
0

= 
2

 ml = 2 mp

which implies that two points separated by a distance which

is a multiple of the wavelength vibrate with the same phase.

Similarly, two points separated by a distance 1
2

3
2

, , . . .

vibrate in opposite phase. In general, a path difference of x
0

corresponds to a phase difference of 2  x
0
.

Using Eqs. (11.10)�(11.12), we get

v = 
1

T
 = 

2
 = 

kv
2

 = v

or v = v (11.13)

Notice the similarity in the variation of the displacement with

respect to x (at a given value of time) and with respect to t

(at a given value of x); see Figs. 11.4 and 11.5. The similarity

can be expressed by writing Eq. (11.6) in the form

y(x, t) = a cos 
2 2

x
T

t
%
'

(
0 (11.14)

which shows that the wavelength  in Fig. 11.4 plays the

same role as the time period T in Fig. 11.5. Equation (11.14) is

often written in the form

y(x, t) = a cos (kx � t) (11.15)

It should be pointed out that the entire discussion given

above would remain valid for an arbitrary value of the phase

factor .

IIFQ ���i�2 yp2 �e�i�

As mentioned earlier, when a wave is propagating through a

string the displacement is at right angles to the direction of

propagation. Such a wave is known as a transverse wave.*

Similarly, when a sound wave propagates through air the

displacement of the air molecules are along the direction of

propagation of the wave; such waves are known as

longitudinal waves. However, there are waves which are

neither longitudinal nor transverse in character; for example,

when a wave propagates through the surface of water, the

water molecules move approximately in circular orbits.

IIFR ixi�q�2 ��ex��y��2 sx

�e�i2 wy�syx

A wave carries energy; for example, when a transverse wave

propagates through a string, the particles execute simple

harmonic motions about their equilibrium positions and

associated with this motion is a certain amount of energy. As

the wave propagates through, the energy gets transported

from one end of the string to the other. We consider the time

variation of the displacement of a particle, which can be

written as

y = a cos ( t + ) (11.16)

The instantaneous velocity of the particle would be

v = 
dy

dt
 = �a  sin ( t + ) (11.17)

Thus, the kinetic energy (T) would be given by

T = 
1

2

2

m
dy

d t

%
'&

(
0)

Fig. 11.5 The curves represent the time variation of the
displacement at x = 0 at x = x, respectively when a
sinusoidal wave is propagating the +x-direction.

* Electromagnetic waves are also transverse in character. However, it should be mentioned that the electromagnetic waves have also a

longitudinal component near the source which dies off rapidly at large distances (see Sec. 23.4).
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= 
1

2
ma

2 2
 sin

2
 ( t + ) (11.18)

The total energy (E) will be the maximum value of T

E = (T)
max

= 
1

2
ma2 2 [sin2 ( t + ]

max

= 
1

2
ma2 2 (11.19)

For a sound wave propagating through a gas, the energy per

unit volume, , would be given by

= 
1

2
mna2 2

= 
1

2
a2 2

= 2 2 a2v2 (11.20)

where m represents the mass of the gas molecule, n repre-

sents the number of molecules per unit volume and (= nm)

the density of the gas. With such a wave, we can associate

the intensity which is defined as the energy flow per unit

time across a unit area perpendicular to the direction of

propagation. Since the speed of propagation of the wave

is v, the intensity (I) would be given by*

I = 2 2 va2v2 (11.21)

Thus, the intensity is proportional to the square of the

amplitude and square of the frequency.

Let us consider a wave emanating from a point source in a

uniform isotropic** medium. We will assume that there is no

absorption and that the source is emitting W Joules per

second (W represents the power of the source). Consider a

sphere of radius r whose center is at the point source.

Clearly, W Joules per second will cross the spherical surface

whose area is 4 r2. Thus, the intensity I would be given by

I = 
W

r4 2
(11.22)

which is nothing but the inverse square law. Using Eqs.

(11.21) and (11.22), we obtain

W

r4
2

= 2 2 va2v2

or

a = 
W

r8

1
3 2

1 2

v v

1

3
2
2

4

6
5
5

/

(11.23)

showing that the amplitude falls off as 1
r
. Indeed, for a

spherical wave*** emanating from a point source, the

displacement is given by

f = 
a

r
0  sin (kr � t)

where a
0
 represents the amplitude of the wave at unit dis-

tance from the source.

Example 11.3 A source of sound is vibrating with a fre-

quency of 256 vibrations per second in air and propagating energy

uniformly in all directions at the rate of 5 Joules per second. Calcu-

late the intensity and the amplitude of the wave at a distance of

25 m from the source. Assume that there is no absorption [speed of

sound waves in air = 330 m/sec; density of air = 1.29 kg/m3].

Solution:

Intensity I = 
5 J/s

4 (25) m2 2π ×

 6.4  10�4 J sec�1 m�2

Thus, a = 
5

8 129 330 256 256

1

253

1 2

π × × × ×.

/

 1  10�6 m.

Example 11.4 Show that when a transverse wave propa-

gates through a string, the energy transmitted per unit time is
1
2

2a2v where  is the mass per unit length, a the amplitude of

the wave and v the speed of propagation of the wave.

Solution: The energy associated per unit length of the string is

1
2

2a2; since the speed of the wave is v, the result follows.

IIFS �ri2 yxiEhswix�syxev

�e�i2 i��e�syx

In Sec. 11.1, we had shown that the displacement  of a one-

dimensional wave is always of the form

= f (x � vt) + g(x + vt) (11.24)

* This can be easily understood from the fact that if we have N particles per unit volume, each moving with the same velocity v, then

the number of particles crossing an unit area (normal to v) per unit time would be Nv.

** Isotropic media are the ones in which physical properties (like velocity of propagation of a particular wave) are the same in all

directions. In Chapter 22, we will consider anisotropic media.

*** When waves emanate from a point source in an isotropic medium, all the points on the surface of a sphere (whose center is at the

point source) have the same amplitude and the same phase; in other words, the locus of points which have the same amplitude and

the same phase is a sphere. Such waves are known as spherical waves. Far away from the source, over a small area, the spherical

waves are essentially plane waves.
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where the first term on the RHS of Eq. (11.24) represents a

disturbance propagating in the +x direction with speed v and

similarly, the second term represents a disturbance propagat-

ing in the �x direction with speed v. The question now arises

as to how we can predict the existence of waves and what

would be the velocity of propagation of these waves? The

answer to this question is as follows: If we can derive an

equation of the form

2

2x
= 

1
2

2

2v t
(11.25)

from physical considerations, then we can be sure that

waves will result and  will represent the displacement asso-

ciated with the wave. This follows from the fact that the

general solution of Eq. (11.25) is of the form

= f (x � vt) + g(x + vt) (11.26)

where f and g are arbitrary functions of their argument. In

Sec. 11.9, we will show that the general solution of Eq. (11.25)

is given by Eq. (11.26). Thus, if we ever obtain an equation

of the form of Eq. (11.25) from physical considerations, we

can predict the existence of waves, the speed of which would

be v.

We must mention that the simplest particular solutions of

the wave equation correspond to sinusoidal variation:

= A sin [k(x  vt) + ] (11.27)

or

= A cos [k(x  vt) + ] (11.28)

As shown in Sec. 11.2,

k = 2 / �and�kv =  = 2 v (11.29)

where  is the wavelength and v the frequency of the wave.

Instead of sinusoidal variation it is often more convenient to

write the solution in the form

= A exp [i(kx ± t + )] (11.30)

where, as before, A and  represent the amplitude and initial

phase of the wave. In writing Eq. (11.33), it is implied that the

actual displacement is just the real part of  which is

A cos (kx  t + ) (11.31)

In the next three sections, we will derive the wave equa-

tion for some simple cases.* In Sec. 11.9, we will discuss the

general solution of the wave equation.

IIFT ��ex��i��i

�sf�e�syx�2 yp2 e

���i�grih2 ���sxq

Let us consider a stretched string having a tension T. In its

equilibrium position, the string is assumed to lie on the

x-axis. If the string is pulled in the y-direction then forces will

act on the string which will tend to bring it back to its

equilibrium position. Let us consider a small length AB of the

string and calculate the net force acting on it in the

y-direction. Due to the tension T, the end points A and B

experience force in the direction of the arrows shown in

Fig. 11.6. The force at A in the upward direction is

� T sin 
1

 � T tan 
1
 = � T

y

x
x

 (11.32)

Similarly, the force at B in the upward direction is

T sin 
2

 T tan 
2
 = T

y

x
x d x

(11.33)

where we have assumed 
1
 and 

2
 to be small. Thus, the net

force acting on AB in the y-direction is

T
%
'&

(
0)

%
'&

(
0)

1

3
2
2

4

6
5
5

y

x

y

x
x d x x

 = T
2

2

y

x
d x, (11.34)

* In Chapter 23, we will derive the wave equation from Maxwell�s equations and thereby obtain an expression for the speed of

electromagnetic waves.

x

y

q1

q2

T

T

A

B

dx

x x dx+

Fig. 11.6 Transverse vibrations of a stretched string.

LO 4



Wave Propagation and the Wave Equation IIFU
u

where we have used the Taylor series expansion of

%
'&

(
0)

y

x
x d x

 about the point x:

%
'&

(
0)

y

x
x d x

= 
%
'&

(
0)

%
'&

(
0)

y

x x

y

x
d x

x x

and have neglected higher order terms because dx is infini-

tesimal. The equation of motion is, therefore,

m 
2

2

y

t
= T

y

x
d x

2

2

where m is the mass of the element AB. If  is the mass per

unit length, then

m = dx

and we get

2

2

y

x
= 

1
2

2T

y

t/
(11.35)

which is the one-dimensional wave equation. Thus we may

conclude that transverse waves can propagate through a

stretched string and if we compare the above equation with

Eq. (11.25), we obtain the following expression for the speed

of the transverse waves:

v = T / (11.36)

The vibrations of a clamped string will be discussed in

Sec. 13.2. It should be mentioned that in an actual string, the

displacement is not rigorously of the form given by

Eq. (11.27); this is a consequence of the various

approximations made in the derivation of the wave equation.

There is, in general, an attenuation of the wave and also the

shape does not remain unaltered.

IIFU vyxqs��hsxev2 �y�xh

�e�i�2 sx2 e2 �yvsh

In this section, we will derive an expression for the velocity of

longitudinal sound waves propagating in an elastic solid. Let

us consider a solid cylindrical rod of cross-sectional area A.

Let PQ and RS be two transverse sections of the rod at dis-

tances x and x + x from a fixed point O, where we have chosen

the x-axis to be along the length of the rod (see Fig. 11.7).

Let the longitudinal displacement of a plane be denoted by

(x). Thus, the displacements of the planes PQ and RS would

be (x) and (x + x), respectively. In the displaced position,

the distance between the planes P Q  and R S  would be

(x + x) � (x) + x = (x) + 
x

 x � (x) + x

= x + 
x

x

The elongation of the element would be 
x

 x and, there-

fore, the longitudinal strain would be

Increase in length

Original length
= 

x
x

x
 = 

x
(11.37)

x

x

O

O

x

x

Dx
P

P¢

Q

Q¢

R

R¢

S

S¢

x( )x x( +     )x xD

Dx + Dx
∂x

∂x

Fig. 11.7 Propagation of longitudinal sound waves through
a cylindrical rod.

Since the Young�s modulus (Y) is defined as the ratio of the

longitudinal stress to the longitudinal strain, we have

Longitudinal stress = 
F

A
 = Y  Strain

= Y 
x

(11.38)

where F is the force acting on the element P Q . Thus,

F(x) = YA 
x

(11.39)

and, therefore,

F

x
= YA

2

2
x

(11.40)

Now, if we consider the volume P Q S R  then a force F is

acting on the element P Q  in the negative x-direction and a

force F(x + x) is acting on the plane R S  along the positive

x-direction. Thus, the resultant force acting on the element

P Q S R  will be
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F(x + x) � F(x) = 
F

x
x

= YA 
2

2x
x (11.41)

If  represents the density, then the mass of the element

would be A 2x. Thus, the equation of motion will be

A x
t

2

2
= YA x

x

2

2

or
2

2
x

= 
1
2

2

2vl t
(11.42)

where vl = 
Y%

'&
(
0)
1 2/

(11.43)

represents the velocity of the waves and the subscript

l refers to the fact that we are considering longitudinal

waves.*

The above derivation is valid when the transverse dimen-

sion of the rod is small compared with the wavelength of the

disturbance so that one may assume that the longitudinal

displacement at all points on any transverse section (like PQ)

are the same. In general, if one carries out a rigorous analysis

of the vibrations of an extended isotropic elastic solid, one

can show that the velocities of the longitudinal and trans-

verse waves will be given by**

v
l

= 

1/ 2
(1 )

(1 ) 1 2 )

Y
 = 

1/2
4

3
K

(11.44)

v
t

= 

1/2
1

2 (1 )

Y
 = 

1/ 2

(11.45)

where ,  and K represent the Poisson ratio, modulus of

rigidity and bulk modulus, respectively. We must mention

that the transverse wave [whose velocity is given by

Eq. (11.45)] is due to the restoring forces arising because of

the elastic properties of the material, whereas corresponding

to the transverse waves discussed in Sec. 11.6, the string

moved as a whole and the restoring force was due to the

externally applied tension.

IIFV vyxqs��hsxev2 �e�i�

sx2 e2 qe�

In order to determine the speed of propagation of longitudi-

nal sound waves in a gas, we consider a column PQSR as

shown in Fig. 11.8 (a). Once again, because of a longitudinal

displacement, the plane PQ gets displaced by (x) and the

plane RS gets displaced by a distance (x + x) (see

Fig. 11.8). Let the pressure of the gas in the absence of any

disturbance be P
0
. Let P

0
 + P(x) and P

0
 + P(x + x) de-

note the pressures at the planes P Q  and R S , respectively.

Now, if we consider the column P Q S R  then the pressure

P
0
 + P(x) on the face P Q  acts in the +x direction whereas

the pressure P
0
 + P(x + x) on the face R S  acts in the

�x direction. Thus, the force acting on the column P Q S R

would be

[ P(x) � P(x + x)]A

= � 
x

 ( P) xA (11.46)

x

x

O

O

x

x

Dx
P

P¢

Q

Q¢

R

R¢

S

S¢

x( )x x( +     )x xD

Dx + Dx
∂x

∂x

(a)

(b)

Fig. 11.8 Propagation of longitudinal sound waves through
air.

where A represents the cross-sectional area. Consequently,

the equation of motion for the column P Q S R  would be

* In a similar manner, one can consider transverse waves propagating through an elastic solid, the velocity of which would be given by

[see, for example, Ref. 11.8]

vt = /

where  represents the modulus of rigidity.

** See, for example, Ref. 11.5.
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x
P A x( ) = A x

t

2

2

where  represents the density of the gas. Thus,

x
P( ) = 

2

2t
(11.47)

Now, a change in pressure gives rise to a change in volume,

and if the frequency of the wave is large ( ~ 20 Hz), the

pressure fluctuations will be rapid and one may assume the

process to be adiabatic. Thus, we may write

PV = constant (11.48)

where  = Cp/Cv represents the ratio of the two specific

heats. If we differentiate the above expression, we get

P V  +  V �1P V = 0

P = � 
P

V
 V (11.49)

The change in the length of the column PQSR is

[ (x + x) � (x) + x] � x = 
x

x

Thus, the change in the volume

V = 
x

 A x

The original volume V of the element is A x. Thus,

P = 
P

A x x
A x

= � P
x

(11.50)

or
x

P( ) = � P
2

2x
(11.51)

Using Eqs. (11.47) and (11.51), we obtain

2

2
x

= 
1
2

2

2v t
(11.52)

where

v = 
P%

'&
(
0)
1 2/

(11.53)

represents the velocity of propagation of longitudinal sound

waves in a gas. For air, if we assume   = 1.40, P = 1.01 

106 Nm�2 and  = 1.3 kg m�3, then we obtain

v  330 m/s

The adiabatic compressibility of a gas is given by

s = � 
1

V

V

P
s

%
'&

(
0)

 = 
1

P
(11.54)

where the subscript s refers to the adiabatic condition (con-

stant entropy). The bulk modulus (K) of a gas is the inverse

of s.

K = 
1

s

 = P (11.55)

and if we substitute this expression for K in Eq. (11.44), we

obtain Eq. (11.53) where we have used the fact that the modu-

lus of rigidity ( ) for a gas is zero.

IIFW �ri2 qixi�ev2 �yv��syx

yp2 �ri2 yxiEhswix�syxev

�e�i2 i��e�syxB

In order to obtain a general solution of the equation

2

2x
= 

1
2

2

2v t
(11.56)

we introduce two new variables

= x � vt (11.57)

= x + vt (11.58)

and write Eq. (11.56) in terms of these variables. Now,

x
= 

x x
(11.59)

or

x
= (11.60)

where we have used the fact that

x
= 1 and

x
 = 1

Differentiating Eq. (11.60) with respect to x, we get

2

2x
= 

%
'&

(
0)

%
'&

(
0)x x

= 
%
'&

(
0)

%
'&

(
0)x x

LO 5
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%
'&

(
0)

%
'&

(
0)x x

or

2

2
x

= 
2

2

2 2

2
2 (11.61)

Similarly,

t
= 

t t

= � v v

and

2

2t
= � v

%
'&

(
0)

%
'&

(
0)

1

3
2

4

6
5t t

%
'&

(
0)

%
'&

(
0)

1

3
2

4

6
5v

t t

or

2

2t
= v2

2

2

2 2

2
2

1

3
2

4

6
5 (11.62)

Substituting the expressions for 2 / x2 and 2 / t2 from

Eqs. (11.61) and (11.62) in Eq. (11.56), we obtain

2

2

2 2

2
2 = 

2

2

2 2

2
2

or

%
'&

(
0)

= 0 (11.63)

Thus, /  has to be independent of ; however, it can be

an arbitrary function of :

= F( ) (11.64)

or = F d( )s constant of integration.

The constant of integration can be an arbitrary function of 

and since the integral of an arbitrary function is again an

arbitrary function, we obtain the following as the most

general solution of the wave equation

= f ( ) + g( )

= f (x � vt) + g(x + vt) (11.65)

where f and g are arbitrary functions of their argument. The

function f (x � vt) represents a disturbance propagating in

the +x direction with speed v and the function g(x + vt)

represents a disturbance propagating in the �x direction.

Example 11.5 Solve the one-dimensional wave equation

[Eq. (11.25)] by the method of separation of variables* and show

that the solution can indeed be expressed in the form given by

Eqs. (11.32) and (11.33).

Solution: In the method of separation of variables, we try a

solution of the wave equation

∂

∂

2

2

ψ

x
= 

1
2

2

2v

∂

∂

ψ

t
(11.66)

of the form

(x, t) = X(x) T(t) (11.67)

where X(x) is a function of x alone and T(t) is a function of t alone.

Substituting in Eq. (11.66), we get

T(t) 
d X

d x

2

2
= 

1
2

2

2v
X x

T

dt
( )

∂

or**

1 2

2X x

d X

d x( )
= 

1
2

2

2v T t

d T

dt( )
(11.68)

The LHS is a function of x alone and the RHS is a function of t

alone. This implies that a function of one independent variable x is

equal to a function of another independent variable t for all values

of x and t. This is possible only when each side is equal to a

constant; we set this constant equal to �k2, thus,

1 2

2X x

d X

d x( )
= 

1 1
2

2

2v T t

d T

dt( )
 = �k2 (11.69)

or

d X

d x

2

2
 + k2X(x) = 0 (11.70)

and

d T

dt

2

2
 + 2T(t) = 0 (11.71)

* The method of separation of variables is a powerful method for solving certain kinds of partial differential equations. According to this

method, the solution is assumed to be a product of functions, each function depending only on one independent variable [see

Eq. (11.67)]. On substituting this solution, if the variables separate out then the method is said to work and the general solution is a

linear sum of all possible solutions; see, e.g., the analysis given in Sec. 8.2. If the variables do not separate out one has to try some

other method to solve the equation.

** Notice that partial derivatives have been replaced by total derivatives.
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where

= kv = 
2 v

(11.72)

represents the angular frequency of the wave. The solutions of

Eqs. (11.70) and (11.71) can easily be written down:

X(x) = (A cos kx + B sin kx)

and

T(t) = (C cos t + D sin t)

Thus,

(x, t) = (A cos kx + B sin kx)

(C cos t + D sin t) (11.73)

Suitable choice of the constants A, B, C and D would give

(x, t) = a cos (kx � t + )

or (x, t) = a cos (kx + t + )

representing waves propagating in the +x and �x directions respec-

tively. One can also have

(x, t) = a exp [  i(kx  t + )]

as a solution.

In general, all values of the frequencies are possible, but

the frequency and wavelength have to be related through

Eq. (11.72). However, there are systems (like a string under

tension and fixed at both ends) where only certain values of

frequencies are possible (see Sec. 8.2).

Example 11.6 Till now, we have confined our discussion to

waves in one dimension. The three-dimensional wave equation is of

the form,

2 = 
1
2

2

2v

∂

∂

ψ

t
(11.74)

where 2  
∂

∂
+
∂

∂
+
∂

∂

2

2

2

2

2

2

ψ ψ ψ

x y z
(11.75)

Solve the three-dimensional wave equation by the method of

separation of variables and interpret the solution physically.

Solution: Using the method of separation of variables, we write

(x, y, z, t) = X(x) Y(y) Z(z) T(t) (11.76)

where X(x) is a function of x alone, etc. Substituting in Eq. (11.74),

we obtain

YZT
d X

d x

2

2
 + XZT 

d Y

dy

2

2
 + XYT 

d Z

dz

2

2
 = 

1
2v

 XYZ 
d T

dt

2

2

or dividing throughout by 

      
2 2 2

2 2 2

1 1 1d X d Y d Z

X Y Zd x d y d z
 = 

1 1
2

2

2v T

d T

dt

1

3
2

4

6
5 (11.77)

Since the first term on the LHS is a function of x alone, the second

term is a function of y alone, etc., each term must be set equal to a

constant. We write

1 2

2X

d X

d x
= � kx

2

1 2

2Y

d Y

d y
= � ky

2
(11.78)

1 2

2Z

d Z

dz
= � kz

2

where kx
2, ky

2 and kz
2 are constants. Thus,

2

2 2

1 1 d T

Tv dt
= � (kx

2 + ky
2 + kz

2)

or

d T

dt

2

2
 + 2T(t) = 0 (11.79)

where

2 = k2v2
(11.80)

and

k2 = kx
2 + ky

2 + kz
2

The solutions of Eqs. (11.78) and (11.79) could be written in terms

of sine and cosine functions; it is more convenient to write these in

terms of the exponentials:

= A exp [i(kx x + ky y + kz z  t + )]

= A exp [i(k . r  t + )] (11.81)

where the vector k is defined such that its x, y and z-components

are kx, ky and kz, respectively. One could have also written

= A cos (k  r � t + ) (11.82)

Consider a vector r which is normal to k; thus k  r = 0; conse-

quently at a given time the phase of the disturbance is constant on

a plane normal to k. The direction of propagation of the distur-

bance is along k and the phase fronts are planes normal to k; such

waves are known as plane waves (see Fig. 11.9). Notice that for a

z

x

y

k

Fig. 11.9 Propagation of a plane wave along the direction k.

kx y z
k

k k= = , = 0
2
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given value of the frequency, the value of k2 is fixed [see

Eq. (11.80)]; however, we can have waves propagating in different

directions depending on the values of kx, ky and kz. For example, if

kx = k and ky = kz = 0 (11.83a)

we have a wave propagating along the x-axis, the phase fronts are

parallel to the y�z plane. Similarly, for

kx = 
k

2
, ky = 

k

2
, kz = 0 (11.83b)

the waves are propagating in a direction which makes equal angles

with x- and y-axes (see Fig. 11.9).

Example 11.7 For a spherical wave, the displacement 

depends only on r and t where r is the magnitude of the distance

from a fixed point. Obtain a general solution of the wave equation

for a spherical wave.

Solution: For a spherical wave

2 = 
∂

∂
+

∂

∂

2

2

2ψ ψ

r r r
 = 

1
2

2

r r
r

r

∂

∂

∂

∂

ψ
(11.84)

Thus, the wave equation for a spherical wave simplifies to

2 = 
1
2

2

r r
r

r

∂

∂

∂

∂

%
'&

(
0)

ψ
 = 

1
2

2

2v

∂

∂

ψ

t
(11.85)

If we make the substitution

= 
u r t

r

( , )

then

1
2

2

r r
r

r

∂

∂

∂

∂

%
'&

(
0)

ψ
=
1
2

r r
r

u

r
u

∂

∂

∂

∂
−

%
'&

(
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1 2

2r

u

r

∂

∂

Thus Eq. (11.88) becomes

1 2

2r

u

r

∂

∂
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1 1
2

2

2v r

u

t

∂

∂

or

∂

∂

2

2

u

r
= 

1
2

2

2v

∂

∂

u

t
(11.86)

which is of the same form as the one-dimensional wave equation.

The general solution of Eq. (11.85) is therefore given by

= 
f r t

r

g r t

r

( ) ( )−
+

+v v
(11.87)

the first and the second terms (on the RHS) representing an outgo-

ing spherical wave and an incoming spherical wave, respectively.

For time dependence of the form exp (  i t) one obtains

= 
A

r
 exp [i(kr  t)] (11.88)

Notice that the factor 1/r term implies that the amplitude of a

spherical wave decreases inversely with r, and, therefore, the inten-

sity will fall off as 1/r2.

Summary

u For a sinusoidal wave, the displacement is given by

= a cos [kx ± t + ]

where a represents the amplitude of the wave, (= 2 v) the

angular frequency of the wave, k (= 2 / ) the wave number

and  represents the wavelength associated with the wave.

The upper and lower signs correspond to waves propagating

in the �x and +x directions, respectively. Such a displace-

ment is indeed produced in a long-stretched string at the end

of which a continuously vibrating tuning fork is placed. The

quantity  is known as the phase of the wave.

u The intensity of the wave is proportional to the square of

the amplitude and square of the frequency.

u The most general solution of the wave equation

∂

∂

2

2

ψ

x
= 

1
2v

 
∂

∂

2

2

ψ

t

is of the form

= f (x � vt) + g(x + vt)

where f and g are arbitrary functions of their argument.

The first term on the RHS of the above equation represents

a disturbance propagating in the +x direction with speed v

and similarly, the second term represents a disturbance

propagating in the �x direction with speed v. Thus, if we can

derive the wave equation from physical considerations, then

we can be sure that waves will result and  will represent

the displacement associated with the wave.

u The speed of the transverse waves propagating through the

string is underoot of T/p, where T is the tension on the string

and p is mass per unit length.

u For a spherical wave, the displacement is given by

= 
A

r
e

i kr t( )±ω

where the + and � signs correspond to incoming and outgoing

waves respectively. Notice that the factor 1/r term implies

that the amplitude of a spherical wave decreases inversely

with r, and therefore, the intensity will fall off as 1/r2.

Problems

11.1 The displacement associated with a wave is given by

(a) y(x, t) = 0.1 cos (0.2x � 2t)

(b) y(x, t) = 0.2 sin (0.5x + 3t)

(c) y(x, t) = 0.5 sin 2 (0.1x � t)
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where in each case x and y are measured in centimeters and

t in seconds. Calculate the wavelength, amplitude,

frequency and the velocity in each case.

[Ans: (a) v  0.32 s�1; v = 10cm/s;

(b) v  0.48 s�1;  v = 6 cm/s;

(c) v = 1 s�1; v = 10 cm/s]

11.2 A transverse wave (  = 15 cm, v = 200 sec�1) is propagating

on a stretched string in the +x-direction with an amplitude of

0.5 cm. At t = 0, the point x = 0 is at its equilibrium position

moving in the upward direction. Write the equation

describing the wave and if  = 0.1 g/cm, calculate the energy

associated with the wave per unit length of the wire.

[Ans: Energy associated with the wave

 1.97  104 ergs/cm]

11.3 Assuming that the human ear can hear in the frequency

range 20 < v < 20,000 Hz, what will be the corresponding

wavelength range?

[Ans: 16.5 m >  > 0.0165 m]

11.4 Calculate the speed of longitudinal waves at NTP in (a)

argon (  = 1.67), (b) Hydrogen (  = 1.41).

[Ans: (a) 308 m/s, (b) 1.26  105 cm/s]

11.5 Consider a wave propagating in the +x-direction with speed

100 cm/s. The displacement at x = 10 cm is given by the

following equation:

y(x = 10, t) = 0.5 sin (0.4 t)

where x and y are measured in centimeter and t in seconds.

Calculate the wavelength and the frequency associated with

the wave and obtain an expression for the time variation of

the displacement at x = 0.

[Ans:   1571 cm:  y(x, t) = 0.5 sin

[0.4 t � 0.004(x �10)]

11.6 Consider a wave propagating in the �x-direction whose

frequency is 100 sec�1. At t = 5 sec the displacement as-

sociated with the wave is given by the following equation:

y(x, t = 5) = 0.5 cos (0.1x)

where x and y are measured in centimeter and t in seconds.

Obtain the displacement (as a function of x) at t = 10 s.

What is the wavelength and the velocity associated with

the wave?

[Ans: y(x, t) = 0.5 cos[0.1x + 200 (t � 5)]

11.7 Repeat the above problem corresponding to

y(x, t = 5) = 0.5 cos (0.1x) + 0.4 sin (0.1x + /3)

11.8 A Gaussian pulse is propagating in the +x-direction and at

t = t0 the displacement is given by

y(x, t = t0) = a exp −
−1

3
2

4

6
5

( )x b
2

2σ

Find y(x, t).

Ans: y(x, t) = a exp −
− − −1

3
2
2

4

6
5
5

( ( ))x b t tv 0
2

2σ

11.9 A sonometer wire is stretched with a tension of 1 N. Calcu-

late the velocity of transverse waves if  = 0.2 g/cm.

[Ans: v  707 cm/s]

11.10 The displacement associated with a three-dimensional wave

is given by

(x, y, z, t) = a cos 
3

2

1

2
kx ky t+ −

1

3
2

4

6
5ω

Show that the wave propagates along a direction making an

angle 30  with the x-axis.

11.11 Obtain the unit vector along the direction of propagation

for a wave, the displacement of which is given by

(x, y, z, t) = a cos [2x + 3y + 4z � 5t]

where x, y and z are measured in centimeter and t in sec-

onds. What will be the wavelength and the frequency of the

wave?

2 3 4ˆ ˆ ˆ
29 29 29

Ans x y z:



12.1 INTRODUCTION

The wave theory of light was first put forward by Christiaan

Huygens in 1678. During that period, everyone believed in

Newton�s corpuscular theory, which had satisfactorily ex-

plained the phenomena of reflection, refraction, the rectilinear

propagation of light and the fact that light could propagate

through vacuum. So empowering was Newton�s authority

that the scientists around Newton believed in the corpuscu-

lar theory much more than Newton himself; as such, when

Huygens put forward his wave theory, no one really believed

him. On the basis of his wave theory, Huygens explained

satisfactorily the phenomena of reflection, refraction and to-

tal internal reflection and also provided a simple explanation

of the then recently discovered birefringence (see Chapter

22). As we will see later, Huygens� theory predicted that the

velocity of light in a medium (like water) shall be less than

the velocity of light in free space, which is just the converse

of the prediction made from Newton�s corpuscular theory

(see Sec. 2.2).

The wave character of light was not really accepted until

the interference experiments of Young and Fresnel (in the

early part of the nineteenth century) which could only be

explained on the basis of a wave theory. At a later date, the

data on the speed of light through transparent media were

also available which was consistent with the results obtained

Christiaan Huygens, a Dutch physicist, in a communication to the Académie des Science in

Paris, propounded his wave theory of light (published in his Traite de Lumiere in 1690). He

considered that light is transmitted through an all-pervading oether that is made up of small

elastic particles, each of which can act as a secondary source of wavelets. On this basis,

Huygens explained many of the known propagation characteristics of light, including the

double refraction in calcite discovered by Bartholinus.

�From the Internet

HUYGENS� PRINCIPLE AND

ITS APPLICATIONS

Chapter
Twelve

by using the wave theory. It should be pointed out that

Huygens did not know whether the light waves were

longitudinal or transverse and also how they propagate

through vacuum. It was only in the later part of the

nineteenth century, when Maxwell propounded his famous

electromagnetic theory, could the nature of light waves be

understood properly.

12.2 HUYGENS� THEORY

Huygens� theory is essentially based on a geometrical con-

struction which allows us to determine the shape of the

wavefront at any time, if the shape of the wavefront at an

earlier time is known. A wavefront is the locus of the points

which are in the same phase; for example, if we drop a small

stone in a calm pool of water, circular ripples spread out from

the point of impact, each point on the circumference of the

circle (whose center is at the point of impact) oscillates with

the same amplitude and same phase and thus we have a cir-

cular wavefront. On the other hand, if we have a point source

emanating waves in a uniform isotropic medium, the locus of
points which have the same amplitude and are in the same
phase are spheres. In this case, we have spherical wavefronts
as shown in Fig. 12.1(a). At large distances from the source,
a small portion of the sphere can be considered as a plane
and we have what is known as a plane wave [see Fig. 12.1(b)].

LO 1: describe Huygens� wave theory of light.

LO 2: apply Huygens� principle to study refraction and reflection.

LO 3: use Huygens� principle in studying propagation of wavefront in inhomogeneous media.

LO 1
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Now, according to Huygens� principle, each point of a
wavefront is a source of secondary disturbance and the
wavelets emanating from these points spread out in all direc-
tions with the speed of the wave. The envelope of these

wavelets gives the shape of the new wavefront. In Fig. 12.2,

S
I
S
P
 represents the shape of the wavefront (emanating from

the point O) at a particular time which we denote as t = 0.
The medium is assumed to be homogeneous and isotropic,
i.e., the medium is characterized by the same property at all
points and the speed of propagation of the wave is the same
in all directions. Let us suppose we want to determine the

practice. This backwave is shown as S
I

S
P

 in Fig. 12.2. In
Huygens� theory, the presence of the backwave is avoided
by assuming that the amplitude of the secondary wavelets is
not uniform in all directions; it is maximum in the forward di-
rection and zero in the backward direction*. The absence of
the backwave is really justified through the more rigorous

wave theory.

S¢ 1

S¢¢1 S¢¢2

S¢2

S2

S 1

v
D
t

B ¢

B

O

Fig. 12.2 Huygens� construction for the determination of
the shape of the wavefront, given the shape of the
wavefront at an earlier time. S1S2 is a spherical
wavefront centered at O at a time, say t = 0. S1S2

corresponds to the state of the wavefront at a time
t, which is again spherical and centered at O. The

dashed curve represents the backwave.

In the next section, we will discuss the original argument
of Huygens to explain the rectilinear propagation of light. In
Sec. 12.4, we will derive the laws of refraction and reflection
by using Huygens� principle. Finally, in Sec. 12.5, we will
show how Huygens� principle can be used in inhomogeneous

media.

12.3 RECTILINEAR

PROPAGATION

Let us consider spherical waves emanating from the point
source O and striking the obstacle A (see Fig. 12.3).
Accord-ing to the rectilinear propagation of light (which is
also predicted by corpuscular theory) one should obtain a
shadow in the region PQ of the screen. As we will see in a
later chapter, this is not rigorously true and one does obtain
a finite intensity in the region of the geometrical shadow.
However, at the time of Huygens, light was known to travel
in straight lines and Huygens explained this by assuming
that the secondary wavelets do not have any amplitude at
any point not enveloped by the wavefront. Thus, referring
back to Fig. 12.2, the secondary wavelets emanating from a
typical point B will give rise to a finite amplitude at B  only

and not at any other point.

* Indeed it can be shown from diffraction theory that one does obtain (under certain approximations) an obliquity factor, which is of

the form 
1

2
(1 + cos ) where  is the angle between the normal to the wavefront and the direction under consideration. Clearly, when

 = 0, the obliquity factor is 1 (thereby giving rise to maximum amplitude in the forward direction) and when  = , the obliquity

factor is zero (thereby giving rise to zero amplitude in the backward direction).

Fig. 12.1 (a) A point source emitting spherical waves.
(b) At large distances, a small portion of the
spherical wavefront can be approximated to a
plane wavefront thus resulting in plane waves.

shape of the wavefront after a time interval of t. Then, with
each point on the wavefront as center, we draw spheres of ra-
dius v t, where v is the speed of the wave in that medium. If
we draw a common tangent to all these spheres, then we ob-
tain the envelope which is again a sphere centered at O. Thus,
the shape of the wavefront at a later time t is the sphere S

I
S
P
.

There is, however, one drawback with the above model,
because we also obtain a backwave which is not present in
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The above explanation of the rectilinear propagation of

light is indeed unsatisfactory and is incorrect. Further, as

pointed out earlier, one does observe a finite intensity of

light in the geometrical shadow. A satisfactory explanation

was put forward by Fresnel, who postulated that the

secondary wavelets mutually interfere. The Huygens�

principle along with the fact that the secondary wavelets

mutually interfere, is known as the Huygens�Fresnel

principle. It may be mentioned that if a plane wave is allowed

to fall on a tiny hole,* then the hole approximately acts as a

point source and spherical waves emanate from it (see Figs.

12.4(a) and (b)). This fact is in direct contradiction to the

original proposition of Huygens** according to which the

secondary wavelets do not have any amplitude at any point

not enveloped by the wavefront. However, as we will see in

the chapter on diffraction, it can be explained satisfactorily

on the basis of Huygens�Fresnel principle.

S¢

S

Fig. 12.4 (a) A plane wavefront is incident on a pin hole. If
the diameter of the pinhole is small (compared
to the wavelength) the entire screen SS  will be
illuminated. See also Fig. 17 in the prelim pages.

* By a tiny hole we imply that the diameter of the hole should be of the order of 0.1 mm or less.

** Use of the Huygens� principle in determining the shape of the wavefront in anisotropic media will be discussed in Chapter 22.

O
A

P

Q

Fig. 12.3 Rectilinear propagation of light. O is a point
source emitting spherical waves and A is an
obstacle which forms a shadow in the region PQ
of the screen.

Fig. 12.4 (b) Diffraction of straight water waves when it passes through an opening (adapted from Ref. 12.6).
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12.4 APPLICATION OF

HUYGENS� PRINCIPLE TO

STUDY REFRACTION AND

REFLECTION

12.4.1 Refraction of a Plane Wave at a
Plane Interface

We will first derive the laws of refraction. Let S
I
S
P
 be a

surface separating two media with different speeds of

propagation of light v
I
 and v

P
 as shown in Fig. 12.5. Let A

I
B
I

be a plane wavefront incident on the surface at an angle i;

A
I
B
I
 represents the position of the wavefront at an instant

t = 0.

Fig. 12.5 Refraction of a plane wavefront A
1
B
1
 by a plane

interface S
1
S
2
 separating two media with differ-

ent velocities of propagation of light v
1
 and

v
2
 (< v

1
); i and r are the angles of incidence and

refraction respectively. A
2
C
2
B
2
 corresponds to the

shape of the wavefront at an intermediate time

1
. Notice that r < i; see also Fig. 16 in the prelim

pages.

Let  be the time taken for the wavefront to travel the

distance B
I
B
Q
. Then B

I
B
Q
 = v

I
. In the same time, the light

would have traveled a distance A
I
A
Q
 = v

P
 in the second

medium. (Note that the lines A
I
A
Q
, B

I
B
Q
, etc., are always

normal to the wavefront; these represent rays in isotropic

media�see Chapter 4). It can easily be seen that the incident

and refracted rays make angles i and r with the normal. In

order to determine the shape of the wavefront at the instant

t =  we consider an arbitrary point C
I
 on the wavefront. Let

the time taken for the disturbance to travel the distance C
I
C

P

be 
I
. Thus C

I
C
P
 = v

I I
. From the point C

P
 we draw a sec-

ondary wavelet of radius v
P
(  � 

I
). Similarly, from the point

A
I
, we draw a secondary wavelet of radius v

P
. The envelope

of these secondary wavelets is shown as A
Q
C
Q
B
Q
. The shape

of the wavefront at the intermediate time 
I
 is shown as

A
P
C
P
B
P
 and clearly B

I
B
P
 = C

I
C

P
 = v

I I
 and A

I
A
P
 = v

P I
. In

the right-angled triangles B
P
C
P
B
Q
 and C

Q
C
P
B
Q
, B

P
C
P
B
Q
 = i

(the angle of incidence) and C
P
B
Q
C

Q
 = r (the angle of

refraction). Clearly,

sin

sin

i

r
= 
B B C B

C C C B
2 3 2 3

2 3 2 3

/

/
 = 
B B

C C
2 3

2 3

= 
v

v

1 1

2 1

( )

( )
 = 

v

v

1

2

(12.1)

which is known as the Snell�s law. It is observed that when

light travels from a rarer to a denser medium, the angle

of incidence is greater than the angle of refraction and con-

sequently

sin

sin

i

r
> 1

which implies v
I
 > v

P
; thus, Huygens� theory predicts that

the speed of light in a rarer medium is greater than the speed

of light in a denser medium. This prediction is contradictory

to that made by Newton�s corpuscular theory (see Sec. 2.2)

and as later experiments showed, the prediction of the wave

theory was indeed correct.

If c represents the speed of light in free space then the

ratio c
v

 (where v represents the speed of light in the particu-

lar medium) is called the refractive index n of the medium.

Thus, if n
I

1

c

v

 and n
P

2

c

v

 are the refractive indices of

the two media, then Snell�s law can also be written as

n
I
 sin i = n

P
 sin r (12.2)

Let A
I
C

I
B
I
, A

P
C
P
B
P
, A

Q
C

Q
B
Q
 and A

R
C

R
B
R
 denote the suc-

cessive positions of crests. If 
I
 and 

P
 denote the

wavelength of light in medium 1 and medium 2, respectively

then, the distance B
I
B
P
 (= B

P
B
Q
 = C

I
C
P
) will be equal to 

I

and the distance A
I
A
P
 (= A

P
A
Q
 = C

P
C

Q
) will be equal to 

P
.

From Fig. 12.5 it is obvious that

1

2

=
sin

sin

i

r
 = 

v

v

1

2

(12.3)

or

v
I
/

I
= v

P
/

P
(12.4)

Thus, when a wave gets refracted into a denser medium

(v
I
 > v

P
) the wavelength and the speed of propagation

decrease but the frequency (= v/ ) remains the same; when

refracted into a rarer medium the wavelength and the speed

LO 2
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B1

B2

A2

v1

v v2 1>

v2t

v1t

A1 i

r

Fig. 12.6 Refraction of a plane wavefront incident on a
rarer medium (i.e., v

2
 > v

1
). Notice that the angle

of refraction r is greater than the angle of inci-
dence i. The value of i, when r is equal to /2,
gives the critical angle.

where i
c
 denotes the critical angle and n

IP
 represents the re-

fractive index of the second medium with respect to the first.

For all angles of incidence greater than i
c
, we will have total

internal reflection.

12.4.3 Reflection of a Plane Wave by a
Plane Surface

Let us consider a plane wave AB incident at an angle i on a

plane mirror as shown in Fig. 12.7. We consider the reflection

of the plane wave and try to obtain the shape of the reflected

wavefront. Let the position of the wavefront at t = 0 be AB. If

the mirror was not present, then at a later time  the position

of the wavefront would have been CB , where BB  = PP  =

AC = v  and v is the speed of propagation of the wave. In

order to determine the shape of the reflected wavefront at the

instant t = , we consider an arbitrary point P on the

wavefront AB and let 
I
 be the time taken by a disturbance

to reach the point P
I
 from P. From the point P

I
, we draw a

sphere of radius v(  � 
I
). We draw a tangent plane on this

sphere from the point B . Since BB
I
 = PP

I
 = v

I
, the distance

B
I
B  will be equal to P

I
P
P
 [= v(  � 

I
)]. If we consider tri-

angles P
P
P
I
B  and B

I
P
I
B  then the side P

I
B  is common to

both and since P
I
P  = B B

P
, and since both the triangles are

right-angled triangles, P
P
B P

I
 = B

I
P
I
B . The former is the

angle of reflection and the latter is the angle of incidence.

Thus, we have the law of reflection; when a plane wavefront

gets reflected from a plane surface, the angle of reflection is

equal to the angle of incidence and the reflected wave is a

plane wave.

Table 12.1 Refractive Indices of various Materials Rela-

tive to Vacuum. (Adapted from Ref. 12.1).

(For light of wavelength  = 5.890  10�5 cm)1

Material n Material n

Vacuum 1.0000 Quartz (fused) 1.46

Air 1.0003 Rock salt 1.54

Water 1.33 Glass (ordinary

crown) 1.52

Quartz (crystalline) 1.54 Glass (dense flint) 1.66

Table 12.2
U Refractive Indices of Telescope Crown Glass

and Vitreous Quartz for Various Wavelengths.

(Adapted from Ref. 12.7).

Wavelength Telescope Vitreous

crown quartz

1 6.562816  10�5 cm 1.52441 1.45640

2 5.889953  10�5 cm 1.52704 1.45845

3 4.861327  10�5 cm 1.53303 1.46318

Note: The wavelengths specified at serial numbers 1, 2 and 3

correspond roughly to the red, yellow and blue colors. The table

shows the accuracy with which the wavelengths and refrac-

tive indices can be measured; see also Problem 10.5.

of propagation will increase (see Fig. 16 in the prelim pages).

In Table 12.1, we have given the indices of refraction of

several materials with respect to vacuum. In Table 12.2, the

wavelength dependence of the refractive index for crown

glass and vitreous quartz are given. The three wavelengths

correspond roughly to the red, yellow and blue colors.

Notice the accuracy with which the wavelength and the

refractive index can be measured.

12.4.2 Total Internal Reflection

In Fig. 12.5, the angle of incidence has been shown to be

greater than the angle of refraction. This corresponds to the

case when v
P
 < v

I
, i.e., the light wave is incident on a denser

medium. However, if the second medium is a rarer medium

(i.e., v
I
 < v

P
) then the angle of refraction will be greater than

the angle of incidence, and a typical refracted wavefront

would be of the form as shown in Fig. 12.6, where B
I
B
P
 = v

I

and A
I
A
P
 = v

P
. Clearly, if the angle of incidence is such that

v
P

 is greater than A
I
B
P
, then the refracted wavefront will be

absent and we will have, what is known as, total internal

reflection. The critical angle will correspond to

A
I
B
P

= v
P

Thus,

sin i
c

=
B B

A B
1 2

1 2

 = 
v

v

1

2

 = n
IP

, (12.5)
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B ¢

A¢

P ¢

C

B1

B

P

A P1

P2

rii

Fig. 12.7 Reflection of a plane wavefront AB incident on a
plane mirror. A B  is the reflected wavefront; i and
r correspond to angles of incidence and reflection

respectively.

12.4.4 Diffuse Reflection

In the above section, we have considered the reflection of

light from a smooth surface. This is known as specular re-

flection. If the surface is irregular (as shown in Fig. 12.8) we

have, what is known as diffuse reflection. The secondary

wavelets emanating from the irregular surface travel in many

directions and we do not have a well-defined reflected wave.

Indeed, it can be shown that if the irregular- ity in the surface

is considerably greater than the wavelength, we will have

diffuse reflection.

Fig. 12.8 Diffuse reflection of a plane wavefront from a
rough surface. It is evident that one does not
have a well-defined reflected beam.

12.4.5 Reflection of Light from a Point
Source Near a Mirror

Let us consider spherical waves (emanating from a point

source P) incident on a plane mirror MM as shown in

Fig. 12.9. Let ABC denote the shape of the wavefront at time

t = 0. In the absence of the mirror, the shape of the wavefront

at a later time  would have been A
I
B
I
C
I
 where AA

I
 = QQ

I
 =

BB
I
 = CC

I
 = v , Q being an arbitrary point on the wavefront.

If the time taken for the disturbance to traverse the distance

QQ  be 
I
 then, in order to determine the shape of the

reflected wavefront, we draw a sphere of radius v(  � 
I
)

whose center is at the point Q . In a similar manner, we can

draw the secondary wavelets emanating from other points on

the mirror and, in particular, from the point B we have to draw

a sphere of radius v . The shape of the reflected wavefront

is obtained by drawing a common tangent plane to all these

spheres, which is shown as A
I
B
I
C

I
 in the figure. It can

immediately be seen that A
I
B
I
C

I
 will have an exactly similar

shape as A
I
B
I
C
I
 except that A

I
B
I
C
I
 will have its center of

curvature at the point P  where PB = BP . Thus, the reflected

waves will appear to emanate from the point P  which will be

the virtual image of the point P.

P¢

M¢
A1

M

A

Q
B

C

C1

B1

B ¢1

Q ¢

t = 0

vt

P

Fig. 12.9 P is a point source placed in front of a plane mir-
ror MM . ABC is the incident wavefront (which
is spherical and centered at P) and A1B 1C1 is the
corresponding reflected wavefront (which is
spherical and centered at P ). P  is the virtual
image of P.

12.4.6 Refraction of a Spherical Wave by
a Spherical Surface

Let us consider spherical waves (emanating from the point P)

incident on the curved spherical surface SBS . Let the shape

of the wavefront at the time t = 0 be ABC [see Fig. 12.10(a)].

Let the refractive indices on the left and on the right of the

spherical surface be n
I
 and n

P
, respectively. In the absence

of the spherical surface, the shape of the wavefront at a later

time  would have been A
I
B
I
C
I
 where AA

I
 = BB

I
 = CC

I

= v
I

. We consider an arbitrary point Q on the wavefront

ABC and let 
I
 be the time taken for the disturbance to reach

the point Q  (on the surface of the spherical wave); thus

QQ  = v
I I

. In order to determine the shape of the refracted

wavefront at a later time , we draw a sphere of radius v
P
(  � 

I
)

from the point Q . We may draw similar spheres from other

points on the spherical surface; in particular, the radius of

the spherical wavefront from the point B, which is equal to

BB
P
 will be v

P
. The envelope of these spherical wavelets is
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shown as A
I
B
P
C
I
 which, in general, will not be a sphere.*

However, a small portion of any curved surface can be

considered as a sphere and in this approximation we may

consider A
I
B
P
C
I
 to be a sphere whose center of curvature is

at the point M. The spherical wavefront will, therefore,

converge towards the point M and hence the point M

represents the real image of the point P.

MOB1

A1

S

–u
B2

n1

B

Q

Q¢

S ¢

B¢

C1

C1
A1

v

R

G

A

C

P

n n2 1(> )

(a)

(b)

0

G

B

Fig. 12.10 (a) Refraction of a spherical wave ABC (emanat-
ing from the point source P) by a convex
spherical surface SBS  separating media of re-
fractive indices n1 and n2 (> n1). A1B2C1 is the
refracted wavefront, which is approximately
spherical and whose center of curvature is at M.
Thus, M is the real image of P. O is the center of
curvature of SS . (b) The diameter B OB inter-
sects the chord A1GC1 normally.

We adopt a sign convention in which all distances, mea-

sured to the left of the point B, are negative and all distances

measured to the right of the point B are positive. Thus,

PB = �u

where u itself is a negative quantity. Further, since the point

M lies on the right of B, we have

BM = v

and similarly,

BO = R

where O represents the center of curvature of the spherical

surface.

In order to derive a relation between u, v and R we use a

theorem in geometry, according to which,

(A
I
G)

P
= GB  (2R � GB) (12.6)

where G is the foot of the perpendicular on the axis PM [see

Fig. 12.10(b)]. In Fig. 12.10(b), the diameter B OB intersects

the chord A
I
GC

I
 normally. If GB << R, then

(A
I
G)P ~ 2R(GB)

Consider the spherical surface SBS  [see Fig. 12.10(a)]

whose radius is R. Clearly,

(A
I
G)P = (2R � GB)GB

~ 2R(GB) (12.7)

where we have assumed GB <<  R. Similarly by considering

the spherical surface A
I
B
P
C
I
 (whose center is at the point M)

we obtain

(A
I
G)P ~ 2v(GB

P
) (12.8)

where v = BM ~ B
P
M. In a similar manner,

(A
I
G)P ~ 2(�u)GB

I
(12.9)

Since u is a negative quantity, (A
I
G)P is positive. Now,

BB
I

= v
I

and BB
P
 = v

P

Therefore,

BB

BB
1

2

= 
v

v

1

2

 = 
n

n
2

1

or

n
I
BB

I
= n

P
BB

P

or

n
I
(BG + GB

I
) = n

P
(BG � GB

P
)

or

n
A G

R

A G

u1
1

2
1

2

2 2

( ) ( )1

3
2
2

4

6
5
5

= n
A G

R

A G
2

1
2

1
2

2 2

( ) ( )1

3
2

4

6
5

v

where we have used Eqs. (12.7), (12.8) and (12.9). Thus,

n2
v

 � 
n

u
1 = 

n n

R
2 1 (12.10)

* The fact that the refracted wavefront is not, in general, a sphere leads to, what are known as aberrations.
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which may be rewritten in the form

n2
v

= 
n

u

n n

R
1 2 1 (12.11)

Thus, if

n

u
1

| |
> n n

R

2 1

or

| u | < 
Rn

n n
1

2 1

we will obtain a virtual image. (We are of course assuming

that the second medium is a denser medium, i.e., n
P
 > n

I
; if n

P

< n
I
, we will always have a virtual image).

A converging spherical wavefront will propagate in a man-

ner shown in Fig. 12.11. Beyond the focal point, it will start

diverging as shown in the figure.*

Fig. 12.11 Propagation of a converging spherical wave

using Huygens� principle.

In a similar manner, we can consider the refraction of a

spherical wave from a surface SBS  shown in Fig. 12.12

(n
P
 > n

I
). Here the center of curvature will also lie on the left

of the point B and both u and R will be negative quantities.

Thus no matter what the values of u and R may be, v will be

negative and we will obtain a virtual image.

Using Eq. (12.10) we can easily derive the thin lens

formula. We assume a thin lens made of a material of

refractive index n
P
 to be placed in a medium of refractive

index n
I
 (see Fig. 12.13). Let the radii of curvatures of the first

and the second surface be R
I
 and R

P
, respectively. Let v  be

the distance of the image of the object P if the second

surface were not present. Then,

n n

u
2 1

v

= 
n n

R
2 1

1

(12.12)

* Very close to the focal point, one has to use a more rigorous wave theory and the shape of the wavefront is very much different from

spherical (see Ref. 12.8). However, much beyond the focal point the wavefronts again become spherical.

n1 n2

O P B B1

A1

C1

C

A

S

B2P ¢

S ¢

R

Fig. 12.12 Refraction of a spherical wave by a concave
surface separating media of refractive indices
n1 and n2 (> n1). P  is the virtual image of P.

P

n1

n2

R1 R2

O P ¢

–u –v

Fig. 12.13 A thin lens made of a medium of refractive in-
dex n2 placed in a medium of refractive index
n1. The radii of curvatures of the two surfaces
are R1 and R2. P is the image (at a distance v
from the point O) of the point object P (at a dis-
tance �u from the point O).

(Since the lens is assumed to be thin, all the distances are

measured from the point O). This image now acts as an object

to the spherical surface R
P
 on the left of which is the medium

of refractive index n
P
 and on the right of which is the medium

of refractive index n
I
. Thus, if v is the distance of the final

image point from O, then,

n n1 2

v v

= 
n n

R
1 2

2

(12.13)
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Adding Eqs. (12.12) and (12.13), we obtain

n n

u
1 1

v

= ( )n n
R R2 1
1 2

1 1%
'&

(
0)

(12.14)

or

1 1

v u
= 

1

f
(12.15)

where

1

f
= 
n n

n R R
2 1

1 1 2

1 1%
'&

(
0)

(12.16)

Notice that we do not have to worry whether v  is posi-

tive or negative; it is automatically taken care of through the

sign convention. Further, the relation derived is valid for any

lens; for example, for a double convex lens, R
I
 is positive and

R
P
 is negative and for a double concave lens, R

I
 is negative

and R
P
 is positive. Similarly, it follows for other types of

lenses (see Fig. 5.6).

Example 12.1 Consider a vibrating source moving through a

medium with a speed V. Let the speed of propagation of the wave

in the medium be v. Show that if V > v then a conical wavefront is

set up whose half-angle is given by

= sin�1 v

V
%
'

(
0 @IPFIUA

Solution: Let at t = 0, the source be at the point P
0
 moving with

a speed V in the x-direction (see Fig. 12.14). We wish to find out

the wavefront at a later time . The disturbance emanating from the

point P
0
 traverses a distance v  in time . Thus from the point P

0
,

we draw a sphere of radius v . We next consider the waves emanat-

ing from the source at a time 
1
 (< ). At time 

1
 let the source be at

the position P
1
; consequently,

P
0
P

1
= V

1

P0

P1 Q

q

x

L
v ( – )t t1

Vt1
Vt

Fig. 12.14 Generation of a shock wavefront by a vibrating
particle P

0
 moving with a speed V, in a medium

in which the velocity of propagation of the
wave is v (< V).

In order to determine the shape of the wavefront at , we draw

a sphere of radius v(  � 
1
) centered at P

1
. Let the source be at the

position Q at the instant . Then,

P
0
Q = V

We draw a tangent plane from the point Q, on the sphere whose

origin is the point P
1
. Since

P
1
L = v(  � 

1
) and P

1
Q = V(  � 

1
)

sin = 
P L

P Q
1

1

 = 
v

V
 (independent of 

1
)

Since 2 is independent of t
I
, all the spheres drawn from

any point on the line P
H
Q will have a common tangent plane.

This plane is known as the shock wavefront and propagates

with a speed v.

It is interesting to point out that even when the source is

not vibrating, if its speed is greater than the speed of sound

waves, a shock wavefront is always set up. A similar phenom-

enon also occurs when a charged particle (like an electron)

moves in a medium with a speed greater than the speed of

light in that medium.* The emitted light is known as Ceren-

kov radiation. If you ever see a swimming pool-type reactor,

you will find a blue glow coming out from it; this is because

of the Cerenkov radiation emitted by the fast moving elec-

trons.

12.5 HUYGENS� PRINCIPLE

IN INHOMOGENEOUS

MEDIA

Huygens� principle can also be used to study the propaga-

tion of a wavefront in an inhomogeneous medium. For

definiteness, we consider a medium whose refractive index

decreases continuously from a given axis, which we define

as the z-axis; x and y-axis being the transverse axis. A simple

example is a Selfoc fiber,** whose refractive index variation

is of the form

nP(x, y) = n
I

P  � P(xP + yP) (12.18)

where n
I
 is the refractive index on the z-axis. Let the plane

wavefront be incident along the z-axis as shown in

Fig. 12.15. Since the refractive index decreases as x and y

increase, the speed of the secondary wavelets emanating

from portions of the incident wavefront will increase as we

move away from the axis. Let us try to determine the shape

of the wavefront at a time t; given that the wavefront at

* This does not contradict the theory of relativity according to which no particle can have a speed greater than the speed of light in free

space (= 3  108 m/sec). The speed of light in a medium will be equal to c/n, where n represents the refractive index. For example, in

water, the speed of light will be about 2.25  108 m/sec and the speed of the electron could be greater than this value.

** See Sec. 3.4.1

LO 4
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t = 0 is a plane wavefront A
I
B
I
 (see Fig. 12.15). We will have

to draw spheres of radius v(x, y) t, centered at (x, y), where

v(x, y) is the velocity of the wave at the point (x, y), which

increases as x and y increase. Thus, the radii of the spheres

increase as we move away from the axis and if we draw a

common tangent to all these spheres then the resulting

wavefront is shown in Fig. 12.15 as A
P
B
P
. It is at once evident

that the wavefront which was initially plane has now become

curved. If we again use the same procedure, then the shape

of the wavefront at time 2 t (say) is shown as A
Q
B
Q
. Thus, it

is evident that in the present case the wavefront is getting

focused. It should be borne in mind that since we are

considering an inhomogeneous medium, the refractive index

varies continuously with position. For the above

construction to be valid, Dt should be small so that during

this short interval the secondary wavelets may be assumed

to be spherical.

n

z

A1

xx

A2 A3

B1
B2 B3

Fig. 12.15 The focusing of an incident plane wavefront in
an inhomogeneous medium characterized by a
refractive index variation given by Eq. (12.18).

Summary

u According to Huygens' principle, each point of a wavefront

is a source of secondary disturbance and the wavelets ema-

nating from these points spread out in all directions with the

speed of the wave. The envelope of these wavelets gives the

shape of the new wavefront.

u Huygens' principle along with the fact that the secondary

wavelets mutually interfere is known as the Huygens �

Fresnel principle.

u Diffuse reflection is seen when the irregularity in the surface

is considerably greater than the wavelength.

u Laws of reflection and Snell�s law of refraction can be de-

rived using Huygens� principle.

u Using Huygens� principle one can derive the lens formula

1 1 1

v

−

u f
= .

u In an inhomogeneous medium where refractive index varies

continuously, the initial wavefront is plane. It turns into

curved wavefront with increase in time.

Problems

IPFI Use Huygens� principle to study the reflection of a spherical

wave emanating from a point on the axis at a concave mirror

of radius of curvature R and obtain the mirror equation

1 1

u
+

v

= 
2

R

IPFP Consider a plane wave incident obliquely on the face of a

prism. Using Huygens� principle, construct the transmitted

wavefront and show that the deviation produced by the

prism is given by

= i + t � A

where A is the angle of the prism, i and t are the angles of

incidence and transmittance.
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13.1 INTRODUCTION

In this chapter, we will discuss the applications of the

principle of superposition of waves according to which the

resultant displacement (at a particular point) produced by a

number of waves is the vector sum of the displacements

produced by each one of the disturbances. As a simple

example, we consider a long stretched string AB (see

Fig. 13.1). From the end A, a triangular pulse is generated

which propagates to the right with a certain speed v. In the

absence of any other disturbance, this pulse would have

propagated in the +x-direction without any change in shape;

we are, of course, neglecting any attenuation or distortion of

the pulse. We next assume that from the end B an identical

pulse is generated which starts moving to the left with the

same speed v. (As has been shown in Sec. 11.6, the speed of

the wave is determined by the ratio of the tension in the

string to its mass per unit length.) At t = 0, the snapshot of

the string is shown in Fig. 13.1(a). At a little later time each

pulse moves close to the other as shown in Fig. 13.1(b),

without any interference. Figure 13.1(c) represents a

snapshot at an instant when the two pulses interfere; the

dashed curves represent the profile of the string if each of

The experiments described appear to me, at any rate, eminently adapted to remove any doubt

as to the identity of light, radiant heat, and electromagnetic wave motion. I believe that from

now on we shall have greater confidence in making use of the advantages which this identity

enables us to derive both in the study of optics and of electricity.

�Heinrich Hertz (1888)*

���i��y�s�syx2yp2�e�i�
Chapter
Thirteen

the impulses was moving all by itself, whereas the solid

curve shows the resultant displacement obtained by

algebraic addition of each displacement. Shortly later

[Fig. 13.1(d)] the two pulses exactly overlap each other and

the resultant displacement is zero everywhere. Where has the

energy gone? At a much later time, the impulses sort of cross

B

B

B

B

B

A

A

A

A

A

(e)

(a)

(b)

(c)

(d)

Fig. 13.1 The propogation in opposite directions of two
triangular pulses in a stretched string. The solid
line gives the actual shape of the string; (a), (b),
(c), (d) and (e) correspond to different instants of
time.

* The author found this quotation in the book by Smith and King (Ref. 13.1).

LO 1: understand superposition of waves.

LO 2: illustrate nodes and antinodes in stationary waves.

LO 3: describe stationary waves through Ives and Wiener�s experiments.

LO 4: formulate the complex representation of superposition of waves.

LO 1
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each other [Fig. 13.1(e)] and move as if nothing had

happened. This is a characteristic feature of superposition of

waves.

The phenomenon of interference contains no more phy-

sics than embodied in the above example. In the following

sections, we will consider some more examples.

13.2 STATIONARY WAVES ON

A STRING

Consider a string which is fixed at the point A (see

Fig. 13.2). A transverse sinusoidal wave is sent down

the string along the �x direction. The displacement at any

point on the string due to this wave would be given by

y
i

= a sin 
2

( )x t
1
32

4
65

v (13.1)

y
r

= + a sin 2  
x

vt
%
'

(
0 (13.5)

The resultant displacement would be given by

y = y
i
 + y

r
= a sin sin2 2

x
vt

x
vt

%
'

(
0

%
'

(
0

1
32

4
65

= 2a sin 
2

 x cos 2 vt (13.6)

Thus, for values of x such that

sin 
2

x = 0 (13.7)

the displacement y is zero at all times. Such points are

known as nodes; the x-coordinates of the nodes are given by

x = 0
2

3

2
2, , , , , ... (13.8)

and are marked as points A, P, Q and R in Fig. 13.2. The nodes

are separated by a distance /2 and at the midpoint between

two consecutive nodes, i.e., at

x = 
4

, 
3

4
, 
5

4
, ......

the amplitude of the vibration is maximum. The displace-

ments at these points (which are knowns as antinodes) are

given by

y =  2a cos 2 v t (13.9)

At the antinodes the kinetic energy density would be given

by (see Sec. 7.2)

Kinetic energy/unit length = 
1

2
2

2 2 2
( ) cosa t

= 2 a2 2 cos2 t (13.10)

where  = 2 v is the angular frequency and  the mass per

unit length of the string.

We can also carry out a similar experiment for electroma-

gnetic waves. In Fig. 13.3, T represents a transmitter of

A
SRQP S ¢R ¢Q ¢P ¢

x = 0
x

Fig. 13.2 Reflection of a wave at x = 0.

where the subscript i refers to the fact that we are consider-

ing the incident wave. Without any loss of generality we can

set  = 0; thus we may write

y
i

= a sin 
2

( )x t
1
32

4
65

v

= a sin 2
x

vt (13.2)

Thus, because of the incident wave, the displacement at the

point A would have been

yi x=0
= a sin (2 v t) (13.3)

where v = v/  and we have assumed the point A to corre-

spond to x = 0. Since the point A is fixed, there must be a

reflected wave such that the displacement due to this

reflected wave (at the point A) is equal and opposite to y
i
:

yr x=0
= �a sin (2 v t) (13.4)

where the subscript r refers to the fact that we are consider-

ing the reflected wave. Since the reflected wave propagates

in the +x-direction, we must have

T

D

R

Fig. 13.3 An arrangement for studying standing electro-
magnetic waves.
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electromagnetic waves (the wavelength of which may be of

the order of few cm); R represents a reflector which may be a

highly polished metal surface and D represents the detector

which can measure the variation of the intensity of the

electromagnetic waves at different points. One may approxi-

mately assume plane waves to be incident on the reflector;

the incident and reflected waves interfere and produce nodes

and antinodes. The result of a typical experiment is shown in

Fig. 13.4. One can see the periodic variation of intensity. Two

consecutive maxima are separated by about 5.8 cm; thus  

11.6 cm. The corresponding frequency (  2.6  109 s�1) can

easily be generated in the laboratory. If the frequency is

= a r
x

vt
x

vtsin sin2 2%
'

(
0

1
32

4
65

%
'

(
0

1
32

4
65

7
8
9

@
A
B

%
'

(
0

1
32

4
65

a r
x

vt( ) sin1 2

= 2
2

2a r x vtsin cos%
'

(
0

%
'

(
0

1
32

4
65

a r
x

vt( ) sin1 2 (13.13)

The first term represents the stationary component of the

wave and the second term (which is small if r is close to

unity) represents the propagating part of the beam.

13.3 STATIONARY WAVES ON

A STRING WITH FIXED

ENDS

In Sec. 13.2, while discussing the stationary waves on a

string we had assumed only one end of the string (x = 0) to

be fixed; and the resultant displacement was shown to be

given by [see Eq. (13.6)]:

y = 2 a sin 
2

x
%
'

(
0  cos (2 v t) (13.14)

If the other end of the string (say at x = L) is also fixed, then

we must have

2a sin
2

L
%
'

(
0  cos (2 vt) = 0 (13.15)

Equation (13.15) is to be valid at all times, therefore,

sin 
2

L
%
'

(
0 = 0 = sin n (13.16)

or

=
n
 = 

2L

n
, n = 1, 2, 3, ... (13.17)

The corresponding frequencies are

v
n

= 
v

n

 = 
n

L

v

2
, n = 1, 2, 3, ... (13.18)

Thus, if a string of length L is clamped at both ends (as in a

sonometer wire) then it can only vibrate with certain well�

defined wavelengths. When  = 2L (i.e., n = 1) the string is

said to vibrate in its fundamental mode [Fig. 13.5(a)].

Similarly, when  = 2L/2 and 2L/3 the string is said to vibrate

0

2

4

6

8

10 20 30 40 50 60 70 80

In
te

n
s
it
y

Distance from reflecting plane, cm

Fig. 13.4 A typical variation of the intensity between
the reflector and the transmitter [adapted from
Ref. 13.2].

changed, one can observe the change in the distance be-

tween the antinodes. One should notice that the minima do

not really correspond to zero intensity and the intensities at

the maxima are not constant. This is because of the fact that

the incident wave is really not a plane wave* and that the

reflection is not really perfect. In fact, one can introduce a

coefficient of reflection (r) which is defined as the ratio of

the energy of the reflected beam to the energy of the inci-

dent beam. Thus, the ratio of the amplitudes would be r

and if the incident wave is given by

Eincident = a sin 2
x

vt
%
'

(
0

1
32

4
65

(13.11)

then the reflected wave would be given by

Ereflected = a r
x

vtsin 2
%
'

(
0

1
32

4
65

(13.12)

where the plane x = 0 corresponds to the plane of the reflec-

tor. Here E represents the electric field associated with the

electromagnetic wave. Thus, the resultant field would be

given by

Eresultant = Eincident + Ereflected

= a
x

vt a r
x

vtsin sin2 2%
'

(
0

1
32

4
65

%
'

(
0

1
32

4
65

* A plane wave is obtained by a point source at a very large distance from the point of observation (see Chapter 11).
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in its first and second harmonic. In general, if the string is

plucked and then made to vibrate then the displacement

would be given by

y(x, t) a2

1

2
sinn

nn

a x 2cos (2 v
n
t2+2

n
) (13.19)

along a plane normal to the surface. The cut section was

viewed under a microscope and bright and dark bands (sepa-

rated by regular intervals)) were observed. By measuring the

distance between two consecutive dark bands (which is

equal to /2) one can calculate the wavelength.

Emulsion

Glass

Mercury

Incident
Light Beam

l

Fig. 13.6 The experimental arrangement of Ives for
studying stationary light waves.

Because of the small wavelength of light, the distance be-

tween two consecutive dark (or bright) bands was extremely

small and was, therefore, difficult to measure. Wiener over-

came this difficulty by placing the photographic film at a

small angle and thereby increasing considerably the distance

between the dark (or bright) bands (Fig. 13.7).

a

Filmª

l
a2

Mirror

Fig. 13.7 The experimental arrangement of Wiener for
studying stationary light waves.

Example 13.1 In a typical experimental arrangement of

Wiener, the angle between the film and the mirror was about

10�3 radians. For  = 5  10�5 cm what would be the distance

between two consecutive dark bands?

Solution: The required distance is

λ

α2
= 

5 10

2 10

5

3

×

×

−

−
cm  = 0.25 mm

On the other hand, in the set up of Ives the distance would be

2.5  10�4 mm.

l = 2L

l = L

l = 2  /3L

L

(a)

(b)

(c)

Fig. 13.5 Standing waves on a stretched string clamped at
both ends.

where the constants a
n
 and 

n
 are determined by the values

of y(x, t = 0) and 
y

t
t 0

; these are known as the initial con-

ditions. A more detailed discussion on the vibration of

stretched strings has been given in Sec. 8.2.

When a string is vibrating in a particular mode there is no

net transfer of energy although each element of the string is

associated with a certain energy density [see Eq. (13.10)]. The

energy density is maximum at the antinodes and minimum at

nodes. The distances between two successive antinodes and

successive nodes are /2.

13.4 STATIONARY LIGHT

WAVES: IVES AND

WIENER�S EXPERIMENTS

It is difficult to carry out experiments in which one obtains

stationary light waves. This is because of the fact that light

wavelengths are extremely small ( 5  10�5 cm). In the experi-

mental arrangement of Ives, the emulsion side of a

photographic plate was placed in contact with a film of

mercury as shown in Fig. 13.6. A parallel beam of monochro-

matic light was allowed to fall normally on the glass plate.

The beam was reflected on the mercury surface and the inci-

dent wave interfered with the reflected wave forming

standing waves. A section of the photographic film was cut

LO 3
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13.5 SUPERPOSITION OF TWO

SINUSOIDAL WAVES

Let us consider the superposition of two sinusoidal waves

(having the same frequency) at a particular point. Let

and
x t a t

x t a t

1 1 1

2 2 2

( ) cos ( )

( ) cos ( )

=

=

@
A
B

(13.20)

represent the displacements produced by each of the

disturbances: we are assuming that the displacements are in

the same direction*, however, they may have different

amplitudes and different initial phases. In Sec. 17.5 now,

according to the superposition principle the resultant

displacement x(t) would be given by

x(t) = x1(t) + x2(t)

= a1 cos ( t + 1) + a2 cos ( t + 2) (13.21)

which can be written in the form

x(t) = a cos ( t + ) (13.22)

where

a cos = a1 cos 1 + a2 cos 2 (13.23)

and

a sin = a1 sin 1 + a2 sin 2 (13.24)

Thus, the resultant disturbance is also simple harmonic in

character having the same frequency but different amplitude

and different initial phase. If we square and add Eqs. (13.23)

and (13.24), we would obtain

a = [ cos ( )] /
a a a a1
2

2
2

1 2 1 2
1 22 (13.25)

Further

tan = 
a a

a a

1 1 2 2

1 1 2 2

sin sin

cos cos
(13.26)

Though angle  is not uniquely determined from Eq. (13.26);

however, if we assume a to be always positive, then cos  and

sin  can be determined from Eqs. (13.23) and (13.24) which

will uniquely determine . From Eq. (13.25) we find that if

1  2 = 0, 2 , 4 , (13.27)

then a = a1 + a2 (13.28)

Thus, if the two displacements are in phase, then the result-

ant amplitude will be the sum of the two amplitudes; this is

known as constructive interference. Similarly, if

1  2 = , 3 , 5 , (13.29)

then

a = a1  a2 (13.30)

and the resultant amplitude is the difference of the two

amplitudes. This is known as destructive interference. If we

refer to Fig. 13.2, then we can see that constructive

interference occurs at x = 
4

3

4

5

4
, , ,...  (i.e., at the points

P , Q , R , ) and destructive interference occurs at x = 0, /2,

, 3 /2,... (i.e., at points A, P, Q, R, ). It may be mentioned

that when constructive and destructive interferences occur,

there is no violation of the principle of conservation of

energy; the energy is just redistributed.

In general, if we have n displacements

x a t
x a t

x a tn n n

1 1 1

2 2 2

=
=

=

cos ( )
cos ( )

cos ( )

@

A
uu

B
u
u

(13.31)

then

x = x1 + x2 +  + x
n
 = a cos ( t + ) (13.32)

where

a cos = a1 cos 1 +  + a
n
 cos

n
(13.33)

and

a sin = a1 sin 1 +  + a
n
 sin

n
(13.34)

13.6 THE GRAPHICAL METHOD

FOR STUDYING

SUPERPOSITION OF

SINUSOIDAL WAVES

In this section, we will discuss the graphical method for

adding displacements of the same frequency. This method is

particularly useful when we have a large number of

superposing waves as it indeed happens when we consider

the phenomenon of diffraction.

* In Sec. 17.5, we will consider the superposition of waves having nearly equal frequencies which leads to the phenomenon of beats.

Indeed in Sec. 13.2, while discussing stationary waves on a string, we had, at a particular value of x, two sinusoidal waves of the same

frequency (but having different initial phases) superposing on each other. However, in general, one could have superposition of dis-

placements which are in different directions; for example, the superposition of two linearly polarized waves to produce a circularly

polarized wave (see Sec. 22.4).
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Let us first try to obtain the resultant of the two displace-

ments given by Eq. (13.20) using the graphical method. We

draw a circle of radius a1 and let the point P on the circle

be such that OP makes an angle 1 with the x-axis* (see

Fig. 13.8). We next draw a circle of radius a2 and let the point

Q on the circle be such that OQ makes an angle 2 with the

x-axis. We use the law of parallelograms to find the resultant

OR  of the vectors  OP  and OQ . The length of the vector

OR  will represent the amplitude of the resultant displace-

ment and if  is the angle that OR makes with the x-axis, then

the initial phase of the resultant will be . This can be easily

seen by noting that

OR cos = OP cos 1 + PR cos 2

= a1 cos 1 + a2 cos 2 (13.35)

Similarly,

OR sin = a1 sin 1 + a2 sin 2 (13.36)

R

y

Q

a

x

P

O

a1

a2

qq1

q2

q2

Fig. 13.8 The graphical method for determining the result-
ant of two simple harmonic motions along the
same direction and having the same frequency.

consistent with Eqs. (13.23) and (13.24). Further, as the

vectorsOP and OQ  rotate on the circumference of the circles

of radii a1 and a2, the vector OR  rotates on the circumfer-

ence of the circle of radius OR with the same frequency.

Thus, if we wish to find the resultant of the two displace-

ments given by Eq. (13.20) then we must first draw a vector

(OP ) of length a1 making an angle 1 with the axis; from the

tip of this vector we must draw another vector ( PR ) of

length a2 making an angle 2 with the axis. The length of the

vector OR  will represent the resultant amplitude and the

angle that it makes with the axis will represent the initial

phase of the resultant displacement. It can be easily seen

that if we have a third displacement

x3 = a3 cos ( t + 3) (13.37)

then from the point R we must draw a vector RR  of length

a3 which makes an angle 3 with the axis; the vector OR

will represent the resultant of x1, x2 and x3.

As an illustration of the above procedure we consider the

resultant of N simple harmonic motions all having the same

amplitude and with their phases increasing in arithmetic pro-

gression. Thus,

x1 = a cos t

x2 = a cos [ t + 0] (13.38)

      

x
N

= a cos [ t + (N � 1) 0]

In Fig. 13.9, the vectors OP1 , P P1 2 , P P2 3 ,  correspond to

x1, x2, x3,  respectively. The resultant is denoted by the

* Clearly, if we assume the vector OP  to rotate (in the anticlockwise direction) with angular velocity  then the x-coordinate of the

vector OP  will be a
1
 cos ( t + 

1
) where t = 0 corresponds to the instant when the rotating vector is at the point P.

Fig. 13.9 The graphical method for determining the result-
ant of N simple harmonic motions along the
same direction and having the same frequency.
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vector OPN . Let Q1L and Q2L be the perpendicular bisectors

of OP1 and P1P2. It is easy to prove that

LQ1P1  LQ2P1

Thus LO = LP1 = LP2. Therefore, the points O, P1, P2, P3,

P
N
 will lie on the circumference of a circle whose center is L

and radius is LO. Further, LP1O = 0

2
 and, therefore,

OLP1 = 0. Thus,

LO = 
a /

sin /

2

20

and OP
N

= 2OC = 2LO sin 
N 0

2

= a
sin

sin

N 0

0

2

2

(13.39)

Further, the phase of the resultant displacement would be

P
N
OX = 

1

2
(N � 1) 0

Thus,

a cos t + a cos ( t + 0) +  + a cos [ t + (N � 1) 0]

= A cos ( t + ) (13.40)

where

A = 
a

N
sin

sin

0

0

2

2

(13.41)

and

= 
1

2
(N � 1) 0 (13.42)

We will use this result in Chapter 18.

13.7 THE COMPLEX

REPRESENTATION

Often it is more convenient to use the complex representa-

tion in which the displacement

x1 = a1 cos ( t + 1) (13.43)

is written as

x1 = a1e
i( t+ 1)

(13.44)

where it is implied that the actual displacement is the real part

of x1. Further, if

x2 = a2e
i( t + 2)

then

x1 + x2 = (a1e
i 1 + a2e

i 2)ei t = aei( t + ) (13.45)

where

aei
= a1e

i 1 + a2e
i 2 (13.46)

If we equate the real and imaginary parts of Eq. (13.46), we

would obtain Eqs. (13.23) and (13.24).

An interesting illustration of the usefulness of this method

is to consider the resultant of the N displacements described

by Eq. (13.38). Thus, we write

x1 = aei t, x2 = aei( t + 0),

Hence,

x = x1 + x2 + 

= ae e e e
i t i i i N[ ]( )1 0 0 02 1

= ae
e

e

i t
Ni

i

1

1

0

0

=  ae
e

e

e e

e e

i t
iN

i

iN iN

i i

0

0

0 0

0 0

2

2

2 2

2 2

/

/

/ /

/ /

= 
a

N

i t N
sin

sin

exp ( )

0

0

02

2

1
2

7
8
9

@
A
B

1

3
2

4

6
5 (13.47)

which is consistent with Eq. (13.40). The complex representa-

tion is also very useful in considering the spreading of a wave

packet (see Sec. 10.3).

It may be noted that whereas

Re (x1) + Re (x2) = Re (x1 + x2)

but (Re x1)(Re x2)  Re (x1x2)

where Re ( ) denotes the �real part of� the quantity inside

the brackets. Thus, one must be careful in calculating the

intensity of a wave which is proportional to the square of the

amplitude. While using the complex representation, one must

calculate the amplitude first and then the intensity.

Summary

u According to the principle of superposition of waves, the

resultant displacement (at a particular point) produced by a

number of waves is the vector sum of the displacements

produced by each one of the disturbances.

u The stationary waves on a string and the formation of

standing electromagnetic waves are formed by the

superposition of waves traveling in opposite direction.

u If the two displacements (produced by two sinusoidal

waves) are in phase, then the resultant amplitude will be the

LO 4
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sum of the two amplitudes; this is known as constructive

interference. On the other hand, if the two displacements are

 out of phase, then the resultant amplitude will be the

difference of the two amplitudes; this is known as destructive

interference.

u The resultant disturbance of two sinusoidal waves is also

simple hormonic in character having same frequency but

different amplitude and different initial phase.

u The complex representation is very useful is spreading of a

wave packet.

Problems

13.1 Standing waves are formed on a stretched string under ten-

sion of 1 Newton. The length of the string is 30 cm and it

vibrates in 3 loops. If the mass per unit length of the wire

is 10 mg/cm, calculate the frequency of the vibrations.

13.2 In Problem 13.1, if the string is made to vibrate in its fun-

damental mode, what will be the frequency of vibration?

13.3 In the experimental arrangement of Wiener, what should be

the angle between the film and the mirror if the distance

between two consecutive dark bands is 7  10�3 cm.

Assume  = 6  10�5 cm.

[Ans:  1/4 ]

13.4 Standing waves with five loops are produced on a stretched

string under tension. The length of the string is 50 cm and

the frequency of vibrations is 250 s�1. Calculate the time

variation of the displacement of the points which are at

distances of 2 cm, 5 cm, 15 cm, 18 cm, 20 cm, 35 cm and

45 cm from one end of the string.

13.5 The displacements associated with two waves (propagat-

ing in the same direction) having same amplitude but

slightly different frequencies can be written in the form

a vt
x

cos 2π
λ

−
%
'

(
0

and a v v t
x

cos ( )
( )

2π
λ λ

+ −
−

%
'&

(
0)

Δ
Δ

(Such displacements are indeed obtained when we have two

tuning forks with slightly different frequencies.) Discuss

the superposition of the displacements and show that at a

particular value of x, the intensity will vary with time.

13.6 In Problem 13.5 assume v = 330 m/s, v = 256 s�1,

v = 2 s� 1 and a = 0.1 cm. Plot the time variation of the

intensity at x = 0, 
λ

4
 and 

λ

2
.

13.7 Use the complex representation to study the time variation

of the resultant displacement at x = 0 in Problems 13.5

and 13.6.

13.8 Discuss the superposition of two plane waves (of the same

frequency and propagating in the same direction) as a

function of the phase difference between them. (Such a

situation indeed arises when a plane wave gets reflected at

the upper and lower surfaces of a glass slab; see Sec. 15.2.)

13.9 In Example 11.1, we had discussed the propagation of a

semicircular pulse on a string. Consider two semi-circular

pulses propagating in opposite directions. At t = 0, the dis-

placement associated with the pulses propagating in the +x

and in the �x directions are given by

[R2 � x2]1/2 and �[R2 � (x � 10R)2]1/2

respectively. Plot the resultant disturbance at t = R/v,

2.5R/v, 5R/v, 7.5R/v and 10R/v; where v denotes the speed

of propagation of the wave.



14.1 INTRODUCTION

In the previous chapter, we had considered the superposi-

tion of one-dimensional waves propagating on a string and

had shown that there is a variation of energy density along

the length of the string due to the interference of two waves

(see Fig. 13.5). In general, whenever two waves superpose,

one obtains an intensity distribution which is known as the

interference pattern. In this chapter, we will consider the in-

The wave nature of light was demonstrated convincingly for the first time in 1801 by Thomas

Young by a wonderfully simple experiment�He let a ray of sunlight into a dark room, placed a

dark screen in front of it, pierced with two small pinholes, and beyond this, at some distance a

white screen. He then saw two darkish lines at both sides of a bright line, which gave him suffi-

cient encouragement to repeat the experiment, this time with spirit flame as light source, with a

little salt in it, to produce the bright yellow sodium light. This time he saw a number of dark

lines, regularly spaced; the first clear proof that light added to light can produce darkness. This

phenomenon is called interference. Thomas Young had expected it because he believed in the

wave theory of light.

�Dennis Gabor in his Nobel Lecture, December 11, 1971

Thomas Young had amazing broad interests and talents � From his discoveries in medicine and

science, Helmholtz concluded: �His was one of the most profound minds that the world has ever

seen.�

�From the Internet

��y2fiew2sx�i�pi�ixgi

f�2hs�s�syx2yp2�e�ip�yx�

Chapter
Fourteen

terference pattern produced by waves emanating from two

point sources. It may be mentioned that with sound waves the

interference pattern can be observed without much difficulty

because the two interfering waves maintain a constant phase

relationship; this is also the case for microwaves. However,

for light waves, due to the very process of emission, one

cannot observe interference between the waves from two in-

dependent sources,* although the interference does take

place (see Sec. 14.4). Thus, one tries to derive interfering

LO 1: explain the interference pattern produced on water surface.

LO 2: understand the coherence phenomenon.

LO 3: discuss interference patterns produced by light waves.

LO 4: understand Young�s interference pattern and obtain expression for fringe width.

LO 5: discuss intensity distribution in the interference pattern.

LO 6: illustrate Fresnel�s two-mirror arrangement and iprism to produce interference pattern.

LO 7: describe interference pattern when the slit is illuminated by white light.

LO 8: discuss displacement of fringes in the interference pattern when a thin sheet is introduced in one of the beams.

LO 9: illustrate Lloyd�s mirror arrangement for producing interference patterns.

LO 10: understand the phase change that occurs when a light beam undergoes reflection.

* It is difficult to observe the interference pattern even with two laser beams unless they are phase locked.

b
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waves from a single wave so that the phase relationship is

maintained. The methods to achieve this can be classified

under two broad categories. Under the first category, in a

typical arrangement, a beam is allowed to fall on two closely

spaced holes and the two beams emanating from the holes

interfere. This method is known as division of wavefront and

will be discussed in detail in this chapter. In the other method,

known as division of amplitude, a beam is divided at two or

more reflecting surfaces and the reflected beams interfere.

This will be discussed in the next chapter. We must, however,

emphasize that the present and the following chapters are

based on one underlying principle, namely the superposition

principle.

It is also possible to observe interference using multiple

beams; this is known as multiple beam interferometry and

will be discussed in Chapter 16. It will be shown that multiple

beam interferometry offers some unique advantages over two

beam interferometry.

14.2 INTERFERENCE PATTERN

PRODUCED ON THE

SURFACE OF WATER

We consider surface waves emanating from two point

sources in a water tank. We may have, for example, two sharp

needles vibrating up and down at the points S
1
 and S

2
 (see

Fig. 14.1). Although water waves are not strictly transverse,

we will, for the sake of simplicity, assume water waves to

produce displacements which are transverse to the direction

of propagation.

If there was only one needle (say at S
1
) vibrating with a

certain frequency v then circular ripples would have spread

out from the point S
1
. The wavelength would have been

v/v and the crests and troughs would have moved outwards

(see Fig. 16 in the prelim pages). Similarly for the vibrating

needle at S
2
. However, if both needles are vibrating, then

waves emanating from S
1
 will interfere with the waves ema-

nating from S
2
. We assume that the needle at S

2
 vibrates in

phase with the needle at S
1
, i.e., S

1
 and S

2
 go up simulta-

neously, they also reach the lowest position at the same time.

Thus, if at a certain instant, the disturbance emanating from

the source S
1
 produced a crest at a distance  from S

1
 then

the disturbance from S
2
 would also produce a crest at a dis-

tance  from S
2
, etc. This is explicitly shown in Fig. 14.1,

where the solid curves represent (at a particular instant) the

positions of the crests due to disturbances emanating from

S
1
 and S

2
. Similarly, the dashed curves represent (at the same

instant) the positions of the troughs. Notice that at all points

on the perpendicular bisector OZ the disturbances reaching

from S
1
 and from S

2
 will always be in phase. Consequently, at

an arbitrary point A (on the perpendicular bisector) we may

write the resultant disturbance as

y = y
1
 + y

2

= 2a cos t (14.1)

where y
1
 (= a cos t) and y

2
 (= a cos t) represent the dis-

placements at the point A due to S
1
 and S

2
, respectively. We

see that the amplitude at A is twice the amplitude produced

by each one of the source. It should be noted that at t =

T

4
= =

1

4 2v
%
'

(
0  the displacements produced at the point A

by each of the source would be zero and the resultant will also

be zero. This is also obvious from Eq. (14.1).

Next, let us consider a point B such that

S
2
B � S

1
B = /2 (14.2)

At such a point the disturbance reaching from the source S
1

will always be out of phase with the disturbance reaching

from S
2
. This follows from the fact that the disturbance

reaching the point B from the source S
2
 must have started

half a period (= T/2) earlier than the disturbance reaching B

Fig. 14.1 Waves emanating from two pointsources S
1
 and

S
2
 vibrating in phase. The solid and the dashed

curves represent the positions of the crests and
troughs, respectively.

LO 1
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from S
1
. Consequently, if the displacement at B due to S

1
 is

given by

y
1

= a cos t

then the displacement at B due to S
2
 would be given by

y
2

= a cos ( t � ) = �a cos t

and the resultant y = y
1
 + y

2
 is zero at all times. Such a point

corresponds to destructive interference and is known as a

node and corresponds to minimum intensity. It may be

pointed out that the amplitudes of the two vibrations reach-

ing the point B will not really be equal as it is at different

distances from S
1
 and S

2
. However, if the distances involved

are large (in comparison to the wavelength), the two ampli-

tudes will be very nearly equal and the resultant intensity

will be very nearly zero.

In a similar manner, we may consider a point C such that

S
2
C � S

1
C = 

where the phase of the vibrations (reaching from S
1
 and S

2
)

are exactly the same as at the point A. Consequently, we will

again have constructive interference. In general, if a point P

is such that

S
2
P ~ S

1
P = n  (maxima) (14.3)

n = 0, 1, 2,�, then the disturbances reaching the point P from

the two sources will be in phase, the interference will be con-

structive and the intensity will be maximum. On the other

hand, if the point P is such that

S
2
P ~S

1
P = n

%
'

(
0

1

2
 (minima) (14.4)

then the disturbances reaching the point P from the two

sources will be out of phase, the interference will be destruc-

tive and the intensity will be minimum. The actual

interference pattern produced from two point sources vibrat-

ing in phase in a ripple tank is shown in Fig. 14.2.

Example 14.1 The intensity at the point which neither sat-

isfies Eq. (14.3) nor Eq. (14.4) will neither be a maximum nor zero.
Consider a point P such that S

2
P � S

1
P = /3. Find the ratio of the

intensity at the point P to that at a maximum.

Solution: If the disturbance reaching the point P from S
1
 is given

by
y

1 = a cos t

then the disturbance from S
2
 would be given by

y
2

= a cos ω
π

t −%
'

(
0

2

3

because a path difference of /3 corresponds to a phase difference

of 2
3
π . Thus the resultant displacement would be

y = y1 + y2

Fig. 14.2 The actual interference pattern produced from two point sources vibrating in phase in a ripple tank
(After Ref. 14.9, used with permission).
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= a cos cosω ω
π

t t+ −
2

3

= 2a cos ω
π

t −%
'

(
03
cos

π
3

= a cos ω
π

t −%
'

(
03

The intensity is therefore 1/4th of the intensity at the maxima. In a

similar manner, one can calculate the intensity at any other point.

Example 14.2 The locus of points which correspond to

minima are known as nodal lines. Show that the equation of a nodal
line is a hyperbola. Also obtain the locus of points which correspond

to maxima.

Solution: For the sake of generality, we find the locus of the

point P which satisfies the following equation:

S2P � S1P = (14.5)

Thus, if  = n , we have a maximum and if = n + 1
2Q V λ

we have a minimum. We choose the midpoint of S1S2 as the origin,
with the x-axis along S1S2 and the z-axis perpendicular to it
(see Figs. 14.1 and 14.3). We will find the locus of the point P on
the x-z plane. If the distance between S

1
 and S

2
 is d, then the

coordinates of the points S1 and S2 are 
2
, 0d and

2
, 0d ,

respectively. Let the coordinates of the point P [see Fig. 14.3] be

(x, z). Then,

S
1P = 

1/2
2

2

2

d
x z

and

S
2
P = 

1/2
2

2

2

d
x z

Therefore,

S2P � S1P = 

1/2
2

2

2

d
x z  �

1/2
2

2

2

d
x z  = 

or

2

2

d
x + z2 = 

2

2

d
x  + z2

+ 2 + 2  

1/2
2

2

2

d
x z

or

2xd � 2 = 2

1/2
2

2

2

d
x z

On squaring, and simplifying we obtain

2 2

2 2 21 1
( )

4 4

x z

d

 = 1 (14.6)

which is the equation of a hyperbola. When  = n + 1
2Q V λ the

curve correspond to minima and when  = n  the curve correspond
to maxima. For large value of x and z the curve asymptotically tend to

the straight lines

z = ±
−d

x
2 2

2

1 2
Δ

Δ

/

(14.7)

It may be pointed out that S
2P ~ S1P equals d only on the x-axis

and that there is no point P for which S2P ~ S1P > d. Now, it ap-

pears from Eq. (14.6) that when  > d, the resulting equation is an
ellipse which we know is impossible. The fallacy is a result of the
fact that because of a few squaring operations, Eq. (14.6) also rep-
resents the locus of all those points for which S2P + S1P =  and

obviously in this case  can exceed d.

Example 14.3 Consider a line parallel to the x-axis at a

distance D from the origin (see Fig. 14.3). Show that for path differ-
ences small compared to d, the points on the line where minimum

intensity occurs are equally spaced.

Solution: The equation of the line would be

z = D (14.8)

Further at large distances from the origin the equation of the nodal

lines would beFig. 14.3 The nodal curves.
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z = ±
−%

'&
(

0)
d

xn

n

2 2

2

1 2
Δ

Δ

/

(14.9)

where 
n
 = n + 1

2Q V λ ; n = 0, 1, 2,�Clearly the points at which

minima will occur (on the line z = D) would be given by

x
n

= 

1/ 2
2

2 2

n

n

D
d

= ± −
%

'&
(

0)

−
Δ Δn n

d d
D1

2

2

1 2/

± +%
'

(
0n

D

d

1

2

λ
(14.10)

where we have assumed 
n
 << d. Thus, the points corresponding to

minima will be (approximately) equally spaced with a spacing of

D/d.

Example 14.4 Till now we have assumed the needles at S1

and S2 (see Fig. 14.1) to vibrate in phase. Assume now that the
needles vibrate with a phase difference of  and obtain the nodal
lines. Generalize the result for an arbitrary phase difference between

the vibrations of the two needles.

Solution: The two needles S1 and S2 vibrate out of phase. Thus

if, at any instant, the needle at S
1 produces a crest at a distance R

from it then the needle at S2 would produce a trough at a distance
R from S2. Therefore, at all points on the perpendicular bisector
OZ (see Fig. 14.4) the two vibrations will always be out of phase
and we will have minimum. On the other hand, at the point B

which satisfies the equation

S
2
B � S

1
B = /2

the two vibrations will be in phase and we will have maximum.
Thus, because of the initial phase difference of , the conditions for

maxima and minima are reversed, i.e., when

S
2P ~ S1P = n +%

'
(
0

1

2
λ (maxima)

the interference will be constructive and we will have maxima, and
when

S
2
P ~ S

1
P = n  (minima)

the interference will be destructive and we will have minima. Notice
that one again obtains a stationary interference pattern with nodal
lines as hyperbolae.

The above analysis can easily be generalized for arbitrary phase
difference between the two needles. Assume, for example, that there
is a phase difference of /3, i.e., if there is a crest at a distance R
from S

1
 then there is a crest at a distance R � /6 from S

2
. Conse-

quently, the condition

S1P � S2P = n  + 
λ
6

; n = 0,  1,  2,�

will correspond to maxima.

14.3 COHERENCE

From the above examples, we find that whenever the two

needles vibrate with a constant phase difference, a stationary

interference pattern is produced. The positions of the maxima

and minima will, however, depend on the phase difference in

the vibration of the two needles. Two sources which vibrate

with a fixed phase difference between them are said to be

coherent.

We next assume that the two needles are sometimes

vibrating in phase, sometimes vibrating out of phase,

sometimes vibrating with a phase difference of /3, etc., then

the interference pattern will keep on changing. If the phase

difference changes with such great rapidity that a stationary

interference cannot be observed then the sources are said to

be incoherent.

Let the displacement produced by the sources at S
1
 and

S
2
 be given by

y a t

y a t

1

2

=

=

cos

cos ( )

@
A
B

(14.11)

then the resultant displacement would be

y = y
1
 + y

2
= 2a cos /2 cos ( t + /2) (14.12)

Fig. 14.4 Waves emanating from two point sources S
1
 and

S
2

vibrating out of phase.
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The intensity (I) which is proportional to the square of the

amplitude can be written in the form

I = 4I
0
 cos2 /2 (14.13)

where I
0
 is the intensity produced by each one of the source

individually. Clearly if  = , 3 ,�, the resultant intensity

will be zero and we will have minima. On the other hand,

when  = 0, 2 , 4 ,�, the intensity will be maximum (=

4I
0
). However, if the phase difference between the sources S

1

and S
2
 (i.e., ) is changing with time, the observed intensity

will be given by

I = 4I
0
 cos

2

2
(14.14)

where  denotes the time average of the quantity inside

the angular brackets; the time average of a time dependent

function is defined by the following relation:

f t( ) = 
1

2

2

f t d t( )

/

/

s (14.15)

where  represents the time over which the averaging is

carried out. For example, if the interference pattern is viewed

by a normal eye, this averaging will be over about 1/10th of

a second; for a camera with exposure time 0.001 sec,  =

0.001 sec. etc. Clearly, if  varies in a random manner in times

which are small compared to , then cos2 /2 will randomly

vary between 0 and 1 and < cos2 /2 > would be 1/2 [see also

Sec. 14.6]. For such a case,

I = 2I
0

(14.16)

which implies that if the sources are incoherent then the re-

sultant intensity is the sum of the two intensities and there is

no variation of intensity! Thus, if one (or both) of the two

vibrating sources are turned on and off in a random manner

(such that the phase difference between the vibrations of the

two sources varies rapidly) then the interference phenom-

enon will not be observed. We will discuss this point again

in Sec. 14.6 and also in Chapter 17.

14.4 INTERFERENCE OF LIGHT

WAVES

Till now we have considered interference of waves produced

on the surface of water. We will now discuss the interference

pattern produced by light waves; however, for light waves it

is difficult to observe a stationary interference pattern. For

example, if we use two conventional light sources (like two

sodium lamps) illuminating two pinholes (see Fig. 14.5), we

will not observe any interference pattern on the screen. This

can be understood from the following reasoning: In a con-

ventional light source, light comes from a large number of

independent atoms; each atom emitting light for about 10�10

sec, i.e., light emitted by an atom is essentially a pulse last-

ing for only 10�10
 seconds* Even if the atoms were emitting

under similar conditions, waves from different atoms would

differ in their initial phases.

* Since the optical frequencies are of the order of 1015 s�1, such a short pulse consists of about a million oscillations; thus it is almost
monochromatic (see Chapter 17).

** This interference pattern will be a set of dark and bright bands only if the light waves have the same state of polarization. This can,
however, be easily done by putting two polaroids in front of S

1
 and S

2
. We should mention here that by using two independent laser

beams it has been possible to record the interference pattern (see Chapter 17).
*** Such sources are termed as incoherent sources.

S1

S2

Screen

Fig. 14.5 If two sodium lamps illuminate two pinholes S1

and S2, no interference pattern will be observed on
the screen.

Consequently, light coming out from the holes S
1
 and

S
2
 will have a fixed phase relationship for a period of

about 10�10 seconds, hence the interference pattern will keep

on changing every billionth of a second. The eye can notice

intensity changes which last at least for a tenth of a second

and hence we will observe a uniform intensity over the screen.

However, if we have a camera whose time of shutter opening

can be made less than 10�10
 seconds then the film will record

an interference pattern**. We summarise the above results by

noting that light beams from two independent sources do not

have any fixed phase relationship***, as such they do not

produce any stationary interference pattern.

Thomas Young in 1801 devised an ingenious but simple

method to lock the phase relationship between the two

sources. The trick lies in the division of a single wavefront

into two; these two split wavefronts act as if they emanated

from two sources having a fixed phase relationship and,

LO 3
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therefore, when these two waves were allowed to interfere, a

stationary interference pattern was obtained. In the actual

experiment, a light source illuminates the pinhole S (see

Fig. 14.6). Light diverging from this pinhole fell on a barrier

which contained two pinholes S
1
 and S

2
 which were very

close to one another and were located equidistant from S.

Spherical waves emanating from S
1
 and S

2
 (see Fig. 14.7)

were coherent and on the screen beautiful interference fringes

were obtained. In order to show that this was indeed an inter-

ference effect, Young showed that the fringes on the screen

disappear when S
1
 (or S

2
) is covered up. Young explained the

interference pattern by considering the principle of superposi-

tion, and by measuring the distance between the fringes he

calculated the wavelength. Figure 14.7 shows the section of

the wavefront on the plane containing S, S
1
 and S

2 
(which is

the x � z plane).

Fig. 14.6 Young�s arrangement to produce interference pat-
tern.

Light

Light

Light

Light

Light maximum

Dark

Dark
Central

Dark

Dark

ScreenBarrier

S1

S2

Source

Fig. 14.7 Sections of the spherical wavefronts emanating
from S, S

1
 and S

2
 (Adapted from Ref. 14.7; used

with permission).

14.5 THE INTERFERENCE

PATTERN

In this section, we will first obtain an expression for the

fringe width and then we will show that the fringes are

strictly hyperbolic.

Let S
1
 and S

2
 represent the two pinholes of the Young�s

double hole arrangement. We would determine the positions

of maxima and minima on the line LL  which is parallel to the

x axis and lies in the plane containing S, S
1
 and S

2
 (see Fig.

14.8). We will show that the interference pattern (around the

point O) consists approximately of a series of dark and bright

lines perpendicular to the plane of Fig. 14.8; O being the foot

of the perpendicular from the point S on the screen.

Fig. 14.8 Arrangement for producing Young�s interference
pattern.

For an arbitrary point P (on the line LL ) to correspond to

a maximum we must have

S
2
P � S

1
P = n ; n = 0, 1, 2, 3,� (14.17)

Now,

(S
2
P)2 � (S

1
P)2 = 

2
2

2n

d
D x  � (14.18)

2
2

2n

d
D x

= 2x
n
d

where S
1
S

2
 = d and OP = x

n 
. Thus,

S
2
P � S

1
P = 

2 1

2 nx d

S P S P
 nx d

D
(14.19)

where in the last step we have replaced S
2
P + S

1
P by 2D

which will be valid when D >>> d, x
n
. For example, for d =

0.02 cm, D = 50 cm, and OP = 0.5 cm (which corresponds to

typical values in a light interference experiment) we will have

S
2
P + S

1
P = 2 2

(50) + (0.51)  + 2 2
(50) + (0.49)

= 100.005 cm
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Thus, if we replace S
2
P + S

1
P by 2D, the error involved is

about 0.005%. Using Eqs. (14.17) and (14.19) we obtain

x
n
 = 

n D

d
(14.20)

Thus, the bright (and dark) fringes are equally spaced and

the distance between two consecutive bright (or dark) fringes

is given by

= x
n+1

 � x
n
 = 

D

d
(14.21)

which is the expression for the fringe width.

We will next determine the shape of the interference pat-

tern on the screen LL  and show that the fringes are a set of

hyperbolae. We assume the origin to be at the point O and

the z-axis to be perpendicular to the plane of the screen LL

as shown in Fig. 14.8. The screen LL  corresponds to the

plane z = 0; thus the coordinates of an arbitrary point P on

the screen will be (x, y, 0). The coordinates of the point S
1

and S
2
 would be , 0,

2

d
D  and , 0,

2

d
D , respec-

tively. Thus,

S
2
P � S

1
P = 

1/2
2

2 2

2

d
x y D  �

1/2
2

2 2

2

d
x y D

=  (say)

or

2

2

d
x  + y2 + D2 = 

2
1/2

2
2 2

2

d
x y D

Simple manipulations will give us

(d 2 � 2) x2 � 2y2 = 2 2 2 21
( )

4
D d

For = 0 (zero path difference) we must have x = 0 which

implies that the central (bright) fringe is along the y-axis; this

is rigorously true. In general, the above equation can always

be written in the form

2

2

x

a
 � 

2

2

y

b
 = 1 (14.22)

where

a 2 = 
2

2 2 2

2 2

1
( )

4( )
D d

d

and b2 = D2 + 
1

4
 (d2 � 2) (14.23)

Equation (14.22) represents a hyperbola. On rearranging, we

get

x = 

1/2
1/ 22

2 2 2 2

2 2

1
( )

4
y D d

d
(14.24)

Obviously for y
2 

<< D
2
, we may neglect y

2
inside the square

brackets and the loci are straight lines parallel to the y-axis.

Thus, we obtain straight line fringes on the screen. We must

remember that we had assumed point sources and we ob-

tained straight line fringes. It is easy to see that if we had

slits instead of point sources, each pair of points would have

produced the same straight line fringes which would have

overlapped with each other�thus we would again obtain

straight line fringes. The fringes so produced are said to be

non-localized; they can be photographed by just placing a

film on the screen; they can also be seen through an eye-

piece.

14.6 THE INTENSITY

DISTRIBUTION

Let E
1
 and E

2
 be the electric fields produced at the point P by

S
1
 and S

2
 respectively (see Fig. 14.8). The electric fields E

1

and E
2
 will, in general, have different directions and different

magnitudes. However, if the distances S
1
P and S

2
P are very

large in comparison to the distance S
1
S

2
, the two fields will

almost be in the same direction. Thus, we may write

and

E i

E i

1

2

=

=

cos

cos

E S P t

E S P t

01 1

02 2

2

2

%
'

(
0

%
'

(
0

@

A
uu

B
u
u

(14.25)

where i  represents the unit vector along the direction of

either of the electric fields. The resultant field will be given

by

E = E
1
 + E

2

= cosi E S P t01 1

2%
'

(
0

1
32

%
'

(
0
4
65

E S P t02 2

2
cos (14.26)

The intensity (I) will be proportional to the square of the

electric field and will be given by

I = K E2 (14.27)

or

I = K E S P t01
2 2

1

2
cos

%
'

(
0

1
32

 +
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E S P t02
2 2

2

2
cos %

'
(
0  +

E E S P S P01 02 2 1

2
cos ( )1

32
4
65

7
8
9

 +

cos ( )2
2

2 1t S P S P1
32

4
65
@
A
B

4

6
5 (14.28)

where K is a proportionality constant.* For an optical beam

the frequency is very large (   1015 sec�1) and all the terms

depending on t will vary with extreme rapidity (1015 times in

a second); consequently, any detector would record an aver-

age value of various quantities. Now,

cos ( )
2

t = 
1

2

1 2

2s
cos [ ( )]t

d t

= 
1

2

1

16
2

T
tsin ( )t v

where T = 2 (  2   10�15 sec for an optical beam). For any

practical detector** T  <<< 1 and since the quantity between

the curly brackets will always be between �2 and +2, we may

write

cos2( t � )  
1

2
(14.29)

The factor cos (2 t � ) will oscillate between + 1 and

�1 and its average will be zero as can indeed be shown math-

ematically. Thus the intensity, that a detector will record, will

be given by

I = I
1
 + I

2
 + 2 1 2I I cos (14.30)

where

2
2 1( )S P S P (14.31)

represents the phase difference between the displacements

reaching the point P from S
1
 and S

2
. Further

I
1

= 
1

2
KE

2

01

represents the intensity produced by the source S
1
 if

no light from S
2
 is allowed to fall on the screen; similarly

I
2
 = 1

2
KE2

02
 represents the intensity produced by the source

S
2
 if no light from S

1
 is allowed to fall on the screen. From

Eq. (14.30) we may deduce the following:

(a) The maximum and minimum values of cos  are +1 and

�1, respectively; as such the maximum and minimum

values of I are given by

and
I I I

I I I

max

min

( )

( )

=

=

1 2
2

1 2
2

@
A
u
Bu

(14.32)

The maximum intensity occurs when

= 2n ; n = 0, 1, 2,�

or

S
2
P ~ S

1
P = n ,

and the minimum intensity occurs when

= (2n + 1)  ; n = 0, 1, 2,�

or

S
2
P ~ S

1
P = n

%
'

(
0

1

2

Notice that when I
1
 = I

2
, the intensity minimum is zero.

In general, I
1
  I

2
 and the minimum intensity is not zero.

(b) If the holes S
1
 and S

2
 are illuminated by different light

sources (see Fig. 14.5), then the phase difference  will

remain constant for about 10
�10 sec (see discussion in

Sec. 14.3) and thus  would also vary with time*** in a

random way. If we now carry out the averaging over

time scales which are of the order of 10 � 8 sec, then

cos = 0

and we obtain

I =  I
1
 + I

2

Thus, for two incoherent sources, the resultant inten-

sity is the sum of the intensities produced by each one

of the sources independently and no interference pat-

tern is observed.

(c) In the arrangement shown in Fig. 14.6, if the distances

S
1
P and S

2
P are large in comparison to d, then

I
1

 I
2
 = I

0
(say)

and

I = 2I
0
 + 2I

0
 cos  = 4I

0 
cos2 

2
(14.33)

* Equation (14.27) will be derived in Sec. 23.5. In free space, the constant K will be shown to be equal to 0 c
2 where 0 (=8.854 

10�12 Coul2/N�m2) represents the permittivity of free space and c, the speed of light in free space.
** For a normal eye,   0.1 s; thus T/   6  10�14; even for a detector having 1 nsec as the resolution time, T/   6  10�5.

*** Notice that this variation occurs in times of the order of 10�10 sec which is about a million times longer than the times for variation
of the intensity due to the terms depending on t. Thus we are justified in first carrying out the averaging which leads to Eq. (14.30).
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The intensity distribution (which is often termed as the

cos2 pattern) is shown in Fig. 14.9. The actual fringe

pattern (as it will appear on the screen) is shown in

Fig. 14.10. Figures 14.10 (a) and (b) correspond to d =

0.005 mm (   5 mm) and d = 0.025 mm (   1 mm),

respectively. Both figures correspond to D = 5 cm and

 = 5  10�5 cm. The values of the parameters are such

that one can see the hyperbolic nature of the fringe

pattern in Fig. 14.10(a).

Fig. 14.9 The variation of intensity with .

Example 14.5 Instead of considering two point sources, we

consider the superposition of two plane waves as shown in
Fig. 14.11(a). The wave vectors for the two waves are given by

k1 = � x̂  k sin 1 + z  k cos 1

and

k
2

= + x̂  k sin
2
 + z  k cos

2

where k = 2 /  and 1 and 2 are defined in Fig. 14.11(a). Thus the
electric fields of the two waves are described by the following two
equations:

E1 =  E01 cos [k
I
  r � t]

=  E01 cos [� k x sin 1 + k z cos 1 � t]

E2 = E02 cos [k
P
  r � t]

= E02 cos [kx sin 2 + kz cos 2 � t]

where we have assumed both electric fields along the same direction
(say along the y-axis); if we further assume E

01
 = E

02
 = E

0
 and 

1
 =

2
 =  then the resultant field will be given by

E = 2E
0 cos (k x sin ) cos (kz cos  � t)

Thus, the intensity distribution on the photograph plate LL  will be
given by

I =  4 I
0
 cos2(k x sin )

and the fringe pattern will be strictly straight lines (parallel to the

y-axis) with fringe width given by

= 
λ
θ2 sin

Figure 14.11(b) shows the computer generated interference pattern

on the screen LL  for  = /6 and  = 5000 Å. Thus  =  = 0.0005 mm.

Example 14.6 In this example, we once again consider the

interference pattern produced by 2 point sources S
1 and S2 on a

plane PP  which is perpendicular to the line joining S
1
 and S

2

[see Fig. 14.12(a)]. Obviously, on the plane PP , the locus of the
point P for which

S1P � S2P = constant

Fig. 14.10 Computer generated fringe pattern produced by two point sources S1 and S2 on the screen LL
(see Fig. 14.8); (a) and (b) correspond to d = 0.005 mm and 0.025 mm, respectively (both figures
correspond to D = 5 cm and  = 5  10�5 cm).
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will be a circle. Figures 14.12(b) and (c) show the fringe patterns
for D = 20 cm and D = 10 cm; for both figures S

1
S

2
 = d = 0.05 mm

and  = 5000 Å. Obviously, if O represents the centre of the fringe
pattern then

S
1
O � S

2
O = d = 100 

Thus (for this value of d ) the central spot will be bright for all
values of D and will correspond to n = 100. The first and second
bright circles will correspond to a path difference of 99  and 98 ,
respectively. Similarly, the first and second dark rings in the interference
pattern will correspond to a path difference of 99.5  and 98.5 ,
respectively. The radii of the fringes can be calculated by using the

formula given in Problem 14.10.

Example 14.7 We finally consider the interference pattern

produced on PP  by the superposition of a plane wave incident
normally and a spherical wave emanating from the point O

(see Fig. 14.13). The plane wave will be given by

E
1 = E0 cos (k z � t + )

and the spherical wave will be given by

E
2

= 
A

r
0  cos (k r � t)

where r is the distance measured from the point O which is assumed

to be the origin. Now, on the plane PP  (z = D)

Fig. 14.12 (a) S
1
 and S

2
 represent two coherent sources, (b) and (c) show the interference fringes observed on

the screen PP  when D = 20 cm and D = 10 cm, respectively.

Fig. 14.11 (a) The superposition of two plane waves on LL .
(b) Computer generated interference pattern on
the screen LL  for 1 = 2 = /6 and  = 5000 Å.
The fringes are parallel to the y-axis.
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r = ( )x y D D
x y

D

2 2 2
2 2

2

1
2 1

2
+ + ≈ +

+1

3
2

4

6
5

 D + 
x y

D

2 2

2

+

where we have assumed x, y << D. On the plane z = D, the
resultant field will be given by

E = E1 + E2

 E0 cos (k D � t + )

+ + + −
1

32
4

65
A

D
k D

k

D
x y t0 2 2

2
cos ( ) ω

Thus,

E
2 = 

1

2

1

20
2 0

2

E
A

D
+

+ + −
1

3
2

4

6
5E

A

D

k

D
x y0

0 2 2

2
cos ( ) φ

If we assume that

A

D
0  E

0

i.e., the amplitude of the spherical wave (on the plane PP ) is the
same as the amplitude of the plane wave, then

E
2  2

4

1

2
0
2 2 2 2

E
k

D
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and we would obtain circular interference fringes as shown in
Fig. 14.13(b). If r

m
 and r

m+p
 denote the radii of mth and (m + p)th

bright ring, then

r2

m+p
 � r

m

2 = 2 p  D

Spherical wave
emanating from O

P

P¢Incident
plane wave

O
z

D
(a) (b)

4 (mm)

4
(m

m
)

Fig. 14.13 (a) Superposition of a plane wave and a spherical wave emanating from the point O; (b) shows the
interference fringes observed on the screen PP .

Fig. 14.14 The Moire Pattern produced by two overlapping
straight line patterns.

14.6.1 Moire Fringes

We may mention here that Moire fringes can be very effectively

used to study the formation of fringe patterns. In Fig. 14.14,

we have shown the overlapping of two simple patterns from

which one can understand the formation of bright and dark

fringes when two plane waves propagate in slightly different

directions. In a classroom, it can be easily demonstrated by

having a periodic pattern on a transparency and overlapping

it with its own photocopy at different angles. Similarly, if one

overlaps a circular pattern (on a transparency) with its own

copy, one obtains the hyperbolic fringes as shown in

Fig. 14.15. (To get a clearer fringe pattern, you may have to

view the patterns from a greater distance.) In Sec. 17.5, we

have shown how the beat phenomenon can be understood

by observing the Moire fringes obtained by the overlapping

of two patterns of slightly different periods (see Fig. 17.13).
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Example 14.8 Consider a parallel beam of light (from a dis-

tant source S  like a star incident at an angle ) on two slits S1 and
S2 as shown in Fig. 14.16. Obviously, the path difference between
the waves emanating from the slits S1 and S2 will be given by

X S
2
 = d sin 

Therefore, the intensity distribution on the screen due to S  will be
given by

I = I
0 cos2 

2

where

= 
2

2 2 1
π
λ

[ ]XS S P S P+ −  = 
2

[S
2
P � S

1
P) + d sin ]

= 
2

sin
xd

d
D

Thus, the intensity distribution (due to light coming from the distant

source S ) will be given by

I = I
0
 cos2 sin

xd
d

D

Similarly, if there is light incident from another distant source S
(at an angle ) then the corresponding intensity distribution on the
screen will be given by

I = I
0 cos2 sin

xd
d

D

The resultant intensity distribution will be given by

I = I  + I

Example 14.9 This example presupposes the knowledge of

half-wave plates (see Sec. 22.6) and therefore the reader may skip
this example until he has gone through Chapter 22.

Consider a y-polarized beam light beam incident on a double hole
system as shown in Fig. 14.17. Behind the hole S

1
 we have put a

half-wave plate H
1
 whose optic axis is along the y direction and be-

hind the hole S2 we have put a half-wave plate H2 whose optic axis
is along the x direction. Thus, as discussed in Sec. 22.6, in H1, a y-
polarized beam will propagate with velocity c/n

e
 and in H2, a

y-polarized beam will propagate with velocity c/n
o
. In calcite n

e 
< n

o
;

and, in a half-wave plate a phase change of  is introduced between
the o-wave and the e-wave. Thus, the whole fringe pattern will shift

by /2 where  is the fringe width.

Fig. 14.17 H1 and H2 are half-wave plates placed in front of
the slits S1 and S2. The optic axis of H1 and H2 are
along y and x directions, respectively.

(a)

(b) (c)

Fig. 14.15 The Moire pattern produced by two overlap-
ping circular patterns. You will see clear
hyperbolic fringes if you put the pattern at a
greater distance from the eye. The circular pat-
tern was provided by Dr. R. E. Bailey.

Fig. 14.16 Two distant incoherent sources S  and S  illuminate
the slits S

1
 and S

2
.
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14.7 FRESNEL�S TWO-MIRROR

ARRANGEMENT

After Young�s double hole interference experiment, Fresnel

devised a series of arrangements to produce the interference

pattern. One of the experimental arrangements, known as the

Fresnel two-mirror arrangement, is shown in Fig. 14.18; it

consists of two plane mirrors which are inclined to each other

at a small angle  and touching at the point M. S represents

a narrow slit placed perpendicular to the plane of the paper.

A portion of the wavefront from S gets reflected from

M
1
M and illuminates the region AD of the screen. Another

portion of the wavefront gets reflected from the mirror MM
2

and illuminates the region BC of the screen. Since these

two wavefronts are derived from the same source they are

coherent. Thus in the region BC, one observes interference

fringes. The formation of the fringes can also be understood

as being due to the interference of the wavefronts from the

virtual sources S
1
 and S

2
 of S formed by the mirrors M

1
 and

M
2
, respectively. From simple geometric considerations, it

can be shown that the points S, S
1
 and S

2
 lie on a circle

whose centre is at the point M. Further, if the angle between

the mirrors is , then the angle S
1
SS

2
 is also  and the angle

S
1
MS

2
 is 2 . Thus, S

1
S

2
 is 2R , where R is the radius of the

circle.

14.8 FRESNEL BIPRISM

Fresnel devised yet another simple arrangement for the pro-

duction of interference pattern. He used a biprism, which was

actually a simple prism, the base angles of which are

extremely small (~ 20 ). The base of the prism is shown in

Fig. 14.19 and the prism is assumed to stand perpendicular to

the plane of the paper. S represents the slit which is also

placed perpendicular to the plane of the paper. Light from the

slit S gets refracted by the prism and produces two virtual

images S
1
 and S

2
. These images act as coherent sources and

produce interference fringes on the right of the biprism. The

fringes can be viewed through an eyepiece. If n represents

the refractive index of the material of the biprism and  the

base angle, then (n � 1)  is approximately the angular devia-

tion produced by the prism and, therefore, the distance S
1
S

2

is 2a (n � 1) , where a represents the distance from S to the

base of the prism. Thus, for n = 1.5,  (20 )  5.8  10�3

radians, a  2 cm, one gets d = 0.012 cm.

S2

S1
S

L
L1L2

a

O

C

P
Q
R

d

b1
b2

D

a

Fig. 14.19 Fresnel�s biprism arrangement. C and L repre-
sent the positions of the crosswires and the
eyepiece, respectively. In order to determine d
one introduces a lens between the biprism and
the crosswires; L1 and L2 represent the two posi-
tions of the lens where the slits are clearly seen.

The biprism arrangement can be used for the determination

of wavelength of an almost monochromatic light like the one

coming from a sodium lamp. Light from the sodium lamp

illuminates the slit S and interference fringes can be easily

viewed through the eyepiece. The fringe width ( ) can be

determined by means of a micrometer attached to the

eyepiece. Once  is known,  can be determined by using

the following relation:

= 
d

D
(14.34)

It may be mentioned that in order to determine d, one need

not measure the value of . In fact the distances d and D can

easily be determined by placing a convex lens between the

A
B

C
D

S1

S

2q
qM

M1
M2

S2

Fig. 14.18 Fresnel�s two-mirror arrangement.
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biprism and the eyepiece. For a fixed position of the eyepiece

there will be two positions of the lens (shown as L
1
 and L

2
 in

Fig. 14.19) where the images of S
1
 and S

2
 can be seen at the

eyepiece.* Let d
1
 be the distance between the two images

when the lens is at the position L
1
 (at a distance b

1
 from the

eyepiece). Let d
2
 and b

2
 be the corresponding distances

when the lens is at L
2
. Then, it can easily be shown that

d = d d1 2

and

D = b
1
 + b

2

Typically for d  0.01 cm,   6  10�5 cm, D  50 cm,

  0.3 cm.

In the above arrangement we have considered a slit in-

stead of a point source. Since each pair of points S
1
 and S

2

produce (approximately) straight line fringes, the slit will also

produce straight line fringes of increased intensity.

14.9 INTERFERENCE WITH

WHITE LIGHT

We will now discuss the interference pattern when the slit is

illuminated by white light. The wavelengths corresponding

to the violet and red end of the spectrum are about 4 

10�5 cm and 7  10�5 cm, respectively. Clearly, the central

fringe produced at the point O (Fig. 14.19) will be white be-

cause all wavelengths will constructively interfere here. Now,

slightly below (or above) the point O the fringes will become

colored. For example, if the point P is such that

S
2
P ~ S

1
P = 2  10�5 cm = violet

2

%
'&

(
0)

then complete destructive interference will occur only for the

violet color. Partial destructive interference will occur for

other wavelengths. Consequently, we will have a line devoid

of the violet color and will appear reddish. The point Q which

satisfies

S
2
Q ~ S

1
Q = 3.5  10�5 cm = red

2

%
'&

(
0)

will be devoid of the red color. It will correspond to almost

constructive interference for the violet color. No other

wavelength (in the visible region) will neither constructively

nor destructively interfere. Thus following the white central

fringe we will have colored fringes; when the path difference

is about 2  10�5 cm the fringe will be red in color, then the

color will gradually change to violet. The colored fringes will

soon disappear because at points far away from O there will

be so many wavelengths (in the visible region) which will

constructively interfere that we will observe uniform white

illumination. For example, at a point R, such that S
2
R ~ S

1
R =

30  10
�5

 cm, wavelengths corresponding to 30  10
�5

/n (n =

1, 2,�) will constructively interfere. In the visible region,

these wavelengths will be 7.5  10�5 cm (red), 6  10�5 cm

(yellow), 5  10�5 cm (greenish yellow) and 4.3  10�5 cm

(violet). Further, wavelengths corresponding to 30  10�5/

n 1
2Q V will destructively interfere; thus, in the visible

region, the wavelengths 6.67  10�5 cm (orange), 5.5  10�5 cm

(yellow), 4.6  10�5 cm (indigo) and 4.0  10�5 cm (violet) will

be absent. The color of such light, as seen by the unaided

eye, will be white. Thus, with white light one gets a white

central fringe at the point of zero path difference along with

a few colored fringes on both the sides, the color soon fading

off to white. While using a white light source, if we put a red

(or green) filter in front of our eye, we will see the interference

pattern corresponding to the red (or green) light.

In the usual interference pattern with a nearly monochro-

matic source (like a sodium lamp) a large number of

interference fringes are obtained and it is extremely difficult

to determine the position of the central fringe. In many inter-

ference experiments, it is necessary to determine the position

of the central fringe and, as has been discussed above, this

can easily be done by using white light as a source.

As discussed above, when we observe interference pat-

tern using a white light source, we will see only few colored

fringes. However, if we put a red filter in front of our eye, the

fringe pattern (corresponding to the red color) will suddenly

appear. If we replace the red filter by a green filter in front of

our eye, the fringe pattern corresponding to the green color

will appear.

14.10 DISPLACEMENT OF

FRINGES

We will now discuss the change in the interference pattern

produced by introducing a thin transparent plate in the path

of one of the two interference beams as shown in Fig. 14.20.

Let t be the thickness of the plate and let n be its refractive

* This method is similar to the displacement method for the determination of the focal length of a convex lens.
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index. It is easily seen from the figure that light reaching the

point P from S
1
 has to traverse a distance t in the plate and a

distance S
1
P � t in air. Thus the time required for the light to

reach from S
1
 to the point P is given by

S P t

c

t1

v

= 
1

1c
S P t nt[ ]

= 
1

c
 [S

1
P + (n � 1)t] (14.35)

where v = c
nP U represents the speed of light in the plate.

Equation (14.35) shows that by introducing the thin plate the

effective optical path increases by (n � 1)t. Thus, when the

thin plate is introduced, the central fringe (which corre-

sponds to equal optical path from S
1
 and S

2
) is formed at the

point O  where

S
1
O  + (n � 1)t = S

2
O

Since [see Eq. (14.19)]

S
2
O  � S

1
O  

d

D
 OO

therefore,

(n � 1)t = 
d

D
OO (14.36)

Thus the fringe pattern gets shifted by a distance  which is

given by the following equation:

= 
D n t

d

( )1
(14.37)

The above principle enables us to determine the thickness of

extremely thin transparent sheets (like that of mica) by mea-

suring the displacement of the central fringe. Further, if white

light is used as a source, the displacement of the central

fringe is easy to measure.

Example 14.10 In a double-slit interference arrangement,

one of the slits is covered by a thin mica sheet whose refractive
index is 1.58. The distances S

1
S

2
 and AO (see Fig. 14.20) are 0.1 cm

and 50 cm, respectively. Due to the introduction of the mica sheet
the central fringe gets shifted by 0.2 cm. Determine the thickness of

the mica sheet.

Solution: = 0.2 cm; d = 0.1 cm; D = 50 cm

Hence,

t = 
d

D n

Δ

( )− 1
 = 

0 1 0 2

50 0 58

. .

.

×

×

 6.7  10�4 cm

Example 14.11 In an experimental arrangement similar to

the one discussed in the above example, one finds that by introduc-
ing the mica sheet the central fringe occupies the position that was
originally occupied by the eleventh bright fringe. If the source of
light is a sodium lamp (  = 5893 Å) determine the thickness of the

mica sheet.

Solution: The point O  (see Fig. 14.20) corresponds to the elev-

enth bright fringe, thus,

S2O  � S1O = 11  = (n � 1)t = 0.58t

14.11 THE LLOYD�S MIRROR

ARRANGEMENT

In this arrangement, light from a slit S
1
 is allowed to fall on a

plane mirror at grazing incidence (see Fig. 14.21). The light

directly coming from the slit S
1
 interferes with the light re-

flected from the mirror forming an interference pattern in the

region BC of the screen. One may thus consider the slit S
1

and its virtual image S
2
 to form two coherent sources which

produce the interference pattern. It should be noted that at

grazing incidence one really need not have a mirror; even a

dielectric surface has very high reflectivity (see Chapter 23).

As can be seen from Fig. 14.21, the central fringe cannot

be observed on the screen unless the latter is moved to the

position L
1
L

2
, where it touches the end of the reflector. Al-

ternatively, one may introduce a thin mica sheet in the path

of the direct beam so that the central fringe appears in the

region BC. (This is discussed in detail in Problem 14.2) In-

deed, if the central fringe is observed with white light, it is

found to be dark. This implies that the reflected beam under-

S1

A

S2

d

t
P

O¢

O

D n t

d

(   – 1)

D

Fig. 14.20 If a thin transparent sheet (of thickness t) is in-
troduced in one of the beams, the fringe pattern
gets shifted by a distance (n � 1) t D/d.
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goes a sudden phase change of  on reflection. Conse-

quently, when the point P on the screen is such that

S
2
P � S

1
P = n , n = 0, 1, 2, 3,�

we will get minima (i.e., destructive interference). On the

other hand, if

S
2
P � S

1
P = n

%
'

(
0

1

2

we will get maxima.

S2

S1

L¢1
L1

B

C

P

L¢2 L2

Fig. 14.21 The Lloyd�s mirror arrangement.

In the next section, using the principle of optical reversi-

bility, we will show that if there is an abrupt phase change of

 when light gets reflected by a denser medium, then no such

abrupt phase change occurs when reflection takes place at a

rarer medium.

14.12 PHASE CHANGE ON

REFLECTION

We will now investigate the reflection of light at an interface

between two media using the principle of optical reversibility.

According to this principle, in the absence of any absorption,

a light ray that is reflected or refracted will retrace its original

path if its direction is reversed.*

Consider a light ray incident on an interface of two media

of refractive indices n
1
 and n

2
 as shown in Fig. 14.22(a). Let

the amplitude reflection and transmission coefficients be r
1

and t
1
, respectively. Thus, if the amplitude of the incident ray

is a, then the amplitudes of the reflected and refracted rays

would be ar
1
 and at

1
, respectively.

We now reverse the rays and we consider a ray of ampli-

tude at
1
 incident on medium 1 and a ray of amplitude ar

1

incident on medium 2 as shown in Fig. 14.22(b). The ray of

amplitude at
1
 will give rise to a reflected ray of amplitude

at
1
r

2
 and a transmitted ray of amplitude at

1
t
2
 where r

2
 and t

2

are the amplitude reflection and transmission coefficients

when a ray is incident from medium 2 on medium 1. Similarly,

the ray of amplitude ar
1
 will give rise to a ray of amplitude

ar2

1
 and a refracted ray of amplitude ar

1
t
1
. According to the

principle of optical reversibility the two rays of amplitudes

ar2

1
 and at

1
t
2
 must combine to give the incident ray of Fig.

14.22(a); thus,

ar2

1
 + at

1
t
2

= a

or

t
1
t
2

= 1 � r2

1
(14.38)

Further, the two rays of amplitudes at
1
r

2
 and ar

1
t
1
 must can-

cel each other, i.e.,

at
1
r

2
 + ar

1
t
1

= 0

or

r
2

= � r
1

(14.39)

Since we know from the Lloyd�s mirror experiment that an

abrupt phase change of  occurs when light gets reflected

by a denser medium, we may infer from Eq. (14.39) that no

such abrupt phase change occurs when light gets reflected

by a rarer medium. This is indeed borne out by experiments.

Equations (14.38) and (14.39) are known as Stokes� relations.

In Chapter 24, we will calculate the amplitude reflection

and transmission coefficients for plane waves incident on a

dielectric and also on a conductor. It will be shown that the

coefficients satisfy Stokes� relations; the phase change on

reflection will also be discussed there.

ar1
ar1

ar1
2

ar t1 1

at t1 2

at r1 2
at1 at1

n1

n2

a

(a) (b)

Fig. 14.22 (a) A ray traveling in a medium of refractive in-
dex n1 incident on a medium of refractive index
n2. (b) Rays of amplitude ar1 and at1 incident on
a medium of refractive index n1.

* This principle is consequence of time reversal invariance according to which processes can run either way in time; for more details see
Refs. 14.3 and 14.8.
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Summary

u In 1801, Thomas Young devised an ingenious but simple

method to lock the phase relationship between  two sources
of light. The trick lies in the division of a single wavefront
into two; these two split wavefronts act as if they emanated
from two sources having a fixed phase relationship and,
therefore, when these two waves were allowed to interfere, a
stationary interference pattern is obtained.

u For two coherent point sources, almost straight-line interfer-
ence fringes are formed on some planes and by measuring the
fringe width (which represents the distance between two
consecutive fringes) one can calculate the wavelength.

u On a plane which is normal to the line joining the two coher-
ent point sources, the fringe pattern is circular.

u In the Young�s double-slit interference pattern, if we use a
white light source, one gets a white central fringe at the point
of zero path difference along with a few colored fringes on
both the sides, the color soon fading off to white. If we now
introduce a very thin slice of transparent material (like mica)
in the path of one of the interfering beams, the fringes get
displaced and by measuring the displacement of fringes, one

can calculate the thickness of the mica sheet.

Problems

14.1 In the Young�s double-hole experiment (see Fig. 14.6), the

distance between the two holes is 0.5 mm,  = 5  10�5 cm
and D = 50 cm. What will be the fringe width?

14.2 Figure 14.23 represents the layout of Lloyd�s mirror
experiment. S is a point source emitting waves of frequency
6  1014 s�1. A and B represent the two ends of a mirror
placed horizontally and LOM represents the screen. The
distances SP, PA, AB and BO are 1 mm, 5 cm, 5 cm and 190
cm, respectively. (a) Determine the position of the region
where the fringes will be visible and calculate the number of
fringes. (b) Calculate the thickness of a mica sheet (n = 1.5)
which should be introduced in the path of the direct ray so
that the lowest fringe becomes the central fringe. The
velocity of light is 3  1010 cm/s.

[Ans: (a) 2 cm, 40 fringes, (b) 38 m]

14.3 (a) In the Fresnel�s biprism arrangement, show that
d = 2(n � 1) a  where a represents the distance from
the source to the base of the prism (see Fig. 14.19), 
is the angle of the biprism and n the refractive index of
the material of the biprism.

(b) In a typical biprism arrangement b/a = 20, and for so-
dium light (  ~  5893 Å) one obtains a fringe width of
0.1 cm; here b is the distance between the biprism and
the screen. Assuming n = 1.5, calculate the angle .

[Ans: ~  0.71°]

14.4 In the Young�s double-hole experiment a thin mica sheet
(n = 1.5) is introduced in the path of one of the beams. If the
central fringe gets shifted by 0.2 cm, calculate the thickness
of the mica sheet. Assume d = 0.1 cm, and D = 50 cm.

14.5 In order to determine the distance between the slits in the
Fresnel biprism experiment, one puts a convex lens in be-
tween the biprism and the eyepiece. Show that if D > 4f

one will obtain two positions of the lens where the image
of the slits will be formed at the eyepiece; here f is the focal
length of the convex lens and D is the distance between the
slit and the eyepiece. If d

1 and d2 are the distances between
the images (of the slits) as measured by the eyepiece, then

show that d = d d1 2 . What would happen if D < 4f ?

14.6 In the Young�s double hole experiment, interference fringes
are formed using sodium light which predominantly com-
prises of two wavelengths (5890 Å and 5896 Å). Obtain
the regions on the screen where the fringe pattern will dis-
appear. You may assume d = 0.5 mm and D = 100 cm.

14.7 If one carries out the Young�s double-hole interference ex-
periment using microwaves of wavelength 3 cm, discuss the
nature of the fringe pattern if d = 0.1 cm, 1 cm, and 4 cm.
You may assume D = 100 cm. Can you use Eq. (14.21) for
the fringe width?

14.8 In the Fresnel�s two-mirror arrangement (see Fig. 14.18)
show that the points S, S

1, and S2 lie on a circle and
S1S2 = 2b  where b = MS and  is the angle between the
mirrors.

14.9 In the double-hole experiment using white light, consider
two points on the screen, one corresponding to a path differ-
ence of 5000 Å and the other corresponding to a path
difference of 40000 Å. Find the wavelengths (in the visible
region) which correspond to constructive and destructive
interference. What will be the color of these points?

14.10 (a) Consider a plane which is normal to the line joining
two point coherent sources S

1
 and S

2
 as shown in

Fig. 14.14. If S1P � S2P = , then show that

y = 
1

2Δ
(d2 � 2)

1
2 [4D2 + 4Dd + (d 2 � 2)]

1
2

 
D

d d
Δ

Δ Δ( ) ( )− +

where the last expression is valid for D >> d.

S

P A B
0

L

M

Fig. 14.23 Figure for Problem 14.2.
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(b) For  = 0.5 m, d = 0.4 mm and D = 20 cm;
S1 O � S2O = 800 . Calculate the value of S1P � S2P

for the point P to be first dark ring and first bright
ring.

[Ans: 0.39975 mm, 0.3995 mm]

14.11 In continuation of the above problem calculate the radii of
the first two dark rings for

 (a) D = 20 cm and (b) D = 10 cm.

[Ans: (a)  0.71 cm and 1.22 cm]

14.12 In continuation of Problem 14.10 assume that d = 0.5 mm,
 = 5  10 �5 cm and D = 100 cm. Thus the central (bright)

spot will correspond to n = 1000. Calculate the radii of the
first, second and third bright rings which will correspond
to n = 999, 998 and n = 997, respectively.

14.13 Using the expressions for the amplitude reflection and
transmission coefficients (derived in Chapter 24), show
that they satisfy Stokes� relations.

14.14 Assume a plane wave incident normally on a plane
containing two holes separated by a distance d. If we place
a convex lens behind the slits, show that the fringe width,
as observed on the focal plane of the lens, will be f /d
where f is the focal length of the lens.

14.15 In Problem 14.14, show that if the plane (containing the
holes) lies in the front focal plane of the lens, then the
interference pattern will consist of exactly parallel straight
lines. However, if the plane does not lie on the front focal
plane, the fringe pattern will be hyperbolae.

14.16 In the Young�s double-hole experiment calculate I/I
max

where I represents the intensity at a point where the path
difference is /5.



Following a method suggested by Fizeau in 1868, Professor Michelson has produced what is

perhaps the most ingenious and sensational instrument in the service of astronomy�the inter-

ferometer.

�Sir James Jeans in The Universe Around Us, Cambridge University Press, (1930)
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Chapter
Fifteen

LO 1: describe the interference pattern observed when a plane parallel film is illuminated by a plane wave.
LO 2: derive the cosine law when reflection occurs by a plane parallel film.
LO 3: discuss the role of non-reflective films in reducing reflectivity of lens surfaces.
LO 4: demonstrate high reflectivity by deposition of a thin film.
LO 5: calculate the wavelength corresponding to peak reflectivity by a periodic structure.
LO 6: discuss interference by a plane parallel film illuminated by a point source.
LO 7: describe interference by a film with two non-parallel reflecting surfaces.
LO 8: analyse colors of thin films.
LO 9: explain the formation of Newton�s rings.
LO 10: discuss the working of Michelson interferometer.

Important Milestones

1665 In his treatise, Micrographia, the British physicist Robert Hooke described his observations with a compound

microscope having a converging objective lens and a converging eye lens. In the same work, he described his

observations of the colors produced in flakes of mica, soap bubbles and films of oil on water. He recognised

that the color produced in mica flakes is related to their thickness but was unable to establish any definite

relationship between thickness and color. Hooke advocated a wave theory for the propagation of light.

1704 �Newton�s rings� were first observed by Boyle and Hooke�they are named after Newton because he had given

an explanation using the corpuscular model which was later found to be unsatisfactory.

1802 Thomas Young gave a satisfactory explanation of �Newton�s rings� based on wave theory.

1881 A.A. Michelson invented the �Michelson interferometer�. He was awarded the 1907 Nobel Prize in Physics

�for his optical precision instruments and the spectroscopic and metrological investigations carried out

with their aid� Michelson was America�s first Nobel Prize winner in science and during the presentation

ceremony of the Nobel prize, the President of the Royal Swedish Academy of Sciences said, �Professor

Michelson, Your interferometer has rendered it possible to obtain a non-material standard of length pos-

sessed of a degree of accuracy never hitherto attained. By its means we are enabled to ensure that the

prototype of the meter has remained unaltered in length, and to restore it with absolute infallibility,

supposing it were to get lost..... �

1887 A.A. Michelson and E.W. Morley carried out the famous Michelson-Morley experiment using the Michelson

interferometer to detect the motion of the earth with respect to the �Luminiferous Aether�.
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15.1 INTRODUCTION

In the previous chapter, we discussed the interference pat-
tern produced by division of a wavefront; for example, light
coming out of a pinhole was allowed to fall on two holes, and
spherical waves emanating from these two holes produced
the interference pattern. In this chapter, we will consider the
formation of interference pattern by division of amplitude; for
example, if a plane wave falls on a thin film then the wave
reflected from the upper surface interferes with the wave re-
flected from the lower surface. Such studies have many
practical applications and also explain phenomena like the
formation of beautiful colors produced by a soap film illumi-
nated by white light.

15.2 INTERFERENCE BY A

PLANE PARALLEL FILM

WHEN ILLUMINATED BY A

PLANE WAVE

If a plane wave is incident normally on a thin* film of uniform
thickness d (see Fig. 15.1) then the waves reflected from the
upper surface interfere with the waves reflected from the
lower surface. In this section, we will study this interference
pattern. In order to observe the interference pattern without
obstructing the incident beam, we use a partially reflecting

plate G as shown in Fig. 15.1. Such an arrangement also en-
ables us to eliminate the direct beam from reaching the
photographic plate P (or the eye). The plane wave may be
produced by placing an illuminated pinhole at the focal point
of a corrected lens; alternatively, it may just be a beam com-
ing out of a laser.

Let the solid and the dashed lines in Fig. 15.2 represent
the positions of the crests** (at any particular instant of
time) corresponding to the waves reflected from the upper
and lower surfaces of the film, respectively.*** Clearly, the
wave reflected from the lower surface of the film traverses an
additional optical path of 2nd, where n represents the refrac-
tive index of the material of the film. Further, if the film is
placed in air, then the wave reflected from the upper surface
of the film will undergo a sudden change in phase of  (see
Sec. 14.12) and as such the conditions for destructive or con-
structive interference will be given by

2nd = m destructive interference (15.1a)

= m
%
'

(
0

1

2
constructive interference (15.1b)

where m = 0, 1, 2,�and  represents the free space wave-
length.

Thus, if we place a photographic plate at P (see Fig. 15.1),
then the plate will receive uniform illumination; it will be

dark when 2nd = m  and bright when 2nd = m 1
2Q V ; m =

0, 1, 2,� Instead of placing the photographic plate, if we try

* Why the film should be thin is explained in Sec. 15.7.
** Notice that the distance between consecutive crests in the film is less than the corresponding distance in air. This is because of the fact

that the effective wavelength in a medium of refractive index n is /n.
*** In general, the wave reflected from the lower surface of the film will suffer multiple reflections. The effect of such multiple reflections

is neglected (see Chapter 16).

LO 1

I

II

n

III

d

Fig. 15.2 The solid and the dashed lines represent the
crests of the waves reflected from the upper
surface and from the lower surface of the thin
film. Notice that the distance between the
consecutive crests inside the film is less than the
corresponding distance in medium I.

d

G

P

n

Fig. 15.1 The normal incidence of a parallel beam of light
on a thin film of refractive index n and thickness
d. G denotes a partially reflecting plate and P
represents a photographic plate.
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to view the film (from the top) with naked eye, then the film
will appear to be uniformly illuminated.

It may be noted that the amplitudes of the waves reflected
from the upper and lower surfaces will, in general, be slightly
different; and as such the interference will not be completely
destructive. However, with appropriate choice of the refrac-
tive indices of media II and III, the two amplitudes can be
made very nearly equal (see Example 15.1).

For an air film between two glass plates (see Fig. 15.3) no
phase change will occur on reflection at the glass-air inter-
face, but a phase change of  will occur on reflection
at the air-glass interface and the conditions for maxima
and minima will remain the same. On the other hand, if the I
medium is crown glass (n = 1.52), the II medium is an oil of
refractive index 1.60 and the III medium is flint glass
(n = 1.66) then a phase change of  will occur at both the
reflections and the conditions for maxima and minima would
be

2nd = m
%
'

(
0

1

2
 minima (15.2a)

= m maxima (15.2b)

Glass

Glass

Air

Fig. 15.3 Thin film of air formed between two glass plates.

In general, whenever the refractive index of the II medium
lies in between the refractive indices of the I and the III me-
dia, then the conditions of maxima and minima would be
given by Eqs. (15.2a) and (15.2b).

We next consider the oblique incidence of the plane wave
on the thin film (see Fig. 15.4). Once again, the wave reflected
from the upper surface of the film interferes with the wave
reflected from the lower surface of the film. The latter
traverses an additional optical path , which is given by (see
Fig. 15.5):

= n2(BD + DF) � n1BC (15.3)

where C is the foot of the perpendicular from the point F on
BG. We will show in the next section that

= 2n
2
d cos (15.4)

where  is the angle of refraction.
For a film placed in air, a phase change of  will occur

when reflection takes place at the point B and as such, the
conditions of destructive and constructive interference
would be given by

d
QR

E

Fig. 15.4 The oblique incidence of a plane wave on a thin
film. The solid and dashed lines denote the
boundary of the wave reflected from the upper
surface and from the lower surface of the film.
The eye E receives the light reflected from the
region QR.

 = 2n
2
d cos = m minima (15.5a)

= m
%
'

(
0

1

2
 maxima (15.5b)

If we place a photographic plate at P (see Fig. 15.5) it will
receive uniform illumination; if we try to view the film with
naked eye (at the position E � see Fig. 15.4) then only light
rays reflected from a small position QR of the film will reach
the eye. The image formed at the retina will be dark or bright
depending on the value of  (see Eq. 15.5).

d
B

q

q¢

L J

B¢

n2

n1

D

K
F

N
C

G

L¢

P
x

Fig. 15.5 Calculation of the optical path difference be-
tween the waves reflected from the upper surface
of the film and from the lower surface of the
film. The solid and the dashed lines represent the
corresponding positions of the crests. P denotes
a photographic plate.

15.3 THE COSINE LAW

In this section, we will show that the wave reflected from the
lower surface of the film traverses an additional optical path
which is given by the following expression:

 [= n
2
(BD + DF) � n

1
BC] = 2n

2
d cos (15.6)
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Let  and  denote the angles of incidence and refraction
respectively. We drop a perpendicular BJ from the point B on
the lower surface LL  and extend BJ and FD to the point B
where they meet (see Fig. 15.5). Clearly,

JBD = BDN = NDF = 

where N is the foot of the perpendicular drawn from the point
D on BF. Now,

BDJ = 
2

 � 

and B DJ =  � 
2

%
'

(
0

1
32

4
65

 = 
2

Thus, BD = BD and BJ = JB  = d

or BD + DF = B D + DF = B F

Hence, = n
2
B F � n

1
BC (15.7)

Now, CFB = CBX = 

BC = BF sin =
KF

sin
sin  =

n

n
2

1

KF (15.8)

where K is the foot of the perpendicular from B on B F. Sub-
stituting the above expression for BC in Eq. (15.7), we get

= n2B F � n2KF = n2B K

or = 2n2d cos (15.9)

which is known as the cosine law.

15.4 NON-REFLECTING

FILMS

One of the important applications of the thin film interfer-
ence phenomenon discussed in Sec. 15.2 lies in reducing the
reflectivity of lens surfaces; this we plan to discuss in this
section. However, for a quantitative understanding of the
phenomenon, we will have to assume that when a light beam
(propagating in a medium of refractive index n

1
) is incident

normally on a dielectric of refractive index n
2
 then the ampli-

tudes of the reflected and the transmitted beams are related
to that of the incident beam through the following relations*
[see Fig. 15.6(a)]:

ar = 
n n

n n
ai

1 2

1 2

(15.10a)

at = 
2 1

1 2

n

n n
ai (15.10b)

ai ain1 n2
n2 n1

rai r¢ai

tai t¢ai

Fig. 15.6 (a) If a plane wave of amplitude ai, propagating
in a medium of refractive index n1, is incident
normally on a medium of refractive index n2,
then the amplitudes of the reflected and the
transmitted beams are ar and at, respectively.
Similarly, (b) corresponds to the case when the
beam (propagating in a medium of refractive in-
dex n2) is incident on a medium of refractive
index n1.

where ai, ar and at are the amplitudes of the incident beam,
reflected beam and the transmitted beam respectively. Notice
that when n2 > n1, ar is negative showing that when a reflec-
tion occurs at a denser medium a phase change of  occurs.
The amplitude reflection and transmission coefficients r and
t are, therefore, given by [see Sec. 24.2]:

r = 
n n

n n
1 2

1 2

(15.11a)

t = 
2 1

1 2

n

n n
(15.11b)

If r  and t  are the reflection and transmission coefficients
where light propagating in a medium of refractive index n2 is
incident on a medium of refractive index n1 [see Fig. 15.6(b)],
then

r = 
n n

n n
2 1

2 1

 = �r (15.12)

t = 
2 2

1 2

n

n n
(15.13)

and

1 � tt = 1 � 
4 1 2

1 2
2

n n

n n( )
 = 

n n

n n
1 2

1 2

2
%
'&

(
0)

 = r2 (15.14)

Equations (15.13) and (15.14) represent the Stokes� rela-
tions (see Sec. 14.12).

We will now discuss the application of the thin film inter-
ference phenomenon in reducing the reflectivity of lens
surfaces. We all know that in many optical instruments (like a
telescope) there are many interfaces and the loss of intensity
due to reflections can be severe. For example, for near normal
incidence,** the reflectivity of crown glass surface in air is

* These relations can be derived from electromagnetic theory; see Eqs. (24.67)�(24.72) (with 
1
 = 

2
 = 0).

 ** In all what follows in this section, we will assume near normal incidence.
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n

n

%
'&

(
0)
1

1

2

= 
15 1

15 1
0 04

2
.

.
~ . ,

%
'&

(
0)

i.e., 4% of the incident light is reflected. For a dense flint
glass n ~  1.67 and about 6% of light is reflected. Thus, if we
have a large number of surfaces, the losses at the interfaces
can be considerable. In order to reduce these losses, lens
surfaces are often coated with a /4n thick �non-reflecting
film�; the refractive index of the film being less than that of
the lens. For example, glass (n = 1.5) may be coated with an
MgF

2
 film (see Fig. 15.7) and the film thickness d should be

such that*

d =
l

4nf
(3)

(1) (2) (5)

(4)

x

Nonreflecting Film

Air ( = 1)na

Glass ( )ng

n nf g(< )

x = 0

x d=

Fig. 15.7 If a film (having a thickness of /4nf and having
refractive index less than that of the glass) is
coated on the glass, then waves reflected from
the upper surface of the film destructively inter-
fere with the waves reflected from the lower
surface of the film. Such a film is known as a
non-reflecting film.

2nf d = 
1

2
 

or d = 
4n f

(15.15)

where we have assumed near normal incidence [i.e.,
cos-   1; see Eq. (15.9)] and nf represents the refractive
index of the film; for MgF2, nf = 1.38. Thus, if we assume  to
be 5.0  10�5 cm (which roughly corresponds to the center of
the visible spectrum), we will have

d = 
50 10

4 138

5
.

.

cm
  0.9  10�5 cm

Figure 15.8 shows a comparison between a grasses lens with-
out anti-reflective coating (top) and a lens with anti-reflective
coating (bottom). Note the reflection of the photographer in
the top lens and the tinted reflection in the bottom. We
would like to emphasize the following points:

(a) Let na, nf and ng be the refractive indices of air, non-
reflecting film and glass, respectively. If a is the
amplitude of the incident wave then the amplitudes of
the reflected and refracted waves (the corresponding
rays shown as (2) and (3) in Fig. 15.7) would be

n n

n n

f a

f a

 a and 
2n

n n
a

f a

a

respectively (we have assumed near normal incidence).
The amplitudes of the waves corresponding to rays (4)
and (5) would be

2n

n n

n n

n n
aa

f a

g f

g f

and
2 2n

n n

n n

n n

n

n n
aa

f a

g f

g f

f

f a

Fig. 15.8 Comparison between a glasses lens without
anti-reflective coating (top) and a lens with anti-
reflective coating (bottom). Note the reflection of
the photographer in the top lens and the tinted
reflection in the bottom. [Figure adapted from
http://en.wikipedia.org/wiki/Optical_coating
(Photograph taken by Justin Lebar); a color photograph
appears as Fig. 18 in the prelim pages�used with
permission of Mr. J. Lebar].

* Since the refractive index of the non-reflecting film is greater than that of air and less than that of the glass, abrupt phase change of
 occurs at both the reflections. Consequently, when 2nd cos  = m  there would be constructive interference and when 2nd cos

= m 1
2

 there would be destructive interference.
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respectively. Now, for complete destructive interfer-
ence, the waves corresponding to rays (2) and (5)
should have the same amplitude, i.e.,

�
n n

n n
a

f a

f a

= 
2 2n

n n

n n

n n

n

n n
aa

f a

g f

g f

f

f a

(15.16)

or
n n

n n

f a

f a

= 
n n

n n

g f

g f

(15.17)

where we have used the fact that 
4

2

n n

n n

a f

f a( )
 is very

nearly equal to unity; for na = 1 and nf = 1.4,

4

2

n n

n n

a f

f a( )
 0.97

On simplification we obtain

nf = n na g
(15.18)

If the first medium is air then na = 1 and with ng = 1.66
(dense flint glass) nf should be 1.29 and when ng = 1.5
(light crown glass) nf should be 1.22. We note that the
refractive indices of magnesium fluoride and cryolite

are 1.38 and 1.36, respectively. Now for a 
4n

 thick film,
the reflectivity will be about

n n

n n

n n

n n

f a

f a

g f

g f

1

3
2

4

6
5

2

(15.19)

Thus, for na = 1, nf = 1.38 and ng = 1.5 the reflectivity
will be about 1.3%. In the absence of the film, the
reflectivity would have been about 4%. The reduction
of reflectivity is much more pronounced for the dense
flint glass. This technique of reducing the reflectivity
is known as blooming.

(b) The film is non-reflecting only for a particular value of
; in Eq. (15.15)  was assumed to be 5000 Å. For a

polychromatic light, the film�s non-reflecting property
will be falling off when  is greater or less than the
above value. However, the effect is not serious. For
example, for the MgF2 film on crown glass at 5000 Å,
the reflectivity rises by about 0.5% as one goes either
to the red or the violet end of the visible spectrum. In

Sec. 15.4.2, we will discuss why we should use a 
4n

thick film and not 3
4n

 or 5
4n

 thick film, although the
latter will also give destructive interference for the cho-
sen wavelength.

(c) As in the case of Young�s double slit experiment there
is no loss of energy; there is merely a redistribution of
energy. The energy appears mostly in the transmitted
beam.

15.4.1 Mathematical Expressions for the
Reflected Waves

It may be worthwhile to carry out a bit of mathematical analy-
sis for the anti-reflecting film shown in Fig. 15.7. We assume
ng > nf > na and that the x-axis is pointing downwards with x
= 0 at the upper surface of the film. The displacement associ-
ated with the incident wave (propagating in the +x direction)
is given by

y
1

= a cos ( t � kax); ka = 
c

 na (15.20)

Thus at x = 0, y1 = a cos t. The reflected wave (shown as 2)
would therefore be

y2 = � a| r1 | cos ( t + kax); (15.21)

where

| r1 | = 
n n

n n

f a

f a

(15.22)

is a positive quantity. The minus sign in Eq. (15.21) repre-
sents the sudden phase change of  at x = 0. The transmitted
wave (shown as 3) would be given by

y3 = at1 cos ( t � kf x); kf = 
c

 nf (15.23)

where

t1 = 
2n

n n
a

f a

(15.24)

Thus the displacement at x = d [associated with wave (3)] is

y
3

= at
1
 cos ( t � kf d) (15.25)

Therefore, the wave reflected from the lower surface [wave
(4), which would be propagating in the negative x-direction]
is given by

y4 = � at1| r2 | cos [ t + kf (x � 2d)]

| r
2
| = 

n n

n n

g f

g f

(15.26)

where the phase factor is adjusted such that at x = +d we
obtain the phase given by Eq. (15.25). The wave (5) would
therefore be given by

y5 = � at1| r2 |t2 cos [ t + kax � 2kf d] (15.27)

Assuming the amplitudes of y2 and y5 to be approximately
the same, destructive interference (between y2 and y5) would
occur if

2kf d = , 3 ,� (15.28)

or

d = 
f f f

4

3

4

5

4
, , , ... f = 

n f

(15.29)
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15.4.2 Rigorous Expressions for
Reflectivity

In the above section, we have considered two-beam interfer-
ence and have neglected multiple reflections at the lower and
upper surfaces. The effect of multiple reflections will be dis-
cussed in Sec. 16.2; however, such an effect is automatically
taken into account when we solve Maxwell�s equations in-
corporating the appropriate boundary conditions. In Sec.
24.4, we will carry out such an analysis and will show that
the reflectivity (at normal incidence) of a dielectric film of
the type shown in Fig. 15.7 is given by [see Sec. 24.10 and
Eq. (24.94)]:*

R = 
r r r r

r r r r

1
2

2
2

1 2

1
2

2
2

1 2

2 2

1 2 2

cos

cos
(15.30)

where

r
1

= 
n n

n n

a f

a f

and r
2
 = 

n n

n n

f g

f g

(15.31)

represent the Fresnel reflection coefficients at the first and
second interface, respectively, and

= 
2

 nf d (15.32)

d being the thickness of the film and, as before,  represents
the free space wavelength. Elementary differentiation shows
us that dR/d  = 0 when sin 2  = 0. Indeed for r1r2 > 0,

cos 2 = � 1 (minima) (15.33)

represents the condition for minimum reflectivity and when
this condition is satisfied, the reflectivity is given by

R = 
r r

r r
1 2

1 2

2

1

%
'&

(
0)

 = 
n n n

n n n

a g f

a g f

%

'
&

(

0
)

2

2

2

(15.34)

where we have used Eq. (15.18). Thus the film is non-reflect-
ing when

nf = n na g

consistent with Eq. (15.18). Now, the condition cos 2  = �1
implies

2  = 
4

n df = (2m + 1) ; m = 0, 1, 2,� (15.35)

or

d = 
4

3

4

5

4n n nf f f

, , , ... (15.36)

In Fig. 15.9, we have plotted the reflectivity as a function of
 for

na = 1 ng = 1.5 (15.37)

and

nf = n na g
~ .1225

As expected, R is maximum (  4%) when  = 0, , 2 ,� and
the film is anti-reflecting (R = 0) when  = /2, 3 /2,� imply-
ing d = /4nf , 3 /4nf ,� As an example, let us suppose that we
wish to make the film antireflecting at  = 6000 Å; then from
Eq. (15.26), the thickness of the film could be

1224.5 Å or 3673.5 Å or 6122.5 Å,�

* Equation (15.30) is actually valid even for oblique incidence with r
1
, r

2
 and  defined appropriately (see Sec. 24.10).
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(a)

(b)
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0
2000 4000

l (in Angstroms)

6000 8000

d = 3673.5 Å
d = 1224.5 Å

Fig. 15.9 (a) Variation of the reflectivity of a film as a
function of  (= 2 nf d/ ) for na = 1, ng = 1.5 and

nf = n na g
~− 1.225. Notice that the reflectivity is

zero for  = /2, 3 /2, 5 /2, � (b) Wavelength
variation of the reflectivity for a film of thick-
ness 1224.5 Å (dashed curve) and of thickness
3673.5 Å (solid curve) with na = 1, ng = 1.5 and

nf = n na g   1.225. Notice that both films are

non-reflecting at 6000 Å.
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In Fig. 15.9(b), we have plotted the reflectivity as a function
of wavelength for d = 1224.5 Å and 3673.5 Å. As can be seen,
for d = /4nf , the minimum is broad and the reflectivity small
for the entire range of the visible spectrum. Thus for
antireflecting coating, the smallest film thickness is always
preferred. For na = 1, ng = 1.5 and nf = 1.38, the reflectivity
[according to Eq. (15.34)] comes out to be 1.4%, which is
quite close to the result obtained by using the approximate
theory described earlier [see Eq. (15.19)].

15.5 HIGH REFLECTIVITY

BY THIN FILM DEPOSITION

Another important application of the thin film interference
phenomenon is the converse of the procedure just discussed,
viz., the glass surface is coated by a thin film of suitable
material to increase the reflectivity. The film thickness is
again /4nf where nf represents the refractive index of the
film; however, the film is such that its refractive index is
greater than that of the glass; consequently, an abrupt phase
change of  occurs only at the air�film interface and the
beams reflected from the air�film interface and the film�glass
interface constructively interfere. For example, if we consider
a film of refractive index 2.37 (zinc sulphide) then the
reflectivity is (2.37 � 1)2/(2.37 + 1)2, i.e., about 16%. In the
presence of a glass surface of refractive index 1.5 (light
crown glass), the reflectivity will become [see the analysis in
Sec. 15.4]:

1

3
2

4

6
5

2 37 1

2 37 1

4 1 2 37

337

2 37 15

2 37 152

2
.

.

.

( . )

. .

. .

which gives about 35%. It should be noted that if the differ-
ence between the refractive indices of the film and the glass
is increased, then the reflectivity will also increase.

We can again use Eq. (15.30) to calculate the high
reflectivity obtained by thin film deposition. Indeed when na
< nf and nf > ng, r1r2 < 0 (see Eq. 15.31) and

cos 2 = �1 (maxima) (15.38)

represents the condition for maximum reflectivity. The maxi-

mum value of the reflectivity is given by

R = 
r r

r r
1 2

1 2

2

1

%
'&

(
0)

(15.39)

For na = 1.0, nf = 2.37 and ng = 1.5, we have

r
1
~  � 0.407, r

2
 ~  0.225

Elementary calculations show that the reflectivity is about
33% which compares well with the value of 35% obtained by
using the approximate theory described earlier.

15.6 REFLECTION BY A

PERIODIC STRUCTURE*

In Sec. 15.4, we had shown that a film of thickness /4nf
where  is the free space wavelength and nf is the film refrac-
tive index (which lies between the refractive indices of the
two surrounding media) acts like an antireflection layer. This
happens due to the destructive interference occurring be-
tween the waves reflected from the top and bottom
interfaces. In Sec. 15.5, we had shown that if the refractive
index of the film was smaller (or greater) than both the sur-
rounding media, then in such a case, in addition to the phase
difference due to the additional path travelled by the wave
reflected from the lower interface, there would also be an ex-
tra phase difference of  between the two reflected waves.
Thus, in such a case a film of thickness /4nf would increase
the reflectivity rather than reduce it.

We now consider a medium consisting of alternate layers
of high and low refractive indices of n0 + n and n0 � n of
equal thickness d [see Fig. 15.10(a)]. Such a medium is called
a periodic medium and the spatial period of the refractive in-
dex variation is given by

= 2d

Now if n << n0, and if we choose the thickness of each
layer to be

d = 
4 4 40 0 0n n n n n( ) ( )

then the reflections arising out of individual reflections from
the various interfaces would all be in phase and should re-
sult in a strong reflection. Thus for strong reflection at a
chosen (free space) wavelength B, the period of the refrac-
tive index variation should be

= 2d = B

n2 0

(15.40)

This is referred to as the Bragg condition and is very simi-
lar to the Bragg diffraction of X-rays from various atomic
layers (see Sec. 18.9). Equation (15.40) corresponds to the
Bragg condition for normal incidence. The quantity B is of-
ten referred to as the Bragg wavelength.

As an example, we consider a periodic medium comprising
of alternate layers of refractive indices 1.51 and 1.49, i.e., n0 =

* This section has been very kindly written by Professor K. Thyagarajan.
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1.50 and n = 0.01. If we require a strong reflectivity at  = B

= 5500 Å then the required periodicity is

= 5500
2 15.

Å  1833 Å

If the periodic medium is made up of 100 layers (i.e., 50 peri-
ods) then we may approximate the total resultant amplitude
to be

100  
n

n0
 
1

15.

where n/n0 is the amplitude reflection coefficient at each
interface. The above estimation is only an approximation
which is valid when N n/n0 << 1, i.e., for small reflectivi-ties;
here we are just trying to obtain a crude estimate of the total
reflectivity. Thus the reflectivity at 5500 Å should be

R  1

15

2

.

%
'&

(
0)

R  44% (15.41)

Figure 15.11 shows an actual calculated value of the
reflectivity as a function of wavelength (using rigorous elec-
tromagnetic theory�see Ref. 15.6) for a periodic medium
with n

0
 = 1.5, n = 0.01, d = B / 4n

0
 and consisting of 100

layers. Note that the actual calculation predicts a reflectivity
of about 33% which compares well with our crude estimate of
44%!

One notices from Fig. 15.11 that as we move away from
the central wavelength ( B = 2n0 ) the reflectivity of the

periodic medium falls off sharply. One can indeed obtain an
approximate expression for the wavelength deviation  from

B which will produce a zero reflectivity. In order to do this,
we first note that at B (= 2n0 ), the waves reflected from
each of the N individual layers are all in phase leading to a

0
5250 5500

l(Å)

5750

0.1

R
ef

le
ct

iv
ity

0.2

0.3

Fig. 15.11 The exact variation of reflectivity with wave-
length of a 100 layer periodic structure with
n
0
 = 1.5, n = 0.01,  = 2d = 1833 Å. The peak

reflectivity appears at  = B = 4n
0
 d. (Adapted

from Ref. 15.6).

v = 2d

n n0 + h

n n0 – h

n n0 + h

N

n n0 – h

N

2
+ 11 2 3 4

(b)

v = 2d

(a)

d

Fig. 15.10 (a) Reflection from a periodic structure consisting of alternate layers of refractive indices (n0 + n)
and (n0 � n), each of thickness d = B/4n0. (b) If we choose a wavelength ( B + ) such that reflec-
tions from layer 1 and layer (N/2 + 1) are out of phase, reflections from layer 2 and layer (N/2 + 2)
are out of phase, etc., and finally reflection from layers N/2 and N are out of phase, then the
reflectivity will be zero.
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strong reflection. If we move away from B then the
individual waves reflected from the various layers will not be
in phase and thus the reflectivity reduces. If we choose a
wavelength ( B + ) such that the reflections from layer 1

and layer N
2

1Q V , from layer 2 and N
2

2Q V , and so on up to

the reflections from layers N
2

 and N are out of phase
[see Fig. 15.10(b)], then the reflectivity will be zero. For
reflection from each of the top N/2 layers, there is a reflection
from a corresponding lower N/2 layer which is out of phase.
(The argument is very similar to that used for obtaining the
direction of minima in the diffraction pattern of a slit � see
Sec. 18.2 and Fig. 18.5). Thus, when we move from B to

( B + ), the waves reflected from the first and N
2

1Q V  th

layer should have an additional phase difference of . Thus,

0 0

2 2

2 ( ) 2
B B

N N
n n−

+ Δ
 = (15.42)

where the first term on the LHS is simply the phase differ-

ence at B between reflections 1 and N
2

1Q V  due to the extra

path travelled by the latter wave and the second term is that
at ( B + ). Assuming  << B , we have

2

22

0

B

n N
= 

or

B

 = B

n N0

= 
02

B

n L
(15.43)

where we have used Eq. (15.40) and L = N  / 2 is the total
thickness of the periodic medium. For the example shown in
Fig. 15.11, we have

 110 Å (15.44)

which compares very well with the actual value in
Fig. 15.11. Thus if the incident wave is polychromatic (like
white light) the reflected light may have a high degree of
monochromaticity. This is indeed the principle used in white
light holography.

The periodic medium discussed above finds wide applica-
tions in high reflectivity multilayer coatings, volume
holography, fiber Bragg gratings etc. We will have a very
brief discussion on fiber Bragg gratings below.

15.6.1 Fiber Bragg Gratings

A periodic structure discussed above has a very important
application in the working of a fiber Bragg grating (usually
abbreviated as FBG). We will discuss the optical fiber in
Chapter 28; it may suffice here to mention that an optical
fiber is a cylindrical structure consisting of a central dielec-

tric core cladded by a material of slightly lower refractive in-
dex (see Fig. 28.7); the guidance of the light beam takes place
because of total internal reflections at the core-cladding in-
terface (see Chapters 28 and 30 for details). The cladding
material is pure silica and the core is usually silica doped
with germanium; the doping results in a slightly higher
refractive index. Now, when a germanium-doped silica core
fiber is exposed to ultraviolet radiation (with wavelength
around 0.24 m), the refractive index of the germanium-doped
region increases; this is due to the phenomenon known as
photosensitivity which was discovered by Kenneth Hill in
1974. The refractive index increase can be as large as 0.001 in
the core of the fiber. If the fiber is exposed to a pair of inter-
fering UV beams (see Fig. 15.12), then we would obtain an
interference pattern similar to that shown in Fig. 14.11 (b). In
regions of constructive interference, the refractive index in-
creases. Since the fringe width would depend on the angle
between the interfering beams, the period of the grating can
be controlled by choosing the angle between the interfering
beams (see Example 14.5). Thus exposing a germanium doped
silica fiber to the interference pattern formed between two UV
beams leads to the formation of a periodic refractive index
variation in the core of the fiber.

L ~ 0.5 mm

UV beam

Fig. 15.12 A Fiber Bragg Grating (usually abbreviated as
FBG) is produced by allowing two beams to pro-
duce an interference pattern.

We consider a polychromatic beam incident on the fiber
as shown in Fig. 15.13. As discussed above, the reflection
from the periodic structure will add up in phase when

 = B = 2  n0 Bragg condition (15.45)

which is the Bragg condition. Figure 15.13(a) shows the fre-
quency spectrum of the incident polychromatic beam, the
Fiber Bragg grating is schematically shown in Fig. 15.13(b).
Figure 15.13(c) shows a typical frequency spectrum of the re-
flected wave; solid line shows the calculated spectrum and
the dashed curve show the experimentally measured values.
For a silica fiber n

0
  1.46 and for the periodic structure to be

reflecting at  = 1550 nm, we must have

= 
λ B

n2 0

 = 
1550

2 1

nm

× .46
  0.531 m (15.46)
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The corresponding peak reflectivity is given by

Rp = tanh2 π

λ

ΔnL

B

%
'&

(
0)

  0.855 (15.47)

Refractive index grating

Cladding

Core

l

(a) (b)

R
e
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e
c
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v
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y

1550.6

1550.8

1551.0

1551.2

1551.4

Wavelength (nm)

(c)

Fig. 15.13 (a) The broad spectrum of the light wave inci-
dent on the FBG (Fiber Bragg Grating) shown in
(b). (c) The spectrum of the reflected wave; solid
line shows the calculated spectrum and the dot-
ted curved show the experimentally measured
values of the FBG fabricated at CGCRI, Kolkata.
[Figure courtesy Dr. S. Bhadra and Dr. S.
Bandyopadhyay of CGCRI, Kolkata].

Sensor 1

Sensor 2

Splice
housing box

Fig. 15.14 FBG-based temperature sensor system on 400 KV power conductor at Subhashgram substa-
tion (near Kolkata) of Powergrid Corporation of India. [Photo courtesy: Dr. Tarun Gangopadhyay
and Dr. Kamal Dasgupta, CGCRI, Kolkata. A color photo to appears as Fig. 19 in the prelim pages].

where we have assumed n = 4  10�4 and L = 2 mm. The
corresponding bandwidth is given by [cf. Eq. (15.43)]

Δλ

λ B

 B

Bn L

n L

2
1

0

2
1

2

( )
(15.48)

giving    0.5 nm. As can be seen from the above equa-
tions that the bandwidth (i.e., the monochromaticity of the
reflected wave) and the peak reflectivity are determined by

n and L.
Because of the extremely small bandwidth of the reflected

spectrum, FBG's are being extensively used as sensors (see
Sec. 28.14.3). For example, a small increase in the temperature
will increase the period of the grating which will result in an
increase of the peak wavelength. Because silica is a dielectric
material, FBG-based temperature sensors become particularly
useful in places where there is high voltage. Figure 15.14
shows the FBG-based temperature sensor system on a 400 kV
power conductor at an electric power substation (see Fig.
15.15). Figure 15.16 shows a typical reflection spectrum and
the temperature recorded from the two FBG sensor shown in
Fig. 15.14; for the two sensors, peak reflectivity occur at
1544.6438 nm and 1545.8789 nm, respectively.

One of the main advantages of the FBG sensor is the fact
that several gratings can be written on a single fiber as
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shown in Fig. 15.17. Each grating has a different period and
therefore a specific wavelength at which peak reflectivity
occurs. If such a distributed sensor is put inside a bridge,

one can measure the strain corresponding to the particular
region. In fact, for many newly constructed bridges, FBG
sensors are put at various places. Figure 15.18 shows the
actual spectrum of the reflected light beam from a fiber on
which six gratings have been written, each having a slightly
different period. The wavelengths at which peak reflectivity
occur are

1 3 4 5 6

1520 nm 1565 nm
nm/division)(4.5l (nm)

R
e
fl
e
c
ti
v
it
y 2

Fig. 15.18 The actual spectrum of the reflected wave from a
fiber on which six gratings have been written, each
having a slightly different period. The wavelengths
at which peak reflectivity occur are 1522.030 nm,
1529.915 nm, 1537.950 nm, 1545.955 nm, 1553.990
nm and 1561.895 nm. The gratings were fabricated at
CGCRI, Kolkata. [Figure courtesy: Dr. Kamal Dasgupta
of CGCRI, Kolkata].

1522.030 nm with 3dB bandwidth of 0.240 nm,
1529.915 nm with 3dB bandwidth of 0.230 nm
1537.950 nm with 3dB bandwidth of 0.240 nm
1545.955 nm with 3dB bandwidth of 0.230 nm
1553.990 nm with 3dB bandwidth of 0.240 nm,

and
1561.895 nm with 3dB bandwidth of 0.230 nm.

The 3dB bandwidth means that, for example for the first
grating, the reflectivity will fall by 50% at   1521.910 nm
and 1522.150 nm. Each grating has a length of 1cm. Thus for
the first grating with B = 1522.030 nm, we get

= 
λ B

n2 0

 = 
1522 03

2 1

.

.46

nm

×
  0.5212 m

Further, assuming L  0.01 m and n
0
  1.46, Eq. (15.48)

would give (one has to be careful with the units!)

0 240

1522

.
 
1522 10

146 0 01
1

0 01

1522 10

6

6

2
1

2

.

. .

( ) .

.

n

giving n  1.7  10�4.

15.7 INTERFERENCE BY A

PLANE PARALLEL FILM

WHEN ILLUMINATED BY A

POINT SOURCE

In Sec. 15.2, we had considered the incidence of a parallel
beam of light on a thin film and had discussed the interfer-

Fig. 15.15 The substation of Powergrid Corporation of India
(near Kolkata, India) where the FBG temperature
sensors have been installed. In the photograph, the
author is with Dr. Tarun Gangopadhyay and Dr.
Kamal Dasgupta of CGCRI, Kolkata. [A color photo
appears as Fig. 20 in the prelim pages]

Fig. 15.16 A typical reflection spectrum from the two FBG
sensor shown in Fig. 15.14. [Photo courtesy:
Dr. Kamal Dasgupta and Dr. Tarun Gangopadhyay,
CGCRI, Kolkata].

(a)

l

(b)

l1 l2 l3 l4

Fig. 15.17 (a) The broad spectrum of the light wave inci-
dent on a fiber on which four gratings have
been written as shown in (b). Each grating has a
slightly different period because of which each
one of them will have peak reflectivity at a dif-
ferent wavelength.
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ence produced by the waves reflected form the upper and
lower surfaces of the film. We will now consider the illumina-
tion of the film by a point source of light and, once again, in
order to observe the film without obstructing the incident
beam, we will use a partially reflecting plate G as shown in
Fig. 15.19. However, in order to study the interference
pattern we may assume the point source S to be right
above the film (see Fig. 15.20) such that the distance SK

(in Fig. 15.20) is equal to SA + AK (in Fig. 15.19); KA

(in Fig. 15.19) and KS (in Fig. 15.20) being normal to the film.
Obviously, the waves reflected from the upper surface of the
film will appear to emanate from the point S  where

KS = KS (15.49)

A

G

P

S ¢

K

S

d

Fig. 15.19 Light emanating from a point source S is al-
lowed to fall on a thin film of thickness d. G is a
partially reflecting plate and P represents the
photographic plate. On the photographic plate
circular fringes are obtained.

(see Fig. 15.20). Further, simple geometrical considerations
will show that the waves reflected from the lower surface will
appear to emanate from the point S , where

KS ~  KS + 2d/n2 (15.50)

(see Fig. 15.20). Equation (15.50) is valid only for near normal
incidence.* Thus, at least for near normal incidence, the
interference pattern produced in region I (see Fig. 15.20) will
be very nearly** the same as produced by two point
coherent sources S  and S  (which is the double hole
experiment of Young discussed in the previous chapter).
Thus, if we put a photographic plate P (see Fig. 15.19) we

will, in general, obtain interference fringes. The intensity of an
arbitrary point Q [in Fig. 15.20] will be determined by the
following relations:

= m
%
'

(
0

1

2
maxima (15.51a)

= m minima (15.51b)

K

S

n1

n2

S ¢

S ¢¢

G

A H

Q
I

II

III

F

q ¢

q
q
0

2 /d n2

Fig. 15.20 If light emanating from a point source S is inci-
dent on a thin film then the interference pattern
produced in the region I is approximately the
same as would have been produced by two co-
herent point sources S  and S  (separated by a
distance 2d/n2) where d represents the thick-
ness of the film and n2 represents the refractive
index of the film.

where = [n1SF + n2(FG + GH) + n1HQ]

� [n
1
(SA + AQ)] (15.52)

represents the optical path difference and we have assumed
that in one of the reflections, an abrupt phase change of 
occurs; n1 and n2 are the refractive indices of media I and II
respectively. The above conditions are rigorously correct;
i.e., valid even for large angles of incidence. Further, it can be
shown that for near normal incidence,

~  2n
2

d cos- (15.53)

* This is a consequence of the fact that the image of a point source produced by a plane refracting surface is not perfect.
** The fact that this is not identical to the Young�s pattern is because of the fact that S  is not a perfect image of the point S. For large

angles of incidence, the waves reflected from the lower surface will appear to emanate from a point which will be displaced from S .
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A more rigorous calculation shows (see Ref. 15.7]

~  2n
2

d cos  1
2

1
2

2
2

1
2 2

0%
'&

(
0)

1

3
2
2

4

6
5
5

n

n n

sin cos

sin
(15.54)

where the angles , 
0
 and  are defined in Fig. 15.20.

Now, if we put a photographic plate (parallel to the sur-
face of the film (see Fig. 15.20)) we will obtain dark and bright
concentric rings (see Example 14.6).*On the other hand, if we
view the film with naked eye then, for a given position of the
eye, we will be able to see only a very small portion of the
film; e.g., with eye at the position E and the point source at S
only a portion of the film around the point B will be visible
[see Fig. 15.21(a)], and this point will appear to be dark or
bright as the optical path difference,

= n1SQ + n2(QA + AB) � n1SB

is m  or m 1
2Q V . Further, using a method similar to the one

described in Sec. 15.3, we can obtain

~  2n
2
d cos- (15.55)

Instead of looking at the film, if the eye is focussed at
infinity, then the interference is between the rays which are
derived from a single incident ray by reflection from the up-
per and the lower surfaces of the film [see Fig. 15.21(b)]. For
example, the rays PM and QR, which focus at the point O of
the retina, are derived from the single ray SP, and the rays
P M  and Q R , which focus at a different point O  on the
retina, are derived from the ray SP . Since the angles of re-
fraction 1 and 2 (for these two sets of rays) will be
different, the points O and O  will, in general, not have the
same intensity.

We next consider the illumination by an extended source
of light S (see Fig. 15.22). Such an extended source may be
produced by illuminating a ground glass plate by a sodium
lamp. Each point on the extended source will produce its own
interference pattern on the photographic plate P; these will
be displaced with respect to one another; consequently, no
definite fringe pattern will appear on the photographic plate.
However, if we view the film with our eye, rays from all points

q¢

G

E

Q ¢

R ¢

Q
R

P

S1

S2

S

Fig. 15.22 Light emanating from an extended source
illuminates a thin film. G represents the
partially reflecting plate and P represents the
photographic plate. The eye E is focussed at
infinity.

* If the point source is taken far away, then it can easily be seen that the rings will spread out and in the limit of the point source being
taken to infinity (i.e., incidence of a parallel beam), the photographic plate will be uniformly illuminated.

S

n1

n2

B

A

E

d

Q

q¢

(a)

S

P P ¢

R ¢
E

R

Q Q ¢

q1
q2

M¢

M
O ¢

O

(b)

Fig. 15.21 Light emanating from a point source S is inci-
dent on a thin film; (a) if the film is viewed by
the naked eye E then the point B will appear to
be dark if the optical path [{n

1
 SQ + n

2
 (QA +

AB)} � n
1
 SB] is m , and bright if the optical

path is m + 1

2
Q V λ . (b) If the eye is focused for in-

finity then it receives parallel rays from
different directions corresponding to different
values of the angles of refraction  (and hence
different values of the optical path difference).
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(a)

(b)

Fig. 15.23 (a) A parallel beam of light incident on a
wedge. (b) The solid and the dashed lines rep-
resent the positions of the crests (at a particular
instant of time) corresponding to the waves re-
flected from the upper surface and from the
lower surface respectively. The maxima will
correspond to the intersection of the solid and
dashed lines. The fringes will be perpendicular
to the plane of the paper.

where AA  represents the thickness of the film at A. Thus, the
condition for the point A to be bright is

2nAA  m
%
'

(
0

1

2
(15.57)

of the film will reach the eye. If the eye is focussed at infinity
then parallel light coming in a particular direction reaching
the eye would have originated from nearby points of the ex-
tended source and the intensity produced on the retina
would depend on the value of 2nd cos-  which is the same
for all parallel rays like S

1
Q, S

2
Q , etc. (see Fig. 15.22). Rays

emanating in a different direction (like S
1
R, S

2
R , etc.) would

correspond to a different value of  and would focus at a
different point on the retina. Since  is constant over the
circumference of a cone (whose axis is normal to the film and
whose vertex is at the eye), the eye will see dark and bright
concentric rings, with the center lying along the direction

 = 0. Such fringes, produced by a film of uniform thickness,
are known as Haidinger fringes. They are also known as
fringes of equal inclination because the changes in the op-
tical path are due to the changes in the direction of incidence
and hence in the value of . In Sec. 15.10 we will discuss the
Michelson interferometer where such fringes are observed.

15.8 INTERFERENCE BY A FILM

WITH TWO NON-

PARALLEL REFLECTING

SURFACES

Till now we have assumed the film to be of uniform thick-
ness. We will now discuss the interference pattern produced
by a film of varying thickness. Such a film may be produced
by a wedge which consists of two non-parallel plane sur-
faces [see Fig. 15.23(a)].

We first consider a parallel beam of light incident normally
on the upper surface of the film [see Fig. 15.23(a)]. In
Fig. 15.23(b) the successive positions of the crests (at a par-
ticular instant of time) reflected from the upper surface and
from the lower surface of the film are shown by solid and
dashed lines, respectively. Obviously, a photographic plate
P will record straight line interference fringes which will be
parallel to the edge of the wedge (the edge is the line pass-
ing through the point O and perpendicular to the plane of the
paper). The dots in the figure indicate the positions of maxima.
In order to find the distance between two consecutive
fringes on the film we note that for the point A to be bright*

n(LM + MA) = m
%
'

(
0

1

2
; m = 0, 1, 2,� (15.56)

[see Fig. 15.23(a)]. However, when the wedge angle  is very
small (which is indeed the case for practical systems)

LM + MA  2AA

* We are assuming here that the beam undergoes a sudden phase change of  when it gets reflected by the upper surface. The expression
for the fringe width (Eq. 15.60) is, however, independent of this condition.
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Similarly, the next bright fringe will occur at the point B where

2nBB  m
%
'

(
0
3

2
(15.58)

Thus, 2n(BB  � AA )  

or XB  /2n (15.59)

But XB = (A X) tan 

or A X =   
2n

(15.60)

where  represents the fringe width and we have assumed 
to be small. Such fringes are commonly referred to as fringes

of equal thickness.
On the other hand, for a point source, the fringe pattern

will be similar to the parallel film case; i.e., for near normal
incidence, the pattern will be very nearly the same as pro-
duced by two sources S  and S  (Fig. 15.24). (Notice that the
point S  is not vertically below S ; this is a consequence of
the fact that the two surfaces of the film are not parallel.) The
intensity of an arbitrary point Q will be determined by the
following equations:

[SA + n(AB + BC) + CQ] � [SD + DQ]

= 
m

%
'

(
0

1

2

maxima (15.61)

= m minima

If we view the film with naked eye (say at the position
E � see Fig. 15.24) then only a small portion of the film
(around the point R) would be visible and the point R will be
bright or dark as the optical path difference [{SN + n(NL +

LR)} � SR] is m 1

2Q V  or m , respectively. One can similarly

discuss the case when the eye is focussed for infinity.
We next consider the illumination by an extended source

S as shown in Fig. 15.25. Since the extended source can be
assumed to consist of a large number of independent point
sources, each point source will produce its own pattern on a
photographic plate P. Consequently, no definite fringe pat-
tern will be observed.* However, if we view the film with a
camera (or with a naked eye) and if the camera is focussed
on the upper surface of the film then a particular point on the
film will appear dark or bright depending on the fact that

whether 2nd is m  or m 1
2Q V  (see Fig. 15.25) � we are

assuming near normal incidence. It may be seen in the figure
that interference at the point Q may occur due to light com-
ing from different points on the extended source, but if the
incidence is near normal then the intensity at the point Q will
be determined entirely by the thickness of the film at that

* There is, however, one exception to this, when the extended source is taken to a very large distance, then the light rays reaching the
plate G will be approximately parallel and an interference pattern (of low contrast) will be formed on the plate P. The same phenom-
enon will also occur if instead of moving the extended source we take the plate P far away from the wedge.

S

Q

E

RNCDA

n

B L

S ¢

S ¢¢

Fig. 15.24 Light from a point source illuminating a
wedge. E represents the lens of the eye.
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Fig. 15.25 Localized interference fringes produced by an
extended source S. Fringes will be seen only
when the eye is focussed on the upper surface of
the film.
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place. Similarly, the intensity at the point Q  will be deter-
mined by the thickness of the film at Q ; however, the point
Q  will be focussed at a different point B  on the retina of the
eye. The fringes will be straight lines parallel to the edge of
the film OO  (Fig. 15.26). It should be emphasized that all
along we are assuming near normal incidence and the fact
that the wedge angle is extremely small. These assumptions
are indeed valid for practical systems.

f

Q

Q¢

B¢
A¢

AB

Fig. 15.26 The fringes formed by a wedge will be parallel
to the edge OO .

It is of interest to mention that if we focus the camera on
a plane XX , which is slightly above the film, then no definite
interference pattern will be observed. This follows from the
fact that the light waves reaching the point K from S2 un-
dergo reflection at the points D2 and F2 and the light waves
reaching K from S1 undergo reflection at the points D1 and
F

1
. Since the thickness of the film is not uniform, the waves

reaching K from S
1
 may produce brightness, whereas the

waves reaching from S
2
 may produce darkness. Thus, in or-

der to view the fringes, one must focus the camera on the
upper surface of the film, and in this sense, the fringes are
said to be localized. It is left as an exercise for the reader to
verify that if the camera is focussed for infinity, no definite
interference pattern will be recorded.

Till now we have assumed the film to be �thin�; the ques-
tion now arises as to how thin the film should be. In order to
obtain an interference pattern, there should be definite phase
relationship between the waves reflected from the upper sur-
face of the film and from the lower surface of the film. Thus
the path difference (= 2nd cos- ) should be small com-
pared to the coherence length.* For example, if we are using
the D

1
 line of an ordinary sodium lamp (  = 5.890 

10�5 cm), the coherence length is of the order of 1 cm and for
fringes to be visible  should be much less than 1 cm. It
should be pointed out that there is no particular value of  for
which the fringes disappear; but as the value of  increases,

the contrast of the fringes becomes poorer. A laser beam has
a very high coherence length and fringes can be visible even
for path differences much greater than 1 m. On the other
hand, if we use a white light source no fringes will be visible
for  

~

 2  10�4 cm (see Sec. 14.9).
It should be pointed out that interference also occurs in

region III (see Fig. 15.27) between the directly transmitted
beam and the beam which comes out of the film after suffer-
ing two reflections, first from the lower surface and then from
the upper surface of the film. However, the two amplitudes
will be very different and the fringes will have very poor con-
trast (see Example 15.1).

Example 15.1 Consider a film of refractive index 1.36 in air.

Assuming near normal incidence (   0), show that whereas the
amplitudes of the reflected rays (1) and (5) (Fig. 15.27) are nearly
equal, the amplitudes of the transmitted rays (4) and (7) are quite
different. (This is the reason why the fringes observed in transmis-
sion have very poor contrast.)

(1)

(4) (7)

(6)

(3)
(2)

(5)

I

II

III

Glass ( )ng

Air ( = 1)na

n nf g(< )

Nonreflecting film

Fig. 15.27 In general, whereas the amplitude of (1) and (5)
are nearly the same, the amplitudes of (2) and
(6) are quite different.

Solution: Let the amplitude of the incident ray be a and let the

amplitudes of the rays (1), (2), (3),�be denoted by a
1
, a

2
,� etc.

Using Eqs. (15.10a) and (15.10b), we get

a
1

= 
1

1

−

+

n

n
a  = �

0 36

2 36

.

.
a   � 0.153a

a
2

= 
2

1 + n
a  = 

2

2 36.
a   0.847a

* Coherence length is defined in Sec. 17.1. If a source remains coherent for a time , then the coherence length (L) will be about c c where
c is the speed of light in free space. Thus for c ~ 10�10 sec, L ~ 3 cm.
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a
3

= 
n

n
a

−

+

1

1
2  = 

0 36

2 36

.

.
  0.874a  0.129a

a
5

= 
2

1
3

n

n
a

+
 = 

2 136

2 36

× .

.
  0.129a  0.149a

a
4

= 
2

1
2

n

n
a

+
 = 2 136

2 36

× .

.
  0.847a  0.977a

a
7

= 
2

1
6

n

n
a

+
 = 

2

1

1

1
3

n

n

n

n
a

+
⋅

−

+
 = 

2 136 36

2 36 2 3
× ×. .

( . )
a

 0.023a

We first note that the sign of a
5
 is opposite to that of a

1
 which

is a consequence of the fact that a sudden phase change of  occurs

when the ray gets reflected at the point B. Further the magnitude of

a
5
 is nearly equal to that of a

1
. On the other hand | a

7
| << | a

4
|. This

is the reason why the interference fringes formed in transmission

have poor contrast.

15.9 COLORS OF THIN

 FILMS

We have seen in the previous section that if light from an
extended monochromatic source (like a sodium lamp) is inci-
dent normally on a wedge, then equally spaced dark and
bright fringes will be observed. The distance between two
consecutive bright (or dark) fringes is determined by the
wedge angle, the wavelength of light and by the refractive
index of the film. If we use a polychromatic source (like an
incandescent lamp) we will observe colored fringes. Further,
if instead of a wedge we have a film of arbitrarily varying
thickness we will again observe fringes, each fringe repre-
senting the locus of constant film thickness (see Fig. 15.28).
This is indeed what we see when sunlight falls on a soap
bubble or on a thin film of oil on water; see Fig. 13 in the
prelim pages. It should be mentioned that if the optical path
difference between the waves reflected from the upper sur-
face of the film and from the lower surface of the film exceeds
a few wavelengths, the interference pattern will be washed
out due to the overlapping of interference patterns of many
colors and no fringes will be seen (see Sec. 14.9). Thus, in
order to see the fringes with white light, the film should not
be more than few wavelength thick.

Fig. 15.28 A typical fringe pattern produced by an airfilm
formed between two glass surfaces (which are
not optically flat) and placed in contact with
each other. Whenever the thickness of the
airfilm is m /2, we obtain a dark fringe and

when the thickness is m + 1

2
Q V λ/2, we obtain a

bright fringe. Each fringe describes a focus of
equal thickness of the film. [Photograph courtesy:
Prof. R.S. Sirohi].

15.10 NEWTON�S RINGS

If we place a plano-convex lens on a plane glass surface, a
thin film of air is formed between the curved surface of the
lens (AOB) and the plane glass plate (POQ)�see Fig. 15.29.

LO 7

M

SG

A

P O

B

Q

Fig. 15.29 An arrangement for observing Newton�s
rings. Light from an extended source S is
allowed to fall on a thin film formed between
the plano-convex lens AOB and the plane
glass plate POQ. M represents a traveling
microscope.
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P Q
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rm

Fig. 15.30 rm represents the radius of the mth dark ring;
the thickness of the air film (where the mth
dark ring is formed) is t.

Fig. 15.31 Newton�s rings as observed in reflection.
The rings observed with transmitted light
are of much poorer contrast. [Photograph
courtesy: Dr. G. Bose].

Newton�s rings can easily be observed in the laboratory
by using an apparatus as shown in Fig. 15.29. Light from an
extended source (emitting almost monochromatic light, like a
sodium lamp) is allowed to fall on a glass plate which par-
tially reflects the beam. This reflected beam falls on the
plano-convex lens�glass plate arrangement and Newton�s
rings can easily be observed by viewing directly or through

* Boyle and Hooke had independently observed the fringes earlier but Newton was the first to measure their radii and make an analysis.
The proper explanation was given by Thomas Young. Also see �Milestones� in the beginning of this chapter.

The thickness of the air film is zero at the point of contact O
and increases as one moves away from the point of contact.
If we allow monochromatic light (such as from a sodium
lamp) to fall on the surface of the lens, then the light re-
flected from the surface AOB interferes with the light
reflected from the surface POQ. For near normal incidence
(and considering points very close to the point of contact)
the optical path difference between the two waves is very
nearly equal to 2nt, where n is the refractive index of the film
and t the thickness of the film. Thus, whenever the thickness
of the air film satisfies the condition

2nt = m
%
'

(
0

1

2
;  m = 0, 1, 2,� (15.62)

we will have maxima. Similarly, the condition

2nt = m (15.63)

will correspond to minima. Since the convex side of the lens
is a spherical surface, the thickness of the air film will be
constant over a circle (whose center will be at O) and we will
obtain concentric dark and bright rings. These rings are
known as Newton�s rings.* It should be pointed out that in
order to observe the fringes, the microscope (or the eye) has
to be focussed on the upper surface of the film (see the dis-
cussion in Sec. 15.7).

The radii of various rings can easily be calculated. As
mentioned earlier, the thickness of the air film will be con-
stant over a circle whose center is at the point of contact O.
Let the radius of the mth dark ring be rm and if t is the thick-
ness of the air film where the mth dark ring appears to be
formed, then

r2

m = t(2R � t) (15.64)

where R represents the radius of curvature of the convex
surface of the lens (see Fig. 15.30). Now R  100 cm and
t 

~
 10�3 cm, thus we may neglect t in comparison to 2R to

obtain

r2

m  2Rt

or 2t  
r

R
m
2

(15.65)

Substituting this in Eq. (15.63), we get

r2

m  m R ; m = 0, 1, 2,� (15.66)

which implies that the radii of the rings vary as square root
of natural numbers. Thus the rings will become close to each
other as the radius increases (see Fig. 15.31). Between the
two dark rings there will be a bright ring whose radius will be

m 1
2

 R.
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a travelling microscope M. Actually, one really need not have
plano-convex lens; the rings would be visible even when a
biconvex lens is used.

Typically for = 6  10�5 cm, and R = 100 cm

rm = 0.0774 m  cm (15.67)

Thus the radii of the first, second and third dark rings would
be approximately 0.0774 cm, 0.110 cm and 0.134 cm, respec-
tively. Notice that the spacing between the second and third
dark rings is smaller than the spacing between the first and
second dark rings.

Equation (15.63) predicts that the central spot should be
dark. Normally, with the presence of minute dust particles the
point of contact is really not perfect and the central spot may
not be perfectly dark. Thus, while carrying out the experi-
ment one should measure the radii of the mth and the
(m+p)th ring ( p  10) and take the difference in the squares
of the radii (r 2

m+ p � r 2

m = p R), which is indeed independent
of m. Usually, the diameter can be more accurately measured
and in terms of the diameters the wavelength is given by the
following expression:

= 
D D

pR

m p m
2 2

4
(15.68)

The radius of curvature can be accurately measured
with the help of a spherometer and therefore by carefully
measuring the diameters of dark (or bright) rings one can
experimentally determine the wavelength.

It may be mentioned that if a liquid of refractive index n is
introduced between the lens and the glass plate, the radii of
the dark rings would be given by

rm = (m R/n)1/2 (15.69)

Equation (15.69) may be compared with Eq. (15.66). Fur-
ther, if the refractive indices of the material of the lens and of
the glass plate are different and if the refractive index of the
liquid lies in between the two values, the central spot will be
bright as in Fig. 15.31 and Eq. (15.69) would give the radii of
the bright rings.

An important practical application of the principle
involved in the Newton�s rings experiment lies in the determi-
nation of the optical flatness of a glass plate. Consider a
glass surface placed on another surface whose flatness is
known. If a monochromatic light beam is allowed to fall on
this combination and the reflected light is viewed by a micro-
scope, then, in general, dark and bright patches will be seen
(Fig. 15.28). The space between the two glass surfaces forms
an air film of varying thickness and whenever this thickness

becomes m /2, we see a dark spot and when this thickness

becomes m 1
2Q V /2 we see a bright spot. Two consecutive

dark fringes will be separated by the air film whose thickness
will differ by /2. Consequently, by measuring the distance
between consecutive dark and bright fringes one can calcu-
late the optical flatness of a glass plate.

When we observe Newton�s rings using a white light
source, we will have situation similar to that discussed in
Sec. 14.9, i.e., we will see only few colored fringes. However,
if we put a red filter in front of our eye, the fringe pattern
(corresponding to the red color) will suddenly appear. If we
replace the red filter by a green filter in front of our eye, the
fringe pattern corresponding to the green color will appear;
this is similar to the discussion we had in Sec. 14.9.

Example 15.2 Consider the formation of Newton�s rings by

monochromatic light of  = 6.4  10�5 cm. Assume the point of
contact to be perfect. Now slowly raise the lens vertically above
the plate. As the lens moves gradually away from the plate, discuss
the ring pattern as seen through the microscope. Assume the radius
of the convex surface to be 100 cm.

Solution: Since the point of contact is perfect, the central spot

will be dark, the first dark ring will form at P where PA = /2, and

the radius of this ring, OA, will be λR  (= 0.080 cm)

�see Fig. 15.32(a). Similarly, the radius of the second dark ring

will be OB = 2λR  (= 0.113 cm). If we now raise the lens by
λ
4

(=1.6  10�5 cm) then 2t corresponding to the central spot would

be /2 and instead of the dark spot at the centre we will now have

a bright spot. The radii of the first and the second dark rings will be

OA
1

= 
1

2

1 2

λR
/

 = 0.0566 cm

and OB
1

= 
3

2

1 2

λR
/

 = 0.098 cm

respectively [see Fig. 15.32(b)]. If the lens is further moved by /
4 (see Fig. 15.32(c)], then the first dark ring collapses to the center
and the central spot will be dark. The ring which was originally at
Q now shifts to Q

2
; similarly the ring at R [Fig. 15.32(a)] collapses

to R
2
 [Fig. 15.32(c)].

Thus, as the lens is moved upward the rings collapse to the cen-
tre. Hence if we can measure the distance by which the lens is
moved upward and also count the number of dark spots that have
collapsed to the center, we can determine the wavelength. For ex-
ample, in the present case, if the lens is moved by 6.4  10�3 cm,
200 rings will collapse to the center. If one carries out this experi-
ment it will be observed that the 200th dark ring will slowly
converge to the center and when the lens has moved exactly by

6.4  10�3 cm it has exactly come to the center.
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Example 15.3 Consider the formation of Newton�s rings

when two closely spaced wavelengths are present; for example, the
D

1
 and D

2
 lines of sodium (

1
 = 5890 Å and 

2
 = 5896 Å). What

will be the effect of the presence of these two wavelengths as the
lens is gradually moved away from the plate? What will happen if

the sodium lamp is replaced by a white light source?

Solution: We will first assume that the lens is in contact with

the plane glass plate [see Fig. 15.32(a)]. Since the two wavelengths
are very close, the bright and dark rings of 

1
 superpose on the

bright and dark rings of 
2
, respectively. This can easily be seen by

calculating the radii of the ninth dark and bright ring for each wave-
length.

For  = 5.890  10�5 cm,

radius of the ninth bright ring = 9
1

2
+

%
'

(
0 λR

= 9 5 5 890 10 100
5

. .× × ×
−

= 0.236548 cm

radius of the ninth dark ring = 9λR

= 0.230239 cm

Similarly, for  = 5.896  10�5 cm,

radius of the ninth bright ring = 9 5 5 896 10 100
5

. .× × ×
−

= 0.236669 cm

and

radius of the ninth dark ring = 9 5 896 10
3

× ×
−

.

= 0.230356 cm

Thus the rings almost exactly superpose on each other. How-
ever, for large values of m, the two ring patterns may produce
uniform illumination. To be more specific, when the air film thick-

ness t is such that

2t = m
1
 = m +%

'
(
0

1

2 2λ

or
2 2

2 1

t t

λ λ
− = 

1

2
(15.70)

then around that point the fringe system will completely disappear;
i.e., the bright ring for the wavelength 

1
 will fall on the dark ring

for the wavelength 
2
 and conversely. Thus the contrast will be

zero and no fringe pattern will be visible. Rewriting Eq. (15.70) we
get

2t 
λ λ

λ λ

1 2

1 2

−
= 
1

2

or 2t = 
1

2

1

2

5 893 10

6 10

1 2
5 2

8

λ λ

λΔ
≈

×

×

−

−

( . )

 3  10�2 cm

This will correspond to m  500.

R C1 1 = 3 /2l

RC = 3 /2l

Q B1 1= l

R C R C RC2 2 1 1= = = 3 /2l

QB = l

P A1 1= /2l

Q B Q B QB2 2 1 1= = = l

PA = /2l

JO = /4l

P O2 = /2l

P

P1

Q2

Q

Q1

R2

R

R1

A

A1

B2

O

O

O

J

P2

B

B1

C2

C

C1

(a)

(b)

(c)

Fig. 15.32 The rings collapse to the center as the lens is moved away from the plate.
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We shall see the effect of the same phenomenon if we slowly
raise the convex lens in the upward direction as we had considered
in Example 15.2. Let t

0
 be the vertical distance through which the

lens has been raised (see Fig. 15.33) and let t
0
 be such that it satis-

fies the following equation:

2 20

2

0

1

t t

λ λ
− = 

1

2

or t
0

= 
λ λ

λ λ

1 2

1 24( )−

Thus, if the point J (see Fig. 15.33) corresponds to a dark spot for

1
 then it will correspond to a bright spot for 

2
 and conversely.

Further, the nearby dark rings for 
1
, will almost fall at the same

place as the bright rings for 
2
 and the interference pattern will be

washed out. Thus viewing from a microscope we will not be able to
see any ring pattern. Now, if the lens is further moved upwards by
a distance t

0
, then we will have

2 21

2

1

1

t t

λ λ
− = 1 (15.71)

J

O

O

J¢

t t1 0= 2

t0 =
l l

l l
1 2

1 24( – )

Fig. 15.33 In the Newton�s rings experiment, if the light
consists of two closely spaced wavelengths 1

and 2 (like the D1 and D2 lines of sodium) then,
if the lens is separated by a distance t0

=
λ λ

λ λ
1 2

4 1 2( )−
 interference fringes will be

washed out. The fringes will reappear when the
distance is 2t0.

where t
1
 = 2t

0
. Consequently, if the point J  corresponds to a dark

spot for 
1
 then it will also correspond to a dark spot for 

2
. The

fringe pattern will reappear but now with a slightly weaker con-
trast (see also Chapter 17).

In this way if we continue to move the lens upwards the fringe
system will reappear every time the lens is moved up by a distance

2t
0
 1

2

1 2R W . This principle is used in a Michelson interferom-

eter to measure the small wavelength difference , between two
closely spaced lines (like the D

1
 and D

2
 lines of sodium).

It should be pointed out that for complete disappearance of the
fringe pattern the intensities of the two lines 

1
 and 

2
 should be

the same.

Another corollary of the above experiment consists in finding
the change in the interference pattern (as we move up the convex
lens) when we consider a single line of wavelength , but which
has a width of . Thus we should assume all wavelengths
between  and  +  to exist. By finding the approximate height
at which the fringes disappear one can calculate . The coherence
length (L) is related to  through the following relation

(see Sec. 17.2):

L ~
λ

λ

2

Δ
(15.72)

15.11 THE MICHELSON

INTERFEROMETER*

A schematic diagram of the Michelson interferometer is
shown in Fig. 15.34. S represents a light source (which may
be a sodium lamp) and L represents a ground glass plate so
that an extended source of almost uniform intensity is
formed. G

1
 is a beam splitter; i.e., a beam incident on G

1
 gets

partially reflected and partially transmitted. M1 and M2 are
good quality plane mirrors having very high reflectivity. One
of the mirrors (usually M2) is fixed and the other (usually M1)
is capable of moving away or towards the glass plate G1

along an accurately machined track by means of a screw. In
the normal adjustment of the interferometer, the mirrors M1

and M2 are perpendicular to each other and G1 is at 45  to
the mirror.

Waves emanating from a point P get partially reflected
and partially transmitted by the beam splitter G1, and the two
resulting beams are made to interfere in the following man-
ner: The reflected wave [shown as (1) in Fig. 15.34]
undergoes a further reflection at M1 and this reflected wave
gets (partially) transmitted through G1; this is shown as (5)
in the figure. The transmitted wave [shown as (2) in
Fig. 15.34] gets reflected by M2 and gets (partially) reflected
by G1 and results in the wave shown as (6) in the figure.

* The Michelson � Morley experiments using the Michelson interferometer to detect the motion of the earth with respect to the �ether�
is discussed in Chapter 31.

LO 10
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Waves (5) and (6) interfere in a manner exactly similar to that
shown in Fig. 15.22. This can easily be seen from the fact that
if x1 and x2 are the distances of the mirrors M1 and M2 from
the plate G

1
, then to the eye the waves emanating from the

point P will appear to get reflected by two parallel mirrors
[M

1
 and M

2
 � see Fig. 15.34] separated by a distance

(x
1

~ x
2
). As discussed in Sec. 15.7, if we use an extended

source, then no definite interference pattern will be obtained
on a photographic plate placed at the position of the eye.
Instead, if we have a camera focused for infinity, then on the
focal plane we will obtain circular fringes, each circle corre-
sponding to a definite value of  (see Figs. 15.22 and 15.35);
the circular fringes will look like the ones shown in Fig. 15.36.
Now, if the beam splitter is just a simple glass plate, the beam
reflected from the mirror M2 will undergo an abrupt phase
change of  (when getting reflected by the beam splitter) and
since the extra path that one of the beams will traverse will
be 2(x

1
 ~ x

2
), the condition for destructive interference will be

2 d cos = m

M2

S

P

L

M¢2

M1

G1

(4)

(2)

(1)(3)

(5) (6)

x2

x2 x1

Fig. 15.34 Schematic of the Michelson interferometer.

where m = 0, 1, 2, 3,�� and

d = x1 ~ x2

and the angle  represents the angle that the rays make
with the axis (which is normal to the mirrors as shown in
Fig. 15.35). Similarly, the condition for a bright ring would be

2 d cos = m
%
'

(
0

1

2

For example, for  = 6  10�5 cm if d = 0.3 mm, the angles at
which the dark rings will occur will be

= cos�1 
m

1000

%
'

(
0

= 0 , 2.56 , 3.62 , 4.44 , 5.13 , 5.73 , 6.28 , �

corresponding to m = 1000, 999, 998, 997, 996, 995, � Thus
the central dark ring in Fig. 15.36(a) corresponds to m = 1000,
the first dark ring corresponds to m = 999, etc. If we now re-
duce the separation between the two mirrors so that d = 0.15
mm, the angles at which the dark rings will occur will be [see
Fig.15.36(b)]

= cos�1 m

500

%
'

(
0  = 0 , 3.62 , 5.13 , 6.28 , 7.25 , �

where the angles now correspond to m = 500, 499, 498, 497,
496, 495, �Thus as we start reducing the value of d, the
fringes will appear to collapse at the centre and the fringes
become less closely placed. It may be noted that if d is now
slightly decreased, say from 0.15 mm to 0.14985 mm,

2 d = 499.5 

P

P1

P2

q

M2
M1

2d

d

Fig. 15.35 A schematic of the formation of circular fringes [Adapted from Ref. 15.7].
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the dark central spot in Fig.15.36(b) (corresponding to m =
500) would disappear and the central fringe will become
bright. Thus, as d decreases, the fringe pattern tends to col-
lapse towards the centre. (Conversely, if d is increased, the
fringe pattern will expand.) Indeed, if N fringes collapse to
the centre as the mirror M

1
 moves by a distance d

0
, then we

must have

2 d = m 

2 (d � d0) = (m � N)

where we have put  = 0 because we are looking at the cen-
tral fringe. Thus,

= 
2 0d

N
(15.73)

This provides us with a method for the measurement of the
wavelength. For example, in a typical experiment, if one finds
1000 fringes collapse to the center as the mirror is moved
through a distance of 2.90  10�2 cm, then

= 5800 Å

The above method was used by Michelson for the stan-
dardization of the meter. He had found that the red cadmium
line (  = 6438.4696 Å) is one of the ideal monochromatic
sources and as such this wavelength was used as a refer-
ence for the standardization of the meter. In fact, he defined
the meter by the following relation:

1 meter = 1553164.13 red cadmium wavelengths,

the accuracy is almost one part in 109.
In an actual Michelson interferometer, the beam splitter G1

consists of a plate (which may be about 1/2 cm thick), the
back surface of which is partially silvered and the
reflections occur at the back surface as shown in Fig. 15.37.
It is immediately obvious that the beam (5) traverses the
glass plate thrice and in order to compensate for this addi-
tional path, one introduces a �compensating plate� G2 which
is exactly of the same thickness as G1. The compensating
plate is not really necessary for a monochromatic source be-
cause the additional path 2(n � 1)t introduced by G1 can be
compensated by moving the mirror M1 by a distance (n � 1)t
where n is the refractive index of the material of the glass
plate G1.

d = 0.3 mm

d = 0.14985 mm

d = 0.15 mm

d = 0.0 mm

(a)

(c)

(b)

(d)

Fig. 15.36 Computer generated interference pattern produced by a Michelson interferometer.
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S

L

M ¢2
M2

M2G2G1

(5)

Fig. 15.37 In an actual interferometer there is also a com-
pensating plate G2.

However, for a white light source it is not possible to si-
multaneously satisfy the zero path-difference condition for
all wavelengths, since the refractive index depends on wave-
length. For example, for  = 6560 Å and 4861 Å, the refractive
index of crown glass is 1.5244 and 1.5330 respectively. If we
are using a 0.5 cm thick crown glass plate as G

1
, then M

1

should be moved by 0.2622 cm for  = 6560 Å and by
0.2665 cm for  = 4861 Å, the difference between the two
positions corresponding to over hundred wavelengths!
Thus, if we have a continuous range of wavelengths from
4861 Å to 6560 Å, the path difference between any pair of
interfering rays (see Fig. 15.34) will vary so rapidly with
wavelength that we would observe only a uniform white light
illumination. However, in the presence of the compensating
plate G2, one would observe a few colored fringes around the
point corresponding to zero path difference (see Sec. 14.9).

Michelson interferometer can also be used in the measure-
ment of two closely spaced wavelengths. Let us assume that
we have a sodium lamp which emits predominantly two
closely spaced wavelengths 5890 Å and 5896 Å. The interfer-
ometer is first set corresponding to the zero path
difference.* Near d = 0, both the fringe patterns will overlap.
If the mirror M1 is moved away (or towards) the plate G1

through a distance d, then the maxima corresponding to the
wavelength 1 will not, in general, occur at the same angle as

2. Indeed, if the distance d is such that

2 2

1 2

d d
= 
1

2
(15.74)

and if 2d cos-  = m 1, then 2d cos  = m 1

2 2Q V . Thus,
the maxima of 

1
 will fall on the minima of 

2
 and conversely,

and the fringe system will disappear. It can easily be seen
that if

2 2

1 2

d d
= 1 (15.75)

then interference pattern will again reappear. In general, if

2 2

1 2

d d

is 1/2, 3/2, 5/2,�we will have disappearance of the fringe
pattern and if it is equal to 1, 2, 3,�then the interference
pattern will appear.

Instead of two discrete wavelengths, if the source con-
sists of all wavelengths, lying between  and  + , then no
interference pattern will be observed if

2 2

2

d d
~

1

2

or

2d
~

2

(15.76)

In this case the fringes will not reappear because we have
a continuous range of wavelengths rather than two discrete
wavelengths (see Sec. 17.2).

Example 15.4 For a sodium lamp, the distance traversed by

the mirror between two successive disappearances is 0.289 mm.
Calculate the difference in the wavelengths of the D

1
 and the D

2

lines. Assume  = 5890 Å.

Solution: When the mirror moves through a distance 0.289 mm,

the additional path introduced is 0.578 mm. Thus,

0 578 0 578. .

λ λ λ
−

+ Δ
= 1

or

~
.

−
λ
2

0 578
 = 

( )

.

5890 10

0 578

7 2
×

−

mm

~ 6 Å

Summary

u If a plane wave is incident normally on a thin film of uniform

thickness d then the waves reflected from the upper surface
interfere with the waves reflected from the lower surface.
Indeed, for a film of thickness /4nf [where  is the free
space wavelength and nf is the film refractive index which lies
between the refractive indices of the two surrounding media],
the wave reflected from the upper surface interferes destruc-

* The zero path difference is easily obtained by using white light where only a few coloured fringes, around d = 0, will be visible.
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tively with the wave reflected from the lower surface and
therefore the film acts like an anti-reflection layer.

u A medium consisting of a large number of alternate layers of
high and low refractive indices of n

0
 + n and n

0
 � n of

equal thickness d is called a periodic medium and the spatial
period of the refractive index variation is denoted by 

(= 2d). For n << n
0
, if d  

λ

4 0n
 (where  is the free space

wavelength), the reflections arising out of the individual re-
flections from the various interfaces would all be in phase
and would result in a strong reflection. Thus for strong reflec-
tion at a chosen (free space) wavelength 

B
, the period of the

refractive index variation should be

 = 2d = 
λ B

n2 0

This is referred to as the Bragg condition. This is the prin-

ciple of operation of Fiber Bragg gratings.
u If we place a plano-convex lens on a plane glass surface, a

thin film of air is formed between the curved surface of the
lens and the plane glass plate. If we allow monochromatic
light (such as from a sodium lamp) to fall (almost normally)
on the surface of the lens, then the light reflected from the
curved surface interferes with the light reflected from the
plane surface. Since the convex side of the lens is a spherical
surface, the thickness of the air film will be constant over a
circle and we will see concentric dark and bright rings. These
rings are known as Newton's rings. The radii of the concen-
tric rings are such that the difference between the square of
the radii of successive fringes is very nearly a constant.

u The Michelson interferometer was used by Michelson for the
standardization of the meter. He had found that the red
cadmium line (  = 6438.4696 Å) is one of the ideal mono-
chromatic sources and as such this wavelength was used as a
reference for the standardization of the meter. In fact, he
defined the meter by the following relation:

1 meter = 1553164.13 red cadmium wavelengths,

the accuracy is almost one part in 109.

u Michelson interferometer can also be used in the measure-

ment of two closely spaced wavelengths.

Problems

15.1 A glass plate of refractive index 1.6 is in contact with an-

other glass plate of refractive index 1.8 along a line such
that a wedge of 0.5  is formed. Light of wavelength 5000 Å
is incident vertically on the wedge and the film is viewed
from the top. Calculate the fringe spacing. The whole appa-
ratus is immersed in an oil of refractive index 1.7. What will
be the qualitative difference in the fringe pattern and what
will be the new fringe width?

15.2 Two plane glass plates are placed on top of one another
and on one side a cardboard is introduced to form a thin
wedge of air. Assuming that a beam of wavelength 6000 Å

is incident normally, and that there are 100 interference
fringes per centimeter, calculate the wedge angle.

15.3 Consider a non-reflecting film of refractive index 1.38. As-
sume that its thickness is 9  10�6 cm. Calculate the
wavelengths (in the visible region) for which the film will
be non-reflecting. Repeat the calculations for the thickness
of the film to be 45  10�6 cm. Show that both the films
will be non-reflecting for a particular wavelength but only
the former one will be suitable. Why?

15.4 In the Newton�s rings arrangement, the radius of curvature
of the curved side of the plano-convex lens is 100 cm. For

 = 6  10�5 cm what will be the radii of the 9th and 10th
bright rings?

15.5 In the Newton�s rings arrangement, the radius of curvature
of the curved surface is 50 cm. The radii of the 9th and
16th dark rings are 0.18 cm and 0.2235 cm. Calculate the
wavelength.

(Hint: The use of Eq. (15.66) will give wrong results,
why?) (Ans. 5015 Å)

15.6 In the Newton�s rings arrangement if the incident light con-
sists of two wavelengths 4000 Å and 4002 Å calculate the
distance (from the point of contact) at which the rings will
disappear. Assume that the radius of curvature of the
curved surface is 400 cm.

(Ans. 4 cm)

15.7 In Problem 15.6, if the lens is slowly moved upward, cal-
culate the height of the lens at which the fringe system
(around the center) will disappear.

(Ans. 0.2 mm)

15.8 An equiconvex lens is placed on another equiconvex lens.
The radii of curvatures of the two surfaces of the upper
lens are 50 cm and those of the lower lens are 100 cm. The
waves reflected from the upper and lower surface of the air
film (formed between the two lenses) interfere to produce
Newton�s rings. Calculate the radii of the dark rings. As-
sume  = 6000 Å.

[Ans. 0.0447 m  cm]

15.9 In the Michelson interferometer arrangement, if one of the
mirrors is moved by a distance 0.08 mm, 250 fringes cross
the field of view. Calculate the wavelength.

[Ans. 6400 Å]

15.10 The Michelson interferometer experiment is performed
with a source which consists of two wavelengths 4882 Å
and 4886 Å. Through what distance does the mirror have
to be moved between two positions of the disappearance
of the fringes?

[Ans. 0.298 mm]

15.11 In the Michelson interferometer experiment, calculate the
various values of  (corresponding to bright rings) for d =
5  10�3 cm. Show that if d is decreased to 4.997  10�3 cm
the fringe corresponding to m = 200 disappears. What will
be the corresponding values of ? Assume  = 5  10�5 cm.



16.1 INTRODUCTION

In the last two chapters, we have been discussing interfer-
ence between two beams which are derived from a single
beam either by division of wavefront or by division of ampli-
tude. In this chapter, we will discuss interference involving
many beams which are derived from a single beam by mul-
tiple reflections (division of amplitude). Thus, for example, if
a plane wave falls on a plane parallel glass plate, then the
beam would undergo multiple reflections at the two surfaces
and a large number of beams of successively diminishing am-
plitude will emerge on both sides of the plate. These beams
(on either side) interfere to produce an interference pattern at
infinity. We will show that the fringes so formed are much
sharper than those by two beam interference and, therefore,
the interferometers involving multiple beam interference
have a high resolving power and hence find applications in
high resolution spectroscopy.

When two Undulations � coincide either perfectly or very nearly in Direction, their joint effect

is a Combination of the Motions belonging to each.*

�Thomas Young2 (1801)

w�v�s�vi2fiew

sx�i�pi�ywi���

Chapter
Sixteen

Important Milestones

1899 Marie Fabry and Jean Perot invented the Fabry�Perot interferometer which is characterized by a very high

resolving power.

16.2 MULTIPLE REFLECTIONS

FROM A PLANE PARALLEL

FILM

We consider the incidence of a plane wave on a plate of
thickness h (and of refractive index n2) surrounded by a me-
dium of refractive index n1 as shown in Fig. 16.1; as we will
discuss later, the Fabry�Perot interferometer consists of two
partially reflecting mirrors (separated by a fixed distance h)
placed in air so that n

1
 = n

2
 = 1.

Let A
0
 be the (complex) amplitude of the incident wave.

The wave will undergo multiple reflections at the two inter-
faces as shown in Fig. 16.1(a). Let r1 and t1 represent the
amplitude reflection and transmission coefficients when the
wave is incident from n1 towards n2 and let r2 and t2 represent
the corresponding coefficients when the wave is incident
from n2 towards n1. Thus the amplitude of the successive
reflected waves will be

A0 r1, A0 t1 r2 t2 e
i , A0 t1 r2

3 e2i ,�
* The author found this quotation in Ref. 16.1.

LO 1: interpret the interference pattern using multiple reflection system.
LO 2: apply multiple beam interferometry to explain Fabry-Perot interferometer.
LO 3: obtain the resolving power of Fabry-Perot interferometer.
LO 4: discuss usefulness of Lummer-Gehrcke plate.
LO 5: understand the working of inteference filters.

LO 1
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where = 
0

2  = 2 2

0

4 cosn h
(16.1)

represents the phase difference (between two successive
waves emanating from the plate) due to the additional path

traversed by the beam in the film (see Sec. 15.1) and in
Eq. (16.1), 2 is the angle of refraction inside the film
(of refractive index n2), h the film thickness and 0 is the free
space wavelength. Thus the resultant (complex) amplitude of
the reflected wave will be

A
r

= A
0 
[r

1
 + t

1
 t

2
 r

2
 ei  (1 + r

2

2 ei  + r
2

4 e2i  +....)]

= A0 r
t t r e

r e

i

i1
1 2 2

2
2

1

1

3
2
2

4

6
5
5

(16.2)

Now, if the reflectors are lossless, the reflectivity and the
transmittivity at each interface are given by (see Sec. 14.12)

R = r1

2 = r2

2

= t1 t2 = 1 � R

(We are reserving the symbol T for the transmittivity of the
Fabry�Perot etalon.) Thus,

A

A

r

0

= r
R e

Re

i

i1 1
1

1

1

3
2
2

4

6
5
5

( )

where we have used the fact that r2 = � r1. Thus, the
reflectivity of the Fabry�Perot etalon is given by

� = 
A

A

r

0

2

 = R
1

1

2

e

R e

i

i

= R 
( cos ) sin

( cos ) sin

1

1

2 2

2 2 2
R R

= 
4

2

1 4
2

2

2 2

R

R R

sin

( ) sin

or,

� = 
F

F

sin

sin

2

2

2

1
2

(16.3)

where

F = 
4

1
2

R

R( )
(16.4)

is called the coefficient of Finesse. One can immediately see
that when R << 1, F is small and the reflectivity is propor-
tional to sin2 /2. The same intensity distribution is obtained
in the two beam interference pattern (see Sec. 14.7); we may
mention here that we have obtained sin2 /2 instead of
cos2 /2 because of the additional phase change of  in one
of the reflected beams.

Reflector

n1

n1

n2
q2

qi

qi

A
A0

B

h

(a)

(b)

O P

L2

L1

A

B

O¢ P¢

Fig. 16.1 (a) Reflection and transmission of a beam of am-
plitude AH incident at an angle i on a film of
refractive index nP and thickness h. (b) Any ray
parallel to AB will focus at the same point P. If the
ray AB is rotated about the normal at B, then the
point P will rotate on the circumference of a circle
centred at the point O ; this circle will be bright or
dark depending on the value of i . Rays incident
at different angles will focus at different distances
from the point O and one will obtain concentric
bright and dark rings for an extended source.
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Similarly, the amplitude of the successive transmitted
waves will be

A0 t1 t2, A0 t1 t2 r2

2 ei , A0 t1 t2 r2

4 e2i ,�

where, without any loss of generality, we have assumed the
first transmitted wave to have zero phase. Thus the resultant
amplitude of the transmitted wave will be given by

A
t

= A
0
 t

1 
t
2
 [1 + r

2

2 ei  + r
2

4 e2i +....]

= A0 
t t

r e
i

1 2

2
2

1
 = A0 

1

1

R

Re
i

Thus, the transmittivity T of the film is given by

T = 
A

A

t

0

2

 = 
( )

( cos ) sin

1

1

2

2 2 2

R

R R

or

T = 
1

1
2

2
F sin

(16.5)

It is immediately seen that the reflectivity and the trans-
mittivity of the Fabry�Perot etalon add up to unity. Further,

T = 1
when

= 2 m ; m = 1, 2, 3,� (16.6)

In Fig. 16.2, we have plotted the transmittivity as a function
of  for different values of F. In order to get an estimate of
the width of the transmission resources, let

T = 1
2

for  = 2 m   
2

Thus,

F sin2 
4

= 1 (16.7)

The quantity  represents the FWHM (Full Width at Half
Maximum). In almost all cases,  <<< 1 and therefore, to a
very good approximation, it is given by

 
4

F

 = 
2 1( )R

R

(16.8)

Thus the transmission resources become sharper as the
value of F increases (see Fig. 16.2).

0.5

1

T

Dd

F = 2

F = 10

F = 400

2 mp
d

(2 + 2)m p

Fig. 16.2 The transmittivity of a Fabry�Perot etalon as a
function of  for different values of F; the value
of m is usually large. The trans-mission reso-
nances become sharper as we increase the value
of F. The FWHM (Full Width at Half Maximum)
is denoted by .

16.3 THE FABRY�PEROT

ETALON

In this section, we will discuss the Fabry�Perot
interferometer which is based on the principle of multiple
beam interferometry discussed in the last section. The
interferometer (as shown in Fig. 16.3) consists of two plane
glass (or quartz) plates which are coated on one side with a
partially reflecting metallic film* (of aluminum or silver) of
about 80% reflectivity. These two plates are kept in such a
way that they enclose a plane parallel slab of air between
their coated surfaces. If the reflecting glass plates are held
parallel to each other at a fixed separation, we have what is
known as a Fabry�Perot etalon. In fact, we may neglect the
presence of the plates and consider only the reflection
(and transmission) by the metallic film; further, if the plates
are parallel, the rays will not undergo any deviation.

In a typical experiment, light from a broad source is colli-
mated by a lens and is passed through the Fabry�Perot

* In the visible region of the spectrum, silver is the best metal to coat with (the reflectivity is about 0.97 in the red region and decrease
to about 0.90 in the blue region). But beyond the blue region, the reflectivity falls rapidly. Aluminum is usually employed below
4000 Å.

LO 2
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etalon as shown in Fig. 16.3. Thus, if we consider light of a
specific wavelength 0 , the incident light will be completely
transmitted (i.e., T = 1) if the angle of incidence is such that

= 
4

0
2n  h cos 2 = 2 m (16.9)

or

cos
2

= 
m

n h

0

22
(16.10)

Screen

q

Extended
source

L

S

h f

Fig. 16.3 The Fabry�Perot etalon

For large values of F, when 2 is slightly different from the
value given by the above equation, the transmittivity will be
very small. Hence, for a given wavelength, at the focal plane
of the lens L, we will obtain a fringe pattern consisting of
concentric rings�each bright ring will correspond to a
particular value of m. The sharpness of the bright rings (and
hence the resolving power of the etalon) will increase with
the value of F.

Example 16.1 As an example, we assume an etalon with

n
2

= 1, h = 1 cm and F = 400 (F = 400 implies R  0.905; i.e., each
mirror of the etalon has about 90% reflectivity). In Fig. 16.4 we
have plotted the intensity variation with  for 

0
 = 5000 Å and

4999.98 Å. The actual fringe pattern (as obtained on the focal plane
of a lens of focal length 25 cm) is shown in Fig. 16.5. Now, for

0
= 

1
 = 5000 Å

Equation (16.9) gives us

2
= cos�1 

m

40000

%
'

(
0

Thus bright rings will form at

2
= 0 , 0.405 , 0.573 , 0.702 ,�

corresponding to m = 40000, 39999, 39998, 39997,� respectively.
This is shown as the thick curve in Fig. 16.4. On the other hand,

for

0
= 

2
 = 4999.98 Å

we get

2
= cos�1 m

4000016.

Thus, bright rings will form at

2
= 0.162 , 0.436 , 0.595 ,�

corresponding to m = 40000, 39999, and 39998, respec-
tively. This is shown as the thin curve in Fig. 16.4. The correspond-
ing ring patterns as obtained on the focal plane of the lens is shown
in Fig. 16.5. From the figure we can see that the two spectral lines
having a small wavelength difference of 0.02 Å are quite well re-
solved by the etalon. In the figure, the central bright spot and the
first ring corresponds respectively to 

0
 = 5000 Å and 

0
 =

0.5

0

1

In
te

ns
ity

0.1 0.2 0.3 0.4 0.5 0.6

q (degrees)

l l= = 4999.98 Å2

l l= = 5000 Å1
l l= 1

l l= 2

Fig. 16.4 The variation of intensity with  for a Fabry�
Perot interferometer with n

P
 = 1, h = 1.0 cm and

F = 400, corresponding to 
H
 = 5000 Å (=

I
) and

H
 = 4999.98 Å (=

P
).

Fig. 16.5 The (computer generated) ring pattern as
obtained (on the focal plane of a lens) in a
Fabry�Perot etalon with n

P
 = 1, h = 1.0 cm and

F = 400, corresponding to 
H
 = 5000 Å (=

I
) and

H
 = 4999.98 Å (=

P
).



Multiple Beam Interferometry ITFS
u

4999.98 Å; both corresponding to m = 40000. The next two closely

spaced rings correspond to m = 39999 for the two wavelengths.

16.3.1 Flatness of the Coated Surfaces

In order to have sharp fringes, the coated surfaces should be
parallel to a very high degree of accuracy. Indeed, the coated
surfaces should be flat within about /50 where  is the
wavelength of light. In order to see this, we assume that in
the above example h is increased by /20 (=250 Å=2.5 
10�6 cm):

h = 1 + 2.5  10�6 = 1.0000025 cm

For 
0
 = 5000 Å, we will have

2 = cos�1 m

40000 1.

%
'&

(
0)

and bright rings will form at

2 = 0.128 , 0.425 , 0.587 ,�

If we compare the results obtained in Example 16.1, we will
find that if there is a variation in the spacing by about /20, the
fringes corresponding to the wavelengths 5000 Å and
4999.98 Å will start overlapping. Thus the coated surfaces
should be parallel within a very small fraction of the wave-
length. Further, the two non-coated surfaces of each plate
are made to have a slight angle between them (~1 to 10 min-
utes � see Fig. 16.3) so that one could avoid the unwanted
fringes formed due to multiple reflections in the plate itself.

16.3.2 Modes of the Fabry�Perot Cavity

We consider a polychromatic beam incident normally ( 2 = 0)
on a Fabry�Perot etalon with air between the reflecting
plates (n2 = 1) � see Fig. 16.6. In terms of the frequency

v = c

0

Equation (16.9) tells us that transmission resonance will oc-
cur when

v = v
m
 = m2

2

c

h
(16.11)

where m is an integer. The above equation represents the
different (longitudinal) modes of the (Fabry�Perot) cavity.
For h = 10 cm, the frequency spacing of two adjacent modes
would be given by

v = c

h2
 = 1500 MHz

For an incident beam having a central frequency of

v = v0 = 6  1014 Hz

and a spectral width* of 7000 MHz the output beam will have
frequencies

v0, v0  v and v0  2 v

as shown in Fig. 16.6. One can readily calculate from
Eq. (16.11) that the five lines correspond to

m = 399998, 399999, 400000, 400001 and 400002

Figure 16.7 shows a typical output of a multi-longitudinal
(MLM) laser diode. The wavelength spacing between two
modes is about 0.005 m; the corresponding v 620 GHz.

7000 MHz h

n n

1500 MHz

Fig. 16.6 A beam having a spectral width of about 7000 MHz (around v
H
 = 6  10IR Hz) is incident normally on

a Fabry�Perot etalon with h = 10 cm and n
P
 = 1. The output has five narrow spectral lines.

* For 
0
 = 6  1014 Hz, 

0
 = 5000 Å and a spectral width of 7,000 MHz would imply 0

0

 = 
v

v0
 = 

7 10

6 10

9

14
  1.2  10�5 giving

0
  0.06 Å. Thus a frequency spectral width of 7000 MHz (around v

0
 = 6  1014 Hz) implies a wavelength spread of only 0.06 Å.
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separation h and measure the intensity variation on the focal
plane of the lens L as shown in Fig. 16.8. Such an
arrangement is usually referred as a scanning Fabry�Perot
interferometer. Since the separation h is varied, we write it as

1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.59

l m( m)

Fig. 16.7 Typical output spectrum of a Fabry�Perot
multilongitudinal mode (MLM) laser diode; the
wavelength spacing between two modes is about
0.005 m (Refs. 16.10, 16.11, 16.12).

16.4 THE FABRY�PEROT

INTERFEROMETER

If one of the mirrors is kept fixed while the other is capable of
moving to change the separation between the two mirrors,
the system is called a Fabry�Perot interferometer. For a
beam incident normally on the interferometer, we vary the

Photodetector

P

L
x

h0

Fig. 16.8 A scanning  Fabry�Perot interferometer. The
intensity variation is recorded (by a
photodetector) on the focal plane of the lens L.

Fig. 16.9 Variation of intensity at the point P with x (see Fig. 16.8) for a monochromatic beam incident nor-
mally on a scanning Fabry�Perot interferometer; the solid curve corresponds to F = 1000 and the
dashed curve corresponds to F = 100.

h = h0 + x (16.12)

If the incident beam is monochromatic, a typical variation
of intensity at the point P is shown in Fig. 16.9. The figure
corresponds to the frequency of the incident beam being

= 
0
 = 6  1014 Hz
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For h0 = 10 cm, n2 = 1 and cos 2 = 1, we get

= 
4 0 0( )h x

c

= 800000 1
0

%
'&

(
0)

x

h

Thus, transmittivity resonances will occur for

= 800000 , 800002 , 800004 ,�

which will occur when

x = 0, 250 nm, 500 nm,�

respectively. The two curves in Fig. 16.9 correspond
to F = 100 and F = 1000. Notice that the transmission
resonances become sharper if we increase the value of F.
Fig. 16.10 shows variation of intensity at the point P when
the incident beam has two frequencies separated by 300 MHz.
Obviously, the two frequencies are well resolved.

We may mention here that if the frequency of the incident
beam is increased by c/2h

0
, i.e., if

= 0 + 
c

h2 0

then one can easily show that transmission resonances will
occur at the same values of x, the corresponding values of 
will be 800002  (corresponding to x = 0), 800004  (corre-
sponding to x = 250 nm) etc. Indeed, if

v = v0  p 
c

h2 0

; p = 1, 2, 3,�

we will have the same T vs. x curve. The quantity

v
s

= 
c

h2 0

(16.13)

is known as the free spectral range (FSR) of the interferom-
eter. Thus when the spectrum has widely separated
wavelength components, we will have overlapping of orders.

16.5 RESOLVING POWER

We will first consider the resolving power corresponding to
a beam incident normally on a scanning Fabry�Perot interfer-
ometer. This will be followed by the case corresponding to
the Fabry�Perot etalon.

16.5.1 Resolving Power of a Scanning
Fabry�Perot Interferometer

We consider the presence of two frequencies 1 and 2 of
equal intensity in the beam incident normally on a scanning
Fabry�Perot interferometer. For the two frequencies to be
just resolved, we assume that the half intensity point of n1

falls on the half intensity point of 
P
 as shown in Fig. 16.11.

When this happens, the minimum of the resultant intensity
distribution (shown as the dashed curve in Fig. 16.11) is
about 74% of the corresponding maximum value. Now, as
discussed in Sec. 16.2, if the half intensity point occurs at

= 1/2 = 2 m   
2

(16.14)

0
0

0.5

1

–100 25050 300 400

d p= 800,000 d p= 800,002

I1

I2

n n= – 300 MHz0

n n= = 6 10 Hz0
14

¥

x nm( )

T

Fig. 16.10 Variation of intensity at the point P with x (see Fig. 16.8) when the incident beam has two
frequencies separated by 300 MHz.
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then

 
4

F

(16.15)

[see Eq. (16.8)]. Consider the frequency 1. If the intensity
maximum occurs at h = h1 then

1
= 
4 1 1h v

c
 = 2 m (16.16)

Let the intensity maximum for v = v
2
 (= v

1
 + v

1
) occur at

h = h
2
 = h

1
 + h

1

Thus,

2 = 
4 1 1 1 1( ) ( )h h v v

c
 = 2 m (16.17)

Using Eqs. (16.16) and (16.17) and neglecting the second
order term h1 v1, we get

v1 h1 + h1 v1 = 0
or

h
1

= �
h

v

1

1

v
1

(16.18)

Equation (16.18) implies that for h
1
 to be positive, 

1

should be negative. Now, for the frequency 
1
, let the half

intensity point occur at h = h
1
 + h

1
 (the corresponding

value of  will be 2m  + ½ 
1
); thus using Eq. (16.16)

4 1 1v h

c
= 1

2

2
1

F

(16.19)

or

h1  
c

v F2 1

(16.20)

For the two frequencies to be just resolved

h1 = 2 h1  
c

v F1

(16.21)

Using Eq. (16.18) we get for the resolving power

v

v

1 = 1

1

h

h
 = 

h v F

c

1 1

or dropping the subscript, we get

Resolving power = 
v

v
 = 

h v F

c
(16.22)

or in terms of the wavelength

Resolving power = 0

0

 = 
h F

0

(16.23)

For h = 1 cm, 
0
 = 6  10�5 cm

 0.013 Å for F = 80

 0.006 Å for F = 360

Fig. 16.11 The individual intensity variations I
I
 and I

P
 in the presence of two frequencies 

I
 and 

P
 and the

total intensity variation (I
I
 + I

P
) when the two frequencies are just resolved.
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16.5.2 Resolving Power of a Fabry�Perot
Etalon

We consider light from a broad source incident on a Fabry�
Perot etalon as shown in Fig. 16.3. We once again consider the
presence of two wavelengths 

1
 and 

2
 of equal intensity.

Now, T = 1 if the angle of incidence is such that [see Eq. (16.9)]

= 
4 v

c
 h  = 2 m (16.24)

where  = cos , and for the sake of simplicity, we have
dropped the subscript on  and . We can now have argu-
ments very similar to that in Sec. 16.5.1 except now h is fixed
and  (= cos ) is varied. Thus, if the mth order intensity
maxima for v = v1 and v = v2 (= v1 + v1) occur at  = 1 and

 = 2 (= 1 + 1), then

1 = 
4 1 1v h

c
 = 2 m (16.25)

and

2 = 
4 1 1 1 1h v v

c

( ) ( )
 = 2 m (16.26)

Thus, neglecting the second order term we get

1 = � 1

1v
 v1 (16.27)

Now, for the frequency v
1
, let the half intensity point

occur at  = 
1
 +  

1
 (the corresponding value of  will be

2 m  + ½
1
); thus using Eq. (16.24)

4 1 1v h

c
= 

1

2

2
1

F

(16.28)

or

1
 

c

v h F2 1

(16.29)

As discussed earlier, for the two frequencies to be just
resolved, we assume that the half intensity point of v

1
 falls

on the half intensity point of v
2
 giving

1
= 2

1
  

c

v h F1

(16.30)

Using Eq. (16.27) we get

Resolving power = 
v

v

1

1

 = 1

1

 =
v h F

c

1 1 (16.31)

or in terms of the wavelength

Resolving power = 0

0

 = 
h F cos

0

(16.32)

Thus for F = 360 (R = 0.9), h = 1 cm, 0 = 5000 Å

0

0

 1.2  106

where we have assumed normal incidence. The above equa-
tion gives

0
 0.004 Å

Thus a Fabry�Perot instrument can resolve wavelengths dif-
fering by about 10�3 Å. This is in contrast to that of a grating
(say having 25000 grooves) which resolves up to about 0.1 Å
at  = 5000 Å and that of a prism (made of dense flint glass
with 5 cm base) which resolves only up to about 1 Å at
5000 Å. It must be noted that in the above analysis, we have
considered two monochromatic lines at  and  + . In gen-
eral, the lines at the two wavelengths  and  + 
themselves will have a wavelength spread and this restricts
the use of such high resolving powers.

When the Fabry�Perot interferometer is used to analyze
spectra with closely spaced lines, then the distance between
the adjacent maxima would be greater than the displacement
between the system of rings of the spectral lines. But when
the spectrum has widely separated wavelength components,
then it might happen that the displacement between the rings
is greater than the separation between adjacent maxima. The
results in the �overlapping� of orders (see also the discussion
at the end of Sec. 16.4). The difference in wavelength (

s
)

which corresponds to a displacement of one order, is called
the spectral range of the interferometer. Thus we can write

s
= 2

2 cosnh
(16.33)

This becomes, for near normal incidence (   0),

s
= 

2

2nh
(16.34)

which is found to be inversely proportional to h. This is in
contrast to the resolving power which depends directly on h
[see Eqs. (16.31) and (16.32)].

When the spectrum is complex consisting of a number of
widely separated wavelength components, each with a hy-
perfine structure, then one can separate the different
wavelength components by employing the Fabry�Perot
interferometer along with a spectrograph as shown in
Fig. 16.12(a). The light emerging from the source S is
rendered parallel by the lens L

1
. The interference pattern

formed by the Fabry�Perot interferometer (marked by FP in
the figure) is made to fall on the slit of the spectrograph. The
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spectrograph separates the spectral components and one
obtains in the plane P images of the slit, each crossed by
fringes as shown in Fig. 16.12(b).

16.6 THE LUMMER�GEHRCKE

PLATE*

We saw in Sec. 16.2 that the sharpness of fringes (and hence
the resolving power) of a multiple beam interferometer
increases as the reflectivity R of the plate increases. But one
cannot use every thick coating of metals to increase the
reflectivity as the intensity of the beam would be reduced
considerably due to absorption in metallic coatings. This dif-
ficulty can be overcome by the use of the phenomenon of
total internal reflection (instead of metallic reflection); this is
used in the Lummer�Gehrcke plate which will be discussed in
this section.

A Lummer-Gehrcke plate is a plane parallel made of glass
(or quartz), on one end of which a small right-angled prism of
the same material is fixed (see Fig. 16.13). The angle of the
prism is chosen in such a way that the rays incident normally
on the surface of the prism hit the two surfaces of the plate
at an angle slightly less than the critical angle.** Since the
two surfaces are parallel, all successive reflections will occur
at the same (near critical) angle. Most of the light will be re-
flected with a little fraction being transmitted at each
reflection. Thus, there will emerge from the upper and lower

surfaces of the plate a series of waves which would finally
interfere to produce interference fringes in the plane P (see
Fig. 16.13). Notice that the prism suppresses the externally
reflected beam. In the plane P, one obtains fringe patterns on
either side of the plate. The fringes are approximately straight
lines parallel to the plate surfaces.

Fig. 16.12 (a) A Fabry�Perot interferometer used in
conjunction with a spectrograph. (b) The
interlaced fringes formed in the plane of
the slit are separated by the prism. For
example, (i), (ii) and (iii) may correspond
to the lines in the red, yellow and green
regions, respectively as observed on
plane P.

* Sections 16.6 and 16.7 have been very kindly written by Professor Anurag Sharma.
** Beyond the critical angle, the reflection is total while slightly below the critical angle, the reflectivity is high (see Sec. 24.2).

P¢

P

L

Fig. 16.13 The Lummer�Gehrcke plate.

We will not go into the details of the theory of the
Lummer�Gehrcke plate but two points may be noted:

(a) Unlike in the case of Fabry�Perot interferometer, the
space between the reflecting surfaces is a dispersive
medium, and

(b) The number of reflections is also not very large as
in the case of the Fabry�Perot interferometer; the
number of reflections depends on the length of the
plate and the angle , (see Fig. 16.13). Thus, the
resolving power of the instrument depends on the
length of the plate.

Earlier, Lummer�Gehrcke plates were used in high resolu-
tion spectroscopy. However, it has been replaced by the
more flexible Fabry�Perot interferometer.

16.7 INTERFERENCE

FILTERS

When a Fabry�Perot interferometer is illuminated by a mono-
chromatic (uncollimated) beam, we get a spectrum consisting
of different intensity maxima which satisfy the following rela-
tion:

2 n h cos 
r

= m (16.35)

Now if a Fabry�Perot interferometer is illuminated with a col-
limated white light incident normally (

r
  0), maxima of

different orders are formed in the transmitted light corre-
sponding to wavelengths given by

= 
2nh

m
(16.36)

LO 4

LO 5
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If h is large, a large number of maxima will be observed in the
visible region; for example, about 23,000 maxima are observed
if h = 1 cm. But, if we go on reducing h, we reach a situation
in which only one or two maxima are obtained in the visible
region. For example, if n = 1.5 and h = 6  10�5 cm, there are
only two maxima in the visible region, corresponding to

 = 6000 Å (m = 3) and  = 4500 Å (m = 4). They are widely
separated and one of them can be masked so as to transmit
only one wavelength. In this way, it is possible to filter a
particular wavelength out of a white light beam. Such a
structure is known as an interference filter.* Interference
filters using this principle can be obtained by modern
vacuum deposition techniques. A thin metallic film (usually,
of aluminum or silver) is deposited on a substrate (generally, a
glass plate) by vacuum deposition techniques. Then a thin
layer of a dielectric material such as cryolite (3NaF.AlF3) is
deposited over this. This structure is again covered by another
metallic film (see Fig. 16.14). To protect this film structure from
any damage, another glass plate is placed over it. Thus, a
Fabry�Perot structure is formed between the two glass plates.
By varying the thickness of the dielectric film, one can filter
out any particular wavelength. However, the filtered light will
have a finite width, that is, it will have a narrow spectrum
sharply peaked about one wavelength. The sharpness of the
transmitted spectrum is determined by the resolving power of
the formed Fabry�Perot structure, and hence by the reflectivity
of the surfaces. The larger the reflectivity, the narrower is the
transmitted spectrum. But it is not possible to increase the
thickness of the metallic films indefinitely as absorption will
reduce the intensity of the transmitted light. To overcome this
difficulty, metallic films are replaced by all dielectric structures.

Metal films

Substrate

Cover plate

Dielectric film

Fig. 16.14 The interference filter.

In an all-dielectric structure, layers of dielectric materials
of appropriate refractive indices are deposited. It was shown
in Chapter 15 how dielectric films can be used to enhance the
reflectivity of a surface. If, on a glass-plate, a /4 thick film of
a dielectric material whose refractive index is more than that
of glass, is deposited, the reflectivity of the glass plate
increases. Larger the difference between the refractive
indices, greater will be the reflectivity. The materials
generally used in interference filters are titanium oxide
(n = 2.8) or zinc sulphide (n = 2.3). To obtain interference

filters, a /4 thick film of titanium oxide is deposited on a
glass substrate. Then a thin layer of dielectric material with
lower refractive index (such as cryolite or magnesium
fluoride) is deposited. On this is again deposited a /4 thick
layer of a material of higher refractive index. To increase the
reflectivity, multi-layer structures of alternate higher and
lower refractive index materials are used. In this way, it is
possible to achieve a reflectivity of more than 90% for any
particular wavelength (see Sec. 15.6 for a more detailed
account). Thus if the incident wave is polychromatic (like
white light), the reflected light may have a high degree of
monochromaticity.

Summary

u If a plane wave falls on a plane parallel film, then the beam

would undergo multiple reflections at the two surfaces and a
large number of beams of successively diminishing amplitude
will emerge on both sides of the plate. These beams
(on either side) interfere to produce an interference pattern
at infinity. If the reflectivity R at each surface is close to
unity, then the fringes so formed are much sharper than those
by two beam interference and, therefore, the interferometers
involving multiple beam interference have a high resolving
power and hence find applications in high resolution

spectroscopy. The transmittivity of such a film is given by

T = 
1

1
2
2

+ F sin δ

where F = 
4

1 2

R

R( )−
 is known as coefficient of

Finesse and

= 
4 2 2

0

π θ

λ

n h cos

represents the phase difference (between two consecutive

waves emanating from the film) due to the additional path
traversed by the beam in the film; 

2
 is the angle of refraction

inside the film (of refractive index n
2
), h the film thickness

and 
0
 is the free space wavelength. The transmittivity T = 1

when  = 2m ; m = 1,2,3, ... For  R  1, the value of F is
very large and the transmission resonances become very
sharp. This is the principle used in the Fabry�Perot
interferometer which is characterized by a high resolving

power.

u For a given wavelength, at the focal plane of the lens L, we

will obtain a fringe pattern consisting of concentric rings�
each bright ring will correspond to a particular value of m.
The sharpness of the bright rings (and hence the resolving

power of the etalon) will increase with the value of F.

* The Fabry�Perot structure also behaves as a resonator and supports the oscillation of what are known as modes.
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u When the Fabry�Perot interferometer is used to analyze

spectra with closely spaced lines, then the distance between

the adjacent maxima would be greater than the displacement

between the system of rings of the spectral lines.

u The number of reflections is also not very large as in the case

of the Fabry�Perot interferometer; the number of reflections
depends on the length of the plate and the angle q, (see
Fig. 16.13). Thus, the resolving power of the instrument

depends on the length of the plate.

u The larger the reflectivity, the narrower is the transmitted

spectrum. Dielectric structures have replaced metallic films

these days.

Problems

16.1 Calculate the resolving power of a Fabry�Perot

interferometer made of reflecting surfaces of reflectivity
0.85 and separated by a distance 1 mm at  = 4880 Å.

16.2 Calculate the minimum spacing between the plates of a
Fabry�Perot interferometer which would resolve two lines
with  = 0.1 Å at  = 6000 Å. Assume the reflectivity to
be 0.8.

16.3 Consider a monochromatic beam of wavelength 6,000 Å
incident (from an extended source) on a Fabry�Perot etalon
with n

2
 = 1, h = 1 cm and F = 200. Concentric rings are

observed on the focal plane of a lens of focal length 20 cm

(a) Calculate the reflectivity of each mirror.

(b) Calculate the radii of the first four bright rings. What
will be the corresponding values of m?

(c) Calculate the angular width of each ring where the in-
tensity falls by half and the corresponding FWHM (in
mm) of each ring.

16.4 Consider now two wavelengths 6000 Å and 5999.9 Å inci-
dent on a Fabry�Perot etalon with the same parameters as
given in the previous problem. Calculate the radii of the
first three bright rings corresponding to each wavelength.
What will be the corresponding values of m? Will the lines
be resolved?

16.5 Consider a monochromatic beam of wavelength 6000 Å in-
cident normally on a scanning Fabry�Perot interferometer
with n

2
 = 1 and F = 400. The distance between the two

mirrors is written as h = h
0
 + x. With h

0
 = 10 cm, calculate

(a) The first three values of x for which we will have unit
transmittivity and the corresponding values of m.

(b) Also calculate the FWHM h for which the
transmittivity will be half.

(c) What would be the value of h if F was 200?

[Ans. (a) x  200 nm (m = 333334),

500 nm (m = 333335); (b) h  9.5 nm].

16.6 In continuation of Problem 16.5, consider now two
wavelengths 

0
 (= 6,000 Å) and 

0
 +  incident normally

on the Fabry�Perot interferometer with n
2
 = 1, F = 400

and h
0
 = 10 cm. What will be the value of  so that

T = ½ occurs at the same value of h for both the
wavelengths?

16.7 Consider a laser beam incident normally on the Fabry�
Perot interferometer as shown in Fig. 16.15.

(a) Assume h
0
 = 0.1 m, c = 3  108 m/s, v = v

0
 = 5  1014 s�1.

Plot T as a function of x (�100 nm < x < 400 nm) for
F = 200 and F = 1000.

(b) Show that if v = (v
0
  p 1500 MHz; p = 1,2,�) we will

have the same T vs. x curve; 1500 MHz is known as the
free spectral range (FSR). What will be the corresponding
values of ?

n = 1

h0

x

Fig. 16.15



17.1 INTRODUCTION

In earlier chapters on interference, we had assumed that the
displacement associated with a wave remained sinusoidal for
all values of time. Thus, the displacement (which we denote
by E) was assumed to be given by

E = A cos (kx � t + )

The above equation predicts that at any value of x, the
displacement is sinusoidal for �  < t < . For example, at
x = 0 we have [see Fig. 17.1(a)].

E = A cos ( t � ), �  < t < (17.1)

Obviously this corresponds to an idealised situation be-
cause the radiation from an ordinary light source consists of
finite size wavetrains, a typical variation of which is shown
in Fig. 17.1(b). Since we will be considering only light waves,
the quantity E represents the electric field associated with
the light wave. Now, in Fig. 17.1(b), 

c
 represents the average

Light which is capable of interference is called �coherent�, and it is evident that in order to yield

many interference fringes, it must be very monochromatic. Coherence is conveniently measured

by the path difference between two rays of the same source, by which they can differ while still

giving observable interference contrast. This is called the coherence length� �Lord Rayleigh

and Albert Michelson were the first to understand that it is a reciprocal measure of the spectro-

scopic line width. Michelson used it for ingenious methods of spectral analysis and for the

measurement of the diameter of stars.

�Dennis Gabor in his Nobel Lecture on Holography, December 11, 1971

gyri�ixgi
Chapter
Seventeen

duration of the wavetrains, i.e., the electric field remains si-
nusoidal for times of the order of 

c
. Thus, at a given point,

the electric fields at times t and t + t will, in general, have a
definite phase relationship if t << 

c
 and will (almost) never

have any phase relationship if t >> 
c
. The time duration 

c

is known as the coherence time of the source and the field is
said to remain coherent for times ~

c
. The length of the

wavetrain, given by

L = c
c

(17.2)

(where c is the speed of light in free space) is referred to
as coherence length. For example, for the neon line
(  = 6328 Å), 

c
 ~ 10�10 sec and for the red cadmium line

(  = 6438 Å), 
c
 ~ 10�9 sec; the corresponding coherence

lengths are 3 cm and 30 cm, respectively. The finite value
of the coherence time 

c
 could be due to many factors; for

example, if a radiating atom undergoes collision with another
atom, then the wavetrain undergoes an abrupt phase shift of
the type shown in Fig. 17.1(b). The finite coherence time

LO 1: discuss the linewidth of a source.
LO 2: understand the basic physics of spatial coherence.
LO 3: determine angular diameter of star by Michelson Stellar Interfermometer.
LO 4: discuss optical beats.
LO 5: describe coherence time and linewidth via Fourier analysis.
LO 6: understand the complex degree of coherence in Young's double-hole experiment.
LO 7: explain principle of Fourier transform spectroscopy and its applications.
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could also be on account of the random motion of atoms or
due to the fact that an atom has a finite lifetime in the energy
level from which it drops to the lower energy level while radi-
ating.*

In order to understand the concept of coherence time (or
of coherence length) we consider Young�s double hole ex-
periment as shown in Fig. 17.2; the interference pattern
produced by this experimental arrangement was discussed in
considerable detail in Sec. 14.4. Now, the interference pattern
observed around the point P at time t is due to the superpo-
sition of waves emanating from S1 and S2 at times
t � r1/c and t � r2/c, respectively, where r1 and r2 are the
distances S1P and S2P, respectively. Obviously, if

r r

c
2 1  << 

c

then the waves arriving at P from S1 and S2 will have a defi-
nite phase relationship and an interference pattern of good
contrast will be obtained. On the other hand, if the path dif-
ference (r2 � r1) is large enough such that

r r

c
2 1  >> 

c

then the waves arriving at P from S1 and S2 will have no fixed
phase relationship and no interference pattern will be ob-
served. Thus the central fringe (for which r1 = r2) will, in
general, have a good contrast and as we move towards higher
order fringes the contrast of the fringes will gradually become
poorer. This point is discussed in greater detail in
Sec. 17.7.

S2

S

S1

r1

P

r2

Fig. 17.2 Young�s double-hole experiment. The interference
pattern observed around the point P at time t is
due to the superposition of waves emanating

from  S
1
 and S

2
 at times t

r

c
− 1  and t

r

c
− 2 , respec-

tively; thus inter-ference fringes of good contrast
will be observed at P if (r 2 � r 1)/c << 

�
.

We next consider the Michelson interferometer experiment
(see Sec. 15.10). A light beam falls on a beam splitter G (which
is usually a partially silvered plate) and the waves reflected
from the mirrors M1 and M2 interfere (see Fig. 17.3). Let M2

represent the image of the mirror M2 (formed by the plate G)
as seen by the eye. If the distance M1M2  is denoted by d,
then the beam which gets reflected by mirror M2 travels an
additional path equal to 2d. Thus, the beam reflected from
M1 interferes with the beam reflected by M2 which had origi-
nated 2d/c seconds earlier.

M1

M ¢2

M2
G

Fig. 17.3 The Michelson interferometer arrangement. G
represents the beam splitter. M2  represents the
image of M2 as formed by G.

* For more details, see Ref. 17.17.

t

t

E

E

(a)

(b)

~ tc

T =
2p
w0

Fig. 17.1 (a) For a perfectly monochromatic beam, the
displacement remains sinusoidal for �  < t < + .
(b) For an actual source, a definite phase
relationship exists for times of the order of 

�
,

which is known as the temporal coherence of the
beam. For v ~ 5  1014 Hz and 

�
 ~ 10�10 sec, one has

about 50,000 oscillations in the time 
�
.
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If the distance d is such that

2d

c
 << 

c

then a definite phase relationship exists between the two
beams and well-defined interference fringes are observed. On
the other hand, if

2d

c
 >> 

c

then, in general, there is no definite phase relationship be-
tween the two beams and no interference pattern is observed.
It may be mentioned that there is no definite distance at which
the interference pattern disappears; as the distance increases,
the contrast of the fringes becomes gradually poorer and
eventually the fringe system disappears. For the neon line
(  = 6328 Å), the disappearance occurs when the path differ-
ence is about a few centimetres giving 

c
 ~ 10�10 s. On the

other hand, for the red cadmium line (  = 6438 Å), the coher-
ence length is of the order of 30 cm giving 

c
 ~ 10�9 sec.

The coherence time for a laser beam is usually much large
in comparison to ordinary light sources. Indeed, for helium�
neon laser, coherence times as large as 50 milliseconds have
been obtained Ref. 17.9]; this would imply a coherence
length of 15,000 km! Commercially available helium�neon
lasers have 

c
 ~ 50 nsec implying coherence lengths of about

15 m. Thus using such a laser beam, high contrast
interference fringes can be obtained even for a path
difference of a few metres.

In order to demonstrate the large coherence length of the
laser beam we consider an experimental arrangement shown
in Fig. 17.4. A parallel beam of light is incident normally on
a pair of circular holes. The Fraunhofer diffraction pattern is
observed on the focal plane of a convex lens. We first use a
helium neon laser beam, the resulting interference pattern is
shown in Fig. 17.5(a) which is simply the product of the Airy
pattern and the interference pattern produced by two point

sources.* We next introduce a 1
2

mm thick glass plate in front

of one of the circular holes; there is almost no change in the
interference pattern as can be seen from Fig. 17.5(b). Clearly,
the extra path introduced by the plate [= (  � 1) t, see
Sec. 14.10] is very small in comparison to the coherence
length associated with the laser beam. If we repeat the ex-
periment with a collimated mercury arc beam, we would find
that with the introduction of the glass plate the interference
pattern disappears (Fig. 17.6). This implies that the extra path
length introduced by the glass plate is so large that there is no
definite phase relationship between the waves arriving on the
screen from the two circular apertures.

Fig. 17.6 (a) The interference pattern produced for the
arrangement shown in Fig. 17.4 using a collimated
mercury arc. (b) The interference pattern is washed

out when 0.5 mm thick glass plate is introduced

in front of one of the holes. (The above figures are
computer-generated; the experimentally obtained
photographs are very similar�see Ref. 17.16.)

* see Sec. 19.8.

Screen

Lens

Incident
plane
wave

Fig. 17.4 A parallel beam of light is incident normally
on a pair of circular holes and the Fraunhofer
diffraction pattern is observed on the focal
plane of a convex lens.

Fig. 17.5 (a) The interference pattern produced for the
arrangement shown in Fig. 17.4 using a helium�
neon laser beam. (b) The interference pattern
produced by the same arrangement with 1 mm
thick glass plate in front of one of the holes. (The
above figures are computer-generated; the ex-
perimentally obtained photographs are very
similar�see Ref. 17.16.)
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17.2 THE LINEWIDTH

In the Michelson interferometer experiment discussed in the
previous section, the decrease in the contrast of the fringes
can also be interpreted as being due to the fact that the source
is not emitting at a single frequency but over a narrow band
of frequencies. When the path difference between the two
interfering beams is zero or very small, the different wave-
length components produce fringes superimposed on one
another and the fringe contrast is good. On the other hand,
when the path difference is increased, different wavelength
components produce fringe patterns which are slightly dis-
placed with respect to one another, and the fringe contrast
becomes poorer. One can equally well say that the poor fringe
visibility for a large optical path difference is due to the non-
monochromaticity of the light source.

The equivalence of the above two approaches can be eas-
ily understood if we consider the Michelson interferometer
experiment using two closely spaced wavelengths 1 and 2.
Indeed in Sec. 15.10 we had shown that for two closely
spaced wavelengths 1 and 2 (like the D1 and D2 lines of
sodium), the interference pattern will disappear if

2 2

2 1

d d
= 

1

2
(17.3)

where 2d represents the path difference between the two
beams. Thus,

2d = 1 2

1 2

2

1 22 2( )
~

( )
(17.4)

Instead of two discrete wavelengths, if we assume that
the beam consists of all wavelengths lying between  and

 + , then the interference pattern produced by the wave-

lengths  and  + 1
2

 will disappear if

2d = 
2

2
1

2
%
'

(
0

 = 
2

(17.5)

Further, for each wavelength lying between  and  + 1
2

,
there will be a corresponding wavelength (lying between

 + 1
2

 and  + ) such that the minima of one falls on the
maxima of the other, making the fringes disappear. Thus, for

2d
~

2

(17.6)

the contrast of the interference fringes will be extremely poor.
We may rewrite the above equation in the form

~

2

2d
(17.7)

implying that if the contrast of the interference fringes be-
comes very poor when the path difference is ~d, then the
spectral width of the source would be  2/2d.

Now, in Sec. 17.1 we had observed that if the path differ-
ence exceeds the coherence length L , the fringes are not
observed. From the above discussion it therefore follows
that the spectral width of the source , will be given by

~ 
2

L
 = 

2

c c

(17.8)

Thus the temporal coherence 
c
 of the beam is directly

related to the spectral width . For example, for the red cad-
mium line,  = 6438 Å, L ~  30 cm (

c
 ~ 10�9 sec) giving

~ 
2

c c

 = 
( . )6 438 10

3 10 10

5 2

10 9

~ 0.01 Å

For the sodium line,  ~  5890 Å, L ~  3 cm (
c
 ~ 10�10 sec)

and  ~ 0.1 Å. Further, since v = c/ , the frequency spread
v of a line would be

v ~ 
c c

L2
~ (17.9)

where we have disregarded the sign. Since 
c
 = L/c, we ob-

tain

v ~ 1

c

(17.10)

Thus, the frequency spread of a spectral line is of the order
of the inverse of the coherence time. For example, for the
yellow line of sodium (  = 5890 Å),

c
~ 10�10 s v ~ 1010 Hz

v = 
c

 = 
3 10

589 10

10

5.
~ 5  1014 Hz

we get

v

v
~ 

10

5 10

10

14
 = 2  10�5

The quantity v/v represents the monochromaticity (or the
spectral purity) of the source and one can see that even for an
ordinary light source it is very small. For a commercially
available laser beam, 

c
 ~ 50 nsec implying v/v ~

4  10�8. The fact that the finite coherence time is directly
related to the spectral width of the source can also be seen
using Fourier analysis; this is discussed in Sec. 17.6.
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17.3 THE SPATIAL

 COHERENCE

Till now we have considered the coherence of two fields ar-
riving at a particular point in space from a point source
through two different optical paths. In this section, we will
discuss the coherence properties of the field associated with
the finite dimension of the source.

We consider the Young�s double-hole experiment with the
point source S being equidistant from S1 and S2 [see
Fig. 17.7(a)]. We assume S to be nearly monochromatic so
that it produces interference fringes of good contrast on the
screen PP . The point O on the screen is such that S1O =
S2O. Clearly, the point source S will produce an intensity
maximum around the point O. We next consider another simi-

lar source S  at a distance l from S. We assume that the
waves from S and S  have no definite phase relationship.
Thus the interference pattern observed on the screen PP  will
be a superposition of the intensity distributions of the inter-
ference patterns formed due to S and S  (see Sec. 17.5). If the
separation l is slowly increased from zero, the contrast of the
fringes on the screen PP  becomes poorer because of the fact
that the interference pattern produced by S  is slightly
shifted from that produced by S. Clearly, if

S S2 � S S1 = 
2

(17.11)

the minima of the interference pattern produced by S will fall
on the maxima of the interference pattern produced by S  and
no fringe pattern will be observed. It can be easily seen that

S S2 = a
d

l a
a

d
l

2
2

1 2
2

2

1

2 2

%
'

(
0

1

3
2
2

4

6
5
5

%
'

(
0

/

~

and

S S1 = a
d

l a
a

d
l

2
2

1 2
2

2

1

2 2

%
'

(
0

1

3
2
2

4

6
5
5

%
'

(
0

/

~

where

a = a1 + a2

and we have assumed a >> d, l. Thus,

S S2 � S S1
~ ld

a

Thus for the fringes to disappear, we must have

2
= S S2 � S S1 ~  ld

a

or

l ~ a

d2

Now, if we have an extended incoherent source whose linear
dimension is ~ a/d then for every point on the source, there
is a point at a distance of a/2d which produces fringes which
are shifted by half a fringe width. Therefore, the interference
pattern will not be observed. Thus for an extended incoherent
source, interference fringes of good contrast will be observed
only when

l << 
a

d
(17.12)

Now, if  is the angle subtended by the source at the slits
[see Fig. 17.7(b)] then  ~  l/a and the above condition for
obtaining fringes of good contrast takes the form

d << (17.13)

P ¢

S ¢

O ¢

O

O

P

l

S

Sl

d
Q

a

a

q

S1

S1

S2

S2

a1 a2

a

(a)

(b)

Fig. 17.7 (a) Young�s double-hole interference experiment
with two independent point sources S and S . (b)
The same experiment with an extended source.
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On the other hand, if

d ~ (17.14)

the fringes will be of very poor contrast. Indeed, a more rig-
orous diffraction theory tells us that the interference pattern
disappears when*

d = 122 2 25 3 24. , . , . ,... (17.15)

Thus as the separation of the pinholes is increased from
zero, the interference fringes disappear when d = 1.22 / ; if
d is further increased the fringes reappear with relatively
poor contrast and they are washed out again when
d = 2.25 / , and so on. The distance

l
w

= /    (Lateral coherence width) (17.16)

gives the distance over which the beam may be assumed
to be spatially coherent and is referred to as the lateral co-

herence width.

Example 17.1 On the surface of the Earth, the Sun subtends

an angle of about 32 . Assume sunlight to be falling normally on a
double-hole arrangement of the type shown in Fig. 17.7 and that
there is a filter in front of S

1
S
2
 so that light corresponding to  

5000 Å is incident on S
1
S
2
. What should be the separation between

S
1
 and S

2
 so that fringes of good contrast are observed on the

screen?

Solution:

  32 = 
32

180 60
0 01

π
×

−rad rad~ .

Thus the lateral coherence length

l
w

 
5 10

10

5

2

× −

−
 = 0.005 cm

Therefore, if the pin holes are separated by a distance which is
small compared to 0.005 cm, interference fringes of good contrast

should be observed.

17.4 MICHELSON STELLAR

INTERFEROMETER

Using the concept of spatial coherence, Michelson devel-
oped an ingenious method for determining the angular
diameter of stars. The method is based on the result that for
a distant circular source, the interference fringes will disap-
pear if the distance between the pinholes S1 and S2 (see Fig.
17.8) is given by [see Eq. (17.15)]:

d = 1.22 (17.17)

where  is the angle subtended by the circular source as
shown in Fig. 17.8. For a star whose angular diameter is
10�7 radians, the distance d for which the fringes will disap-
pear would be

d ~ 
122 5 10

10

5

7

. ~  600 cm

* See, for example, Sec. 5.5 of Ref. 17.7.

S

S1

L

S2

d

f

Fig. 17.8 S is a source of certain spatial extent; S
1
 and S

2
 are

two slits separated by a distance d which can be
varied. The fringes are observed on the focal plane
of the lens L.

where we have assumed  ~  5000 Å. Obviously, for such a
large value of d, the fringe width will become extremely small.
Further, one has to use a big lens, which is not only difficult
to make, but only a small portion of which will be used. In
order to overcome this difficulty, Michelson used two mov-
able mirrors M1 and M2 as shown in Fig. 17.9, and thus he
effectively got a large value of d. The apparatus is known as

L

M1

M2

Fig. 17.9 Michelson�s stellar interferometer.

Michelson�s stellar interferometer. In a typical experiment the
first disappearance occurred when the distance M1M2 was
about 24 feet, which gave

~ .

.

1 22 5 10

24 12 2 54

5

 radians ~  0.02
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for the angular diameter of the star. This star is known as
Arctures. From the known distance of the star, one can esti-
mate that the diameter of the star is about 27 times that of the
sun.

We should point out that a laser beam is spatially coher-
ent across the entire beam. Thus, if a laser beam is allowed to
fall directly on a double-slit arrangement (see Fig. 17.10),
then as long as the beam falls on both the slits, a clear inter-
ference pattern is observed on the screen. This shows that
the laser beam is spatially coherent across the entire
wavefront.

ScreenLaser
beam

Fig. 17.10 If a laser beam falls on a double-slit arrange-
ment, interference fringes are observed on the
screen. This shows that the laser beam is spa-
tially coherent across the entire wavefront.

Figure 17.11 shows the interference pattern obtained by
Nelson and Collins (Ref. 17.14) by placing a pair of slits of
width 7.5 m separated by a distance 54.1 m on the end of
the ruby rod in a ruby laser. The interference pattern agrees
with the theoretical calculation to within 20%. To show that
the spatial coherence is indeed due to laser action, they
showed that below threshold (of the laser) no regular inter-

(b)

(a)

0.2

0.5

1.0
•

O
p

ti
c
a

l 
d

e
n

s
it
y

5 mm

Fig. 17.11 The double-slit interference pattern obtained by placing a pair of slits each 7.5 m wide and
separated by a distance of 54.1 m across the diameter of a ruby rod. (a) shows the actual interference
pattern and (b) shows a densitometer trace of the interference pattern. The dots correspond to a
theoretical calculation assuming that a plane wave strikes the pair of slits. Ref. 17.14. [Photograph
courtesy: Dr D.F. Nelson].

ference pattern was observed; only a uniform darkening of
the photographic plate was obtained.

17.5 OPTICAL BEATS

When two tuning forks, one having a frequency of 256 Hz
and the other a frequency of 260 Hz, are made to vibrate at
the same time, we hear a frequency of about 258 Hz whose
intensity varies from zero to maximum and back with a fre-
quency of 4 Hz. This phenomenon is known as beats. It can
be easily understood by considering the superposition of
two waves having frequencies  and  + :

y1 = a sin ( t + 1)

y2 = a sin [(  + )t + 2] (17.18)

where we are assuming (for the sake of simplicity) that both
the waves have the same amplitude. The resultant displace-
ment would be given by

y = y1 + y2

= 2a sin %
'

(
0

1
32

4
65

1

2

1

2 1 2t ( )

cos ( ) ( )
1

2

1

2 2 1t
1
32

4
65

= 2a sin %
'

(
0

1
32

4
65

%
'

(
0

1

2

1

2
t tsin (17.19)

where we have assumed, without any loss of generality,

1 = /2 = � 2. Figures 17.12(a) and (b) show the time variation
of the terms

sin %'
(
0

1

2
t and sin 

1

2

%
'

(
0 t
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respectively. In Fig. 17.12(c), we have plotted their product
which represents the resultant displacement. Notice that

although the envelope has a frequency of 4
1
2 vP U  [see

Fig. 17.12(b)] the intensity repeats itself after every 1/ v sec-
onds. This waxing and waning of sound is known as beats.

(a)

(b)

(c)

Fig. 17.12 (a) and (b) show typical time variation of

sin ω ω+
1

2
Δ t  and sin 

1

2
Δω t

1
32

4
65

 re-

spectively, and (c) shows the time
dependence of their product.

The beat phenomenon can be easily understood by ob-
serving the Moiré fringes obtained by the overlapping of two
patterns of slightly different spatial frequency (see
Fig. 17.13). Whenever the dark line of one of the patterns
falls on the bright region of the other, then the two waves
can be considered to be �out of phase� and we have a broad
�dark region� which appears periodically.

In a similar manner, one can consider the phenomenon of
optical beats. For example, let us consider the superposition
of two fields E1 and E2 having frequencies  and  + :

E1 = E01 sin ( t + 1) (17.20)

Fig. 17.13 The Moiré pattern produced by the overlapping
of two patterns of parallel lines (of slightly
different spatial periods) show the beating
phenomenon [Adapted from Ref. 17.1].

and

E2 = E02 sin [(  + ) t + 2]\ (17.21)

If we assume that both the fields are linearly polarized in
the same direction then in order to calculate the resultant

field, we may simply algebraically add E1 and E2. Thus, the
resultant would be given by

E = E1 + E2

= E01 sin ( t + 1) + E02 sin ([  + ]t + 2)

Now

E
2(t) = E2

01 sin
2 ( t + 1) + E2

02 sin
2 ([  + ]t + 2)

+ E01E02[�cos (2 t + t + 1 + 2)
+ cos ( t + 2 � 1)] (17.22)

For optical frequencies,   1015 Hz and therefore the first
three terms would vary with extreme rapidity and a detector
(like the eye or the photodetector) would observe a time av-
erage of the quantity. Now, the time average of the quantity
F(t) over a duration of 2T is defined through the following
equation:

F t( ) = 
1

2T
F t d t

T

T

( )s (17.23)

Thus,

E t01
2 2

1sin ( )

= E
T

t d t

T

T

01
2 2

1
1

2
sin ( )s

= E
T

t
T

T

01
2

1
1

2

1

2
2

1

32
4

65
sin ( )Y d

= 1

2
1

1

2
2 201

2
1E

T
T

1

3
2

4

6
5sin cos (17.24)

For averaging times T >> 1/ , the second term inside the
brackets would be extremely small and hence can be ne-
glected. Thus, we may write

E t E01
2 2

1 01
21

2
sin ( ) ~ (17.25)

For example, the eye would respond to changes in times of
the order of 0.05 seconds. Thus T ~ 0.05 sec and since

 ~  1015 Hz, we have

1

T
~  2  10�14

which is an extremely small quantity in comparison to unity.
It is for this reason that the eye does not see any intensity
variations. Even for a fast photodetector with response times
~ 10�9 sec, 1/( T) ~ 10�6 which can also be neglected.

Returning to Eq. (17.22), if we carry out an averaging over
times which are long compared to 2 /  but short compared
to 2 /  then we would obtain

E t
2

( )  = 1

2

1

201
2

02
2

E E

+ E01 E02 cos [( ) t + 2 � 1] (17.26)
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For example, if  ~  107 Hz and the photodetector reso-
lution is about 10�9 s, then the detector will record only the
average values of the first three terms on the RHS of
Eq. (17.22); however, it will be able to record the time varia-
tion of the last term. This is what is shown in the above
equation leading to the familiar phenomenon of beats.

As an example, we consider the beating of the D1 and D2

lines of sodium for which

1 = 5890 Å (  1 ~  3.2003  1015 Hz)

2 = 5896 Å (  2 ~  3.1970  1015 Hz)

Thus ~  3.3  1012 Hz

In order to observe the beating, the detector should have
a response time much smaller than 1/ , thus the photode-
tector response time should be 

~
 10�13 s which is a practical

impossibility. Therefore, in order to observe the beats, we
must decrease the value of . Indeed the first experiment
on optical beats was carried out by Forrester et al. (Ref. 17.6)
in which they used two closely spaced frequencies by split-
ting a spectral line using a magnetic field (this splitting is
known as Zeeman effect). The weaker the magnetic field, the
smaller is the value of . In the experiment of Forrester and
his co-workers,  was of the order of 1010 Hz and they were
able to observe optical beats.

Obviously, in order that the beats occur very slowly (so
that we may use photodetectors of much longer response
times)  should be made even smaller�but then we may
have the coherence problem. In the above analysis we have
assumed the phase 1 and 2 to remain constant in time. Now
for an incoherent source, 1 and 2 will randomly change in
times ~10�9 s; thus if the detector response time is 

~
 10�8 s,

we will observe the average of the cos [( )t + 2 � 1] term
in Eq. (17.26). Obviously, the average value of the �cosine
term� is zero and we will have

E t
2

( ) = 1

2

1

201
2

02
2

E E

implying that the resultant intensity will be just the sum of
the independent intensities:

I = I1 + I2 (17.27)

With the advent of laser beams, the beating experiments
have become much easier; a typical arrangement (which re-
sembles a Michelson interferometer) is shown in Fig. 17.14. A
typical beat note of the experiment of Lipsett and Mandel
(Ref. 17.11) is shown in Fig. 17.15. It was observed that the
beat note changed in frequency from about 33 to approxi-
mately 21 MHz in a time of about 0.7 s. The coherence time
is ~0.5 sec which is consistent with the duration of the
spike.

We conclude this section by quoting Feynman: �With
the availability of laser sources, someone will be able to dem-

onstrate two sources shining on a wall, in which the beats
are so slow that one can see the wall get bright and dark�.

Laser 1

Laser 2

Photocell 2

Photocell 1

Photocell 3

Fig. 17.14 The experimental arrangement of Lipsett and
Mandel (Ref. 17.11) to observe optical beats us-
ing two laser beams.

0.5 microseconds

Fig. 17.15 Oscilloscope trace of the sum of the intensities
of the laser beams (upper curve) and the inten-
sity of the superposed laser beam (lower curve)
[Adapted from Ref. 17.11].

17.6 COHERENCE TIME AND

LINEWIDTH VIA FOURIER

ANALYSIS

That the frequency spread of a line is of the order of the in-
verse of the coherence time [see Eq. (17.10)] can also be
shown by Fourier analysis. As an example, we consider a si-
nusoidal displacement of duration 

c
. Thus, we may write

(x = 0, t) = aei t | t | < 1

2 c

= 0 | t | > 1

2 c (17.28)

We will assume that 
c
 is long enough so that the distur-

bance consists of many oscillations. For example, for a
2-nsec pulse corresponding to 0 ~  5  1014 Hz, the number
of oscillations will be 5  1014  2  10�9 = 106, i.e. the pulse
will consist of about a million oscillations!

Now, while discussing the Fourier transform theory (see
Sec. 8.4 and Sec. 9.5), we had shown that for a time-depen-
dent function f(t), if we define

F( ) = 1

2
f t e d ti t( )s (17.29)
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then

f(t) = 1

2
F e di t( )s (17.30)

Replacing f(t) by (x = 0, t), we may write

(x = 0, t) = 1

2
A e d

i t
( )s (17.31)

The RHS represents a superposition of plane waves with
A( ) representing the amplitude* of the plane wave corres-
ponding to the frequency . Equation (17.31) tells us that

(x = 0, t) is the Fourier transform of A( ) and therefore us-
ing the inverse Fourier transform [see Eq. (17.29)] we get

A ( ) = 1

2
0( , )x t e d t

i t
=s

= 1

2

0

1
2

1
2

ae d ti t

c

c

( )s

= 2

1

2
1 2 0

0

%
'

(
0

7
8
9

@
A
B

1

3

2
2
2
2

4

6

5
5
5
5

/ sin ( )

( )
a

c

= 
2 1

1

1 2

0

%
'

(
0

1

3
2

4

6
5

/
sin { ( )}

( )

a
(17.32)

where   
0

 and  = 
1

2
 0 c

. In Fig. 17.16, we have plot-

ted the function

sin [ ( )]

( )

1

1
(17.33)

as a function of  for  = 200. One can see that the function
is sharply peaked at  = 1 (where it has a value equal to )
and that the first zero on either side occurs at  = 1  ( / ).
For larger values of  the function will become more sharply
peaked; the width of the peak being given by

 =
0

%
'&

(
0)

~ (17.34)

or

 ~ ~0 2

c

Thus,

 ~
1

c

(17.35)

consistent with Eq. (17.10). The above analysis shows that a
wave having a coherence time ~

c
 is essentially a superposi-

tion of harmonic waves having frequencies in the region 0

� 1
2

 
~

  
~

 0 + 1
2

 where  ~ 1/
c
.

We should mention that the condition expressed by
Eq. (17.35) is quite general in the sense that it is valid for a
pulse of arbitrary shape. For example, for a Gaussian pulse
having a duration ~

c
, the corresponding frequency spread

will again be given by Eq. (17.35) [see Example 10.4].

* Notice that the integral appearing on the RHS of Eq. (17.30) is over negative values of  also. However, the displacement (or the

electric field) is the real part of  which is given by (omitting the 2  factor):

E = Re [ (x = 0, t)]= Re | ( ) | ( )A e di ts

   = | ( ) | cos ( )A t ds = | ( ) | cos ( )A t ds
0

 + | ( ) | cos ( ( ))A t ds
0

where we have used the relation A( ) = |A( )| ei . The above equation can always be written in the form

C t d( ) cos [ ( )]s
0

Thus, the amplitudes associated with the negative frequencies contribute essentially to the corresponding positive frequencies.
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17.7 COMPLEX DEGREE OF

COHERENCE AND FRINGE

VISIBILITY IN YOUNG�S

DOUBLE-HOLE

EXPERIMENT

In this section, we will introduce the complex degree of co-
herence and will show how it can be related to the contrast
of the fringes in the Young�s double hole interference experi-
ment. We refer back to Fig. 17.2. Let 1(P, t) and 2(P, t)
represent the complex fields at the point P due to the waves
emanating from S1 and S2 respectively. The resultant dis-
placement would be given by

= 1(P, t) + 2(P, t) (17.36)

Now, the intensity at the point P will be proportional to | |2

which is given by the following equation:

| |2 = *
1 1 + *

2 2 + *
1 2 + 1

*
2

= | 1|
2 + | 2|

2 + 2 Re ( *
1 2)

Since 1 and 2 vary with extreme rapidity, we can observe
only the average values of | 1|

2 and | 2|
2. Thus, if we write

I1 = | 1(P, t) |2

and

I2 = | 2(P, t)|2

then

I = I1 + I2 + 2 1 2I I Re 12 (17.37)

tc

(a)

(b)

100

0

200

f ( ) =W
sin ( – 1)

( – 1)

a W

W

1 2

W

Fig. 17.16 (a) A sinusoidal displacement of duration 
�
. (b) The variation of the function [sin

(  � 1) ]/(  � 1) as a function of  for  = 200. Notice that the function is sharply peaked
around  = 1.
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where 12 = 1 2

1
2

2
2 1 2

*

/

( , ) ( , )

[ | ( , ) | | ( , ) | ]

P t P t

P t P t
(17.38)

is known as the complex degree of coherence and �  de-
notes the time average of the quantity inside the triangular
brackets [see Eq. (17.23)]. The field 1(P, t) is due to the

waves emanating from the point S1 at t � 
r

c
1  where r1 = S1P.

Thus, 1(P, t) will be proportional to  S t
r

c1
1,R W  where

(S1, t) denotes the field at S1 at time t. Similarly 2(P, t) will

be proportional to S t
r

c2
2,R W . Thus

12 = 

*

/

, ,

, ,

S t
r

c
S t

r

c

S t
r

c
S t

r

c

1
1

2
2

1
1

2

2
2

2
1 2

%
'&

(
0)

%
'&

(
0)

%
'&

(
0)

%
'&

(
0)

1

3

2
2

4

6

5
5

Since the overall intensity distribution in the fringe pattern
does not change with time, we may write

12 = 
*

* /

( , ) ( , )

[ | ( , ) | | ( , ) | ]

S t S t

S t S t

1 2

1
2

2
2 1 2

(17.39)

where  = (r2 � r1)/c. In order to discuss the effect of tempo-
ral coherence, we assume S, S1 and S2 to be of negligible
spatial dimensions. Further, if S1 and S2 are equidistant from
S, then we may assume that

(S1, t) = (S2, t) = (t) (17.40)

Thus, for such a case

12( ) = 
*

( ) ( )

| ( ) |

t t

t
2

(17.41)

Now, for an actual field, we may write

(t) = A(t)e�i[ t+ (t)] (17.42)

where A(t) and (t) are slowly varying real functions of time.
For a perfectly monochromatic beam (i.e., infinite coherence
time) A(t) and (t) are constants so that

*(t + ) (t) = A2ei

Consequently,

12( ) = ei (17.43)

Thus, for such a case

I = I1 + I2 + 2 1 2I I cos (17.44)

and the visibility V, which is defined by

V = 
I I

I I
max min

max min

(17.45)

would be given by

V = 
2 1 2

1 2

I I

I I
(17.46)

For I1 = I2 we have V = 1 implying that, for a perfectly
monochromatic beam, the contrast of the fringes is perfect.
On the other hand, for an ordinary light source having

c
 ~ 10�10 s, the functions A(t) and (t) can be assumed to

be constants in times 
~

 10�10 s. Thus, if 
c
 

~
 10�10 s,

(t + ) will have no phase relationship with (t) and the
time average *(t + ) (t)  will be zero. Thus, if the path
difference S2P ~ S1P is such that

S P S P

c
2 1~

~
 

c
(17.47)

the fringe pattern will not be observed.
In general, we may write

12 = | 12 |ei( + ) (17.48)

where | 12 | and  may be assumed to be constants around
the observation point. This gives us

I = I1 + I2 + 2 1 2 12I I | cos (17.49)

where  =  + . Thus,

Imax = I1 + I2 + 2 1 2 12I I | (17.50)

and

Imin = I1 + I2 � 2 1 2 12I I | (17.51)

Hence, the visibility becomes

V = 
I I

I I

I I

I I
max min

max min

| |=
2 1 2

1 2
12 (17.52)

Thus, the visibility (or the contrast) of the fringes is a di-
rect measure of | 12|. If I1 = I2 then V = | 12|. In the present
case, since S, S1 and S2 have been assumed to be points | 12|
depends only on the temporal coherence of the beam. For
 <<

c
, | 12| is very close to unity and the contrast of the

fringes will be very good; for  >> 
c
, | 12| will be close to zero

and the contrast will be extremely poor.
It may be noted from Eq. (17.43) that for a perfectly mono-

chromatic beam | 12| = 1 and  =  = (S2P ~ S1P)/c. In
general, it can be shown that 0 < | 12| < 1; | 12| = 0 implies
complete incoherence and | 12| = 1 implies complete coher-
ence. In practice, if | 12| > 0.88, the light is said to be �almost
coherent�. Further, since

*(t + ) (t) = ei A(t + )A(t)ei[ (t + )� (t)]

and for a nearly monochromatic source A(t) and (t) are al-
ready slowly varying functions of time, the quantity inside
the angular brackets (on the RHS of the above equation) will
not vary rapidly with . Thus, we may write
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12 = | 12|e
i ei (17.53)

where both | 12| and  are slowly varying functions of

= 
S P S P

c
2 1~

(17.54)

For a more detailed theory of spatial and temporal coher-
ence, you may look in Refs. 17.2, 17.3, 17.7 and 17.20.

17.8 FOURIER TRANSFORM

SPECTROSCOPY*

In the previous section, we have shown that the contrast in an
interference pattern depends on the relative magnitudes of the
optical path difference , vis a vis the coherence length of the
source L

c
 (= c

c
). For a given source, the contrast varies as the

optical path difference  is varied, beginning from an extremely
good contrast for  << L

c
 to a very poor contrast for

 >> L
c
. Indeed Fizeau in 1862 interpreted the periodic varia-

tion in contrast in Newton�s rings under illumination with a
sodium lamp as the lens is moved up, as being due to the pres-
ence of two lines separated by 6 Å (see Example 15.4).
Michelson in the years 1890�1900 performed various experi-
ments with a number of spectral lines. Using the Michelson
interferometer he measured visibility as a function of optical
path difference and using a mechanical device he himself had
built, he could obtain the spectra. It is the purpose of this sec-
tion to show that from a knowledge of variation of intensity
with optical path difference one can obtain the source spectral
distribution by a Fourier transformation.

The use of the Michelson interferometer for spectroscopy
was revived in the 1950s for application, specially for the
relatively complex spectra in the infrared region.

We will derive expressions for the variation of visibility
with optical path difference for a source having a certain
spectral distribution and we will show that from the interfer-
ence pattern one can obtain the spectral intensity
distribution of the given source.

17.8.1 Principle of Fourier Transform
Spectroscopy

Figure 17.17 shows the arrangement used in a Fourier trans-
form spectrometer. Light from the given source is collimated
and enters the Michelson interferometer and in the transmit-
ted arm we measure the intensity at the focus of the lens as a
function of the path difference . Now, if a monochromatic
beam of intensity I0 is split into two beams (each of intensity

1
2

 I0) and are made to interfere, then the resultant intensity
is given by

I = I0(1 + cos ) (17.55)

M2

M1

Detector

Source

Fig. 17.17 The arrangement used in a Fourier transform
spectrometer.

where

= 
2

 = 
2 v

c
(17.56)

represents the phase difference between the interfering
beams, and in writing Eq. (17.55), we have used Eq. (17.30) of
Chapter 14 with

I1 = I2 = 1

2
 I0

Thus if I(v) dv represents the intensity emitted by the source
between v and v + dv then the intensity at O lying between v
and v + dv is given by

I
t
(v) dv = I(v) dv 1

21
32

4
65

cos
v

c
(17.57)

Hence, the total intensity at O corresponding to a path dif-
ference  is

I
t
( ) = I v dvt ( )

0

s

= I v dv I v
v

c
dv( ) ( ) cosss

2

00

(17.58)

The quantity

I
T

= I v dv( )

0

s  = 
1

2
I

t
(0) (17.59)

represents the total intensity of the source. We define nor-
malized transmission as

( ) = 
I I

I
t T

T

( )

= 1 2

0
I

I v
v

c
dv

T

( ) coss (17.60)

* This section was kindly written by Professor K. Thyagarajan.

LO 7
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It is the quantity I
t
( ) which is measured as a function of 

from which ( ) is evaluated. We first consider some ex-
amples giving explicit expressions for I

t
( ) and ( ) for some

specific cases.

(i) Monochromatic Source For a monochromatic source
of intensity I0 emitting at a frequency 0, we have

I(v) dv = I0 (v � v0) dv (17.61)

where (  � 0) represents the Dirac�delta function. Hence,

( ) = I0 

( ) cos

( )

v v
v

c
d v

v v dv

s

s

0

0

0

0

2

= cos 
2 0v

c

%
'&

(
0)

(17.62)

and

I
t
( ) = I0 1

2 0%
'&

(
0)

cos
v

c
(17.63)

Hence I
t
( ) and  vary sinusoidally for all values of path dif-

ference  [see Figs. 17.18(a) and (b)] implying that the
coherence length of the source is infinite.
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I It ( )/D 0

g ( )D

D/l0

D/l0

(a)

(b)

Fig. 17.18 (a) The variation of the total intensity at O as a
function of the path difference  for a
monochromatic source. (b) The corresponding
cosinusoidal variation of ( ) with .

(ii) Source Emitting Two Monochromatic Lines We
now consider a source emitting two monochromatic lines at
frequencies v1 and v2, each characterized by an intensity

1
2

I0. Thus,

I(v) dv = 1

2
 I0[ (v � v1) + (v � v2)] (17.64)

and

( ) = 
1

2

2
1

0

( ) cosv v
v

c
dv

1

3

2
2s

4

6

5
5s ( ) cosv v

v

c
dv2

0

2

= 
1

2

2 21 2cos cos
v

c

v

c

1
32

4
65

= cos 2
2

1 2( )v v

c

1
32

4
65

 cos 2
2

1 2( )v v

c

1
32

4
65

(17.65)

and

I
t
( ) = I0 1 2

2
1 21

32
4
65

7
8
9

cos
( )v v

c

 cos
( )

2
2

1 2v v

c

1
32

4
65
@
A
B

(17.66)

Such a variation of I
t
( ) and ( ) with  is shown in

Fig. 17.19. From Eq. (17.65) we note that ( ) corresponds to
an amplitude modulated sinusoidal variation. The sinusoidal
variation has a period

p = 
2

1 2

c

v v( )
 = 

2 1 2

1 2
0

~ (17.67)

where 0( ~
1

~
2) is the average wavelength. The modula-

tion amplitude has zeroes at  values given by

2
( )v v

c
1 2

2
= m%'

(
0

1

2

or

= m
c

v v

%
'

(
0

1

2 1 2

(17.68)

Hence, the minimum path difference at which the visibility
vanishes is given by

m
= 

c

v v2 1 2( )
 = 

c

v2
(17.69)
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which corresponds to the coherence length of the source.
Expressing  in terms of , we have

L
c

= 
m
 = 

2

2
(17.70)

consistent with Eq. (17.2).
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(b)

Fig. 17.19 (a) The variation of the total intensity at O as a
function of the path difference  for a source
emitting two monochromatic lines. (b) The cor-
responding variation of ( ) with .

The difference in path difference between two consecu-
tive positions of the disappearance of the fringes is c/  =
2/ . As a simple consequence of this, we may consider the

Newton�s rings experiment with a sodium lamp. If we assume
that the sodium lamp emits two discrete wavelengths 1 and

2, then as we raise the convex lens above the glass plate we
should have a periodic appearance of fringes as we had dis-
cussed in Example 15.3

17.8.2 Inversion to Recover I( ) from ( )

In an actual experiment, we measure I
t
( ) and I

T
. Thus,

Eq. (17.60) has to be inverted to obtain the source spectral
distribution I(v) from the measured ( ). To do this, we just

multiply Eq. (17.60) by cos 2 v

c
 and integrate over . Thus

( ) cos
2

0

s
v

c
d

= 1 2 2

00

I
d d v I v

v

c

v

cT

( ) cos cosss

= 1 2 2

00
I

d v I v
v

c

v

c
d

T

( ) cos cosss

Now,

cos cos
2 2

0

v

c

v

c
ds

= 1

2

2 2
cos cos

v

c

v

c
ds

since the integrand is an even function of . Writing the two
cosine terms in terms of exponentials and using

e di v v cs 2 ( ) / = 
v v

c

%
'&

(
0)

 = c (v � v ) (17.71)

and

e d
i v v cs 2 ( ) / = 0 (17.72)

(since v and v  are positive), we obtain

( ) cos
2

0

s
v

c
d = 

c

I
v v I v dv

T4
0

( ) ( )s

= c

I
I v

T4
( ) (17.73)

Hence,

I (v) = 
4 2

0

I

c

v

c
dT ( ) coss (17.74)

Thus one can obtain the source spectral distribution I( )
from the measured ( ) just by a cosine transformation. Such
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an inversion from ( ) to I(v) is usually performed using a
computer.

17.8.3 Resolution

From Eq. (17.74), it follows that to obtain I( ) one must mea-
sure ( ) for all values of path difference  lying between 0
and . Since in an actual experiment, there is a maximum limit
to path differences that can be introduced, this maximum
path difference determines the resolution obtainable in the
estimated I( ). To estimate the resolution, we consider a per-
fectly monochromatic beam of frequency 0 incident on the
interferometer. We have seen that for such a case ( ) varies
with  as given by Eq. (17.62). Now in the experiment if 

m
 is

the maximum path difference measured, then ( ) would be

( ) = cos
2 0v

c
0 <  < 

m

= 0 otherwise
(17.75)

Hence using Eq. (17.74), we have

I( ) = 
4 2 20

0

I

c

v

c

v

c
dT

m

cos cos
%
'

(
0

%
'

(
0s

= 
2 2 20 0

0

I

c

v v

c

v v

c
dT

m

cos
( )

cos
( )1

3
2

4

6
5s

= 
2

2

2

2

2

0

0

0

0

I

c

v v

c

c
v v

v v

c

c
v v

T

m msin
( )

( )

sin
( )

( )

%
'&

(
0)

%
'&

(
0)

1

3

2
2
2
2

4

6

5
5
5
5

Since v and v0 are both positive and much much greater than
c/ , the first term in the RHS within brackets is negligible and
we obtain

I(v) ~
sin

( )

( )

1

3

2
2
2

4

6

5
5
5

2
2

2

0

0

I

c

v v

c

c
v v

T

m

(17.76)

The above estimated source spectrum is similar to that shown
in Fig. 17.16. The spectrum is peaked at 0 and the first zero
appears at

2 0( )v v

c m
 = 

or

v = v0  c

m2
(17.77)

Thus although the incident beam is monochromatic, the in-
version process gives us a finite spectral width due to a finite
value of 

m
.

If the incident source contains two frequencies, then we
may use the Rayleigh criterion and define the minimum re-
solvable frequency separation to be the frequency width
from the peak to the first zero in I( ). Hence,

v = 
c

m2
(17.78)

Hence, the larger the maximum path difference 
m
 over which

 is measured, the higher will be the resolution.
As an example if 

m
 = 5 cm, then

v = 
3 10

2 5

10

 = 3 G Hz

At  = 1 m, this corresponds to  = 0.1 Å.

Example 17.2 We consider a quasi-monochromatic source

characterized by a Gaussian spectral distribution given by

I(v) = 
1

0
0

2 2

π δ
δ

( )

( ) / ( )

v
I e

v v v− −

= 
I

e
v v0 0

2 2

π
τ τ− −( )

(17.79)

Here v = 1/  characterizes the width of the spectrum since I(v)
drops to 1/e of the value at v = v

0
 at v = v

0
  v. For a quasi-

monochromatic source v/v
0
 << 1. Thus,

I
T

= I v dv( )

0

∞

s

= 
I

e dv
v v0

0

0
2 2τ

π
τ− −

∞

s
( )

~ ( )− − −

−∞

+∞

s
I

e dv
v v0 0

2 2

π
τ τ

(17.80)

where in the last step we have used the condition 1/  =  << 
0
. If

we now use the integral

e d x
x x− +

−∞

+∞

s α β2

= 
π
α

β
α

α%
'

(
0

%

'&
(

0)
>

1 2 2

4
0

/

exp ; Re (17.81)

we would obtain

I
T

= I
0

(17.82)

Now,

I v
v

c
dv( ) cos

2

0

π Δ
∞

s
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= 
I

e
v

c
dv

v v0

0

0
2 2 2τ

π

πτ− −
∞

s
( )

cos
Δ

~ τ

π

πτ
I e

v

c
dv

v v
0

0
2 2 2− −

−∞

+∞

s ( )
cos

Δ

= 
τ

π
τ π

I e e dv
v v i v c

0
20

2 2

Re
( ) /− −

−∞

+∞

s Δ

= 
τ

π
ξπ ξ τ π ξ

I e e e d
iv c i c

0
2 20

2 2

Re ,
/ /Δ Δ−

−∞

+∞

s   = v � v
0

= I
0
 Re e

c

iv c2
2 2

2 2
0π π

τ

Δ Δ/
exp −

1

3
2

4

6
5

7
8
u

9u

@
A
u

Bu

where we have used Eq. (17.81) with  =  and  = i2 /c. Thus,

I v
v

c
dv( ) cos

2

0

π Δ
∞

s = I
c

v

c0

2 2

2 2
02

exp cos−
π

τ

πΔ Δ
(17.83)

Hence,

( ) = exp cos−
π

τ

π2 2

2 2
02Δ Δ

c

v

c
(17.84)

Figure 17.20 shows the source spectral distribution as well as
the variation of ( ) with . Notice that in this case for path dif-
ferences  << c/ v, ( ) ~  cos (2 v

0
/c) much like that for a

monochromatic source. But as the path difference increases, the
modulation amplitude of ( ) is reduced. For good contrast, one

must have

 << c = c/ v (17.85)

We may thus define the coherence length as

L
c

= c  = 
c

vδ
(17.86)

consistent with Eq. (17.2).

Example 17.3 Consider a quasi-monochromatic source char-

acterized by a spectral distribution

I(v) = 
1

δv
I
0
; v

0
 � 

1

2
v < v < v

0
 + 

1

2
v (17.87)

= 0 otherwise

Calculate ( ) and show that again for path differences

 >> c/ v, the contrast will be very poor.

Solution:

I
T

= 
1

δv
I dv

v v

v v

0

0
1
2

0
1
2

−

+

s
δ

δ

 = I
0

(17.88)
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Fig. 17.20 Spectral distribution and the variation of
( ) with  for a source characterized by

Eq. (17.79).

Thus,

( ) = 
1 2

0
I

I v
v

c
dv

T

( ) cos
π Δ

∞

s

= 
sin

cos

πδ

πδ
π

v

c
v

c

v

c

Δ

Δ
Δ2 0 (17.89)

For  << c/ v, ( ) ~  cos (2 v
0

/c) and the contrast vanishes for

= c/ v (17.90)

which represents the coherence length. Plot ( ) as a function of 
and notice that unlike in the earlier example, in this case ( ) does

not monotonically reduce to zero.

For more details on Fourier transform spectroscopy, one
may look up Refs. 17.10, 17.12 and 17.18.
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Summary

u The coherence time 
c
 represents the average duration of the

wavetrains, i.e., the electric field remains sinusoidal for times
of the order of 

c
.

u The length of the wavetrain, given by

L
c

= c
c

(where c is the speed of the light in free space) is referred to
as coherence length. For example, for the red cadmium line
(  = 6438 Å), 

c
 ~ 10�9 sec; the corresponding coherence

length is ~ 30 cm.
u The lateral coherence width (l

w
) of an extended incoherent

source represents the distance over which the beam may be

assumed to be spatially coherent; it is given by

l
w

 
λ
θ

where  is the angle subtended by the source at the point of

observation.
u Using the concept of spatial coherence, Michelson developed

an ingenious method for determining the angular diameter of
stars. The method is based on the result that for a distant cir-
cular source, the interference fringes (formed by two
pinholes) will disappear if the distance between the two pin-
holes is given by

d = 1.22
λ
θ

where  is the angle subtended by the circular source.

u Using two laser beams it is possible to observe optical beats.
u In the two beam interference pattern, the contrast of the in-

terference fringes varies as the optical path difference  is
varied, beginning from an extremely good contrast for

 << L
c
 to a very poor contrast for  >> L

c
.

u Indeed from a knowledge of variation of intensity with opti-
cal path difference one can obtain the source spectral

distribution by a Fourier transformation.

Problems

17.1 The orange Krypton line (  = 6058 Å) has a coherence

length of ~20 cm. Calculate the line width and the fre-
quency stability.

[Ans: ~0.018 Å, ~3  10�6]

17.2 Laser linewidths as low as 20 Hz have been obtained. Cal-
culate the coherence length and the frequency stability.

Assume  = 6328 Å.

17.3 In Sec. 17.4, we had mentioned that the lateral coherence

width of a circular source is 1.22 / . It can be shown that
for good coherence (i.e., for a visibility of 0.88 or better),

the coherence width should be 0.3 / . Assuming that the
angular diameter of the sun is about 30 , calculate the dis-
tance between two pinholes which would produce a clear
interference pattern.

[Ans. ~ 0.02 mm]

17.4 Calculate the distance at which a source of diameter 1 mm

should be kept from a screen so that two points separated by
a distance of 0.5 mm may be said to be coherent. Assume

 = 6  10�5 cm.

17.5 In a Michelson interferometer experiment, it is found that
for a source S, as one of the mirrors is moved away from the
equal path length position by a distance of about 5 cm, the
fringes disappear. What is the coherence time of the radia-
tion emerging from the source?

17.6 If we perform the Young�s double-hole experiment using
white light, then only a few coloured fringes are visible.
Assuming that the visible spectrum extends from 4000 to
7000 Å, explain this phenomenon qualitatively on the basis
of coherence length.

17.7 Using the stellar interferometer, Michelson observed for
the star Betelgeuse, that the fringes disappear when the dis-
tance between the movable mirrors is 25 inches. Assuming

 ~  6  10�5 cm, calculate the angular diameter of the
star.

17.8 Consider Young�s double-hole experiment as shown in
Fig. 17.2. The distance SS

1
 ~  1 m and S

1
S
2
 0.5 mm.

Calculate the angular diameter of the hole S which will
produce a good interference pattern on the screen. Assume

 = 6000 Å.

17.9 Assume a Gaussian pulse of the form

(x = 0, t) = E
0
 exp −

t
e
i t

2

22

0

τ

ω

Show that the Fourier transform is given by

A( ) = E
0

 exp − −1
32

4
65

1

2 0
2 2( )ω ω τ

You will have to use the following integral

exp [ ]− +

−∞

+∞

s α βx x dx
2  = 

π
α

β
α

%
'

(
0

1

3
2

4

6
5

1 2 2

4

/

exp ;  > 0

Show that the temporal coherence is ~ . Assume
 >> (1/

0
), plot the Fourier transform A( ) [as a function

of ] and interpret it physically. Show that the frequency
spread  ~ 1/ .

17.10 In Problem 17.9, assume 
0
 = 6  10�5 cm and  ~ 10�9 s.

Calculate the frequency components predominantly present
in the pulse and compare it with the case corresponding to
 ~ 10�6 s.
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18.1 INTRODUCTION

Consider a plane wave incident on a long narrow slit of width
b (see Fig. 18.1). According to geometrical optics one expects
the region AB of the screen SS  to be illuminated and the
remaining portion (known as the geometrical shadow) to be
absolutely dark. However, if the observations are made
carefully then one finds that if the width of the slit is not

No one has ever been able to define the difference between interference and diffraction sat-

isfactorily. It is just a question of usage, and there is no specific, important physical difference

between them. The best we can do is, roughly speaking, is to say that when there are only a

few sources, say two, interfering, then the result is usually called interference, but if there is

a large number of them, it seems that the word diffraction is more often used.

�Richard Feynman in Feynman Lectures on Physics, Vol. 1
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Chapter
Eighteen

very large compared to the wavelength, then the light
intensity in the region AB is not uniform and there is also
some intensity inside the geometrical shadow. Further, if the
width of the slit is made smaller, larger amounts of energy
reach the geometrical shadow. This spreadingout of a wave
when it passes through a narrow opening is usually referred
to as diffraction and the intensity distribution on the screen
is known as the diffraction pattern. We will discuss the

LO 1: describe diffraction phenomenon.
LO 2: derive the intensity distribution associated with the single-slit diffraction pattern.
LO 3: analyse diffraction by circular aperture.
LO 4: discuss the directionality of laser beams.
LO 5: discuss the limit of resolution.
LO 6: derive the intensity distributions associated with the 2 slit and N-slit Fraunhofer diffraction patterns.
LO 7: discuss the grating spectrun.
LO 8: discuss the diffraction of a plane wave incident obliquely on a grating.
LO 9: analyse X-ray diffraction and its experimental methods.
LO 10: discuss self-focussing or laser beams.

LO 1

Important Milestones

1819 Joseph Fraunhofer demonstrated the diffraction of light by gratings which were initially made by winding

fine wires around parallel screws.

1823 Fraunhofer published his theory of diffraction.

1835 George Airy calculated the (Fraunhofer) diffraction pattern produced by a circular aperture.
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phenomenon of diffraction in this chapter and will show that
the spreading out decreases with decrease in wavelength.
Indeed, since the light wavelengths are very small (  ~ 5 
10�5 cm), the effects due to diffraction are not readily
observed.

b

S

A
B

S¢

Fig. 18.1 If a plane wave is incident on an aperture then
according to geometrical optics a sharp shadow
will be cast in the region AB of the screen.

We should point out that there is not much of a difference
between the phenomena of interference and diffraction,
indeed, interference corresponds to the situation when we
consider the superposition of waves coming out from a
number of point sources and diffraction corresponds to the
situation when we consider waves coming out from an area
source like a circular or rectangular aperture or even a large
number of rectangular apertures (like the diffraction grating).

The diffraction phenomena are usually divided into
two categories: (i) Fresnel diffraction and (ii) Fraunhofer dif-
fraction.

In the Fresnel class of diffraction, the source of light
and the screen are, in general, at a finite distance from the
diffracting aperture [see Fig. 18.2(a)]. In the Fraunhofer class

of diffraction, the source and the screen are at infinite dis-
tances from the aperture; this is easily achieved by placing
the source on the focal plane of a convex lens and placing
the screen on the focal plane of another convex lens [see
Fig. 18.2(b)]. The two lenses effectively moved the source
and the screen to infinity because the first lens makes the
light beam parallel and the second lens effectively makes the
screen receive a parallel beam of light. It turns out that it is
much easier to calculate the intensity distribution of a
Fraunhofer diffraction pattern which we plan to do in this
chapter. Further, the Fraunhofer diffraction pattern is not dif-
ficult to observe; all that one needs is an ordinary laboratory
spectrometer; the collimator renders a parallel beam of light
and the telescope receives parallel beams of light on its focal
plane. The diffracting aperture is placed on the prism table.
In Chapter 20, we will study the Fresnel class of diffraction
and will discuss the transition from the Fresnel region to the
Fraunhofer region.

18.2 SINGLE-SLIT DIFFRACTION

PATTERN

We will first study the Fraunhofer diffraction pattern pro-
duced by an infinitely long slit of width b. A plane wave is
assumed to fall normally on the slit and we wish to calculate
the intensity distribution on the focal plane of the lens L [see
Fig. 18.3(a)]. We assume that the slit consists of a large num-
ber of equally spaced point sources and that each point on
the slit is a source of Huygens� secondary wavelets which in-
terfere with the wavelets emanating from other points. Let
the point sources be at A

1
, A

2
, A

3
,� and let the distance be-

tween two consecutive points be  [see Fig. 18.3(b)]. Thus,
if the number of point sources be n, then

b = (n � 1) (18.1)

We will now calculate the resultant field produced by these n
sources at the point P, P being an arbitrary point (on the focal
plane of the lens) receiving parallel rays making an angle 
with the normal to the slit [see Fig. 18.3(b)]. Since the slit
actually consists of a continuous distribution of sources, we
will, in the final expression, let n go to infinity and  go to
zero such that n  tends to b.

Now, at the point P, the amplitudes of the disturbances
reaching from A

1
, A

2
,� will be very nearly the same because

the point P is at a distance which is very large in comparison
to b [see Fig. 18.3(b)]. However, because of even slightly dif-
ferent path lengths to the point P, the field produced by A

1

will differ in phase from the field produced by A
2
.

Point
source

Point
source

S

S¢

(a)

(b)

f f
L

Fig. 18.2 (a) When either the source or the screen (or both)
are at finite distances from the aperture, the diffrac-
tion pattern corresponds to the Fresnel class. (b) In
the Fraunhofer class both the source and the
screen are at infinity.
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For an incident plane wave, the points A
1
, A

2
,� are in

phase and, therefore, the additional path traversed by the
disturbance emanating from the point A

2
 will be A

2
A

2
 where

A
2

 is the foot of the perpendicular drawn from A
1
 on A

2
B

2
.

This follows from the fact that the optical paths A
1
B

1
P and

A
2

B
2
P are the same. If the diffracted rays make an angle 

with the normal to the slit then the path difference would be

A
2
A

2
=  sin 

The corresponding phase difference, , would be given by

= 
2

  sin (18.2)

Thus, if the field at the point P due to the disturbance ema-
nating from the point A

1
 is a cos t then the field due to the

disturbance emanating from A
2
 would be a cos ( t � ). Now

the difference in the phases of the disturbance reaching from

the points A
2
 and A

3
 will also be  and thus the resultant

field at the point P would be given by

E = a[cos t + cos ( t � ) +�+ cos ( t � (n � 1) )] (18.3)

where

= 
2

  sin 

Now, we had shown in Sec. 11.7 that

cos t + cos ( t � ) + � + cos [ t � (n � 1) ]

= 
sin /

sin /
cos ( )

n
t n

2

2

1

2
1

1

32
4

65
(18.4)

Thus,

E = E
0
 cos t n

1
32

4
65

1

2
1( ) (18.5)

Screen

Diffraction
pattern

Incident

plane wave

Long narrow slit

Lens

f

A1

A2

A3

A¢2

q
D

B1

B2

B3
b

L

P

f

(b)

(a)

Fig. 18.3 (a) Diffraction of a plane wave incident normally on a long narrow slit of width b. Notice that the
spreading occurs along the width of the slit. (b) In order to calculate the diffraction pattern, the slit is
assumed to consist of a large number of equally spaced points.
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where the amplitude E  of the resultant field would be given
by*

E = a
sin ( / )

sin /

n 2

2
(18.6)

In the limit of n   and   0 in such a way that n   b,
we have

n

2
= n bsin sin

Further,

= 
2

sin  = 
2 b

n

sin

would tend to zero and we may, therefore, write

E  

a
n

sin
2

2

%
'&

(
0)

 = na 
sin

sin

sin

b

b

= A 
sin

(18.7)

where**

A = na

and

= 
b sin

(18.8)

Thus,

E = A 
sin

cos ( )t (18.9)

The corresponding intensity distribution is given by

I = I
0
 
sin

2

2
(18.10)

where I
0
 represents the intensity at  = 0

18.2.1 Positions of Maxima and Minima

The variation of the intensity with  is shown in Fig. 18.4(a). It
is obvious from Eq. (18.10) that the intensity is zero when

= m , m  0 (18.11)

[When  = 0, 
sin

 = 1 and I = I
0
 which corresponds to the

maximum of the intensity.] Substituting the value of  one
obtains

b sin  = m ; m =  1,  2,  3,� (minima) (18.12)

as the conditions for minima. The first minimum occurs at  =

 sin�1 
bQ V ; the second minimum at  =  sin�1 2

bQ V , etc.
Since sin  cannot exceed unity, the maximum value of m is

the integer which is less than (and closest to) b .

The positions of minima can directly be obtained by
simple qualitative arguments. Let us consider the case m = 1.
The angle  satisfies the equation

b sin = (18.13)

We divide the slit into two halves as shown in Fig. 18.5.
Consider two points A and A  separated by a distance b/2.
Clearly the path difference between the disturbances (reach-

ing the point P) emanating from A and A  is b
2

 sin  which in

this case is 
2

. The corresponding phase difference will be 
and the resultant disturbance will be zero. Similarly, the dis-
turbance from the point B will be cancelled by the
disturbance reaching from the point B . Thus, the resultant

* Equation (18.6) represents the amplitude distribution due to the interference of n point sources. Thus, for n = 2, the amplitude E
becomes cos /2 giving rise to cos2 /2 intensity distribution [cf. Eq. (14.13) of Chapter 14]. Notice that if we have a large number
of equidistant sources oscillating in phase, then the propagation is only in cetain directions where the displacements add up in phase.

** We may mention here that in the limit n   and a  0 the product na tends to a finite limit.

0

p

p
b

b2p

2p

3p

3p

y = tan b

y = tan b

y
=
b

y

Amplitude distribution

Intensity distribution

(a)

(b)

Fig. 18.4 (a) The intensity distribution corresponding to
the single slit Fraunhofer diffraction pattern. (b)
Graphical method for determining the roots of the
equation tan  = .
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disturbance due to the upper half of the slit will be canceled
by the disturbances reaching from the lower half and the re-
sultant intensity will be zero. In a similar manner when

b sin = 2 (18.14)

we divide the slit into four parts; the first and second quarters
cancelling each other and the third and fourth quarters can-
celling each other. Similarly when m = 3, the slit is divided
into six parts and so on.

In order to determine the positions of maxima, we differ-
entiate Eq. (18.10) with respect to  and set it equal to zero.
Thus

dI

d
= I0 2

2

3

2 2sin cos sin1

3
2

4

6
5 = 0

or

sin [  � tan ] = 0 (18.15)

The condition sin  = 0, or  = m  (m  0) correspond to
minima. The conditions for maxima are roots of the follow-
ing transcendental equation

tan = (maxima) (18.16)

The root  = 0 corresponds to the central maximum. The
other roots can be found by determining the points of inter-
sections of the curves y =  and y = tan  [see Fig. 18.4(b)].
The intersections occur at  = 1.43 ,  = 2.46 , etc., and are
known as the first maximum, the second maximum, etc. Since

sin ( . )

.

143

1 43

2
1

3
2

4

6
5

is about 0.0496, the intensity of the first maximum is about
4.96% of the central maximum. Similarly, the intensities of the
second and third maxima are about 1.68% and 0.83% of the
central maximum, respectively.

Example 18.1 A parallel beam of light is incident normally

on a narrow slit of width 0.2 mm. The Fraunhofer diffraction pattern
is observed on a screen which is placed at the focal plane of a con-
vex lens whose focal length is 20 cm. Calculate the distance between
the first two minima and the first two maxima on the screen. As-
sume  = 5 10�5 cm and that the lens is placed very close to the

slit.

Solution:

λ
b

= 
5 10

2 10

5

2

×

×

−

−  = 2.5  10�3

Now, the conditions for diffraction minima are given by
sin  = m /b. We assume  to be small (measured in radians) so that
we may write sin    (an assumption which will be justified by
subsequent calculations); thus, on substituting the value of /b, we
get

~− 2.5  10�3 and 5  10�3 radians

as the angles of diffraction corresponding to the first and second

minima, respectively. Notice that since

sin (2.5  10�3) = 2.4999973  10�3

the error in the approximations sin  ~−   is about 1 part
in a million! These minima will be separated by a distance (5 
10�3 � 2.5  10�3)  20 = 0.05 cm on the focal plane of the lens.

Similarly, the first and second maxima occur at

= 1.43 and 2.46

respectively. Thus,

b sin = 1.43 and 2.46

or

sin = 1.43  2.5  10�3 and 2.46  2.5  10�3

Consequently, the maxima will be separated by the distance given

by

(2.46 � 1.43)  2.5  10�3  20 ~− 0.05 cm

Example 18.2 Consider, once again, a parallel beam of light

(  = 5  10�5 cm) to be incident normally on a long narrow slit of
width 0.2 mm. A screen is placed at a distance of 3 m from the slit.
Assuming that the screen is so far away that the diffraction is es-
sentially of the Fraunhofer type, calculate total width of the central

maximum.

Solution: As in Example 18.1, the first minimum occurs at

 ~− 2.5  10�3 radians; thus the total width of the central maximum
is approximately given by

q
A

A¢
B¢

B

b/2

b

Fig. 18.5 The slit is divided into two halves for deriving
the condition for the first minimum.
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2  3  tan (2.5  10�3) ~−  0.015 m

In Fig. 18.6, we have given the actual single slit diffraction pat-
tern (as seen on a screen) for the following values of slit widths:
8.8  10�3 cm, 1.76  10�2 cm, 3.5  10�2 cm and 7.0  10�2 cm.
The light wavelength used was 6328 Å = 6.328  10�5 cm. We may

note the following two points:

(i) The spreading is only in the direction of the width

of the slit. This is because of the fact that the lengths of the
slits were very large compared to their widths.

(ii) The values of /b corresponding to the four slit widths are
7.191  10�3, 3.595  10�3, 1.808  10�3 and 0.904  10�3.
Thus, the diffraction angle at which the first minimum will
occur will be

 ~−  sin = 7.191  10�3, 3.595  10�3,

1.808  10�3 and 0.904  10�3;

where the angles are measured in radians.* The intensity
distributions predicted by Eq. (18.10) are given in Fig. 18.7 for b =
8.8  10�3 cm and 1.76  10�2 cm. For b >> , most of the energy
(of the diffracted beam) is contained between the first two minima,

i.e., for

−
λ
b

 <~   <~
λ
b

(18.17)

* Figure 18.6 corresponds to the photographic film being 15 feet away from the slit. Thus it records the Fraunhofer pattern (see also
Sec. 20.7) and for b = 8.8  10�3 cm, 1.76  10�2 cm, 3.5  10�2 cm and 7.0  10�2 cm, the first minima occur at distances of 3.288
cm, 1.644 cm, 0.827 cm and 0.413 cm, respectively, from the central maximum.

–0.8

–0.8

–0.4

–0.4

0.4

0.4

0.8

0.8

0

0

1.0

1.0

0.5

0
.5

b = 0.0088 cm

= 6.328 10 cml ¥
–5

b = 0.0176 cm

= 6.328 10 cml ¥
–5

(a)

(b)

q (degrees)

q (degrees)

Fig. 18.7 The intensity distribution as calculated by using
Eq. (18.10) for b = 0.0088 cm and 0.0176 cm (  =
6.328  10 � 5 cm).

Fig. 18.6 The single-slit diffraction patterns correspond-
ing to b = 0.0088, 0.0176, 0.035 and 0.070 cm,
respectively. The wavelength of the light used
is 6.328  10�5 cm (Adapted from Ref. 18.17; used
with permission).

(where  is measured in radians). Thus the divergence angle (which

would contain most of the energy) would be given by

~ 
λ
b

(18.18)

For very small values of
 
b, the light almost uniformly spreads out

from the slit. We should also mention that in the limit of   0, 

 0 and the diffraction effects are absent.

18.3 DIFFRACTION BY A
CIRCULAR APERTURE

In the previous section, we have shown that when a plane
wave is incident on a long narrow slit (of width b), then
the emergent wave spreads out (along the width of the slit)
with angular divergence ~ /b. In a similar manner, one can
discuss the diffraction of a plane wave by a circular aperture.
Figure 18.8 shows the arrangement for observing the

LO 3
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diffraction pattern; a plane wave is incident normally on the
circular aperture and a lens whose diameter is much larger
than that of the aperture is placed close to the aperture and
the Fraunhofer diffraction pattern is observed on the focal
plane of the lens. Because of the rotational symmetry of the
system, the diffraction pattern will consist of concentric dark
and bright rings; this diffraction pattern (as observed on the
back focal plane of the lens) is known as the Airy pattern. In
Figs. 18.9(a) and (b), we have shown the Airy patterns
corresponding to the radius of the circular aperture being 0.5
mm and 0.25 mm, respectively. The detailed derivation of the
diffraction pattern for a circular aperture is somewhat
complicated (see Sec. 19.7); we give here the final result: the
intensity distribution is given by

I = I
0
 
2 1

2
J ( )v

v

1
32

4
65

(18.19)

where

v = 
2

 a sin (18.20)

a being the radius of the circular aperture,  the wavelength
of light and  the angle of diffraction; I

0
 is the intensity at

 = 0 (which represents the central maximum) and J
1
(v) is

known as the Bessel function of the first order. On the focal
plane of the convex lens

v  
2

2 2 1
2

a
x y

f

( )
(18.21)

where f is the focal length of the lens. For those not familiar
with Bessel functions, we may mention that the variation of
J

1
(v) is somewhat like a damped sine curve (see Fig. 18.10)

and although J
1
(0) = 0, we have

1

0

2 ( )J
Lt

v

v

v
= 1

similar to the relation

Lt
x

xx 0

sin
= 1

Other zeros of J
1
(v) occur at

v = 3.832, 7.016, 10.174, �

In Fig. 18.11, we have plotted the function

2 1
2

J ( )v

v

1
32

4
65

which represents the intensity distribution corresponding to
the Airy pattern. Thus the successive dark rings in the Airy
pattern (see Fig. 18.9) will correspond to

v = 
2

 a sin 

a = 0.5 mm a = 0.25 mm

1 mm 1 mm

1 mm

(a) (b)

Fig. 18.9 Computer generated Airy patterns; (a) and (b) correspond to a = 0.5 mm and a = 0.25 mm, respectively
at the focal plane of a lens of focal length 20 cm (  = 0.5 m).

Lens

Lens

Airy
pattern

Circular
aperature

f

f

Fig. 18.8 Experimental arrangement for observing the
Fraunhofer diffraction pattern by a circular aper-
ture.
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where we have assumed  to be small so that tan   sin .
The Airy patterns shown in Figs. 18.9(a) and (b) correspond
to a = 0.5 mm and 0.25 mm, respectively; both figures corre-
spond to  = 5000Å and f = 20 cm. Thus

Radius of the first dark ring  0.12 mm and 0.24 mm

corresponding to a = 0.5 mm and 0.25 mm, respectively.
Detailed mathematical analysis shows that about 84% of
the energy is contained within the first dark ring (see
Sec. 19.7); thus we may say that the angular spread of the
beam is approximately given by

 
0 61.

D D
(18.25)

where D (= 2a) represents the diameter of the aperture. Com-
paring Eqs. (18.18) and (18.25), we may say that the angular
divergence associated with the diffraction pattern can be
written in the following general form:

 ~
Linear dimension of the aperture

(18.26)

In a dark room, if we make a laser beam incident normally
on a pin-hole, we will be able to see the Airy Pattern on the
wall.

Example 18.3 Calculate the radii of the first two dark rings

of the Fraunhofer diffraction pattern produced by a circular aperture
of radius 0.02 cm at the focal plane of a convex lens of focal length

20 cm. Assume  = 6  10�5 cm.

Solution: The first dark ring occurs at

 sin  = 
5

1.22 6 10

2 0.02
  1.8  10�3 radians

Thus, the radius of the first dark ring is

 20  1.8  10�3 = 3.6  10�2 cm

Similarly, the radius of the second dark ring is

5
27.016 6 10

20 6.7 10 cm
2 0.02

In Fig. 18.12, we have shown that if an obstacle with a small gap
is placed in the tank the ripples emerge in an almost semicircular
pattern; the small gap acting almost like a point source. If the
gap is large, the diffraction is much more limited. Small, in this
context, means that the size of the obstacle is comparable to the
wavelength of the ripples.

0.5

0
v

J1( )v

10.174

7.0163.832

4 8 12

Fig. 18.10 The variation of J1(v) with v.

0.5

1

0

2 ( )J1
v

v

2

1284

3.832 7.016

a sin qv =

2p

l

Fig. 18.11 The intensity variation associated with the
Airy pattern.

= 3.832, 7.016, 10.174, � (18.22)

or

sin = 
3832

2

7 016

2

.
,

.
,

a a
(18.23)

If f represents the focal length of the convex lens, then the
Radii of the dark rings

= f tan   
3832

2

7 016

2

.
,

.
,

f

a

f

a
(18.24)
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Fig. 18.12 If an obstacle with a small gap is placed in the
tank the ripples emerge in an almost
semicircular pattern; the small gap acting almost
like a point source. If the gap is large however,
the diffraction is much more limited. Small, in
this context, means that the size of the obstacle is
comparable to the wavelength of the ripples. The
drawing is by Ms. Theresa Knott; used with her
kind permission. [A colored diagram appears as Fig.
22 in the prelim pages.]

where

= 
z

w0
2

w(z) = w
0
 21

=w
z

w
0

2 2

2
0
4

1 2

1
1

3
2
2

4

6
5
5

/

(18.29)

Thus the transverse intensity distribution remains Gaussian
with the beam-width increasing with z. For large values of

z

2
0w

, we obtain

w(z)  w
z

w
0

0
2

 = 
z

w0

(18.30)

which shows that the width increases linearly with z. We
define the diffraction angle as

tan = 
w z

z w

( )

0

(18.31)

showing that the rate of increase in the width is proportional
to the wavelength and inversely proportional to the initial
width of the beam; the above equation is consistent with
Eq. (18.26).

We consider the propagation of a Gaussian beam with  =
0.5 m. If the initial spot size is given by w

0
 = 1 mm, then

2  0.018 and at z = 10 m, we get w  1.88 mm.

[We must use Eq. (18.28) and not Eq. (18.31) � why??].
Similarly, for w

0
 = 0.25 mm,

2  0.073 and at z = 10 m, we get w  6.35 mm.

(see Fig. 18.13). Notice that  increases with decrease in w
0

(smaller the size of the aperture, greater is the diffraction).
From Eq. (18.31) we find that

(a) For a given value of ,  increases with a decrease in
the value of w

0
; this implies that smaller the initial

spot size of the beam greater will be the diffraction
divergence.

18.4 DIRECTIONALITY OF

LASER BEAMS

An ordinary source of light (like a sodium lamp) radiates in
all directions. On the other hand, the divergence of a laser
beam is primarily due to diffraction effects. For most laser
beams, the transverse amplitude distribution is approximately
Gaussian; indeed just when the beam is leaving the laser
(which we assume to be z = 0), the amplitude distribution can
be assumed to be given by

A(x, y) = a exp
1

3
2
2

4

6
5
5

x y

w

2 2

0
2

(18.27)

where we have assumed that the phase front is plane at
z = 0. From the above equation it follows that at a distance
w

0
 from the z-axis, the amplitude falls by a factor 1/e (i.e., the

intensity reduces by a factor 1/e2). This quantity w
0
 is called

the spot size of the beam. In Sec. 20.5 (and Appendix D) we
will show that as the beam propagates in the z-direction, the
intensity distribution is given by

I (x, y, z) = 
I x y

w z

0
2

2 2

2
1

21

3
2

4

6
5exp

( )

( )
(18.28)
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(b) For a given value of w
0
, the value of  (and hence the

diffraction divergence) decreases with decrease in the
value of . In Fig. 18.14, we have shown decrease in
diffraction divergence for w

0
 = 0.25 mm as the wave-

length is decreased from 5000 Å to 500 Å; indeed as
0,  0 and there is no diffraction which is the

geometric optics limit.

In Fig. 18.15, we have shown a laser beam propagating
through the atmosphere. Notice the small divergence of the
beam. From Eq. (18.27) one can readily show that

I x y z dx dy( , , )ss  = 
w

I0
2

02

which is independent of z. This is to be expected, as the total
energy crossing the entire x-y plane will not change with z.

Example 18.4 The output from a single-mode fiber operat-

ing at the He�Ne laser wavelength (
0
 = 0.6328 m) is

approximately Gaussian with w
0
 = 5 m. Thus, the corresponding

divergence is

Fig. 18.13 Diffraction divergence of a Gaussian beam whose phase front is plane at z = 0. The figure shows the
increase in the diffraction divergence as the initial spot size is decreased from 1 mm to 0.25 mm;
the wavelength is assumed to be 5000 Å.

Fig. 18.14 Diffraction divergence of a Gaussian beam whose phase front is plane at z = 0. The figure shows
the decrease in divergence as the wavelength is decreased from 5000 Å to 5000 Å; the initial spot
size (w

0
) is assumed to be 0.25 mm.



Fraunhofer Diffraction I IVFIQ
u

 tan �1 λ

π
0

0w
  2.3

Thus, if a screen as placed at a distance of about 50 cm from the

fiber, the radius of the beam is about 2 cm.

A beam is said to be diffraction limited if it diverges
only due to diffraction. Usually laser beams are diffraction limited.
On the other hand, if we have a tiny filament at the focal plane of
a lens, the beam will diverge primarily due to the finite size of the
filament (see Fig. 18.16). The angular spread of the beam is given

by (see Fig. 18.16)

 
l

f
(18.32)

where l is the length of the filament and f the focal length of the
lens. If the linear dimension of the filament is about 2 mm (placed
on the focal plane of a convex lens of focal length 10 cm) then the
angular divergence of the beam (due to the finite size of the fila-

ment) is approximately given by

 
2

100

mm

mm
 = 0.02 radians

l

f

Dq

Fig. 18.16 A filament placed at the focal plane of a convex
lens.

If the diameter of the aperture of the lens is 5 cm then the angu-

lar divergence due to diffraction would be

 
λ
D

 
5 10

5

5× − cm

cm
 = 0.00001 radians

which is much much smaller than the angular divergence of the beam
due to the finite size of the filament. Only if the size of the fila-
ment is smaller than 10�3 mm would the beam divergence be
determined by diffraction. Thus for most practical sources, the
beam divergence is due to the finite size of the filament rather than

by diffraction.

18.4.1 Focusing of Laser Beams

As mentioned earlier, laser beams are usually diffraction lim-
ited. If such a diffraction limited beam is allowed to fall on a
convex lens then

Radius of the focussed spot  0 f

a
(18.33)

(see Fig. 18.17). In Eq. (18.32), f represents the focal length of
the lens and a represents the beam radius or the radius of
the aperture of the lens (whichever is smaller). Thus,

Area of the focussed spot A   0

2
f

a

%
'&

(
0)

2a

f

2l0f

a
ª

Laser beam

Fig. 18.17 If a truncated plane wave (of diameter 2a) is in-
cident on an aberrationless lens of focal length
f, then the wave emerging from the lens will
get focused to spot of radius  

0
 f/a; the area of

the focused spot size is  (
0
 f/a)2.

Fig. 18.15 The laser beam, launched from VLT�s 8.2-metre
Yepun telescope, crosses the sky and creates an
artificial star at 90 km altitude in the high Earth�s
mesosphere. Notice that the spreading of the
beam is extremely small. [Photograph courtesy: Dr.
G Huedepohl. The photograph is in the public domain. A
color photograph appears as Fig. 23 on the prelim pages
of the book].
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We illustrate the effects of this focusing through some
examples.

Example 18.5 We consider a 2 mW laser beam (
0
  6 

10�5 cm) incident on the eye whose focal length is given by f 

2.5 cm. If the pupil diameter ( = 2a ) is taken to be 2 mm, then

Area of the focused spot A = 
λ0

2
f

a

%
'&

(
0)

  7  10�6 cm2

On the retina, the intensity will be approximately given by

I  
P

A
  

2 10

7 10

3

10

×

×

−

−

W

m2
  3  106 W/m2

Such high intensities will damage the retina!!!! So never look

into a (seemingly innocent) low power laser beam.

Example 18.6 We next consider a 3 MW laser beam (
0
  6

 10�5 cm and beam width 2a  1 cm) incident on a lens of focal

length of 5 cm, then

Area of the focused spot

A =
2

0 f

a
  10�6 cm2 = 10�10 m2

On the focal plane of the lens, the intensity will be approximately

given by

I  
P

A
  

3 10

10

6

10

×
−

W

m2
  3  1016 W/m2

Now, the intensity of the beam is related to the electric field amplitude

E
0
 through the following relation [see Eq. (23.78)

I = 
1

2
 

0
 c E

0

2 (18.34)

where 
0
  8.854  10�12 MKS units represents the dielectric per-

mittivity of free space and c  3  108 m/s represents the speed of
light in free space. Substituting I  3  1016 W/m2 in Eq. (18.34) we
readily get

E
0

 5  109 V/m

Such high electric fields results in the creation of spark in air (see
Fig. 18.18). Thus laser beams (because of their high directionality)
can be focused to extremely small regions producing very high in-
tensities. Such high intensities lead to numerous industrial
applications of the laser such as welding, hole drilling, cutting ma-
terials, etc (see e.g., Ref. 18.5). In Fig. 18.19, we have shown a
focussed laser beam drilling through concrete.

In the following two examples, we will calculate the intensi-
ties (at the retina of our eye) when we directly view a 500 W
bulb or the Sun (Caution: Never look into the Sun; the retina

will be damaged not only because of high intensities but also

because of large ultraviolet content of the sunlight).

Fig. 18.18 Focusing of a 3 MW peak power pulsed ruby
laser beam. At the focus, the electric field
strengths are of the order of 10 9 V/m which re-
sults in the creation of a spark in the air. (Photograph
courtesy: Dr. R. W. Terhune).

Fig. 18.19 A focussed laser beam drilling through concrete.
Photograph courtesy: Dr. Brahma Nand
Upadhyay, RRCAT, Indore. A colour photograph
appears as Fig. 40 in prelim pages.

Example 18.7 We consider a 6 cm diameter incandescent

source (like a 500 W bulb) at a distance of about 5 m from the eye
(see Fig. 18.20). We assume the pupil diameter to be about 2 mm.

Thus,

Area of the pupil of the eye   (1  1) mm2  3  10�6 m2

Power entering eye  (500 W)  
π

π

r

R

2

24
  5  10�6 W

Radius of image = Radius of source  demagnification

 3 cm  
2 5

500

.
  1.5  10�4 m

where we have assumed the image to be formed at a distance of about
2.5 cm from the pupil of the eye. Thus,
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The power density in image

= 
(

( . )

5 10

15 10

6

4 2

×

× ×

−

−

W)

m2π
  70 W/m2

Fig. 18.20 A 500 W bulb at a distance of about 5 m from
the eye.

Example 18.8 We next calculate the intensity at the retina if

we are directly looking at the Sun (see Fig. 18.21). Now

The intensity of solar energy on earth  1.35 kW/m2

Thus, the energy entering the eye

 1.35  103    10�6  4 mW

The Sun subtends about 0.5  on the earth. Thus,

The diameter of the image of the Sun

 0.5  
π
180

  25  0.2 mm

= 2  10�4 m
and

The power density in image

 
4 10

2 10

3

4 2

W

m2( )

 30 kW/m2

To summarize, a 2 mW diffraction limited laser beam incident
on the eye can produce an intensity of about 106 W/m2 at
the retina�this would certainly damage the retina. Thus,
whereas it is quite safe to look at a 500 W ordinary light bulb,
it is very dangerous to look directly into a 2 mW laser beam.
Indeed, because a laser beam can be focused to very narrow
areas, it has found important applications in areas like eye
surgery, welding , etc.

Eye
30¢

SUN

Fig. 18.21 If we look directly at the sun, intensities as
high as 130 kW/m2 are produced; this can dam-
age the retina of the eye!

* The derivation of the formulae has been given at many places�see, e.g., Sec. 6.5 of Ref. 18.6.

From the above discussion it immediately follows that
greater the radius of the beam, the smaller will be the size of
the focused spot and hence greater will be the intensity at
the focused spot. Indeed, one may use a beam expander (see
Fig. 18.22) to produce a beam of greater size and hence a
smaller focused spot size. However, after the focused spot,
the beam would have a greater divergence and would there-
fore expand within a very short distance. One usually defines
a depth of focus as the distance over which the intensity of
the beam (on the axis) decreases by a certain factor of the
value at the focal point. Thus, a small focused spot would
lead to a small depth of focus. We may mention here that the
intensity distribution at the focal plane of the lens is given
by Eq. (18.19) where the parameter v is given by Eq. (18.21).
On the other hand, the intensity along the axis is given by

I = I
0
 
sin ( / )

/

w

w

4

4

2
1

32
4

65
(18.35)

where

w = 
2

2
a

f
z

%
'&

(
0)

(18.36)

and z = 0 represents the focal plane.*
It can be readily seen that the intensity would drop by

about 20% at

z   0.5  (f / a)2 (18.37)

f f1 2+

Fig. 18.22 Two convex lenses separated by a distance equal
to the sum of their focal lengths act like a beam
expander.

which is usually referred to as the depth of the focus or focal
tolerance. Notice that larger the value of a, smaller will be the
focal tolerance. For   6  10�5 cm, f  10 cm and a  1 cm,
the focal tolerance is about 3  10�3 cm.

IVFS vsws�2yp2�i�yv��syx

Consider two point sources, such as stars (so that we can
consider plane waves entering the aperture) being focused by
a telescope objective of diameter D (see Fig. 18.23). As
discussed in the previous section, the system can be thought

LO 5
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resultant intensity distributions are quite complicated (see
Fig. 18.27); what we have plotted in Figs. 18.25 and 18.26 are
the intensity distributions on the line joining the two centers
of the Airy patterns; we should mention here that since the
point sources are independent sources, their intensity distri-
butions (Airy patterns) will add. If we choose this line as
x-axis then the parameter v in Figs. 18.25 and 18.26 is given
by

v = 
2 a

f
x (18.38)

of as being equivalent to a circular aperture of diameter D,
followed by a converging lens of focal length f, as shown in
Fig. 18.8. As such, each point source will produce its Airy
pattern as schematically shown in Fig. 18.23. The diameters of
the Airy rings will be determined by the diameter of the
objective, its focal length and the wavelength of light
(see Example 18.3).

Fig. 18.23 The image of two distant objects on the focal
plane of a convex lens. If the diffraction pat-
terns are well separated, they are said to be
resolved.

In Fig. 18.23 the Airy patterns are shown to be quite far
away from each other and, therefore, the two objects are said
to be well resolved. Since the radius of the first ring is
1.22  f /D the Airy patterns will overlap more for smaller
values of D and hence for better resolution one requires a
larger diameter of the objective. It is for this reason that a
telescope is usually characterized by the diameter of the ob-
jective; for example, a 40 inch telescope implies that the
diameter of the objective is 40 . In Fig. 18.24 we have shown
the image of the binary star Zeta Bootis by a 2.56 m telescope
aperture; the Airy disc around each of the stars can be seen.

Fig. 18.24 Image of the binary star Zeta Bootis by a 2.56 m
telescope aperture; the Airy disc around each of the
stars can be seen. The photograph is by Dr. Bob
Tubbs; used with permission from Dr. Tubbs. [A
color photograph appears as Fig. 24 in the prelim pages.]

In Figs. 18.25 and 18.26, we have plotted the independent
intensity distributions and their resultant produced by two
distant objects for various angular separations; in each case
we have assumed that the two sources produce the same in-
tensity at their respective central spots. Obviously, the

Fig. 18.25 The dashed curves correspond to the intensity
distribution produced by two point sources
(producing the same intensity at the central
spot) independently; the solid curves represent
the resultant. (a) and (b) correspond to the an-
gular separation of the two objects equal to
6 / D and 1.22 /D respectively. In the first
case the objects are well resolved and in the
second case (according to the Rayleigh crite-
rion) they are just resolved.
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Fig. 18.26 The dashed curves correspond to the intensity
distribution produced independently by two
distant point objects having an angular separation
of 2 / D. The resultant intensity distribution
(shown as a solid curve) has only one peak and
hence the objects are unresolved.

Now, the intensity distributions given in Fig. 18.23(a)
correspond to two distant point objects having an angular
separation of 6 / D and as can be seen the two images are
clearly resolved. Figure 18.26 corresponds to

~ 2

D
(18.39)

and as can be seen, the resultant intensity distribution has
only one peak and therefore the two points cannot be

resolved at all. Finally, if the angular separation of the two
objects is 1.22 /D then the central spot of the one pattern
falls on the first minimum of the second and the objects are
said to be just resolved. This criterion of limit of resolution is
called the Rayleigh criterion of resolution and the intensity
distribution corresponding to this is plotted in Fig. 18.25(b).
The actual diffraction patterns are shown in Fig. 18.27.

In order to get a numerical appreciation of the above re-
sults we consider a telescope objective whose diameter and
focal length are 5 cm and 30 cm, respectively. Assuming the
light wavelength to be 6  10�5 cm, one finds that the mini-
mum angular separation of two distant objects which can just
be resolved will be

122.

D
= 

122 6 10

5

5.
~  1.5  10�5 radians

Further, the radius of the first dark ring (of the Airy pattern)
will be

122.

D
focal length = 

122 6 10

5
30

5.

~  4.5  10�4 cm

It is immediately obvious that the larger the diameter of
the objective, the better will be its resolving power. For
example, the diameter of the largest telescope objective
is about 80  and the corresponding angular separation of the
objects that it can resolve is ~  0.07 sec of arc. This very low
limit of resolution is never achieved in ground based
telescopes due to the turbulence of the atmosphere.
However, a larger aperture still provides a larger light
gathering power and hence the ability to see deeper in space.

(a) (b) (c)

Fig. 18.27 Computer generated intensity distributions corresponding to two point sources when they are: (a)
well resolved, (b) just resolved, and (c) unresolved.
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It is of interest to note that if we assume that the angular
resolution of the human eye is primarily due to diffraction
effects then it will be given by

~ 
D

6 10

2 10

5

1
 = 3  10�4 rad. (18.40)

where we have assumed the pupil diameter to be 2 mm. Thus,
at a distance of 20 m, the eye should be able to resolve two
points which are separated by a distance

3  10�4  20 = 6  10�3 m = 6 mm

One can indeed verify that this result is qualitatively valid
by finding the distance at which the millimetre scale will be-
come blurred.

In the above discussion, we have assumed that the
two object points produce identical (but displaced) Airy pat-
terns. If that is not the case then the two central maxima will
have different intensities; accordingly one has to set up a
modified criterion for the limit of resolution such that the two
maxima stand out.

18.5.1 Resolving Power of a
Microscope

We next consider the resolving power of a microscope objec-
tive of diameter D as shown in Fig. 18.28. Let P and Q

represent two closely spaced self-luminous point objects
which are to be viewed through the microscope. Assuming
the absence of any geometrical aberrations, rays emanating
from the points P and Q will produce spherical wavefronts
(after refraction through the lens) which will form Airy pat-
terns around their paraxial image points P  and Q . For the
points P and Q to be just resolved, the point Q  should lie on
the first dark ring surrounding the point P  and, therefore, we
must have

sin 
122.

D
 = 

122 0.

n D
(18.41)

where n and n  represent the refractive indices of the object
and image spaces, 

0
 and (=

0
/n ) represent the wave-

length of light in free space and in the medium of refractive
index n  respectively. The angle  is defined in Fig. 18.28 and
we have

sin  
y

OP
 = 

y i

D

tan

/2
  

y i

D

sin

/2
(18.42)

where we have assumed sin i   tan i , this is justified since
the image distance (OP ) is large compared to D. Using
Eqs. (18.41) and (18.42), we get

y  
061 0.

sinn i

If we now use the sine law n y  sin i  = ny sin i [see Eq. (4.39)
of Chapter 4], we get

y  
0 61 0.

sinn i
(18.43)

which represents the smallest distance that the microscope
can resolve. The quantity n sin i is the numerical aperture of
the optical system and the resolving power increases with
increase in the numerical aperture. It is for this reason that in
some microscopes the space between the object and the
objective is filled with an oil�and they are referred to as �oil
immersion objectives�. Equation (18.43) also tells us that the
resolving power increases with decrease in . As such, one
often uses blue light (or even ultraviolet light) for the illumi-
nation of the object. For example, in an electron microscope
the de Broglie wavelength of electrons accelerated to 100 keV
is about 0.03  10�8 cm and therefore such a microscope has
a very high resolving power.

In the above analysis, we have assumed that the two
object points are self-luminous so that the intensities can be
added up. However, in actual practice, the objects are illumi-
nated by the same source and, therefore, in general, there is
some phase relationship between the waves emanating from
the two object points; for such a case the intensities will not
be strictly additive (see Sec. 14.6), nevertheless Eq. (18.43)
will give the correct order for the limit of resolution.

18.6 TWO-SLIT FRAUNHOFER
DIFFRACTION
PATTERN

In Sec. 18.3, we had studied the Fraunhofer diffraction
pattern produced by a slit of width b and had found that the
intensity distribution consisted of maxima and minima. In this
section, we will study the Fraunhofer diffraction pattern
produced by two parallel slits (each of width b) separated by
a distance d. We would find that the resultant intensity
distribution is a product of the single-slit diffraction pattern
and the interference pattern produced by two point sources
separated by a distance d.

y ¢

D

O

Q

P i

n

P ¢i ¢

n ¢

a¢

Q ¢

u v

y

Fig. 18.28 The resolving power of a microscope objective.
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E = A
sin

cos cos t
%
'

(
0

1

2

1

2 1

where

= 1

2
 =  d sin (18.44)

The intensity distribution will be of the form

I = 4I
0
 
sin

2

2
 cos2 (18.45)

where I
0
 sin2 / 2 represents the intensity distribution

produced by one of the slits. As can be seen, the intensity
distribution is a product of two terms; the first term
(sin2 / 2) represents the diffraction pattern produced by a
single slit of width b and the second term (cos2 ) represents
the interference pattern produced by two point sources
separated by a distance d. Indeed, if the slit widths are very
small (so that there is almost no variation of the sin2 / 2

term with ) then one simply obtains the Young�s interference
pattern (see Sec. 14.6).

In Fig. 18.30, we have shown the two slit diffraction
patterns corresponding to d = 0, 0.0176, 0.035 and 0.070 cm
with b = 0.0088 cm and  = 6.328  10�5 cm. The intensity
distribution as predicted by Eq. (18.45) is shown in Fig. 18.31.

In order to calculate the diffraction pattern we use a
method similar to that used for the case of a single slit and
assume that the slits consist of a large number of equally
spaced point sources and that each point on the slit is a
source of Huygens� secondary wavelets. Let the point
sources be at A

1
, A

2
, A

3
,� (in the first slit) and at B

1
, B

2
,

B
3
,� (in the second slit) [see Fig. 18.29]. As before, we

assume that the distance between two consecutive points in
either of the slits is . If the diffracted rays make an angle 
with the normal to the plane of the slits, then the path
difference between the disturbances reaching the point P

from two consecutive points in a slit will be  sin . The field
produced by the first slit at the point P will, therefore, be
given by [see Eq. (18.9)]

E
1

= A 
sin

 cos ( t � )

Similarly, the second slit will produce a field

E
2

= A 
sin

 cos ( t �  � 
1
)

at the point P, where

1
= 

2
d sin 

P

f

d

B1

A2

A1

B2b

b

q

Fig. 18.29 Fraunhofer diffraction of a plane wave incident
normally on a double slit.

represents the phase difference between the disturbances
(reaching the point P) from two corresponding points on the
slits; by corresponding points we imply pairs of points like
(A

1
, B

1
), (A

2
, B

2
),� which are separated by a distance d.

Hence the resultant field will be

E = E
1
 + E

2

= A 
sin

 [cos ( t � ) + cos ( t �  � 
1
)]

which represents the interference of two waves, each of am-

plitude A 
sin

 and differing in phase by 
1
. The above

equation can be rewritten in the form

Fig. 18.30 The double-slit Fraunhofer diffraction pattern
corresponding to b = 0.0088 cm and  = 6.328 
10�5 cm. The values of d are 0, 0.0176, 0.035 and
0.070 cm respectively [Adapted from Ref. 17;
used with permission].
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18.6.1 Positions of Maxima and Minima

Equation (45) tells us that the intensity is zero wherever

= , 2 , 3 ,�
or when

= 
2

3

2

5

2
, , ,

The corresponding angles of diffraction will be given by the
following equation:

and
b m m

d n n

sin ; ( , , , )

sin ; ( , , , )

= =

= =

1 2 3

1

2
1 2 3

%
'

(
0

@
A
u

Bu
(18.46)

The interference maxima occur when

= 0, , 2 ,�
or when,

d sin = 0, , 2 , 3 ,� (18.47)

The actual positions of the maxima will approximately oc-
cur at the above angles provided the variation of the
diffraction term is not too rapid. Further, a maximum may not
occur at all if  corresponds to a diffraction minimum, i.e., if b
sin  = , 2 , 3 ,� These are usually referred to as missing
orders. For example, in Fig. 18.31 we can see that for
b = 0.0088 cm, the interference maxima are extremely weak
around  ~  0.41 ; this is because of the fact that at

= sin�1 
b

%
'

(
0

= sin�1 
6328 10

88 10

5

3

.

.

1

3
2
2

4

6
5
5
 = sin�1 [7.19  10�3]

~  0.00719 radians
~  0.412

the first minimum of the diffraction term occurs.

Example 18.9 Consider the case when b = 8.8  10�3  cm,

d = 7.0  10�2 cm and  = 6.328  10�5 cm (see Fig. 18.31). How
many interference minima will occur between the two diffraction
minima on either side of the central maximum? In the experimental
arrangement corresponding to Fig. 18.30 the screen was placed at a

distance of 15 . Calculate the fringe width.

Solution: The interference minima will occur when Eq. (18.46)

is satisfied, i.e., when

sin = n
d

+%
'

(
0

1

2

λ  = 0.904  10�3 n +%
'

(
0

1

2
;

n = 0, 1, 2,�

= 0.452  10�3, 1.356  10�3, 2.260  10�3,

3.164  10�3, 4.068  10�3, 4.972  10�3,

5.876  10�3, 6.780  10�3

–1

–1

–0.5

–0.5

0

0

0.5

0.5

1

1

q (in degrees)

1

1

b
d

= 0.0088 cm
= 0.07 cm

= 6.328 10 cml ¥
–5

b
d

= 0.0088 cm
= 0.035 cm

= 6.328 10 cml ¥
–5

I I/ 0

Fig. 18.31 The double-slit intensity distribution as predicted by Eq. (18.45) corresponding to d = 0.035cm
and 0.070 cm, respectively (b = 0.0088 cm and  = 6.328  10�5 cm).
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Thus, there will be sixteen minima between the two first order dif-
fraction minima.

The angular separation between two interference maxima is

approximately given by (see Eq. 18.47)

~−
λ
d

 = 0.904  10�4

Thus, the fringe width will be

15  12  2.54  0.904  10�4 ~−  0.0413 cm

18.7 N-SLIT FRAUNHOFER
DIFFRACTION
PATTERN

We next consider the diffraction pattern produced by N

parallel slits, each of width b; the distance between two
consecutive slits is assumed to be d.

As before, we assume that each slit consists of n equally
spaced point sources with spacing  (see Fig. 18.32). Thus,
the field at an arbitrary point P will essentially be a sum of N
terms:

E = A
sin

 cos ( t � ) + A
sin

 cos ( t �  � 
1
)

+�+ A
sin

 cos ( t �  � (N � 1)
1
) (18.48)

d
b

D q

P

Fig. 18.32 Fraunhofer diffraction of a plane wave incident
normally on a multiple slit.

where the first term represents the amplitude produced by
the first slit, the second term by the second slit, etc., and the
various symbols have the same meaning as in Sec. 18.5.
Rewriting Eq. (18.48) we get

E =
A sin

 [cos ( t � ) + cos ( t �  + 
1
)

+�+ cos ( t �  � (N � 1)
1
)]

=
A N

t N
sin sin

sin
cos ( )1

32
4
65

1

2
1 1 (18.49)

where

= 1

2
 = d sin 

The corresponding intensity distribution will be

I = I
0
 
sin sin

sin

2

2

2

2

N
(18.50)

where I
0
 sin2 / 2 represents the intensity distribution pro-

duced by a single slit. As can be seen, the intensity

distribution is a product of two terms; the first term 
sin

2

2
%
'

(
0

represents the diffraction pattern produced by a single slit

and the second term 
sin

sin

2

2

N%
'

(
0  represents the interference

pattern produced by N equally spaced point sources. For
N = 1, Eq. (18.50) reduces to the single-slit diffraction pattern
[see Eq. (18.10)] and for N = 2, to the double slit diffraction
pattern [see Eq. (18.45)]. In Figs. 18.33 and 18.34, we have
given a plot of the function

sin

sin

2

2

N

as a function of  for N = 5 and N = 12. One can immediately
see that as the value of N becomes very large, the above
function would become very sharply peaked at   = 0, , 2 ,�
Between the two peaks, the function vanishes when

 = 
p

N
; p = 1, 2,� but p  0, N, 2N

which are referred to as secondary minima.

18.7.1 Positions of Maxima and Minima

When the value of N is very large, one obtains intense
maxima at  ~  m , i.e., when

d sin = m (m = 0, 1, 2,�) (18.51)

This can be easily seen by noting that

Lt
N

m

sin

sin
= Lt

N N

m

cos

cos
 =  N;

thus, the resultant amplitude and the corresponding intensity
distributions are given by

E = N 
A sin

(18.52)

and

I = N2I
0

sin2

2
(18.53)
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where

= 
b sin

 = 
b m

d
 = 

bm

d
(18.54)

Such maxima are known as principal maxima. Physically, at
these maxima the fields produced by each of the slits
are in phase and, therefore, they add up and the resultant field
is N times the field produced by each of the slits; conse-

quently, the intensity has a large value unless sin2

2
 itself is

very small. Since | sin |  1, m cannot be greater than d/
[see Eq. (18.51)]; thus, there will only be a finite number of
principal maxima.

From Eq. (18.50) it can easily be seen that the intensity is
zero when either

b sin = n , n = 1, 2, 3,� (18.55)

or

N = p , p  N, 2N,� (18.56)

Equation (18.55) gives us the minima corresponding to
the single slit diffraction pattern. The angles of diffraction
corresponding to Eq. (18.56) are

d sin = 
N N

N

N

N

N

N

N
, ,...,

( )
,
( )

,
( )

,
2 1 1 2

,
( )

,
( )

,
( )

,
2 1 2 1 2 2N

N

N

N

N

N
(18.57)

Thus, between two principal maxima we have (N � 1) minima.
Between two such consecutive minima the intensity has to
have a maximum; these maxima are known as secondary
maxima. Typical diffraction patterns for N = 1, 2, 3, and 4 are
shown in Fig. 18.35 and the intensity distribution as predicted
by Eq. (18.50) for N = 4 is shown in Fig. 18.36. When N is
very large the principal maxima will be much more intense in
comparison to the secondary maxima. We may mention here
two points:

(a) A particular principal maximum may be absent if it cor-
responds to the angle which also determines the
minimum of the single-slit diffraction pattern. This will
happen when

d sin = m (18.58)

and b sin = , 2 , 3 ,� (18.59)

Fig. 18.33 The variation of the function sin2(N )/sin2   with   for N = 5.

Fig. 18.34 The variation of the function sin2(N )/sin2   with  for N = 12. As N becomes larger, the
function would become more and more sharply peaked at  = 0, ,  2 ,  3 ,� .
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are satisfied simultaneously and is usually referred to
as a missing order. Even when Eq. (18.59) does not hold
exactly (i.e., if b sin  is close to an integral multiple of

), the intensity of the corresponding principal maxi-
mum will be very weak (see, for example, Fig. 18.36
around   0.8 ).

(b) In addition to the minima predicted by Eq. (18.56), we
will also have the diffraction minima (see Eq. 18.55);
however, when N is very large, the number of such
minima will be very small.

18.7.2 Width of the Principal Maxima

We have shown above that in the diffraction pattern produced
by N slits, the mth order principal maximum occurs at

d sin m = m , m = 0, 1, 2,� (18.60)

Further, the minima occur at the angles given by Eq. (18.57).
If m + 

1m and m � 
2m represent the angles of diffrac-

tion corresponding to the first minimum on either side of the

principal maximum, then 1
2

(
1m + 

2m) is known as the an-

gular half width of the mth order principal maximum. For a
large value of N, 

1m
 ~  

2m
 which we write as 

m
.

Clearly,

d sin ( m  m) = m   
N

(18.61)

But

sin (
m
  

m
) = sin 

m
 cos 

m
  cos 

m
 sin 

m

~  sin m  m cos m (18.62)

Thus Eq. (18.61) gives us

m
~  

Nd mcos
(18.63)

which shows that the principal maximum becomes sharper as
N increases.

Fig. 18.35 The multiple-slit Fraunhofer diffraction patterns corresponding to b = 0.0044 cm, d = 0.0132 cm and
 = 6.328  10�5 cm. The number of slits are 1, 2, 3 and 4 respectively (Adapted from Ref. 18.17; used

with permission).

–2 –1 0 1 2

q (degrees)

N
b
d

= 4
= 0.0044 cm
= 0.0132 cm

= 6.328 10 cml ¥
–5

Fig. 18.36 The intensity distribution corresponding to the
four�slit Fraunhofer diffraction pattern as
predicted by Eq. (18.50) corresponding to
b = 0.0044 cm, d = 0.0132 cm and  = 6.328 
10�5 cm. The principle maxima occur at

  0.275 , 0.55 , 0.82 , 1.1 , �. Notice the
(almost) absent third order.
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18.8 THE DIFFRACTION
GRATING

In Sec. 18.6, we have discussed the diffraction pattern
produced by a system of parallel equidistant slits. An
arrangement which essentially consists of a large number of
equidistant slits is known as a diffraction grating; the corre-
sponding diffraction pattern is known as the grating
spectrum. Since the exact positions of the principal maxima in
the diffraction pattern depend on the wavelength, the princi-
pal maxima corresponding to different spectral lines
(associated with a source) will correspond to different angles
of diffraction. Thus the grating spectrum provides us with an
easily obtainable experimental set up for determination of
wavelengths. From Eq. (18.63) we see that for narrow princi-
pal maxima (i.e., sharper spectral lines), a large value of N is
required. A good quality grating, therefore, requires a large
number of slits (typically about 15,000 per inch). This is
achieved by ruling grooves with a diamond point on an opti-
cally transparent sheet of material; the grooves act as opaque
spaces. After each groove is ruled, the machine lifts the dia-
mond point and moves the sheet forward for the ruling of the
next groove. Since the distance between two consecutive
grooves is extremely small, the movement of the sheet is ob-
tained with the help of the rotation of a screw which drives
the carriage carrying it. Further, one of the important require-
ments of a good quality grating is that the lines should be as
equally spaced as possible; consequently, the pitch of the
screw must be constant, and it was not until the manufacture
of a nearly perfect screw (which was achieved by Rowland
in 1882) that the problem of construction of gratings was
successfully solved. Rowland�s arrangement gave 14,438
lines per inch, corresponding to d = 2.54/14438 = 1.759 
10�4 cm. For such a grating, for  = 6  10�5 cm, the maximum
value of m would be 2, and, therefore, only the first two or-
ders of the spectrum will be observed. However, for  = 5 
10�5 cm, the third order spectrum will also be visible.

Commercial gratings are produced by taking the cast of an
actual grating on a transparent film like that of cellulose ac-
etate. An appropriate strength solution of cellulose acetate is
poured on the ruled surface and allowed to dry to form a
strong thin film, detachable from the parent grating. These
impressions of a grating are preserved by mounting the film
between two glass sheets. Nowadays, gratings are also pro-
duced holographically, where one records the interference
pattern between two plane or spherical waves (see Example
14.5). In contrast to ruled gratings, holographic gratings
have a much larger number of lines/cm.

18.8.1 The Grating Spectrum

In Sec. 18.6, we have shown that the positions of the princi-
pal maxima are given by

d sin = m ; m = 0, 1, 2,� (18.64)

This relation, which is also called the grating equation, can be
used to study the dependence of the angle of diffraction  on
the wavelength . The zeroeth order principal maximum occurs
at  = 0 irrespective of the wavelength. Thus, if we are using a
polychromatic source (e.g., white light) then the central
maximum will be of the same colour as the source itself.
However, for m  0, the angles of diffraction are different for
different wavelengths and, therefore, various spectral
components appear at different positions. Thus, by measuring
the angles of diffraction for various colors one can (knowing
the value of m) determine the values of the wavelengths. It
may be mentioned that the intensity is maximum for the zeroeth
order spectrum (where no dispersion occurs) and it falls off as
the value of m increases.

If we differentiate Eq. (18.64), we would obtain

= 
m

d cos
(18.65)

From this result we can deduce the following conclusions:

(a) Assuming  to be very small (i.e., cos  ~  1) we can
see that the angle  is directly proportional to the or-
der of spectrum (m) for a given , so that for a given
m, /  is a constant. Such a spectrum is known as a
normal spectrum and in this the difference in angle for
two spectral lines is directly proportional to the differ-
ence in wavelengths. However, for large , it can easily
be shown that the dispersion is greater at the red end
of the spectrum.

(b) Equation (18.65) tells us that  is inversely propor-
tional to d, and therefore smaller the grating element,
the larger will be the angular dispersion.

Figures 18.37 and 18.38 show schematic diagrams of the
experimental arrangement for studying the grating spectrum
of a polychromatic source. In Fig. 18.37, we have shown a
small hole placed at the focal plane of the lens L

1
. A parallel

beam of white light emerging from L
1
 falls on the grating and

the diffraction pattern is observed on the focal plane of the
lens L

2
. If instead of a hole we have a slit at the focal plane of

L
1
 (see Fig. 18.38) � as it is indeed the case in a typical labo-

ratory set up � we would have parallel beams propagating
in different directions, and in the focal plane of the lens L

2

we will have a band spectrum as shown in Fig. 18.38.
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separation of the D
1
 and D

2
 lines of sodium in the second order

spectra?

Solution: (a) The grating element is

d = 
2 54

15000

.
 = 1.69  10�4 cm

Let 
mv and mr represent the angles of diffraction for the mth order

spectrum corresponding to the violet and red colors, respectively.

Thus,

2v = sin�1 
2 4 10

169 10

5

4

× ×

×
−

−

−.
~  sin�1 0.473 ~− 28.2

2r = sin�1 
2 7 10

169 10

5

4

× ×

×
−

−

−.
~  sin�1 0.828 ~−  55.90

and

3v = sin�1 
3 4 10

169 10

5

4

× ×

×
−

−

−.
~  sin�1 0.710 ~− 45.23

where we have assumed the wavelengths of the violet and red colours
to be 4  10�5 cm, and 7  10�5 cm, respectively. Since 

2r
 > 

3v
,

the second and third order spectra will overlap. Further since sin

3r
 > 1, the third order spectrum for the red colour will not be ob-

served.

(b) Since d sin  = m , we have for small :

(d cos )  = m( )

or

= 
m

d
m

d

Δλ

λ
1

2 1 2

− %
'

(
0

7
8
u

9u

@
A
u

Bu

/

~

.
.

/
−

× ×

× −
× ×

×

%

'&
(

0)
1

3

2
2

4

6

5
5

−

−
−

−

2 6 10

169 10 1
2 6 10

169 10

8

4
5

4

2 1 2

~−  0.0010 radians ~− 3.47

Thus, if we are using telescope of angular magnification 10, the

two lines will appear to have an angular separation of 34.7 .

18.8.2 Resolving Power of a Grating

In the case of a grating the resolving power refers to the
power of distinguishing two nearby spectral lines and is de-
fined by the following equation:

R = (18.66)

where  is the separation of two wavelengths which the
grating can just resolve; the smaller the value of , the
larger the resolving power.

L1

L2

Grating

Screen

Fig. 18.37 Fraunhofer diffraction of a plane wave incident
normally on a grating.

Slit

L1

L2

Grating

Screen

Fig. 18.38 If instead of a point source we have a slit in the
focal plane of L

1
 then one will obtain bands on the

focal plane of L
2
.

The lens L
2
 is the objective of a telescope and the

diffraction pattern is viewed through an eyepiece. The angles
of diffraction for various orders of the grating spectrum can
be measured and knowing the value of d, one can calculate
the wavelength of different spectral lines.

Example 18.10 Consider a diffraction grating with 15,000

lines per inch. (a) Show that if we use a white light source the sec-
ond and third order spectra overlap. (b) What will be the angular
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The Rayleigh criterion (see Sec. 18.4) can again be used to
define the limit of resolution. According to this criterion, if
the principal maximum corresponding to the wavelength  +

 falls on the first minimum (on the either side of the princi-
pal maximum) of the wavelength , then the two wavelengths

 and  +  are said to be just resolved (see
Fig. 18.39). If this common diffraction angle is represented by
 and if we are looking at the mth order spectrum, then the

two wavelengths  and  +  will be just resolved if the
following two equations are simultaneously satisfied:

d sin = m(  + ) (18.67)

and

d sin = m  + 
N

(18.68)

Thus,

R =  = mN (18.69)

which implies that the resolving power depends on the total
number of lines in the grating�obviously on only those
lines which are exposed to the incident beam (see the deriva-
tion in Sec. 18.6). Further, the resolving power is proportional
to the order of the spectrum. Thus, to resolve the D

1
 and D

2

lines of sodium (  = 6 Å) in the first order, N must be at
least (5.89  10�5)/(6  10�8)  1,000.

l

1.0

0.811

l Dl+

q

Fig. 18.39 The Rayleigh criterion for the resolution of two
spectral lines.

From Eq. (18.69) it appears that the resolving power of
the grating would increase indefinitely if N is increased; how-
ever, for a given width of the grating D(= Nd), as N is
increase, d decreases and therefore the maximum value of m
also decreases. Thus if d becomes 2.5 , only first and sec-
ond order spectra will be seen and if it is further reduced to
about 1.5  then only the first order spectrum will be seen.

18.8.3 Resolving Power of a Prism

We conclude this section by calculating the resolving power
of a prism. Figure 18.40 gives a schematic description of the

experimental arrangement for observing the prism spectrum
which is determined through the following formula:

n( ) = 
sin

( )

sin

A

A
2

2

(18.70)

l
l

l

,
+ D

Incident B
eam

t

Aq

a

d l(
)

P
1 ( )l

P
2 (

+
)

l
lD

b

Fig. 18.40 The schematic of the experimental arrangement
to observe the prism spectrum. P1 and P2 repre-
sent the images corresponding to  and  + 
respectively.

where A represents the angle of the prism and  the angle of
minimum deviation. We assume that the refractive index
decreases with  (which is usually the case) so that  also
decreases with . In Fig. 18.40, the points P

1
 and P

2
 represent

the images corresponding to  and  + , respectively. We
are assuming that  is small so that the same position of the
prism corresponds to the minimum deviation position for
both wavelengths. In an actual experiment one usually has a
slit source (perpendicular to the plane of the paper) forming
line images at P

1
 and P

2
. Since the faces of the prism are

rectangular, the intensity distribution will be similar to that
produced by a slit of width b (see Sec. 18.2)*. For the lines to
be just resolved the first diffraction minimum [m = 1 in
Eq. (18.12)] of  should fall at the central maximum of  + ,
thus we must have

 
b

(18.71)

In order to express  in terms of , we differentiate
Eq. (18.70):

dn

d
= 

1

2

2

1

2
sin

cos
( )

A

A d

d

1

3
2

4

6
5

Thus,

= 
2

2

2

sin

cos
( )

A

A

d n

d

* Since we have a slit source we need not consider the diffraction in a direction perpendicular to the plane of the diagram.
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Now from Fig. 18.40, we have

= 
1

2
[  � (A + )]

or sin = 
b

a
 = cos

A

2

where the length a is shown in the figure. Further

sin A

2
= 

t

a

/2

where t is the length of the base of the prism. Thus,

 
t

b

dn

d
(18.72)

Substituting in Eq. (18.71) we get for the resolving power

R =  = t
dn

d
(18.73)

Now, for most glasses, the wavelength dependence of the
refractive index (in the visible region of the spectrum) can be
accurately described by the Cauchy formula

n = A + 
B C
2 4

(18.74)

Thus,

dn

d
= 

1
32

4
65

2 4
3 5

B C
(18.75)

the negative sign implying that the refractive index decreases
with increase in wavelength. As an example, we consider
telescope crown glass for which*

A = 1.51375, B = 4.608  10�11 cm2, C = 6.88  10�22 cm4

For  = 6  10�5 cm, we have

dn

d
~ �[4.27  102 + 3.54]

~ �4.30  102 cm�1

Thus, for t ~  2.5 cm we have

R =  ~ 1000

which is an order of magnitude less than for typical diffrac-
tion gratings with 15,000 lines.

18.9 OBLIQUE INCIDENCE

Till now we have assumed plane waves incident normally on
the grating. For experimental setting, it is quite difficult to
achieve the condition of normal incidence to a great preci-
sion and it is easily seen that slight deviations from normal

incidence will introduce considerable errors. It is, therefore,
more practical to consider the more general oblique incidence
case (see Fig. 18.41). The wavelength measurement can be
carried out by using the method of minimum deviation as we
do for prisms.

If the angle of incidence is i, then the path difference
of the diffracted rays from two corresponding points in adja-
cent slits will be d sin  + d sin i (see Fig. 18.41). Thus,
principal maxima will occur when

d(sin  + sin i) = m (18.76)

or d[sin (  � i) + sin i] = m (18.77)

when  = i +  is the angle of deviation. For  to be minimum
we must have

d

di
[sin (  � i) + sin i] = 0 (18.78)

�cos (  � i) + cos i = 0

i.e., i =  � i = (18.79)

or

i = 
2

= (18.80)

Hence, at the position of minimum deviation, the grating con-
dition becomes

2d sin 
2

= m (18.81)

i q

Fig. 18.41 Diffraction of a plane wave incident obliquely
on a grating.

 * Data quoted from Ref. 18.2.
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The minimum deviation position can be obtained in a man-
ner similar to that used in the case of a prism and since the
adjustments are relatively simpler, this provides a more accu-
rate method for the determination of .

IVFIH �E�e�2hspp�eg�syxB

Visible light is an electromagnetic wave whose wavelength
approximately lies between 4000 Å and 7000 Å. X-rays are
also electromagnetic waves whose wavelengths are ~ 1 Å.
Obviously, it is extremely difficult to make slits which are
narrow enough for the study of X-ray diffraction patterns.
Since the interatomic spacings in a crystal are usually of the
order of Angstroms, one can use it as a three-dimensional
diffraction grating for studying the diffraction of X-rays. In-
deed, X-rays have extensively been used to study crystal
structures7.

In an ideal crystal, the atoms or molecules arrange
themselves in a regular three-dimensional pattern which can
be obtained by a three-dimensional repetition of a certain
unit pattern. This simplest volume which has all the
characteristics of the whole crystal and which completely fills
space is called the unit cell. One can think of various
identifiable planes in the regular three-dimensional periodic
arrangement (see Fig. 18.42). Miller indices are universally
used as a system of notation for planes within a crystal.
They specify the orientation of planes relative to the crystal
axis without giving the position of the plane in space with
respect to the origin. These indices are based on the
intercepts of a plane with the three crystal axes, each
intercept with an axis being measured in terms of unit cell
dimensions (a, b or c) along that axis. To determine the Miller
indices of a plane, the following procedure is used:

(a) Find the intercepts (of the plane nearest to the origin)
on the three axes and express them as multiple or frac-
tions of the unit cell dimension.

(b) Take the reciprocals of these numbers and multiply by
the LCM of the denominators.

(c) Enclose in parentheses.

For example, a (111) plane intercepts all three axes at one
unit distance (see Fig. 18.43(a); a (211) plane intercepts the

three axes at 1
2

, 1 and 1 unit distances (see Fig. 18.43(b)).
Similarly, a (110) plane intercepts the z-axis at . Miller indi-
ces can also be negative, the minus sign is shown above the
digit like ( )111 . Figure 18.44 shows the planes character-

ized by the Miller indices ( )111  in a simple cubic lattice.

Fig. 18.42 Planes in a NaCl crystal.

a a

b b
y y

c c

x x

z z

(a) (b)

Fig. 18.43 (a) The (111) plane intercepts all three axes at
one unit distance of each axial dimension. (b)
The (211) plane intercepts the three axes at ½, 1
and 1 unit distances.

x

z

y

Fig. 18.44 Planes characterized by the Miller indices
(1
_

1 1) in a simple cubic lattice.

Consider a monochromatic beam of X-rays to be incident
on a crystal. In Fig. 18.45 the horizontal dotted lines
represent a set of parallel crystal planes with Miller indices
(hkl). W

1
 W

2
 and W

3
W

4
 represent the incident and reflected

LO 9

* The author is grateful to Professor Lalit K. Malhotra for his help in writing this section.
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wavefronts, respectively. Obviously, the secondary wavelets
emanating from the points A, B and C are in phase on W

3
W

4

(see Sec. 12.4 and Fig. 12.7); and the waves emanating from
the points A

1
, B

1
 and C

1
 will also be in phase on W

3
 W

4
 if

XB
1
 + B

1
Y = m , m = 1, 2, 3,� (18.82)

or when

2d
hkl

 sin = m (18.83)

where dhkl is the interplanar spacing between crystal planes
of indices (hkl), m = 1, 2, 3,� is called the order of diffraction

and  is known as the glancing angle. This equation is
known as Bragg�s law and gives the angular positions of the
reinforced diffracted beams in terms of the wavelength  of
the incoming X-rays and of the interplanar spacings d

hkl
 of

the crystal planes. When the condition expressed by
Eq. (18.83) is not satisfied, destructive interference occurs
and no reinforced beam will be produced. Constructive inter-
ference occurs when the condition given by Eq. (18.83) is
satisfied leading to peaks in the intensity distribution. For
solids which crystallize in cubic structures (which are dis-
cussed later), the interplanar spacing dhkl between two
closest parallel planes with Miller indices (hkl) is given by

dhkl = 
a

h k l
2 2 2

(18.84)

q B C

Y

A

X
A1 B1 C1

W4

W3W1

W2

q
d

Fig. 18.45 Reflection of a plane wave by a set of parallel
crystal planes characterized by the Miller indi-
ces (hkl ). When the Bragg condition 2d sin  =
m  is satisfied, the waves scattered from differ-
ent rows will be in phase.

where a represents the lattice constant. Thus knowing the
Miller indices, we can find dhkl and from Bragg�s law, we can
determine the value of  at which Bragg�s equation can be
satisfied.

There are three types of cubic structures: simple cubic,
body centred cubic (BCC) and face centred cubic (FCC).

Figure 18.45 shows a simple cubic structure (abbreviated as
SC) in which the atoms are at the corners of a cube which
forms what is known as a unit cell. The crystal is built up
by the repetition of this unit cell in three dimensions. In
addition, if there is an atom at the centre of each cube
(shown as 9, 10, 11 and 12 in Fig. 18.46), the arrangement is
known as a BCC structure. The distance between two
adjacent planes characterized by the Miller indices ( 110 )  is

a 2  which can be verified by simple geometry. On the
other hand, if instead of having an atom at the center of the
cube there is an atom at the center of each of the six faces of
the cube (see Fig. 18.47) we will have the FCC structure.
Copper, silver and gold crystallize in the FCC form with the
lattice parameter a = 3.61 Å, 4.09 Å and 4.08 Å, respectively.
Metals like sodium, barium and tungsten crystallize in the BCC
form with a = 4.29 Å, 5.03 Å and 3.16 Å, respectively.

129

10 11

8

3

z

7

6

y

x

5

2

1

4

a/2

Fig. 18.46 A body centered cubic (bcc) lattice. The (11 0 )
planes are separated by a 2 .

Just as there are optical missing orders of a diffraction
grating, there are structural extinctions of X-ray reflection
from a crystal. For simple cubic structures, reflections from
all (hkl) planes are possible. However for the BCC structure,
diffraction occurs only on planes whose Miller indices when
added together total to an even number. Thus for the BCC
structure, the principal diffracting planes for a first order dif-
fraction are (110), (200), (211) (and other similar planes), etc.
where h + k + l is an even number. In the case of the FCC
crystal structure, the principal diffracting planes are those
whose Miller indices are either all even or all odd, e.g., (111),
(200), (220), etc.
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Fig. 18.47 A face centered cubic (fcc) lattice.

18.10.1 Experimental Methods of
X-ray Diffraction

From Bragg�s law, 2d
hkl

 sin  = m , it is clear that there are
essentially three methods which can be used so that Bragg�s
formula can be satisfied:

Rotating crystal method Fixed Variable
(intentional)

Powder method Fixed Variable
(inherent)

Laue method Variable Fixed

When one uses monochomatic X-rays, Bragg�s formula
cannot be satisfied for an arbitrary value of . Hence one
rotates the single crystal so that reflection can occur for a
discrete set of  values. This method can only be employed
if single crystals of reasonable size are available. If this
is not the case, one can still use monochromatic X-rays
provided the sample is in the powder form so that there are
always enough crystallites of the right orientation available
to satisfy the Bragg relation. A powder will consist of a large
number of randomly oriented micro-crystals; each micro-
crystal is essentially a single crystal. As the X-ray beam
passes through such a polycrystalline material, the
orientation of any given set of planes, with reference to the
X-ray beam, changes from one micro-crystal to the other.
Thus, corresponding to any given set of planes there will be
a large number of crystals for which Bragg�s condition  will
be satisfied, and on the photographic plate one will obtain
concentric rings [see Fig. 18.48 (a)]; each ring will
correspond to a particular value of dhkl and a particular value
of m. The appearance of the circular rings can be understood
as follows. Consider a set of planes parallel to AB [see
Fig. 18.48 (b)]. The glancing angle  is assumed to satisfy

X-ray

beam Polycrystalline
Powder

(a)

(b)

2qB
q

A

Fig. 18.48 (a) When a monochromatic X-ray beam falls
on a polycrystalline sample one obtains the
Debye�Scherrer rings. (b) Diffraction from a
polycrystalline sample.

the Bragg condition. If the microcrystal is rotated about the
direction of the incident X-ray beam, then for all positions of
the microcrystal, the glacing angle will be the same for these
sets of planes. Further, for each position of the microcrystal,
the direction of the diffracted beam will be different, but it
will always lie on the surface of the cone whose semi-vertical
angle will be 2 . Consequently, one will obtain concentric
circular rings on the photographic plate; these rings are
known as Debye�Scherrer rings.

While using the powder method, the photographic film is
put in a cylindrical form surrounding the polycrystalline
sample as shown in Fig. 18.49 (a). Each Debye�Scherrer ring
will produce an arc on the film, and when the film is unrolled,
one obtains a pattern as shown in Figs. 18.49 (b) and (c).
From the position of these arcs, one can calculate  and thus
determine the interplanar spacing. From a study of the
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interplanar spacings one can determine the crystal
structure*. Although a powder camera with an enclosed film
strip has been extensively used in the past, modern X-ray
crystal analysis uses an X-ray diffractometer which has a
radiation counter to detect the angle and intensity of the
diffracted beam.

(a)

(b)

(c)

Incident -rayx

beam

Microcrystalline
Power

Sodium

Copper

Fig. 18.49 (a) While using the powder method the
photographic film is kept in a cylindrical form
as shown in the figure. (b) and (c) represent
schematic diffraction patterns for sodium and
copper, respectively.

Finally there is the Laue method in which the single
crystal is held stationary in a beam of white X-rays. Each set
of planes then chooses its own wavelength to satisfy the
Bragg relation (see Fig. 18.50).

In order to calculate the angles of diffraction we substitute
Eq. (18.84) in the Bragg�s law [Eq. (18.83)] to obtain

2

2 2 2

a

h k l
 sin = m (18.85)

We restrict ourselves only to first order reflections (m = 1);
higher order reflections are usually rather weak (see also
Problem 18.22). Thus Eq. (18.85) can be written in the form:

sin = 
2a

N (18.86)

where
N = h2 + k2 + l2

Now, for a simple cubic lattice, all values of (hkl) are possible
implying the following possible values of N:

N = 1, 2, 3, 4, 5, 6, 7,� (SC) (18.87a)

Similarly, for a BCC lattice h + k + l must be even implying

N = h2 + k2 + l2

= 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22,�(BCC) (18.87b)

Finally, for an FCC lattice, Miller indices are either all even or
all odd implying

N = h2 + k2 + l2

= 3, 4, 8, 11, 12, 16, 19, 20, 24, 27,� (FCC) (18.87c)

For a given structure and for given values of  and a one can
now easily calculate the different values of . For example, if
we consider  = 1.540 Å and 1.544 Å (corresponding to the
CuK

1
 and CuK

2
 lines) then for sodium (which is a BCC

structure with a = 4.2906 Å), the various values of  are

(14.70 , 14.74 ), (21.03 , 21.09 ), (26.08 , 26.15 ),

(30.50 , 30.59 ), (34.58 , 34.68 ), (38.44 , 38.56 ),
(42.18 , 42.32 ), (45.88 , 46.03 ), (49.59 , 49.76 ),
(53.38 , 53.58 ), (57.33 , 57.56 ), (61.54 , 61.82 ),
(66.22 , 66.56 ), (79.41 , 80.23 ),

The two values inside the parentheses correspond to the
two wavelengths 1.540 Å and 1.544 Å, respectively. Because
of the presence of two wavelengths one obtains double lines
for each family of planes which become resolvable only at
higher scattering angles. Similarly one can consider reflec-
tions from other structures (see Problems 18.19, 18.20 and

X-ray
beam

Single
Crystal

Fig. 18.50 When a polychromatic X-ray beam falls on a
single crystal, one obtains Laue spots. Each set
of planes chooses its own wavelength to satisfy
the Bragg relation given by Eq. (18.84); see also
Fig. 25 in the prelim pages.

* Crystal structures other than cubic are also common; for example, zinc crystallizes into a hexagonal structure and carbon forms a
diamond structure. However, the most important fact is that in all these structures there is a definite periodicity of atoms.
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18.21). Each value of  will give rise to a Debye�Scherrer ring
shown in Figs. 18.48 (a), 18.49 (b) and 18.49 (c).

Finally, we should mention that the intensity of the dif-
fracted wave depends on the number of atoms per unit area
in the plane under consideration. For example, correspond-

ing to the ( 110 ) and the ( 2 22 ) planes passing through a
BCC lattice, there will be one atom and two atoms, respec-
tively, in an area a2. Thus in the first case the intensity of the
diffracted wave will be much more than in the second case.

18.11 THE SELF-FOCUSING
PHENOMENON*

With the availability of intense laser beams, a large number
of interesting non-linear optical phenomena have been inves-
tigated. One such non-linear phenomenon is the effect on the
propagation of a light beam due to the dependence of the
refractive index on the intensity of the beam. This leads to
the self-focusing (or defocusing) of the beam. In order to
physically understand the self-focusing phenomenon we as-
sume the non-linear dependence of the refractive index on
the intensity to be of the form

n = n
0
 + 

1

2
n  E2

0
(18.88)

where n
0
 is the refractive index of the medium in the absence

of the electromagnetic field, n  is a constant representing the
non-linear effect** and E

0
 representing the amplitude of the

electric field. As an example, we consider the incidence of a
laser beam (propagating in the z-direction) having Gaussian
intensity distribution in the transverse direction, i.e., we as-
sume

E(x, y, z, t)  E
0
 cos (kz � t) (18.89)

with

E
0

= E
00

 exp 
%

'&
(

0)
r

a

2

2
(18.90)

where a represents the width of the Gaussian beam and

r ( = x y2 2 ) represents the cylindrical coordinate. In the
absence of any nonlinear effects the beam will undergo dif-
fraction divergence (see Sec. 20.5). However, if the beam is
incident on a medium characterized by a positive value of n ,
the intensity distribution will create a refractive index distri-
bution which will have a maximum value on the axis (i.e., at r
= 0) and will gradually decrease with r. Indeed, using Eqs.
(18.88)�(18.90) we will have

n ~  n n E
r

a
0 00

2
2

2

1

2

2%

'&
(

0)
exp

~ n n E n
r

0 00
2

0

2
1

2

1

2
%
'

(
0

%
'

(
0

(18.91)

where

2 = 
n a

n E

0
2

00
2

2
(18.92)

and in writing Eq. (18.91) we have expanded the exponential
term and have retained only the first two terms. In other
words, we are restricting ourselves to small values of r, which

is the paraxial approximation. The term 1
2

n E2

00
 is usually

very small compared to n
0
; so we may write (after squaring)

n2 ~ n
r

0
2

2

1
%
'

(
0

1

3
2
2

4

6
5
5

(18.93)

We may recall that in Sec. 3.4.1 we had considered
propagation in a medium whose refractive index decreased
parabolically from the axis and had shown that the beam
could undergo periodic focusing (see Fig. 3.25). Indeed we
had shown that the medium behaved like a converging lens
of focal length /2 [see Eq. (3.48) of Chapter 3]. In the
present case also because of nonlinear effects (with n  > 0),
the medium will act as a converging lens of focal length
approximately given by

* Based on Ref. 18.8; for a rigorous account, e.g., Ref. 18.9.
** This dependence may arise from a variety of mechanisms, such as the Kerr effect, electrostriction, thermal effect, etc. The simplest

to understand is the thermal effect which is due to the fact that when an intense optical beam having a transverse distribution of
intensity propagates through an absorbing medium, a temperature gradient is set up. For example, if the beam has a Gaussian trans-
verse intensity variation (i.e., of the form exp (�r2/a2); the direction of propagation being along the z-axis), then the temperature will
be maximum on the axis (i.e., r = 0) and will decrease with increase in the value of r. If dn/dT > 0, the refractive index will be maximum
on the axis and the beam will undergo focusing; on the other hand if dn/dT < 0, the beam will undergo defocusing (see, e.g., Ref. 18.9).

The Kerr effect arises due to the anisotropic polarizability of liquid molecules (like CS
2
). An intense light wave will tend to orient

the anisotropically polarized molecules such that the direction of maximum polarizability is along the direction of the electric vector;
this changes the dielectric constant of the medium. On the other hand, electrostriction (which is important in solids) is the force which
a non-uniform electric field exerts on a material medium; this force affects the density of the material, which in turn affects the
refractive index. Thus, a beam having nonuniform intensity distribution along its wavefront will give rise to a refractive index variation
leading to the focusing (or defocusing) of the beam. For a detailed discussion on electrostriction and Kerr effect, refer to
Refs. 18.9�18.11.

LO 10
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fnl
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2 2 2

0

00
2

1 2
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/
1

3
2
2

4

6
5
5

n

n E
a (18.94)

the subscript (nl) signifying that the effect is due to a non-
linear phenomenon. Thus, because of non-linear effects the
beam is said to undergo self-focusing; the word self signifies
the fact that the beam creates its own refractive index gradi-
ent resulting in the focusing of the beam*.

Our analysis in Sec. 3.4.1 for the calculation of the focal
length was based on ray optics and neglected diffraction ef-
fects. Now, in the absence of any non-linear effects, the beam
will spread out due to diffraction and the angle of divergence
will approximately be given by (see Fig. 18.14)

d
~

a
 = 

( / )0 0n

a
(18.95)

where 
0
 is the free space wavelength. Thus the phenom-

enon of diffraction can be approximated by a diverging lens
of focal length (see Fig. 18.51).

fd ~ ~a
ka

d

1

2
2 (18.96)

where k = 2  = 2

0
0n (18.97)

Clearly if f
d
 < f

nl
, the diffraction divergence will dominate and

the beam will diverge. On the other hand, if f
nl

 < f
d
, the non-

linear focusing effects will dominate and the beam will
undergo self-focusing. For fd  fnl, the two effects will cancel
each other and the beam will propagate without any focusing
or defocusing. This is the condition of uniform waveguide

like propagation. In order to determine the critical power of
the beam we note that the condition fd  fnl implies

1

2
2
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2 2
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00
2

1 2
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2n n a
(18.98)

Now the total power of the beam is given by

P = 

0

s velocity  (energy/unit volume)  2 r dr
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a2 (18.99)

where  (= n2

00 0
) is the dielectric permittivity of the medium

and 
0
 (= 8.85  10�12 C2/N�m2) is the dielectric permittivity

of free space (see Sec. 19.2). Substituting the expression for
E2

00
 from Eq. (18.98) in Eq. (18.99) we obtain the following ex-

pression for the critical power:

P
cr

~ ( )
32 0

0
2

c
n

(18.100)

Garmire, Chiao and Townes (Ref. 18.12) carried out experiments
on the self-focusing of a ruby laser beam (

0
 = 0.6943 m) in

CS
2
 and found that the critical power was 25  5 kW.

Equation (18.100) gives us

P
cr

~ .
.

( . )314

32
3 10 885 10

06943 10

2 10

8 12
6 2

20

~  6.3 kW (18.101)

a

f

q = /a f

Fig. 18.51 When a plane wave is incident on a diverging
lens, the transmitted rays diverge making an
angle   a/ f with the axis.

* It should be mentioned that if n  were a negative quantity, the refractive index would have increased as we move away from the axis
and the beam would have undergone defocusing. For example, if the refractive index decreases with increase in temperature, the beam
may undergo what is known as thermal defocusing.
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where N represents the total number of lines in the grating.
For example, in the first order spectrum (m = 1) of a diffrac-
tion grating with N = 10000, for   5000 Å we get

 0.5 Å.

u Consider a monochromatic beam of X�rays incident on a
crystal. The glancing angle  for which we have reinforced
diffracted beams is given by

2d
hkl sin  = m

where dhkl is the interplanar spacing between crystal planes
having Miller indices (hkl); m = 1,2,3, � is called the order
of diffraction and  is known as the glancing angle. The above
equation is known as Bragg's law and gives the angular posi-

tions of the reinforced diffracted beams.

Problems

18.1 A plane wave (  = 5000 Å) falls normally on a long narrow

slit of width 0.5 mm. Calculate the angles of diffraction
corresponding to the first three minima. Repeat the calcula-
tions corresponding to a slit width of 0.1 mm. Interpret
physically the change in the diffraction pattern.

[Ans: 0.057 , 0.115 , 0.17 ; 0.29 , 0.57 , 0.86 ]

18.2 A convex lens of focal length 20 cm is placed after a slit of
width 0.6 mm. If a plane wave of wavelength 6000 Å falls
normally on the slit, calculate the separation between the
second minima on either side of the central maximum.

[Ans: ~  0.08 cm]

18.3 In Problem 18.2 calculate the ratio of the intensity of the
principal maximum to the first maximum on either side of
the principal maximum.

[Ans: ~ 21]

18.4 Consider a laser beam of circular crosssection of diameter
3 cm and of wavelength 5  10�5 cm. Calculate the order of
the beam diameter after it has traversed a distance of 3 km.

[Ans: ~ 14 cm. This shows the extremely high direction-
ality of laser beams.]

18.5 A circular aperture of radius 0.01 cm is placed in front of a
convex lens of focal length 25 cm and illuminated by a par-
allel beam of light of wavelength 5  10�5 cm. Calculate the
radii of the first three dark rings.

[Ans: 0.76, 1.4, 2.02 mm]

18.6 Consider a plane wave incident on a convex lens of diam-
eter 5 cm and of focal length 10 cm. If the wavelength of
the incident light is 6000 Å, calculate the radius of the first
dark ring on the focal plane of the lens. Repeat the calcula-
tions for a lens of same focal length but diameter 15 cm.
Interpret the results physically.

[Ans: 1.46  10�4 cm, 4.88  10�5 cm]

18.7 Consider a set of two slits each of width b = 5  10�2 cm
and separated by a distance d = 0.1 cm, illuminated by a
monochromatic light of wavelength 6.328  10�5 cm. If a
convex lens of focal length 10 cm is placed beyond the

where we have used the following parameters for CS
2
: n

0
 ~

1.6276, n  ~ 1.8  10�11 cgs units ~  2  10�20 mks units. [The
mks unit for n  is (meter/volt)2.] Although the result is wrong
by a factor of about 4, one does obtain the correct order; this
is indeed the case for all order-of-magnitude calculations.
Thus,

(a) when P < P
cr

, the beam will diverge due to diffraction.
(b) when P = P

cr
, the beam will propagate without diver-

gence or convergence. This is the condition for uniform
waveguide propagation.

(c) when P > P
cr

, we may extrapolate that the beam will
undergo focusing, which is indeed borne out by more
rigorous analysis. This is known as the self-focusing

of the beam.

We may mention that a detailed study of the self-focusing
phenomenon is of considerable importance in laser induced
fusion experiments where there is a non-linear interaction of
the laser beam with the plasma.

 Summary

u Interference corresponds to the situation when we consider

the superposition of waves coming out from a number of
point sources and diffraction corresponds to the situation
when we consider waves coming out from an area source like
a circular or rectangular aperture or even a large number of
rectangular apertures (like the diffraction grating).

u When a plane wave is incident normally on N parallel slits,

the Fraunhofer diffraction pattern is given by

I = I
0
 
sin sin

sin

2

2

2

2

β

β

γ

γ
⋅

N

where

= 
π θ

λ
b sin

,  = 
π θ

λ
d sin

 is the wavelength of light,  the angle of diffraction, b rep-

resents the width of each slit and d the separation between
two slits. When N = 1, we have the single slit diffraction pat-
tern producing a central maximum at  = 0 and minima when
b sin  = m ; m = ±1,±2, ... When N  2, the intensity dis-
tribution is the product of the single slit diffraction pattern
and the interference pattern produced by N point sources
separated by a distance d. For N = 2, we obtain the Young's
double slit interference pattern. For large values of N, the
principle maxima occur when  = m  implying

d sin = m ; m = 0,1,2, ...

which is usually referred to as the grating condition.

u The resolving power of the grating is given by

R = 
λ
λΔ

 = mN
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double slit arrangement, calculate the positions of the
minima inside the first diffraction minimum.

[Ans: 0.0316 mm, 0.094 mm]

18.8 Show that when b = d, the resulting diffraction pattern cor-
responds to a slit of width 2b.

18.9 Show that the first order and second order spectra will
never overlap when the grating is used for studying a light
beam containing wavelength components from 4000 Å to
7000 Å.

18.10 Consider a diffraction grating of width 5 cm with slits of
width 0.0001 cm separated by a distance of 0.0002 cm.
What is the corresponding grating element? How many or-
der would be observable at  = 5.5  10�5 cm? Calculate
the width of the principal maximum. Would there be any
missing orders?

18.11 For the diffraction grating of Problem 18.10, calculate the
dispersion in the different orders. What will be the resolv-
ing power in each order?

18.12 A grating (with 15000 lines per inch) is illuminated by
white light. Assuming that white light consists of wave-
lengths lying between 4000 and 7000 Å, calculate the
angular widths of the first and the second order spectra.
[Hint: You should not use Eq. (18.65); why?]

18.13 A grating (with 15,000 lines per inch) is illuminated by so-
dium light. The grating spectrum is observed on the focal
plane of a convex lens of focal length 10 cm. Calculate the
separation between the D

1
 and D

2
 lines of sodium. (The

wavelengths of the D
1
 and D

2
 lines are 5890 and 5896 Å,

respectively.) [Hint: You may use Eq. (18.65).]

18.14 Calculate the resolving power in the second order spectrum
of a 1 inch grating having 15,000 lines.

18.15 Consider a wire grating of width 1 cm having 1,000 wires.
Calculate the angular width of the second order principal
maxima and compare the value with the one corresponding
to a grating having 5000 lines in 1 cm. Assume

 = 5 10�5 cm.

18.16 In the minimum deviation position of a diffraction grating
the first order spectrum corresponds to an angular devia-
tion of 30 . If  = 6  10�5 cm, calculate the grating
element.

18.17 Calculate the diameter of a telescope lens if a resolution of
0.1 seconds of arc is required at  = 6  10�5 cm.

18.18 Assuming that the resolving power of the eye is
determined by diffraction effects only, calculate the maxi-
mum distance at which two objects separated by a distance
of 2 m can be resolved by the eye. (Assume pupil diameter
to be 2 mm and  = 6000 Å.)

18.19 (a) A pinhole camera is essentially a rectangular box with a
tiny pinhole in front. An inverted image of the object is
formed on the rear of the box. Consider a parallel beam of
light incident normally on the pinhole. If we neglect dif-
fraction effects then the diameter of the image will increase
linearly with the diameter of the pinhole. On the other

hand, if we assume Fraunhofer diffraction, then the diam-
eter of the first dark ring will go on increasing as we reduce
the diameter of the pinhole. Find the pinhole diameter for
which the diameter of the geometrical image is approxi-
mately equal to the diameter of the first dark ring in the
Airy pattern. Assume  = 6000 Å and a separation of
15 cm between the pinhole and the rear of the box.

(b) Figure 18.52 shows the quality of the image formed for
various values of the diameter of the pinhole. Discuss quali-
tatively the fact that the image will get blurred if the
diameter of the pinhole is too big or too small.

[Ans: (a) 0.47 mm]

18.20 Copper is an FCC structure with lattice constant 3.615 Å.
An X-ray powder photograph of copper is taken. The
X-ray beam consists of wavelengths 1.540 Å and 1.544 Å.
Show that diffraction maxima will be observed at
 = (21.64 , 21.70 ), (25.21 , 25.28 ), (37.05 , 37.16 ),

(44.94 , 45.09 ), (47.55 , 47.71 ), (58.43 , 58.67 ),
(68.20 , 68.58 ), (72.29 , 72.76 ).

18.21 Tungsten is a BCC structure with lattice constant 3.1648 Å.
Show that in the powder photograph of tungsten (corre-
sponding to an X-ray wavelength of 1.542 Å) one would
observe diffraction maxima at  = 20.15 , 29.17 , 36.64 ,
43.56 , 50.39 , 57.55 , 65.74  and 77.03 .

0.6 mm

0.15 mm

2 mm

0.35 mm

0.07 mm

1 mm

Fig. 18.52 The image formed in a pinhole camera for
different diameters of the pinhole. [Photograph
downloaded from the internet by Professor K
Thyagarajan; Ref: http://www. cs.berkeley.edu/~daf/
book/chapter-4.pdf].

18.22 (a) In the simple cubic structure if we alternately place
Na and Cl atoms we would obtain the NaCl structure.
Show that the Na atoms (and the Cl atoms) indepen-
dently form FCC structures. The lattice constant
associated with each fcc structure is 5.6402 Å. Corre-
sponding to the X-ray wavelength 1.542 Å, show that
diffraction maxima will be observed at  = 13.69 ,
15.86 , 22.75 , 26.95 , 28.27 , 33.15 , 36.57 , 37.69 ,
42.05  45.26 , 50.66 , 53.98 , 55.10 , 59.84 , 63.69 ,
65.06 , 71.27 , 77.45  and 80.66 .
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(b) Show that if we treat NaCl as a simple cubic structure
with lattice parameter 2.82 Å then the maxima at
 = 13.69 , 26.95 , 36.57 , 45.26 , 53.98 , 63.69  and

77.45  will not be observed. Indeed in the X-ray dif-
fraction pattern of NaCl, the maxima corresponding to
these angles will be very weak.

18.23 Show that the mth order reflection from the planes charac-
terized by (hkl) can be considered as the same as the first
order reflection from the planes characterized by (mh mk ml).

18.24 Calculate the Fraunhofer diffraction pattern produced by a
double-slit arrangement with slits of widths b and 3b, with
their centres separated by a distance 6b.

18.25 Consider the propagation of a 1 kW laser beam
(  = 6943 Å, beam diameter ~  1 cm) in CS

2
. Calculate fd

and fnl and discuss the defocusing (or focusing) of the beam.
Repeat the calculations corresponding to a 1000 kW beam
and discuss any qualitative differences that exist between
the two cases. The data for n

0
 and n

2
 are given in Sec.

18.10.

18.26 The values of n
0
 and n

2
 for benzene are 1.5 and 0.6 

10�10 cgs. units, respectively. Obtain an approximate
expression for the critical power.
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In this chapter, we will present a more general analysis of the

far field diffraction of a plane wave by different types of

aperture; this is known as Fraunhofer diffraction. We will

first derive the formula for what is known as Fresnel

diffraction, which will be used in the next chapter. We will

then make the far field approximation, which will give us the

Fraunhofer diffraction pattern; this will be shown to be the

Fourier transform of the aperture function. We will also derive

the Fourier transforming property of a thin lens that forms

the basis of Fourier optics and of spatial frequency  filtering.

IWFP �ri2 p�i�xiv2 hspp�eg�syx

sx�iq�ev

We consider a plane wave (of amplitude A) incident normally

on an aperture as shown in Fig. 19.1. Using Huygens�Fresnel

principle, we will calculate the field produced at the point P

on a screen SS  which is at a distance z from the aperture.

Now, for a spherical wave diverging from the origin, the field

distribution is given by

u ~ 
1

r
eikr

Fourier analysis is a ubiquitous tool that has found application to diverse areas of physics and

engineering.

�Joseph Goodman in the Preface to Introduction to Fourier Optics

p�e�xrypi�2hspp�eg�syx2ss

exh2py��si�2y��sg�

Chapter
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where r is the distance from the source (at the origin) to the

observation point. We consider an infinitesimal area d  d

(around the point M) on the plane containing the aperture;

the field at the point P due to waves emanating from this

infinitesimal area will be proportional to

Ae

r

ikr

d  d (19.1)

M
O

d dx h

h

x
z

r

O¢

x

S¢

S

y

P x y z( , , )

Fig. 19.1 A plane wave incident normally on an aperture.
The diffraction pattern is observed on the screen
SS .

LO 1: derive the Fresnel diffraction integral.

LO 2: understand conditions for Fraunhofer diffraction.

LO 3: describe the Fraunhofer diffraction by a long narrow slit, and by rectangular and circular apertures.

LO 4: discuss Fraunhofer diffraction by an array of identical apertures.

LO 5: explain spatial frequency filtering.

LO 6: demonstrate the Fourier transforming property of a thin lens.
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where r = MP. In order to calculate the total field (at the

point P), we will have to sum over all the infinitesimal areas

(in the aperture) to obtain

u(P) = C
Ae

r

ikr

ss d  d (19.2)

where C is a proportionality constant and the integration

is over the entire aperture. From a more general theory, one

can show that [see, e.g., Refs. 19.1�19.4]:

C = �
ik

2π
 = 

1

iλ
(19.3)

[see also Sec. 19.3]. We thus obtain

u(P = 
A

i

e

r

ikr

λ ss d  d (19.4)

If the amplitude and phase distribution on the plane z = 0

is given by A( , ) then the above integral is modified to

u(P) = 
1

iλ ss A( , )
e

r

ikr

d  d (19.5)

In writing Eqs. (19.4) and (19.5), we have made two as-

sumptions:

(a) Our analysis has assumed that the screen (in the

plane of the aperture) does not affect the field at the

point P. This assumption is valid when the dimen-

sions of the aperture are large in comparison to the

wavelength. A more accurate analysis would take

into consideration the effect of the screen on the

field at any point P; this, in general, is a very difficult

problem.

(b) We have used a scalar theory in which we have rep-

resented the field by a scalar function u; this implies

that the electric field is in the same direction every-

where. This assumption will be valid when the line

joining the point O and the observation point P

makes a small angle with the axis.

The quantity r, which represents the distance between

the point M [whose coordinates are ( , , 0)] on the plane

of the aperture and the point P (whose coordinates are

x, y, z) on the screen [see Fig. 19.1] will be given by

r = [(x � )2 + (y � )2 + z2]1/2

= z 1 + α

* For example, for  = 6  10�5 cm, the factor cos kr becomes.

cos
π
3
10

5
r

As the value of r is changed from say 60 cm to 60.00002 cm, the cosine factor will change from +1 to � 0.5. This shows the rapidity

with which the exponential factor will vary in the domain of integration, although the change in r is extremely small.

where

 
( ) ( )x

z

y

z

−
+

−ξ η2

2

2

2
(19.6)

Now, for  < 1, we may write

1 + α  = 1 + 
1

2
 � 

1

8

2
 + � (19.7)

If we assume  < < 1 and neglect quadratic and higher order

terms in the above expansion, we would get

r  z + 
( ) ( )x

z

y

z

2 2

2 2
 (19.8)

Further, in the denominator of Eq. (19.5) we may safely re-

place r by z so that we may write* (see also Appendix E).

u(x, y, z)  
1

i zλ
eikzss A( , ) 

exp
ik

z
x y

2

2 2
[( ) ( ) ]− + −

7
8
9

@
A
B

ξ η d d

Fresnel Diffraction

Integral
(19.9)

The above equation can be rewritten in the form

u(x, y, z)  
1

i zλ
eikz exp

ik

z
x y

2

2 2
( )+

7
8
9

@
A
B ss A( , ) 

exp
ik

z2

2 2
( )ξ η+

7
8
9

@
A
B

e�i (u +v )d d (19.10)

where

u = 
2π
λ
x

z
and v = 

2π
λ
y

z
(19.11)

are known as spatial frequencies. Both Eqs. (19.9) and (19.10)

are usually referred to as the Fresnel diffraction integral. In

the next chapter, we will use the above integrals to calculate

the Fresnel diffraction pattern. We must mention here that in

the Fresnel approximation, we have neglected the terms propor-

tional to 2; this will be justified if it leads to maximum phase

change which is much less than . Thus, the Fresnel approxi-

mation will be valid when

1

8
kz 2 <<   

1

8

2
2 2

2

3

( ) ( )x y

z
 << (19.12)
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Thus, we must have

z >> 
1

4

2 2
2

1

3

λ
ξ η( ) ( )

max
x y− + −

%
'&

(
0)

Condition for Fresnel

pproximation to be validA
(19.13)

As an example, we consider a circular aperture of radius a;

if we observe in a region of dimensions much greater than a,

then we may neglect the terms involving  and  on the right

hand side to obtain:

z >> 
1

4

2 2 2

1

3

λ
( )x y+

%
'&

(
0)

(19.14)

Thus for a circular aperture of radius 0.1 cm, if we observe

in a radius of about 1 cm the maximum value of (x2 + y2) will

be about 1 cm2; if we assume   5  10�5 cm, Eq. (19.14)

would imply z >> 17 cm.

IWFQ �xspy�w2 ew�vs��hi2 exh

�re�i2 hs���sf��syx

We first consider the absence of any aperture. Thus, at z = 0

A( , ) = A for all values of  and 

and Eq. (19.9) can be written as

u(x, y, z) = 
A

i zλ
eikz 

e

ik

z
Y

2

2

−∞

+∞

s dX e

ik

z
Y

2

2

−∞

+∞

s dY

where X = x �  and Y = y � . If we now use the integral (see

Appendix A)

−∞

+∞

s e� x2+ x dx = 
π
α

exp
β
α

2

4

1

3
2

4

6
5 (19.15)

we would get

u(x, y, z) = 
A

i zλ
eikz π π2 2z

ik

z

ik−

1

3
2

4

6
5 −

1

3
2

4

6
5

or

u(x, y, z) = Aeikz  (19.16)

as it indeed should for a uniform plane wave. This shows that

in spite of all the approximations that we have made, we have

ended up getting the correct result! The above equation also

tells us that the value of C given by Eq. (19.3) is correct.

IWFR �ri2 p�e�xrypi�

e���y�swe�syx

In the Fraunhofer approximation, we assume z to be so large

that inside the integral in Eq. (19.10), the function

exp
ik

z2

2 2
( )ξ η+

7
8
9

@
A
B

can be replaced by unity or, the maximum phase change

should be much less than . Thus, in addition to the condi-

tion given by Eq. (19.13), we must have

z >> 
[ ]maxξ η

λ

2 2+ Condition for Fraunhofer

Approximation to be valid
(19.17)

In this approximation, Eq. (19.10) takes the form

u(x, y, z)  
1

i zλ
eikz exp

ik

z
x y

2

2 2
( )+

7
8
9

@
A
B

 

ss A( , ) e�i(u +v )d d  

Fraunhofer

Diffraction

Integral

(19.18)

which represents the Fraunhofer diffraction pattern. The in-

tegral on the right-hand side is the two-dimensional Fourier

transform of the function A( , ) (see Sec. 9.6). Thus

Eq. (19.18) gives the very important result that the

Fraunhofer diffraction pattern is the Fourier trans-

form of the aperture function.

For a circular aperture of radius a, Eq. (19.17) would become

z >> 
a
2

λ
(19.19)

We introduce the Fresnel number

NF = 
a

z

2

λ
(19.20)

Thus for the Fraunhofer approximation to be valid, we must

have

NF << 1 (19.21)

IWFS p�e�xrypi�

hspp�eg�syx2 f�2 e

vyxq2 xe��y�2 �vs�

We first consider Fraunhofer diffraction of a plane wave inci-

dent normally on a long narrow slit of width b (along the

-axis) placed on the aperture plane. Figure 19.2 corresponds

to a rectangular slit � if the slit is very long along the -axis,

then we will have a long narrow slit. For such a case, we will

have

vyP

vy Q
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ξ η ξ

ξ
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>

@

A
u
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u

2

0
2

(19.22)

y

S

O¢ X

P x y z( , , )

Y

O
x

q r¢

rM( , , 0)x h

h

S¢

Fig. 19.2 Diffraction of a plane wave incident normally on
a rectangular aperture.

for all values of . Substituting Eq. (19.22) in Eq. (19.18), we

obtain

u(x, y, z) = 
A

i zλ
eikz exp

ik

z
x y

2

2 2
( )+

7
8
9

@
A
B

 

−

+

s b

b

/

/

2

2

e�iu  d
−∞

+∞

s e�iv  d (19.23)

Now, in Sec. 9.3 we have shown

(v) = 
1

2π −∞

+∞

s e�iv  d (19.24)

and

−

+

s
b

b

/

/

2

2

e�iu  d = 
1

− iu
e�iu

b

b

/

/

2

2

= 
2

2

2 2

u

e e

i

iub iub/ /− −

 = b
sin β
β

where

= 
ub

2
 = 
π
λ
bx

z
  
π θ
λ

b sin
(19.25)

and sin   
x

z
;  representing the angle of diffraction along

the x-direction. Thus,

u(x, y, z) = 
Ab

i zλ
eikzexp

ik

z
x y

2

2 2
( )

sin
+

7
8
9

@
A
B

%
'&

(
0)

β
β

2 (v) (19.26)

Because of the  function, the intensity is zero except on

the x-axis; thus the intensity distribution along the x-axis will

be

I = I0

sin
2

2

β

β

%

'&
(

0)
(19.27)

We thus obtain the single slit diffraction pattern as discussed

in Sec. 18.3. Actually for a long narrow slit, Eq. (19.17) is not

valid and we must use the analysis given in Sec. 20.7. How-

ever, on the focal plane of a lens we will observe the pattern

given by Eq. (19.27) � see Fig. 18.3.

IWFT p�e�xrypi�2 hspp�eg�syx

f�2 e2 �ig�exq�ve�

e�i����i

We next consider a rectangular aperture (of dimension a  b)

[see Fig. 19.2]. The Fraunhofer diffraction of a plane wave

incident normally on such a rectangular aperture will be given

by

u(x, y, z) = 
A

i zλ
eikz exp

ik

z
x y

2

2 2
( )+

7
8
9

@
A
B

−

+

s b

b

/

/

2

2

e�iu  d  
−

+

s a

a

/

/

2

2

e�iv  d (19.28)

where we have chosen the origin to be at the center of the

rectangular aperture [see Fig. 19.2]. Carrying out the integra-

tion as in the previous section, we obtain

u(x, y, z) = 
Aba

i zλ
eikz exp

ik

z
x y

2

2 2
( )

sin sin
+

7
8
9

@
A
B
%
'&

(
0)
%
'&

(
0)

β
β

γ
γ

(19.29)

where  is given by Eq. (19.25),

 = 
2

av
 = 
π
λ
ay

z
  
π φ
λ

a sin
(19.30)

and sin   
y

z
;  representing the angle of diffraction along

the y-direction. Thus, we may write for the intensity distribu-

tion

I(P) = I0

sin sin
2

2

2

2

γ

γ

β

β
(19.31)

The above equation represents the Fraunhofer diffraction

pattern by a rectangular aperture. We must remember that

Eqs. (19.29) and (19.31) are valid when both Eqs. (19.13) and

(19.17) are satisfied. The intensity distribution due to a

square aperture (a = b) is shown in Fig. 19.3; the figure cor-

responds to a = b = 0.01 cm, z = 100 cm and we have

assumed  = 5  10�5 cm. Now, if we observe in a region of

radius 0.5 cm [i.e., (x2 + y2) < 0.25 cm2 ] then Eq. (19.13) would

give us

z >> 
1

4 5 10
0 25

5

2

1

3

× ×

%

'&
(

0)−
( . )   7 cm

vy Q
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Further Eq. (19.17) would give us

z >> 
1

5 10
2 0 01

5

2

×
×

%

'&
(

0)−
( . )   4 cm

We have chosen z = 100 cm and we get the diffraction pat-

tern as shown in Fig. 19.3. Although in the above, we have

assumed that we are observing a region of radius 0.5 cm, we

have plotted the diffraction pattern for �2 cm < x, y < +2 cm.

We may note that along the x-axis, the intensity will be zero

when

= 
π
λ
bx

z

%
'&

(
0)

 = m ; m = 0, 1, 2, 3 � (19.32)

350

300

250

200

150

100

50

0

0 50 100 150 200 250 300 350

4
c
m

4 cm

(b)

(a)

Fig. 19.3 (a) A square aperture of side 0.01 cm. (b) The cor-
responding (computer generated) Fraunhofer
diffraction pattern on a screen at a distance of
100 cm from the aperture;  = 5  10�5 cm.

or

x = 
m

b

λ
z = m 0.5

= 0.5 cm, 1.0 cm, 1.5 cm, 2.0 cm, �

corresponding to m = 1, 2, 3, 4,� respectively; this is consis-

tent with the positions of the minima in Fig. 19.3.

For the case of a long narrow slit (i.e., for a  ), the

function

a sin γ
γ

= 

sin
sin

sin

a
π φ
λ

π φ
λ

1
32

4
65

1
32

4
65

becomes very sharply peaked around  = 0. Since  = 0

implies y = 0, there is no diffraction along the y-axis

(see Sec. 19.4). The diffraction of a plane wave incident on a

long narrow slit and the transition to the Fraunhofer region

IWFU p�e�xrypi�2 hspp�eg�syx

f�2 e2 gs�g�ve�

e�i����i

We consider a plane wave incident normally on a circular

aperture as shown in Fig. 19.4. On the plane of the circular

aperture we choose cylindrical coordinates [see Fig. 19.5]

=  cos and  =  sin (19.33)

O

x

h

x

O¢ P

S

S¢

q

z

Fig. 19.4 Diffraction of a plane wave incident on a circular
aperture of radius a.

.

M( , )x h

f

r

O

h

x

Fig. 19.5 Cylindrical coordinates ( , ) on the plane of the
circular aperture.

Further, because of the circular symmetry of the system,

the diffraction pattern will be of the form of concentric circu-

lar rings with their centers at the point O . Consequently, we

may calculate the intensity distribution only along the x-axis

(i.e., at points for which y = 0) and in the final result replace

x by x y
2 2+ . Now, when y = 0

v = 0 and sin   
x

z
(19.34)

vy Q

is discussed in Chapter 20 (see Sec. 20.7)
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where  is the angle that OP makes with the z-axis. Thus,

u = 
2π
λ
x

z
 = k sin 

and Eq. (19.18) becomes

u(P) = 
A

i zλ
eikz exp

ik r

z

2

2

7
8
9

@
A
B 0

2

0

π

ss
a

e�ik sin cos  d d

(19.35)

Thus,

u(P) = 
A

i zλ
eikz exp

ik r

z

2

2

7
8
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s s
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eikz exp

ikr
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0

π

θ

θ

( sin )

sin

k

ka

s J0( )d

(19.36)

where  = k  sin  and use has made of the following well-

known relation*

J0( ) = 
1

2π
 e

i

s
cos

0

2

d (19.37)

If we further use the relation

d

dζ
[  J1( )] =  J0( ) (19.38)

then Eq. (19.36) becomes

u(P) = 
A

i zλ
eikz exp

ikr

z k
J

k a
2

2 1 02

27
8
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@
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π

θ
ζ ζ

θ

( sin )
( )

sin

= 
A

i zλ
eikz exp

ikr

z
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2
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a2 2 1J ( )v

v

1
32

4
65

where v = k a sin . Thus, the intensity distribution would be

given by

I(P) = I0

2 1J ( )v

v

1
32

4
65

(19.39)

where I0 is the intensity at the point O  (see Fig. 19.4). This is

the famous Airy pattern which has been discussed in

Sec. 18.3. We have already mentioned that the diffraction

pattern (in the plane SS ) will consist of concentric rings with

their centers at the point O . If F(r) represents the fractional

energy contained in a circle of radius r, then

F(r) = 

I d

I d

r

( )

( )

σ πσ σ

σ πσ σ

2

2

0

0

s

s
∞ (19.40)

where I( ) 2  d  would be proportional to the energy

contained in the annular region whose radii lie between 

and  + d . Clearly,

sin   
σ
z

(19.41)

Since v = k a sin , we obtain

 = 
z

ka
v (19.42)

and Eq. (19.40) becomes

F(r) = 

2

2

1
2

0

1
2

0

J
d

J
d

( )

( )

v

v

v v

v

v

v v

v

1
32

4
65

1
32

4
65

s

s
∞ (19.43)

where we have used Eq. (19.39) for the intensity distribution.

Now,

J1
2
( )v

v

= J1(v) J
d J

d0
1( )
( )

v

v

v

−
1
32

4
65

= � J
d J

d
J

d J

d0
0

1
1( )

( )
( )

( )
v

v

v

v

v

v

1
32

4
65

= �
1

2

d

dv
[J0

2(v) + J1
2(v)] (19.44)

Thus,

F(r) = 

2 2
0 1

0

2 2
0 1

0

( ) ( )

( ) ( )

J J

J J

v

v v

v v

 = 1 � J0
2(v) � J1

2(v) (19.45)

The above function is plotted in Fig. 19.6; one can deduce

from the curve that about 84% of light is contained within

the circle bounded by the first dark ring and about 91% of

the light is contained in the circle bounded by the first two

dark rings, etc. The Fruanhofer pattern by an annular aper-

ture is discussed in Problem 19.5.

* The identities associated with Bessel functions can be found in most books on mathematical physics; see, e.g., Ref. 19.5�19.7.
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Fig. 19.6 The fractional energy contained in a circle of
radius r.
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We next consider an array of N identical apertures as shown

in Fig. 19.7. The Fraunhofer diffraction pattern will be the sum

of the fields produced by the individual apertures and will be

given by [see Eq. (19.18)]:

u = C + +…1

3
2
2

4

6
5
5

ss ss
S S1 2

exp [�i(u  + v )] d  d (19.46)

O2 2 2( , )x h

h¢

x¢

O1 1 1( , )x h

h¢

x¢
O4 4 4( , )x h

x¢

O3 3 3( , )x h

h¢

x¢

x

h

h¢

Fig. 19.7 Diffraction of a plane wave incident normally on
an array of N identical apertures.

where each integral represents the contribution from a par-

ticular aperture. Let O1, O2, O3, � represent points that are

identically situated inside the apertures. For example, if the

apertures are rectangular in nature, then O1, O2, O3, � could

represent the centers of the (rectangular) aperture. Let

( 1, 1), ( 2, 2), ( 3, 3), � represent the coordinates of the

points O1, O2, O3, � respectively; then

u = C ss∑
n

N

=1

e�i [u(
n

+ )+v(
n

+ )] d d (19.47)

where ( , ) represent the coordinates of an arbitrary point

in a given aperture with respect to the point ( n, n) as

shown in Fig. 19.7. Thus,

u = us

n

N

=1

∑ e
�i[u

n
+v

n
] (19.48)

where

us = Css e�i(u +v )d  d (19.49)

is the field produced by a single aperture. Thus, the resultant

intensity distribution would be given by

I = Is I1 (19.50)

where Is represent the intensity produced by a single aper-

ture and

I1 = 

2

[ ]

=1

n n

N
i u

n

e
v (19.51)

represents the intensity distribution produced by N point

sources.

As an example, we consider N equally spaced identical

apertures as shown in Fig. 19.8. Without loss of generality,

we may assume

n = (n � 1)d and n = 0; n = 1, 2, 3� N

O1(0, 0)

x¢

h¢

O d2( , 0)

x¢

h¢

O d3(2 , 0)

x¢

h¢

h

x

Fig. 19.8 Diffraction of a plane wave incident normally on
an array of N identical equally spaced apertures.

Thus,

n

N

=1 2 3, ,

∑ e� iu(n�1)d = 1 + e�iud + � + e�i (N�1)ud = 
1

1

−

−

−

−

e

e

iNud

iud

= exp − −1
32

4
65

1

2
1i N ud

N
( )

sin

sin

γ
γ

(19.52)

where

= 
ud

2
 = 
π θ
γ

d sin
(19.53)

and

sin = 
x

z
(19.54)
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We therefore obtain

I1 = e
iu n d

n

N
− −

…

∑ ( )

, ,

1

1 2 3

2

=

 = 
sin

sin

2

2

Nγ

γ
(19.55)

which is the interference pattern produced by N identically

placed point sources; this is the same result as derived in

Sec. 18.7. When N = 2, we obtain the interference pattern pro-

duced by 2 point sources.

If each aperture is a long narrow slit, we obtain the

diffraction pattern produced by a grating [see Eq. (18.50)]. On

the other hand, if each aperture is circular we obtain the

product of the Airy pattern and the interference pattern pro-

duced by two point sources [see Figs. 17.4 and 17.5].

IWFW ��e�sev2 p�i��ixg�

psv�i�sxq

In the next section, we will show that if g(x, y) represents the

field distribution on the front focal plane of a corrected lens

(i.e., on the plane P1 in Fig. 19.9) then on the back focal plane

P2 of the lens, one obtains the Fourier transform of

g(x, y), the z-axis represents the optical axis of the lens. Thus

if G(x, y) represents the field distribution on the back focal

plane P2 then it is related to g(x, y) through the following

relation:

G(u, v) = 
1

λ f ss g(x , y ) exp[�i(ux  + vy )]dx dy (19.56)

where

u  
2π
λ

x

f
and v  

2π
λ

y

f
(19.57)

represent the spatial frequencies. Further,  represents the

wavelength of light and f is the focal length of the lens. If we

compare Eq. (19.56) with Eq. (9.39) of Chapter 9, we find that

the field distribution on the back focal plane of a

corrected lens is the Fourier transform of the field

distribution on the front plane.

This important property of a corrected lens forms the ba-

sis of the subject of spatial frequency filtering which finds

applications in many diverse areas (see, e.g., Ref. 19.2, 19.4,

19.8�19.10). We must mention here that in writing Eq. (19.56),

we have neglected an (unimportant) phase factor on the

right-hand side [see Sec. 19.11].

x

y

y

x

Object
plane

Incident
plane
wave

P1

L1

P2

L2

P3

Fourier
Transform

plane

Image
plane

f

f

f

f

z

Fig. 19.9 The plane P2 is the Fourier transform plane
where the spatial frequency components of the
object (placed in the plane P1) are displayed. In
the above figure, a small hole is placed on the
axis (in the plane P2) which filters out the high-
frequency components.

We first consider a plane wave incident normally on the

lens. This implies that g(x, y) is a constant (= g0, say) and

G(u, v) = 
g

f
0

λ ss exp[� i(ux  + vy )]dx dy (19.58)

Now, if we use

−∞

+∞

s e�iux  dx = 2 (u) (19.59)

[see Eq. (9.9) of Chapter 9], we would obtain

G(u, v) = 
g

f
0

λ
4 2 (u) (v) (19.60)

where (u) and (v) represent the Dirac delta functions.

Since (u) = 0 for u  0, one can infer from Eq. (19.60) that

the intensity is zero at all points excepting at the point x = 0,

y = 0. This is to be expected because a plane wave gets fo-

cused to a point by a corrected lens*.

Another interesting example is a one-dimensional

cosinusoidal field distribution in the object plane i.e.,

g(x, y) = g0 cos(2 x) (19.61)

where  is a constant**; we have assumed no y-dependence

of the field. If we use the identity

cos  = 
1

2
(ei  + e�i )

vy S

* We are assuming a very large dimension of the aperture of the lens; as such the limits of integration in Eq. (19.56) are assumed to be

from �  to + . This is a good approximation in most cases.
** On the plane P1 (see Fig. 19.7), if we place the negative of the photograph shown in Fig. 14.11(b) with the y-axis along the length of

a fringe and assume a plane wave to be incident normally on the film, then the field distribution would be proportional to cos2 (2 x)

which is equal to 
1

2
[1 + cos(2 x)].
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we would obtain

G(u, v) = 
g

f
0 1

2λ s [ei2 x  + e�i2 x ]e�iux dx   s eivy dy

(19.62)

If we now use Eq. (19.59), we get

G(u, v) = 
g

f
0

λ
2 2 [ (u � 2 ) + (u + 2 )] (v) (19.63)

Thus, we will obtain two spots in the plane P2. These two

spots will be lying on the x-axis (where v = 0) at u = 2

(ie, at x = f ). Physically this can be understood from the

following consideration: When a plane wave is incident nor-

mally on the plane P1 (see Fig. 19.9), the time dependence is

of the form cos t. If in the plane P1, we have an object

whose transmittance is proportional to cos (2  x), then the

field to the right of the plane P1 would be proportional to

cos t cos (2  x)

= 
1

2
[cos ( t + 2  x) + cos ( t � 2  x)] (19.64)

We know that for a plane wave with ky = 0, the field varia-

tion is of the form (see Example 11.6):

cos ( t � kxx � kz z) (19.65)

where kx = k sin , kz = k cos , k = 
2π
λ

 and  is the angle

that the propagation vector k makes with the z-axis. At z = 0,

the field becomes

cos( t � kxx) (19.66)

Comparing the above equation with Eq. (19.64), we find

that the two terms on the RHS of Eq. (19.64) represent two

plane waves propagating along directions making angles �

and +  with the z-axis, where

sin  = 
k

k
x  = 

2

2

πα
π λ/

 = (19.67)

These plane waves will obviously focus to two points at

x = � f  and x = + f  on the x-axis in the plane P2. Since 

represents the spatial frequency associated with the object,

one essentially obtains, on the back focal plane, the spatial

frequency spectrum of the object.

We are familiar with the fact that a general time varying

signal can be expressed as a superposition of pure sinusoi-

dal signals [see Eq. (9.33)]. In a similar manner, the field

variation across an arbitrary object (placed on the plane P1),

can be expressed as a superposition of sinusoidal variations

and one would get the corresponding (spatial) frequency

components on the plane P2. For this reason, the plane P2 is

often termed as the Fourier transform plane.

As another example, if the amplitude variation of the

object is of the form

g(x, y) = A cos 2 x + B cos 2 x (19.68)

then one would obtain four spots on the plane P2 (all lying

on the x-axis); these spots will appear at x = f , f .

Since the Fourier transform of the Fourier transform is the

original function itself* [see Chapter 9], if we place the plane

P2 on the front focal plane of lens L2, then on its back focal

plane (i.e., in the plane P3 in Fig. 19.9) we will obtain the

amplitude distribution associated with the object. If we now

put stops at the points (x = + f , y = 0) and (x = � f , y = 0)

on the plane P2, then the field distribution on the plane P3

would be proportional to cos 2 x. Thus, we have been able

to filter out the spatial frequency . This is the basic prin-

ciple behind spatial frequency filtering.

For an arbitrary object, if we put a small hole on the plane

P2, then it will filter out the high frequency components [see

Fig. 19.10(a)]; if we put a small stop on the axis, we filter out

the low frequency components [see Fig. 19.10(b)]. On the

other hand, an annular aperture on plane P2 will act as a band

pass filter as shown in Fig. 19.10(c).

(a) (b) (c)

Fig. 19.10 (a) Low pass filter, (b) high pass filter and
(c) band pass filter; the filters are to be put on
the plane P

2
.

As a simple application, we consider a half-tone photo-

graph (like that in a newspaper), which consists of a large

number of spots of varying shades that produce the image

pattern. Since the spots are closely spaced, it represents a

high frequency noise and the overall image has much smaller

frequencies associated with it. Thus, if we put a transpar-

ency similar to that shown in Fig. 19.11(a) and allow only the

low frequency components to pass through (as shown in

Fig. 19.9), we will obtain, on the plane P3, an image which

does not contain the unwanted high-frequency noise (see

Fig 19.11(c)).

The subject of spatial frequency filtering finds

applications in many other areas like contrast improvement,

character recognition, etc. (see, e.g., Refs. 19.2, 19.4 and 19.9).

* There will however be an inversion; i.e., f (x, y) will become f(�x, �y) on the plane P3. This can also be seen by simple ray tracing.
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(c)

(a) (b)

Fig. 19.11 (a) Shows a photograph consisting of regularly
spaced black and white squares of varying sizes.
When a pinhole is placed in the Fourier trans-
form plane to block the high-frequency
components, an image of the form shown in (b)
is obtained; the frequency spectrum is shown in
(c). Notice that in (b) shades of gray appear as
well details such as the missing part of the eye
glass frame. [After R. A. Phillips, Spatial Filtering
Experiments for Undergraduate Laboratories, Ameri-
can Journal of Physics, 37, 536 (1969); used with
permission.]

19.9.1 The 4f Correlator

The 4f correlator is based on the convolution theorem discussed

in Sec. 9.7. A plane wave is assumed to be incident on a trans-

parency containing one two-dimensional function g(x, y) which

is placed on the front focal plane of the first lens as shown in

Fig. 19.12. The Fourier transform of g(x, y) [= G(u, v)] is

formed on the back focal plane of the lens. A transmission

mask containing the Fourier transform of the second func-

tion, h(x, y) [= H(u, v)], is placed on this plane. Thus, the

product G(u, v) H(u, v) lies on the front focal plane of the

second lens and therefore on its back focal plane, we will

obtain the Fourier transform of G(u, v) H(u, v) which is noth-

ing but the convolution of g(x, y) and h(x, y). This concept is

of considerable use in many applications (see, e.g., Ref.19. 2,

19.4, 19.8�19.10).

G u g x y( , ) [= FT of ( , )]

formed on this plane

v

Input plane containing
the function ( , ) to
be cross correlated

g x y

Multiplicative
transmission
mask ( , )

[= FT of ( , )]
H u v
h x y

Correlation
of g( , )

and ( , )
appear on
this plane

x y
h x y

f f f f

Fig. 19.12 The 4f correlator. [Figure adapted from Ref. 19.11].
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In this section, we will derive the Fourier transforming pro-

perty of a thin lens [see Eq. (19.56)]. We will first show that

the effect of a thin lens of focal length f is to multiply the

incident field distribution by a factor pL given by

pL = exp − +
1
32

4
65

ik

f
x y

2

2 2
( ) (19.69)

Consider an object point O at a distance d1 from an

aberrationless thin lens of focal length f (see Fig. 19.13). If

the image point I is at a distance d2 from the lens, then d2 is

given by [see Sec. 4.4]:

1 1

1 2d d
+  = 

1

f
(19.70)

where d1 and d2 represent the magnitude of the distances of

the object and image points from the lens. The phase factor

corresponding to the disturbance emanating from the point

O is simply exp(+ikr), where r is the distance measured from

the point O. Now

r = (x2 + y2 + d1
2)1/2 = d1 1

2 2

1
2

1 2

+
+1

3
2

4

6
5

x y

d

/

 d1 + 
x y

d

2 2

12

+

vy T
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where in writing the last expression, we have assumed x, y <<

d1, i.e., we have confined ourselves to a region close to the

axis of the lens; this is known as the paraxial approximation.

Thus, the phase distribution on the transverse plane P2 at a

distance d1 from the point O (i.e., immediately in front of the

lens; see Fig. 19.13) is given by

exp(+ikr)  exp ik d
x y

d1

2 2

12
+

+%
'&

(
0)

1

3
2

4

6
5

A diverging spherical
wavefront of radius d1

A converging spherical
wavefront of radius d

P2 P3

d1 d2

O I

Fig. 19.13 Spherical waves emanating from an object
point O, after refraction through a convex lens,
emerge as spherical waves converging to the
image point I.

Since the image is formed at I, the incident spherical wave

emerges as another spherical wave of radius d2, which under

the paraxial approximation is

exp − +
+%

'&
(
0)

1

3
2

4

6
5ik d

x y

d2

2 2

22

The negative sign in the exponent refers to the fact that

we now have a converging spherical wave. Thus, if pL repre-

sents the factor that when multiplied to the incident phase

distribution gives the phase distribution of the emergent

wave, then

exp − +
+%

'&
(
0)

1

3
2

4

6
5ik d

x y

d2

2 2

22
 = exp + +

+%
'&

(
0)

1

3
2

4

6
5ik d

x y

d1

2 2

12
pL

or

pL = exp[� ik(d1 + d2)] exp − +
%
'&

(
0)

+
%

'&
(

0)
1

3
2
2

4

6
5
5

ik

d d
x y

2

1 1

1 2

2 2( ) ,

(19.71)

the subscript L on p corresponds to the fact that we are re-

ferring to a lens. If we use Eq. (19.70) and neglect the first

factor in the above equation, because it is independent of x

and y, we obtain Eq. (19.69). Thus the effect of a thin lens on

an incident field is to multiply the incident phase distribution

by a factor that is given by Eq. (19.69). For a plane wave in-

cident along the axis, the emerging disturbance will simply

be pL, which can be seen to be the paraxial approximation of

a converging spherical wave front of radius f.

Now, let g(x, y) represent the field distribution on the plane

P1 (see Fig. 19.14). We would first like to determine the field dis-

tribution on the plane P2 i.e., at a distance f from the plane P1

(see Fig. 19.14). Obviously the field will undergo Fresnel diffrac-

tion and on plane P2 it will be given by [using Eq. (19.9)]

u(x, y)|P2
 = 

1

i fλ
exp(ik f ) 

ss g( , )  exp
ik

f
x y

2

2 2
[( ) ( ) ]

7
8
9

@
A
B

d d (19.72)

P1
P2 P3 P4

h(x,y)g(x,y)
L1

f f

Fig. 19.14 A field distribution g(x, y) placed at the front
focal plane of a lens produces a field distribu-
tion h(x, y) in the plane P

4
 at the back focal

plane of the lens. The field g(x, y) first under-
goes Fresnel diffraction from plane P

1
 to P

2
,

then it gets multiplied by a phase factor due to
the presence of the lens, and the resultant field
again undergoes Fresnel diffraction from plane
P
3
 to P

4
 to produce the field distribution h(x, y).

Now, as shown earlier in this section, the effect of a thin

lens of focal length f is to multiply the incident field distribu-

tion by the factor pL given by Eq. (19.69), thus on the plane

P3, the field distribution will be given by

u(x, y)|P3
 = 

1

i fλ
eikf exp[�i (x2 + y2)] 

ss g( , )  exp{i [(x � )2 + (y � )2]}d d (19.73)

where

 = 
k

f2
 = 

π
λ f

(19.74)

From plane P3 the field will again undergo Fresnel

diffraction and therefore on plane P4, it will be given by

[using Eq. (19.9)]

u(x, y)|P4
 = 

1

i fλ
eikfss u( , )|P3 

exp{i [(x � )2 + (y � )2]}d d (19.75)
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Substituting for u|P3
 from Eq. (19.73) we get

u(x, y)|P4
= 

1
2

i f
e
ikf1

3
2

4

6
5 I(x, y) (19.76)

where

I(x, y) =
−∞

+∞

ss g( , ) H(x, y, , )d d (19.77)

H(x, y, , ) =
−∞

+∞

ss exp{�i ( 2 + 2)}

 exp{i [(  � )
2
 + (  � )

2
]}

 exp{i [(x � )2 + (y � )2]}d  d

= H (x)H (y) (19.78)

H (x) =
−∞

+∞

s exp{i [ 2 � 2 + x2 � 2x + 2]}d (19.79)

and a similar expression for H . Now,

2 � 2  + x2 � 2x  + 2 = 2 � 2 (x + ) + (x + )2

� (x + )2 + 2 + x2

= (  � g)2 � 2x

where g = x + . Thus,

H = exp[�2i x ]
−∞

+∞

s exp[i (  � g)2]d

or

H (x) = e�2i x  
π
α− i

(19.80)

and a similar expression for H (y). Thus,

I(x, y) = 
−∞

+∞

ss g( , ) H (x) H (y)d  d

= 
π
α− −∞

+∞

ssi
g( , ) e�2i (x +y )d  d

= i f
−∞

+∞

ss g( , ) e�i (u +v )d d

where we have used Eq. (19.74) and

u = 2 x = 
2π
λ

x

f
and v = 2 y = 

2π
λ

y

f
(19.81)

represent the spatial frequencies in the x and y directions

respectively. If we substitute the above expression for I(x, y)

in Eq. (19.76) we would obtain

u(x, y)|P4
 = 

1

λ f ss g( , ) e�i(u +v )d  d

where we have neglected the unimportant constant phase

factors. Equation (19.81) is the same as Eq. (19.56) and gives

the important result that

the field distribution on the back focal plane of a

corrected lens is the Fourier transform of the field

distribution on the front plane.

We should mention here that in writing the limits in the

integral from �  to + , we have assumed the lens to be of

infinite extent; the error involved is usually very small

because in almost all practical cases

a/  >>> 1

where a represents the aperture of the lens.

Summary

u If the amplitude and phase distribution on the plane z = 0 is

given by A( , ) then the Fresnel diffraction pattern is given

by

u(x, y, z)  
1

i zλ
eikz A( , )

exp
ik

z
x y

2

2 2
[( ) ( )− + −

7
8
9

@
A
B

ξ η d d

where k = 2 / .

u The Fraunhofer diffraction pattern is the Fourier transform

of the aperture function and is given by

u(x, y, z)  
1

i zλ
eikz exp

ik

z
x y

2

2 2
( )+

7
8
9

@
A
B

A( , )e� i(u +v ) d d

For a plane wave incident normally on a circular aperture of

radius a, the Fraunhofer diffraction pattern is given by

I(P) = I0

2 1
2

J ( )v

v

1

32
4
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where v = k a sin .

u If g(x, y) and G(x, y) represent the filed distributions on the

front focal plane and on the back focal plane of a corrected

lens then

G(u, v) = 
1

( , )g x y
f

exp[�i(ux  + vy )]dx dy

where, u 
2 x

f
and v 

2 y

f
represent the spatial fre-

quencies. Thus on the back focal plane of the lens one obtains

the Fourier transform of g(x, y), the z-axis represents the

optical axis of the lens. This important property of a cor-

rected lens forms the basis of the subject of spatial frequency

filtering.

Problems

19.1 Consider a rectangular aperture of dimensions 0.2 mm 

0.3 mm with a screen placed at a distance of 100 cm from

the aperture. Assume a plane wave with  = 5  10�5 cm

incident normally on the aperture. Calculate the positions of
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maxima and minima in a region 0.2 cm  0.2 cm of the screen.

Show that both Fresnel and Fraunhofer approximations are

satisfied.

19.2 In the above problem, assume a convex lens (of focal length

20 cm) placed immediately after the aperture. Calculate the

positions of the first three maxima and minima on the x-axis

(implying  = 0) and also on the y-axis (implying  = 0).

19.3 The Fraunhofer diffraction pattern of a circular aperture (of

radius 0.5 mm) is observed on the focal plane of a convex

lens of focal length 20 cm. Calculate the radii of the first and

the second dark rings. Assume  = 5.5  10�5 cm.

[Ans: 0.13 mm, 0.18 mm]

19.4 In the above problem, calculate the area of the patch (on

focal plane) which will contain 95% of the total energy.

19.5 Obtain the diffraction pattern of an annular aperture bounded

by circles of radii a1 and a2(> a1). [Hint: The integration lim-

its of  in Eq. (103) must be a1 and a2]

19.6 Consider a rectangular aperture of dimensions 0.2 mm

 0.3 mm. Obtain the positions of the first few maxima and

minima in the Fraunhofer diffraction pattern along directions

parallel to the length and breadth of the rectangle. Assume

 = 5  10�5 cm and that the diffraction pattern is produced

at the focal plane of a lens of focal length 20 cm.

[Ans: Along the x-axis, minima will occur at x  0.05,

0.10, 0.15, � cm; along the y-axis, minima will occur at

y  0.033, 0.067, 0.1, � cm]

19.7 The Fraunhofer diffraction pattern of a circular  aperture

(of radius 0.5 mm) is observed on the focal plane of a con-

vex lens of focal length 20 cm. Calculate the radii of the

first and the second dark rings. Assume  = 5.5  10�5 cm.

[Ans: 0.13 mm, 0.25 mm]

19.8 In Problem 19.7, calculate the area of the patch  (on focal

plane) which will contain 95% of the total energy.

[Ans:  5.55  10�3 cm2]



20.1 INTRODUCTION

In Chapter 18, we had mentioned that the phenomenon of dif-

fraction can be broadly classified under two categories:

under the first category comes the Fresnel class of diffrac-

tion in which either the source or the screen (or both) are at

a finite distance from the diffracting aperture. In the second

category comes the Fraunhofer class of diffraction (dis-

cussed in the last two chapters) in which the wave incident

on the aperture is a plane wave and the diffraction pattern is

observed on the focal plane of a convex lens, so that the

screen is effectively at an infinite distance from the aperture.

One of your commissioners, M. Poisson, had deduced from the integrals reported by the author

[Fresnel] the singular result that the centre of the shadow of an opaque circular screen must,

when the rays penetrate there at incidences which are only a little oblique, be just as illuminated

as if the screen did not exist. The consequence have been submitted to the test of a direct ex peri-

ment, and observation has perfectly confirmed the calculation.

�Dominique Arago to the French Academy of Sciences*

p�i�xiv2hspp�eg�syx
Chapter
Twenty

Important Milestones

1816 Augustin Fresnel developed the theory of diffraction using the wave theory of light.

1817 Using Fresnel�s theory, Poisson predicted a bright spot at the center of the shadow of an opaque disc�this

is usually referred to as the �Poisson spot�.

1818 Fresnel and Arago carried out the experiment to demonstrate the existence of the Poisson spot validating

the wave theory.

1874 Marie Cornu developed a graphical approach to study Fresnel diffraction�this came to be known as the

Cornu�s spiral.

In the present chapter, we will discuss the Fresnel class of

diffraction and also study the transition to the Fraunhofer

region. The underlying principle in the entire analysis is the

Huygens�Fresnel principle according to which:

Each point on a wavefront is a source of secondary

disturbance and the secondary wavelets emanating

from different points mutually interfere.

In order to appreciate the implications of this principle we

consider the incidence of a plane wave on a circular hole of

radius a as shown in Fig. 20.1. In Sec. 18.3, we had shown

that the beam will undergo diffraction divergence and the

angular spreading will be given by

* The author found this quotation in Ref. 20.1.

LO 1: analyze Fresnel half-period zones and its applications.

LO 2: describe a more rigorous approach to Fresnel diffraction.

LO 3: describe propagation of Gaussian beams.

LO 4: study diffraction by a straight edge.

LO 5: evaluate the diffraction of a plane wave by a long narrow slit and transition to the Fraunhofer region.
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Thus, when a >>>  the intensity at a point R (which is deep

inside the geometrical shadow) will be negligible; on the

other hand, if a ~  there will be almost uniform spreading

out of the beam resulting in an (almost) uniform illumina-tion

of the screen. This phenomenon is a manifestation of the fact

that when a >>> , the secondary wavelets emanating from

different points on the circular aperture so beautifully inter-

fere to produce (almost) zero intensity in the geometrical

shadow and a large intensity inside the circular region (see

Fig. 20.1). However, if a ~  then the aperture almost acts as

a point source resulting in a uniform illumination of the

screen (see Fig. 12.4 and Fig. 22 in prelims pages).

Edge of the
geometrical

shadow

a
O

P

R

S

S¢

d

Fig. 20.1 Diffraction of a plane wave incident normally on
a circular aperture of radius a.

We will first introduce the concept of Fresnel half-period

zones to have a qualitative understanding of the Fresnel dif-

fraction pattern; this will be followed by a more rigorous

analysis of the Fresnel class of diffraction and its transition

to the Fraunhofer region.

20.2 FRESNEL HALF-PERIOD

ZONES

Let us consider a plane wavefront WW  propagating in the z-

direction as shown in Fig. 20.2. In order to determine the

field at an arbitrary point P due to the disturbances reaching

from different portions of the wavefront, we make the fol-

lowing construction: from the point P we drop a

perpendicular PO on the wavefront. If PO = d, then with

point P as centre we draw spheres of radii d + /2, d + 2 /2,

d + 3 /2,�; these spheres will intersect WW  in circles as

shown in Fig. 20.2. The radius of the nth circle will obviously

be given by

P

O

W

W¢

d

Qn – 1

Qn

nth half period zone

d +
nl
2

Fig. 20.2 Construction of Fresnel half-period zones.
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2
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/

or

rn  n d (20.1)

where we have assumed d >>> , this is indeed justified for

practical systems using visible light; of course, we are as-

suming that n is not a very large number. The annular region

between the nth circle and (n � 1)th circle is known as the nth

half-period zone; the area of the nth half-period zone is given

by

An =  rn
2 �  r2

n�1

 [n  d � (n � 1)  d] =   d (20.2)

Thus the areas of all the half-period zones are approximately

equal. Now the resultant disturbance produced by the nth

zone will be  out-of-phase with the disturbance produced

by the (n � 1)th [or the (n + 1)th] zone. This can easily be seen

from the following consideration: For infinitesimal area sur-

rounding a point Qn in the nth half period zone, there is a

corresponding infinitesimal area surrounding the point Qn � 1

in the (n � 1)th half-period zone such that

QnP � Qn�1
P = 

2

which corresponds to a phase difference of . Since the ar-

eas of the zones are approximately equal, one can have a

one-to-one correspondence between points in various zones.

Thus, the resultant amplitude at the point P can be written as

u(P) = u1 � u2 + u3 � u4 + �+ (�1)m+1 um + �. (20.3)

where un represents the net amplitude produced by the sec-

ondary wavelets emanating from the nth zone; the alternate

negative and positive signs represent the fact that the result-

LO 1
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ant disturbances produced by two consecutive zones are

 out-of-phase with respect to each other. The amplitude

produced by a particular zone is proportional to the area of

the zone and inversely proportional to the distance of the

zone from the point P; further, it also depends on an obliq-

uity factor which is proportional to 1
2

(1 + cos )2where  is

the angle that the normal to the zone makes with the line QP;

this obliquity factor comes out automatically from rigorous

diffraction theory.* Thus, we may write

un = constant 
A

Q P
n

n

( cos )1

2
(20.4)

where An represents the area of the nth zone. It can be shown

that if we use the exact expression for rn, the area of the zones

increase with n; however, this slight increase in the area is

exactly compensated by the increased distance of the zone

from the point P. In spite of this, the amplitudes u1, u2, u3�

decrease monotonically because of increased obliquity.

Thus, we may write

u1 > u2 > u3� (20.5)

The series expressed by Eq. (20.3) can be approximately

summed due to a method by Schuster. We rewrite Eq. (20.3) as

u (P) = 
u u

u
u1 1

2
3

2 2 2

%
'&

(
0)

 + 
u

u
u3

4
5

2 2

%
'&

(
0)

(20.6)

where the last term would either 1
2

um or 1
2 1u um mQ V

according to m being odd or even. If the obliquity factor is

such that

un > 
1

2 1 1( )u un n (20.7)

then the quantities inside the brackets in Eq. (20.6) will be

negative; consequently,

and

u P u u m

u P u u u
u u

m

m

m m
m

( ) ; (

( ) ; (

@

A
uu

B
u
u

1

2

1

2

1

2

1

2 2 2

1

1 1
1

odd)

even)

(20.8)

where we have assumed that the amplitude of the fields pro-

duced by consecutive zones differ only slightly. In order to

obtain the upper limits, we rewrite Eq. (20.3) in the form

u(P) = u1 � 
u u

u
u2 2

3
4

2 2 2

%
'&

(
0)

 � 
u

u
u4

5
6

2 2

%
'&

(
0)

(20.9)

where the last term would now be 1
2 1u um mQ V  when m is

odd and � 1
2

um when m is even. Since the quantities inside

the brackets are negative, we obtain

and 

u P u
u u

u
u u

m

u P u
u u u u

m

m
m

m

m m

( )

(

( )

(

@

A

u
u
u

B

u
u
u

1
2 1 1

1
2 1

2 2 2 2

2 2 2 2

when is odd)

when is even)

(20.10)

Using Eqs. (20.8) and (20.10) we may approximately write

and

u P
u u

m

u P
u u

m

m

m

( ) (

( ) (

@

A
u
u

B
u
u

1

1

2 2

2 2

when is odd)

when is even)

(20.11)

If we can neglect um in comparison to u1 then the

Eq. (20.11)** gives the remarkable result that

u(P)  
u1
2

(20.12)

implying that the resultant amplitude produced by the en-

tire wavefront is only one half of the amplitude produced by

the first half-period zone.

20.2.1 Diffraction by a Circular Aperture

We may use the above analysis to study the diffraction of a

plane wave by a circular aperture. Let the point P be at a dis-

tance d from the circular aperture (see Fig. 20.1). We assume

that the radius of the circular aperture, a, can be increased

from zero onwards. As a increases, the intensity at the point

P would also increase till the circular aperture contains the

first half-period zone; this would happen when

a = d . The resultant amplitude at the point P would be u1

which is twice the value of the amplitude for the unob-

structed wavefront [see Eq. (20.12)]. The intensity would

therefore be 4I0, where I0 represents the intensity at the point

P due to the unobstructed wavefront. If we further increase

* See, e.g., Ref. 20.3.
** If one assumes a form of the obliquity factor as given by Eq. (20.4) then it decreases from 1 to 1/2 as m increases from 1 to ; this

implies that |u
m
| can never be smaller that 

u1
2

. However, when m is large, a slight shift of the point P on the axis will change the

amplitude from 
u um1

2 2
 to 

u um1

2 2
, the changes will occur with such great rapidity that one can only observe the average value

which will be 
u1
2

.
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a then u(P) would start decreasing and when the circular

aperture contains the first two half-period zones (which

would happen when a = 2 d ) the resultant amplitude

(= u
1
 � u

2
) would be almost zero. Thus, by increasing the

hole diameter, the intensity at the point P decreases almost

to zero. This interesting result is once again due to the valid-

ity of the Huygens�Fresnel principle and hence would be

valid for sound waves also. We may generalize the above

result by noting that if

a = ( )2 1n d ; n = 0, 1, 2,� [maxima]

the aperture will contain an odd number of half-period zones

and the intensity will be maximum; on the other hand, if

a = 2n d ; n = 1, 2,� [minima]

the aperture will contain an even number of half-period zones

and the intensity will be minimum. In order to have a

numerical appreciation, we note that for d = 50 cm and  = 5

10�5 cm, the radii of the first, second and third zones would

be 0.500 mm, 0.707 mm and 0.866 mm, respectively. As a

corollary of the above analysis we can consider a circular

aperture of a fixed radius a and study the intensity variation

along the axis. Whenever the distance

d = 
a

n

2

2 1( )
; n = 0, 1, 2,� (maxima)

the point P (see Fig. 20.1) will correspond to a maximum.

Similarly, when

d = 
a

n

2

2
 ; n = 1, 2,� (minima)

the point P will correspond to a minimum. The intensity distri-

bution on a screen SS  at off-axis points can be approximately

calculated by using the half-period zones, but such a calcula-

tion is fairly cumbersome. However, from the symmetry of the

problem, one can deduce that the diffraction pattern has to be

in the form of concentric circular rings with their centres at the

point P.

20.2.2 Diffraction by an Opaque
Disc�The Poisson Spot

If instead of the circular aperture we have a circular disc [see

Fig. 20.3(a)] and if the disc obstructs the first p half-period

zones then the field at the point P would be

u(P) = up+1 � up+2 + �

 
up 1

2
(20.13)

Thus, we should always obtain a bright spot on the axis

behind a circular disc; (the more rigorous theory also predicts

the same result � see Sec. 20.4.2). This is called the �Poisson

spot�. We may mention here that it was in 1816 that the

French physicist Augustin Fresnel developed the mathemati-

cal theory of diffraction using the wave theory of light.

Simeon Poisson, the famous mathematician, used Fresnel�s

theory to predict a bright spot at the center of the shadow of

an opaque disc. Poisson was a great supporter of the cor-

puscular theory of light and he said that since the bright spot

is against common sense, the wave theory must be wrong.

Shortly afterwards, Fresnel and Arago carried out the experi-

ment to demonstrate the existence of the Poisson spot

[see Fig. 20.3(b)], validating the wave theory.

(a) (b)

P

Opaque disc

Fig. 20.3 (a) When a plane wave is incident normally on an opaque disc, a bright spot is always formed
on an axial point. This spot is known as the Poisson spot. (b) The Poisson spot at the center of
the shadow of a one cent coin; the screen is 20 m from the coin and the source of light is also
20 m from the coin. [Photograph reprinted with permission from P.M. Rinard, Large scale dif-
fraction patterns from circular objects, American Journal of Physics, Vol 44, 70, 1976; Copyright
(1976), American Association of Physics Teachers used with Permission].
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20.3 THE ZONE-PLATE

A beautiful application of the concept of Fresnel half-period

zones lies in the construction of the zone-plate which con-

sists of a large number of concentric circles whose radii are

proportional to the square root of natural numbers and the

alternate annular regions of which are blackened

(see Fig. 20.4). Let the radii of the circles be 1 K, 2 K,

3 K, 4 K,� where K is a constant and has the dimension

of length. We consider a point P1 which is at a distance

K2/  from the zone plate; for this point the blackened rings

correspond to the 2nd, 4th, 6th, � half-period zones. Thus, the

even zones are obstructed and the resultant amplitude at P
1

[see Fig. 20.5 (a)] will be

u
1
 + u

3
 + u

5
 + � (20.14)

Fig. 20.4 The zone plate.

producing an intense maximum. For the point P3 (which is at

a distance K2/3 ) the first blackened ring contains the 4th, 5th,

6th zones, the second blackened ring contains the 10th, 11th

and 12th zones, etc.; thus the resultant amplitude would be

(u1 � u2 + u3) + (u7 � u8 + u9) + � (20.15)

which would again correspond to a maximum, but it would

not be as intense as the point P1. Between the points P1 and

P3 there will be a point P2 (at a distance K2/2 ) where the

resultant amplitude would be

(u1 � u2 ) + (u5 � u6 ) + � (20.16)

implying that corresponding to P2 the first blackened ring

contains the 3rd and 4th half-period zones, etc. Obviously, the

point P2 will correspond to a minimum. Thus, if a plane wave

is incident normally on a zone-plate, then the corresponding

focal points are at distances

K2

, 
K2

3
, 

K2

5
, . . . (20.17)

from the zone-plate. Elementary calculations will show that

the zone-plate suffers from considerable chromatic aberra-

tions [see Problem 20.5].

Example 20.1 Assume a plane wave (  = 5  10�5 cm) to be

incident on a circular aperture of radius 0.5 mm. We will calculate the
positions of the brightest and darkest points on the axis. For the
brightest point, the aperture should contain only the first zone and
thus we must have (see Fig. 20.1)

(0.05)2 = OP (5  10�5)

Thus OP = 50 cm. Similarly, the darkest point would be at a dis-

tance

( . )0 05

2 5 10

2

5× × −
= 25 cm

Example 20.2 Consider a zone-plate with radii

r
n

= 0.1 n  cm

For  = 5  10�5 cm, we will calculate the positions of various foci.

The most intense focal point will be at a distance

r1
2

λ
= 

0 01

5 10
5

.

× −
 = 200 cm

The other focal points will be at distances of 200/3, 200/5,
200/7 cm, etc. Between any two consecutive foci there will be dark
points on the axis corresponding to which the first circle will con-
tain an even number of half-period zones.

The zone-plate can also be used for imaging points on the

axis, e.g., if we have a point source at S then a bright image

will be formed at P, where the point P should be such that

(see Fig. 20.5(b)):

SL + LP � SP = 
2

(20.18)

the point L being on the periphery of the first circle of the

zone plate [see Fig. 20.5(b)]. If the radius of the first circle is

r
1
, then

SL + LP � SP = a r b r a b
2

1
2 2

1
2

( )

 a
r

a
b

r

b
a b1

2
1

2

1
2

2
1
2

2

1

3
2

4

6
5

1

3
2

4

6
5 ( )

 
r

a b
1
2

2

1 1%
'

(
0 (20.19)

Thus Eq. (20.18) becomes

1 1

a b
= 

1

f
(20.20)

where f = r
1

2/  represents the focal length. Equation (20.20)

resembles the lens law. A very interesting demonstration ex-

periment of the zone-plate can be carried out by using
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microwave sources (  ~ 1 cm) and, instead of the dark rings,

having aluminum rings on a perspex sheet of dimension

~ 40 cm  40 cm.

P4 P3 P2 P1P5

(a)

(b)

r1

L

S P

Fig. 20.5 (a) For a plane wave incident on a zone-plate, the
maximum intensity occurs at the points PI, PQ etc.;
the minima occur at PP, PR, � (b) Imaging of a
point object by a zone-plate.

20.4 FRESNEL DIFFRACTION�A

MORE RIGOROUS

APPROACH

In Sec. 19.2, we had considered a plane wave (of amplitude A)

incident normally on an aperture as shown in Fig. 20.6. Using

Huygens�Fresnel principle we had shown that the field

produced at the point P on a screen SS  (which is at a

distance d from the aperture) is given by

u(P) = 
A

i

e

r

ikr

λ ss d d (20.21)

where the integration is over the area of the aperture. Now, if

the amplitude and phase distribution on the plane z = 0 is

given by A( , ) then the above integral is modified to

u(P) = 
1

iλ ss A( , )
e

r

ikr

d  d (20.22)

Further, in the Fresnel approximation [see Eq. 19.9] the

above integral takes the form

u(x, y, z)  
1

i zλ
eikz ss A( , ) 

exp
ik

z
x y

2

2 2[ ) ( ) ]− + −
7
8
9

@
A
B

ξ η d  d (20.23)

x

P

y

S

S¢

r

h

x

Md dx h

d

Fig. 20.6 A plane wave incident normally on an aperture.

20.4.1 Diffraction of a Plane Wave
Incident Normally on a Circular
Aperture

We assume a plane wave incident normally on a circular ap-

erture of radius a as shown in Fig. 20.7. The z-axis is normal

to the plane of the aperture and the screen SS  is assumed to

be normal to the z-axis. It is obvious from the symmetry of

the problem that we will obtain circular fringes on the screen

SS  ; however, it is very difficult to calculate the actual inten-

sity variation on the screen. Therefore, for the sake of

h

r j

x

Q

O

M

r

P

S¢

S

d

Fig. 20.7 Diffraction of a plane wave incident normally on
a circular aperture of radius a; Q is an arbitrary
point on the periphery of the aperture.
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mathematical simplicity, we will calculate the variation of in-

tensity only along the z-axis. Obviously, it will be more

convenient to use the circular system of coordinates. In this

system, the coordinates of an arbitrary point M on the aper-

ture will be ( , ) where  is the distance of the point M from

the center O and  is the angle that OM makes with the -axis

[see Fig. 20.7] and a small element area dS surrounding the

point M will be  d  d . Thus,

u(P) ss
i A e

r
d d

ikr
a

00

2

(20.24)

Now,

2 + d2 = r2

Thus,

 d = r dr

and Eq. (20.24) becomes

u(P)  ss
i A

e dr dikr

d

a d2 2

0

2

(20.25)

The integration is very simple and since k = 2 / , we readily

obtain

u(P)  A eikd (1 � eip ) (20.26)

where we have defined p by the following equation

k a d d
2 21

32
4
65

= p

The above equation implies

QP � OP = 
p

2

where Q is a point on the periphery of the circular aperture

(see Fig. 20.7). From Eq. (20.26) we readily get

I(P) = 4 I
0
 sin2 

p

2
(20.27)

where I0 is the intensity associated with the incident plane

wave. Equation (20.27) tells us that the intensity is zero or

maximum when p is an even or odd integer, i.e., when

QP � OP is an even or odd multiple of /2. This can be un-

derstood physically by using the concept of Fresnel

half-period zones discussed in Sec. 20.2. Thus, if the aperture

contains an even number of half-period zones, the intensity

at the point P will be negligibly small and conversely, if the

circular aperture contains an odd number of zones, the inten-

sity at the point P will be maximum. Now, when d << a (as is

usually the case)

p  
k

d
a

d
d1

2

2

2

%
'&

(
0)

1

3
2
2

4

6
5
5

or

p  
a

d

2

(20.28)

which is known as the Fresnel number of the aperture. In

Fig. 20.8, we have plotted the corresponding intensity varia-

tion as a function of the dimensionless parameter

d

a
2

I

I0

0
0 0.25 0.5 0.75 1 1.25 1.5

2

4

ld

a2

Fig. 20.8 The intensity variation on an axial point corre-
sponding to a plane wave incident on a circular
aperture of radius a.

The figure shows that when the (circular) aperture

contains an even number of half-period zones, the

intensity at the point P will be zero and when the

aperture contains an odd number of zones, the intensity

at the point P will be maximum.

20.4.2 Diffraction by a Circular Disc

We next consider the diffraction pattern produced by an

opaque disc of radius a (see Fig. 20.3). Once again we will

assume that the observation point lie on the axis of the disc.

Equation (20.21) tells us that in order to calculate the field we

have to carry out an integration over the open region of the

aperture. Obviously, if u
1
(P) and u

2
(P) respectively represent

the fields at the point P due to a circular aperture and an

opaque disc (of the same radius), then

u1(P) + u2(P) = u0(P) (20.29)
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where u0(P) represents the field in the absence of any aper-

ture; Eq. (20.29) is known as the Babinet�s principle. Thus,

u2 (P) = u0 (P) � u1 (P)

= u0 (P) � u0 (P)[1 � e ip ]

or u2 (P) = u0 (P) e
 ip (20.30)

where, for u1(P) we have used Eq. (20.26). Thus the intensity

at the point P on the axis of a circular disc would be

I2 (P) = |u2 (P) |2 = I0 (P) (20.31)

which gives us the remarkable result that the intensity at a

point on the axis of an opaque disc is equal to the intensity at

the point in the absence of the disc! This is the Poisson spot

discussed in Sec. 20.2.2.

20.5 GAUSSIAN BEAM

PROPAGATION

When a laser oscillates in its fundamental transverse mode,

the transverse amplitude distribution is Gaussian. Also,

the output of a single mode fiber is very nearly Gaussian.

Therefore, the study of the diffraction of a Gaussian beam is

of great importance. We assume a Gaussian beam propagating

along the z-direction whose amplitude distribution on the

plane z = 0 is given by

A( , ) = a exp
1

3
2
2

4

6
5
5

2 2

0
2

w
(20.32)

implying that the phase front is plane at z = 0. From

Eq. (20.32), it follows that at a distance w0 from the z-axis, the

amplitude falls by a factor 1/e (i.e., the intensity reduces by

a factor 1/e2). This quantity w
0
 is called the spot size of the

beam. Substituting Eq. (20.32) in Eq. (20.23) and carrying out

the integration, we obtain [see Appendices D and E]

u(x, y, z)  

2 2

2
exp

( )
1

ix ya
e

w ziz
(20.33)

where

= 
2 4

0

2

w
(20.34)

w(z) = w
0

2

1
z

(20.35)

= kz + 
k

R z
x y

2
2 2

( )
( ) (20.36)

R(z) = z
w

z
1

2
0
4

2 2

1

3
2
2

4

6
5
5

 = z + 
z

(20.37)

Thus, the intensity distribution is given by

I (x, y, z) = 

2 2
0

22

2( )
exp

( )
1

I x y

w zz
(20.38)

which show that the transverse intensity distribution remains

Gaussian with the beam-width increasing with z which essen-

tially implies diffraction divergence. In Sec. 18.4, we had

shown that

(i) For a given value of , the diffraction divergence

increases as we decrease the value of the initial spot

size (see Fig. 18.13).

(ii) For a given value of w0, the diffraction divergence

decreases with decrease in the value of  (see Fig. 18.14).

Now, for a spherical wave diverging from the origin, the

field distribution is given by

u ~ 
1

r
e

ik r (20.39)

On the plane z = R (see Fig. 20.9)

r = 2 2 2
x y R = R

2 2

2
1

x y

R

 R
x y

R

2 2

2

where we have assumed | x |,| y | << R. Thus on the plane

z = R, the phase distribution (corresponding to a spherical

wave of radius R) would be given by

ei k r  ei k R e
i k

R
x y

2

2 2
( )

(20.40)

O
z

z R=

Fig. 20.9 A spherical wave diverging from the point O.
The dashed curve represents a section of the
spherical wavefront at a distance R from the
source.
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From the above equation it follows that a phase variation of

the type

exp ( )i
k

R
x y

2
2 21

32
4
65

(on the x-y plane) represents a diverging spherical wave of

radius R. If we now compare the above expression with Eqs.

(20.36) and (20.37) we can say that the radius of curvature of

the phase front of the propagating Gaussian beam is given

by Eq. (20.37). Thus as the beam propagates, the phase front

which was plane at z = 0 becomes curved. In Sec. 27.5, we

will use the above analysis to determine conditions for a

Gaussian beam to resonate between two spherical mirrors.

Here, as a simple application, we will consider a resonator

configuration consisting of a plane mirror and a spherical mirror

separated by a distance d (see Fig. 20.10); indeed such a

configuration is used to produce a single transverse mode

oscillation in a ruby laser. On the plane z = 0, the phase front

is plane and for the beam to resonate, the phase front must

have a radius of curvature equal to the radius of curvature of

the mirror:

R = d 

2 4
0

2 2
1

w

d

2
0 = 1

d R
w

d
(20.41)

Fig. 20.10 A simple resonator consisting of a plane
mirror and a concave mirror of radius R.

Example 20.3 We assume   0.6328 m, d  50 cm and

R  100 cm; which are typical parameters for a He-Ne laser. Simple

calculations will show that w0  0.32 mm. If we increase R to 200

cm, we will get w0  0.38 mm. Obviously R should be greater than d.

In Sec. 27.5, we will consider the more general case of a

Gaussian beam resonating between two mirrors of radii of cur-

vatures R
1
 and R

2
 as shown in Fig. 27.26.

20.6 DIFFRACTION AT A

STRAIGHT EDGE

Before we discuss the straight edge diffraction pattern, we

introduce the Fresnel integrals.

Fresnel Integrals: Fresnel integrals are defined by the fol-

lowing equations:

C( ) = cos
1

2

2

0

u du
%
'

(
0s (20.42)

and

S( ) = sin
1

2

2

0

u du
%
'

(
0s (20.43)

Since the integrands are even functions of , the Fresnel

integrals C( ) and S( ) are odd functions of :

C(� ) = � C ( ) and S(� ) = � S( ) (20.44)

Further, since

e d xxs
2

= (20.45)

we have

e d ui u
2
2/s = 

i /2
 = 2 4

e
i / = (1 + i) (20.46)

Now,

exp i
u

d u

2

2

1

3
2
2

4

6
5
5s

= 2
1

2

1

2

2 2

00

cos sinu d u i u d u
%
'

(
0

%
'

(
0

1

3

2
2

4

6

5
5ss

= 2 [C ( ) + i S ( )]

Thus, using Eq. (20.46), we get C ( ) = 
1

2
 = S( ).

To summarize, the Fresnel integrals have the following

important properties:

C( ) = S( ) = 
1

2
; C(0) = S(0) = 0 (20.47)

C(� ) = � C( ) and S(� ) = �S ( ) (20.48)

The values of the Fresnel integrals for typical values of  are

tabulated in Table 20.1.

LO 4



OpticsPHFIH
u

Table 20.1 Table of Fresnel Integrals*

C d S d( ) cos ; ( ) sin= =
2 2

2

0

2

0

v v v v
%
'

(
0

%
'

(
0s s

g ( ) �( ) g ( ) �( )

0.0 0.00000 0.00000 2.6 0.38894 0.54999

0.2 0.19992 0.00419 2.8 0.46749 0.39153

0.4 0.39748 0.03336 3.0 0.60572 0.49631

0.6 0.58110 0.11054 3.2 0.46632 0.59335

0.8 0.72284 0.24934 3.4 0.43849 0.42965

1.0 0.77989 0.43826 3.6 0.58795 0.49231

1.2 0.71544 0.62340 3.8 0.44809 0.56562

1.4 0.54310 0.71353 4.0 0.49843 0.42052

1.6 0.36546 0.63889 4.2 0.54172 0.56320

1.8 0.33363 0.45094 4.4 0.43833 0.46227

2.0 0.48825 0.34342 4.6 0.56724 0.51619

2.2 0.63629 0.45570 4.8 0.43380 0.49675

2.4 0.55496 0.61969 5.0 0.56363 0.49919

0.5 0.5

Figure 20.11 gives a parametric representation of the

Fresnel integrals and is known as the Cornu�s spiral. The

horizontal and the vertical axes represent C( ) and S( ),

respectively and the numbers written on the spiral are the

values of . For example, as can be seen from the figure, for

 = 1.0, C( )  0.77989 and S( )  0.43826.

0.8

0.4

–0.4

–0.8

S( )t

C( )t

A

M

Q
C

1.5
2.5

2.0

–2.0

–0.4 0–0.8–1.2 1.20.80.4

–1.0

–1.5

–2.5

C¢

q

1.0

P1

P3

P2

P

Fig. 20.11 The Cornu�s spiral which is a parametric plot of
C( ) and S( ).

We will now use Eq. (20.23) to calculate the diffraction

pattern of a plane wave incident normally on a straight edge

(see Fig. 20.12). Obviously, there will be no variation of in-

tensity along the x-axis and, therefore, without any loss of

generality, we may assume the coordinates of an arbitrary

point P (on the screen) to be (0, y), where the origin has been

assumed to be on the edge of the geometrical shadow. If the

x and y coordinates of an arbitrary point M on the plane of

the straight edge are denoted by  and , then

r = MP = [ 2 + (  � y)2 + d2]1/2

= d
y

d
1

2 2

2

1 2
1

3
2
2

4

6
5
5

( )
/

 d
y

d

2 2

2

( )
(20.49)
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y
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L¢
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P y(0, )

x

S
creen

S
traight edge

Fig. 20.12 Diffraction of a plane wave incident normally
on a straight edge.

where d is the distance between the straight edge and the

screen. On substituting the expression for r from Eq. (20.49)

in Eq. (20.21), we obtain

u(P) 
7
8
u

9u

@
A
u

Bu

1

3
2
2

4

6
5
5ssi A

d
d d ik d

y

d
exp

( )
2 2

0
2

(20.50)

where, in the denominator of the integrand, we have replaced

r by its minimum value**, d. In order to express the above

expression in terms of the Fresnel integrals, we introduce two

dimensionless variables u and v such that

* Table adapted from Ref. 20.5; a more detailed table (with greater accuracy) has been given there.

** This is justified because in carrying out the integration, only a small region around the point r = d contributes; the contribution due
to far-off points is small because of the rapid oscillations of the exponential term in the integrand (see also footnote in Sec. 19.2).
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and

1

2 2

1

2 2

2 2 2

2 2 2

u
k

d d

k

d
y

d
y

= =

= =v ( ) ( )

@

A
u

B
u

Thus we may assume u and v to be defined by the following

equations:

and  

u
d

d
y

=

=

2

2
v ( )

@

A
uu

B
u
u

(20.51)

With these substitutions, Eq. (20.51) becomes

u (P) = 
%

'&
(

0)si
u

i u
du

2 20

2

exp  exp
i

d

v

v
v

2

2
0

%

'&
(

0)s
(20.52)

where

v0 = 
2

d
y (20.53)

and

u0 = A eikd

represents the field at the point P in the absence of the

straight edge. In order to calculate the intensity distribution

we use the Fresnel integrals; thus,

exp i
u

du
2

2

1

3
2
2

4

6
5
5s = 2 [C( ) + S( )]

= (1 + i) (20.54)

Further,

0

0

2
2 2

0 0

exp = cos cos
2 2 2

i
d d d

v

v

v
v v v v v

%
'

(
0

%
'

(
0

1

3

2
2

4

6

5
5s si d dsin sin

2 2
2

0

2

0

v v v v

v
0

= 
1

2

1

20 0
1
32

4
65

1
32

4
65

C i S( ) ( )v v (20.55)

Substituting in Eq. (20.52), we obtain

u(P) = 
7
8
9

@
A
B

7
8
9

@
A
B

1

32
4

65
i

u i C i S
2

1
1

2

1

20 0 0( ) ( ) ( )v v

= 
1

2

1

2

1

20 0 0
7
8
9

@
A
B

7
8
9

@
A
B

1

32
4

65
i

u C i S( ) ( )v v (20.56)

It is of interest to note that a large value of y corresponds to a

point which is very far above the edge of the geometrical

shadow. For such a point v0 would tend to �  [see Eq. (20.53)]

and we would obtain

u(P) = 
1

2

1

2

1

2

1

2

1

20
%
'

(
0

%
'

(
0

1
32

4
65

i
u i

= u
0

(20.57)

Thus, as expected, the amplitude at such a point is the same

as that in the absence of the edge. This also justifies

the value of the constant given by Eq. (19.3). On the other

hand, when the point P is deep inside the geometrical

shadow (i.e., when y  �  and hence v
0
  ), we obtain

C(v0) = S(v0)  1
2

giving u(P)  0

as it should indeed be. The intensity distribution correspond-

ing to Eq. (20.56) would be given by

I(P) = 
2 2

0 0 0
1 1 1

( ) ( )
2 2 2

I C Sv v (20.58)

If the point P is such that it lies on the edge of the geometri-

cal shadow (i.e., on the line LL  (see Fig. 20.12) then y = 0 and

hence v0 = 0; thus

I(P) = 
1

2

1

4

1

40I
1
32

4
65
 = 

1

4 0I (20.59)

where we have used the fact that C(0) = S(0) = 0. Thus the

intensity on the edge of the geometrical shadow is 1/4th of

the intensity that would have been in the absence of the

edge. In order to determine the field at an arbitrary point P,

we may use Table 20.1 to calculate the RHS of Eq. (20.58). The

intensity variation is plotted in Fig. 20.16 from which one can

make the following observations:

(i) Figure 20.13 represents a universal curve, i.e., for given

values of  and d, one simply has to calculate v0 as the

observation point moves along the y-axis. For example,

the first three maxima occur at

and

v

v

v

0 0

0 0

0 0

122 137

2 34 120

308 115

@

A
u
u

B
u
u

. .

. .

. .

with

with

with

I I

I I

I I

 maxima

Similarly, the first three minima occur at

and

v

v

v

0 0

0 0

0 0

187 0778

2 74 0843

339 0872

@

A
u
u

B
u
u

. .

. .

. .

with

with

with

I I

I I

I I

 minima
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Thus, as we go inside the geometrical shadow, the

intensity modulation decreases (see Fig. 20.13).

–2 2 4 6 8

I 
I/
0

1

2

2

λd
y

Fig. 20.13 The intensity variation corresponding to the
straight edge diffraction pattern.

(ii) For a given experimental set-up, the determination of

the positions of maxima and minima is quite straight-

forward. For example, for  = 6  10�5 cm and d = 120 cm

y = �
d

2 0v  = �0.06 v0 cm

Thus, the first three maxima will occur at

y  0.732, 1.404 and 1.848 mm

respectively. Similarly, the first three minima will

occur at

y  1.122, 1.644 and 2.034 mm

respectively.

(iii) As we go inside the geometrical shadow the intensity

monotonically decreases to zero.

(iv) One could have also studied the intensity variation

directly from the Cornu�s spiral (see Fig. 20.11). This is

due to the fact that associated with the Cornu�s spiral,

we have the following interesting property: let us write

[C( 2) � C( 1)] + i[S( 2) � S( 1)]  A ei (20.60)

Thus,

[C(
2
) � C(

1
)] = A cos

and

[S( 2) � S( 1)] = A sin

Let the points P and Q on the Cornu�s spiral (see

Fig. 20.11) correspond to  = 1 and  = 2 respectively.

It is obvious that

PM = [C( 2) � C( 1)] = A cos

and

QM = [S(
2
) � S(

1
)] = A sin

Thus the length of the line joining the points P and Q

will be A and the angle that the line makes with the

abscissa will be . In order to use the Cornu's spiral we

rewrite Eq. (20.56):

u = 
1

2

1

2

1

20 0 0
7
8
9

@
A
B

7
8
9

@
A
B

1
32

4
65

i
u C i S( ) ( )v v

Let us first consider a point of observation Q in the

geometrical shadow region. Consequently v0 will be

positive. Let the point Q on the spiral (see Fig. 20.11)

correspond to  = v
0
. Since the point C in the curve

corresponds to  = , we have

1

2

1

20 0
7
8
9

@
A
B

7
8
9

@
A
B

C i S( ) ( )v v  = (QC) ei

where  is the angle that QC makes with the abscissa

[see Eq. (20.60)]. Thus,

u(Q) = 
1

2 0

i
QC e u

i
( )

or

I(Q) = 
1

2

2
0( )QC I (20.61)

We can easily see that as the point of observation

moves into the shadow region, the value of v0 in-

creases. Thus the point Q keeps on moving on the

spiral towards the point C and the length QC decreases

uniformly. Hence in the shadow region the intensity

uniformly decreases to zero (see Figs. 20.13 and 20.14).

As we move away from the edge of the geometrical

shadow to the illuminated region, the value of v0 be-

comes negative and the corresponding point P (on the

Cornu�s spiral) lies in the third quadrant as shown in

Fig. 20.11. The intensity is again given by

I(P) = 
1

2

2
0( )PC I

As the value of v0 becomes more and more negative,

the length PC keeps on increasing till the point P

reaches P1 which corresponds to v0  �1.22. The inten-

sity at this point is maximum and the length P1C  1.66.

Thus, the corresponding intensity is

I(P1)  
1

2
166 137

2
0 0( . ) .I I (20.62)

As the value of v0 becomes further negative the length

PC starts decreasing till it reaches the point P
2
. Thus,
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the intensity keeps on oscillating with decreasing am-

plitude about I
0
 as we move more and more into the

illuminated region (see Figs. 20.13 and 20.14).

–2 0 2 4

2

ld
y

Fig. 20.14 Computer generated intensity distribution corre-
sponding to the straight edge diffraction pattern

20.7 DIFFRACTION OF A

PLANE WAVE BY A LONG

NARROW SLIT AND

TRANSITION TO THE

FRAUNHOFER REGION

We next consider a plane wave incident normally on a long

narrow slit (of width b) as shown in Fig. 20.15. We wish to

calculate the intensity distribution at an arbitrary point P on

the screen SS . The lines LL  and MM  represent the edges of

the geometrical shadow. Once again, there will be no varia-

tion of the intensity along the x-axis and we may (without

any loss of generality) assume the coordinates of the point P

to be (0, y). The field at the point P will again be given by

Eq. (20.50) except that the limits of the -integral will be �b/2

and +b/2 (we are assuming the origin to be at the centre of

the slit)

u(P) = s
i A

d
d  d ik d

y

d
b

b

exp
( )

/

/ 7
8
u

9u

@
A
u

Bu

%

'
&

(

0
)s

2 2

2

2

2

b

M

h

x

S¢
M¢

L¢

L

S y

M

x

Screen

P y(0, )

Plane wave

Fig. 20.15 Diffraction of a plane wave incident normally
on a long narrow slit.

Carrying out manipulations similar to that in the previous

section, we obtain

u(P) = 
%

'&
(

0)si
u

i u
du

2 20

2

exp exp

( )

( )
i

d
v

v

v v

v v 2

2
2 1

2 1 %

'&
(

0)s
where

u = 
2

d
, v = 

2

d
y( )

and

v
1

= 
2

2d

b
, v

2
 = 

2

d
y

Using Eq. (20.46) we obtain

u(P) = �
i

u i
2

10 ( )

cos sin

( )

2 2
2 2

0

2 1

v v v

v v

%
'

(
0

%
'

(
0

1
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4
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7
8
u

9u
s i d

%
'

(
0

%
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(
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1
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2 2
2 2

0

2 1

v v v

v v

i d

LO 5



OpticsPHFIR
u

or

u(P) = 
( )1

2 0

i
u [{C (v2 + v1) � C (v2 � v1)}

+ i {S (v2 + v1) � S(v2 � v1)}] (20.63)

where we have used Eq. (20.44). Thus, the intensity distribu-

tion would be

I(P) = 
1

2 0I [{C (v
2
 + v

1
) � C (v

2
 � v

1
)}2

+ {S (v2 + v1) � S (v2 � v1)}
2
] (20.64)

For a given system , d and b are known which determine v
1
;

e.g., for  = 5  10�5 cm, d = 100 cm and b = 0.1 cm, one ob-

tains v1 = 2.0; further, as y varies on the screen, the quantity

v2 also changes. In Figs. 20.16, 20.17, 20.18 and 20.19 we have

plotted the intensity variation as a function of v2 for v1 = 0.5,

1.0, 1.5 and 5.0, respectively. One can see that for a large

value of v
1
 (i.e., when the slit width is very large) the diffrac-

tion pattern is similar to that produced by two straight edges.

This is indeed what we should have also expected. On the

other hand, for small values of v1 (i.e., when the observation

screen is far away from the aperture) the diffraction pattern is

essentially of the Fraunhofer type. In order to show this ex-

plicitly we notice that

v
2

= 
2 2

d
y

d y

d

d
=

2
(20.65)

–6 –4 –2 2 4 6

0.5
v1 = 0.5

v2

I

I0

Fig. 20.16 The intensity distribution produced by diffraction
of a plane wave by a long narrow slit correspond-
ing to vI = 0.5. The dashed curves correspond to
Eq. (20.66).

–3 –2 –1 1 2 3

1

2

v1 = 1.0

v2

I

I0

Fig. 20.17 The intensity distribution produced by diffrac-
tion of a plane wave by a long narrow slit
corresponding to vI = 1.0. The dashed curves cor-
respond to Eq. (20.66).
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v1 = 1.5

–4 –3 –2 –1 1 2 3 4
v2

I

I0

Fig. 20.18 The intensity distribution produced by diffraction
of a plane wave by a long narrow slit correspond-
ing to vI = 1.5. The dashed curves correspond to
Eq. (20.66).
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v1 = 5.0

–8 –6 –4 –2 2 4 6 8
v2

I

I0

Fig. 20.19 The intensity distribution produced by diffraction
of a plane wave by a long narrow slit correspond-
ing to v

I
 = 5.0.
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where  represents the angle of diffraction (see Fig. 20.20).

Clearly, in the Fraunhofer region since d is very large, the

value of v2 will also be very large and thus we must look for

expressions of the Fresnel integrals in the limit of v  .

Now, we may write

q

d

y

Fig. 20.20 In the Fraunhofer region, d is very large.

C(v) = cos
2

2

0

v v

v

ds

= cos cos
2 2

2 2

0

v v v v

v

d dss

= 
1

2

1

2

2%
'

(
0s v

v v v

v

cos d

= 1

2

1

2

1

2

2

2

2%
'

(
0

%
'

(
0sv

v
v

v v

v
v

sin sin d

1

2

1

2
2%

'
(
0v

vsin

where we have neglected terms which would be of order

1/v3. Similarly,

S(v) = 
1

2

1

2
2%

'
(
0v

vcos

Since v
2
 is large and v

1
 is small, we have

C(v
2
 + v

1
) �C(v

2
 � v

1
)  

1

2

1

22
2 1

21

3
2

4

6
5v

v vsin ( )

� 
1

2

1

22
2 1

21

3
2

4

6
5v

v vsin ( )

2

22
2
2

1
2

1 2
v

v v v vcos ( ) sin

Similarly,

S(v2 + v1) �S(v2 � v1)  
2

22
2
2

1
2

1 2
v

v v v vsin ( ) sin ( )

Thus, in the Fraunhofer limit, Eq. (20.64) becomes

I(P) = 
1

2

4
0 2

2
2

2
1 2I

v
v vsin ( )

1

3
2

4

6
5

= I00 
sin

2

2
(20.66)

where

I
00

= 2 I
0
 v2

1

and

=  v
1
v

2
 = 

d
b y

b
(20.67)

and

y

d
(20.68)

represents the diffraction angle. Equation (20.66) shows that

the intensity distribution is indeed of the Fraunhofer type

(see Sec. 18.2). In Figs. 20.16 � 20.19 the dashed curves cor-

respond to Eq. (20.66) and one can see that the intensity

distribution is almost of the Fraunhofer type for  v
1
  0.5.

Summary

u The underlying principle in the theory of diffraction is the

Huygens�Fresnel principle according to which: Each point

on a wavefront is a source of secondary disturbance and the

secondary wavelets emanating from different points mutually

interfere.
u For a plane wave incident normally on a circular aperture of

radius a, the intensity variation on an axial point P is given by

I = I
0
 sin2 pπ

2

where

p  
a

d

2

λ

 is the wave length and d is the distance of the point P from

the center of the circular aperture. The quantity p is known
as the Fresnel number of the aperture. When p = 1,3,5,7, �
we have maximum intensity and the circular aperture will
contain (with respect to the point P) odd number of Fresnel
half period zones and when p = 2,4,6,8 � we have minimum
intensity and the circular aperture will contain even number
of half-period zones.

u If instead of the circular aperture we have opaque disc, then
we would always obtain a bright spot on the axis behind the
disc; this is called the �Poisson spot�.
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u For a Gaussian beam (whose phase front is plane at z = 0),

the variation of the spot size is given by

w(z)  w
0 1

2 2

2
0
4

1
2

+
1

3
2
2

4

6
5
5

λ

π

z

w

where w0 is the spot size at z = 0. For large values of z:

w(z)  
λ
π

z

w0

which shows that the width increases linearly with z. We

define the diffraction angle as

tan = 
w z

z

( )
  

λ
πw0

showing that the rate of increase in width is proportional to

the wavelength and inversely proportional to the initial width
of the beam; this is characteristic of diffraction. The corre-

sponding radius of curvature of the wavefront is given by

R(z)  z 1
2

0
4

2 2
+

1
3
2
2

4
6
5
5

π

λ

w

z

u For a plane wave incident normally on a straight edge, the

intensity variation on a screen (at a distance d from the

straight edge) is given by

I = 
1

2
I
0

1

2

1

20

2

0

2

−789
@AB

+ −789
@AB

1

3
2

4

6
5C S( ) ( )v v

where I0 is the intensity in the absence of the straight edge,

v
0

= �
2

λd
y

y being the distance from the edge of the geometrical shadow
and

C(x) = cos 1
2

2

0
πu du

x

R Ws
and S(x) = sin 1

2
2

0
πu du

x

R Ws
are known as Fresnel integrals. The intensity monotonically

goes to zero as we go deep inside the geometrical shadow. As
we move away from the edge of the geometrical shadow to
the illuminated region, one obtains maxima at v0  �1.22
(I  1.37 I0), � 2.34 (I  1.20 I0), � 3.08 (I  1.15 I0) � and
minima at v0  �1.87 (I  0.78 I0), � 2.74 (I  0.84 I0), � 3.39
(I  0.87 I0), ...

u For a plane wave incident normally on a long narrow slit of
width b, the intensity variation on a screen (at a distance d

from the slit) is given by

I = 
1

2
 I
0
 [{C(v

2
 + v

1
) � C(v

2
 � v

1
)}2

+ {S(v
2
 + v

1
) � S(v

2
 � v

1
)}2]

where

v
1

= 2

d
 b

2
; v

2
 = 

2

λd
 y

and y is the distance from the midpoint of the edges of the
geometrical shadow. As v1 becomes large, we obtain the in-
tensity distribution corresponding to two straight edges and

for v1  0 we get the Fraunhofer diffraction pattern.

Problems

20.1 Consider a plane wave of wavelength 6  10�5 cm incident

normally on a circular aperture of radius 0.01 cm. Calculate
the positions of the brightest and the darkest points on the
axis.

[Ans: d  1.67 cm, 0.56 cm, 0.33 cm, � (Maxima);
d  0.83 cm, 0.42 cm, �(Minima)]

20.2 What would happen if the circular aperture in Problem 20.1
is replaced by a circular disc of the same radius?

20.3 (a) A plane wave (  = 6  10�5 cm) is incident normally
on a circular aperture of radius a.

(i) Assume a = 1 mm. Calculate the values of z (on the
axis) for which maximum intensity will occur. Plot the
intensity as a function of z and interpret physically.

(ii) Assume z = 50 cm. Calculate the values of a for which
minimum intensity will occur on the axial point. Plot
the intensity variation as a function of a and interpret
physically.

(b) Repeat the calculations for  = 5  10�5 cm and dis-
cuss chromatic aberration of a zone plate.

[Ans: (i) (a) z  166.7 cm, 55.6 cm, 33.3 cm,� (maxima);
(b) Minimum intensity will occur when

a  0.0775 cm, 0.110 cm, 0.134 cm, �]

20.4 Consider a circular aperture of diameter 2 mm illuminated
by a plane wave. The most intense point on the axis is at a
distance of 200 cm from the aperture. Calculate the wave-
length.

[Ans. 5  10�5 cm]

20.5 If a zone-plate has to have a principle focal length
of 50 cm corresponding to  = 6  10�5 cm, obtain an ex-
pression for the radii of different zones. What would be its

principle focal length for  = 5  10�5 cm?

[( . )0 3n  mm, 60 cm]

20.6 In a zone-plate, the second, fourth, sixth�zones are black-
ened; what would happen if instead the 1st, 3rd, 5th, etc.,
zones were blackened?

20.7 (a) A plane wave is incident normally on a straight edge
(see Fig. 20.21). Show that the field at an arbitrary

point P is given by

u(P) = 
1

2 0
− i

u  
1

2

1

20 0− + −C i S( ) ( )v v

where v
0

= −
2

λd
y .
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O

P

Q

R

z

y

x

d

Straight
edge

Fig. 20.21

(b) Assume 
0
 = 5000 Å and d = 100 cm. Using Table 20.1,

write approximately the values of I/I0 at the points O, P
(y = 0.5 mm), Q (y = 1 mm) and R (y = �1 mm) where O

is at the edge of the geometrical shadow.

[Ans: (b) I/I0  1.26, 0.24, 0.01]

20.8 Consider a straight edge being illuminated by a parallel
beam of light with  = 6  10�5 cm. Calculate the positions
of the first two maxima and minima on a screen at a dis-
tance of 50 cm from the edge.

[Ans: the first two maxima occur at y  0.0473 cm and
0.0906 cm. The first two minima occur

at y  0.0724 cm and 0.1061 cm.]

20.9 In a straight edge diffraction pattern, one observes that the
most intense maximum occurs at a distance of 1 mm from
the edge of the geometrical shadow. Calculate the wave-
length of light, if the distance between the screen and the
straight edge is 300 cm.

[Ans.  4480 Å]

20.10 In a straight edge diffraction pattern, if the wavelength of
the light used is 6000 Å and if the distance between the
screen and the straight edge is 100 cm, calculate the dis-
tance between the most intense maximum and the next
maximum. Find approximately the distance in centimeters
inside the geometrical shadow where I/I

0 = 0.1.
[Ans: y  0.027 cm]

20.11 Consider a plane wave falling normally on a narrow slit of
width 0.5 mm. If the wavelength of light is 6  10�5 cm,
calculate the distance between the slit and the screen so
that the value of v

1
 would be 0.5, 1.0, 1.5 and 5.0 (see

Figs. 20.16�20.19). Discuss the transition to the
Fraunhofer region.

20.12 Consider the Fresnel diffraction pattern produced by a
plane wave incident normally on a slit of width b.  Assume

 = 5  10�5 cm, d = 100 cm. Using Table 20.1, approxi-
mately calculate  the intensity values (for b = 0.1 cm) at y
= 0, 0.05 cm, 0.1 cm. Repeat the analysis for b = 5 cm.
[Ans: At y = 0, I/I

0  1.60; at y = 0.05 cm, I/I0  0.356;
at y = 0.01 cm, I/I

0
  0.01685].

20.13 (a) The output of a He�Ne laser (  = 6328 Å) can be
assumed to be Gaussian with plane phase front. For
w0 = 1 mm and w0 = 0.2 mm, calculate the beam diam-
eter at z = 20 m.

(b) Repeat the calculation for  = 5000 Å and interpret
the results physically.

[Ans: (a) 0.83 cm and 4.0 cm]

20.14 A Gaussian beam is coming out of a laser. Assume  =
6000 Å and that at z = 0, the beam width is 1 mm and the
phase front is plane. After traversing 10 m through vacuum
what will be (a) the beam width and (b) the radius of cur-
vature of the phase front.

[Ans: 2w  0.77 cm; R(z)  1017 cm]

20.15 A plane wave of intensity I
0 is incident normally on a cir-

cular aperture as shown in Fig. 20.22. What will be the
intensity on the axial point P? [Ans: 3I0]

[Hint: You may use Eq. (20.27)]

b
P

1
3

b + l

Fig. 20.22

20.16 Show that a phase variation of the type

exp ikz
i k x y

R z
+

+1

3
2

4

6
5

( )

( )

2 2

2

represents a diverging spherical wave of radius R.

20.17 The output of a semiconductor laser can be approximately

described by a Gaussian function with two different widths

along the transverse (w
T
) and lateral (w

L
) directions as

(x, y) = A
x

w

y

wL T

exp − −
%

'&
(

0)
2

2

2

2

where x and y represent axes parallel and perpendicular to

the junction plane. Typically w
T
  0.5 m and w

L
 = 2 m.

Discuss the far field of this beam (see Fig. 20.23).

x

y

Fig. 20.23
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A photograph represents a two-dimensional recording of a
three-dimensional scene. What is recorded is the intensity
distribution that prevailed at the plane of the photograph
when it was exposed. The light sensitive medium is sensitive

The electron microscope was to produce the interference figure between the object beam and

the coherent background, that is to say the non-diffracted part of the illuminating beam. This

interference pattern I called a hologram, from the Greek word holos � the whole, because

it contained the whole information. The hologram was then reconstructed with light, in an

optical system which corrected the aberrations of the electron optics.

�Dennis Gabor in his Nobel lecture** December 11, 1971

ryvyq�e�r�B

Chapter
Twenty
One

Important Milestones

1948 Dennis Gabor discovered the principle of holography.

1960 The first successful operation of a laser device by Theodore Maiman.

1962 Off-axis technique of holography by Leith and Upatnieks.

1962 Denisyuk suggested the idea of three-dimensional holograms based on thick photoemulsion layers. His holograms

can be reconstructed in ordinary sun light. These holograms are called Lippmann � Bragg holograms.

1964 Leith and Upatnieks pointed out that a multi-color image can be produced by a hologram recorded with

three suitably chosen wavelengths.

1969 Benton invented �Rainbow Holography� for display of holograms in white light. This was a vital step to

make holography suitable for display applications.

only to the intensity variations and hence while recording a
photograph, the phase distribution which prevailed at the
plane of the photograph is lost. Since only the intensity pat-
tern has been recorded, the three-dimensional character
(e.g., parallax) of the object scene is lost. Thus, one cannot
change the perspective of the image in the photograph by

* A portion of this chapter is based on the unpublished lecture notes of Professor K. Thyagarajan.

** Dennis Gabor received the 1971 Nobel Prize in Physics for discovering the principles of holography; the original paper of Gabor

appeared in 1948 [see Ref. 21.1]. Gabor�s Nobel lecture entitled Holography, 1948�1971 is non-mathematical and full of beautiful

illustrations; it is reprinted in Ref. 22.2

LO 1: explain the phenomenon of holography.
LO 2: describe the requirements needed for making a hologram.
LO 3: apply holography in diverse fields.
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viewing it from a different angle or one cannot refocus any
unfocussed part of the image in the photograph. Holography
is a method invented by Dennis Gabor in 1947, in which one
not only records the amplitude but also the phase of the
light wave; this is done by using interferometric techniques.
Because of this, the image produced by the technique of
holography has a true three-dimensional form. Thus, as with
the object, one can change one�s position and view a differ-
ent perspective of the image or one can focus at different
distances. The capability to produce images as true as the
object itself is what is responsible for the wide popularity
gained by holography.

The basic technique in holography is the following: In the
recording of the hologram, one superimposes on the object
wave another wave called the reference wave and the photo-
graphic plate is made to record the resulting interference
pattern (see Fig. 21.1). The reference wave is usually a plane

cess leads, in general, to a virtual and a real image of the
object scene. The virtual image has all the characteristics of
the object like parallax, etc. Thus, one can move the position
of the eye and look behind the objects or one can focus at
different distances. The real image can be photographed
without the aid of lenses just by placing a light sensitive
medium at the position where the real image is formed.
Figures 21.3(a), (b) and (c) represent the object, its hologram
and the reconstructed image, respectively.

PIFP fe�sg2 �riy��

If the object is a point scatterer, then the object wave would

just be A
r

 cos (kr � t + ) where r represents the distance
of the point of observation from the point scatterer and A

represents a constant; k = 2 / . Any general object can be
thought of as being made up of a large number of points and
the composite wave reflected by the object would be vectorial
sum of these. The fundamental problem in holography is the
recording of this object wave, in particular, the phase distri-
bution associated with it.

Let us consider the recording process. Let

O(x, y) = a(x, y) cos [ (x, y) � t] (21.1)

represents the object wave (which, as mentioned earlier, is
due to the superposition of waves from point scatterers on
the object) in the plane of the photographic plate which is
assumed to be z = 0 (see Fig. 21.1). We consider a plane ref-
erence wave and assume, for simplicity, that it is pro-pagating
in the x�z-plane inclined at an angle  with the
z-direction (see Fig. 21.1). Thus, the field associated with this
plane wave would be given by

r(x, y, z) =  A cos [k . r � t]

= A cos (kx sin  + kz cos  � t) (21.2)

If r(x, y) represents the field at the plane z = 0 due to this
reference wave, then one can see that

r(x, y) = A cos [kx sin  � t]

=  A cos [2 x � t] (21.3)

where  = sin /  is the spatial frequency (see Sec. 19.9). The
above equation represents the field due to a plane wave in-
clined at an angle q with the z-axis and as can be seen the
phase varies linearly with x. Notice that there is no y-depen-
dence because the plane wave has been assumed to have its
propagation vector in the x�z-plane. Thus, the total field at
the photographic plate (which is coincident with the plane
z = 0) would be given by

z
y

x

Photographic
plate

Object

Reference
wave

MIrror

Object wave

Fig. 21.1 Recording of a hologram.

wave. This recorded interference pattern forms the hologram
and (as will be shown) contains information not only about
the amplitude but also about the phase of the object wave.
Unlike a photograph, a hologram has little resemblance with
the object; in fact, information about the object is coded into
the hologram. To view the image, we again illuminate the
hologram with another wave, called the reconstruction wave

(which in most cases is identical to the reference wave used
during the formation of the hologram); this process is termed
as reconstruction  (see Fig. 21.2). The reconstruction pro-

Real image

Observer

Hologram

Reconstruction
wave

Virtual
image

Fig. 21.2 Reconstruction process.

LO 1



Holography PIFQ
u

u(x, y, t) = a(x, y) cos [ (x, y) � t] + A cos [2 x � t]

(21.4)

The photographic plate responds only to the intensity which
would be proportional to the time average of [u(x, y, t)]2.
Thus, the intensity pattern recorded by the photographic
plate would be

I(x, y) = u2 (x, y, t)

= [a(x, y) cos { (x, y) � t}

+ A cos(2 x � t)] 2 (21.5)

where the angular brackets denote time averaging (see
Sec. 17.3). Thus,

I(x, y) = a2(x, y) cos2 { (x, y) � t}

+ A2 cos2 (2 x � t)

+ 2a(x, y) A cos { (x, y) � t} cos (2 x � t)

(21.6)

Since

cos2 [ (x, y) � t]  = 
1

2
 = cos2 (2 x � t) (21.7)

and

cos [ (x, y)) � t] cos (2 x � t)

= 
1

2
 cos [ (x, y) + 2 x � 2 t]

1

2
 cos [ (x, y) � 2 x]

= 
1

2
 cos [ (x, y) � 2 x] (21.8)

Eq. (21.6) becomes

I (x, y) =
1

2
 a2(x, y) + 

1

2
 A2

+ Aa(x, y) cos [ (x, y) � 2 x] (21.9)

From the above relation, it is obvious that the phase informa-
tion of the object wave, which is contained in (x, y), is
recorded in the intensity pattern.

(a)

(c)

(b)

(d)

Fig. 21.3 (a) An ordinary photograph of an object. (b). The hologram of the object produced by a method simi-
lar to the one as shown in Fig. 21.1, (c) The reconstructed image as seen by an observer, (d) A
magnified view of a small portion of the hologram shown in (b). [Photographs courtesy: Professor R.
S. Sirohi].
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When the photographic plate (which has recorded
the above intensity pattern) is developed, one obtains a ho-
logram [see Figs. 21.3(b) and (d)]. The transmittance of the
hologram, i.e., the ratio of the transmitted field to the incident
field, depends on I(x, y). By a suitable developing process
one can obtain a condition under which the amplitude trans-
mittance would be linearly related to I(x, y). Thus, in such a
case if R(x, y) represents the field of the reconstruction wave
at the hologram plane, then the transmitted field would be
given by

v(x, y) = K R (x, y) I (x, y)

= K 
1

2

1

2

2 2
a x y A R x y( , ) ( , )

1
32

4
65

+ K A a(x, y) R(x, y) cos [ (x, y) � 2 x]
(21.10)

where K is a constant. We consider the case when the recon-
struction wave is identical to the reference wave r(x, y) (see
Fig. 21.2). In such a case we would obtain (omitting the con-
stant K)

v(x, y) =
1

2

1

2

2 2
a x y A( , )

1
32

4
65

 A cos (2 x � t)

+ A2 a(x, y) cos [2 x � t] cos [ (x, y) � 2 x]

=
1

2

1

2

2 2
a x y A( , )

1
32

4
65

 A cos (2 x � t)

+ 1

2
 A2 a(x, y) cos [ (x, y) � t]

+ 1

2
 A2 a(x, y) cos [4 x � (x, y) � t] (21.11)

Equation (21.11) gives the transmitted field in the plane
z = 0. We consider each of the three terms separately. The
first term is nothing but the reconstruction wave itself whose
amplitude is modulated due to the presence of the term a2(x, y).
This part of the total field is traveling in the direction of the
reconstructed wave. The second term is identical (within a
constant term) to the RHS of Eq. (21.1) and hence represents
the original object wave; this gives rise to a virtual image.
Thus, the effect of viewing this wave is the same as viewing
the object itself. The reconstructed object wave is traveling
in the same direction as the original object wave.

To study the last term we first observe that in addition to
the term 4 x, the phase term (x, y) carries a negative sign.
The negative sign represents the fact that the wave has a
curvature opposite to that of the object wave. Thus, if the
object wave is a diverging spherical wave then the last term
represents a converging spherical wave. Thus, in contrast to
the second term, this wave forms a real image of the object
which can be photographed by simply placing a film (see
Fig. 21.2).

To determine the effect of the term 4 x, we consider the
case when the object wave is also a plane wave traveling
along the z-axis. For such a wave (x, y) = 0 and the last term
would represent a plane wave propagating along a direction

 = sin�1 (2 sin ). Thus the effect of the term 4 x is to
rotate the direction of the wave. Hence the last term on the
RHS of Eq. (21.11) represents the conjugate of the object
wave propagating along a direction different from that of the
reconstruction wave and the object wave, which forms a real
image of the object. Since the waves represented by the three
terms are propagating along different directions they
separate after traversing a distance and enable the observer
to view the virtual image without any disturbance.

A very interesting property possessed by holograms is
that even if the hologram is broken up into different frag-
ments, each separate fragment is capable of producing a
complete virtual image of the object.* This property can be
understood from the fact that for a diffusely reflecting ob-
ject, each point of the object illuminates the complete
hologram and consequently each point in the hologram re-
ceives waves from the complete object. But the resolution in
the image decreases as the size of the fragment decreases.
For non-diffusely reflecting objects or for transparencies, one
makes use of an additional diffusing screen through which
the object is illuminated.

Example 21.1 As an explicit example of the formation and

reconstruction of a hologram, we consider the simple case when
both the object wave and the reference wave are plane waves [see
Fig. 21.4(a)]�a plane object wave corresponds to a single object
point lying far away from the hologram. (a) Show that for such a
case, the hologram consists of a series of Young�s interference
fringes having an intensity distribution of the cos2 type. [(see also
Fig. 14.11) (b)]. If we reconstruct the hologram with another plane
wave [see Fig. 21.4(b)], then show that the transmitted light con-
sists of a zero-order plane wave and two first-order plane waves;
the two first-order waves correspond to the primary and conjugate

waves.

* This property of a hologram exists only when the object is a diffuse scatterer such that the wave from each scattering point of the
object reaches all parts of the hologram plate. There are cases where this does not hold good; for example, when a hologram of a
transparency is to be recorded.
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Solution: (a) Consider a plane wave with its propagation vector

lying in the x�z-plane and making an angle 
1
 with the z-axis. For

such a wave, the field is of the form

A
1
 cos [kx sin 

1
 + kz cos 

1
 � t]

If the photographic film is assumed to coincide with the plane z = 0,
then the field distribution on this plane would be given by

A
1
 cos [kx sin 

1
 � t]

Similarly, the field (on the plane of the film) due to a plane wave
making an angle 

2
 with the z-axis, will be given by

A
2
 cos [kx sin 

2
 � t]

The resultant intensity distribution would be proportional to

[A
1
 cos {k x sin 

1
 � t} + A

2
 cos {k x sin 

2
 � t}]2

= 
1

2
A

1

2 + 
1

2
A

2

2 + A
1
 A

2
 cos [k x (sin 

1
 � sin 

2
)]

= 
1

2
2

21 2 1 2
2

1 2( ) cos (sin sin )A A A A
k x

− + −1
32

4
65

2 θ θ

For A
1
 = A

2
, the above expression simplifies to

2
2

2 2
1 2A

k x
cos (sin sin )θ θ−1

32
4

65

showing that the intensity remains constant along lines parallel to
the y-axis with fringe spacing depending on the values of 

1
 and 

2
.

Further, the intensity distribution is of the cos2 type
(cf. Fig. 14.11).
(b) Before we calculate the transmitted field of the hologram, we first
consider a narrow slit of width b being illuminated by a plane wave
(see Fig. 21.5). Consider an element ds at a distance s from the cen-
ter of the slit. Then the amplitude at a far away point P

 
due to this

element would be proportional to sin [k (r � s sin ) � t] ds; here
k = 2 /  and  is defined in Fig. 21.5. Thus the total field in the

direction  would be given by

E  A k r s t ds

b

b

sin [ ( sin ) ]

/

/

− −

−

+

s θ ω

2

2

(21.12)

P

r

s
b

q

Fig. 21.5 A plane wave incident on a narrow slit of
width b.

where A is a constant. The above integral can also be written as

E = A kr t k s

b

b

[sin ( ) cos ( sin )

/

/

−

−

+

s ω θ

2

2

� cos (kr � t) sin (ks sin )] ds

= 2 A sin (kr � t) 
sin sin

sin

kb

k

2
θ

θ

%
'

(
0

where the second integral is zero because the integrand is an odd

function of s. Thus,

E = Ab sin (kr � t) 
sin β
β

(21.13)

where

= 
1

2
 kb sin  = 

π θ
λ

b sin

y

x

z

z = 0

Photographic
plate

(a)

(b)

Reference
wave

Object wave

Reconstruction
wave Hologram

Fig. 21.4 (a) Formation of a hologram, when both the
object wave and the reference wave are
plane waves. (b) Reconstruction of the hologram
with another plane wave.
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which is of the same form as obtained in Sec. 18.2. In the present
case, the hologram has a cos2 s type of variation in transmittance

and hence the transmitted field will be of the form

E = A s

b

b

cos

/

/

2

2

2

α

−

+

s sin [kr � ks (sin  � sin 
i
) � t]ds (21.14)

where 
i
 represents the angle of incidence of the illuminating plane

wave. Thus,

E = 
1

2
1 2

2

2

( cos )

/

/

+

−

+

s α s

b

b

[sin (k r � t) cos {k s (sin  � sin 
i
)}

� cos (k r � t) sin {k s (sin  � sin 
i
)}] ds

= 
1

2
2

2

A kr t ks dsi

b

b

sin ( ) cos { (sin sin )}

/

/

− −

1

3

2
2
2−

+

sω θ θ

+ 
1

2
2

2

cos

/

/

−

+

s
b

b

 {ks (sin  � sin 
i
 + 2 )} ds

+ 
1

2
2

2

2

cos { (sin sin )}

/

/

ks dsi

b

b

θ θ α− −

4

6

5
5
5−

+

s (21.15)

The above integrations can easily be carried out. Thus, for example,

cos

/

/

−

+

s
b

b

2

2

{ks (sin  � sin 
i
 + 2 )}ds

= 

sin (sin sin )

(sin sin )

b
k

k

i

i

2
2

2
2

θ θ α

θ θ α

− +1
32

4
65

− +
(21.16)

which becomes more and more sharply peaked around sin  = sin 
i

� 2  as b  , i.e., as the size of the hologram becomes larger.
Thus, the three integrals in Eq. (21.15) in the limit of a large value
of b give rise to three plane waves propagating along sin  = sin 

i
,

sin  = sin 
i
 � 2  and sin  = sin 

i
 + 2 , which represent the zero-

order and two first order waves.

Example 21.2 Consider the formation of a hologram with a

point object and a plane reference wave [(see Fig. 14.13(a))].
Choose the z-axis to be along the normal from the point source to
the plane of the photograph, assumed to be coincident with the
plane z = 0. For simplicity, assume the reference wave to fall nor-
mally on the photographic plate. Obtain the interference pattern

recorded by the hologram.

Solution: Let the point source be situated at a distance d from

the photographic plate. The field at any point P(x, y, 0) on the pho-
tographic plate, due to waves emanating from the point object

would be given by

O(x, y, z = 0, t) = 
A

r
 cos (k r � t) (21.17)

where r = (x2 + y2 + d2) ½ and A represents a constant. A plane wave

traveling along a direction parallel to the z-axis would be given by

R (x, y, z, t) = B cos (kz � t) (21.18)

Hence, the field due to the reference wave at the plane of the
photographic plate (z = 0) would be

R (x, y, z = 0, t) = B cos t (21.19)

Thus, the total field at the plane of the photographic plate would
be

T(x, y, t) = O(x, y, z = 0, t) + R(x, y, z = 0, t)

= 
A

r
 cos (kr � t) + B cos t (21.20)

The recorded intensity pattern would be

I(x, y) = | T (x, y, t) |2

= 
A

r
kr t B tcos ( ) cos− +ω ω

2

(21.21)

where, as before, angular brackets denote time averaging. Carrying

out the above time averaging, we get

I(x, y) = 
A

r

B AB

r
kr

2

2

2

2 2
+ + cos (21.22)

If we assume that d >> x, y (which is valid in most practical cases),

we can write

r = (x2 + y2 + d 2) ½  d + 
x y

d

2 2

2

+
(21.23)

Thus,

I(x, y) = 
A

d

B AB

r

2

2

2

2 2
+ +  cos ( )kd

k

d
x y+ +

1

3
2

4

6
52

2 2
(21.24)

The resultant fringe pattern is circular and centered at the origin
(see Example 14.7). The hologram thus formed is essentially a zone
plate with the transmittance varying sinusoidally in contrast to the

Fresnel zone plate [see Fig. 14.13(b) and Sec. 20.3].

PIFQ �i��s�iwix��

Since holography is essentially an interference phenomenon,
certain coherence requirements have to be met with. In
Chapter 17, we had introduced the notion of coherence
length. Thus, if stable interference fringes are to be formed
(so that they are recordable), the maximum path difference
between the object wave and the reference wave should not
exceed the coherence length. Further, the spatial coherence

LO 2
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is important so that the waves scattered from different
regions of the object could interfere with the reference beam.

During reconstruction, the reconstructed image depends
both on the wavelength and the position of the reconstruct-
ing source. Hence if the resolution in the reconstructed image
has to be good, the source must not be broad and must be
emitting a narrow band of wavelengths. It may be worthwhile
mentioning here that the reconstruction process has associ-
ated with it aberrations similar to that in the images formed
by lenses. If the reconstruction source is of the same wave-
length and is situated at the same relative position with
respect to the hologram as the reference source, then the re-
constructed image does not suffer from any aberrations.

Another critical requirement in making holograms is stabil-
ity of the recording arrangement. Thus, the film, the object
and any mirrors used in producing the reference beam must be
motionless with respect to one another during exposure. One
more requirement which is not so obvious (but is a necessity)
is the resolution of the film. Two plane waves making angles
+  and �  with the axis, produce an interference pattern with

spacing d = 
2 sin

. Assuming  = 15° and  = 6328 Å (He�Ne
laser), one obtains d = 1.222  10�3 mm; thus the spatial fre-
quency is 818 limes/mm. Thus the photographic plate should
be able to record fringes as close as 0.1222  10�4 mm apart.
This requires special kinds of material which tend to be ex-
ceedingly slow, thus taking the stability requirements even
further. Some of the holographic materials are 649F Kodak or
10E 75 or 8E 75 Agfa�Gaevert films and plates.

PIFR �ywi2e��vsge�syx�2yp
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The principle of holography finds applications in many
diverse fields.* The ability to record information about the
depth finds application in studying transient microscopic
events. Thus, if one has to study some transient phenom-
enon which occurs in a certain volume, then using ordinary
microscopic techniques it becomes difficult to first locate the
position and make observation. If a hologram is recorded of
the scene, then the event gets frozen into the hologram and
hence one can focus through the depth of the reconstructed
image and study the phenomenon at leisure.

One of the most promising applications of holography lies
in the field of interferometry. The ability of the holographic
process to release the object wave when reconstructed with

a reconstruction wave allows us to perform interference
between different waves which exist at different times. Thus,
in the technique called double exposure holographic

interferometry, the photographic plate is first partially
exposed to the object wave and the reference wave. Then,
the object is stressed and the photographic plate is again
exposed along with the same reference wave. The
photographic plate after development forms the hologram.
When this hologram is illuminated with a reconstruction
wave, then two object waves emerge from the hologram; one
of them corresponds to the unstressed object and the other
to the stressed object. Since the object waves themselves
have been reconstructed, they interfere and produce
interference fringes. These interference fringes are
characteristic of the strain suffered by the body. A
quantitative study of the fringe pattern produced in the body
gives the distribution of strain in the object.

To understand the formation of the fringe pattern, we as-
sume that the deformation of the object has been such as to
alter only the phase distribution. Thus, if

O(x, y, t) = A(x, y) cos [ (x, y) � t] (21.25)

represents the object wave (in the hologram plane) when the
object is unstressed [see Fig. 21.6(a)] and if O (x, y, t) repre-
sents the object wave when the object is stressed [see
Fig. 21.6(b)] then we may write

O (x, y, t) = A(x, y) cos [ (x, y) � t] (21.26)

where the phase distribution has been assumed to change
from (x, y) to (x, y). On reconstruction, each of the above
two object waves emerge from the hologram and what would
be observed will be the intensity pattern due to interference
of the two waves which would be given by**

I(x, y) = [A(x, y) cos{ (x, y) � t}

+ A(x, y) cos{ (x, y) � t}]2

= A2(x, y) + A2(x, y) cos [ (x, y) � (x, y)] (21.27)

Thus, whenever

(x, y) � (x, y) = 2 m , m = 0, 1, 2, � (21.28)

the two waves would interfere constructively and whenever,

(x, y) � f(x, y)= (2m + 1) ; m = 0, 1, 2, � (21.29)

the two waves interfere destructively. Thus, depending
on [ (x, y) � (x, y)], one obtains, on reconstruction, the

*See, e.g., Refs. 21.3�21.12.
** The reconstruction process produces other wave components also but as was observed earlier, these components travel along differ-

ent directions. Here we are concerned only with the object waves.
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object superimposed with bright and dark fringes (see
Fig. 21.7).

We will consider here a simple application of the above
technique in the determination of the Young�s modulus of a
material. If we have a bar fixed at one end and loaded at the
other and if it results in a displacement  of the end of the
bar, then one can show that*

= 
W L

Y I

3

3
(21.30)

where W is the load, L is the length of the bar, I is the moment
of inertia of cross section which for a rectangular bar of
width a and thickness b, is given by I = ab3/12; Y represents
the Young�s modulus of the material of the rod. Thus if we
could determine  for a given load, then Y can be determined
from Eq. (21.30).

We will first determine an expression for (  � ). In
Fig. 21.6, we have shown the undisplaced and displaced
positions of the cantilever illuminated by a laser light along a
direction making an angle 

1
 with the z-axis. We observe the

cantilever along a direction making an angle 
2
 with the

z-axis. The phase change when the cantilever undergoes a
displacement  as shown in Fig. 21.6(b) would be

 � = 2 (  cos
1
 +  cos

2
)

q2
q1

Cantilever

Cantilever

Mirror

Mirror

(a)

(b)

Photographic
plate

Photographic
plate

W

Fig. 21.6 (a) Recording of the unstressed object wave.
(b) Recording of the stressed object wave on
the same emulsion to produce the doubly
exposed hologram.

* See, e.g., Ref. 21.13, p. 75.

Fig. 21.7 Interference fringes produced in the measurement of Young�s modulus using double exposure inter-
ferometry. [Photograph courtesy: Professor R. S. Sirohi].
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= 
2

 (cos
1
 + cos

2
) (21.31)

If there are N fringes over the length L of the cantilever, then
since a phase difference of 2  corresponds to one fringe [see
Eq. (21.28)] we can write

2  (cos 
1
 + cos

2
) = N . 2

or

= 
N

(cos cos )1 2

Thus by measuring N, 
1
 and 

2
 and knowing ,  can be

determined. Figure 21.7 shows the reconstruction of a double
exposed hologram of an aluminum strip of width 4 cm, thick-
ness 0.2 cm and of length 12 cm. From the number of fringes
formed, one can calculate the Young�s modulus (see Prob-
lem 21.3).

Summary

u The basic technique in holography is the following: In the

recording of the hologram, one superimposes on the object

wave another wave called the reference wave and the photo-

graphic plate is made to record the resulting interference

pattern. The reference wave is usually a plane wave. This

recorded interference pattern forms the hologram and con-

tains information not only about the amplitude but also about

the phase of the object wave. To view the image, we again

illuminate the hologram with another wave, called the recon-

struction wave. The reconstruction process leads, in general,

to a virtual and a real image of the object scene. The virtual

image has all the characteristics of the object like parallax,

etc.

u If the object wave and the reference wave are plane waves,

the hologram consists of a series of Young�s interference

fringes.

u An important property possessed by hologram is that even

if the hologram is broken up into different fragments, each

separate fragment is capable of producing a complete virtual

image of the object.

u The resolution in the reconstructed image has to be good, the

source must not be broad and must be emitting a narrow band

of wavelengths.

u Holography is commonly applied in studying transient mi-

croscopic events and in the field of interferometry. It also

helps to determine Young�s modulus of a material.

u For a point object and a plane reference wave, the hologram

is very similar to a zone plate with the transmittance varying

sinusoidally in contrast to the Fresnel zone plate.

Problems

21.1 Consider the reconstruction of the hologram as formed

in the configuration of Example 21.2, by a plane wave
traveling along a direction parallel to the z-axis. Show the
formation of a virtual and a real image.

21.2 In continuation of Example 21.2, calculate the inter-
ference pattern when the incident plane wave makes
an angle  with the z-axis [see Fig. 14. 13]. Assume

B  A/d.

Ans. 4
2

2 2 2 2B kd k x
k

d
x ycos sin ( )− + +θ

21.3 Figure 21.7 corresponds to the reconstruction of a doubly

exposed hologram, the objects corresponding to the
unstrained and strained positions of an aluminum bar of
width 4 cm, thickness 0.2 cm and length 12 cm. If the
strained position corresponds to a load of 1 gm force ap-
plied at the end of the bar, calculate the Young�s modulus
of aluminum. Assume 

1
  

2
  0; assume  = 6328 Å.

[Hint: N represents the number of fringes
produced over the length of the cantilever.]

[Ans. 0.7  10 11 N/m2]
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� As to the other emanation which should produce the irregular refraction, I wished to
try what Elliptical waves, or rather spheroidal waves, would do; and these I suppose would
spread differently both in the ethereal matter diffused throughout the crystal and in the
particles of which it is composed�

       Christiaan Huygens

�yve�s�e�syx2exh

hy�fvi2�ip�eg�syx

Chapter
Twenty Two

Important Milestones

1669 Erasmus Bartholinus discovered double refraction in calcite.

1678 In the wave theory of light communicated to the Academie des Science in Paris, Christiaan Huygens  gave

the theory of double refraction in calcite discovered by Bartholinus.

1815 David Brewster showed  polarization of light by reflection.

1828 William Nicol invented the prism which produced polarized light - this prism came to be known as the Nicol

Prism.

1929 Edwin Land, an American scientist and inventor, patented Polaroid which is the name of a type of synthetic

plastic sheet which is used to polarize light.

LO 1: know how to produce various forms of polarized light waves.
LO 2: discuss superposition of two disturbances and their mathematical analysis.
LO 3: describe the phenomenon of double refraction.
LO 4: know about the interference of polarized light.
LO 5: analyze polarized light.
LO 6: discuss optical activity.
LO 7: discuss change in state of polarization (SOP) of light beam propagating through an elliptic core single-mode

optical fiber.
LO 8: discuss the working of Wollaston and Rochon prisms for producing linearly polarized waves.
LO 9: analyze propagation by electromagnetic waves in anisotropic media.
LO 10: explain ray velocity and ray refractive index.
LO 11: use Jones calculus to study the propagation of polarized waves through various plates.
LO 12: discuss Faraday rotation and its applications.
LO 13: understand the theory of optical activity.
LO 14: understand theory of Faraday rotation.
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If we oscillate one end of a string up and down then a
transverse wave is generated [see Fig. 22.1(a)]. Each point of
the string executes a sinusoidal oscillation in a straight line
(along the x-axis) and the wave is, therefore, known as a
linearly polarized wave. It is also known as a plane polarized

wave because the string is always confined to the x-z plane.
The displacement for such a wave can be written in the form

1, cos

and , 0

x z t a kz t

y z t
(22.1)

where a represents the amplitude of the wave and 1  is the
phase constant to be determined from the instant we choose
as 0t ; the y-coordinate of the displacement is always zero.
At any instant the displacement will be a cosine curve as
shown in Fig. 22.1(a). Further, an arbitrary point 0z z  will
execute a simple harmonic motion of amplitude a. The string
can also be made to vibrate in the y-z plane [see Fig. 22.1(b)]
for which the displacement would be given by

2

, 0

and , cos

x z t

y z t a kz t
(22.2)

In general, the string can be made to vibrate in any plane
containing the z-axis. If one rotates the end of the string on
the circumference of a circle then each point of the string will
move in a circular path as shown in Fig. 22.2; such a wave is
known as a circularly polarized wave and the corresponding
displacement would be given by

*  By a short interval, we imply times which are short compared to the detection time, however, for the wave to be characterized with
a certain frequency , this time has to be much greater than 1/ , so that in the short interval it executes a large number of oscillations
(see also Sec. 17.1).

Fig. 22.1 (a) A linearly polarized wave on a string with the displacement confined to the x-z plane; (b)  A linearly polar-
ized wave on a string with the displacement confined to the y-z plane.

, cos

and , sin

x z t a kz t

y z t a kz t
(22.3)

so that x2 + y2 is a constant (= a2). As we will see later, Eq.
(22.3) represents a right circularly polarized wave.

We next consider a long narrow slit placed in the path of
the string as shown in Fig. 22.3(a). If the length of the slit is
along the direction of the displacement then the entire
amplitude will be transmitted as shown in Fig. 22.3(a). On the
other hand, if the slit is at right angle to the direction of the
displacement, then almost nothing will be transmitted to the
other side of the slit [see Fig. 22.3(b)]. This is because of the
fact that the slit allows only the component of the
displacement, which is along the length of the slit, to pass
through; as such, if a longitudinal wave was propagating
through the string then the amplitude of the transmitted
wave would have been the same for all orientations of the
slit. Thus, the change in the amplitude of the transmitted
wave with the orientation of the slit is due to the transverse
character of the wave. Indeed, an experiment which is, in
principle, very similar to the experiment discussed above
proves the transverse character of light waves. However,
before we discuss the experiment with light waves we must
define an unpolarized wave.

We once again consider transverse waves generated at
one end of a string. If the plane of vibration is changed in a
random manner in very short intervals of time, then such a
wave is known as an unpolarized wave*. If an unpolarized
wave falls on a slit S1 (see Fig. 22.4) then the displacement
associated with the transmitted wave will be along the length
of the slit and a rotation of the slit will not affect the
amplitude of the transmitted wave although the plane of

LO 1
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polarization of transmitted wave depend on the orientation
of the slit (see Fig. 22.4). Thus, the transmitted wave will be
linearly polarized and the slit S1 is said to act as a polarizer. If
this polarized beam falls on another slit S2 (see Fig. 22.4),
then by rotating the slit S

2
, we obtain a variation of the

transmitted amplitude as discussed earlier; the second slit is
said to act as an analyzer.

Fig. 22.4  If an unpolarized wave propagating on a string is
incident on a long narrow slit S1, then the trans-
mitted beam will be linearly polarized and its
amplitude will not depend on the orientation of
S1. If this polarized wave is allowed to pass
through another slit S2, then the intensity of the
emerging wave will depend on the relative ori-
entation of S2 with respect to S1.

The transverse character of light waves was known in the
early years of the nineteenth century; however, the nature of
the displacement associated with a light wave was known
only after Maxwell had put forward his famous
electromagnetic theory. We will discuss the basic
electromagnetic theory in the next chapter where we will
show that associated with a plane electromagnetic wave
there is an electric field E and a magnetic field H which are at
right angles to each other. For a linearly polarized wave
propagating in the z direction (in a dielectric) the electric and
magnetic fields can be written in the form [see Fig. 22.5]

0 cos , 0, 0x y zE E kz t E E (22.4)

and 00, cos , 0x y zH H H kz t H (22.5)

where

k
v

(22.6)

and
1

v (22.7)

represents the velocity of the waves,  and  are the
dielectric permittivity and the magnetic permeability of the
medium. Since Ez = 0 and Hz = 0, the wave is transverse.
Equations (22.4) and (22.5) also show that E and H are at

Fig. 22.2 (a) The displacement corresponding to a circu-
larly polarized wave � all points on the string are
at the same distance from the z-axis. (b) Each
point on the string rotates on the circumference
of the circle.

Fig. 22.3 If a linearly polarized transverse wave (propa-
gating on a string) is incident on a long narrow
slit, then the slit will allow only the component
of the displacement, which is along the length of
the slit, to pass through.
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right angles to each other and both the vectors are at right
angles to the direction of propagation (which is along the
z-axis). In fact, the direction of propagation is along the
vector (E  H). Electromagnetic theory also tells us that for a
dielectric [see Sec. 23.3]:

0 0 0
0

1

/

k
H E E

n
(22.8)

where

0
0 0

0

120 ohmsc

is the intrinsic impedance of free space and n is the refractive
index of the dielectric (see Sec. 23.3).

Fig. 22.5 An x-polarized electromagnetic wave propagat-
ing in the z-direction.

We consider an ordinary light beam falling on a Polaroid
P1 as shown in Fig. 22.6; a Polaroid is a plastic-like material
used for producing polarized light�it will be discussed in
detail in the next section. In general, an ordinary light beam
(like the one coming from a sodium lamp or from the sun) is
unpolarized, i.e., the electric vector (in a plane transverse to
the direction of propagation) keeps changing its direction in
a random manner (see Fig. 22.6). When such a beam is
incident on a Polaroid the emergent light is linearly polarized
with its electric vector oscillating in a particular direction as
shown in Fig. 22.6. The direction of the electric vector of the
emergent beam will depend on the orientation of the Polaroid.
As will be shown in Sec. 22.3.1 the component of E along a
particular direction gets absorbed by the Polaroid and the
component at right angles to it passes through. The direction
of the electric vector of the emergent wave is usually called
the pass axis of the Polaroid. If the Polaroid P

2
 is absent and

if the Polaroid P
1
 is rotated about the z-axis, there will be no

variation of intensity. However, if we place another Polaroid
P

2
, then by rotating the Polaroid P

2
 (about the z-axis) one

will observe variation of intensity and at two positions there

will be almost complete darkness (see Fig. 22.7). A similar
phenomenon will also be observed if instead of rotating the
Polaroid P2 we rotate P1. On the basis of our earlier
discussions, this phenomenon proves the transverse
character of light; i.e., the displacement associated with a
light wave is at right angles to the direction of propagation

Fig. 22.6 For an unpolarized wave propagating in the
+z-direction, the electric vector (which lies in the
x-y plane) continues to change its direction in a
random manner. If an unpolarized light beam is
allowed to fall on a Polaroid, then the emerging
beam will be linearly polarized; i.e., the electric
vector will oscillate along a particular direction.
If we place another Polaroid P2, then the intensity
of the transmitted light will depend on the rela-
tive orientation of P2 with respect to P1.; if the
pass axis of the second polaroid P2  makes an
angle  with the x-axis, the intensity of the
emerging beam will vary as cos2 .

     

 (a) (b)  (c)

Fig. 22.7 Actual photographs with two Polaroids at
different angles of relative orientation. (a) If the
two Polaroids are parallel to each other, almost
the entire light passes through. (b) When the two
Polaroids are oriented at  with respect to each
other about 50% of the light passes through grey.
(c) When the two Polaroids are at right angles to
each other (notice the position of the grey dot)
almost no light will pass through. Photographs
adapted from www.a-levelphysicstutor.com;
used with kind permission from Dr. Alan J. Reed.
See Fig. 26 in the prelim pages.
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of the wave. The Polaroid P1 acts as a polarizer and the
transmitted beam is linearly polarized. The second Polaroid
acts as an analyzer.

PPFP wev��92 ve�

Let us consider a Polaroid P1 which has a pass-axis parallel
to the x-axis (see Fig. 22.6); i.e., if an unpolarized beam
propagating in the z direction is incident on the Polaroid,
then the electric vector associated with the emergent wave
will oscillate along the x-axis. We next consider the incidence
of the x-polarized beam on the Polaroid P2 whose pass axis
makes an angle  with the x-axis (see Fig. 22.6). If the
amplitude of the incident electric field is 0E , then the
amplitude of the wave emerging from the polaroid 2P will
be 0 cosE  and thus the intensity of the emerging beam will
be given by

2
0 cosI I (22.9)

where I
0
 represents the intensity of the emergent beam when

the pass axis of P
2
 is also along the x-axis (i.e., when 0 ).

Equation (22.9) represents Malus' Law. Thus, if a linearly
polarized beam is incident on a Polaroid and if the Polaroid is
rotated about the z-axis, then the intensity of the emergent
wave will vary according to the above law. For example, if the
Polaroid 2P shown in Fig. 22.6 is rotated in the clockwise
direction, then the intensity will increase till the pass-axis is
parallel to the x-axis; a further rotation will result in a
decrease in intensity till the pass-axis is parallel to the y-axis,
where the intensity will be almost zero. If we further rotate it,
it will pass through a maximum and again a minimum before it
reaches its original position.

Figure 22.7 shows actual photographs of two Polaroids at
different relative orientations. In Fig. 22.7 (a) the two are
parallel to each other and therefore almost the entire light
passes through. In Fig. 22.7 (b) the two Polaroids are oriented
at 45° with respect to each other and about 50% of the light
passes through; because according to Malus'

law 2
0 0

1
cos 45

2
I I I . Finally, in In Fig. 22.7 (c) the two

Polaroids are at right angles to each other (notice the
position of the blue dot) and almost no light passes through

because 2
0 cos 90 0I I  [see also Fig. 26 in the prelim

pages of the book]

PPFQ ��yh�g�syx2 yp
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In this section we will discuss various methods for
producing linearly polarized light waves.

22.3.1 The Wire Grid Polarizer and the
Polaroid

The physics behind the working of the wire grid polarizer is
probably the easiest to understand. It essentially consists of
a large number of thin copper wires placed parallel to each
other as shown in Fig. 22.8. When an unpolarized electro-
magnetic wave is incident on it, then the component of the
electric vector along the length of the wire is absorbed. This
is due to the fact that the electric field does work on the elec-
trons inside the thin wires and the energy associated with
the electric field is lost in the Joule heating of the wires. On
the other hand, (since the wires are assumed to be very thin)
the component of the electric vector along the x-axis passes
through without much attenuation. Thus, the emergent wave

is linearly polarized with the electric vector along the x-axis.
However, for the system to be effective (i.e., for the yE  com-

LO 1

Fig. 22.8 The wire-grid polarizer.

ponent to be almost completely attenuated) the spacing be-
tween the wires should be less than . Clearly, the
fabrication of such a polarizer for a 3 cm microwave is rela-
tively easy because the spacing has to be less than 3 cm. On
the other hand, since the light waves are associated with a
very small wavelength 0.5 , the fabrication of a polar-
izer in which the wires are placed at distances less than
0.5  is extremely difficult. Nevertheless, Bird and Parrish
did succeed in putting about 30,000 wires in about one inch;
for further details see Refs. 22.1 and 22.2. The details of the
procedure for making this wire grating are also discussed in
Ref. 22.1. The original work of Bird and Parrish was published
in 1950 (see Ref. 22.2).

As already pointed out, it is extremely difficult to fabricate
a wire grid polarizer which would be effective for visible light.
However, instead of long thin wires, one may employ long
chain polymer molecules that contain atoms (like iodine)
which provide high conductivity along the length of the
chain. These long chain molecules are aligned so that they
are almost parallel to each other. Because of the high
conductivity provided by the iodine atoms, the electric field

LO 1
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parallel to the molecules get absorbed. A sheet containing
such long chain polymer molecules (which are aligned
parallel to each other) is known as a Polaroid. When a light
beam is incident on such a Polaroid, the molecules (aligned
parallel to each other) absorb the component of electric field
which is parallel to the direction of alignment because of the
high conductivity provided by the iodine atoms; the
component perpendicular to it passes through. Thus, the
aligned conducting molecules act similar to the wires in the
wire grid polarizer and since the spacing between two
adjacent long chain molecules is small compared to the
optical wavelength, the Polaroid is usually very effective in
producing linearly polarized light. The aligning of the long
chain conducting molecules is not very difficult and the
experimental details of producing the polarizer are given in
Ref. 22.1.

22.3.2 Polarization by Reflection

We consider the incidence of a plane wave on a dielectric;
we assume that the electric vector associated with the
incident wave lies in the plane of incidence as shown in
Fig. 22.9 (a). It will be shown in Sec. 24.2 that if the angle of
incidence is such that

1 2

1

tanp

n

n
(22.10)

then the reflection coefficient is zero. Thus, if an unpolarized
beam is incident at this angle, then the reflected beam will be
linearly polarized with its electric vector perpendicular to the
plane of incidence [see Fig. 22.9(b)]. Equation (22.10) is
referred to as the Brewster's law and at this angle of
incidence, the reflected and the transmitted rays are at right
angles to each other; the angle p  is known as the polarizing
angle or the Brewster angle.

A (commercially available) polarized sunglass blocks the
horizontal component and allows only the vertical
component to pass through [see Fig. 22.10(a)]. For the air-
water interface, 1 1n  and 2 1.33n  and the polarizing angle

53p . Thus, if the sunlight is incident on the sea at an
angle close to the polarizing angle, then the reflected light
will be almost linearly polarized [see Fig. 22.10 (b)] and if we
now wear polarized sunglasses, the glare, i.e., the light
reflected from the water surface, will not be seen. This is the
reason why polarized sunglasses are often used by
fishermen to remove the glare on the surface and see the fish
inside water. Figure 22.11 (a) shows a photograph on the
road with ordinary glasses; if we use polarized lenses, the
glare can be considerably reduced as shown in Fig. 22.11 (b);
see 27 and 28 in the prelim pages. Figure 22.12 shows
sunlight incident on a water surface at an angle close to the

Fig. 22.9 (a) If a p-polarized wave (E in the plane of inci-
dence) is incident on the interface of two
dielectrics with the angle of incidence equal to qp

(= tan �1 n2/n1) then the reflection coefficient is
zero. (b)If an unpolarized beam is incident at
Brewester�s angle, the reflected beam is plane
polarized whose electric vector is perpendicular
to the plane of incidence. The transmitted beam is
partially polarized and if this beam is made to
undergo several reflections, then the emergent
beam is almost plane polarized with its electric
vector in the plane of incidence.

polarizing angle so that the reflected light is almost polarized.
If the Polaroid allows the (almost polarized) reflected beam to
pass through, we see the glare from water surface [see Fig.
22.12 (a)]; the glare can be blocked by using a vertical
polarizer and one can see the inside of the water [see Fig.
22.12 (b) and Figs. 29 (a) and (b) in the prelim pages of the
book].

22.3.3 Polarization by Double Refraction

In Sections 22.5 and 22.9 we will discuss the phenomenon of
double refraction and will show that when an unpolarized
beam enters an anisotropic crystal like calcite, it splits up into
two linearly polarized beams (see Fig. 22.13). If by some
method, we could eliminate one of the beams, then we would
obtain a linearly polarized beam.

A simple method for eliminating one of the beams is
through selective absorption; this property of selective
absorption is known as dichroism. A crystal like tourmaline
has different coefficients of absorption for the two linearly
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polarized beams into which the incident beam splits up.
Consequently, one of the beams gets absorbed quickly and
the other component passes through without much
attenuation. Thus, if an unpolarized beam is passed through
a tourmaline crystal, the emergent beam will be almost
linearly polarized (see Fig. 22.14).

Another method for eliminating one of the polarized
beams is through total internal reflection. We will show in
Sections 22.5 and 22.10 that the refractive indices
corresponding to the two beams are different. If one can
sandwich a layer of a material whose refractive index lies
between the two, then for one of the beams, the incidence
will be at a rarer medium and for the other it will be at a
denser medium. This principle is used in a Nicol prism which

consists of a calcite crystal cut in such a way that for the
beam, for which the sandwiched material is a rarer medium,
the angle of incidence is greater than the critical angle. Thus,
this particular beam will be eliminated by total internal
reflection. Figure 22.15 shows a properly cut calcite crystal in
which a layer of Canada Balsam has been introduced so that
the ordinary ray undergoes total internal reflection. The
extraordinary component passes through and the beam
emerging from the crystal is linearly polarized.

22.3.4 Polarization by Scattering

If an unpolarized beam is allowed to fall on a gas, then the
beam scattered at 90° to the incident beam is linearly polar-
ized. This follows from the fact that the waves propagating

Fig. 22.11 (a) A photograph on the road with ordinary
glasses. (b) If we use polarized lenses, the glare
can be considerably reduced. Photographs
adapted from www.esaver.com.my/index.php?
option=com_content&view=article&id=95&
Itemid=220. See also Fig. 28 in the prelim
pages.

Fig. 22.10 (a) A  (commercially available) polarized sun-
glass blocks the horizontal component and
allows only the vertical component to pass
through. (b) If the sunlight is incident on the wa-
ter surface at an angle close to the Brewster angle,
then the reflected light will be almost  polarized
and if we now wear polarized  sunglasses, the
glare, i.e., the light reflected from the water sur-
face will not be seen. Polarized sunglasses  are
often used by fishermen to remove the glare on
the surface and see the fish inside water. See also
Fig. 27 in the prelim pages.

Fig. 22.12 If the sunlight is incident on the water surface at
an angle close to the Brewster angle, then the
reflected light will be almost  polarized. (a) If
the polaroid allows the (almost polarized) re-
flected beam to pass through, we see the glare
from  water surface. (b) The glare can be
blocked by using a vertical polarizer and one
can see the inside of the water. Figure adapted
from the website http://polarization.com/wa-
ter/water.html created by  Dr J Alcoz; used with
permission of Dr. Alcoz. A color photo appears
as Fig. 29 in the prelim pages.

Fig. 22.13 When an unpolarized light beam is incident
normally on a calcite crystal, it usually splits up
into two linearly polarized beams. Photograph
courtesy Professor V Lakshminarayanan and
adapted from Ref. 22.16. A color photo appears
as Fig. 30 in prelim pages.
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in the y direction are produced by the x-component of the
dipole oscillations (see Fig. 22.16). The y component of the
dipole oscillations will produce no field in the y direction (see
Sec. 23.5.1). Indeed, it was through scattering experiments
that Barkla could establish the transverse character of X-
rays. Clearly, if the incident beam is linearly polarized with its
electric vector along the x direction, then there will be no
scattered light along the x axis. As such, one can carry out
an analysis of a scattered wave by allowing it to undergo a
further scattering [see Fig. 22.16(b)].

PPFR ���i��y�s�syx2 yp2 ��y
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Let us consider the propagation of two linearly polarized
electromagnetic waves (both propagating along the z-axis)
with their electric vectors oscillating along the x-axis. The
electric fields associated with the waves can be written in the
form

1 1ˆ cosa kz t1E = x  (22.11)

2 2ˆ cosa kz t2E = x (22.12)

where a
1
 and a

2
 represent the amplitudes of the waves; x̂

represents the unit vector along the x-axis and 1  and 2  are
phase constants. The resultant of these two waves would be
given by

1 2E = E + E (22.13)

x

y

z

Incident unpolarized
light

Linearly polarized
wave

Tourmaline
crystal

Fig. 22.14 When an unpolarized beam enters a dichroic
crystal like tourmaline, it splits up into two lin-
early polarized components. One of the
components gets absorbed quickly and the
other component passes through without much
attenuation. [Adapted from Ref. 22.3; used with
permission.]

48°

68°

71°

90°

A
xis

O
p
tic o-ray

e-ray

Calcite

Fig. 22.15 The Nicol prism. The dashed outline corre-
sponds to the natural crystal which is cut in such
a way that the ordinary ray undergoes total in-
ternal reflection at the Canada Balsam layer.

As discussed in Sec. 7.6 the blue color of the sky is due to
Rayleigh scattering of sunlight by molecules in our atmo-
sphere. When the sun is about to set, if we look vertically
upwards, light will have a high degree of polarization; this is
because the angle of scattering will be very close to 90°. If
we view the blue sky (which is vertically above us) with a ro-
tating Polaroid, we will observe considerable variation of
intensity.

Unpolarized
light

y
z

z

x

Scatterer

y-polarized
scattered wave

Incident wave
polarized in the

-directionx

y

Scattered wave
polarized in the

-directionx

x-polarized
scattered wave

Scatterer

No scattered
wave in the

-directionx
x

(a)

(b)

Fig. 22.16 (a) If the electromagnetic wave is propagating
along the z-direction, then the scattered wave
along any direction perpendicular to the z-axis
will be linearly polarized. (b) If a linearly po-
larized wave (with its E oscillating along the
x-direction) is incident on a dipole, then there
will be no scattered wave in the x-direction.
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which can always be written in the form

ˆ cosa kz tE = x (22.14)

where

1/ 22 2
1 2 1 2 1 22 cos ( )a a a a a (22.15)

represents the amplitude of the resultant wave. Equation
(22.14) tells us that the resultant is also a linearly polarized
wave with its electric vector oscillating along the same axis.

We next consider the superposition of two linearly
polarized electromagnetic waves (both propagating along the
z-axis) but with their electric vectors oscillating along two
mutually perpendicular directions. Thus, we may have

ˆ cosa kz t1E = x (22.16)

ˆ cosb kz t2E y (22.17)

For 0, 1, 2,...m m , the resultant will also be a

linearly polarized wave with its electric vector oscillating
along a direction making a certain angle with the y-axis; this
angle will depend on the relative values of a and b.

In order to find the state of polarization of the resultant
field, we consider the time variation of the resultant electric
field at an arbitrary plane perpendicular to the z-axis which
we may, without any loss of generality, assume to be z = 0. If

xE and yE represent the x- and y-components of the result-

ant field 1 2E E E , then

cosxE a t (22.18)

and

cosyE b t (22.19)

where we have used Eqs. (22.16) and (22.17) with z = 0. For

m , the above equations simplify to

cosxE a t and 1 cos
m

yE b t (22.20)

from which one obtains

x

y

E a

E b
(independent of t) (22.21)

where the upper and lower signs correspond to m even and
m odd respectively. In the x yE E  plane, Eq. (22.21)

represents a straight line; the angle  that this line makes
with the yE  axis will be given by

1tan
a

b
(22.22)

The condition m implies that the two vibrations are
either in phase 0, 2, 4...m or out of phase

1, 3,...m . Thus, the superposition of two linearly

polarized electromagnetic waves with their electric fields at
right angles to each other and oscillating in phase (or out
of phase), is again a linearly polarized wave with its electric
vector, in general, oscillating in a direction which is different
from the fields of either of the two waves. Figure 22.17 is a
plot of the resultant field corresponding to Eq. (22.20) for
various values of a/b. The tip of the electric vector oscillates
(with angular frequency ) along the thick lines shown in
the figure. The equation of the straight line is given by
Eq. (22.21).

For ,m  the resultant electric vector does not, in
general, oscillate along a straight line as we will illustrate
through a few examples.

Example 22.1 We first consider the simple case correspond-

ing to / 2 with b = a. Thus,

cosxE a t (22.23)

and sinyE a t (22.24)

Now at 0, and 0x yt E a E ;

, 0 and
2

x yt E E a

, and 0x yt E a E ;

3
, 0 and

2
x yt E E a

and at     
2 4 6

, , ...; and 0x yt E a E

Fig. 22.17 The superposition of two linearly polarized
waves with their electric fields oscillating in
phase along the x-axis and the y-axis. The result-
ant is a linearly polarized wave
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Fig. 22.18 The position of the tip of the electric vector at
various times corresponding to

,
2 3

a b  and 
2

.
3

c

The propagation is along the +z direction.

Fig. 22.19 States of polarization for various values of q
corresponding to a1 = a2 [see Eqs. (22.18) and
(22.19)]. For example, (c) and (g) correspond to
right circularly and left circularly polarized
light respectively; similarly, (b) and (d) corre-
spond to right elliptically polarized (REP) light
and (f) and (h) correspond to left elliptically
polarized (LEP) light. The propagation is along
+ z-axis-going into the page.

Thus, if we plot the time variation of the resultant electric

vector whose x- and y-components are given by Eqs. (22.23) and

(22.24), one would find that the tip of the electric vector rotates on

the circumference of a circle (of radius a) in the clockwise direction

[see Figs. 22.18(a) and 22.19(c)]; the propagation is in the

+z direction which is going into the page. Such a wave is known as

a right circularly polarized wave (usually abbreviated as a RCP

wave); our convention for labeling left and right circularly polarized

light is consistent with the one used by Feynman (Ref. 22.4) but in

some books the opposite convention is used. That the tip of the

resultant electric vector should lie on the circumference of a circle is

also obvious from the fact that if we square and add Eqs. (22.23)

and (22.24), we would get

2 2 2
x yE E a (independent of t)

which represents the equation of a circle.
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Example 22.2 We assume b = a with 3 / 2.  Thus

cosxE a t  and sinyE a t

As in Example 22.1, we evaluate xE  and yE  at various values of

time. We will find that we will again have a circularly polarized

wave; however, the electric vector will now rotate in the anti-

clockwise direction [see Fig. 22.19(g)]. Such a wave is known as a

left circularly polarized wave (usually abbreviated as a LCP wave).

For / 2 ( 0,1,2,...),m m  the tip of the electric vector

rotates on the circumference of an ellipse. In Fig. 22.19, we have

shown the rotation of the electric vector for various values of ;

we have assumed .b a  As can be seen from the figure, this ellipse

would degenerate into a straight line or a circle when  becomes an

even or an odd multiple of / 2 .

Example 22.3 We assume b a  with / 3. Thus

cosxE a t and  cos
3

yE a t

Now at

1
0, and

2
x yt E a E a ;

1
, and

3 2
x yt E a E a

3
, 0 and

2 2
x yt E E a ;

1
, and

2
x yt E a E a

and so on. The tip of the electric vector will rotate on the

circumference of an ellipse in the clockwise direction [see Figs.

22.18(b) and 22.19(b)] and we will have what is known as a right

elliptically polarized wave (abbreviated as a REP wave).

Example 22.4 We assume b a  with 2 /3. Thus

cosxE a t and
2

cos
3

yE a t .

If we plot the values of xE  and yE  at various values of time, we

will find that the tip of the electric vector will rotate on the

circumference of an ellipse in the clockwise direction [see Figs.

22.18(c) and 22.19(d)] and we will again have a right elliptically

polarized wave.

In Examples 22.3 and 22.4, the major (or minor) axis would
make an angle of 45 with the y-axis; this is because of the fact that
b = a [see Eq. (22.35)]. In general, when b a , one obtains an
elliptically polarized wave whose axes will make a different angle
with the y-axis [see Eq. (22.35)]; this ellipse will degenerate into a
straight line for  = 0, , 2 , 3  We will show this mathemati-

cally in Sec. 22.4.1.

Now, as discussed in Sec. 22.1, if we move a stretched
string up and down, we will generate a linearly polarized
wave with its displacement confined to the vertical plane.
Similarly, we may generate a linearly polarized wave with its
displacement confined to the horizontal plane. Further, we
may rotate the end of the string on the circumference of a
circle (or an ellipse) to produce a circularly polarized (or an
elliptically polarized) wave [see Fig. 22.2 (b)]. For such a
wave, the particles of the string actually move on the
circumference of a circle (or an ellipse). On the other hand,
for an elliptically polarized electromagnetic wave, it is the
electric (or the magnetic field) which changes its magnitude
and direction at a particular point; the presence of these
fields can be felt by their interaction with a charged particle.
In particular, for a circularly polarized wave, the magnitude of
the field remains the same; the direction changes with an
angular frequency . On the other hand, for a linearly
polarized wave, the direction of the field does not change; it
is the magnitude which keeps on oscillating about the zero
value with angular frequency of the wave.

22.4.1 The Mathematical Analysis

In this section, we will show that Eqs. (22.18) and (22.19)
represent an elliptically polarized wave. We rewrite
Eqs. (22.18) and (22.19)

cos

cos

x

y

E a t

E b t

We assume that the major axis of the ellipse to be along
the  or the  axis and that the  axis makes an angle with
the y-axis [see Fig. 22.19 (b)]; i.e.,

1 cosE E t (22.25)

2 sinE E t (22.26)

Obviously,

2 2

1 2

1
E E

E E
(22.27)

which represents the equation of an ellipse. Now, for the
rotated coordinates

cos sinx yE E E (22.28)

sin cosx yE E E (22.29)

Substituting Eqs. (22.18), (22.19), (22.25) and (22.26) in
Eqs. (22.28) and (22.29), we get

1 cos cos cos cos sinE t a t b t

2 sin cos sin cos cosE t a t b t
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These equations have to be valid at all times; thus, we
equate the coefficients of cos t and sin t on both sides of
the equation to obtain

1 cos cos cos sinE a b (22.30)

1 sin sin sinE b (22.31)

and

2 sin sin cos cosE a b (22.32)

2 cos sin cosE b (22.33)

If we square the four equations above and add, we would
get

2 2 2 2
1 2E E a b

which is to be expected because the total intensity of both
the beams should be equal. Further, if we divide Eq. (22.30)
by Eq. (22.33) and Eq. (22.31) by Eq. (22.32), we would obtain

1

2

cos cos sin sin sin

sin cos sin cos cos

E a b b

E b a b

(22.34)

Thus,

2 2 2

2 2 2 2

sin cos cos sin cos

cos cos sin sin sin cos

a b ab

b

Simple manipulations would give

2 2

2 cos
tan 2

ab

b a
(22.35)

Example 22.5 We assume b = a so that 2 / 2  

 = /4 implying that the major (or minor) axis of the ellipse makes

45° with the y-axis [see Fig. 22.19 (b)]. Further,

1

2

1 cos
tan

sin 2

E

E

Thus, for ,b a  and for

2 4 3
, , , ,

3 2 3 3 2
and

5

3
we will respectively have

1

2

+ 0.577, 1,      1.732,     1.732,       1      and      0.577
E

E

which correspond to REP, RCP, REP, LEP, LCP and LEP

respectively as shown in Fig. 22.19. For example, for /3 we

will have

cos and cos / 3x yE a t E a t

As discussed in Example 22.1, we will have a right elliptically

polarized wave as shown in Figs. 22.18(b) and 22.19 (b). From

Eqs. (22.30) and (22.31) [or from Eqs. (22.32) and (22.33)] we will

have

1 cos
tan cot

sin 2 2 2

where we have used the fact that cos is positive and sin is

negative [see Eqs. (22.30)-(22.31)]. Therefore, in the rotated

coordinates

1 sin
6

E E t and 11.733 cos
6

E E t .
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If an unpolarized light beam is incident normally on a calcite
crystal [see Fig. 22.13 and 22.20(a)], it will split up into two
linearly polarized beams. The beam which travels undeviated
is known as the ordinary ray (usually abbreviated as the
o-ray) and obeys Snell's laws of refraction. On the other
hand, the second beam, which in general does not obey
Snell's laws, is known as the extra-ordinary ray (usually
abbreviated as the e-ray). The appearance of two beams is
due to the phenomenon of double refraction and a crystal
like calcite is usually referred to as a "double refracting"
crystal. If we put a polaroid PP  behind the calcite crystal and
rotate the polaroid (about NN ) then for two positions of the

Fig. 22.20 (a) When an unpolarized light beam is incident
on a calcite crystal, it usually splits up into two
linearly polarized beams. (b) If we rotate the
crystal about NN  then the e-ray will rotate
about NN .

LO 3
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polaroid (when the pass-axis is perpendicular to the plane of
the paper) the e-ray will be completely blocked and only the
o-ray will pass through. On the other hand, when the pass-
axis of the polaroid is in the plane of the paper (i.e., along the
line PP ) then the o-ray will be completely blocked and only
the e-ray will pass through. Further, if we rotate the crystal
about NN  then the e-ray will rotate about the axis [see
Fig. 22.20 (b)]. Figure 22.21 shows a typical double image as
viewed through a doubly refracting crystal like calcite. If we
rotate the crystal about the vertical axis, one of the images
will be fixed, while the other image will rotate.

Fig. 22.21 Typical double image of a sentence in a printed
text. The ordinary image is fixed, while the
upper extraordinary image is shifted and can
rotate. Photograph courtesy Professor
Vasudevan Lakshminarayanan and adapted
from Ref. 22.16; see Fig. 31 in the prelim pages.

In Sec. 22.13 we will show that whereas the velocity of the
ordinary ray is the same in all directions, the velocity of the
extraordinary ray is different in different directions; a medium
(like calcite, quartz), which exhibits different properties in
different directions, is called an anisotropic medium. Along a
particular direction (fixed in the crystal), the two velocities
are equal; this direction is known as the optic axis of the
crystal. In a crystal like calcite, the two rays have the same
speed only along one direction (which is the optic axis); such
crystals are known as uniaxial crystals*. The velocities of the
ordinary and the extraordinary rays are given by the
following equations [see Eqs. (22.120) and (22.123)]:

ro

o

c

n
v                          (ordinary ray) (22.36)

2 2

2 2 2

1 sin cos

( / ) ( / )re e oc n c nv

  (extraordinary ray) (22.37)

where no and ne are constants of the crystal and  is the
angle that the ray makes with the optic axis; we have
assumed the optic axis to be parallel to the z-axis. Thus, c/no

and c/ne are the velocities of the extraordinary ray when it
propagates parallel and perpendicular to the optic axis. Now,
the equation of an ellipse (in the z-x plane) is given by

2 2

2 2
1

z x

a b
(22.38)

If ( , ) represent the polar coordinates, then cosz

and sinx  and the equation of the ellipse can be written
in the form

2 2

2 2 2

1 cos sin

a b
(22.39)

In three dimensions, the above equation will represent an
ellipsoid of revolution with the optic axis as the axis of
revolution. (If we rotate a circle about one of its diameters,
we will obtain a sphere, and if we rotate an ellipse about its
major (or minor) axis, we will obtain an ellipsoid of
revolution). Thus, if we plot rev  as a function of , we will
obtain an ellipsoid of revolution; on the other hand, since rov

is independent of , if we plot rov  (as a function of ), we
will obtain a sphere. Along the optic axis, 0  and

ro re

o

c

n
v v

We next consider the value of rev  perpendicular to the

optic axis (i.e., for / 2 .  For a negative crystal ne < no

and

2
re ro

e

c

n
v v (22.40)

Thus, the minor axis will be along the optic axis and the
ellipsoid of revolution will lie outside the sphere [see
Fig. 22.22(a)]. On the other hand, for a positive crystal ne > no

and

2
re ro

e

c

n
v v (22.41)

The major axis will now be along the optic axis and
the ellipsoid of revolution will lie inside the sphere [see
Fig. 22.22 (b)]. The ellipsoid of revolution and the sphere are
known as the ray velocity surfaces.

We next consider an unpolarized plane wave incident on a
calcite crystal. The plane wave will split up into 2 plane

* In general, there may be two directions along which the two rays have the same speed; such crystals are known as biaxial crystals. The
analysis of biaxial crystals is quite difficult; interested readers may look up References 22.5 and 22.6.
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waves. One is referred to as the ordinary wave (usually
abbreviated as the o-wave) and the other is referred to as the
extraordinary wave (usually abbreviated as the e-wave). For
both waves, the space and time dependence of the vectors E,
D, B and H can be assumed to be of the form

i t
e

k .r

where k denotes the propagation vector and represents the
direction normal to the phase fronts. In general, the k vector
for the o- and e-waves will be different. In Sec. 22.12 we will
show that

1. Both ordinary and extraordinary waves are linearly
polarized.

2. D . k = 0 for both o- and e-waves (22.42)

Thus, D is always at right angles to k and for this
reason the direction of D is chosen as the direction of
"vibrations".

3. If we assume the z-axis to be parallel to the optic axis
then,

D . ẑ  = 0 (and D . k = 0) for the o-wave (22.43)

Thus, for the o-wave, the D vector is at right angles to
the optic axis as well as to k.

4. On the other hand, for the e-wave,
D lies in the plane containing k and the optic axis (and
of course, D . k = 0) (22.44)

Using the recipe given above, we will consider the
refraction of a plane electromagnetic wave incident on a
negative crystal like calcite; a similar analysis can be carried
out for positive crystals.

22.5.1 Normal Incidence

We first assume a plane wave incident normally on a uniaxial
crystal as shown in Fig. 22.23. Without loss of generality, we
can always choose the optic axis to lie on the plane of the
paper. The direction of the optic axis is shown as a dashed

line in Fig. 22.23. In order to determine the ordinary ray, with
the point B as the center, we draw a sphere of radius c/no.
Similarly, we draw another sphere (of the same radius) from
the point D. The common tangent plane to these spheres is
shown as OO , which represents the wavefront correspond-
ing to the ordinary refracted ray. It may be noted that the
dots show the direction of "vibrations" (i.e., direction of D)
which are perpendicular to k and to the optic axis [see
Eq. 22.43].

In order to determine the extraordinary ray, we draw an
ellipse (centered at the point B) with its minor axis (= c/no)
along the optic axis and with major axis equal to c/ne . The
ellipsoid of revolution is obtained by rotating the ellipse
about the optic axis. Similarly, we draw another ellipsoid of
revolution from the point D. The common tangent plane to
these ellipsoids (which will be perpendicular to k) is shown
as EE  in Fig. 22.23. If we join the point B to the point of

z
(Optic axis)

z
(Optic axis)

q q

Negative crystal Positive crystal

(a) (b)

Fig. 22.22 (a) In a negative crystal, the ellipsoid of revolu-
tion (which corresponds to the extra-ordinary
ray) lies outside the sphere; the sphere corre-
sponds to the ordinary ray.  (b) In a positive
crystal, the ellipsoid of revolution (which corre-
sponds to the extra-ordinary ray) lies inside the
sphere.

Fig. 22.23 The refraction of a plane wave incident on a
negative crystal whose optic axis is along the
dashed line.
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contact O, then corresponding to the incident ray AB, the
direction of the ordinary ray will be along BO. Similarly, if we
join the point B to the point of contact E (between the
ellipsoid of revolution and the tangent plane EE ), then
corresponding to the incident ray AB, the direction of the
extraordinary ray will be along BE.

It is to be noted that the direction of k is the same for both
o- and e-waves i.e., both are along BO. However, if we have
a narrow beam incident as AB, then while the ordinary ray
will propagate along BO, the extraordinary ray will propagate
in a different direction BE, as shown in Fig. 22.23(a).
Obviously, if we have a different direction of the optic axis
[see Fig. 22.23(b)], then, although the direction of the
ordinary ray will remain the same, the extraordinary ray will
propagate in a different direction. Thus, if a ray is incident
normally on a calcite crystal, and if the crystal is rotated
about the normal, then the optic axis and the extraordinary
ray will also rotate (about the normal) on the periphery of a
cone; each time the ray will lie in the plane containing the
normal and the optic axis [see Fig. 22.20 (b)].

The ray refractive index corresponding to the extra-
ordinary ray (nre) will be given by

2 2 2 2cos sinre o e

re

c
n n n

v

(22.45)

If one starts with the above equation and uses Fermat's
principle to obtain the refracted ray, the results will be
consistent with the ones obtained in this section (see
Sec. 3.5).

Now, as mentioned earlier, the direction of vibrations for
the ordinary ray is normal to the optic axis and the vector k;
as such, the directions of these vibrations in this case, will
be normal to the plane of the paper and have been shown as
dots in Fig. 22.23. Similarly, since the direction of vibrations
for the extraordinary ray is perpendicular to k and lies in the
plane containing the extraordinary ray and the optic axis,
they are along the small straight lines drawn on the
extraordinary ray in Fig. 22.23. Thus, an incident ray will split
up into two rays propagating in different directions and
when they leave the crystal, we will obtain two linearly
polarized beams.

In the above case, we have assumed the optic axis to
make an arbitrary angle  with the normal to the surface. In
the special cases of 0  and / 2,  the ordinary and the
extraordinary rays travel along the same directions as shown
in Figs. 22.24(a), (b) and (c). Figure 22.24 (b) corresponds to
the case when the optic axis is normal to the plane of the
paper; and as such, the section of the extraordinary

Optic
axis

Optic axis normal to the page

o-ray e-ray

(a)

(b)

(c)

O
p

ti
c

a
x
is

Fig. 22.24 Propagation of a plane wave incident normally on a negative uniaxial crystal. In (a) and (c) the optic axis is
shown as parallel straight lines and in (b) the optic axis is perpendicular to the plane of the figure and is shown
in dots. In each case, the extra-ordinary and the ordinary rays travel in the same direction.



OpticsPPFIV
u

wavefront in the plane of the paper will be a circle. Once
again, both the ordinary and the extraordinary rays travel
along the same direction. It may be mentioned that Figs. 22.24
(a) and (b) correspond to the same configuration; in both
cases the optic axis is parallel to the surface. The figures
represent two different cross-sections of the same set of
spherical and ellipsoidal wavefronts.

Now, corresponding to Figs. 22.24 (a) and (b), if the
incident wave is polarized perpendicular to the optic axis, it
will propagate as an o-wave with velocity c/no. On the other
hand, if the incident wave is polarized parallel to the optic
axis, it will propagate as an e-wave with velocity c/ne. In Fig.
22.24 (c) the optic axis is normal to the surface and both
waves will travel with the same velocity.

Notice that in the configuration shown in Figs. 22.24 (a)
and (b), although both the waves travel in the same direction,
they propagate with different velocities. This phenomenon is
used in the fabrication of quarter and half wave plates (see
Sec. 22.6). On the other hand, in the configuration shown in
Fig. 22.24(c), both the waves not only travel in the same
direction but they also propagate with the same velocity.

22.5.2 Oblique Incidence

We next consider the case of a plane wave incident obliquely
on a negative uniaxial crystal [see Fig. 22.25(a)]. Once again
we use Huygens' principle to determine the shape of the
refracted wavefronts. Let BD represent the incident
wavefront. If the time taken for the disturbance to reach the
point F from D is t, then with B as center we draw a sphere of
radius (c/no)t and an ellipsoid of revolution of semi-minor
and semi-major axes (c/no)t and (c/ne)t respectively; the semi-
minor axis is along the optic axis. From the point F we draw

tangent planes FO and FE to the sphere and the ellipsoid of
revolution respectively. These planes would represent the
refracted wavefronts corresponding to the ordinary and the
extraordinary rays respectively. If the points of contact are O
and E, then the ordinary and extraordinary refracted rays will
propagate along BO and BE respectively; this can also be
shown using Fermat's principle (see Sec. 2.5). The directions
of vibration of these rays are shown by dots and small lines
respectively and are obtained by using the general rules
discussed earlier. The shape of the refracted wavefronts
corresponding to the particular case of 0  and / 2
can be obtained very easily. Figure 22.24(b) corresponds to
the case when the optic axis is normal to the plane of
incidence. The sections of both the wavefronts will be
circles; consequently, the extraordinary ray will also satisfy
Snell's law and we will have

sin

sin e

i
n

r
 (for the e-ray when the optic-axis is

normal to the plane of incidence) (22.46)

Of course, for the ordinary ray we will always have

sin

sin o

i
n

r
(22.47)

PPFT sx�i�pi�ixgi2 yp
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In the previous section we had considered how a plane wave
(incident on a doubly refracting crystal) splits up into two

Fig. 22.25 Refraction of a plane wave incident obliquely on a negative uniaxial crystal. In (a), the direction of the optic
axis is along the dashed line. In (b), the optic axis is perpendicular to the plane of the paper.
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waves each characterized by a certain state of polarization.
The direction of vibration associated with the ordinary and
extraordinary waves is obtained by using the recipe given by
Eqs. (22.42) and (22.43). In this section, we will consider the
normal incidence of a plane-polarized beam on a calcite
crystal whose optic axis is parallel to the surface of the
crystal as shown in Fig. 22.26. We will study the state of
polarization of the beam emerging from the crystal. We will
assume the y-axis to be along the optic axis. Now, as
discussed in the previous section, if the incident beam is
x-polarized the beam will propagate as an ordinary wave and
the extraordinary wave will be absent. Similarly, if the incident
beam is y-polarized the beam will propagate as an
extraordinary wave and the ordinary wave will be absent�
these are the modes of the crystal. For any other state of
polarization of the incident beam, both the extraordinary and
the ordinary components will be present. For a negative
crystal like calcite e on n  and the e-wave will travel faster
than the o-wave; this is shown by putting s (slow) and f

(fast) inside the parenthesis in Fig. 22.26. For a positive
crystal like quartz e on n  and the e-wave will travel faster
than the o-wave.

Fig. 22.26 A linearly polarized beam making an angle 45°
with the y-axis gets converted to a LCP after
propagating through a calcite QWP; further, an
LCP gets converted to a RCP after propagating
through a calcite HWP. The optic axis in the
QWP and HWP is along the y-direction as
shown by lines parallel to the y-axis.

Let the electric vector (of amplitude 0E ) associated with
the incident polarized beam make an angle  with the y-axis;
in Fig. 22.26, has been shown to be equal to 45°�but for
the time being we will keep our analysis general and
assume to be an arbitrary angle. Such a beam can be as-
sumed to be a superposition of two linearly polarized beams
(vibrating in phase), polarized along the x- and y-directions
with amplitudes 0 sinE  and 0 cosE  respectively. The
x-component (whose amplitude is 0 sinE ) passes through
as an ordinary beam propagating with velocity 0 cosE . The
y-component (whose amplitude is 0 sinE ) passes through

as an extraordinary beam propagating with velocity / oc n .
Since e on n the two beams will propagate with different ve-
locities and, as such, when they come out of the crystal, they
will not be in phase. Consequently, the emergent beam
(which will be a superposition of these two beams) will be, in
general, elliptically polarized.

Let the plane z = 0 represent the surface of the crystal on
which the beam is incident. The x- and y-components of the
incident beam can be written in the form

0

0

sin cos

cos cos

x

y

E E kz t

E E kz t
(22.48)

where /k c represents the free-space wave number.

Thus, at z = 0, we will have

00 sin cos ;xE z E t  00 cos cosyE z E t

Inside the crystal, the x-component will propagate as an
ordinary wave (with velocity / oc n ) and the y-component will
propagate as an extraordinary wave (with velocity / ec n )

 0 sin cos ( ) (ordinary wave)x oE E n kz t

 0 cos cos ( ) (extraordinary wave)y eE E n kz t

If the thickness of the crystal is d, then at the emerging
surface, we will have

0 sin cos ( )x oE E t

0 cos cos ( )y eE E t

where o on kd and e en k d. By appropriately choosing
the instant 0t , the components may be rewritten as

0

0

sin cos

cos cos
x

y

E E t

E E t
(22.49)

where  o e o e o ek d n n n n d
c

(22.50)

represents the phase difference between the ordinary and the
extraordinary beams. Clearly, if the thickness of the crystal is
such that 2 , 4 ,6 ,... , the emergent beam will have the
same state of polarization as the incident beam. Now, if the
thickness d of the crystal is such that  = /2, the crystal is
said to be a quarter wave plate (usually abbreviated as
QWP)�a phase difference of /2 implies a path difference of
a quarter of a wavelength. On the other hand, if the thickness
of the crystal is such that  = , the crystal is said to be a
half wave plate (usually abbreviated as HWP).

Example 22.6 As an example, let us consider the case

when / 4  and / 2 , i.e., the x- and y-components of the

incident wave have equal amplitudes and the crystal introduces a
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phase difference of / 2  (see Fig. 22.24). Thus, for the emergent

beam we have

0 sin
2

x

E
E t  ; 0 cos

2
y

E
E t (22.51)

If we use a method similar to that described in Example 22.1,

we will find that a wave described by the above equation represents

a left circularly polarized wave. In order to introduce a phase

difference of / 2 , the thickness of the crystal should have a value

given by the following equation:

01

2 4o e o e

c
d

n n n n
(22.52)

where 0 is the free-space wavelength. For calcite, for
o

0 5893 A

and at 18 C, 1.65836on  and = 1.48641en . Substituting these

values, we obtain

75.893 10

4 0.17195
d  m  0.000857 mm

Thus a calcite QWP (at 
o

0 5893 A 0.5893 ) will have a

thickness of 0.000857 mm and will have its optic axis parallel to

the surface; such a QWP will introduce a phase difference of / 2
between the ordinary and the extraordinary components at

o

0 5893 A . It should be pointed out that if the thickness is an

odd multiple of the above quantity, i.e., if

02 1
4 o e

d m
n n

 ; m = 0, 1, 2, � (22.53)

then in the example considered above (i.e., when / 4), it can

easily be shown that the emergent beam will be left circularly

polarized for m = 0, 2, 4, � and right circularly polarized for

m = 1, 3, 4, �

We next consider the case when the linearly polarized
beam (with / 4 ) is incident on a HWP so that , i.e.,
the x- and y-components of the incident wave have equal
amplitudes and the crystal introduces a phase difference
of (see Fig. 22.27). Thus, for the emergent beam we have

0 cos
2

x

E
E t ; 0 cos

2
y

E
E t

which represents a linearly polarized wave with the direction
of polarization making an angle of 135° with the y-axis (see
Fig. 22.27). If we now pass this beam through a calcite QWP,
the emergent beam will be right circularly polarized as shown
in Fig. 22.27. On the other hand, if a left circularly polarized is
incident normally on a calcite HWP, the emergent beam will
be right circularly polarized as shown in Fig. 22.26.

Thus, for a HWP the thickness (for a negative crystal)
would be given by

02 1
2 o e

d m
n n

We may mention that if the crystal thickness is such that
if / 2, , 3 / 2, 2 ,...  the emergent beam will be ellipti-
cally polarized. For a positive crystal (like quartz), ne > no and
Eq. (22.49) should be written in the form

0

0

sin cos

cos cos

y

z

E E t

E E t
(22.54)

where

 e od n n
c

Fig. 22.27 If the linearly polarized beam making an angle 45° with the y-axis is incident on a HWP, the plane of polariza-
tion gets rotated by 90°; this beam gets converted to a RCP after propagating through a calcite QWP. The optic
axis in the QWP and HWP is along the y-direction as shown by lines parallel to the z-axis.
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For a quarter wave plate,

0(2 1) ; 0,1,2...
4 e o

d m m
n n

Thus, if in Fig. 22.26, the calcite QWP is replaced by a
quartz QWP, the beam emerging from the QWP will be right
circularly polarized.

Example 22.7 We consider a left circularly polarized beam

(
o

0 5893 A 0.5893 ) incident normally on a calcite crystal

(with its optic axis cut parallel to the surface) of thickness
0.005141 mm. The electric field for the incident left circularly
polarized beam at z = 0 can be written as

1 sinxE E t  ; 1 cosyE E t (22.55)

Now

6

7
0

( ) 2 0.17195 5.141 10 2
3

5.893 10
o en n d

Thus the emergent wave will be [cf. Eq. (22.49)]

1 1sin ( 3 ) sinxE E t E t ; 1 cosyE E t

which represents a right circularly polarized beam.

Example 22.8 We next consider a left circularly polarized

beam 
o

0( 5893 A)  is incident on a quartz crystal (with its optic

axis cut parallel to the surface) of thickness 0.022 mm. We assume
no and ne to be 1.54425 and 1.55336 respectively. The electric field
for the incident left circularly polarized beam at z = 0 would be
given by Eq. (22.55). Further,

5

7
0

2 0.00911 2.2 10
( ) 2 0.68

5.893 10
e on n d

Thus the emergent beam will be

1sin ( 0.68 )xE E t  ; 1 cosyE E t

which will represent a right elliptically polarized light.

PPFU exev��s�2 yp2 �yve�s�ih

vsqr�

In the earlier sections we have seen that a plane wave can be
characterized by different states of polarizations, which may
be anyone of the following:

(a) linearly polarized
(b) circularly polarized
(c) elliptically polarized
(d) unpolarized
(e) mixture of linearly polarized and unpolarized

(f) mixture of circularly polarized and unpolarized
(g) mixture of elliptically polarized and unpolarized light

To the naked eye all the states of polarizations will appear
to be the same. In this section, we will discuss the procedure
for determining the state of polarization of a light beam.

If we introduce a polaroid in the path of the beam and
rotate it about the direction of propagation, then either of the
following three possibilities can occur:

(i) If there is complete extinction at two positions of the
polarizer, then the beam is linearly polarized.

(ii) If there is no variation of intensity, then the beam is
either unpolarized or circularly polarized or a mixture of
unpolarized and circularly polarized light. We now put
a quarter wave plate on the path of the beam followed
by the rotating polaroid. If there is no variation of
intensity then the incident beam is unpolarized. If there
is complete extinction at two positions, then the beam
is circularly polarized (this is due to the fact that a
quarter wave plate will transform a circularly polarized
light into a linearly polarized light). If there is a
variation of intensity (without complete extinction)
then the beam is a mixture of unpolarized and circularly
polarized light.

(iii) If there is a variation of intensity (without complete
extinction) then the beam is either elliptically polarized
or a mixture of linearly polarized and unpolarized or a
mixture of elliptically polarized and unpolarized light.
We now put a quarter wave plate in front of the
polaroid with its optic axis parallel to the pass-axis of
the polaroid at the position of maximum intensity. The
elliptically polarized light will transform to a linearly
polarized light. Thus, if one obtains two positions of
the polaroid where complete extinction occurs, then the
original beam is elliptically polarized. If complete
extinction does not occur, and the position of maximum
intensity occurs at the same orientation as before, the
beam is a mixture of unpolarized and linearly polarized
light. Finally, if the position of maximum intensity
occurs at a different orientation of the polaroid, the
beam is a mixture of elliptically polarized and
unpolarized light.

PPFV y��sgev2 eg�s�s��

When a linearly polarized light beam propagates through an
"optically active" medium like sugar solution then�as the
beam propagates�its plane of polarization rotates. This
rotation is directly proportional to the distance traversed by

LO 5
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the beam and also to the concentration of sugar in the
solution. Indeed, by measuring the angle by which the plane
of polarization is rotated, one can accurately determine the
concentration of sugar in the solution.

The rotation of the plane of polarization is due to the fact
that the "modes" of the optically active substance are left
circularly polarized (LCP) and right circularly polarized (RCP)
which propagate with slightly different velocities (see Sec.
22.16). By "modes" we imply that if an LCP light beam is
incident on the substance then it will propagate as an LCP
beam; similarly, an RCP light beam will propagate as an RCP
beam but with a slightly different velocity. On the other hand,
if a linearly polarized light beam is incident, then we must
express the linear polarization as a superposition of an RCP
and an LCP beam and then consider the independent
propagation of the two beams. We illustrate through an
example.

We consider an RCP beam propagating in the +z direction

0

0

cos ( )

sin ( )

R
x R

R
y R

E E k z t

E E k z t
(22.56)

where R Rk n
c

 and the superscript (and the subscript) R

signify that we are considering an RCP beam. Similarly, an
LCP beam (of the same amplitude) propagating in the +z

direction can be described by the following equations:

0

0

cos ( )

sin ( )

L
x L

L
y L

E E k z t

E E k z t
(22.57)

where L Lk n
c

; nR and nL are the refractive indices

corresponding to the RCP and LCP beams respectively. If we
assume the simultaneous propagation of the two beams then
the x and y components of the resultant fields would be
given by the following equations:

0 [cos( ) cos ( )]x R LE E k z t k z t

or

   0
1

2 cos cos[ ( )]
2

x L RE E k k z t z

Similarly

   0
1

2 sin cos[ ( )]
2

y L RE E k k z t z

where

 
1

2 L Rz k k z

Thus the resultant wave is always linearly polarized with the
plane of polarization rotating with z. If the direction of the
oscillating electric vector makes an angle  with the x-axis
then [see Fig. 22.28]:

1
( )

2
L Rz k k z

2
L R L Rn n z n n z

c

(22.58)

where  is the free space wavelength. Now, if

L Rn n  the optically active substance is said to be
right-handed or dextro-rotatory

L Rn n  the optically active substance is said to be
left-handed or laevo-rotatory

For example, for turpentine,  = +37 for z = 10 cm.
As mentioned earlier, we observe optical activity even in a

sugar solution, and this is due to the helical structure of
sugar molecules. The method of determining the concentra-
tion of sugar solutions by measuring the rotation of the
plane of polarization is a widely used method in industry. It
may be noted that if nL = nR (as is indeed the case in an iso-
tropic substance) then (z) = 0 and a linearly polarized beam
remains linearly polarized along the same direction. Optical
activity is also exhibited in crystals. For example, for a lin-
early polarized light propagating along the optic axis of a
quartz crystal*, the plane of polarization gets rotated. Indeed

5 7
7 10 21

60L Rn n for z = 0.1 cm;

 0 = 0.6 m = 6000 Å

PPFW grexqi2 sx2 �ri2 �y�
@��e�i2 yp2 �yve�s�e�syxA
yp2 e2 vsqr�2 fiew
��y�eqe�sxq2 �r�y�qr
ex2 ivvs��sg2 gy�i2 �sxqviE

wyhi2 y��sgev2 psfi�

A very interesting phenomenon is the propagation of
polarized light through an elliptic core optical fiber. We will
have a brief discussion on optical fibers in Chapter 29; it will
suffice here to say that in an ordinary optical fiber we have a
cylindrical core (of circular cross-section) cladded with a

* When a wave propagates along the optic axis of a quartz crystal it is strictly speaking,  not like calcite. The modes are not linearly
polarized; they are RCP and LCP propagating with slightly different velocities.

LO 7



Polarization and Double Refraction PPFPQ
u

medium of slightly lower refractive index. The guidance of
the light beam takes place through the phenomenon of total
internal reflection (see Fig. 29.1). Because of the circular
symmetry of the problem, the incident beam can have any
state of polarization* which will be maintained as the beam
propagates through the fiber. Now, if we have an elliptic core
fiber [see Fig. 22.29(a)] then the "modes" of the fiber are
(approximately) x and y polarized; i.e., if an x-polarized beam

is incident it will propagate without any change in the state
of polarization with a certain phase velocity / x. Similarly, a
y-polarized beam will propagate as a y-polarized beam with
velocity / .y  Now, let a circularly polarized beam be

incident on the input face of the fiber at z = 0. Then we must
resolve the incident beam into x and y polarized beams
propagating with slightly different velocities. Thus

ˆ ˆ( , , ) , [ cos sin ( )]x yx y z x y z t z tE x y

(22.59)

t = 0

t = 0

t = 0

t = 0

x

x

x

x x

x

x
z

y

y

y

y y

y

y

RCP LCP LP

t t= D t t= D

t t= D

+

+

=

=

+

+

E E tx = cos0 w

E E             tx = cos ( – )0 1w f

E E tx = cos0 w

E E             tx = cos ( – )0 2w f

E E ty = sin0 w

E E            ty = sin ( – )0 1w f

f1 = k zr f2 = klz
f f f=      ( – )2 11/2

1
2

E E ty = – sin0 w

E E t ty = – sin ( – )0 2w w f

at = 0z

f1 f2
f

f

Fig. 22.28 The �clockwise� rotation of a linearly polarized wave as it propagates through a �right-handed� optically
active medium.

* We are considering here a single mode fiber so that no matter what the incident transverse field distribution is, it soon "settles down"
to the transverse field distribution of the fundamental mode which propagates with the velocity /

0
. This velocity is independent of

the SOP of the incident beam.
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where (x, y) is the transverse field distribution of the
fundamental mode which is assumed to be (approximately)
the same for both x- and y-polarizations. It may be readily
seen that if x = y , as is indeed true for circular core fibers,
the beam will remain circularly polarized for all values of z.
Now, at z = 0,

( , ) cos

( , ) sin
x

y

E x y t

E x y t
(22.60)

which represents a left-circularly polarized wave [see
Fig. 22.29 (b)]. For

1
2( )y x

z z (22.61)

i.e., for 1 1 / 2,y xz z

1 1( , ) cos ( ) ( , ) cos ( )xE x y t x y t

1 1( , ) sin ( , ) cos ( )
2

yE x y t x y t

where

1 1x z

which represents a linearly polarized wave [see Fig. 22.29(b)];
we assume the direction of the E-vector to be along the
y  axis. Similarly, at

2 12
y x

z z z

2 2

2 2

( , ) cos ( ) ( , ) cos ( )

( , )sin ( ) ( , ) sin ( )
x

y

E x y t x y t

E x y t x y t
(22.62)

where

2 2x z

and the wave will be right-circularly polarized [see
Fig. 22.29(b)]. At

3 1
3

3
2 x y

z z z

we will have

3 3( , ) cos ( ) ( , ) cos ( )xE x y t x y t

     3 3
3

( , )sin ( , ) cos( )
2

yE x y t x y t

where

3 3x z

Thus the wave would again be linearly polarized but now
the direction of the oscillating electric field will be at right
angles to the field at z = z1. In a similar manner, we can easily
continue to determine the SOP of the propagating beam.
Thus at z = 5z1, 9z1 , 13z1, � the SOP will be the same as at
z = z1 and at z = 7z1, 11z1 , 15z1 � the SOP will be the same as
at z = 3z1 . Similarly at z = 4z1, 8z1 , 12z1 � the beam will be
LCP and at z = 2z

1
, 6z

1
 , 10z

1
 � the beam will be RCP.

Now, let the fiber be rotated in such a way that the y  axis
is along the vertical line (the x  and the z-axes are assumed to
lie in the horizontal plane). Thus if we put our eyes vertically
above the fiber and view vertically down then the regions
z = z1, 5z1 , 9z1 � will appear dark (see Fig. 22.30). This is

2b
n1

n2

2a

Elliptic core optical fiber

(a)

(b)

y

x

z

LCP

RCP

LCP

y

y¢
x

z z= 1

z z= 2

z z= 3

z z= 4

z = 0

L b

Fig. 22.29 (a) The transverse cross-section of an elliptic
core fiber; the �modes� are (approximately) x-
polarized and y-polarized. (b) Propagation of a
left-circularly polarized beam incident on an el-
liptic core fiber. If we view along the y - axis
then dark spots will be observed at z = z

1
, 5z

1
,

9z
1
, �
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because of the fact that in these regions the electric field is
oscillating in the y  direction (which is the vertical direction)
and we know that if the dipole oscillates along the y

direction, there is no radiation emitted in that particular
direction (Sec. 23.5.1 and Fig. 22.16(b)). Thus by measuring
the distance between two consecutive black spots (= 4z

1
) one

can calculate z
1
 and hence y � x. Furthermore, by moving

the eyes to the horizontal plane, i.e., viewing along the x  axis
we will see the regions z = z

1
, 5z

1
 , 9z

1
, � appear bright and

the regions z = 3z
1
, 7z

1
, 11z

1
, � appear dark. Thus the

experiment not only allows one to understand the changing
SOP of a beam propagating through a birefringent fiber, but
also helps us understand the radiation pattern of an
oscillating dipole.

Example 22.9 As a numerical example, we consider an

elliptical core fiber for which

2a = 2.14 m, 2b = 8.85 m
n1 = 1.535,     n2 = 1.47

[see Fig. 22.29(a)]. For such a fiber operating at 
0
 = 6328 Å

(k
0
  9.929  104 cm�1),

0

1.506845x

k
 and 

0

1.507716y

k

The quantity

2 2
0.727b

y x

L mm

is known as the coupling length.

PPFIH �yvve��yx2 ��s�w

A Wollaston prism is used to produce two linearly polarized
beams. It consists of two similar prisms (of say calcite) with
the optic axis of the first prism parallel to the surface and the
optic axis of the second prism parallel to the edge of the
prism as shown in Fig. 22.31. Let us first consider the
incidence of a y-polarized beam as shown in Fig. 22.31(a).
The beam will propagate as an o-ray in the first prism
(because the vibrations are perpendicular to the optic axis)
and will see the refractive index no. When this beam enters
the second prism it will become an e-ray and will see the
refractive index ne. For calcite no > ne and therefore the ray
will bend away from the normal. Since the optic axis is normal
to the plane of incidence, the refracted ray will obey Snell's
laws [see Fig. 22.24 (b)] and the angle of refraction will be
given by

no sin 20° = ne sin r1

where we have assumed the angle of the prism to be 20° (see
Fig. 22.31). Assuming no  1.658 and ne  1.486, we readily
get

r1  22.43°
Thus the angle of incidence at the second surface will be

i
1
 = 22.43° � 20° = 2.43°. The output angle  

1
 will be given

by ne sin 2.43° = sin 
1
 

1
   3.61°.

We next consider the incidence of a x-polarized beam as
shown in Fig. 22.31(b). The beam will propagate as an e-ray
in the first prism and as an o-ray in the second prism. The
angle of refraction will now be given by

Fig. 22.30 Schematic of the intensity variation as seen from the top (or side) of an elliptic core fiber when a circularly
polarized beam is incident on it. The actual photograph from an experiment by Andrew Corporation is given
in Ref. 22.13.
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ne sin 20° = no sin r
2 

 r
2
  17.85°

Thus the angle of incidence at the second interface will be

i2 = 20° � 17.85° = 2.15°

The output angle 
2
 will be given by

no sin 2.15° = sin 2 2  3.57°

Thus, if an unpolarized beam is incident on the Wollaston
prism, the angular separation between the two orthogonally
polarized beams will be  = 

1
 + 

2
  7.18°; see also

Fig. 22.32.

Fig. 22.31 A Wollaston prism. The optic axis of the first prism is along the x-axis and the optic axis of the second prism
is along the y-axis. (a)  If the incident beam is y-polarized, it will propagate as an o-wave in the first prism and
an e-wave in the second prism. (b)  If the incident beam is x-polarized, it will propagate as an e-wave in the first
prism and an o-wave in the second prism. (c)  For an unpolarized beam incident normally, there will be 2
linearly polarized beams propagating in different directions. The ray paths correspond to prisms being of
calcite.

Fig. 22.32 Schematic of an actual Wollaston prism. The
prism  separates an unpolarized light beam into
two linearly polarized beams. It typically con-
sists of two properly oriented calcite prisms (so
that the optic axes are perpendicular to each
other), cemented together typically with
Canada balsam. A commercially available
Wollaston prism would have divergence angles
from 15° to about 45°.

22.11 ROCHON PRISM

We next consider the Rochon prism which consists of two
similar prisms of (say) calcite; the optic axis of the first prism
is normal to the face of the prism while the optic axis of the
second prism is parallel to the edge as shown in Fig. 22.33.
Now, in the first prism both the beams will see the same
refractive index no; this follows from the fact that the
ordinary and extraordinary waves travel with the same
velocity (= c/no) along the optic axis of the crystal.

When the beam enters the second crystal, the ordinary
ray (whose D is normal to the optic axis) will see the same
refractive index and go undeviated as shown in Fig. 19.26.
On the other hand, the extraordinary ray (whose D is along
the optic axis) will see the refractive index ne and will bend
away from the normal. The angle of refraction will be
determined from the following equation

Fig. 22.33 Production of two orthogonally polarized
beams by a Rochon prism.
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sin 25 sino en n r

Thus,

1.658
sin sin 25 0.423 0.472

1.486
o

e

n
r

n

28.2r

Therefore the angle of incidence at the second surface will
be 28.2�25° = 3.2°. The emerging angle will be given by

sin sin 3.2 0.083 4.8en

PPFIP �vexi2�e�i

��y�eqe�syx2sx

exs�y��y�sg2wihse

In this section, we will discuss the plane wave solutions of
Maxwell's equations in an anisotropic medium and prove the
various assumptions made in Sec. 22.5. The difference
between an isotropic and an anisotropic medium is in the
relationship between the displacement vector D and the
electric vector E; the displacement vector D is defined in Sec.
23.9. In an isotropic medium, D is in the same direction as E
and one can write

D E (22.63)

where  is the dielectric permittivity of the medium. On the
other hand, in an anisotropic medium D is not, in general, in
the direction of E and the relation between D and E can be
written in the form

x xx x xy y xz z

y yx x yy y yz z

z zx x zy y zz z

D E E E

D E E E

D E E E

(22.64)

where xx, xy,  are constants. One can show that [see, for
example, Ref. 22.19]

; andxy yx yz zy zx xz (22.65)

Further, one can always choose a coordinate system (i.e.,
one can always choose appropriately the directions of x, y
and z axes inside the crystal) such that

; andx x x y y y z z zD E D E D E (22.66)

This coordinate system is known as the principal axis
system and the quantities ,x y and z  are known as the

principle dielectric permittivities of the medium. If

x y z (biaxial) (22.67)

we have what is known as a biaxial medium and the
quantities

0

x
xn , 

0

y
yn , 

0

z
zn (22.68)

are said to be the principal refractive indices of the medium;

in the above equation 12 2 1 -2
0 ( 8.8542 10 C N m )

represents the dielectric permittivity of free space. If

x y z  (uniaxial) (22.69)

we have what is known as a uniaxial medium with the z-axis
representing the optic axis of the medium. The quantities

0 0

yx
on  and 

0

z
e zn n (22.70)

are known as ordinary and extraordinary refractive indices;
typical values for some uniaxial crystals are given in Table
22.1. For a uniaxial medium, since x y  the x- and

y-directions can be arbitrarily chosen as long as they are
perpendicular to the optic axis, i.e., any two mutually
perpendicular axes (which are also perpendicular to the
z-axis) can be taken as the principal axes of the medium*. On
the other hand, if

x y z  (isotropic) (22.71)

we have an isotropic medium, and can choose any three
mutually perpendicular axes as the principal axis system. We
will assume the anisotropic medium to be non-magnetic so
that

0B H

where 
0
 is the free space magnetic permeability. Let us

consider the propagation of a plane electromagnetic wave;
for such a wave the vectors E, H, D and B would be
proportional to exp [i(k.r � t)]. Thus

( ) ( )

( ) ( )

,

,

i t i t

i t i t

e e

e e

k .r k .r
0 0

k .r k .r
0 0

E E H H

D D B B

(22.72)

* This follows from the fact that for a uniaxial medium    Dx = x Ex and Dy = y Ey = x Ey.
Now, if we rotate the x-y axes (about the z-axis) by an angle  and call the rotated axes x   and y , then

Dx  = Dx cos  + Dy sin  = x (Ex cos  + Ey sin ) = x Ex

Similarly, Dy  = x Ey  implying that x -y  can also be chosen as principal axes.
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Table 22.1 Ordinary and Extraordinary Refractive Indi-

ces for some Uniaxial Crystals (Table

adapted from Ref. 22.7).

Name of the crystal Wavelength no ne

Calcite 4046 A 1.68134 1.49694

5890 A 1.65835 1.48640

7065 A 1.65207 1.48359

Quartz 5890 A 1.54424 1.55335

Lithium niobate 6000 A 2.2967 2.2082

KDP 6328 A 1.50737 1.46685

ADP 6328 A 1.52166 1.47685

where the vectors ,0 0 0E H , D and B
H
 are independent of

space and time; k represents the propagation vector of the
wave and  the angular frequency. The wave velocity vw

(also known as the phase velocity) and the wave refractive
index nw are defined through the following equations:

vw
w

c

k n
(22.73)

Thus              wk n
c

k (22.74)

In the present section, it is our objective to determine the
possible values of nw when a plane wave propagates through
an anisotropic dielectric. Now, in a dielectric medium

div D = 0  
yx z

DD D

x y z
 = 0 (22.75)

For a plane wave given by Eq. (22.72) the above equation
becomes

+ 0x x y y z zi k D k D k D = 0D.k (22.76)

implying that D is always at right angles to k. Similarly since
in a non-magnetic medium

div H = 0  H will always be right angles to k. (22.77)

Now, in the absence of any currents (i.e, J = 0) Maxwell's
curl equations [see Eqs. (23.3) and (23.4) become

0i i
t

B
E B H (22.78)

and

i
t

D
H D (22.79)

where we have assumed the medium to be non-magnetic (i.e.,
B = 0H). Now, if

( )
0

i t
e

k .r
E E

then

( )
0 0( ) ( )

y i tz
x y z z y

EE
i k E i k E e

y z

k .r
E

             = ( ) ( )y z z y xi k E k E i k E

Thus

0
0

1
( (i iE k E) H H k E) (22.80)

and

1
( (i iH k H) D D H k) (22.81)

Equations (22.80) and (22.81) show that
H is at right angles to k, E and D (22.82)

implying k, E and D will always be in the same plane.
Further [see Eq. (22.76)]

D is at right angles to k (22.83)

Substituting for H in Eq. (22.81), we get

2
0

1
D = k E k

2
0

1
( . ) ( . )k k E – k E k

(22.84)

where we have used the vector identity
(A  B)  C = (A . C) B � (B . C) A

Thus

 D = 
2

2
0

ˆ ˆ[ ( ) ]
k

E  = 
2

2
0

ˆ ˆ[ ( ) ]wn

c
E (22.85)

where

ˆ
k

k
(22.86)

represents the unit vector along k (see Fig. 22.34). Since

2
0x x x x xD E n E

we have for the x-component of Eq. (22.85)

2 2
0 0

2
x

x x x x x y y z z

w

c n
E E E E E

n

Since 2
0 01/ ( ),c  we have

2
2 2

2
0x

y z x x y y x z z

w

n
E E E

n
(22.87)

where we have used the relation 2 2 2 1x y z  (since

ˆ  is a unit vector). Similarly,
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2
2 2

2
0

y

x y x x z y y z z

w

n
E E E

n
(22.88)

2
2 2

2
0z

x z x y z y x y z

w

n
E E E

n
(22.89)

Since the above equations form a set of three
homogenous equations, for non-trivial solutions, we must
have

2
2 2

2

2
2 2

2

2
2 2

2

0

x
y z x y x z

w

y
x y x z y z

w

z
x z y z x y

w

n

n

n

n

n

n

(22.90)

We should remember that we still do not know the
possible values of nw. Indeed, for a given direction of
propagation (i.e., for given values of x , y and z) the
solutions of the above equation gives us the two allowed
values of nw. It may be mentioned that from Eq. (22.90) it
appears as if for a given direction of propagation, we will
have a cubic equation in nw

2 which would give us three roots
of nw

2; however, the coefficient of nw
6 will always be zero and

hence, there will be always two roots. We illustrate the
general procedure by considering propagation through a
uniaxial medium.

22.12.1 Propagation in Uniaxial Crystals

In this section, we will restrict ourselves to uniaxial crystals
for which

x y on n n  and z en n (22.91)

As discussed earlier, for a uniaxial crystal, the x and y

directions can be arbitrarily chosen as long as they are
perpendicular to the optic axis. Now, for a wave propagating
along any direction k, we choose our y-axis in such a way
that it is at right angles to k, i.e., the y-axis is normal to the
plane defined by k and the z-axis; obviously, the x-axis will
lie in the same plane (see Fig. 22.34). Thus we may write

sin ,x 0 and cosy z

where  is the angle that the k vector makes with the optic
axis (see Fig. 22.34). Equations (22.87)-(22.89) therefore
become

2
2

2
cos sin cos 0o

x z

w

n
E E

n
(22.92)

2

2
1 0o

y

w

n
E

n
(22.93)

and

2
2

2
sin cos sin 0e

x z

w

n
E E

n
(22.94)

Once again we have a set of three homogenous equations
and for non-trivial solutions, the determinant must be zero.
However, since two equations involve only Ex and Ez and
one equation involves only Ey we have the following two
independent solutions:

First Solution: We assume 0yE  then 0 .x zE E

From Eq. (22.93) one obtains the solution

w wo on n n (ordinary wave)  (22.95)

The corresponding wave velocity is

w wo

o

c

n
v v  (y-polarized o-wave) (22.96)

Since the wave velocity is independent of the direction of the
wave, it is referred to as the ordinary wave (usually
abbreviated as the o-wave) and hence the subscript 'o' on nw

and vw . Further, for the o-wave, the D vector (and the E

vector) is y-polarized. Thus,

for the o-wave, the D vector (and the E vector) are

perpendicular to the plane containing the k vector

and the optic axis.

[see Fig. 22.35]. This was the recipe that was given in
Eqs. (22.42) � (22.44).

y

x

y
z (optic axis)

k, k^

Fig. 22.34 In uniaxial crystals, we can always choose the
y axis in such a way that y = 0; the optic axis is
assumed to be in the z-direction. If    is the
angle that k makes with the optic axis then  x =

 sin   and  z =  cos .
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Second Solution: The second solution of Eqs. (22.92)�
(22.94) will correspond to

0yE  with , 0x zE E (22.97)

We use Eqs. (22.92) and (22.94) to obtain

2
2

2

2
2

2

cos
sin cos

sin cos
sin

o

z w

x e

w

n

E n

E n

n

Simple manipulations would give us

2 2

2 2 2 2

1 1 cos sin

w we o en n n n
(22.98)

where the subscript e refers to the fact that the wave
refractive index corresponds to the extraordinary wave. The
corresponding wave velocity would be given by

2 2 2
2 2 2

2 2 2
cos sinwe

we o e

c c c

n n n
v (22.99)

Since the wave velocity is dependent on the direction of
the wave, it is referred to as the extraordinary wave and
hence the subscript e. Of course, for the extraordinary wave,
we must have

0y y yD E

From the above equation and Eq. (22.81), it follows that
the displacement vector D of the wave is normal to the y-axis
and also to k implying that

the displacement vector D associated with the

extraordinary wave lies in the plane containing

the propagation vector k and the optic axis and is

normal to k.

[see Fig. 22.36]. This was the recipe given through
Eq. (22.44). Figure 22.36 also shows the Poynting vector
S (= E  H) which represents the direction of energy
propagation (i.e., the direction of the e-ray). The small dashes
on the extraordinary ray in Figs. 22.23(a) and (b) represent
the directions of the D vector. Let  and  represent the
angles that the S vector makes with the k vector and the
optic axis respectively (see Fig. 22.36). In order to determine
the angle  we note that

tanz z z

x x x

E D

E D

and since

    tanz

x

E

E

we get

2

2
tan tane

o

n

n

2
1

2
tan tano

e

n

n

(22.100)

Obviously, for negative crystals no > ne and  will be
positive implying that ray direction is further away from the
optic axis as shown in Fig. 22.36. Conversely, for positive
crystals no < ne and  will be negative implying that the ray
direction will be towards the optic axis.

Example 22.10 We consider calcite for which (at  = 5893 Å

and 18º C)
no = 1.65836, ne = 1.48641

If we consider k making an angle of 30º to the optic axis, then

 = 30º and elementary calculations give us  = 5.7°.

PPFIQ �e�2 �ivygs��2 exh2 �e�

�ip�eg�s�i2 sxhi�

The direction of energy propagation (or the ray propagation)
is along the Poynting vector S which is given by

S = E  H (22.101)

Thus, since the plane containing the vectors k, E and D is
normal to H, the Poynting vector S will also lie in the plane
containing the vectors k, E and D (see Figs. 22.35 and 22.36).
For the extraordinary wave, the direction of the propagation
of the wave ˆ( )  is not along the direction of energy

propagation ˆ( )s , where ŝ  is the unit vector along S. The ray
velocity (or the energy transmission velocity) rv is defined
as

r

S

u
v (22.102)

where u is the energy density. Now,

0
1 1

( ) ( )
2 2

u D.E B .H D.E H .H (22.103)

[see Sec. 23.5]. Substituting for H and D from Eqs. (22.80) and
(22.81), we obtain

1
[( ) ( ) ]

2
u H k .E k E .H

1
[ ( ) ( )]

2
k . E H k . E H

           = 
1

k .S (22.104)
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Thus Eq. (22.102) becomes

cos cos
w

r

S

kk .S

v

v (22.105)

where  is the angle between ˆ  and ŝ  (see Fig. 22.36). The
ray refractive index, nr is defined as

cos cosr w

r w

c c
n n

v v

(22.106)

In order to express E in terms of D, we refer to Fig. 22.36
and write

ˆ ˆ ˆ ˆD = D. e e + D. s s

where ê is a unit vector along the direction of the electric field
E. Thus

ˆ ˆ ˆ ˆD D. s s = D. e e cosD
E

E
(22.107)

Similarly,

ˆ ˆ ˆ ˆE = E . d d  + E . (22.108)

where d̂  represents a unit vector along the displacement

vector D. If we now substitute for ˆ ˆE E .  in Eq. (22.85),

we would get

2

2
0

ˆ ˆwn

c
D E . d d

2

2
0

coswn
D E

c
(22.109)

Substituting in Eq. (22.107), we get

ˆ ˆD D. s s
2 2

2
2 2

0 0

cos =w rn n

c c
E E

where, in the last step, we have used Eq. (22.106). Taking the
x component of the above equation (where x represents the
direction of one of the principal axes), we obtain

2 2

2 2
0 0

( ) r r
x x x y y z z x x x

x

n n
D D s D s D s s E D

c c

If we use the relations

2 2

0 0 0

1
,x

xn c  and 2 2 2 1x y zs s s

we would get

2
2 2

2
0r

y z x x y y x z z

x

n
s s D s s D s s D

n
(22.110)

Similarly

2
2 2

2
0r

x y x x z y z y z

y

n
s s D s s D s s D

n
(22.111)

2
2 2

2
0r

x z x z y y x y z

z

n
s s D s s D s s D

n
(22.112)

As in the previous section, the above set of equations
form a set of three homogenous equations. For non-trivial
solutions, we must have

x

z (optic axis)

k, S

H

y q=
D, E

Ordinary wave

Fig. 22.35 For the ordinary wave (in uniaxial crystals), D
and E vectors are in the y-direction; k and S are
in the same direction in the x-z plane and H also
lies in the x-z plane.

z (optic axis)

E

D x

S

k

H

f

y
q

Extraordinary wave

Fig. 22.36 For the extraordinary wave (in uniaxial crys-
tals), E, D, S and k vectors would lie in the x-z
plane and H will be in the y-direction. S is at
right angles to E and H; D is at right angles to k
and H.
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2
2 2

2

2
2 2

2

2
2 2

2

0

r
y z x y x z

x

r
x y x z z y

y

r
x z z y x y

z

n
s s s s s s

n

n
s s s s s s

n

n
s s s s s s

n

(22.113)

We still do not know the possible values of nr. Indeed for
a given ray direction (i.e., for given values of sx, sy and sz) the
solution of the above equation gives us the two allowed
values of nr and hence two possible values of the ray
velocities. We illustrate this by considering propagation
through uniaxial media.

22.13.1 Ray Propagation in Uniaxial
Crystals

We next consider a uniaxial crystal with its optic axis along
the z direction. Thus

x y on n n  and z en n (22.114)

As discussed in the previous section, x and y directions
can be arbitrarily chosen as long as they are perpendicular to
the z-axis. We choose the y-axis in such a way that the ray
propagates in the x-z plane making an angle  with the z-axis
(see Figs. 22.35 and 22.36); thus

sin , 0x ys s  and coszs (22.115)

and Eqs. (22.110)-(22.112) become

2
2

2
cos sin cos 0r

x z

o

n
D D

n
(22.116)

2

2
1 0r

y

o

n
D

n
(22.117)

2
2

2
sin cos sin 0r

x z

e

n
D D

n
(22.118)

Obviously, one of the roots is given by

r ro on n n  with 0x zD D  ( y-polarized) (22.119)

The corresponding ray velocity is given by

r ro
ro o

c c

n n
v v  (ordinary ray) (22.120)

Since the ray velocity is independent of the direction of
the ray, it is referred to as the ordinary ray and hence the
subscript 'o' on vr and nr . In order to obtain the other
solution we use Eqs. (22.116) and (22.118) to obtain

2
2

2

2
2

2

cos
sin cos

sin cos
sin

r

z o

x r

e

n

D n

D n

n

and obviously, Dy = 0. Simple manipulations would give
us

2 2 2 2 2 2cos sinr re o en n n n  (extraordinary ray)

(22.121)

with

2

2

/
tan

/
z e z

xx o

D n E

ED n
, 0yD (22.122)

The corresponding ray velocity is given by [cf Eq. (22.37)]

2 2 2

2 2 2 2 2 2 2

1 1 cos sin

/ /
re

r re o e

n

c c n c nv v

(22.123)

which corresponds to the extraordinary ray and hence the
subscript 'e' on vr and nr . As discussed in Sec. 22.5, the
above equation represents an ellipse and if we rotate it
around the z-axis (i.e., the optic axis) we will get an ellipsoid
of revolution. These ray velocity surfaces are used in
constructing Huygens' secondary wavelets while discussing
propagation in uniaxial crystals. For example, in Fig. 22.23 we
have a plane wave incident normally. The extraordinary wave
also propagates in a direction which is normal to the surface.
However, the extraordinary rays travel in the directions BE
and DE  with EE  representing the wavefront for the
extraordinary wave. Returning to Eq. (22.122), we obtain [see
Fig. 22.36]:

2 2

2 2

/
tan tan

/
z e o

x o e

D n n

D n n
(22.124)

Thus when the wave propagates along a direction which
makes an angle  with the optic axis, then the ray will
propagate along the direction

2
1

2
tan tano

e

n

n
(22.125)

Example 22.11 As an example, for calcite

 no = 1.65836, ne = 1.48641 with  = 30°
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we obtain   35.7°. Thus the ray direction is further away from

the optic axis, consistent with what is shown in Fig. 22.36.

PPFIR tyxi�2 gevg�v��

Through Jones calculus, it becomes quite straightforward to
determine the polarization state of the beam emerging from a
polarizer or a phase retarder (like a QWP or a HWP); it was
introduced by R C Jones in 1941. We will illustrate this
through some simple examples. We use the exponential
notation�for example, an x-polarized beam (propagating in
the + z direction) is described by

0, i kz t
xE z t E e  and , 0yE z t (22.126)

As discussed earlier, in the exponential notation, the
actual field is the real part of the right hand sides of Eq.
(22.126). We will represent such a wave by the vector

0E xE (22.127)

where
1

0
x (22.128)

is the normalized Jones vector representing the x-polarized

wave; the symbol x  is read as "ket x" and represents an x-

polarized wave. Similarly, a y- polarized beam (propagating in
the + z direction) is described by

, 0xE z t  and 0, i kz t
yE z t E e (22.129)

and would be represented by the vector

0E yE (22.130)

where
0

1
y (22.131)

is the normalized Jones vector representing the y-polarized
wave. In writing | E  [see Eqs. (22.127) and (22.130)], the

phase factor i kz t
e is suppressed. Now, for an RCP wave

propagating in the z direction [see Eqs. (22.23), (22.24) and
Fig. 22.16(a)], we may write

0, i kz t
xE z t E e

and

2
0 0,

i kz t
i kz t

yE z t E e iE e (22.132)

Thus, neglecting the common phase factor, the normalized
Jones vector representing the RCP wave will be

11
RCP

2 i
(22.133)

where the factor 1/ 2  normalizes the vector; a normalized
vector will be given by

2 2

1 a

b
a b

Similarly, the normalized Jones vector representing the
LCP wave, will be

11
| LCP

2 i
(22.134)

We can express RCP  and LCP  as superposition of x

and y-polarized waves with a phase difference; thus

 
11 1

RCP
2 2

x i y
i

(22.135)

and   
11 1

LCP
2 2

x i y
i

(22.136)

Also      
1 1

RCP LCP
0 2

x (22.137)

and       
0 1

RCP LCP
1 2

y
i

(22.138)

A linearly polarized light oriented at  with respect to the
x-axis [see Fig. 22.26] will be given by (from now on, we will
be measuring the angle with respect to the vertical axis)

cos
LP cos sin

sin
x y (22.139)

We next consider a calcite (or a quartz) phase retarder like
a QWP or a HWP; we assume its optic axis to be along the
y-axis (see Fig. 22.26). The "modes" of such a device are
linearly polarized along the x and y directions; the x-polarized
wave will be the ordinary wave and the y-polarized wave will
be the extraordinary wave. Thus if ( )xE z d and ( )yE z d

are the x and y components of the electric field after
propagating through the retardation plates (of thickness d)
then

0oi k d
x xE z d e E z

and 0ei k d
y yE z d e E z

LO 11
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where

0

2
o ok n  and 

0

2
e ek n (22.140)

Since, only the relative phase difference is of relevance, we
may write

0

0 1

i
x

y

E z d e

E z d
 

0 0

0 0

x x

PR

y y

E z E z
T

E z E z

where

0

2
o e o ek k d n n d (22.141)

is the phase difference introduced by the phase retarder and
TPR is Jones matrix for the phase retarder and is given by

0

0 1

i

PR

e
T (22.142)

For a negative crystal like calcite, no > ne , and  will be
positive; the y-polarized extraordinary wave will travel faster
than the x-polarized ordinary wave. Thus for a calcite QWP

(with its optic axis along the y direction),  = 
2

 and

fy

0

0 1QWP

i
T  (fast axis along the y direction)(22.143)

where the subscript 'fy' denotes the fact that the fast axis is
along the y direction. For a quartz QWP, no < ne and with its

optic axis along the y direction, 
2

 and

sy

0

0 1QWP

i
T  (slow axis along the y direction)

(22.144)

where the subscript 'sy' denotes the fact that the slow axis is
along the y direction.

Example 22.12 Consider a x-polarized wave incident

normally on a QWP with its fast axis along the y direction then the
output SOP will be

fy

0 1 1

0 1 0 0QWP

i
T x i (22.145)

Thus a x-polarized wave remains a x-polarized wave; similarly,
a y-polarized wave will remain y-polarized�these are the "modes"
of the QWP. We next consider a linearly polarized wave oriented

with 
4

 (see Fig. 22.26) incident normally on the same QWP;

the output SOP will be

fy

0 1 11
LP 45 LCP

0 1 12 2
QWP

i i
T

i
(22.146)

which is a left circularly polarized wave (see Fig. 22.26). If the
same linearly polarized wave was incident normally on a QWP with
its slow axis along the y direction then the output SOP will be

sy

0 1 11
LP 45 RCP

0 1 12 2
QWP

i i
T

i

which represents a right circularly polarized wave. On the other

hand, if = /6, the output SOP will be

fy

0 1 3 3 3
LP 60 LEP

0 1 2 2 21
QWP

i i i
T

ii

which is a left elliptically polarized wave.

For a HWP,  for calcite and for quartz. Thus

for both cases

1 0

0 1HWPT (22.147)

One could have also used the fact that

fy fy fyHWP QWP QWPT T T

Example 22.13 Consider a linearly polarized wave (making

an angle of 45° with the x-axis) incident normally on a HWP with
its fast axis along the y direction then the output SOP will be

fy

1 0 1 11 1
LP 45

0 1 1 12 2
HWPT (22.148)

Thus the polarization state gets rotated by 90° (see Fig. 22.27).
What would happen if the incident linearly polarized wave makes
an angle of  with the x-axis?

Example 22.14 In this example, we will calculate the Jones

matrix for a phase retarder whose fast axis makes an angle  with
respect to the x-axis (see Fig. 22.37); we write the Jones matrix for
the phase retarder as

fPR

a b
T

c d
 (fast axis making  with the x-axis)

For a x-polarized wave incident on such a phase retarder, the output
will be given by
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f

1
output

0PR

a b a
T x

c d c
(22.149)

Now

1
cos sin

0
x f s (22.150)

where

  
cos

sin
f  and 

sin

cos
s (22.151)

represent the Jones vectors for linearly polarized waves along the
fast and slow axes respectively. Now, for an x-polarized wave
incident on a phase retarder, the output will be

output cos sinf sik d ik d
f e s e

          
cos sin

cos sin
sin cos

fik d ie e (22.152)

where

0

2
s f s fk k d n n d (22.153)

is the phase shift introduced by the phase retarder. Neglecting the

unimportant phase factor fik d
e  and comparing with Eq. (22.149),

we get

2 2cos sin ia e and cos sin (1 )i
c e

Similarly, for a y-polarized wave incident on the phase retarder,
the output will be given by

f

0
output

1PR

a b b
T y

c d d
(22.154)

Since      
0

sin cos
1

y f s (22.155)

the output for a y-polarized wave incident on the phase retarder
will be

output sin cosf sik d ik d
f e s e

          
cos sin

sin cos
sin cos

fik d ie e (22.156)

Once again, neglecting the unimportant phase factor fik d
e  and

comparing with Eq. (22.154), we get

cos sin (1 )ib e  and 2 2sin cos id e

Thus

2 2

f 2 2

cos sin cos sin 1

cos sin 1 sin cos

i i

PR
i i

e e
T

e e

(fast axis making  with the x-axis) (22.157)

For a QWP,  = /2, and we obtain

2 2

2 2f

cos sin 1 cos sin

1 cos sin sin cos
QWP

i i
T

i i

(fast axis making  with the x-axis) (22.158)

For a HWP  = , and we obtain

f

cos2 sin 2

sin 2 cos2HWPT

(fast axis making  with the x-axis) (22.159)

When the fast axis is along the y direction,  = /2 and we obtain
Eqs. (22.143) and (22.147) respectively. We may note that (THWP)f

can also be obtained by using the following relation

f f fHWP QWP QWPT T T (22.160)

Using a similar method, the Jones matrix for a linear polarizer
making an angle  with the vertical axis (x-axis) can easily be
calculated; it is given by

2

2

cos sin cos

sin cos sin
LPT (22.161)

Example 22.15 Consider a RCP beam incident on a linear

polarizer making an angle  with the x-axis; the polarization state
of the output beam will be

2

2

cos sin cos 1 cos1 1
( ) RCP

sin2 2sin cos sin

i
LPT e

i

which represents a linearly polarized wave with its electric vector
making an angle  with the vertical (i.e., x-axis) but with intensity
half of the incident intensity. This can be easily understood by the

Fig. 22.37 The fast axis of the phase retarder makes an
angle   with the x-axis. The propagation of the
wave is in the +z direction, which is going into
the page.
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fact that the RCP can be written as a superposition of two linearly
polarized waves one with its electric vector making an angle  with
the x-axis and the other at right angles to this direction; this
component gets absorbed by the linear polarizer.

Example 22.16 Consider a x-polarized wave incident on a

linear polarizer making an angle  with the x-axis; the polarization
state of the output beam will be

2

2

cos sin cos 1 cos
( ) cos

0 sinsin cos sin
LPT x

which represents a linearly polarized wave with its electric vector
making an angle  with the x-axis but with intensity cos2  of the
incident intensity; this is obvious from Malus' law. Similarly, if a y-
polarized wave was incident on the linear polarizer, the output will
again be a linearly polarized wave with its electric vector making an
angle  with the x-axis but now with intensity sin2  of the
incident intensity.

Example 22.17 The Jones matrix for a linear polarizer

making an angle 45° with the x-axis (see Fig. 22.26) followed by a
QWP with its fast axis along the y direction will be

/4fy

0 1 11 1

0 1 1 1 1 12 2
QWP LP

i i i
T T

One can easily show that any state of polarization incident on
such a system will produce a LCP. For example, if we have a
linearly polarized wave (making an angle 30° with the x-axis)
incident on the system, then the output will be

/4fy
output LP 30QWP LPT T

          
1 3 11 1 13

1 12 2 2 2 22

ii i

i

which is an LCP with intensity (2 3 ) / 4  of the incident

intensity; this number is nothing but cos2 15° which follows from
the law of Malus.

The Jones matrix for a Right Polarization Rotator (like an
optically active medium or a Faraday rotator) is given by

cos sin

sin cosRPRT (22.162)

Example 22.18 Consider a RCP beam incident on a Right

Polarization Rotator; the polarization state of the output beam will
be

RCPRPRT

cos sin 1 11 1
RCP

sin cos 2 2
i ie e

i i

Thus a RCP beam will come out as a RCP beam. Similarly, a
LCP beam will come out as a LCP beam

Example 22.19 Consider a linearly polarized beam with the

electric field along a direction making an angle  with the x-axis
incident on a Right Polarization Rotator (see Fig. 22.28), thus

LPRPRT

coscos sin cos

sin cos sin sin
(22.163)

showing that the linear polarization will rotate the state of linear
polarization by an angle  in the clockwise direction.

Similarly, the Jones matrix for a left polarization rotator is given
by

cos sin

sin cosLPRT (22.164)

When a RCP (or a LCP) wave propagates through a right (or
left) polarization rotator, the state of polarization does not change.
On the other hand when a linearly polarized wave propagates
through a right (or left) polarization rotator, the state of
polarization remains linear but gets rotated in the clockwise
direction for a right polarization rotator and in the anti-clockwise
direction for a left polarization rotator.

An elliptically polarized wave [described by Eqs. (22.18) and
(22.19)] will be given by

i k z t
xE a e  and i k z t

yE b e (22.165)

where a and b are assumed to be real and positive. The
corresponding normalized Jones vector will be

2 2

1
EP

i

a

bea b
(22.166)

If 
2

, we will have a right elliptically polarized wave with

its axes along the x and y directions:

REP ; 
/22 2

cos1

sini

a

ibea b

        1tan with 0
2

b

a
(22.167)

On the other hand, if 
2

, we will have a left elliptically

polarized wave with its axes along the x and y directions:

/22 2

cos1
LEP

sini

a

ibea b
;

     1tan with 0
2

b

a
(22.168)



Polarization and Double Refraction PPFQU
u

Example 22.20 In Examples 22.1�22.4, we had assumed

b = a; the corresponding Jones vector will be

1
EP

x

i
y

E
a

E e
(22.169)

where a is assumed to be positive. We now rotate the coordinates
by angle  (see Sec. 22.4.1) to obtain

cos sin

sin cos
x

y

E E

EE

       /2
sin11 1 22

1 12
cos

2

i

i

a
i ae

e
i

(22.170)

where we have used the fact that for b = a,  = /4. Thus,
neglecting the common phase factors, we get

2 sin cos and  2 cos sin
2 2

E a t E a t

which represents the equation of an ellipse [see Eq. (22.27)] with
its axes along the  and  axes; the ratio of the major to minor axis

is tan
2

 (see Example 22.5). As can be easily seen for  = /2 we

will have a RCP wave and for  = 3 /2 we will have a LCP wave;
in general for, 0 <  <  we will have a REP wave and for  <  <
2  we will have a LEP wave (see Fig. 22.17)�the ellipse becoming
a straight line for  = 0, , 2 .

The use of Jones matrices makes it very straightforward to
consider more complicated cases like two QWP with their axes at

an angle.

PPFIS pe�ehe�2�y�e�syx

An electromagnetic wave is propagating through a dielectric.
If we apply a static magnetic field along the direction of
propagation of the wave, the modes are now Right Circularly
Polarized (RCP) and Left Circularly Polarized (LCP) . Thus a
RCP wave will propagate as a RCP wave with a particular
velocity, and a LCP wave will also propagate as a LCP wave
but with a slightly different velocity (see Fig. 22.38 and Sec.
22.16.2). Thus the situation is somewhat similar to the
phenomenon of optical activity discussed in Sec. 22.8.
Consider now a linearly polarized light propagating through
such a medium. The linearly polarized light can be expressed
as a superposition of an RCP wave and a LCP wave and since
they propagate with different velocities, the direction of the
electric vector will get rotated�this rotation is usually
referred to as Faraday rotation after the famous physicist
Michael Faraday who discovered this phenomenon in 1845.
The angle  by which the plane of polarization rotates is
given by the empirical formula

 = V Hl (22.171)

where H is the magnetic field l is the length of the medium
and V is called the Verdet constant. For silica V  2.64 10�4

degrees/ampere  4.6  10�6 radians/ampere.

22.15.1 The Faraday Isolator

One of the very important applications of Faraday rotation is
in the construction of the device known as the Faraday
isolator [see Fig. 22.39 (a) and (b)]. Faraday isolators allow
light to pass through only in one direction and are
extensively used to avoid optical feedback. In Fig. 22.39, P1

and P
2
 are two linear polarizers with pass axes at 45° to each

other. The Faraday rotator is chosen to give a 45° degree
rotation. The light beam incident from the left gets polarized
along the x-direction. The x-polarized light passes through
the Faraday rotator which rotates the state of polarization by
45°. Thus the beam coming out of the Faraday rotator is
polarized along the x  direction and is along the pass axis of
the second polarizer P2 [see Fig. 22. 39(a)]. Thus the light
passes through and for a good isolator the transmission can
be very high. Now if a light beam is incident from the right, it
will get polarized along the x -direction. The x  polarized light
passes through the Faraday rotator which will further rotate

Fig. 22.38 An electromamgnetic wave is propagating
through a dielectric. If  we apply a static magnet
field along the direction of propagation of  the
wave, the modes are now Right Circularly Po-
larized (RCP) and Left Circularly Polarized
(LCP). (a) Thus a right circularly polarized wave
will propagate as a right circularly polarized
wave with a particular velocity, and (b) a left
circularly polarized wave will also propagate as
a left circularly polarized wave but with a
slightly different  velocity.(c) If  a linearly po-
larized wave is incident, the direction of the
electric vector will get rotated.
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the state of polarization by 45°. Thus the beam coming out of
the Faraday rotator is polarized along the y direction and is
perpendicular to the pass axis of the second polarizer P1-thus
no light will pass through P1 [see Fig. 22.39 (b)]. We must
note that if the magnetic field is along the + z direction, then
for the wave propagating along the + z direction [see Fig.
22.39(a)] the rotation will be in the clockwise direction. On
the other hand, for the wave propagating along the �z

direction [see Fig. 22.39 (b)], the magnetic field is opposite to
the direction of propagation and the Faraday rotation will be
in the anti-clockwise direction.

In the wavelength region 0.7 to 1.1 m one often uses
terbium-doped borosilicate glass. Faraday isolators are
extensively used in many fiber optic devices and in the

wavelength range 1.3 to 1.55 m (which is the wavelength
range of interest in fiber-optic communication systems) one
often uses YIG (Yttrium Iron Garnet) crystals.

22.15.2 Large Current Measurement using
Faraday Rotation

The Faraday rotation has a very important application in
measuring large currents using single-mode optical fibers.
We consider a large length of a single mode fiber wound in
many turns in the form of a loop around a current-carrying
conductor (see Figs. 22.40 and 22.41). If a current I is passing
through the conductor then by Ampere's law

d NIH. l (22.172)

where N represents the number of loops of the fiber around
the conductor. Thus if a linearly polarized light is incident on
the fiber, then its plane of polarization will get rotated by the
angle

 = VNI (22.173)

The rotation  does not depend on the shape of the loop.
As an example, for I = 200 amperes and N = 50,   0.26
degrees. The light from the fiber is allowed to fall on a
Wollaston prism and the outputs are measured separately;
the Faraday rotation  is given by

1 2

1 2

constant
I I

I I
(22.174)

Fig. 22.39 P1 and P2 are two linear polarizers  with pass axes
at 45° to each other. (a) The light beam incident
from the left gets polarized along the x direc-
tion. The x-polarized light passes through the
Faraday rotator which rotates the state of polar-
ization by 45°, which is along the pass axis of the
second polarizer P2; thus the light passes
through. (b) An arbitrarily polarized light beam
(incident from the right), will get polarized
along the x  direction. The x -polarized light
passes through the Faraday rotator which will
further rotate the state of polarization by 45°.
Thus the beam coming out of the Faraday rota-
tor will be polarized along the y direction and is
perpendicular to the pass axis of the second po-
larizer P1�thus no light will pass through P1.

Current carrying
conductor

Single mode fiber

Electronic
processor

I2

I1

I

Wollaston prism

Fig. 22.40 A single-mode fiber wound helically around a
current carrying conductor. The rotation of the
plane of  polarization is detected by passing the
light through a Wollaston prism and then an
electronic processor.
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where I1 and I2 are the currents in the electronic processor
due to the two beams coming out of the Wollaston prism.
Figure 22.41 shows an actual variation of the output with the
current passing through the conductor. Such a set up can be
used to measure very high currents (~ 10000 amperes).

PPFIT �riy��2 yp2 y��sgev
eg�s�s��

As mentioned earlier, in an isotropic dielectric, the D vector
is in the same direction as E and we have

2
0nD E E (22.175)

where 0 (= 8.854  10�12 MKS units) is the permittivity of

free space and 0( / )n  is the refractive index of the
medium. Now, if we dissolve cane sugar in water, the medium
is still isotropic; however, because of the spiral like structure
of sugar molecules, the relation between D and E is given by
the following relation

2
0

2
0

ˆ

ˆ

n ig

n i

D E E

E E
(22.176)

where

2
0

g

n

and ˆ  is the unit vector along the direction of propagation
of the wave. The parameter  can be positive or negative but
it is usually an extremely small number (<<1). Without any
loss of the generality, we may assume propagation along the
z-axis so that x = y = 0 and z = 1 giving

ˆ ˆ ˆ

ˆ ˆ ˆy x

x y z

E E

E E E

x y z

E x y

Thus,

2
0

2
0

2
0

0

0

0 0

x x

y y

z z

n igD E

D ig n E

D En

(22.177)

The  matrix is still Hermitian but there is a "small" off
diagonal imaginary element. The presence of these off
diagonal terms give rise to optical activity. We rewrite
Eq. (22.85)

2

2
0

ˆ ˆwn

c
E

We write the x and y components of the above equation
and since x = 0 = y and z = 1, we get

2
2

02
0

w
x x x y

n
E D n E igE

c

Fig. 22.41 The experimental setup at IIT Delhi to measure large currents by measuring Faraday rotation. Slide courtesy:
Professor  Chandra Sakher, IIT Delhi; a colored photograph appears as Fig. 34 in the prelim pages.
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and

                 
2

2
02

0

w
y y x y

n
E D igE n E

c

Thus,

             
2

2
1w

x y

n
E i E

n

and

             
2

2
1w

y x

n
E i E

n

where we have used the fact that 0 01c . For non-

trival solutions
22

2
2

1wn

n

giving

                1wn n (22.178)

and

                              y xE iE (22.179)

We write the two solutions as ( 1 )Rn n  and

( 1 )Ln n ; the corresponding propagation constants
will be given by

1R Rk k n n
c c

(22.180)

and

            1L Lk k n n
c c

(22.181)

For w Rn n , if

     0
Ri k z t

xE E e

then

     2
0

Ri k z t

y xE iE E e

which would represent an RCP (Right Circularly Polarized)
wave and hence the subscript R. Similarly, For w Ln n , if

     0
Li k z t

xE E e

then

     2
0

Li k z t

y xE iE E e

which would represent an LCP (Left Circularly Polarized)
wave and hence the subscript L. The RCP and LCP waves
are the two "modes" of the "optically active" substance and
for an arbitrary incident state of polarization, we must write it
as a superposition of the two modes and study the
independent propagation of the two modes. Now,

1 1R Ln n n n (22.182)

If d grams of pure cane sugar is dissolved in 100 gm of
water solution, then for  = 5893 Å (sodium light)

62.2 10R Ln n d

Thus, if d = 5 gm then 51.1 10R Ln n  and   0.83 
10�5 where we have assumed n  1.33. Further, the angle of
rotation is given by [see Eq. (22.58)]

0
L Rn n z (22.183)

The specific rotation  is defined as the angle through
which the plane of polarization rotates in traversing through
a distance of 1 cm; thus

0
l rn n (22.184)

where 
0
 is measured in centimeters. For the sugar solution

mentioned above (5 gm dissolved in 100 gm of water
solution)

  � 0.59 radians/cm
the negative sign indicating that the direction of polarization
is in the anticlockwise direction.

22.16.1 Optical Activity in Quartz

One observes optical activity for a plane polarized wave
propagating along the optic axis of a quartz crystal. The
general theory of propagation of electromagnetic wave in
such crystals is quite difficult; however, if the propagation is
not along the optic axis the "modes" are very nearly linearly
polarized and one may use the analysis discussed in Sec.

0

0.2

0.4

0.6

0.8

1

1.2

O
u
tp

u
t 
(V

)

0 200 400 600 800 1000

Applied current (Amp)

Fig. 22.42  A typical variation of the output signal with cur-
rent [Figure kindly provided by Dr.
Parthasarathi Palai].
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(22.16). If the propagation is along the z-axis then we may
write [cf. Eq. (22.177)]

2
0

2
0

2
0

0

0

0 0

ox x

y o y

z ze

n igD E

D ig n E

D En

(22.185)

where no and ne are constants of the crystal. Carrying out an
identical analysis, we could get

1
1

2
R on n

and

                    
1

1
2

L on n

giving

             R L on n n

and

                     
0 0

o
L R

n
n n

where 0 is measured in centimeters. For quartz,

8.54 radians/cm at 0 = 4046.56 Å

3.79 radians/cm at 
0
 = 5892.90 Å

 2.43 radians/cm at 0 = 7281.35 Å

[data adapted from Ref. 22.17]. In quartz, we can have nR > nL

or nR < nL. For 0 = 4046.56 Å, we readily get
41.1 10L Rn n

At higher wavelengths, the value of L Rn n  is much

less. We may compare the above value with the value of
20.9 10e on n .

PPFIU �riy��2 yp2 pe�ehe�
�y�e�syx

As discussed in Sec. 7.5, the equation of motion for the
electron, in the presence of an external electric field E is
given by [see Eq. (7.62)]:

2
2
02

d q

mdt

r
r E (22.186)

In the presence of a static magnetic field B, we would
have an additional (v  B) term:

2
2
02

d q q

m mdt

r
r E r B (22.187)

where ˆ ˆ ˆx y zr x y z represents the position vector of the
electron, ˆ ˆ ˆ, andx y z are the unit vectors and q (= +1.6 
10�19 C) is the magnitude of the electronic charge. We
assume the magnetic field to be in the z-direction

Bx = 0 = By and Bz = B
0

(22.188)

Thus,

0

0

ˆ ˆ ˆ

ˆ ˆ

0 0

dx dy dz dy dx
B

dt dt dt dt dt

B

x y z

r B x y (22.189)

Now, for a circular polarized light wave propagating along
the z-direction

0ˆ ˆ i kz t
i E eE x y (22.190)

where the upper and lower signs correspond to RCP and LCP
respectively. If we now write the x and y components of
Eq. (22.187), we would get

2
2 0
0 02

i kz td x qB dy q
x E e

m dt mdt
(22.191)

and

      
2

2 0
0 02

i kz td y qB dx q
x i E e

m dt mdt
(22.192)

where the upper and lower signs correspond to RCP and LCP
respectively. Writing

0
i kz t

x x e  and 0
i kz t

y y e

we get

2 2 2 2
0 0 0 0 0c

q
x i y E

m
(22.193)

2 2
0 0 0 0c c

q
y i x i E i

m
(22.194)

where

0
c

qB

m
(22.195)

is the electron cyclotron frequency. If we multiply Eq.
(22.191) by ( 2 � 

0

2 ) and Eq. (22.192) by �i c  and add the
two equations, we would get

22 2 2 2 2 2
0 0 0 0c c

q
x E

m

giving

                                 0
0 2 2

0 c

qE
x

m
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Similarly,

0
0 02 2

0 c

qE
y i ix

m

Thus, the polarization is given by

 

0

2 2
0

ˆ ˆ i kz t

c

qE i
Nq Nq e

m

x y
P r

E

where the susceptibility  is given by

2

2 2
0

1

c

Nq

m

Thus the modes are circularly polarized and the
corresponding refractive indices are given by [cf. Eq. (7.84)]

2
2

2 2
0 0

1
1

c

Nq
n

m

where the upper and lower signs correspond to RCP and LCP
respectively.

Problems

22.1 Discuss the state of polarization when the x and y compo-
nents of the electric field are given by the following
equations:

(a)
0

0

cos( )

1
cos ( )

2

x

y

E E t kz

E E t kz

(b)
0

0

sin ( )

cos( )

x

y

E E t kz

E E t kz

(c)

0

0

sin
3

sin
6

x

y

E E kz t

E E kz t

(d)

0

0

cos
4

1
sin

2

x

y

E E kz t

E E kz t

In each case, plot the rotation of the tip of the electric vector
on the plane z = 0.
[Ans: (a) Linearly polarized, (b) Right-circularly polarized,

(c) Left-circularly polarized, and (d) Left-elliptically
polarized.]

22.2 The electric field components of a plane electromagnetic
wave are

Ex = 2 E
0
cos ( t � kz + ); Ey = E

0
 sin ( t � kz)

Draw the diagram showing the state of polarization (i.e., cir-
cular, plane, elliptical or unpolarized) when
 (a)  = 0
(b)  = /2
(c)  = /4

22.3 Using the data given in Table 22.1, calculate the thickness of
quartz half-wave plate for 0 = 5890Å.

 [Ans: 32.34 m]
22.4 A right-circularly polarized beam is incident on a calcite half-

wave plate. Show that the emergent beam will be
left-circularly polarized.

22.5 What will be the Brewster angle for a glass slab (n = 1.5)
immersed in water (n = 4/3)?

[Ans: 48.4°]
22.6 Consider the normal incidence of a plane wave on a quartz

quarter wave plate whose optic axis is parallel to the surface
(see Fig. 22.26). Thus the optic axis is along the y-axis and
the propagation is along the z-axis. Show that Ex propagates
as an o-wave and Ey as an e-wave.
(a) Assuming

0

0

cos
at 0

cos
x

y

E E t
z

E E t

show that the emergent light would be right circularly
polarized.

(b) On the other hand, if one assumes

0

0

sin
at 0

cos
x

y

E E t
z

E E t

show that the emergent beam is linearly polarized.
22.7 Show that the angle between the vectors D and E is the same

as between the poynting vector S and the propagation vec-
tor k.

22.8 Consider the propagation of an extraordinary wave through a
KDP crystal. If the wave vector is at an angle of 45° to the
optic axis, calculate the angle between S and k. Repeat the
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calculation for LiNbO
3. The values of no and ne for KDP and

LiNbO3 are given in Table 19.1.
[Ans: 1.56° and 2.25°]

22.9 Prove that when the angle of incidence corresponds to the
Brewster angle, the reflected and refracted rays are at right
angles to each other.

22.10 (a) Consider two crossed polaroids placed in the path of an
unpolarized beam of intensity Io (see Fig. 22.6). If we
place a third polaroid in between the two then, in gen-
eral, some light will be transmitted through. Explain this
phenomenon.

(b) Assuming the pass axis of the third polaroid to be at
45° to the pass axis of either of the polaroids, calculate
the intensity of the transmitted beam. Assume that all
the polaroids are perfect.

 [Ans: 1/8 Io]
22.11 A quarter-wave plate is rotated between two crossed

polaroids. If an unpolarized beam is incident on the first
polaroid, discuss the variation of intensity of the emergent
beam as the quarter-wave plate is rotated. What will happen
if we have a half-wave instead of a quarter-wave plate?

22.12 In the above problem, if the optic axis of the quarter-wave
plate makes an angle of 45° with the pass axis of either
polaroid, show that only a quarter of the incident intensity
will be transmitted. If the quarter-wave plate is replaced by
a half-wave plate, show that half of the incident intensity
will be transmitted through.

22.13 For calcite the values of no and ne for 0 = 4046Å are
1.68134 and 1.49694 respectively; corresponding to 

0
 =

7065Å the values are 1.65207 and 1.48359 respectively. We
have a calcite quarter-wave plate corresponding to 

0
 =

4046Å. A left-circularly polarized beam of 
0
 = 7065Å is

incident on this plate. Obtain the state of polarization of the
emergent beam.

22.14 A HWP (half wave plate) is introduced between two crossed
polaroids P1 and P2. The optic axis makes an angle 15° with
the pass axis of P1 as shown in Fig. 22.43(a) and (b). If an
unpolarized beam of intensity I0 is normally incident on P1

and if I1, I2, and I3 are the intensities after P1, after HWP and
after P2 respectively then calculate I1/I0, I2/I0 and I3/I0.

[Ans: ½, ½, 1/8]

22.15 Two prisms of calcite (n0 > ne) are cemented together as
shown in Fig. 22.44, so as to form a cube. Lines and dots
show the direction of the optic axis. A beam of unpolarized
light is incident normally from region I. Assume the angle of
the prism to be 12°. Determine the path of rays in regions II,
III and IV indicating the direction of vibrations (i.e., the di-
rection of D).

Fig. 22.44

22.16 Consider a calcite QWP whose optic axis is along the y-axis
(see Fig. 22.26). By using Jones matrices, obtain the output
state of polarization when the incident beam is
(a) x polarized
(b) y polarized
(c) Left Circularly Polarized (LCP)
(d) Linearly Polarized with its E making an angle of 45°

with the x-axis
(e) Linearly Polarized with its E making an angle of 60°

with the x-axis

(f) Left Elliptically Polarized (LEP) with its E given by

0

0

3
cos

2
1

sin
2

x

y

E E k z t

E E k z t

(22.196)

22.17 Consider a calcite HWP whose optic axis is along the y-axis
(see Fig.22.26). By using Jones matrices, obtain the output
state of polarization when the incident beam is

(a) x-polarized

(b) y polarized
(c) Left Circularly Polarized (LCP)
(d) Linearly Polarized with its E making an angle of 45°

with the x-axis
(e) Linearly Polarized with its E making an angle of 60°

with the x-axis
(f) Left Elliptically Polarized (LEP) with its E given by Eq.

(22.196).

22.18 A /6 plate is introduced in between the two crossed
polarizers in such a way that the optic axis of the /6 plate
makes an angle of 45° with the pass axis of the first polar-
izer (see Fig. 22.45). Consider an unpolarized beam of
intensity I0 to be incident normally on the polarizer. Assume
the optic axis to be along the x-axis and the propagation along
the z-axis. Write the x and y components of the electric fieldsFig. 22.43
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(and the corresponding total intensities) after passing
through (i) P

1 (ii) /6 plate and (iii) P2.

Fig. 22.45

22.19 A beam of light is passed through a polarizer. If the polarizer
is rotated with the beam as an axis, the intensity I of the
emergent beam does not vary. What are the possible states
of polarization of the incident beam? How to ascertain its
state of polarization with the help of the given polarizer and
a QWP?

22.20 Consider a Wollaston prism consisting of two similar prisms
of calcite (no = 1.66 and ne = 1.49) as shown in Fig. 22.31,
with angle of prism now equal to 20°. Calculate the angular
divergence of the two emerging beams.

22.21 (a) Consider a plane wave incident normally on a calcite
crystal with its optic axis making an angle of 20° with
the normal [see Fig. 22.23(a)]. Thus  = 20°. Calculate
the angle that the Poynting Vector will make with the
normal to the surface. Assume no  1.66 and ne  1.49.

(b) In the above problem assume the crystal to be quartz
with no  1.544 and ne  1.553.

 [Ans: (a) 4.31°]
22.22 Write the Jones matrix for a linear polarizer whose pass axis

makes an angle of +45° with respect to the x-axis; the x-axis
is assumed to be along the vertical direction (see Fig. 22.6).
Use Jones matrices to write the output state of polarization
when
(a) the incident beam is linearly polarized along the x-axis
(b) the incident beam is linearly polarized along a direction

which makes an angle of +45° with respect to the x-axis
(c) the incident beam is linearly polarized along a direction

which makes an angle of �45° with respect to the x-axis,
and when

(d) the incident beam is right circularly polarized
22.23 Write the Jones matrix for a QWP whose fast axis is along

the y direction and also for a linear polarizer whose pass axis
makes an angle of � 45° with respect to the x-axis.
(a) An x-polarized beam is incident first on the QWP and

then on the linear polarizer. Use Jones matrices to write
the output state of polarization.

(b) We now reverse the ordering of the elements. The x-po-
larized beam is incident first on the linear polarizer and
then on the QWP. Use Jones matrices to write the out-
put state of polarization.

22.24 The Jones matrix for a QWP, with its fast axis making an
angle  with respect to the x-axis, is given by

2 2

2 2f

cos sin 1 cos sin

1 cos sin sin cos
QWP

i i
T

i i
(22.197)

Show that the Jones matrix for a HWP, with its fast axis
making an angle  with respect to the x-axis, is given by

f f f

cos2 sin 2

sin 2 cos2HWP QWP QWPT T T (22.198)

22.25 A linearly polarized light oriented at an angle  with respect
to x-axis [see Eq. (22.139)] is incident on a HWP, with its
fast axis making an angle  with respect to the x-axis. Show
that the output remains linearly polarized with the state of
polarization rotated by an angle 2 .

22.26 For calcite, the values of no and ne for 0 = 4046Å are
1.68134 and 1.49694 respectively; corresponding to 

0
 =

7065Å the values are 1.65207 and 1.48359 respectively. At

0
 = 4046Å the calcite plate is a QWP. Determine the thick-

ness d. Show that the Jones matrix for the calcite plate for

0
 = 4046Å and for 

0
 = 7065Å would be:

o

0
0

4046A
0 1

i
T

and                
/3.82o

0
0

7065A
0 1

i
e

T

55.49 10 cmdAns :

22.27 Consider the incidence of the following REP beam on a sugar
solution at z = 0:

Ex = 5 cos t ; Ey = 5 sin t

with  = 6328Å. Assume

510l rn n  and 
4

3
ln

study the evolution of the SOP of the beam.
22.28 Consider the incidence of the above REP beam on an elliptic

core fiber with

0

x

k
1.506845 and 

0

x

k
1.507716

Calculate the SOP at z = 0.25 Lb , 0.5 Lb, 0.75 Lb and Lb.
22.29 When the optic axis lies on the surface of the crystal and in

the plane of incidence, show (by geometrical considerations)
that the angles of refraction of the ordinary and the extra-
ordinary rays (which we denote by ro and re respectively)
are related through the following equation:

tan

tan
o o

e e

r n

r n
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Maxwell could say, when he was finished with his discovery,
'Let there be electricity and magnetism, and there is light'

 �.Richard FeynmanB

LO 1: discuss Maxwell�s equations.

LO 2: show that plane wave solutions in a dielectric satisfy Maxwell�s equations.

LO 3: derive three-dimensional plane wave equation in a dielectric.

LO 4: discuss the Poynting vector.

LO 5:  energy density and intensity of an electromagnetic wave.

LO 6: describe wave propagation in an bsorbing medium.

LO 7: describe wave propagation in a conducting medium.

LO 8: derive an expression for radiation pressure due to a plane wave incident on a perfect absorber.

LO 9: derive the continuity conditions for electric and magnetic fields at the interface of two media

LO 10: discuss the physical significance of Maxwell�s equations.

PQFI sx��yh�g�syx

In this chapter we will show that in a dielectric, the following

expressions of the electric and magnetic fields

0ˆ i kz t
E eE x (23.1)

0
0 0

120
ˆ ; & ohmsi kz t E
H e H

n
H y   (23.2)

are solutions of Maxwell�s equations. In the above

equations, we have used the MKS system of units,n  is the

refractive index and the �intrinsic impedance� of the

medium�these will be defined in Sec. 23.4. These equations

describe a plane electromagnetic wave (in this case,

propagating in the z-direction); the actual fields are real part

of the above equations. As can be seen, the electric and

magnetic fields are in phase and always at right angles to

each other and also to the direction of propagation of the

ivig��yweqxi�sg

�e�i�

Chapter
Twenty
Three

wave. The plane electromagnetic wave described by Eqs.

(23.1) and (23.2) is referred to as an x-polarized wave because

the electric field is oscillating along the x-direction. Further,

the speed of propagation of the electromagnetic wave is

given by

v

c

k n
 (23.3)

where

 82.99792458 10 m/sc (23.4)

is the velocity of the electromagnetic wave in vacuum; all

frequencies travel with an identical velocity in vacuum. The

energy flow is in the z-direction (which represents the

direction of propagation of the wave) and, on an average,

2
0

2

E
 amount of energy crosses a unit area (perpendicular to

the z-axis) per unit time. The corresponding average energy

* Ref. 23.6

derive

a
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density (associated with the electromagnetic wave) is given

by

2 3
0

1
J m

2
u E (23.5)

and the intensity is given by

2 2 2
0 0 0

1 1
W m

2 2
I E cn E (23.6)

0 and represent the dielectric permittivity of free space

and of the medium respectively.

We will also discuss propagation of electromagnetic

waves in metals and derive expressions for the complex

refractive index. Such solutions are of great importance in

many diverse areas like solid state physics, plasma physics,

electrical engineering, etc.

23.2 MAXWELL�S EQUATIONS

All electromagnetic phenomena can be said to follow from

Maxwell's equations. These equations are based on

experimental observations and are given by the following

equations:

D (23.7)

0B (23.8)

t

B
E (23.9)

and
t

D
H J (23.10)

where represents the free charge density and J the current

density; E, D, B and H represent the electric field, electric

displacement, magnetic induction and magnetic field

respectively. Further,

divD D

and curlD D

The famous physicist, Richard Feynman, in his very famous

book (Ref. 23.6) has written:

� From a long view of the history of mankind-

seen from, say ten thousand years from now�there

can be little doubt that the most significant event of

the 19th century will be judged as Maxwell�s

discovery of the laws of electrodynamics. The

American Civil war will pale into provincial

insignificance in comparison with this important

scientific event of the same decade.

In the same book, Feynman further writes

�untold numbers of experiments have

confirmed Maxwell�s equations. If we take away

the scaffolding he used to build it, we find that

Maxwell�s beautiful edifice stands on its own.

He brought together all of the laws of electricity

and magnetism and made one complete and

beautiful theory.

Equations (23.7)�(23.10) can be solved only if the

�constitutive relations� are known which relate D to E, B to H

and J to E; the �constitutive relations� depend on the

properties of the medium, field strengths, etc. For example,

for an anisotropic medium  is a tensor of second tank (see

Sec. 22.12); for high field strengths  may itself depend on

E. For a linear, isotropic and homogeneous medium the

�constitutive relations� are given by the following equations

D E (23.11)

B H (23.12)

and

J E (23.13)

where , and denote respectively the dielectric permittiv-

ity, magnetic permeability and conductivity of the medium

respectively. For a charge free dielectric, we may write

0 (23.14)

and 0J (23.15)

Further, in most dielectrics, we may assume

0

where

7 2 2
0 4 10 Ns /C (23.16)

represents the magnetic permeability of vacuum. In many

problems of interest, the propagation is in a dielectric medium

and the above �constitutive relations� are valid. If we use the

above relations, Maxwell�s equations simplify to

0E (23.17)

0H (23.18)

t

H
E (23.19)

and

t

E
H (23.20)

LO 1
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In the next section, we will (using the above equations)

derive the wave equation; however, in this section we will

show that plane wave solutions satisfy Maxwell�s equations

and study the properties of plane waves. For plane waves

propagating in the direction of k, the electric and magnetic

fields can be written in the form:

0 exp i t (23.21)

and

0 exp i tH H k r (23.22)

where 0  and 0H  are space and time independent vectors;

but may, in general, be complex. Now

yx z
EE E

x y z
E

and since,

0 expx xE E i tk r

= 0 expx x y zE i k x k y k z t

we get

0 expx
x x x y zE i k x k y k z t

E
ik

x

Thus the equation 0E  would give us

0 0 0 exp 0x x y y z zi E k E k E i tk k r

implying

0k E (23.23)

Similarly the equation 0H  would give us

0k H (23.24)

The above two equations tell us that E and H are at right

angles to k, thus the waves are transverse in nature. Now,

using Eq. (23.19)

x
E = 

yz
EE

y z

= 0 0 expy z z y x
i k E k E i t ik r k E

Thus the x-component of Eq. (23.19) will give us

x
i k E  = x

x xi H H
k E

(23.25)

Similarly we can write for the y and z components of

Eq. (23.19) and obtain the vector equation

k E
H (23.26)

Similarly, Eq. (23.20) would give us

H k
E (23.27)

showing that k, E and H are at right angles to each other (see

Fig. 23.1). From the above two equations one readily gets

0 0
k

H E (23.28)

H

y

E x

k z

Fig. 23.1 If a plane wave is propagating in the z-direction
(which is coming out of the paper) and if at any
instant of time the electric vector is along the x-
axis then the magnetic vector will be along the
y-axis.

and

0 0
k

E H (23.29)

If we multiply the above two equations, we would get

2

2
1

k
k (23.30)

Thus the speed of propagation of the electromagnetic wave

is given by

1

k
v (23.31)

In free-space

12 2 1 –2
0 8.8542... 10 C N m (23.32)

7 2 2
0 4 10 Ns C (23.33)

and    
0 0

1
cv

=
12

8

7
2.99792458 10 m/s

1

8.8542... 10 4 10

(23.34)

LO 2
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is the velocity of the electromagnetic wave in vacuum. We

must mention that the speed of light in vacuum, usually

denoted by c, is an universal physical constant and its value

is exactly 299792458 meters per second; thus

12 2 1 –2
0 2

0

1
8.8542... 10 C N m

c
(23.35)

Thus the plane wave solutions given by Eqs. (23.21) and

(23.22) do indeed satisfy Maxwell�s equations with k, E and

H are at right angles to each other and related through Eqs.

(23.26)�(23.28). We rewrite Eq. (23.26) as

1 ˆk E
H k E (23.36)

where k̂  is the unit vector along the direction of k, and

k

Thus, (23.37)

is known as the �intrinsic impedance� of the medium. The

dimension of  will be given by

V/m
= V/A =  ohms

A/m

E

H
(23.38)

which is the same as that of resistance. As such, it is almost

always expressed in ohms . In free space

0
0 0

0

120c (23.39)

where we have used the relation

0

8

0

3 10
1

m/sc (23.40)

In a dielectric 0 ; thus

0 0

0

1 120

n n n
(23.41)

where

0

n (23.42)

is the refractive index of the dielectric. Thus if we write

0 exp -i tH H k.r (23.43)

then 0 0
1

H E (23.44)

If we assume propagation along the z-axis and the electric

vector to be along the x-axis, then the magnetic vector will be

along the y-axis so that we may write

0ˆ i kz t
E eE x (23.45)

0ˆ i kz t
H eH y (23.46)

The actual electric fields are the real part of the

exponentials appearing on the RHS of Eqs. (23.45) and

(23.46):

0ˆ cosE kz tE x (23.47)

0ˆ cosH kz tH y (23.48)

with 0H  related to E0 through Eq. (23.44); we have assumed

and E0 and H0 to be real. The plane wave as represented by

Eq. (23.45) [or by Eq. (23.47)] is said to be linearly polarized

(or, x-polarized) because the electric vector is always along

the x-axis and, similarly, the magnetic vector is always along

the y-axis [see Fig. 23.2]. Similarly, for a y-polarized wave, the

electric vector is always along the y-axis as shown in Fig.

22.1(b). We may also have superposition of two independent

plane waves [we are considering the real part of the

exponentials appearing on the RHS of Eqs. (23.45) and

(23.46)]:

1 0ˆ cosE kz tE x (23.49)

1 0ˆ cosH kz tH y (23.50)

and

2 0 0ˆ ˆcos sin
2

E kz t E kz tE y y (23.51)

2 0 0ˆ ˆcos sin
2

kz t H kz tH xH x (23.52)

x

z

y
Linearly polarized

light

H

E

Fig. 23.2 The arrows represent the direction and magni-
tude of the E and H vectors (at a particular instant
of time) for a plane polarized wave. The electric
vectors always lie in the x-z plane and the mag-
netic vectors lie if the y-z plane.
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The first wave is x-polarized and the second wave is

y-polarized and there is a phase difference of /2. The

superposition of these two waves will give us the resultant

1 2 0 0ˆ ˆcos sinE kz t E kz tE E E x y (23.53)

and

1 2 0 ˆ ˆcos sinH kz t kz tH H H y x (23.54)

Now, at z = 0

0 cosxE E t and 0 sinyE E t (23.55)

and the tip of the electric vector will rotate (on the

circumference of a circle) in the clockwise direction as shown

in Fig. 23.3; this will represent a right-circularly polarized

(usually abbreviated as RCP) wave�see also Sec. 22.4. Also,

at z = 0

0 sinxH H t and 0 cosyH H t

and the tip of the H vector will also rotate (on the

circumference of a circle) in the clockwise direction and  at all

times the E vector will be at right angle to the H vector.

From the above equations we may draw the following

inferences for plane waves propagating in a dielectric:

(i) The vectors E and H are at right angles to each other

and also to the direction of propagation implying that

the waves are transverse. Thus, if the direction of

propagation is along the z-axis and if E is assumed to

point in the x-direction then H will point in the y-direc-

tion. The plane wave as represented by Eq. (23.45) is

said to be x-polarized because the electric vector is al-

ways along the x-axis.

(ii) In a charge-free dielectric,  is a real number, and the

electric and magnetic vectors are in phase; thus if at

any instant, E is zero then H is also zero, similarly when

E attains its maximum value, H also attains its maximum

value, etc.

(iii) For a RCP wave, both the electric (and the magnetic)

vectors rotate on the circumference of a circle (in the

clockwise direction) and at each instant, they are or-

thogonal to each other�similarly, for a LCP wave.

(iv) The refractive index (n) of a dielectric (characterized by

dielectric permittivity  and magnetic permeability ( 0)

would be given by

0

0 0 0

c
n

v

(23.56)

where 0/ is known as the dielectric constant of

the medium.

(v) The electric and magnetic waves are interdependent;

neither can exist without the other. Physically, an elec-

tric field varying in time produces a magnetic field

varying in space and time; this changing magnetic field

produces an electric field varying in space and time,

and so on. This mutual generation of electric and mag-

netic fields results in the propagation of the

electromagnetic wave.

Fig. 23.3 For a right circularly polarized wave (usually abbreviated as RCP), if we look in the direction of the propaga-
tion of the wave, the electric vector rotates in a clockwise direction on the circumference of a circle.
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(vi) As mentioned in Sec. 2.5,

the displacement associated with the propa-

gating light wave is the electric field which

oscillates in time with a certain frequency.

We could have equally well chosen the magnetic field

as the displacement associated with the propagating

electromagnetic wave because associated with a time

varying electric field there is always a time varying

magnetic field.

(vii) Since Maxwell�s equations are linear in E and H, so, if

(E1, H1) and (E2, H2) are two independent solutions of

the Maxwell�s equations, then (E1 + E2, H1 + H2) will

also be a solution of the Maxwell�s equations. This is

the superposition principle according to which the re-

sultant displacement produced by two independent

disturbances is the vector sum of the displacements

produced by the disturbances independently*.

(viii) There exists a wide and continuous variation of fre-

quency (and wavelength) of electromagnetic waves as

shown in Fig. 23.4. From gamma rays (emitted from ra-

dioactive material) to X-rays (used in medical

diagnostics), to ultraviolet light to the visible region to

infrared beams to radio waves�they are all electro-

magnetic waves. They all travel with an identical

velocity in vacuum given by c  300,000 km/s; the ex-

act value is c = 299,792.458 km/s. Gamma rays have the

highest frequency (  1020 � 1024 Hz), X-rays have a fre-

@�A

@�A

Fig. 23.4 (a) The electromagnetic spectrum; gamma rays have the highest frequency (and the shortest wavelength) and
radio waves have the lowest frequency (and the longest wavelength). All wavelengths travel with an identical
velocity in vacuum. Photograph courtesy: McGraw Hill Digital Access Library. A color photo appears as Fig. 35 in the
prelim pages. (b) Wavelengths associated with the visible portion of the electromagnetic spectrum (which is
sensitive to the retina of our eye) ranges from about 0.4 m (blue region of the spectrum) to about 0.7 m (red
region of the spectrum), the corresponding frequencies are about 750 THz and 420 THz; 1 THz= 1012 Hz. A wave-
length of 0.5 m corresponding to the bluish green region of the spectrum has a frequency of 600 THz and a
wavelength of 0.6 m (corresponding to the reddish yellow green region of the spectrum) has a frequency of
500 THz.

* Thus the superposition principle is a consequence of the linearity of the Maxwell's equations. If, for example, the field associated

with the electromagnetic wave is so high that the dielectric permittivity  depends on E itself, then Maxwell's equations will become

nonlinear and superposition principle will not remain valid. Indeed, when we discuss any nonlinear phenomenon, the superposition

principle does not hold true.
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quency of about 1018 Hz and visible light have fre-

quency of about 5  1014 Hz (= 500 THz). Commercially

available microwave ovens usually have a frequency of

about 2.45 GHz � it corresponds to �microwave fre-

quencies� and therefore they are called microwave

ovens. Electromagnetic radiation at these frequencies

quickly heat up water, fat and other food substances.

The frequency band allocated for cell phones can be

from 1 to 2 GHz. The radio waves correspond to wave-

lengths in the range 10�1000 m whereas the

wavelengths of X-rays are in the region of Angstroms

PQFR �ri2 �r�iiEhswix�syxev
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In Sec. 23.2 we had shown that plane wave solutions indeed

satisfy the above equations. In this section we will show that

the wave equation can be derived from the above equations.

If we take the curl of Eq. (23.19), we would obtain

2

2
curl curl curl

t t

E
E H (23.57)

where we have used Eq. (23.20). Now, the operator 2E  is

defined by the following equation;

grad div curlcurl2
E E E (23.58)

Using Cartesian coordinates, one can easily show that

2 2 2

2 2 2
divgrad x x x

x
x

E E E
E

x y z

2
E

that is, a Cartesian component of 2E  is the div grad of the

Cartesian component*. Thus, using

curlcurl grad div 2
E E E

we obtain

2

2
grad div

t

2 E
E E (23.59)

or

2

2t

2 E
E (23.60)

where we have used the equation div 0E  [see Eq.

(23.17)]. Equation (23.60) is known as the three-dimensional

wave equation and each Cartesian component of E satisfies

the scalar wave equation [see Sec. 11.9]:

2
2

2t
(23.61)

The velocity of propagation v  of the wave is simply

given by

1
v (23.62)

In a similar manner, one can derive the wave equation

satisfied by H

2
2

2t

H
H (23.63)

It can be easily seen that the solutions expressed by Eqs.

(23.45) and (23.46) [or, Eqs. (23.47) and (23.48)] indeed satisfy

Eqs. (23.60) and (23.63) provided

1

k
(23.64)

which is the speed of propagation of the electromagnetic

wave. Around 1860, Maxwell derived the wave equation,

predicted the existence of electromagnetic waves and

calculated their speed to be about 3.1074  10
8
 m/s; this he

found to be very close to the velocity of light which was, at

that time, known to be 3.14858  108 m/s (as measured by

Fizeau in 1849). Just based on the closeness of these two

numbers and with �faith in the rationality of nature�, he

propounded the electromagnetic theory of light and

predicted that light must be an electromagnetic wave. In the

words of Maxwell himself, the speed of electromagnetic

waves

* However, ( 2
E)

r
  div (grad E

r
)

LO 3

101Å 10 m . The visible region (0.4 m < < 0.7 m)

occupies a very small portion of the electromagnetic

spectrum. The methods for production of different

kinds of electromagnetic waves are different. For ex-

ample, gamma rays are produced in nuclear decay

processes; X-rays are usually produced by the sudden

stopping and deflection of electrons and radio waves

are produced by varying the charge on an antenna.

However, all wavelengths propagate with an identical

speed in vacuum.
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�.. calculated from the electromagnetic

measurements of Kohlrausch and Weber, agrees

so exactly with the velocity of light calculated

from the experiments of M. Fizeau, that we can

scarcely avoid the inference that light consists in

the transverse undulations of the same medium

which is the cause of electric and magnetic

phenomena.�

We should also mention here that the physical laws

described by Eqs. (23.7), (23.8) and (23.9) were known before

Maxwell; he had only introduced the term 
D

t
 (which is the

concept of displacement current) in Eq. (23.10) and it is the

presence of this term which leads to the prediction of

electromagnetic waves.

It was only in 1888, that Heinrich Hertz carried out

experiments which could produce and detect electromagnetic

waves of frequencies smaller than those of light. Hertz

showed that the velocity of electromagnetic waves that he

generated were the same as that of light. In 1931 (during the

birth centenary celebration of Maxwell), Max Planck had said

�(Maxwell's equations)... remain for all time

one of the greatest triumphs of human

intellectual endeavor�.

Albert Einstein had said �(The work of Maxwell was) ...

the most profound and the most fruitful that physics has

experienced since the time of Newton�.

23.5 THE POYNTING VECTOR

We rewrite Eqs. (23.9) and (23.10)

curl
t

B
E (23.65)

and curl
t

D
H J (23.66)

Now,

div = curl curlE H H E E H (23.67)

Thus,

div =
t t

B D
E H H J E E (23.68)

For a linear material,

t t t t

B D H E
H E H E

1 1 1

2 2 2t t t

Thus, Eq. (23.68) can be rewritten in the form

div 
u

t
S J (23.69)

where S (23.70)

is known as the Poynting vector and*

1 1

2 2
u B (23.71)

Equation (23.69) resembles the equation of continuity and

for a physical interpretation we note that if a charge q

(moving with velocity v) is acted on by an electromagnetic

field then the work done by the field in moving it through a

distance ds would be ;dF s thus the work done per unit time

would be

sd
q q q

dt
F F v (23.72)

If there are N charged particles per unit volume, each

carrying a charge q, then the work done per unit volume

would be

Nqv (23.73)

* Equation  (23.71) is valid even for anisotropic media because in the principal axis system [see Sec. 22.12]

22 21 1 1

2 2 2
yx z

x y z

EE E

t t t t

D

    
1

2
x x y y z zD E D E D E

t

LO 4
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where J represents the current density. The energy appears

in the form of kinetic (or heat) energy of the charged

particles. Thus the term J E  represents the familiar Joule

loss and, therefore, the quantity J E  appearing on the

R.H.S. of Eq. (23.69) would represent the rate at which energy

is produced per unit volume per unit time. Consequently, we

may interpret Eq. (23.69) as an equation of continuity* for

energy with u representing the energy per unit volume. The

quantities 1
2 D  and 1

2 B H  represent the electrical and

magnetic energies per unit volume respectively. Further, we

may interpret dS a  as the electromagnetic energy crossing

the area da per unit time. For plane waves in a dielectric, we

may write

and

0

0
0

ˆ cos

ˆ ˆcos cos

E kz t

E
H kz t kz t

(23.74)

Thus, S

2
20ˆ  cos

E
kz tz (23.75)

which implies that the energy flow is in the z-direction (which

represents the direction of propagation of the wave) and that

an amount of energy

2
20 cos

E
kz t

crosses a unit area (perpendicular to the z-axis) per unit time.

For optical beams 15 110 s  and cos2 term fluctuates

with extreme rapidity, and any detector would record only an

average value (see Section 14.6) to obtain

2
0

1
ˆ

2
ES z (23.76)

We must hasten to point out that dS a  does not always

represent the rate of energy flow through the area da; for

example, we may have static electric and magnetic fields

where E H  is finite but we know that there is no energy

flow. However, the integral

dS a (23.77)

over a closed surface rigorously represents the net energy

flowing out of the surface. This follows immediately if we

carry out a volume integral of Eq. (23.69) to give

div dV u dV dV
t

S J (23.78)

or

udV d dV
t

S a J (23.79)

where we have used the divergence theorem. The quantity

on the LHS represents the rate of decrease of the total

energy, this must be equal to the Joule loss plus the net flow

out of the surface enclosing the volume.

23.5.1 The Oscillating Dipole

Consider an oscillating dipole in the z-direction:

0 ˆi t
p ep z (23.80)

At large distances from such a dipole the fields are of the

form (see, for example, Ref. 23.5)

2
0 0 ˆsin

4

i kr t
p e

r
(23.81)

2
0 0

0

1 ˆsin
4

i kr t
p e

r
(23.82)

(see Fig 23.5). In the above equations, 0 0k  and

other symbols have their usual meaning. Notice that the

fields fall off as 1/r and that they are in phase. Because of

the sin factor in Eqs. (23.81) and (23.82), the dipole does

* The equation of continuity is always written in the form

div 0
t

J

where  represents the charge density and J the current density, i.e. J da represents the amount of charge crossing the area da per unit

time.
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not produce any field along the direction of oscillation [see

also Sec. 22.2.4 and 22.8]. Thus*

S

24 2
20 0

2 2

cos
ˆsin

16

kr tp

c r
r (23.83)

Equation (23.83) shows that S falls off as 1/r2 as it indeed

should be for a spherical wave (this is the inverse square

law). If we integrate over a sphere of radius r, we would

obtain

2 ˆ  sin  P d r d dS a S r

24 2
2 20 0

2
0 0

cos sin sin
16

p
kr t d d

c

4 2
20 0 cos

6

p
kr t

c
(23.84)

where P represents the instantaneous radiated power. Since

the cos2 term fluctuates very rapidly, the average radiated

power would be given by

4 2
0 0

12

p
P

c
(23.85)

PQFT ixi�q�2 hix�s��2 exh

sx�ix�s��2 yp2 ex

ivig��yweqxi�sg

�e�i

In Sec. 23.4 we have shown that the energy/unit volume

associated with a plane wave is given by

2 21 1 1 1

2 2 2 2
u E HD (23.86)

For a linearly polarized plane wave, we may write

0 cos , 0, 0x y zE E kz t E E (23.87)

Fig. 23.5 The direction of the electric and magnetic fields and of the Poynting vector from an oscillating dipole. In order
to calculate the total energy radiated per unit time, we must integrate the Poynting vector over the surface of a
sphere.

* In order to calculate the Poynting vector we must take the products of the real parts of E and H. We may note that in the complex

representation, if E = E
1
 + E

2
 then

Re(E) = Re(E
1
) + Re(E

2
)

However,

(ReE1)  (ReE2)  Re(E1  E2)

Here Re (E) denotes the real part of E.

LO 5
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00, cos , 0x y zB H H kz t B (23.88)

Thus

2 2 2 2
0 0

1 1
cos cos

2 2
u E kz t H kz t

Since

0
0 0

E
H E , we get

2 2
0 0

1 1

2 2
H E ;

thus the energy associated with the electric field is equal to

the energy associated with the magnetic field. If we take the

time average of the cos2 terms, we would get

2
0

1

2
u E (23.89)

Further, in order to obtain the intensity of the beam we must

multiply u  by the speed of propagation which will give us

the energy crossing a unit area in unit time. Thus, the

intensity is given by

2 2 2
0 0 0

1 1 1

2 2 2
I E E Ev (23.90)

which is consistent with Eq. (23.76). In free space

2 2
0 0

0

1 1

2 240
I E E

3 2 2
01.33 10 W/V E

Example 23.1 We consider a RCP (Right Circularly

Polarized) wave propagating along the +z direction in a dielectric;

i.e., ˆ= kk z

0 0ˆ ˆcos – sin –E t E tE x k.r y k.r (23.91)

Thus

 0 0ˆ ˆ ˆcos sin
k

E t E t
k E

H z x k.r y k.r

0
1

ˆ ˆcos sinE kz t kz ty x

Thus

0 0

0 0

cos and   sin

1 1
sin and cos

x y

x y

E E kz t E E kz t

H E kz t H E kz t
(23.92)

If at z = 0 we plot the time variation of the electric or the

magnetic field, we will find that the tip of the electric (or the

magnetic) vector will rotate on the circumference of a circle in the

clockwise direction. The Poynting vector will be given by

2
0 ˆ ˆcos sin
E

kz t kz tS = E H = x y

ˆ ˆcos sinkz t kz ty x

2
2 20 ˆcos sin

E
kz t kz t= z

or,
2
0 ˆ
E

S = E H = z

Example 23.2 Consider an x-polarized plane electromagnetic

wave propagating (in free space) along the z-direction. The

corresponding electric field is assumed to be given by

7ˆ= 10cos 2 10 z tE x V/m

Thus 7 1 72
2 10 m 3.14 10 mk

8 73 10 2 10 rad sck

15 146 10 rad s, 9.54 10 Hz
2

0 120 ohms

0
1

ˆcosE kz tH y

2 7 15 ˆ2.65 10 cos 2 10 6 10 A mz t y

2 2
0

1
ˆ ˆ0.13 W m

2
ES z z

Example 23.3 For a 100 W lamp, the intensity at a distance

of 10 m would be

2 2
2

100
7.96 10 W/m

4 (10)
I

where we have assumed light to spread out uniformly in all

directions. Thus

1 22

0 3

7.96 10
7.74V/m

1.33 10
E

Example 23.4 Since a laser beam is almost perfectly parallel,

it can be focused by a lens to a cross�sectional area of about

10�10 m2 (see Sec. 18.4.1). Thus for a 105 watt laser beam, the

intensity at the focal plane would be

5
15 2

10

10
10 W/m

10
I
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Thus

1 215
9

0 3

10
0.87 10 V/m

1.33 10
E

Such high electric fields can cause extreme high temperatures which

may result in the burning of a target.

PQFU �e�i2 ��y�eqe�syx2 sx

ex2 ef�y�fsxq

wihs�w

Consider the propagation of an electromagnetic wave in an

absorbing medium characterized by a complex dielectric

constant:

r ii (23.93)

Since 
2 2
k , the propagation constant k will also be

complex and if we write

k i (23.94)

we would obtain

2 2 2
r (23.95)

22 i (23.96)

Substituting for   from Eq. (23.96) in Eq. (23.95) we get

4 2 2 4 2 21
0

4
r i (23.97)

Simple manipulations will give

1/2
21 1

2
r g (23.98)

where i

r

g (23.99)

and we have used the fact that  by definition is real. Further,

2 1/2
21 1

2 2
i r

g (23.100)

For an x-polarized electromagnetic wave propagating in

the z-direction, we may write:

0 0ˆ ˆi kz t i z tz
E e E e eE x x

The corresponding magnetic field can be obtained from

the equation

i
t

B
E H (23.101)

Thus

0
1

ˆi kz t
E eH y 0

1
ˆi z tz

E e e y (23.102)

Now

  
1r i ri ig

We write i
e

2 2 ie   = 2
(1 )

1r

ig
g

Thus

1/421
r

g (23.103)

and tan 2 i

r

g ; 0
4

(23.104)

In order to calculate the Poynting vector, we must

calculate the actual fields which will be given by

0 ˆcosz
E e z tE x (23.105)

and

0 ˆcoszE
e z tH = y (23.106)

Thus

S = E H

2
20 ˆ2cos cos

2
zE

e z t z t= z

2
20 ˆcos

2
zE

e= z (23.107)

where we have used the fact that

cos 2 2 0z t

PQFV ��y�eqe�syx2 sx2 e

gyxh�g�sxq

wihs�w

In Sec. 23.3 we had assumed J = 0. For a conducting medium

J (23.108)

where  represents the conductivity of the medium. Thus,

Maxwell's equations become

LO 6
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div 0 (23.109)

div 0 (23.110)

curl 
t

(23.111)

curl 
t

(23.112)

Taking the curl of Eq. (23.111), we get

curl curl curl 
t

or

2
2

2
grad div 

t t

Using Eq. (23.109), we get

2
2

2
0

t t
(23.113)

which is the wave equation for a conducting medium. For a

plane wave of the type

0 exp i kz t (23.114)

we obtain

2 2 2 1k i ig (23.115)

where

g (23.116)

Thus the entire analysis in Sec. 23.7 will be valid with r

replaced by  with the value g given by Eq. (23.116) to

obtain:

1/2
2

1 1
2

(23.117)

and

1/2
2

1 1
2

(23.118)

Once again,

0 ˆcosz
E e z tE x (23.119)

which represents an attenuated wave. The attenuation is due

to the Joule-loss. For a good conductor

1g (23.120)

and one obtains

1 2

2 2

g
(23.121)

The corresponding expressions for an insulator are given in

Problem 23.12. Indeed if 1 say 0.01 , the medium

can be classified as a dielectric and if 1 say 100 ,

the medium can be classified as a conductor. For

0.01 100

the medium is said to be a quasi-conductor. Thus, depending

on the frequency, a particular material can behave as a

dielectric or as a conductor. From Eq. (23.119), it can be easily

seen that the field decreases by a factor e in traversing a

distance

1
(23.122)

which is known as the penetration depth, or skin depth.

Example 23.5 For fresh water, there is considerable

variation in the measured values of the conductivity and dielectric

constant. At low frequencies, we assume

0
0

80;  and 310 mhos m

3 6

12

10 1.4 10

80 8.854 10

Thus at 10 Hz 12 10 s

6
41.4 10

2 10 1
20

At 10 GHz 10 12 10 s , 52 10 1

(Both  and  can be assumed to be constants at low

frequencies). Thus, fresh water behaves as a good conductor for

310  sec�1 and as a dielectric for 710 s�1.

Example 23.6 For copper one may assume  = 0 and

  5.8  107 mhos/m. At 100Hz

7
16

12

5.8 10
10

2 100 8.854 10
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and at 810 Hz

7
10

8 12

5.8 10
10

2 10 8.854 10

Thus at both frequencies copper behaves like a very good

conductor. We, therefore, have

7 7

1 2 2

2 4 10 5.8 10

0.066

6.6 mm at 100Hz

6.6  at 100MHz

showing that the penetration decreases with increase in frequency.

23.9 RADIATION PRESSURE

(We follow Sec. 34.9 of Ref. 23.6; a rigorous analysis has

been given in Chapter 10 of Ref. 23.5). Let us consider a

linearly polarized electromagnetic wave propagating in the

+z-direction; we assume the electric field to be along the x-

direction and the magnetic field along the y-direction (see

Fig. 23.1). The electromagnetic wave is assumed to interact

with a charge q; the electric field makes the charge move up

and down along the x-axis. Thus the charge acquires a

certain velocity in the x-direction and since the magnetic field

is along the y-axis, a force

qF v (23.123)

acts on the charge q. This force acts along the z-axis* is (i.e.

along the direction of propagation of the wave) and

constitutes what is known as 'radiation pressure'. Thus,

ˆqF z (23.124)

But

0 0
0 0

0 0

B H E E

0 0
1

E E
c

(23.125)

Thus

ˆ
qE

c
F z (23.126)

Now qE  represents the work done by the field on the

charge per unit time (see Sec. 23.4); thus, if we consider a

unit volume, then

1
ˆ

du

c dt
F z (23.127)

But the force is equal to the change in momentum per unit

time. Consequently, the momentum per unit volume

associated with the plane wave would be given by

ˆ
u

c
p z (23.128)

In Chapter 25, we will show that light essentially consists

of corpuscles called photons. Each photon carries an energy

equal to hv; the photon momentum would, therefore, be

given by

* Using the analysis of Sections 7.4 and 7.5, we can show that in the presence of a field 0ˆ cosE kz t , the displacement is given

by

0ˆ cosqE A kz tx x

where we have explicitly shown that the amplitude is proportional to q and E0. Thus

0ˆ sin
d

qE A kz t
dt

x
v x

Now

0
0ˆ ˆcos cos

E
B kz t kz t

c
B y y

Thus

2
2 0ˆ cos sin cos cos sin
E

q q A kz t kz t kz t
c

F v

If we carry out a time averaging, then

2 2
0 1

ˆ ˆsin
2

q E
A q

c c
F z z

Since sin  is always positive (see Sec. 7.4) and the force is always in the z-direction.

LO 8
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hv
p

c
(23.129)

Let us consider a plane wave incident normally on a

perfect absorber. If we consider an area dS on the absorbing

surface then the momentum transferred to area dS in time dt

would be

p dS cdt

which represents the momentum contained in a cylindrical

volume dS cdt (see Fig. 23.6). Thus the force acting on the

area dS would be

pc dS

Hence

Prad = cp = u (23.130)

where P
rad

 represents the radiation pressure due to a plane

wave incident on a perfect absorber. On the other hand, for a

perfect reflector, the momentum of the reflected wave is equal

and opposite of the momentum associated with the incident

wave. Thus the momentum transferred would be twice of the

above value and hence

P
rad

 = 2cp = 2u (23.131)

Example 23.7 We consider a light beam of intensity I =

3000 W/m2 falling on a perfectly reflecting mirror. Since I = cu, we

have

2
5 3

8

3000 W/m
10 J/m  

3 10  m/sec
u

The radiation pressure would be

5 22 10 N/m  

which may be compared with the atmospheric pressure

5 210 N/m .

It has been possible to measure the radiation pressure by

allowing a light beam to fall on a highly polished mirror M

(see Fig. 23.7), the radiation pressure caused a twist in the

suspension which was measured. the experiment was first carried

out by Lebedev in Russia in 1899; experimental arrangement shown

in Fig. 23.7 is of Nichols and Hull who performed the experiment

in 1901 and confirmed the prediction of radiation pressure. The

intensity of the beam can be determined by allowing it to fall on an

absorber (like a blackened disc) and measuring the temperature rise.

In a particular run, the radiation pressure was found to be about

7.01  10�6 N/m2 which was in good agreement with the predicted

value of 7.05  10�6 N/m2.

dS

c dt

Fig. 23.6 A cylindrical volume to calculate radiation pres-
sure.

Torsion
suspension

M¢M

Fig. 23.7 An experimental arrangement to measure radia-
tion pressure.

For oblique incidence on a perfect reflector, the change in

momentum per unit volume would be 2p cos  and the radiation

pressure would be

2 2
rad 2 cos 2 cosP cp u (23.132)

where  represents the angle of incidence.

PQFIH �ri2 gyx�sx�s��

gyxhs�syx�

In this section we will derive the continuity conditions for

electric and magnetic fields at the interface of two media. Let

us first consider the equation

div 0 (23.133)

At the interface of two media, we consider a pill box which

encloses an area S of the interface (see Fig 23.8). Let the

LO 9
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height of the pill box be l. Now, if we integrate div B over the

cylindrical volume then, using Gauss' theorem, we obtain

1 2 3

0 div 
S S S

dV d d d

where S1 and S2 represent the flat faces of the cylinder and

S3 represents the curved surface of the cylinder. If we let

0l , then the third integral vanishes and we obtain

1 2S S
d d

or 1 1 2 2ˆ ˆS S (23.134)

or 1 2n n (23.135)

where the directions of 1n̂  and 2n̂  are shown in Fig. 23.8.

Thus the normal component of B is continuous across the

interface.

n1

n2

^

^
DS

DS

2

1
l

Fig. 23.8 A cylindrical pill box at the interface of two di-
electrics

Similarly, in the absence of free charges

div D = 0

and one obtains*

D
1n

 = D
2n

(23.136)

showing that the normal component of D is also continuous

across the interface.

We next consider the equation

curl 0
t

B

We consider a rectangular loop ABCD as shown in Fig.

23.9. Now

0 curl 
S S

d d
t

(23.137)

A B

D C

l
2

1

e

Fig. 23.9 A rectangular loop at the interface of two dielec-
trics.

where the surface integral is over any surface bounding the

loop ABCD. Using Stokes' theorem, we get

S

d d
t

(23.138)

or

AB BC CD DA

d d
t

If we let 0l  then the integrals along BC and DA tend

to zero and since the area of the loop also tends to zero the

RHS also vanishes. Thus we obtain

0
AB CD

d d

or

1 1
ˆ ˆ 0

or

1 2t t

 * Rigorously D
1n

 = D
2n

 = , where  represents the surface charge density
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where E1t and E2t represent the tangential components of E

which are continuous across the interface. Similarly, Eq.

(23.14) gives us*

H1t = H2t

In summary, in the absence of any surface current and

surface charges, the normal components of B and D and the

tangential components of H and E are continuous across an

interface.

PQFII �r��sgev2 �sqxspsgexgi

yp2 we��ivv9�

i��e�syx�

Let us first consider the equation

div D (23.139)

In free space

0D (23.140)

and Eq. (139) becomes

0

div (23.141)

If we integrate the above equation over a volume V, we

obtain

0

1
div dV dV

Applying the divergence theorem, we get

0

1
d Q (23.142)

which is simply the Gauss' law,** i.e. the electric flux through

a closed surface is the total charge inside the volume divided

by 0. In a similar manner, the equation

div 0 (23.143)

gives

0d (23.144)

i.e. the magnetic flux through a closed surface is always zero;

this implies the absence of magnetic monopoles.

We next consider the equation

curl 
t

(23.145)

which associates a space and time�dependent electric field

with a changing magnetic field. Now, Stokes' theorem tells us

that

curl 
S

d d
(23.146)

where the LHS represents a line integral over a closed path

and the RHS represents a surface integral over any surface

bounding the path . Thus

curl  
t

S S

d d d (23.147)

or

S

d d
t

(23.148)

where in the last step we have used the fact that the surface

S is fixed. (The above equation is not valid for a moving

system; see, for example, Ref. 23.7). The LHS of the above

* More rigorously H
1t

 � H
2t
 is equal to the normal component of the surface current density. However, if there are no surface currents,

which is indeed true for most cases, H
1t
 = H

2t
.

** For a dielectric we would get

d QD a

where

0D

P being the dipole moment per unit volume. For a linear homogenous medium,

where  is known as the susceptibility. Thus

D

where

0

is known as the dielectric permittivity of the medium.

LO 10
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equation represents the induced emf in a closed circuit which

is equal to the negative of the rate of change of the magnetic

flux through the circuit. This is the Faraday's law of

induction. It is worthwhile to mention that although this law

was discovered by Faraday, it was put in the differential form

[see Eq. (23.145) by Maxwell.

We now come to the last of the Maxwell's equations

curl 
t

D
(23.149)

For static fields 0
t

D
 and one obtains Ampere's law:

curl (23.150)

which implies that a magnetic field is produced only by

currents; for example, if we have a long wire carrying a

current, we know that it produces a magnetic field. Ampere's

law was known before Maxwell; Maxwell had put it in the

form of a vector equation. Since the divergence of the curl of

any vector is zero, one obtains

div  0J (23.151)

which may be compared with the equation of continuity

div 0
t

J (23.152)

Thus Eq. (23.150) is valid only when 0
t

. Thus, for

the Ampere's law to be consistent with the equation of

continuity, Maxwell argued that there must be an additional

term 
t

D
 on the RHS of Eq. (23.150) so that:

div curl 0 div    div
t

or

0  div  
t

J

which is the equation of continuity. The introduction of term

D

t
 (which is known as the displacement current)

revolutionized physics. Physically it implies that not only a

current produces a magnetic field but a changing electric

field also produces a magnetic field (as it indeed happens

during the charging and discharging of a condenser).* It may

be mentioned that it is the presence of the term 
D

t
 which

leads to the wave equation (see Sec. 23.3) and, therefore, the

prediction of electromagnetic waves. One an thus argue on

physical grounds that a changing electric field produces a

magnetic field which varies in space and time and this

changing magnetic field produces an electric field varying in

space and time, and so on. This mutual generation of electric

and magnetic fields results in the propagation of

electromagnetic waves.

Summary

u In a homogeneous charge free dielectric (with dielectric per-

mittivity ), the x-polarized wave defined by the equations

0ˆ i kz t
E eE x (23.153)

0 0
0 0ˆ ; &i kz t E

H e HH y

are solutions of Maxwell's equations; here we have

assumed the medium to be non-magnetic so that

0 4  10�7 N�s2/C2. The speed of propagation

of the electromagnetic wave is given by

0

1 c

k n
(23.154)

where

12 7
0 0

1 1

8.8542... 10 4 10
c

82.99792458 10 m/s (23.155)

is the velocity of the electromagnetic wave in free space.

Thus

0 0 0 0
0

0 0

; 120
n

The corresponding time averaged Poynting vector is given by

S
2 2

20 0ˆ ˆ cos
2

E E
kz tz z (23.156)

 * For static fields 
D

0
t

 and one obtains Ampere's law.
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which implies that the energy flow is in the z-direction

(which represents the direction of propagation of the wave)

and that, on an average,

2
0

2

E

amount of energy crosses a unit area (perpendicular to the z-

axis) per unit time. The corresponding average energy

density is given by

2 3
0

1
J m

2
u E

and the intensity is given by

2 2 3
0 0 0

1 1
W m

2 2
I E cn Ev

For 15 3 9
010 W m , 0.9 10 V m;I E  such high electric

field can cause spark in air.

u In a conductor, the field decays exponentially

0 ˆcoszE e z tE x

with

1/2
2

1 1
2

u The momentum associated with a plane wave is given by

ˆ
u

c
p z

Problems

23.1 A y-polarized electromagnetic wave propagating in vacuum is

described by the following equation

0 exp 300 400E i x z tE y

(a) Calculate the wavelength and frequency of the wave.

(b) Calculate the unit vector along k̂

(c) Calculate the corresponding H.

 [Ans: 21.26 10 m ; 23.9 GHz ;

ˆ ˆ ˆ0.6 0.8k x z ]

23.2 The magnetic field for a plane wave propagating (in a

dielectric of refractive index 1.5) along the x direction is given

by

   15ˆ= 0.04sin 10kx tH y A/m

Calculate the free space wavelength and the time averaged

Poynting vector.

 [Ans: 6
0 1.886 10 m ; 2ˆ0.20 W mS x ]

23.3 On the surface of the earth we receive about 1.33 kW of

energy per square meter from the sun. Calculate the electric

field associated with the sunlight (on the surface of the earth)

assuming that it is essentially monochromatic with

6000Å .

 [Ans: ~1000 V/m]

23.4 A 100 W sodium lamp 5890Å  is assumed to emit

waves uniformly in all directions. What is the momentum

associated with each photon? Calculate the radiation

pressure on a plane mirror at distance of 10 m from the bulb?

[Ans: 10 25.3 10 N/m ]

23.5 On the surface of the earth we receive about 1.33 kW of

energy per square metre from the sun. Calculate the

corresponding radiation pressure.

[Ans: -5 24.6 ]

23.6 A 1 kW transmitter is emitting electromagnetic waves of (of

wavelength 40 m) uniformly in all directions. Calculate the

electric field at a distance of 1 km from the transmitter.

[Ans: ~0.25 V/m]

23.7 For fresh water, there is considerable variation in the

measured values of the conductivity and dielectric constant.

If we assume

0
0

80;  and 310 mhos m

Show that it behaves as a good conductor for 10 Hz  and

as a poor conductor for 10 GHz .

23.8 Ocean water can be assumed to be a non-magnetic dielectric

with 
0

80  and 4.3  mhos/m. (a) Calculate the

frequency at which the penetration depth will be 10 cm. (b)

Show that for frequencies less than 108 sec�1, it can be

considered as a good conductor.

 [Ans: (a) 6~ 6 10 s�1]

23.9 For silver one may assume 0 and 73 10  mhos/m.

Calculate the skin depth at 108 s�1.

[Ans: 
49 10 cm]

23.10 Show that for frequencies 910 s�1, a sample of silicon will

act like a good conductor. For silicon one may assume

0

12  and 2  mhos/cm. Also calculate the penetration

depth for this sample at 6 –110 s .
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23.11 In a conducting medium show that H also satisfies an

equation similar to Eq. (23.113).

23.12 Using the analysis given in Sec. 23.8 and assuming / «1
(which is valid for an insulator) show that

2 2
1 1
8 8

0

2
1 1n

and

1 1
2 2

0

2
n

where

0/ .n

23.13 For the glass used in typical optical fibre at 0 8500Å,

1 2
0/ 1.46,n

63.4 10 mhos/m. Calculate 

and show that we can use the formulae given in the previous

problem. Calculate  and loss in dB/km.

[Hint: the power would decrease as exp (�2 z); loss in

dB/km is defined in Sec. 28.8]

[Ans: 11 4 1/ 8 10 ; 4.3 10 m ; loss 3.7

dB/km.]



24.1 INTRODUCTION

In the previous chapter we had shown the existence of elec-

tromagnetic waves. Using the continuity conditions of

electric and magnetic fields, we will, in this chapter, study the

reflection and refraction of plane waves at an interface of two

dielectrics and also at an interface of a dielectric and a metal.

We will show that by reflection from a dielectric surface we

can produce linearly polarized light. We will discuss the phe-

nomenon of total internal reflection and study the explicit

nature of the evanescent wave created in the rarer medium.

In Sec. 24.4 we will consider reflectivity (and transmittivity)

of a dielectric film.

24.2 REFLECTION AND
REFRACTION AT AN

INTERFACE OF TWO

MEDIA

Let us consider the incidence of a plane polarized electro-

magnetic wave on an interface of two media; we assume the

All of electromagnetism is contained in Maxwell�s equations� Untold number of experiments

have confirmed Maxwell�s equations. If we take away the scaffolding he used to build it, we

find that Maxwell�s beautiful edifice stands on its own.

�Richard Feynman

�ipvig�syx2exh2�ip�eg�syx

yp2ivig��yweqxi�sg2�e�i�

Chapter
Twenty
Four

plane x = 0 to represent the interface (see Fig. 24.1). Let 1 and

2 represent the intrinsic impedance of the media below and

above the plane x = 0; the intrinsic impedance of a medium is

defined in Sec. 23.4. Let E1, E2 and E3 denote the electric

fields associated with the incident wave, refracted wave and

reflected wave, respectively. For an incident plane wave,

these fields will be of the form

1 10 1

2 20 2 2

3 30 3 3

exp .

exp .

exp .

i t

i t

i t

E E k r

E E k r

E E k r

(24.1a)

where E10, E20 and E30 are independent of space and time but

may, in general, be complex. The vectors k1, k2 and k3 repre-

sent the propagation vectors associated with the incident,

refracted and reflected waves respectively. At the interface,

the continuity conditions are as follows:

Case I: If both media are non-conducting ( 1 = 2 = 0): Tan-

gential components of E and H are continuous at

the interface of two media. Further, normal compo-

nents of D and B are also continuous at the

interface.

LO 1: explain reflection and refraction at an interface of two media.

LO 2: calculate reflection and transmission coefficients when a plane electromagnetic wave is incident normally at the

interface of two media.

LO 3: calculate reflection and transmission coefficients when a plane electromagnetic wave (with its E i  the plane of

incidence) is incident obliquely at the interface of two media.

LO 4: illustrate polarization by reflection through Brewster's law.

LO 5: understand the phenomenon of  total internal reflection and existence of evanescent waves.

LO 6: calculate reflection and transmission coefficients when a plane electromagnetic wave (with its E perpendicular to

the plane of incidence) is incident obliquely at the interface of two media.

LO 7: calculate Poynting vector for the evanescent wave.

LO 8: calculate reflectivity of a dielectric film for a normally incident plane wave.

LO 1

n
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Case II: If the second medium is perfectly conducting

( 2 = 0): The tangential components of E are con-

tinuous and are zero at the interface.

Case III: For arbitrary values of 1 and 2, tangential compo-

nents of E and normal components of B are

continuous.

Fig. 24.1 The reflection and refraction of a plane wave
with the electric vector lying perpendicular to
the plane of incidence (along the y-axis) and
with the H vector in the plane of incidence.

Further, (at the end of Sec. 24.7) we will show  that if the elec-

tric vector associated with the incident wave lies in the plane

of incidence, then the electric vectors associated with the re-

flected and transmitted waves will also lie in the plane of

incidence. Similarly, if the electric vector associated with

the incident wave is normal to the plane of incidence, then

the electric vectors associated with the reflected and trans-

mitted waves will also lie normal to the plane of incidence.

(see also Example 24.11)

As mentioned above, the fields have to satisfy certain

boundary conditions at the interface (which corresponds to

x = 0 ) where Eq. (24.1a) takes the form

1 10 1 1

2 20 2 2 2

3 30 3 3 3

exp

exp

exp

y z

y z

y z

i k y k z t

i k y k z t

i k y k z t

E E

E E

E E

 (24.1b)

where k1x, k1y and k1z represent the x, y and z-components of

k
I
; similarly for k

P2
and k

Q
. Now, for example, the z-component

of the electric field (which is a tangential component) must

be continuous at x = 0 for all values of y, z and t.

Consequently, the coefficients of y, z and t in the exponents

appearing in the above equation must be equal*. Thus

2 3

showing that all the waves have the same frequency. Further,

we must have

1 2 3y y yk k k

and

1 2 3z z zk k k (24.2)

Without any loss of generality we may choose the y-axis

such that

1 0yk

(i.e., k1 is assumed to lie in the x-z plane�see Fig. 24.1). Con-

sequently,

2 3 0y yk k (24.3)

Equation  (24.2) implies that the vectors k
I
, k

P2
and k

Q
 will lie

in the same plane. Further, from Eq. 24.2 we get

1 1 2 2 3 3sin sin sink k k (24.4)

Since k1 = k3 (because k1 and k3 represent the magnitude of

the propagation vector in the same medium), we must have

1 3 , i.e. the angle of incidence is equal to angle of reflec-

tion. Further,

1 2

2 1

sin

sin

k
=
k

(24.5)

If the two media are dielectrics and if 1 1, and

2 2, represent the dielectric permittivity and magnetic

permeability of the media below and above the plane x = 0,

then (see Sec. 23.3)
2 2
1 1 1k = (24.6)

and
2 2
2 2 2k =  (24.7)

Thus, Eq. (24.5) would imply

1 2 2

2 1 1

sin

sin

 (24.8)

If  
1

1 1

1
v   and 

2

2 2

1
v (2 .9)

represent speeds of propagation of the waves in media 1 and

2 respectively, then

1 1 1 2

2 2 2 1

sin

sin

c n n

c n n

v

v

 where

1
1

c
n

v

and 2
2

c
n

v

 (2 .10)

represent the refractive indices of the two media. Thus, we

have

1 1 2 2sin sinn n  (2 .11)

which is Snell's law.

   B We may mention here that the exponent of the magnetic field will also be the same; thus, even the continuity of any component of

the magnetic field would have led to the same equations.

4

4

4
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24.3 NORMAL INCIDENCE

ON A MEDIUM

When  a linearly polarized electromagnetic wave is incident

normally at the interface of two media, we can always assume

the wave to be y-polarized. Let the two media be character-

ized by intrinsic impedances 1 and 2 (see Fig. 24.2). The

electric fields associated with the incident, transmitted and

reflected waves can be written as

1

1 10ˆ
i k x t

E eE y  (Incident Wave) (24.12)

2

2 20ˆ
i k x t

E eE y (Transmitted Wave) (24.13)

1

3 30ˆ
i k x t

E eE y (Reflected Wave) (24.14)

The k vector associated with the incident, transmitted and

reflected beams are given by (see Fig. 24.2)

1 1 2 2ˆ ˆ,k kk x k x and 3 1ˆkk x (24.15)

Fig. 24.2 The reflection and refraction of a plane wave
incident normally at the interface of two media.

Since ˆ ˆ ˆx y z, the corresponding magnetic fields will be
given by

11 1
1 10

1

ˆ
i k x t

H e
k E

H z (24.16)

22 2
2 10

2

ˆ
i k x t

H e
k E

H z (24.17)

13 3
3 30

1

ˆ
i k x t

H e
k E

H z (24.18)

where 10 20
10 20

1 2

,
E E

H H and 30
30

1

E
H (24.19)

Since the electric and magnetic fields are tangential to the

surface, they must be continuous (at x = 0) to obtain

  10 30 20E E E

and
10 30 20

1 1 2

E E E

Thus,
1

10 30 20
2

E E E

Using the above equations, we get

1
10 20

2

2 1E E 20 2

10 1 2

2E
t

E
(24.20)

Futher,
2

30 20 10 10
1 2

2
1E E E E

implying 30 2 1

10 2 1

E
r

E
(24.21)

24.3.1 Lossless Dielectrics

We next derive complete expressions for E, H and S for a

y-polarized electromagnetic wave incident normally at the in-

terface of two lossless dielectrics characterized by refractive

indices n1 and n2. Now, in a lossless dielectric (see Sec. 23.2)

0 0c

n n
(24.22)

where 0 0 120c (24.23)

is the intrinsic impedance of free space. Thus,

0
1

1n
and

0
2

2n

and, therefore,

2 1 1 2

2 1 1 2

n n
r

n n
(24.24)

and 2 1

1 2 1 2

2 2n
t

n n
(24.25)

Thus, when 2 1n n there is a phase change on reflection. In

order to obtain the actual fields, we take the real parts of E

and H to obtain

1 10 1ˆ cosE k x tE y

10
1 1

1

ˆ cos
E

k x tH z

2 20 2ˆ cosE k x tE y

20
2 2

2

ˆ cos
E

k x tH z

3 30 1ˆ cosE k x tE y

30
3 1

1

ˆ cos
E

k x tH z

LO 2
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The corresponding time averaged Poynting vectors will be
2
10

1 1 1
1

ˆ
2

E
S E H x

2
20

2 2 2
2

ˆ
2

E
S E H x

2
30

3 3 3
1

ˆ
2

E
S E H x

Thus, the reflectivity and transmitivity will be given by:

2 2
3 3 3 30 1 2

10 1 21 11

E n n
R

E n n

S E H

E HS
(24.26)

and

2
2 2 2 202

1 101 11

2

2 1 1 2

2
1 1 2 1 2

2 4

En
T

n E

n n n n

n n n n n

S E H

E HS
(24.27)

Obviously, 1R T .

For oblique incidence one has to be careful � see Sec.

24.8.

Example 24.1 We consider the air-glass interface, for which

n
I
 = 1.0 and n

P
 = 1.5 we readily obtain

R = 0.04 and T = 0.96

showing 4% reflection at the air-glass interface. Further, since, we

have reflection by a denser medium, 30

10

E

E
is negative showing a

phase of charge of  on reflection.

Example 24.2 In this example, we will consider a y-polar-

ized electromagnetic wave with 10 10 V mE (traveling in air with

n
I2
= 1) incident normally on a dielectric for which 2 2.5n . Assum-

ing the free space wavelength to be
o

6000 A
76 10 m , we will

calculate the amplitudes of the reflected and transmitted fields and

also the corresponding magnetic fields and the Poynting vectors.

1 2

1 2

0.429
n n

r
n n

and
1

1 2

2
0.571

n
t

n n

Thus, 20 10 5.71 V mE tE

and 30 10 4.29 V mE rE

Further, 1 0 120 377

and
0

2
2

150.8
n

Therefore,

                   
210

10
1

2.66 10 A m
E

H

               
220

20
2

3.80 10 A m
E

H

and

230
30

1

1.14 10 A m
E

H

The complete fields are therefore given by incident wave:

                 1 1ˆ 10 cos V mk x tE y

                
2

1 1ˆ 2.66 10 cos A mk x tH z

Transmitted wave 2 2ˆ 5.71 cos V mk x tE y

                   
2

2 2ˆ 3.80 10 cos A mk x tH z

Reflected wave 3 1ˆ 4.29 cos V mk x tE y

                
2

3 1ˆ 1.14 10 cos A mk x tH z

where              
7 1

1 1
0

2
1.047 10 mk n

c

and                
7 1

2 2 2
0

2
2.618 10 mk n n

c

The corresponding pointing vectors are given by

2
1 1 1 ˆ0.133 J mS E H x

2
2 2 2 ˆ0.1085 J mS E H x

2
3 3 3 ˆ0.0244 J mS E H x

Thus,

3

1

0.183R
S

S
  and    

2

1

0.816T
S

S

Also,

2 2

1 2

1 2

1.5
0.1836

3.5

n n
R

n n

1 2

2

1 2

4 4 1 2.5
0.8163

3.5 3.5

n n
T

n n
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24.3.2  Normal Incidence on a Perfect
Conductor

We next consider a y-polarized electromagnetic wave incident

normally on a perfect conductor for which 2 . Thus,

2
2

2

g  2 0

(see Sec. 23.7 and also Sec. 24.4). Thus, 2

1 2

2
0t , and

therefore, there is no transmitted wave. Further,

2 1
30 10

2 1

1r E E (24.28)

Thus, the actual electric fields associated with the incident

and reflected waves would be given by:

1 10 1ˆ cos k x tE y E

3 10 1ˆ cos k x tE y E

The incident and reflected waves superpose to give a stand-

ing wave (see Sec. 13.2):

1 3 10 1ˆ 2 sin sinE k x tE E y

24.3.3 Reflectivity of a Good
 Conductor

We next consider the reflection of an electromagnetic wave

incident normally on the interface of a dielectric (character-

ized by 1  and 1) and a good conductor (characterized by

2 2, and 2). By a good conductor we imply

2
2

2

1g

Now, for the  conductor

           2 2
2 2 2 2 2k i (24.29)

If we write 2 2 2k i (24.30)

then (see Sec. 23.7)

1/2
22 2

2 21 1
2

g (24.31)

1/2
22 2

2 21 1
2

g (24.32)

where we have assumed 2 to be real and 
2

2
2

.g The am-

plitude reflection coefficient is given by

2

30 2 1 1

210 2 1

1

1

1

E
r

E
(24.33)

Now,

1
1

1

and 2
2 2

i
e (24.34)

with    
1/422

2 2
2

1 g (24.35)

where, 2
2 2 2

2

tan 2 ; 0
4

g (24.36)

Since,
2 2

2 2
2 22

1
1,g

g
and 2 .

4

Thus,
42 2 1

1 2 1

1
i

e i h (24.37)

where,
2 1

2 12
h  (24.38)

Thus,

1 1

1 1

i h
r

i h

Since h  1, we may write

1 1 1 1r i h i h 1 2 1 i h (24.39)

Thus,

22 2
1 2 4 1 4R r h h h

or, the reflectivity is approximately given by

2 1

2 1

2
1 2R (24.40)

Further, the transmitted field is given by

2

2 10 ˆ
i k x t

tE eE y 24.41)

where,

2

2 1

21 2

1

2
2

1

t 42 1
2

1 1

ii h
he

i h

where we have used Eq. (24.37). Thus,

/4
2 10 ˆ2

i x tx
h E e eE y (24.42)

a
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Thus, there is exponentially decaying electromagnetic wave

in the conductor; this will result in Joule heating and absorp-

tion.

Example 24.3 We consider a linearly polarized electromag-

netic wave (with frequency 10 GHz and 10 15 V mE )

propagating in air and incident normally on copper for which
7

2 5.6 10 mhos m. Assuming

2 1  7 2 2
0 4 10 Ns C

and  12 2 1 2
2 1 0 8.854 10 C N m , we get

7
82

2 10 12
2

5.6 10
1.0 10

2 10 8.854 10
g

Thus, gP >>> 1 and therefore, at 10 GHz, copper behaves like a

very good conductor. Further,

10 12
02 1
7

2 1 0

2 2 10 8.854 102
1 2 1 2

5.6 10
R

0.9997

showing extremely high reflectivity. Further,

10 12
02 1

7
2 1 0

2 10 8.854 10

2 2 5.6 10
h

57.05 10

Now, 2 2 2k i , where (for large values of g
P
)

10 7 7
0 22 2 2

2 2

2 10 4 10 5.6 10

2 2 2

g

                    6 11.49 10 m

Thus, the complete expression for the transmitted field will be

6
3 1.49 10 6

2 ˆ 1.50 10 cos 1.49 10 V m
4

xe x tE y

where, x and t are measured in meters and seconds, respectively.

The intensity will decrease as

2
0

xI I e

If xH is the distance in which the intensity will decrease by a factor

of 2, then

021
2

x
e

7
0

ln 2
2.5 10 m 0.25

2
x

The transmitted wave will result in the Joule heating of the

conductor.

24.4 OBLIQUE INCIDENCE:

E PARALLEL TO THE
PLANE OF INCIDENCE

In this section, we will calculate the amplitude reflection co-

efficient and the amplitude transmission coefficient for an

electromagnetic wave incident (at an angle 1) on the inter-

face of two media characterized by intrinsic impedances 1

and 2; the interface corresponds to the plane x = 0 (see Fig.

24.3). We assume the electric field of the incident wave to be

in the plane of incidence so that we may write (for the inci-

dent wave)

1.
1 1 10

ˆ i t
E e

k r
E e (24.43)

1 1 1
ˆ kk k

where 1 1 1ˆ ˆ ˆsin cose x z

and
1 1 1

ˆ ˆ ˆcos sink x z

are the unit vector along E
I
 and k

I
 respectively (see Fig. 24.3).

Obviously 
1 1

ˆˆ 0e k  implying 1 1 0E k . Since, 
1 1

ˆ ˆ ˆ ,k e y

we get

1.101 1
1

1 1

ˆ
i t
e

k rEk E
H y (24.44)

Fig. 24.3 The reflection and refraction of a plane wave
with its H vector lying perpendicular to the
plane of incidence (along the y-axis) and with
the electric vector in the plane of incidence.

It can be readily seen that 1 1 0H k . The refracted wave will

be along

2 2 2
ˆ ˆ ˆcos sink x z

Thus,

2 2 2
ˆ ˆ ˆsin cose x z

2

2 2 20ˆ
i t

E e
k r

E e

220
2

2

ˆ
i tE
e

k r
H y

The reflected wave will be along

3 1 1
ˆ ˆ ˆcos sink x z
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Thus,  3

3 3 30
ˆ

i t
E e

k r
E e

3 1 1
ˆ ˆ ˆsin cose x z

and

330
3

1

ˆ
i tE
e

k r
H y

As can be easily seen 2 2 3 30E k E k

and 2 2 3 30H k H k

Now (see Fig. 24.3)

    1

1 10 1cos
i t

zE E e
k r

   2

2 20 2cos
i t

zE E e
k r

3

3 30 1cos
i t

zE E e
k r

Since, Ez and Hy are tangential components, and therefore,

they must be continuous at x = 0 giving

10 1 30 1 20 2cos cos cosE E E

1
20 10 30

2

cos

cos
E E E (24.45)

Continuity of Hy would give

10 30 20

1 1 2

E E E

2 1
10 30 20 10 30

1 2

cos

cos
E E E E E

where we have used Eq. (24.45). Thus,

2 1 1 2
30 10

1 2 2 1

cos cos

cos cos
E E

30 1 1 2 2

10 1 1 2 2

cos cos

cos cos
p

E
r r

E
   (24.46)

where r| | denotes  the amplitude reflection coefficient by

(often also represented by rp); the subscripts || and p refer to

the fact that we are considering polarization parallel to the

plane of incidence. The amplitude transmission coefficient

represented by t|| (often also represented by tp) is given by

20 302 2 1

10 1 10 1 1 2 2

2 cos
1

cos cos
p

E E
t t

E E
  (24.47)

For normal incidence 1 20 and we get the same ex-

pressions as derived in Sec. 24.2. If the two media are

lossless dielectrics characterized by refractive indices n1 and

n2, then

1
1

c

n
and 2

2

c

n
     (24.48)

Thus, 2 1 1 2

2 1 1 2

cos cos

cos cos
p

n n
r r

n n
             (24.49)

and
1 1

2 1 1 2

2 cos

cos cos
p

n
t t

n n
(24.50)

From the above equations we may deduce the following:

(a) No reflection when 2 1n n : When 2 1 2 1,n n and

we get

                      0r   and   1t =

Thus, there is no reflection when the second me-

dium has the same refractive index as the first medium

(Obviously!). Thus, if we have a transparent solid im-

mersed in a liquid of the same refractive index, the solid

would not be seen!

(b) Phase Change on Reflection: When light is incident

on a denser medium, 2 1  and for

1 2 1/ 2 i.e., for ,p r is negative im-

plying a phase change of ; p is the Brewster angle

defined in Sec. 24.5. However, no such phase change

occurs when 1 p. We will discuss this point in de-

tail later.

(c) Stokes� Relations:  Figure 24.4  shows that if the media

are interchanged, the angles of incidence and refrac-

tion are reversed. If r and t denote the amplitude

reflection and transmission coefficients corresponding

to Fig. 24.4(b), then one can show that (see

Problem 24.4)

1 r r t t (24.51)

This is one of the Stokes� relations�see also Sec.

14.12.

(d) Reflection at Grazing Incidence: For grazing inci-

dence 1 2
, Eq.(24.49) can be written in the form

1 2

1 2

sin sin

sin sin

n
r

n
(24.52)

(where 2 1 1 12
/ ,n n n and 2 22

and at

grazing incidence both these angles will be small. Now,

1 1

2 2

sin cos

sin cos
n
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or,

1/22
1/22 1

2 2 2

cos
sin 1 cos 1

n

Thus,

1/2
2

1
1 2

1/22
1

1 2

cos
sin 1

cos
sin 1

n
n

r

n
n

1/2

1 2

1/2

1 2

1
1

1
1

n
n

n
n

(24.53)

where we have replaced sin 1 by 1 and cos 1 by 1 (thus

we have retained terms proportional to 1 but neglected

terms of higher order�this will be justified when 1 is small).

Thus,

1

1 1

2 22 2

1 1

1 1

n n
r

n n n n

2
1

1
2

2
1 1 as 0

1

n

n
(24.54)

which shows that the reflection is complete at grazing inci-

dence. Thus, if we hold a glass plate horizontally at the level

of the eye (see Fig. 24.5) the angle of incidence will be close

to /2 and the plate will act as a mirror.

24.5 POLARIZATION BY

REFLECTION: BREWSTER�S

LAW

Now, 0r  when 2 1 1 2cos cosn n  implying

1 1 2

2 2 1

cos sin

cos sin

n

n

where we have used Snell�s law, 1 1 2 2sin sinn n .Thus,

1 2sin 2 sin 2 , giving

1 2 1 22 2
2

(24.55)

(we have neglected the solution 1 2 which will happen

when 2 1n n , implying that there is no discontinuity!). Thus,

2
1 1 2 2 2 1 2 1 1

1

sin sin sin cos tan
2

n
n n n n

n

(24.56)

This is the Brewster angle p

1 2
1

1

tanp

n

n
(Brewster�s Angle) (24.57)

Thus, when a beam is incident at the Brewster�s angle,

0r and the reflected light is linearly polarized with its elec-

tric vector normal to the plane of incidence (see Fig. 24.6).

This is one of the methods for producing linearly polarized

light�see Sec. 22.2.2.

Fig. 24.4 The angles of incidence and refraction are reversed if the media are interchanged.

a1
n1

n2

Eye

Fig. 24.5 When light is incident at grazing angle (i.e., 1  0) the reflection is almost complete.
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24.6 TOTAL INTERNAL

REFLECTION AND THE
EVANESCENT WAVE

Consider the incidence of a plane wave (with the electric field

in the plane of incidence) at the interface 0x of  two di-

electrics with 2 1n n . Since 1 1 2 2sin sinn n , the angle of

refraction 2
2

, when

1 2
1

1

sinc

n

n
(24.58)

The angle of incidence c is referred to as the critical angle

and hence the subscript c. For 1 2, sin 1c and

2
2 2cos 1 sin  will become imaginary. Now, the elec-

tric field associated with the transmitted wave (in the second

medium) is given by

2 20 2exp i tE E k r

20 2 2exp x zi k x k z tE

where, as before, we have chosen our y-axis at right angles

to the plane of incidence (thus, k2y = 0).

Thus,

2 20 2 2 2 2exp cos sini k x k z tE E (24.59)

Now,

2 2
2 2cos 1 sin

2 2
1 1

2
2

sin
1

n

n

        

2
2 21

12
2

sin sin c

n

n

or, 2 21
2 1

2

cos sin sin c

n
i
n

(24.60)

where we have chosen the + sign so that we have an expo-

nentially attenuating wave:

2 2 2cosxi k x i k x x
e e e

where,

2 2 2 2 2
1 1 1 1 2sin sin sincn n n

c c
(24.61)

(We reject the solution 2 21
2 1

2

cos sin sin c

n
i
n

as it will lead to an exponentially amplifying solution in the

region 0x ). Thus,

2

2 20
zi k z tx

e eE E (24.62)

where, 2 2 2 2 2 1 1sin sin sinzk k n n
c c

Fig. 24.6 When an unpolarized beam of light is incident on a dielectric at the polarizing angle [i.e., the angle of inci-
dence is equal to tan�1(n2/n1)] then the reflected beam is plane-polarized with its E-vector perpendicular to the
plane of incidence. The transmitted beam is partially polarized. The dashed line in (b) is  normal to the reflect-
ing surface.
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Thus, for 
1 2

1
1

sinc

n

n
, we have, in the second me-

dium, a wave which decays exponentially in the x-direction

and propagates along the z-direction; such a wave is known

as an evanescent wave (see Fig. 24.7). The above analysis is

valid both when the E vector is in the plane of incidence as

well as when E vector is perpendicular to the plane of inci-

dence.

x

z
y

n2

n n1 2(> )

q qi c(> )

Evanescent wave

Interface

Fig. 24.7 An evanescent wave is generated in the rarer
medium when a beam undergoes total internal
reflection. The evanescent wave propagates
along the z-axis and the amplitude decreases
along the x-axis.

Example 24.4 For the glass-air interface

1 21.5, 1.0n n , the critical angle is given by

1 12

1

1
sin sin 41.8

1.5
c

n

n
=

We assume, 7
0 6 10 m and the angle of incidence to be

60°, so that

                
7 1

1 1 7

2
sin 1.5 sin 60 1.36 10 m

6 10
n

c

The evanescent field decreases as
xe ; thus, if x

H
 is the dis-

tance (in the rarer medium) in which the field reduces by a factor of

2, then

0
0

1 ln 2

2

x
e x

Thus,
8

0

ln 2
5.1 10 m = 51 nmx

which implies that the field associated with the evanescent wave

falls of very rapidly.

24.6.1 Reflectivity and Phase Change on
Total Internal Reflection

As shown above, when 1 2
1

1

sinc

n

n
, the beam

undergoes total internal reflection and 2cos becomes

imaginary [see Eq. (24.60)]; thus, we may write

2 1 1 2 1

2 1 1 2 1

cos cos cos

cos cos cos

n n iu
r

n n iu

where,
2

2 21 1
2 1

2 2

cos sin sin c

n n
u i

n n

(24.63)

is a real positive number. Thus,

2
1R r

showing complete reflection of the beam. In order to calcu-

late the phase charge on reflection we write

  
2

i
i

i

Ae
r e

Ae
          (24.64)

where, 2 2
1cosA u      (24.65)

              
1cos

cos ; sin
u

A A

                   1

1

tan ; 0
cos 2

u

and 2
30 10

i
E E e

Thus, the total phase change on reflection will be given by

2 2 2
11 1

2 1

sin sin
2 2 tan ; 0

cos 2

cn

n
(24.66)

The actual electric field will be

30 10 3 3
ˆ cos 2E tE e k r   (24.67)

showing the phase shift that would occur when the beam

undergoes total internal reflection.

Example 24.5   As an example, we will calculate the phase

shift for reflection at the glass-air interface

1 21.5 & 1.0n n when the angle of incidence 1 is 60°.
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Thus,

2
2 21

12
2

sin sin c

n
u

n

2
2 3 1

1.5 1.244
4 1.5

   1

1

2 2 tan
cos 1.32

u

24.7  OBLIQUE INCIDENCE: E
PERPENDICULAR TO THE

PLANE OF INCIDENCE

We next consider a plane electromagnetic wave, with its elec-

tric field perpendicular to the plane of incidence,  incident at

an angle 1 on the interface of two media of intrinsic imped-

ances 1 and 2; the interface being at x = 0 (see Fig. 24.1).

Since the electric field is along the y direction we may write

for the incident wave

1 1 10 1
ˆ expE i tE e k r

10
1 1 1 1

1

ˆ ˆ exp
E

i tH k e k r

where 1
ˆ ˆe y and 

1 1 1
ˆ ˆ ˆcos sink x z are the unit vectors

along the directions of E
I
 and k

I
. Similarly, for the transmit-

ted wave we have (see Fig. 24.1)

2 2 20 2
ˆ expE i tE e k r

         
20

2 2 2 2
2

ˆ ˆ exp
E

i tH k e k r

3 3 30 3
ˆ expE i tE e k r

         
30

3 3 3 3
3

ˆ ˆ exp
E

i tH k e k r

where

          2 3 1
ˆ ˆ ˆ ˆe e e y ;  

2 2 2
ˆ ˆ ˆcos sink x z

3 1 1
ˆ ˆ ˆcos sink x z

are the unit vectors associated with the transmitted and re-

flected waves. Both Ey and Hz are components tangential to

the interface x = 0, their continuity would give us

10 30 20E E E

and 10 30 20 10 30
1 1 2 2

1 1 2 2

cos cos cos cos
E E E E E

Thus,

1 2 1 2
10 30

1 2 1 2

cos cos cos cos
E E

Let r  and t denote the amplitude reflection coefficient

and the amplitude transmission coefficient; the subscript 

refers to the fact that we are considering �perpendicular� po-

larization; one often uses the subscript s; the letter s stands

for the German word senkrecht which means perpendicular.

The parallel polarization (or the p polarization) is also called

the Transverse Magnetic (or the TM) polarization as the

magnetic field is perpendicular to the plane of incidence. On

the other hand, perpendicular polarization (or the s polariza-

tion) is also called the Transverse Electric (or the TE)

polarization as the electric field is perpendicular to the plane

of incidence. Using the above equations we get

30 2 1 1 2

10 2 1 1 2

cos cos

cos cos
s

E
r r

E
(24.68)

Further,

20 30 2 1

10 10 2 1 1 2

2 cos
1

cos cos
s

E E
t t

E E
     (24.69)

24.7.1 Lossless Dielectrics

We consider the incidence of a plane electromagnetic wave

(with its electric field perpendicular to the plane of incidence)

at the interface of two dielectrics characterized by refractive

indices n1 and n2, so that 1
1

c

n
 and 2

2

c

n
and we

obtain

rs = 
1 1 2 2

1 1 2 2

cos cos

cos cos

n n
r

n n
(24.70)

and ts =
1 1

1 1 2 2

2 cos

cos cos

n
t

n n
(24.71)

For given values of n1 and n2, if we wish to study the

variations of r  and r  as a function of 1, we must use

Snell�s law 1 1 2 2sin sinn n to write

2 2 2
2 2 2 1 1cos sinn n n . Thus,

2 2 2
1 1 2 1 1

2 2 2
1 1 2 1 1

cos sin

cos sin

n n n
r

n n n
                             (24.72)

LO 6



OpticsPRFIP
u

Similarly,

      

2 2 2 2
2 1 1 2 1 1

2 2 2 2
2 1 1 2 1 1

cos sin

cos sin

n n n n
r

n n n n
                  (24.73)

Similar expressions for t and t can be derived. The varia-

tions of r  and r  (for
1 1.0n and 2 1.5n ) are plotted

in Fig. 24.8. When

1 2
1

1

tan 56.3p

n

n

(i.e., when the angle of incidence is equal to the Brewster

angle) 0r . Further, at this angle 0.385r . Equations

(24.68) � (24.73) are known as Fresnel equations. We write

i
r r e (24.74)

0°
0

0.2

0.4

0.6

0.8

1

15° 30° 45° 60°

qp
q

75° 90°

Ω Ωr||

Ω Ωr^

Fig. 24.8 Variation of r   and r with the angle of inci-

dence when n
2 = 1.5 and n1 = 1.0.

The variations of , ,r r and are plotted in Figs. 24.8

and 24.9 for 2 1/ 1.5n n . The directions of the E-vector in the

reflected components are shown in Fig. 24.10. Referring to

Fig. 24.8 we note that when

1 2
1

1

tan 56 , 0p

n
r

n

This is the Brewster�s angle. At grazing incidence (i.e. as

1 90 ), both r  and r  tend to 1 implying complete re-

flection. At normal incidence (i.e. 1 0 ), both parallel

polarization as well as perpendicular polarization should give

the same result; this is due to the fact that at normal inci-

dence the direction of propagation is coincident with the

normal to the reflecting surface and any plane containing the

normal could be thought of us plane of incidence. Figure 24.8

shows that both r  and r  have the same value at 1 0 ;

however, Fig. 24.9 shows that while the perpendicular com-

ponent predicts a phase change of , there is no phase

change associated with the parallel component. There is,

however, no inconsistency, if we study the direction of the

electric vector associated with the reflected components [see

(b) and (d) of Fig. 24. 10].

90° 90°0 0qp

f|| f^

q

p p

q

(a) (b)

Fig. 24.9 The phase change on reflection (a)  for the paral-
lel component and (b)  for the perpendicular

component for n
2
 = 1.5 and n

1
 = 1.0; =   for

all values of .

(a)

(c)

(b)

(d)

q q1 < p

Fig. 24.10 For the perpendicular component, there is a
phase change of  at all angles [(a) and (b)]. For
the parallel component there is no phase change
for 1 < p [see (c) and (d)]. Notice that at normal
incidence, the electric field changes direction in
both the cases.
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Recapitulating on this, we first considered the case when

the electric field associated with incident wave was in the

plane of incidence and assumed that the electric fields asso-

ciated with the reflected and transmitted waves were also in

the plane of incidence. Had we assumed that the reflection at

the interface resulted in electric fields (E2y and E3 y) along the

y direction associated with the transmitted and reflected

waves, then the continuity of Ey and Hz at x = 0 would have

given us

                  3 2=y yE E

and

                 
3 3 2 2

0 0

x y x yk E k E

1 1 3 2 2 2cos cosy yn E n E

The above two equations would immediately result in the

solutions 3 2= 0y yE E . Thus, we may conclude that if the

incident electric field lies in the plane of incidence then the

electric fields associated with the reflected and transmitted

waves must also lie in that plane. Similarly, if the incident

electric field is perpendicular to the plane of incidence, then

the electric field associated with the reflected and transmitted

waves will also lie perpendicular to the same plane. In

general, for an arbitrary state of polarization of the incident

wave, we must resolve the incident electric field in

components which are parallel and perpendicular to the plane

of incidence and consider the reflection (and transmission)

of each of the components and then superpose to find the

resultant state of polarization (see Example 24.9). Indeed by

studying the polarization characteristics of the reflected

wave, one can determine the (complex) refractive index of the

material. This is known as the field of "ellipsometry"- a

subject of great importance (see, e.g., Ref. 24.11).

24.8 EXPRESSIONS FOR

REFLECTIVITY AND
TRANSMITTIVITY

In order to calculate the reflection coefficient we must

determine the ratio of the x-components of the Poynting

vectors associated with the reflected and transmitted waves.

The reason why we should take the ratio of the x-component,

can easily be understood by referring to Fig. 24.11. If S1

denotes the magnitude of the Poynting vector associated

with the incident wave then the energy incident on the area

dA (on the surface x = 0) per unit time would be

1xS dA 1 1cosS dA . Similarly, the energy transmitted

through the area dA would be

2 2 2cosxS dA S dA

and the energy reflected from the area dA would be

3 3 1cosxS dA S dA

Thus, if R and T denote the reflection and transmission

coefficients, then

3 3 1 3

1 1 1 1

cos

cos

x

x

S S S
R

S S S
(24.75)

and

             2 2 2

1 1 1

cos

cos

x

x

S S
T

S S
(24.76)

Fig. 24.11 If the cross-sectional area of the incident beam
is dAcos

1
 then the cross-sectional area of the

transmitted beam is dAcos
2
 where 

1
 and 

2

represent the angles of incidence and refraction
respectively.

We must remember that in order to calculate the Poynting

vector, we must use the real parts of E and H; (see Sec. 23.3).

We assume that a plane electromagnetic wave, with its

electric field perpendicular to the plane of incidence, is

incident at an angle 1 on the interface of two dielectrics with

refractive indices n1 and n2; thus,

3 3 1

1 1 1

cos

cos

x
s

x

S S
R R

S S

                 

2
30

3 3 1

21 1
10

1

1

1

E
E H

E H
E
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2
2 1 1 2 2

1 1 2 2

cos cos

cos cos
s

n n
R R r

n n
(24.77)

Further,

             
2 2 2

1 1 1

cos

cos

x
s

x

S S
T T

S S

                 

2
20 2

2 2 2 2

21 1 1
10 1

1

1
cos

cos

1cos
cos

E
E H

E H
E

22 2 1 2 1 2

2
1 1 1 1 2 2

cos 4 cos cos

cos cos cos
s

n n n
T T t

n n n
(24.78)

Thus, as expected 1R T . In a similar manner, we can

consider the case of a plane electromagnetic wave with its

electric field parallel to the plane of incidence to obtain

3 3

1 1

x
p

x

S S
R R

S S

2
2 2 1 1 2

2 1 1 2

cos cos

cos cos

n n
r

n n
(24.79)

 2 2 2

1 1 1

cos

cos

x
p

x

S S
T T

S S

     Tp = T|| 

22 2 1 2 1 2

2
1 1 2 1 1 2

cos 4 cos cos

cos cos cos

n n n
t

n n n
(24.80)

Once again 1R T .

In Fig. 24.12 we have plotted the reflection coefficients for

the parallel (p) and the perpendicular (s) components when

light is incident from air on a denser medium of refractive

index 2.0; notice that Rp = 0 at the Brewster's angle (or the

polarizing angle) showing that, at this angle of incidence, the

reflected light will always be s-polarized. On the other hand,

in Fig. 24.13 we have plotted the reflection coefficients for

the parallel (p) and the perpendicular (s) and components

when light is incident from a denser medium of refractive

index 2.0 on air; notice that both Rs = Rp = 1 at all angles of

incidence greater than the critical angle. Further, at the

Brewester's angle Rp = 0 showing that, at the angle of

incidence, the reflected light will again be s-polarized.

Example 24.6 In Fig. 24.12 we have plotted the reflection

coefficients R  and R as a function of the angle of incidence for

n
I = 1.0 and nP = 2.0. The Brewster angle is 63.43° where R is

zero and the reflected wave is linearly polarized. In Fig. 24.13, we

have plotted the reflection coefficients R and R  as a function of

the angle of incidence for n
I = 2.0 and nP = 1.0. The Brewster angle

is 26.56° where R is zero and the reflected wave is linearly

polarized. The critical angle is 30° beyond which the reflectivity is

unity for both parallel and perpendicular polarizations.

Fig. 24.12 The reflection coefficients for the  p (parallel) and s (perpendicular) components when a light beam is incident
from a rarer medium (of refractive index 1.0) on a denser medium of refractive index 2.0. The Brewster angle
is 63.43° where Rp is zero and the reflected wave is s polarized.
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24.9 POYNTING VECTOR

CALCULATION FOR THE

EVANESCENT WAVE

Consider the incidence of a plane electromagnetic wave (with

its electric field perpendicular to the plane of incidence) at

the interface of two dielectrics with n2 < n1. Assume the

angle of incidence 1 to be greater than the critical angle c.

In this section we will calculate 2xS  and 2zS  (where S2

is the Poynting vector associated with the transmitted wave)

and interpret the results physically. Now, the electric and

magnetic fields associated with the incident wave are

     1 1
1 10ˆ x zi k x k z t

E eE y

    1 110
1 1 1

1

ˆ ˆcos sin x zi k x k z tE
eH x z

where 1 1 1 1 1 1 1
1

, cos , sinx z

c
k n k n

n c c

Thus,

 
2

210
1 1 1 1

1

sin cosx x z

E
S k x k z t

2
10

1
1

sin
2

E

Similarly  
2
10

1 1
1

cos
2

z

E
S

Now 1 1 1

2 2
1 1 2 2 1 1

2 cos 2 cos

cos cos cos sin sin c

n
t

n n i

       i
t e

where,

2 2
11 1 sin sin2cos cos

;cos ;sin
cos cos cos

c

c c c

t

Thus, for the transmitted wave

2
2 10ˆ zi k z txE t e eE y (24.81)

where  (see Sec. 24.6)

2 2
1 1sin sin cn

c

and          2 2 2 1 1sin sinzk n n
c c

(24.82)

Since, 2 ( )xk i  is imaginary, we have to be little careful

in calculating the magnetic field. We start with writing the

actual electric field

2 10 2ˆ cos
x

zE t e k z tE y

LO 7

Fig. 24.13 The reflection coefficients for the  p (parallel) and s (perpendicular) components when a light beam is incident
from a denser medium (of refractive index 2.0) on a rarer medium of refractive index 1.0. The Brewster angle
is 26.56° where Rp is zero and the reflected wave is s polarized. The critical angle is 30° beyond which the
reflection coefficient is unity.



OpticsPRFIT
u

Since,

        
t t

B H
E

we get,

   
2 22

2 ˆ ˆ
y yE E

t z x

H
x z

                2 10 2ˆ sin
x

z zk E t e k z tx

                   10 2ˆ cos
x

zE t e k z tz

2
2 10 2

2

ˆ cos
xz

z

k
E t e k z tH x

                  10 2
2

ˆ sin
x

zE t e k z tz

Thus, 2zH  is 
2

 out of phase with 2 yE  and, therefore,

2 2 2 0x y zS E H

which shows that there is no power flow along the

x direction and, therefore, the transmission coefficient is zero

and the reflection is complete. Further,

2 22
2 2 2 10

22

xz
z y x

k
S E H t E e

showing that there is power flow along the z-axis. Indeed,

when a spatially bounded beam is incident at an interface

making an angle greater than the critical angle, then the beam

undergoes a lateral shift which can be interpreted as the

beam entering the rarer medium and reemerging (from the

rarer medium) after reflection�see Fig. 24.14 . This is known

as the Goos�Hanchen shift.

Example 24.7 We consider the incidence of a plane

electromagnetic wave on an air-glass interface (see Fig. 24.1). Thus,

nI = 1.0 and nP = 1.5 giving

1tan 1.5 56.31p

For 1 230 ; 19.47 we get

0.1589; 0.7725r t

0.2404; 0.7596r t

On the other hand, for 1 89 (grazing incidence), 2 41.80  and

0.9321r (~87% reflection); 0.0452t

          0.9693;r         and       0.0307t

Example 24.8 We next consider the incidence of a plane

electromagnetic wave on a rarer medium like a glass air interface.

Thus, n
I
 = 1.5 and n

P
 = 1.0 giving

1 1
tan 33.69

1.5
p  and 1 1

sin 41.81
1.5

c

(i) For 1 230 , 48.59 and

      0.06788; 1.3982r t

     0.3252; 1.3252r t

(ii) For 1 260 , cos i  with 0.82916

     2 1 1 2

2 1 1 2

cos cos

cos cos

n n
r

n n

       
0.5 1.5

0.5 1.5

i

i
 0.7217 0.6922i

       0.7567 ie

Fig. 24.14 The lateral shift (referred to as the Goos-Hanchen shift) of a beam undergoing total internal Reflection by a
rarer medium; the lateral shift has been exaggerated.
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[Use of Eq. (24.65) would give the same result]

2 1

2 1 1 2

2 cos

cos cos

n
t

n n

                          
1.5

0.41739 1.0382
0.5 1.5

i
i

                          0.3783
1.1190

i
e

                       1 1 2 2

1 1 2 2

cos cos

cos cos

n n
r

n n

0.75

0.75

i

i

                          0.5320.1 0.9950 ii e

(Notice 1r r ). Further,

1 1

1 1 2 2

2 cos

cos cos

n
t

n n
0.9 0.995i

                 0.266
1.3416

i
e

Example 24.9 Consider a linearly polarized electromagnetic

wave (with its electric vector along the y-direction of magnitude

5 V/m) propagating in vacuum. It is incident on a dielectric interface

at x = 0 at an angle of incidence of 30°. The frequency associated

with the wave is 6  10IRHz. The refractive index of the dielectric

is 1.5. We will calculate complete expressions for the electric and

magnetic fields associated with the incident, reflected and

transmitted waves.

The wave vector associated with the incident wave is given by

1 0 0ˆ ˆcos30 sin 30k kk x + z 0 0

3 1
ˆ ˆ

2 2
k k= x + z

Thus,

 1 0 0

3 1
ˆ 5 exp V/m

2 2
i k x k z tE y

where,

         14 6 1
012 10 Hz; 4 10 mk

c

Now,

     1 1
2 2

2

sin 1 8
sin cos

3 3

n

n

Thus,

         2 1 2 2

2 1 2 2

cos cos
0.2404

cos cos

n n
r

n n

                    0.057796sR R

and

1 2

1 2

2cos sin
0.7596

sin
t

implying

                      
22 2

1 1

cos
0.942204

cos
s

n
T T t

n

showing that 1R T . Now,

     2 2 0 2 2 0 2ˆ ˆcos sinn k n kk x +z 0 0

1
ˆ ˆ2

2
k k= x z

and

     3 0 1 0 1ˆ ˆcos sink kk x + z

        0 0

3 1
ˆ ˆ

2 2
k k= x z

Thus, the electric fields associated with the transmitted and

reflected waves would be given by

     2 0 0

1
ˆ3.8 exp 2 V/m

2
i k x k z tE y

and

     3 0 0

3 1
ˆ1.2 exp V/m

2 2
i k x k z tE y

respectively. Notice that the values of k
z
 in EI, EP and EQ are the

same [see Eq. (24.2)].

Now, 0
1 0

0

120 and
0

2
2

80
n

. The corre-

sponding magnetic fields would be

1 1 1 0 0

3 1
ˆ ˆ0.0133 sin cos exp A/m

2 2
i k x k z tH x z

2 2 2 0 0

1
ˆ ˆ0.0151 sin cos exp 2 A/m

2
i k x k z tH x z

and

3 1 1 0 0

3 1
ˆ ˆ0.00318 sin cos exp A/m

2 2
i k x k z tH x z

Example 24.10 Consider once again the situation described

in Example 24.9 except that the magnetic vector is now along the

y-direction. We will calculate the expressions for the electric fields

associated with the incident, reflected and transmitted waves.

Referring to Fig. 24.3, we have

1 0 0

1 3 3 1
ˆ ˆ5 exp V m

2 2 2 2
i k x k z tE x z

Now

                        2 1 1 2

2 1 1 2

cos cos
0.1589

cos cos

n n
r

n n

0.02525R
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and                     1 1

2 1 1 2

2 cos
0.7726

cos cos

n
t

n n

implying

                        
22 2

1 1

cos
0.97475

cos

n
T t

n

showing that 1R T . Furthermore,

2 0 0

1 8 1
ˆ ˆ3.863 .exp 2 V m

3 3 2
i k x k z tE x z

3 0 0

1 3 3 1
ˆ ˆ0.7945 .exp V m

2 2 2 2
i k x k z tE x z

Example 24.11 For the situation described in Example 24.9,

we consider a right-circularly polarized wave incident at the air-

glass interface at 1 30 . We will determine the state of

polarization of the reflected and transmitted fields.

We refer to Fig. 24.15. We must resolve the electric field in

components parallel and perpendicular to the plane of incidence.

We write for the y-component of the incident field

0 1 1 1 1cos cos sinyE E E k x k z t

then for the beam to be right-circularly polarized, the parallel

component must be given by

0 1 1 1 1cos cos sin
2

E E k x k z t

Neglecting the space-dependent parts (or, assuming x = 0, z = 0), we

will have

0 cosyE E E t and 0 sinE E t

The direction of the 'parallel axis', is as shown in Fig. 24.15 (b),

is consistent with Fig. 24.3. Thus,

1 0 1sin sin sinxE E E t

and

1 0 1cos cos sinzE E E t

In the reflected field, the 'parallel component' will be along the

direction shown in Fig. 24.15 (c)-consistent with Fig. 24.3.

Now, 0.24r (see Example 24.9) and 0.16r (see Example

24.10); thus, associated with the reflected wave

             0 0cos 0.24 cosyE E r E t E t

and

             0 0sin 0.16 sinE r E t E t

If we now refer to Fig. 24.15(c), the electric vector will rotate in

the clockwise direction and since the propagation is 'out of the

page' the reflected wave is left-elliptically polarized. We can carry

out a similar analysis for the transmitted wave to show that it is

right-elliptically polarized.

30°

30° 30°
k3k1

z z

x x

y

E||

(a)

(b) (c)

k1
k2

y y

| | | |

Fig. 24.15 (a) A right�circularly polarized beam is incident on an air-glass interface at 30°. The reflected beam is left-
elliptically polarized; (b)  shows the direction of rotation of the E-vector for the incident wave. The direction

of propagation (shown as ) is into the page; (c)  shows the direction of rotation of the E-vector for the reflected

wave. The direction of propagation (shown as ) is coming out of the page.



Reflection and Refraction of Electromagnetic Waves PRFIW
u

24.10 REFLECTIVITY OF A

DIELECTRIC FILM

In this section we will calculate the reflectivity of a dielectric

film for a plane wave incident normally on it. We will

determine the thickness of the film for which the film will

become anti-reflecting and compare our results with those

obtained in Sec. 15.4. In Problem 24.13, we will apply our

results to a Fabry-Perot interferometer [cf. Sec. 16.2].

We consider a plane wave incident normally on a dielectric

film of thickness d (see Fig. 24.16). Without any loss of

generally, we assume the electric field to be along the y-axis.

Thus, the electric fields in media 1, 2 and 3 is given by

          

1 1

2 2

3

1 10 10

2 20 20

3 30

ˆ ˆ

ˆ ˆ

ˆ

i k x t i k x t

i k x t i k x t

i k x d t

E e E e

E e E e

E e

E y y

E y y

E y

(24.83)

where 10E  and 10E  represent the amplitude of the forward

and backward propagating waves in region 1; similarly for

other fields. Since, the 3rd medium extends to infinity, there

is no backward propagating wave in region 3. For E3, we

have for the sake of convenience, introduced a phase factor

of exp 3 ;ik d  this term makes the analysis more

straightforward. The corresponding magnetic field is given

by (see Sec. 23.2):

1 ˆ= ×H k E (24.84)

where ˆ ˆk x  for waves propagating in the +x direction, and

        x̂  for waves propagating in the �x direction

Thus,

            1 1
1 10 10

1

1
ˆ

i k x t i k x t
E e E eH z

  2 2
2 20 20

2

1
ˆ

i k x t i k x t
E e E eH z

3
3 30

3

1
ˆ

i k x d t
E eH z (24.85)

Both Ey and Hz represent tangential components, and

should therefore be continuous at interfaces x = 0 and x = d.

The continuity conditions at x = 0 give us

                     10 10 20 20E E E E

and

                10 10 20 20
1 2

1 1
E E E E

or

                       2
10 10 20 20

1

n
E E E E

n

where we have used the relations

                                0
1

1n
 and 0

2
2n

Simple manipulations give us

1 2 1 2

10 201 1

1 2 1 210 20

1 1

2 2

2 2

n n n n

E En n

n n n nE E

n n

(24.86)

Similarly, the continuity of Ey and Hz at x = d gives us

20 20 30
i i

E e E e E

    3
20 20 30

2

i i n
E e E e E

n

where 2k d . Elementary manipulations give us

2 3

20 2
30

2 320

2

2

2

i

i

n n
e

E n
E

n nE e
n

(24.87)

Combining Eqs. (24.86) and (24.87), we get

1 2 2 3 1 2 2 3
10 30

1 2 1 22 2 2 2

i in n n n n n n n
E e e E

n n n n

(24.88)

LO 8

Fig. 24.16 Reflection of a plane wave incident normally on
a dielectric slab of thickness d.
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and

1 2 2 3 1 2 2 3
10 30

1 2 1 22 2 2 2

i in n n n n n n n
E e e E

n n n n

(24.89)

Dividing Eq. (24.88) by Eq. (24.89), we get the amplitude

reflection coefficient

                10 1 2

10 1 2

i i

i i

E r e r e
r

E e r r e
(24.90)

where

1 2
1

1 2

n n
r

n n
(24.91)

and

2 3
2

2 3

n n
r

n n
(24.92)

represent the amplitude reflection coefficients at the first and

second interface respectively. The reflectivity would

therefore be given by

2 2
2 1 2 1 2

2 2
1 2 1 2

2 cos 2

1 2 cos 2

r r r r
R r

r r r r
(24.93)

In Sections 16.2�16.4, we had discussed the above

equation in detail with r2 = r1; however, the definition of 

here differs by a factor of 2 from the definition of  in Chapter

16 (see Problem 24.10). We should mention here that a more

general analysis shows that the above equation remains

valid even for oblique incidence with  now equal to k2d

cos 2, 2 being the angle of refraction in the second medium

and r1 and r2 representing the appropriate Fresnel reflection

coefficients corresponding to the particular angle of

incidence and state of polarization.

Summary

u Consider the incidence of a linearly polarized electromagnetic

wave on an interface of two dielectrics (which we assume to

be x = 0); the x � y plane is assumed to be the plane of inci-

dence. Let 1
1

0

n  and 2
2

0

n  be the refractive

indices of the two media. The incident wave, refracted wave

and reflected waves can be written as

1 10 1exp i tE E k r  incident wave

2 20 2exp i tE E k r  refracted wave

3 30 3exp i tE E k r  reflected wave

where E
IH, EPH and EQH are independent of space and time and

1 1 3 2 2;k n k k n
c c

     1 1 2 2 3 3sin sin sink k k

where I, P and Q are the angle of incidence, angle of refrac-

tion and angle of reflection respectively. The above equations

readily give

1 1 2 2 3 3sin sin sinn n n (Snell's law)

and 
I
 = 

Q
.

u For E
I
 lying in the x � z plane (which is the plane of inci-

dence)

10 10 1 1ˆ ˆxsin zsinEE

20 10 2 2ˆ ˆxsin zsint EE

30 10 1 1ˆ ˆx sin zsint EE

                  
1 22 1 1 2

2 1 1 2 1 2

tancos cos

cos cos tan

n n
r

n n

                  1 1

2 1 1 2

2 cos

cos cos

n
t

n n

                            1 2

1 2 1 2

2cos sin

sin cos

Molicing that 0r  when 1 2
2

, which implies

                1
1 2 1tanp n n .

This is the Brewster's angle.

u For 1E  perpendicular to the plane of incidence (i.e., along

ŷ ),

10 10 20 10ˆ ˆ;E t EE y E y  and 30 10 ˆr EE y

with

          
1 21 1 2 2

1 1 2 2 1 2

sincos cos

cos cos sin

n n
r

n n

and

          1 1 2 1

1 1 2 2 1 2

2 cos 2sin cos

cos cos sin

n
t

n n

u In both cases, if 2 1n n  and 1 2
1

1

sinc

n

n
 we have

total internal reflection. We can still use the above expres-

sions for , ,r t r  and t but we must remember that

1
2 1

2

sin sin
n

n
will be greater than 1

and                  2
2 2cos 1 sin i



Reflection and Refraction of Electromagnetic Waves PRFPI
u

will be pure imaginary. Thus , ,r t r  and t will be com-

plex quantities with 1r r showing that the entire

energy is reflected; however, there will be an evanescent

wave in the second medium whose field will decay along the

x-axis and propagate along the z-axis.

Problems

24.1 (a) Consider reflection at the interface of two dielectrics.

Starting with the expression 2 1 1 2

2 1 1 2

cos cos

cos cos

n n
r

n n

and use Snell's law 1 1 2 2sin sinn n to show that

1 2

1 2

tan

tan
r (24.94)

(b) Using the above expression for r , derive Brewster's

Law.

24.2 Consider reflection at the interface of two dielectrics. Show

that the expressions for , ands p sr t t can be written in the

form

1 21 1 2 2

1 1 2 2 1 2

sincos cos

cos cos sin
s

n n
r r

n n
(24.95)

1 1 1 2

2 1 1 2 1 1 2 2

2 cos 2cos sin

cos cos sin cos sin cos
p

n
t t

n n
(24.96)

1 1 1 2

1 1 2 2 1 2

2 cos 2cos sin

cos cos sin
s

n
t t

n n
(24.97)

Equations (24.94)�(24.97) are known as Fresnel equations.

24.3 Consider the incidence of a plane electromagnetic wave (with

its electric field in the plane of incidence) at the interface of

two dielectrics characterized by refractive indices n
I
 and n

P
.

Derive the reflection and transmission coefficients by assum-

ing the continuity of tangential components of E and normal

components of D and show that the results are the same as

obtained in Sec. 24.4.

24.4 Consider the incidence of a plane wave (with the electric field

in the plane of incidence) at the interface (x = 0) of two di-

electrics with nP < nI. Figure 24.4 shows that if the media are

interchanged the angles of incidence and refraction are re-

versed. If r and r denote the amplitude reflection and

transmission coefficients corresponding to Fig. 24.5(b), then

show that

1 r r t t

24.5 Show that in the limit of 1 0  (i.e., at normal incidence)

the reflection coefficient is the same for parallel and perpen-

dicular polarizations.

24.6 Consider a magnetic dielectric with a permeability such that

0 0 . Show that for such a material the reflection

coefficient for normal incidence is identically equal to zero.

This realization is equivalent to the situation where the im-

pedance is matched at the junction of two transmission line.

24.7 In Sec. 24.8 we had calculated the Poynting vector for the

evanescent wave. Show that, if we use the formula

2 2
2

k E
H

we get the some expressions for H
x
 and H

z
 although the vec-

tor kP is now complex.

24.8 A right-circularly polarized beam is incident on a perfect con-

ductor at 45°. Show that the reflected beam is left-circularly

polarized.

24.9 Assume n
I
 = 1.5 and n

P
 = 1.0 (see Example 24.7)

(a) For 1 45 show that

      0.28 0.96; 1.92 1.44r i t i

Similarly calculate r and t .

(b) On the other hand, for 1 33.69  show that

           0, 1.5r t

          0.3846, 1.3846r t

24.10 Consider a right-circularly polarized beam incident on a

medium of refractive index 1.6 at an angle 60°. Calculate r

and r and show that the reflected beam is right elliptically

polarized with its major axis much longer than its minor axis.

What will happen at 58°?

[Ans: 0.0249, 0.4581r r ]

24.11 Consider a y-polarized wave incident on a glass-air interface

(n
I
 = 1.5, n

P
 = 1.0) at 1 45 and at 1 80 . Wave the

complete expressions for the transmitted field and show that

in the latter case it is an evanescent wave with depth of

penetration 1 equal 0 about 88.8 10 m; assume
°

6000A.

24.12 For gold, at 
°

0 6530A the complex refractive index given

by 2 0.166 3.15n i . Calculate kP and show that the

reflectivity at normal incidence is approximately 94%. On

the other hand, at 
°

0 24000A, 1.658 1.956n i ; show

that the reflectivity is only 39%.

24.13 Show that for 0 , Eq. (24.93) takes the form

2

1 3

1 3

n n
R

n n
(24.98)

as it indeed should be. Using the various equations in

Sec. 24.9, calculate the transitivity and show that

2

3 3

2

1 1

1

2 1
1

2

n E

T R

n E



OpticsPRFPP
u

Assume the third medium in Fig. 24.16 to be identical to the

first medium, i.e., 3 1n n .

Thus,

                       1 2
2 1

1 2

n n
r r

n n

Using Eq. (24.92), show that

     
2

2

sin

1 sin

F
R

F
(24.99)

where               
2

1

2
2

1

4

1

r
F

r

(24.100)

is called the coefficient of finese. Equation (24.99) and

(24.100) are the same as Eqs. (16.3) and (16.4) except that,

in this chapter  =k
P
d = 

0

2
n
P
d and in chapter 16,

 = 
0

4
 n

P2
h cos 

P
 [see Eq. (16.1)].
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Are not the Rays of Light very small Bodies emitted from shining Substances

                �Isaac Newton in OPTICKS*

It is undeniable that there is an extensive group of data concerning radiation which shows that

light has certain fundamental properties that can be understood much more readily from the

standpoint of the Newton emission (particle) theory than from the standpoint of the wave

theory. It is my opinion, therefore, that the next phase of the development of theoretical physics

will bring us a theory of light that can be interpreted as a kind of fusion of the wave and

emission theories.

    �Albert Einstein (1909)**

�e��sgvi2xe���i2yp

�ehse�syxX2�ri2�ry�yx

Chapter
Twenty-Five

LO 1: know about photoelectric effect and Einstein�s photoelectric equation.

LO 2: explain the Compton effect quantitatively and demonstrate kinematics of Compton scattering.

LO 3: calculate angular momentum of a photon.

LO 4: discuss optical tweezers and their research applications.

Important Milestones

1887 Heinrich Hertz while receiving the electromagnetic waves in a coil with a spark gap, found that the maximum

spark length was reduced when the apparatus was put in a black box

1897 J.J. Thomson discovered the electron.

1899 J.J. Thomson showed that electrons are emitted when light falls on a metal surface; these are known as

photoelectrons.

1900 In order to derive the blackbody radiation formula, Planck made a drastic assumption that the oscillators can

only assume discrete energies

1902 Philip Lenard observed that the kinetic energy of the emitted photoelectrons was independent of the intensity

of the incident light and that the energy of the emitted electron increased when the frequency of the incident

light was increased.

1905 In a paper entitled, On a heuristic point of view about the creation and conversion of light, Einstein introduced

the light quanta. In this paper he wrote that when a light ray starting from a point is propagated, the energy

is not continuously distributed over an ever increasing volume, but it consists of a finite number of energy

quanta, localized in space, which move without being divided and which can be absorbed or emitted only as

  * Query 29; p. 371 in Ref. 25.1.
** The author found this quotation in Ref. 25.2.
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PSFI sx��yh�g�syx

In the earlier chapters, we have discussed the interference,

diffraction and polarization of light. All these phenomena can

be explained satisfactorily on the basis of the wave theory of

light. We have also discussed the electromagnetic character

of light waves (see Chapters 22, 23 and 24) and have shown

that the electromagnetic theory can be successfully used to

explain reflection and refraction of waves from dielectric and

metal surfaces, the phenomenon of double refraction and

many other experimental results.

In spite of the tremendous success of Maxwell's electro-

magnetic wave theory, Einstein, in his year of miracles (1905)

published a paper (Ref. 25.11), in which he proposed that

light can be emitted or absorbed only in discrete amounts,

called quanta; the energy of which is given by

E h (25.1)

where v is the frequency and 346.626 10 Jsh  is the

Planck's constant. Einstein interpreted the photoelectric ef-

fect experiment by stating that the emission of a

photoelectron was the result of the interaction of a single

quantum (i.e., of the photon) with an electron. It was only in

1926 that Gilbert Lewis, an American chemist, coined the

word 'photon' to describe Einstein's 'localized energy quanta'.

Now, according to Maxwell's electromagnetic wave theory,

the momentum per unit volume associated with a plane elec-

tromagnetic wave (propagating in the + z�direction) is given

by (see Sec. 23.6)

ˆ
u

c
p z (25.2)

where u is the energy (per unit volume) associated with the

propagating electromagnetic wave, 8( 3 10 m/s)c  is the

speed of light in free space and ẑ  is the unit vector along the

z-direction. In a later paper, Einstein said that the momentum

of the photon would be given by

hv h
p

c
(25.3)

Also from Einstein's mass-energy relation (see Sec. 32.2),

2 2 4 2 4 2 2
0E m c m c p c (25.4)

where m0 is the rest mass of the particle. For the photon,

m0 = 0 and

2
2

2

E
p

c

E h h
p

c c
(25.5)

Around 1924, Arthur Compton carried out scattering of

high energy photons by electrons. He showed that the scat-

tering experiments could only be explained if the energy and

momentum of the photon are assumed to be given by the

above equations. In the early part of 20th century, Maxwell's

wave theory was so well established that no one really be-

lieved in Einstein's 'localized energy quanta'; it was only after

the analysis of Compton's experiment that people started be-

lieving in Einstein's 'localized energy quanta' which

eventually led to wave-particle duality and quantum theory.

In this chapter we will discuss the famous experiments on

the photoelectric effect and the Compton effect which estab-

lished the particle nature of light; a wave model is inadequate

to explain these effects. In Chapter 2, we had briefly dis-

cussed how one can reconcile to the dual nature of radiation

(i.e., the wave and the particle aspects) on the basis of the

quantum theory. In the next chapter we will have more dis-

cussions on quantum theory.

a whole. Using his �quanta of energy�, Einstein put forward his famous photoelectric equation, which was

experimentally verified to a tremendous degree of accuracy by Millikan. Einstein received the 1921 Nobel

Prize in Physics "for his services to Theoretical Physics, and especially for his explanation of the photoelec-

tric effect".

1923 Compton reported his studies on the scattering of X-rays by solid materials (mainly graphite) and showed that

the shift of the wavelength of the scattered photon could be explained by assuming the photon having momentum

equal to h /c. Compton  received the 1927 Nobel Prize in Physics 'for his discovery of the effect named after

him'.

1926 Gilbert Lewis, an American chemist, coined the word "photon" to describe Einstein's localized energy quanta.
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In 1887, while receiving the electromagnetic waves in a coil

with a spark gap, Hertz found that the maximum spark length

was reduced when the apparatus was put in a black box; this

is due to what is now known as the photoelectric effect and

the box absorbed the ultraviolet radiation which helped the

electrons in jumping across the gap. Hertz reported the ob-

servations but did not pursue further and also did not make

any attempt to explain them. In 1897, J J Thomson discov-

ered the electron and in 1899 he showed that electrons are

emitted when light falls on a metal surface; these are now

known as photoelectrons. In 1902, Philip Lenard observed

that

(a) the kinetic energy of the emitted electrons was inde-

pendent of the intensity of the incident light, and

(b) that the energy of the emitted electron increased when

the frequency of the incident light was increased.

Later Millikan carried out very careful experiments on the

photoelectric effect and the apparatus that he used was simi-

lar to the one shown in Fig. 25.1; these photoelectrons

constitute a current between the plates 1P  and 2P  and can be

collected by a metal plate 2P  which can be detected by means

of an ammeter A. When the voltage across the plates is var-

ied, the current also varies; typical variations of the current

with voltage are shown in Fig. 25.2. The figure corresponds

to monochromatic light of a particular frequency and differ-

ent curves correspond to different intensities of the beam.

From the figure one can draw the following conclusions:

(a) At zero voltage there is a finite value of the current im-

plying that some of the emitted photoelectrons reach

the metal surface 2.P

(b) As the voltage is increased, the current increases till it

reaches a saturation value; this will happen when the

plate 2P  collects all the emitted photoelectrons.

(c) If the plate 2P  is kept at a slightly negative potential,

there is a weak current implying that some of the pho-

toelectrons do manage to reach the plate 2.P  However,

beyond a certain voltage (which is shown as cV  in

the figure) the current is zero; 
c

V  is known as the cut-

off voltage and the quantity cq V  will represent the

maximum kinetic energy of the photoelectrons (q repre-

sents the charge of the electron). For example, for

sodium 2.3cV  Volts and for copper 4.7cV  Volts.

Fig. 25.2 Typical variation of the photocurrent with volt-
age. The curves correspond to light (of the same
frequency) having different intensities.

(d) If we do not change the frequency of the incident

radiation but make it more intense, the magnitude of

the current will become larger as shown in Fig. 25.2

implying a greater emission of photoelectrons. Notice

that the value of the cut-off potential remains the same;

this important result implies that the maximum kinetic

energy of the emitted photoelectron does not depend on

the intensity of the incident radiation.

(e) If the frequency of the incident radiation is increased

then the cut-off potential and hence the maximum

Fig. 25.1 If light (of certain frequency) is allowed to fall on
a metal like sodium, electrons are emitted which
can be collected by the plate P

P
. (a) and (b) corre-

spond to positive and negative voltage applied to
the plate P

P
. Even when the plate is kept at a low

negative voltage, one can detect a small current.

vy I
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kinetic energy of the electron cq V  varies linearly

with the frequency as shown in Fig. 25.3. Further, for

frequencies less than a critical value (shown as cv  in

Fig. 25.3), there is no emission of photoelectrons no

matter what the intensity of the incident radiation may

be.

At first sight, it appears that since electromagnetic waves

carry energy, the wave model for light should be able to

explain the emission of photoelectrons from a metal surface.

However, there are certain peculiarities associated with

photoelectric effect, which cannot be satisfactorily explained

by means of a wave model:

1. The first peculiarity is the fact that the maximum kinetic

energy of the electrons does not depend on the

intensity of the incident radiation, it only depends on

its frequency; further, a greater intensity leads to a

Fig. 25.3 (a) The variation of the maximum kinetic energy of the electrons as a function of frequency of the incident light
for cesium, sodium and copper. (b) The original experimental data of Robert Millikan (adapted from Ref. 25.5;
more details can be found there).

x
14
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larger number of electrons constituting a larger current.

Thus, a faint violet light would eject electrons of

greater kinetic energy than an intense yellow light

although the latter would produce a large number of

electrons. A wave model would, however, predict that a

large intensity of the incident radiation would result in

a greater kinetic energy of the emitted electrons.

2. The second peculiarity is the fact that there is almost

no time lag between the times of incidence of the

radiation and the ejection of the photoelectron. For

weak intensities of the incident beam, the wave theory

predicts considerable time lag for the electrons to

absorb enough energy to leave the metal surface. This

can be illustrated by considering a specific example.

One can observe a detectable photocurrent if the

surface of sodium metal is illuminated by violet light of

intensity as low as 
–10 210  W cm . Now, 10 layers of

sodium will contain about

23 8
15 36 10 10 10

2 10 atoms cm
23

where we have assumed the density of sodium to be
31g cm . Assuming that the energy is uniformly

absorbed by the upper 10 layers of sodium, each atom

would receive energy at the rate of

10
26 7

15

10
5 10 J s 3 10 eV s

2 10

Assuming that an electron should acquire an energy

1 eV  to escape from the metal, we should expect a

time lag of order 710 s to few months.  However, the

experiments show that there is no detectable time lag

between the incidence of the radiation and the

emission of the photoelectrons. Indeed, in 1928,

Lawrence and Beams had devised an experiment to find

out whether the time lag 93 10 sec;  was  the

experiment gave a negative result.

In 1905, Einstein provided a simple explanation of the

above mentioned peculiarities. He argued that light consisted

of quanta of energy h  (where  is the frequency) and that

the emission of a photoelectron was the result of the interac-

tion of a single quantum (i.e., of the photon) with an electron.

In his 1905 paper [Ref. 25.11], Einstein wrote:

Monocromatic radiation behaves as if it

consists of mutually independent energy quanta

of magnitude [h ]�� the production of

cathode rays [electrons] by light can be

conceived in the following way: The body's

surface layer is penetrated by energy quanta

whose energy is converted at least partially into

kinetic energy of the electrons. The simplest

conception is that a light quantum transfers its

entire energy to a single electron; we will

assume that this can occur.

Thus the observed maximum kinetic energy of the photo-

electrons is linearly related to the frequency of the incident

radiation and one may write (see Fig. 25.3)

max cT B h h (25.6)

where cB h
 
is a constant and h is the Planck's constant

346.627 10 Js . The frequency 
c
 represents the cut-

off frequency and is a characteristic of the metal. Einstein's

theory gives a very satisfactory explanation of the

photoelectric effect* . According to this theory, a light beam

of frequency ) essentially consists of individual corpuscles

called photons. Each photon carries an energy equal to h .

This corpuscular model can explain all the observations

discussed above. Thus, for all frequencies below the cut-off

c, each photon will carry energy less than h c which will not

be sufficient to eject the electron from the metal. For  > c ,

BWe must mention that Einstein, in his 1905 paper (Ref. 25.11), had shown that the change in entropy of radiation when the volume

changes from VH  to V (while keeping the total energy fixed) is given by

0
0

ln
E h

V
S S k

V

Einstein then compared this with the corresponding expression for a gas of N molecules of an ideal gas:

0
0

ln
N

V
S S k

V

Comparing the two expressions, Einstein concluded that radiation behaves as if it consisted of a gas of independent "light quanta" and

that E/h  must represent the total number of light quanta, each having energy h .

(
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a major fraction of the excess energy [= h (  � c)] appears as

kinetic energy of the emitted electron. Further, the non-

measurable time lag between the incidence of the radiation

and the ejection of the electron follows immediately from the

corpuscular nature of the radiation. Equation (25.6) is often

referred to as Einstein's photoelectric equation; it was

verified to a tremendous degree of accuracy in a series of

beautiful experiments by Millikan who also made the first

direct determination of Planck's constant h. In his Nobel

lecture, Millikan [Ref. 25.5] said

After ten years of testing and changing and

learning and sometimes blundering, all efforts

being directed from the first toward the

accurate experimental measurement of the

energies of emission of photoelectrons, now as a

function of temperature, now of wavelength,

now of material (contact e.m.f. relation), this

work resulted, contrary to my own expectation,

in the first direct experimental proof in 1914 of

the exact validity, within narrow limits of

experimental error, of the Einstein equation

[Eq. (25.6)], and the first direct photoelectric

determination of Planck's constant h.

Millikan further wrote:

Einstein's equation is one of exact validity (al-

ways within the present small limits of

experimental error) and of very general appli-

cability, is perhaps the most conspicuous

achievement of Experimental Physics during the

past decade.

For example,

for cesium 141.9 eV 4.6 10 HzcB

for sodium 142.3 eV 5.6 10 HzcB

for copper 144.7 eV 11.4 10 HzcB

In Fig. 25.3, 
c
 is the intercept on the horizontal axis. In

making this transition from Planck's quantized oscillators to

quanta of radiation, Einstein had made a very important

conceptual transition, and he introduced the idea of

corpuscular behaviour of radiation. Although Newton had

described light as a stream of particles, this view had been

completely superseded by the wave picture of light, a picture

that culminated in the electromagnetic theory of Maxwell.

The revival of the particle picture now posed a severe

conceptual problem, one of reconciling wave and particle like

behaviour of radiation. It also soon became apparent that

matter also exhibited wave-particle duality. For example, an

electron with an accurately measured value of mass and

charge could undergo diffraction in a manner similar to that

of light waves�this led to the development of the

uncertainty principle and quantum theory.

After Millikan's experiments, Duane and his associates

found unambiguous proof of a relation, which is just the

inverse of Einstein's. They bombarded a metal target with

electrons of known and constant energy and found that the

maximum frequency of the emitted X-rays was given, with

great accuracy, by the following equation

21

2
m hv (25.7)

In the following section we will discuss a very important

experiment carried out by Arthur Compton; this experiment

could be satisfactorily explained by assuming that the energy

and momentum of the photon are given by E = h  and

p = h /c respectively.

PSFQ �ri2gyw��yx2ippig�

We have seen that Einstein's explanation for the

photoelectric effect implies that quanta of light (photons)

carry a definite amount of energy. In 1923, Compton

investigated the scattering of X-rays by a block of paraffin

and found that the wavelength of the radiation scattered at

an angle of 90  is greater than the wavelength of the incident

radiation. In other words, the frequency of the scattered

wave is smaller than the frequency of the incident wave (see

Fig. 25.4). Compton was able to explain the result*

quantitatively as that of an elastic collision between a photon

(of energy E = h  and momentum h /c) and an electron. The

light quantum imparts some of its energy to the electron and

emerges with less energy. Thus the scattered radiation has a

lower frequency. The kinematics of this collision process can

be worked out on elementary application of the laws of

B2According to the classical explanation of Compton scattering, the electron undergoes oscillatory motion because of the electric field

associated with the incident electromagnetic radiation. The accelerated electron emits electromagnetic waves and because of Doppler shifts

due to the motion of the electron, the emitted wavelength differs from the wavelength of the incident radiation; however, the classical

theory predicts that for a given angle of scattering a continuous range in the value of the scattered wavelength should be formed, which

is contrary to experimental findings. The details of this analysis are given in Sec. 2.9 of Ref. 25.6.

vy P
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conservation of energy and momentum (see Sec. 25.3.1);

these calculations give the following expression for the shift

in the wavelength

2

0

2
sin

2

h

m c
(25.8)

where  is the angle of scattering of the light quantum (see

Fig. 25.4) and 0m  represents the rest mass of the electron.

Now,

 
0

2h

m c
 = 

34

31 8

2 6.6261 10 Js

9.1094 10 kg 2.998 10 m/s

        
o

124.85 10 m = 0.0485 A

Thus,

20.0485 sin
2

(25.9)

where  is measured in Angstroms. Equation (25.9) shows

that the maximum change in the wavelength is about 0.05 Å,
and as such for a measurable shift one must use radiation of

smaller wavelength. In Fig. 25.5, we have given the schematic

of the experimental arrangement for the measurement of the

Compton shift. A monochromatic beam of X-rays (or -rays)

is allowed to fall on a sample scatterer and the scattered

photons were detected by means of a crystal spectrometer.

The crystal spectrometer allows one to find the intensity

distribution (as a function of ) for a given value of . In Fig.

25.6, we have shown the wavelength of the scattered photon

at different angles with respect to the primary beam as

obtained by Compton in his original experiments carried out

in 1923; see References 25.9 and 25.10. The solid curve in

Fig. 25.4 The Compton scattering of a photon: the figure
shows the incidence of a photon (of frequency )
on an electron; the scattered photon (having a
reduced frequency ) propagating along the
direction which makes an angle  with the
original direction; the electron also acquires a
momentum. Figure adapted from the original
paper of Compton (Ref. 25.10).

Fig. 25.5 Outline of the experimental arrangement for the
measurement of the Compton shift. A collimated
beam of monochromatic X-rays is scattered by
the scatterer S; the wavelength of the scattered
photon is measured by the detector D.

Fig. 25.6 The variation of wavelength of the scattered
photon with the angle of scattering. The solid
curve corresponds to Eq. (25.9) with  = 0.022 Å.
The dots represent the experimental points
obtained by Compton. The figure has been
adapted from the original paper of Compton on
(Ref. 25.9).
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Fig. 25.6 corresponds to Eq. (25.9) with 0.022 Å;  the

corresponding photon energy is

34 8

12

6.6 10 Js 3 10 m s

2.2 10 m

149 10 J 0.56 MeV

which corresponds to a -ray.  The good agreement between

theory and experiment proves that radiation behaves as if it

consists of corpuscles of energy h  having a momentum

h c .

Fig. 25.7 Compton�s original experiment used molybdenum K-alpha X-rays, which have a wavelength of 0.0709 nm.
These were scattered from a block of carbon and observed at different angles with a Bragg spectrometer. The
experimental data represents the intensity variation as a function of the wavelength of the scattered photon. The
vertical line (on the left marked as P) corresponds to the unmodified wavelength l = 0.711 Å. The second vertical
line (marked T) corresponds to the wavelength as predicted by Eq. (25.5). The diagram corresponding to the
experimental arrangement has been adapted from the original paper of A.H. Compton (Ref. 25.10) and also a
diagram created by Professor Rod Nave at Georgia State University [Ref. http://hyperphysics.phy-astr.gsu.edu/
hbase/hframe.html].

The experimental arrangement and findings of Compton

are shown in Figs. 25.7; the experiment corresponds to the

molybdenum K  line 0.711 Å . The sample used was

graphite. Notice that at each value of , there are two peaks;

the first peak appears at almost the same wavelength as the

primary beam. This peak is because of the fact that the

photon may be scattered by the whole atom; consequently,

the quantity m
0
 appearing in Eq. (25.8) is not the electron

mass but the mass of the carbon atom (which is about 22,000

times that of the mass of the electron). Thus the wavelength

shift is negligible. The second peak corresponds to the

Compton shift. In each figure, the two vertical lines
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correspond to the unmodified wavelength and the modified

wavelength as given by Eq. (25.9) and one can see a good

agreement between the predicted and observed values. The

Compton effect provided an unambiguous example of a

process in which a quantum of radiation carrying energy as

well as momentum scatters off an electron. Compton was

awarded the 1927 Nobel Prize in Physics for his discovery of

the effect named after him.

Further evidence of the validity of the above theory was

provided by the experiments carried out by Compton and

Simon who studied the scattering of X-rays through super-

saturated water vapour. In the scattering process, the recoil

electrons formed tracks of condensed droplets; however, the

light quantum did not leave any track. Now, if the light quan-

tum undergoes another Compton scattering then from the

track of the second recoil electron one can determine the

path of the light quantum by simply joining the line of the

starting points of the two recoil electrons. Although there

was considerable uncertainty in the analysis of the experi-

mental data (because of the presence of many tracks)

Compton and Simon could establish agreement between

theoretical results and experimental data.

25.3.1 Kinematics of Compton Scattering

We next consider the scattering of a photon by an electron

as shown in Fig. 25.4. The scattered photon is assumed to

have a frequency .  Conservation of energy leads to

kh h E (25.10)

where Ek represents the kinetic energy imparted to the elec-

tron. Conserving the x and y components of the momentum,

we have

 cos cos
h h

p
c c

(25.11)

and

0 sin sin
h

p
c

(25.12)

where p represents the momentum of the electron after colli-

sion,  and  represent the angles made by the scattered

photon and the electron with the original direction of the

photon (see Fig. 25.4). It will be shown that for a measurable

Compton's effect, the frequency  should be in the X-ray or

in the -ray region (for X-rays 1Å  and 
410 eVh ).

For such high energy photons, the velocity imparted to the

electron is comparable to the speed of light and one must use

proper relativistic expressions for E
k
 and p. Now, according

to the special theory of relativity, the kinetic energy E
k
 of the

scattered electron would be given by (see Sec. 32.2):

2
0kE E m c  

2
2 2 20

0 0
21

m c
mc m c m c (25.13)

where 0,c mv  represents the rest mass of the electron,

v  the speed of the electron and c the speed of light in free-

space; the quantities E and 
2

0m c  are known as the total

energy and the rest mass energy of the electron. Further, the

relativistic momentum of the electron is given by

0

21

m
p m

v

v (25.14)

Now,

2 2 2 4
0p c m c  

2 2 2 2 4 22 4 20 0
02 2 2 21 1

m c m c
m c mc

c c

v

v v

or, 2 2 2 4 2
0p c m c E

22 2 2 4 2
0 0 02k k kE m c E m c E m c

Thus, 
2 2 2 2

02k kE E m c p c

Substituting for E
k
 from Eq. (25.10), we get

22 2 2 2
02h h m c p c (25.15)

Further, Eqs. (25.11) and (25.12) can be rewritten in the

form

cos cos
h h

p
c c

(25.16)

and

sin sin
h

p
c

(25.17)

In order to eliminate , we square and add to obtain

2 2 2
2

2

2
cos

h h h
p

c c c
(25.18)

Substituting in Eq. (25.15) we obtain

2 2 2 2
02 2h h m c

2 2 2 2 22 cosh h h

or

2
0 22

1 cos
2

h m c
h



OpticsPSFIP
u

Thus, 
0

1 cos
c c h

m c

Thus,
2

0

2
sin

2

h

m c
(25.19)

which gives us the Compton shift*.

PSFR exq�ve�2 wywix��w2 yp

e2 �ry�yx

We had discussed Jones vectors in Sec. 22.14. We represent

the x and y polarized photons by the (normalized) Jones

vectors

1

0
x  and 

0

1
y (25.20)

We define the polarization rotation operator zR  which

would rotate the state of polarization (about the z-axis) by an

angle  in the clockwise direction; thus (see Fig. 25.8)

cos
cos sin

sinzR x x y x (25.21)

Similarly,

sin cos
2

zR y x y (25.22)

             
sin

cos
y

If we represent the polarization rotation operator zR  by a

2 2  matrix

z

a b
R

c d

then

1

0z

a b a
R x

c d c

Comparing the above equation with Eq. (25.21) we get

cosa  and sinc

Similarly,

0

1z

a b b
R y

c d d

Comparing the above equation with Eq. (25.22) we get

sinb  and cosd

Thus, the matrix representation of the polarization rotation

operator zR  will be

cos sin

sin coszR (25.23)

One can easily see that

cos

sin
zR (25.24)

showing the rotation of the polarization state of the photon.

If R  and L  are the unit vectors representing the right

circularly polarized photon and the left circularly polarized

photon, respectively, then

11 1
RCP

2 2
R x i y

i
(25.25)

11 1
LCP

2 2
L x i y

i
(25.26)

(see Sec. 22.4). Operating zR  on R , we get

cos sin 1 11 1

sin cos 2 2
i

zR R e
i i

B2In the derivation of the Compton shift, we have assumed that the electron is free, although we know that the electrons are bound to the

atoms. The assumption of a free electron is justified because the binding energy (  few eV) is usually very much smaller in comparison

to the photon energy (> 1000 eV) .

vy Q

x

x-polarized photon

x¢

-polarized photon

q

x

P2

P1

z

Single
photon
source

Fig. 25.8 The probability that the polarized photon (com-
ing out of the polaroid PI whose pass axis is along
the x-axis) will pass through the second polaroid
PP2 (whose pass axis makes an angle  with the
x-axis is along the x-axis) is cosP .
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Thus,

i
zR R e R (25.27)

Similarly,

i
zR L e L (25.28)

Equations (25.27) and (25.28) are known as eigenvalue

equations; thus, the right and left circularly polarized states

are said to be the eigenstates of zR ; the corresponding

eigenvalues are 
i

e  and 
i

e . Now, in quantum mechanics,

if zR  represents the rotational operator corresponding to

a rotation about the z-axis through an angle , then (see, e.g.,

Refs. 25.16 and 25.17):

expz z

i
R J (25.29)

where ,
2

h
h  being the Planck's constant and zJ  repre-

sents the z-component of the angular momentum operator.

Thus,

exp i
z z

i
J R R R e R (25.30)

Now, the exponential of an operator O is defined by

1
1! 2! 3!

O O OO OOO
e (25.31)

We expand the exponential on both sides of Eq. (25.30), and

if we use the fact that Eq. (25.30) has to be valid for all values

of , we must have*

zJ R R (25.32)

If we carry out a similar analysis for the left circularly polar-

ized light, we obtain

zJ L L (25.33)

Equations (25.32) and (25.33) are eigenvalue equations;

thus, the right and left circularly polarized states are said to

be the eigenstates of zJ ; the corresponding eigenvalues are

 and , respectively. According to quantum mechanics,

if we measure zJ  of a right circularly polarized light photon,

we will always obtain the value ; similarly, if we measure

zJ  of a left circularly polarized photon, we will obtain the

value . For an arbitrary state of polarization, if we measure

zJ , we will obtain one of the eigenvalues; i.e., we will obtain

either the value  or the value . To obtain the

probabilities of finding  and , the state should be

expressed as a superposition of the eigenstates, which are

the right circularly polarized state and the left circularly

polarized state. For example, a x-polarized state can be

represented as

1 1

0 2
x R L (25.34)

Thus, if we make a measurement of zJ  on a x-polarized

(or on a y-polarized) state, then there will be half probability

of obtaining  and half probability of obtaining ; one

can never predict the precise outcome of an experiment. As

another example, for a left elliptically polarized state (see

Sec. 22.14):

11
LEP

2 3

1 1

2 2

a R b L
i

a b

i i

Simple manipulations will give 0.2588a  and

0.9659b . Thus, if we make a measurement of zJ  on

such an elliptically polarized state, we obtain one of the

eigenvalues�the probability of obtaining  will be about

0.0670, and the probability of obtaining  will be about

0.933.

PSFS2 y��sgev2 ��ii�i��BB

Optical tweezers owes its origin to the seminal work by

Arthur Ashkin who showed that a focused laser beam could

be used to trap and manipulate individual microscopic

objects (Ref. 25.14). Since light carries momentum, its

absorption, scattering or refraction by an object results in

momentum transfer and, therefore, a resulting force on the

object. While for a collimated beam this force is in the

 B2Thus, for example 3 3
z z z zJ R J J J R R

BB This section has been kindly written by Dr. P.K. Gupta at Raja Ramanna Centre for Advanced Technology, Indore. Dr. Gupta and his

colleagues have been deeply involved in using optical tweezers in biological research.
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direction of light propagation, it can be shown that for a

tightly focused beam, there also exists a gradient force in the

direction of the spatial gradient of the light intensity. A

simple ray optics description that is valid when the

dimensions of the object is much larger than the wavelength

of the trap beam, can be used to explain the existence of the

gradient force and its role in stable three-dimensional

trapping of the object (Ref. 25.15). Referring to Fig. 25.9,

consider two light rays (a and b) situated at equal radial

distance from the beam axis. Due to the refraction of rays a

and b from the sphere, assumed to have a refractive index

higher than the surroundings, there will be forces aF  and bF

respectively on it. The net force denoted as F, will try to pull

the sphere to the focal point. When at the focal point, there

is no refraction and hence no force on the sphere. It can be

verified from Fig. 25.9 that in all the cases where the sphere

is positioned away from the focal point, the resultant force

acts to pull the sphere onto the beam focus (the equilibrium

position) is see also Figs. 46 and 47 in the prelim pages. For

stable trapping in all three dimensions, the axial gradient

component of the force pulling the particle towards the focal

region must exceed the scattering component of the force

pushing it away from that region. To achieve this, trap beam

needs to be focused to a diffraction limited spot using a high

numerical aperture (NA) objective lens. Here, for simplicity

the sphere is assumed to be weakly reflective or absorptive

at the trapping wavelength so that the forces arising due to

absorption or reflection of light by the sphere can be

neglected.

Optical tweezers find widespread applications in biologi-

cal research and technology because unlike mechanical micro

tools, the optical trap is gentle and absolutely sterile and can

be used to capture, move and position single cells or subcel-

lular particles without direct contact. It is also pertinent to

note that Steven Chu, who was also an author of this pio-

neering work (Ref. 25.14) later made use of these optical

forces for cooling and trapping of neutral atoms, the work for

which he got the 1997 Nobel Prize in Physics along with

Claude Cohen�Tannoudji and William D. Phillips.

Summary

u In 1887, while receiving the electromagnetic waves in coil

with a spark gap. Hertz found that the maximum spark length

was reduced when the apparatus was put in a black box; this

is due to what is now known as the photoelectric effect and

the box absorbed the ultraviolet radiation which helped the

electrons in jumping across the gap. Hertz reported the ob-

servations but did not pursue further and also did not make

any attempt to explain them. In 1897, J J Thomson discov-

ered electrons and in 1899 he showed that electrons are

emitted when light falls on a metal surface; these are now

known as photoelectrons and the phenomenon is known as

the photoelectric effect.

u There are certain peculiarities associated with the

photoelectric effect which cannot be explained on the basis

of wave theory. For example, a faint violet light would eject

electrons of greater kinetic energy than an intense yellow

light although the latter would produce a larger number of

electrons. In 1905, Einstein provided a simple explanation of

the peculiarities by assuming that light consisted of quanta

of energy h  (where  is the frequency) and that the

Fig. 25.9 A ray diagram explanation of the trapping of a
dielectric spherical particle in a focused laser
beam. F is the net gradient force. a: the center of
the spherical object is located below the focal
point; b: above the focal point and c ; to the right
of the focal point. Adapted from A. Ashkin,
(1992). Biophys J., 61, 569-582, © 1992. Reprinted
with permission from Elsevier B. V.
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emission of a photoelectron was the result of the interaction

of a single quantum (i.e. of the photon) with an electron. In

his 1905 paper, Einstein wrote Monocromatic radiation

behaves as if it consists of mutually independent energy

quanta of magnitude hv.

u In 1923, Compton reported his studies on the scattering of

X-rays by solid materials (mainly graphite) and showed that

the shift of the wavelength of the scattered photon could be

explained by assuming the photon to have momentum equal

to h /c. The Compton effect provided an unambiguous

example of a process in which a quantum of radiation

carrying energy as well as momentum scatters off an

electron. The kinematics of the scattering process given the

following for the shift in the wavelength

2 2

0

2
sin 0.0485 sin

2 2

h

m c

where  is the angle of scattering of the light quantum, mH

represents the rest mass of the electron and  is measured

in Angstroms. Compton found the above formula to be in

agreement with his experimental measurements of .

Problems

PSFI @�A Calculate the number of photons emitted per second

by a 5 mW laser assuming that ir emits light of wave-

length 
°

6328A .

16: 1.6 10Ans

@�A The beam is allowed to fall normally on a plane mir-

ror. Calculate the force acting on the mirror.

11: 3.3 10 NAns

PSFP Assume a 40 W sodium lamp 
°

( 5869A)  emitting light in

all directions. Calculate the rate at which the photons cross a

unit placed normally to the beam at a distance of 10 m from

the source.

17 2: 10 photons/m sAns

PSFQ In the photoelectric effect, a photon is completely absorbed

by the electron. Show that the laws of conservation of

energy and momentum cannot be satisfied simultaneously if

a free electron is assumed to absorb the photon. (Thus the

electron has to be bound to an atom and the atom undergoes

a recoil when the electron is ejected. However, since the mass

of the atom is much larger than that of the electron, the atom

picks up only a small fraction of the energy, this is somewhat

similar to the case of a tennis ball hitting a heavy object, the

momentum of the ball is reversed with its energy remaining

almost the same.)

PSFR In the Compton scattering experiment, show that the frac-

tional loss of energy of the photon increases with decrease in

the wavelength. Calculate the maximum value of this frac-

tional loss for 
°

0.711A  and 
°

0.022A;  the former

corresponds to the Molybdenum K X-ray line and the later

to the -rays emitted from RaC.

PSFS If photoelectrons are emitted from a metal surface by using

blue light, can you say for sure that photoelectric emission

will take place with yellow light and with violet light?

PSFT Show that

zJ x i y  and zJ y i x

Thus, if we write 1x , 2y  and z zij
J i J j

then we obtain the following representation of zJ

0

0z

i
J

i

PSFU Using the above representation of zJ , obtain the eigenvalues

and normalized eigenfunctions of zJ  and show that they are

consistent with the result in Sec. 25.4



26.1 INTRODUCTION

The three most important concepts in quantum theory are:

the indeterminateness in measurement, the principle of super-

position and the collapse of the wave function. In this

chapter we will discuss a few experiments which would en-

able us to understand these important concepts. We will also

discuss simple solutions of the Schrödinger equation and

also the concept of entanglement.

26.2 EXPERIMENTS WITH A
BEAM SPLITTER

We assume that light from a single photon source is incident

on a beam splitter [see Fig. 26.1]. By a single photon source,

we imply that in the beam splitter experiment, the detectors

D1 and D2  almost never click simultaneously and by �almost

never click simultaneously� we mean that the probability of

simultaneous clicks of D1 and D2 (or simultaneous arrival of

two or more photon at the beam splitter) is less than  about

0.005. Of course simultaneous clicks will happen when the

photons appear within the resolution time (dead time) of the

detectors (which can be about 20�50 ns). In an ideal situa-

tion, where we have a truly single-photon source and  perfect

Whatever happened to one particle would thus immediately affect the other particle, wherever
in the universe it may be. Einstein called this "Spooky action at a distance; in German,
Einstein called this "Spukhafte Fernwirkung".22222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222�Amir AczelB
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Chapter
Twenty

Six

detectors, the detectors will never click simultaneously. Also,

an ideal beam splitter is a partially silvered glass plate such

that 50% of light is reflected and 50% of light is transmitted.

We have two single-photon detectors D1 and D2. Quantum

theory tells us that before the photon gets detected (either

by the detector D1 or by the detector D2), the photon is in

both the beams. The photon is indivisible; it does not split

into two halves but when the photon gets detected, it col-

lapses from being in both the beams, to being detected by

one of the detectors. This "collapsing" is unique to quantum

theory. Dirac, in his very famous book The Principles of

Quantum Mechanics (Ref. 26.1) writes:

Fig. 26.1 A light beam splits into 2 beams by a beam
splitter. D

1 and D2 are single photon detectors.
Whenever the detector D

1
 clicks, we generate the

number 0 and  whenever the detector D
2
 clicks,

we generate the number 1 and thereby generate a
set of random numbers [(see Fig. 2.20(b)].

vy I

LO 1: discuss experiments with a beam splitter, polarization beam splitter and a Polaroid.

LO 2:: understand wave-particle duality.

LO 3: solve SchrÖdinger�s equation for a free particle in one dimension.

LO 4: understand quantum mechanically single slit diffraction pattern and double slit interference patterns.

LO 5: analyse EPR paradox and Bell�s inequality.

B Amir D. Aczel,  ENTANGLEMENT: The Unlikely Story of How Scientists, Mathematicians, and Philosophers Proved Einstein's

Spookiest Theory, Plume (Member of Penguin Group), New York (2001).
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we describe the photon as going partly into each

of the two components into which the incident

beam is split. The photon is then, as we may say, in

a translational state given by the superposition of

the two translational states associated with the two

components. . . . For a photon to be in a definite

translational state it need not be associated with

one single beam of light, but may be associated

with two or more beams of light, which are the

components into which one original beam has

been split. � In the accurate mathematical theory ,

each translational state is associated with one of

the wave functions of ordinary wave optics, which

may describe either a single beam or two or more

beams into which one original beam has been split.

The photon gets detected either by the detector D1 or by  D2

and never by both; both detectors having 50% probability of

detecting a photon.

No one can predict beforehand as to which detector will

detect the photon. To quote from Ref. 26.2, this fundamental

indeterminateness of the universe has not really been inte-

grated into our world view yet. In fact we can use this

indeterminateness to generate random numbers (see Sec.

2.13).

26.3 EXPERIMENTS WITH A
POLAROID

In Sec. 22.3, we had discussed that if a linearly polarized light

(coming out of the Polaroid P1) is incident on another

Polaroid P2, then by rotating the Polaroid  P2(about the

z-axis) one will observe variation of intensity given by
2

0 cosI I  which is known as Malus� Law; here  is the

angle that the pass axis of the Polaroid P2 makes with the

pass axis of the Polaroid  P1(see Fig. 26 in the prelim pages).

We assume that light from a single photon source falls on a

Polaroid P1, whose pass axis is at an angle of  with the

x-axis (see Fig. 26.2). Quantum theory tells us that the

probability for a photon polarized at an angle  (with respect

to the x-axis) to pass through the second polaroid (whose

pass axis is along the x-axis) is cos2   and if the experiment is

conducted with N photons (and if N is very large) then about

N cos2  photons will pass through; one cannot predict the

fate of an individual photon. Now, an x-polarized photon (and

a y-polarized photon) are described by the (normalized) Jones

vectors

1

0
x and 

0

1
y (26.1)

Fig. 26.2 The probability that the polarized photon (coming
out of the polaroid P1 (whose pass axis makes an
angle  with the x-axis) will pass through the
second polaroid P2 (whose pass axis is along the
x-axis) is cos2 .

Now, a  photon (polarized along the x  -axis) is described by

the (normalized) Jones vector [see Sec. 25.4]:

cos
cos sin

sin
x x y (26.2)

Thus, the photon is in a superposed state; this concept of

�superposition� (along with the concept of indeterminate-

ness) are two very important concepts in quantum theory.

The absolute square of the amplitude 
2cos represents

the probability of detecting x-polarized photon. Thus the

probability for the photon to pass through the second

Polaroid (whose pass axis is along the x-axis) is 
2cos  and if

the experiment is conducted with N photons (and if N is very

large) then about 2cosN photons will pass through; one

cannot predict the fate of an individual photon. For example,

if 45 ,  we will have

1 1
45

2 2
x y  (26.3)

Thus, approximately half the photons will pass through

the Polaroid P2 and the remaining half will be absorbed by

the Polaroid (see Fig. 26 in Prelim pages). It is not possible to

answer the question as to why a particular photon is ab-

sorbed and an identical photon passes through.

26.4 EXPERIMENTS WITH A
 POLARIZATION BEAM
 SPLITTER

We next consider a device known as the polarization beam

splitter which is usually abbreviated as PBS; it consists of

two prisms (made of certain type of crystals) cemented

together. An unpolarized light beam incident on a PBS splits

vy I

vy I
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in two mutually orthogonal linearly polarized beams as

shown in Fig. 26.3. The light reflected by the PBS is

s-polarized; i.e., the electric field is perpendicular to the plane

of incidence. The transmitted light is p-polarized; i.e., the

electric field is in the plane of incidence. For a commercially

available PBS*, the transmission efficiency of the

p-polarization 95%pT  and the reflection efficiency of the

s-polarization 99.9%sR . Thus, according to classical wave

theory, if a s-polarized light wave is incident on the PBS, it

will be totally reflected and if a p-polarized light wave is

incident on the PBS, it will be totally transmitted [see Figs.

26.4 (a) and 26.4 (b)]. On the other hand, if a 45° polarized

light wave falls on a PBS, half the intensity will be reflected

and the remaining half will be transmitted (see Fig. 26.5). Now,

what will happen if 45° polarized single photons fall on the

PBS??  Once again, a photon is indivisible and it cannot split

in two halves. Quantum theory tells us that the photon is in

both beams and in a state which is a superposition of two

polarizations

o 1 1
45

2 2
s p (26.4)

where 
o45 describes a 45° polarized photon, s describes

s-polarized photon and p describes a p-polarized photon.

The square of the amplitude 

2
1 1

22
represents the

probability of detecting a s-polarized photon, or a p-polarized

photon. After passing through the PBS, the photon is in a

superposition of the s-polarized state and a p-polarized state.

There is half probability that it will be detected by the detec-

tor D1 and half probability it will be detected by the detector

D2. No one can predict beforehand as to which detector will

detect the photon. In fact, before its detection, it is in both

the beams (at the same time)�but the process of detection

makes it "collapse" to being either detected by D1 or by the

detector D2. We can also use this arrangement to generate a

set of random numbers as we had discussed in Sec. 2.13

(see Ref. 26.3).

Fig. 26.4 A s-polarized light incident on the PBS is  totally
reflected and a p-polarized light incident on the
PBS will be totally transmitted.

Fig. 26.5 If a 45° polarized light wave falls on a PBS, half
the intensity will be reflected (as a s-polarized
wave) and the remaining half will be transmutted
(as a p-polarized wave)

  B2See, for example, www.chinasupply.net/optical/product/optics/beamsplitters/BBPBSC.html

Fig. 26.3 A Polarization Beam Splitter (usually abbreviated
as PBS); an unpolarized light beam incident on a
PBS splits in two mutually orthogonal linearly
polarized beams.
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We next consider the arrangement shown in Fig. 26.6 (a)

where we block the transmitted component  and allow the

reflected component (having s-polarization) to get reflected

by a mirror and then undergo another reflection by a PBS;

the resulting polarization detected by the detector will be

s-polarization. We next consider the arrangement shown in

Fig. 26.6 (b) where we block the reflected component  and

allow the transmitted component (having p-polarization) to

get reflected by a mirror and then undergo another transmis-

sion by a PBS; the resulting polarization detected by the

detector will be p-polarization.

We next consider the arrangement shown in Fig. 26.7

where we allow both the transmitted  and the reflected com-

ponents to get reflected by mirrors and then incident on the

second  PBS; if the mirrors are properly adjusted, we would

obtain a photon polarized at 45°; this can only happen if the

photon is in a state of superposition of being in both paths as

described by Eq. (26.4). John Wheeler, the famous American

physicist, said (quoted from Ref. 26.2):

The photon takes both paths, but it takes only one

path.

We will discuss a similar situation when a light beam is

propagating through a doubly refracting crystal�see Sec.

26.10.1.

Fig. 26.7 If a 45° polarized photon is incident on a PBS, and
both the reflected and transmitted beams are
allowed to fall on the second PBS, then (if the
distances are properly adjusted) the beam coming
out of the second PBS will be 45° degree
polarized; this can happen only if the photon is in
both the paths; diagram adapted from Ref. 26.2.

26.5 WAVE-PARTICLE
 DUALITY

As mentioned in the previous chapter, Einstein, in his Year of

Miracles (1905), had put forward his famous theory accord-

ing to which light consisted of mutually independent quanta

vy P

Fig. 26.6 (a) If a 45° polarized photon is incident on a PBS, and only the reflected beam is allowed to fall on the second
PBS, then the photon detected by the detector will be s-polarized. (a) If a 45° polarized photon is incident on a
PBS, and only the transmitted beam is allowed to fall on the second PBS, then the photon detected by the detector
will be p-polarized.
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of energy ,E h where  is the frequency and h is the

Planck's constant; these  quanta of energy were later called

photons. Einstein also said that the photon momentum would

be given by (see Sec. 25.1):

h h
p

c
   (26.5)

Around 1923, Arthur Compton carried out the scattering

experiments of high energy photons by electrons and

showed that the scattering experiments could only be

explained if the energy and momentum of the photon are

assumed to be given by the above equations (see Sec. 25.3).

In 1924, de Broglie wrote his PhD thesis in which he

proposed that just as light exhibited wave-like and

corpuscular-like behavior, matter (like electrons, protons,..)

must show wavelike behavior also. He argued that the

relation

h

p
(26.6)

should be applied for electrons, protons, alpha particles .. as

well. Now, in the Bohr model of the hydrogen atom, the

electron rotates in discrete circular orbits which are defined

by the condition that the angular momentum is an integral

multiple of /2 :h

; 0,1, 2,3...
2

nh
m r n which implies 2

nh
r n

p

de Broglie argued that the circumference of each Bohr orbit

contains an integral number of wavelengths. de Broglie was

awarded the 1929 Nobel Prize in Physics for his discovery of

the wave nature of electrons. In the presentation speech (on

December 12, 1929), the Chairman of the Nobel Committee for

Physics said:

Louis de Broglie had the boldness to maintain that

not all the properties of matter can be explained by

the theory that it consists of corpuscles� At a time

when no single known fact supported this theory,

Louis de Broglie asserted that a stream of electrons

which passed through a very small hole in an

opaque screen must exhibit the same phenomena as

a light ray under the same conditions�. The

experimental results obtained have fully

substantiated Louis de Broglie's theory. Hence

there are not two worlds, one of light and waves,

one of matter and corpuscles. There is only a single

universe.

Later, de Broglie wrote [quoted from p. 58 of Ref. 26.4]:

I was convinced that the wave-particle duality dis-

covered by Einstein in his theory of light quanta

was absolutely general and extended to all of the

physical world, and it seemed certain to me, there-

fore, that the propagation of a wave is associated

with the motion of a particle of any sort�photon,

electron, proton or any other.

The electron was discovered in 1897 by JJ Thomson. The

mass and charge of the electron is known to a tremendous

degree of accuracy:

319.1093897 10 kgem

and   191.60217733 10 Ceq (26.7)

The electron can be deflected by an electric (or a magnetic)

field. Thus, on the back of our mind, we picture the electron

as a tiny particle with definite mass and charge.  However,

after the prediction made by de-Broglie, Davisson and

Germer (in 1927), studied the diffraction of electrons from

single crystals of nickel and showed that the diffraction pat-

terns could be explained only if the electrons were assumed

to have a wavelength given by the de Broglie relation

/h p . In Figs. 2.13 (a) and (b), we have shown the dif-

fraction pattern of aluminum foil produced by X-rays and by

electrons; one can see the similarity in the diffraction pat-

terns. The experiments by Davisson and Germer and later

experiments by G.P. Thomson firmly established the wave na-

ture of electrons --  but this was after the amazing prediction

of de Broglie.

26.6 THE SCHRÖDINGER
EQUATION

The obvious question arises: Is the electron (or a proton or

an alpha particle) a wave or a particle? The answer is

[to quote Feynman (Ref. 26.5)]:

It is neither a wave nor a particle.

According to quantum theory, it is described by the wave

function  which depends on the position and contains all

information that is known about the system and determines

the time evolution of  and hence of probability of finding

the particle in a small volume element. In the non-relativistic

domain, the wave function satisfies what is known as the

Schrödinger equation

2
2,

  , ,
2

t
i t V t

t m

r
r r r (26.8)

vy Q
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where m represents the mass of the particle, V r  is the po-

tential energy distribution, and

2 2 2
2

2 2 2
, ,t t

x y z
r r (26.9)

According to Feynman (Chapter 16 of Ref. 26.5)

Where did we get that [the Schrödinger equation]

from? Nowhere. It is not possible  to derive it from

anything you know. It came out of the mind of

Schrödinger, � invented in his struggle to find an

understanding of the experimental observations of

the real world�. .

Of course Schrödinger had some reasoning to get to this

equation. In Appendix F, we have given a heuristic deriva-

tion of the Schrödinger equation, and as you will see, the

derivation lacks rigor. In spite of the fact that it is not pos-

sible to have a rigorous derivation of the Schrödinger

equation, it readily got accepted because its solutions agreed

extremely well with experimental data. The Schrödinger equa-

tion is so much popular that people have tattooed the

2
dV is the probability of finding the particle in the

volume element (26.10)

Thus
2 1dV (26.11)

Fig. 26.8 Many love the Schrödinger equation so much
that they have tattooed the equation on them;
adapted from http://mentalfloss.com/article/
32288/11-great-geeky-math-tattoos

where the integration is over the entire space. The above

equation (known as the normalization condition) follows from

the fact that the particle has to be found somewhere in the

universe.

26.7 FREE PARTICLE IN ONE
 DIMENSION

We consider the one dimensional case; i.e., assume no de-

pendence of the wave function on y and z. For a free particle

(for which the potential energy is zero everywhere), the

Schrödinger equation takes the form:

22

2

, ,

2

x t x t
i

t m x
(26.12)

which is referred to as the one dimensional time-dependent

Schrödinger equation for a free particle. Using the method of

separation of variables, the solution of Eq. (26.12) would be

given by (see Appendix F):

2

, constant exp ;
2

x
x x

pi
x t    p x t  p

m

 (26.13)

where p
x
 can take any (real) value from to .  Thus,

the most general solution of Eq. (26.12) would be a superpo-

sition of plane waves (corresponding to different momenta)

given by

21
, exp

22
x

x x x

-

pi
x t   a p      p x t  dp

m
(26.14)

where the factor 1/ 2  is introduced so that the Fourier

transform pair will have symmetric forms. Now, in Eq. (9.12),

if we define xp k , we would obtain

  
1

exp
2 x x

-

i
x x     p x x   dp (26.15)

Thus,  x   x x x dx

1
exp

2 x x

i
    p x x   x dx dp

Thus, if we define

1
exp

2
x x

-

i
a p   x     p x  dx        (26.16)

vy Q

equation on their body (see Fig. 26.8). In 1926 Max Born gave

the following physical interpretation of  (this is discussed

in almost all books on quantum mechanics; see, e.g.,

Ref. 26.6, 26.7 and 26.8):
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then

    
1

exp
2

x x x

i
x   a p     p x  dp (26.17)

At t = 0,   Eq. (26.14) becomes

     
1

,0 exp
2

x x x

i
x   a p      p x  dp   (26.18)

Therefore,
1

,0 exp
2

x x

i
a p  x     p x  dx

(26.19)

Since the Schrödinger equation is linear (any multiple of the

solution is also a solution), we may choose the multiplicative

constant such that

2
, 1x t  dx    (26.20)

and the wave function is said to be normalized with
2

,x t  dx representing the probability of finding the

particle's  position between and .x x dx  Equation (26.14)

describes what is known as a localized wave packet with
2

x xa p dp Probability of finding the (x-component of

the) particle's momentum to lie  between

and x x xp p dp (26.21)

The above physical interpretation of | a(p
x
)2 | is also

discussed in almost all books on quantum mechanics; see,

for example, Ref. 26.7. What is a localized wave packet? You

know when you switch on a laser pointer and switch it off

within a very short time, you create a localized wave packet.

If the duration of the pulse is about 100.1 ns 10 s then

we form a localized wave packet whose length is about
103 cm 10 sc and this packet propagates through

space (see Fig. 26.9). Thus, if we know ,0x , we can

26.7.1 The Gaussian Wave Packet

Let us assume that at 0,t the electron is described by a

Gaussian wave packet:

        
2 2

0/2
01/42

0

1
,0 expx i

x  e   p x     (26.22)

Fig. 26.9 Propagation of a 0.1 ns (3 cm long) Gaussian light
pulse in vacuum in the +x direction.

Thus at 0,t the probability of finding the particle be-

tween  andx x dx  will be given by

        
2 2

0
2 /

2
0

1
,0 x

P x dx x dx e  dx (26.23)

Equation (26.23) tells us that at 0t the particle is located

around the origin 0x localized within a region of about

0; i.e., 0x ; see Fig. 26.10(a). Further, it can be readily

seen that

2 2
0

2 /

2
0

1
,0 1x

- - -

 P x  dx  x   dx  e  dx 

(26.24)

Fig. 26.10 (a) The probability distribution function at 0t

showing that the particle is localized around

the point 0x with an uncertainty given by

0~ .x

(b) The momentum distribution function show-
ing that the particle�s momentum is localized

around 0p p with an uncertainty given by

0

~ .p

determine xa p  by using Eq. (26.16) and if we substitute

this expression for xa p  in Eq. (26.14) , we would get the

time evolution of  the wave packet; that is what we are going

to do for a Gaussian wave packet.

x

3 cm

t = 0 at a slightly later time

(b)(a)
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which implies that the particle has to be found somewhere!!!

If we substitute for ,0x  from Eq.(26.19)  in Eq. (26.16),

and carry out the integration, we would get

2 2
0/2

01/42
0

1 1
 exp  

2
x

x x

i
a p  e p p x dx

  

1 4 2 22
0 00

2 2
exp

2

/

xp p

 (26.25)

where we have used results in Appendix A. Thus, the

probability of finding the x-component of the particle's

momentum between andx x xp p dp  will be given by

1 2 2 22
2 0 00

2 2
exp

/

x
x x x x x

p p
P p dp a p dp   dp

 (26.26)

One can readily see that 
2

1.x xa p  dp  Equation

(26.26) tells us that the x-component of the particle's

momentum is about 0p with an uncertainty of about 
0

; i.e.,

0

;xp  see Fig. 26.10(b). Thus,

xx p  (26.27)

The above equation shows that the uncertainty principle is

contained in the solution of the Schrödinger equation. If we

substitute for xa p  from Eq. (26.25) in Eq. (26.14) and carry

out the integration (which is straight forward but a bit cum-

bersome), we would obtain the expression for ,x t  from

which we would obtain

2

2

2

1
, , exp

gx t
P x t x t   

v

(26.28)

where 0

1
g

p
m

v = (26.29)

and t =

2
2

0 2 4
0

1 t
m

(26.30)

Equation (26.28) tells us that the center of the wave packet

moves with the velocity gv  which represents the group ve-

locity of the wave packet. Further, Eq. (26.30) tells us that, as

the wave packet propagates, the width of the packet (i.e., x)

increases with time; however xp remains the same! At all

times, 
2

, 1.x t  dx  If we introduce the dimensionless

variables,

   
0

,
x

X 2
0

t
m

and
00 0 gmp v

(26.31)

we would get

2
2

22
0

1
, exp

11

X
X (26.32)

In  Fig. 26.11, we have plotted 
2

,X as a function of

X at different times for 15.  Thus at 0, 0.5, 1.0 and 1.5
the particle is localized around respectively. At all times

0

.p (26.33)

Fig. 26.11 Propagation (and broadening) of a Gaussian
wave packet. Notice that at  = 0, 0.5, 1.0 and 1.5
the particle is localized around the points X = 0,
7.5, 15.15 and 22.5 respectively.

We next consider a particle (like an electron or an alpha

particle or even a fullerene molecule)�described by a wave

packet approaching a potential barrier�see Fig. 26.12(a),

which results in certain probability of reflection and certain

probability of it tunnelling through the barrier. This is similar

to the beam splitter experiment (see Fig. 26.1) in which a pho-

ton incident on a beam splitter is partially reflected and

partially transmitted). Quantum theory tells us that, at a later

time, there is a reflected wave packet and a transmitted wave
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packet�see Fig. 26.12(b). Thus, one electron is described by

two wave packets one localized around the point A (moving

towards the left) and the other localized around the point B

and moving towards the right. Thus, the particle is at both

places (which may be hundreds of kilometres apart)�does

that mean it has split in two halves?? The answer is no�but

it is at both places! If we try to make a measurement of the

particle, we will find it either around the point A or around

the point B; the particle being at both places collapses to

being around A or around B. This collapse of the wave func-

tion is similar to the double hole interference experiment in

which the electron (or the photon) passes through the two

holes simultaneously�but if we tried to measure which hole

did it actually pass through then we will find that it passed

either through hole # 1 or  hole # 2. This collapse of the wave

packet is an extremely important characteristic of quantum

theory.

(a)

Fig. 26.12 (a) A free particle (described by a Gaussian wave
packet) incident on a potential barrier. (b) At a
slightly later time, the particle is described by 2
wave packets � one localized around the point A
and the other localized around the point B. If we
make a measurement, then the wave function
collapses to being either around the point A or
around the point B.

26.8 DIFFRACTION BY A
 SINGLE SLIT

We next consider a wave-packet (propagating in the

y-direction) incident on a single slit of width b [see

Fig. 26.13(a)]. For such a situation we may assume

        

1
,0

2

0
2

b
x  x  

b

b
x

(26.34)

Fig. 26.13 (a)  Diffraction of an electron by a narrow slit of
width b. (b) Diffraction of an electron by 2
narrow slits, each of width b and separated by d.

We substitute the above expression for ,0x  in

Eq. (26.19) to obtain

2

2

1 1
exp

2

b

x x

b

i
a p p x  dx  

 Carrying out the integration we would get

2
2

2

2 sin
x x x x x

b
a p dp P p dp dp

h
(26.35)

where 
x xP p dp is the probability that (after interacting

with the slit) the electron�s x-component of the momentum

lies between p
x
 and x xp dp ; the electron acquires this

x-component of the momentum from the slit. In the above

equation,

sin sinxb p b p b

h h
    (26.36)

vy R
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Now, one can always choose the electron source to be so

far away that (before entering the slit), p
x
 can be assumed to

have an arbitrarily small value. Thus, the electrons approach-

ing the slit can be assumed to have momentum only in the

y-direction. The expression for x xP p dp tells us that by

making the electron pass through a slit of width b, the slit

imparts a momentum in the x-direction which is 
h

b
. It may

be pointed out that before the photon entered the slit, p
x

(and hence ,xp which represents the spread in p
x
) can be

made arbitrarily small by putting the source sufficiently far

away. Thus, we may write 0xp before the electron passes

through the slit. The slit imparts a momentum to the electron

given by

x x

h
p p

b
  (26.37)

But sinxp p , where  is the angle that the electron com-

ing out of the slit makes with the y-axis. Thus

sin sin
h h

p
b pb

(26.38)

Equation (26.38) predicts that the possibility of an electron

travelling at an angle  with the y-direction is inversely pro-

portional to the width of the slit; i.e., smaller the value of b,

greater is the value of  and greater is the possibility of the

electron to reach deep inside the geometrical shadow. This is

indeed the diffraction phenomenon (and also the uncertainty

principle); thus everything is contained in the solution of the

Schrödinger equation! Further, the intensity distribution as

predicted by the classical wave theory is given by (see Sec.

18.2)

2

0 2

sin
I I (26.39)

where 
sinb

which is the same as given in

Eq. (26.35).

Thus the solution of the Schrödinger equation does not

predict where exactly the electron will land up; it only

predicts a probability distribution�but this probability

distribution is the same as the intensity distribution given by

the classical wave theory. Thus according to quantum

theory, we cannot predict where exactly the electron will be

detected on the screen but if we carry out the experiment

with millions of electrons, the intensity distribution (as

predicted by the wave theory) will slowly build up. Richard

Feynman says (in his famous Messenger Lecture) that

"electrons arrive in lumps�just like tiny bullets; however, the

probability of arrival of the electrons is the same as predicted

by the wave theory".

26.9 THE DOUBLE SLIT
 INTERFERENCE PATTERN

We next consider the diffraction of an electron beam by two

slits each of width b and separated by a distance d [see

Fig. 26.13(b)];  thus

    

1
,0

2 2

0 elsewhere

d b d b
x  x  

b (26.40)

We substitute the above expression for ,0x in Eq. (26.16)

to obtain

2 2

2 2

1 1
exp exp

2

d b d b

x x x

d b d b

i i
a p p x  dx p x  dx  

If we carry out the integrations we would get

2
2 2

2

2 sin
4 cosx x x x x

b
P p dp a p dp dp

h

(26.41)

where, as before, 
x xP p dp is the probability that (after in-

teracting with the slit) the electron�s x-component of the

momentum lies between p
x
 and x xp dp , sinb and

sind . On the other hand, classical wave theory

predicts  (see Sec. 18.6)

    

2
2

0 2

2 point interference
      Single-Slit           pattern
Diffraction-Pattern

sin
4 cosI I

(26.42)

Thus, once again, the solution of the Schrödinger equa-

tion does not predict where exactly the electron will land up,

it only predicts  a probability distribution - but this probabil-

ity distribution is the same as the intensity distribution given

by the wave theory.

Recently Nairz and his colleagues have carried out a

beautiful experiment (see Ref. 26.9) in which they allowed

(almost) mono-energetic fullerene molecules to fall on a mul-

tiple slit arrangement and they were able to obtain the

vy R
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interference pattern. Figure 26.14 shows the distribution of

the count rates as a function of the detector position; the

distribution agrees with the calculated interference pattern

using wave theory. Thus what we  have tried to say for elec-

trons is also valid for the fullerene molecule C-60 consisting

of 60 carbon atoms; the molecule is said to form the smallest

natural soccer ball.

Thus according to quantum theory, we cannot predict

where exactly the electron will be detected on the screen but

if we carry out the experiment with millions of electrons, the

intensity distribution (as predicted by the wave theory) will

slowly build up - see Figs. 2.17, 2.19 and 26.14.

26.10 EPR PARADOX AND
BELL�S INEQUALITY: A
SIMPLE ANALYSIS

26.10.1 Experiments with a Doubly
   Refracting Crystal

We next consider a light beam (from a single photon source)

incident on a suitably oriented calcite crystal. The calcite

crystal shown in the figure is often referred to as a

(x-y) device because no matter what the incident state of

polarization may be, it will always split into an x-polarized

beam and a y-polarized beam (see Sec. 22.5 and Fig. 22.20).

Now, when a x-polarized photon (from a single photon

source) is incident normally on the calcite crystal, it will

propagate as an x-polarized photon [see Fig. 26.15 (a)] and

when a y-polarized photon  is incident normally on the crys-

tal, it will propagate as a y-polarized photon [see Fig. 26.15

(b)]. What will happen if a 45° polarized photon is incident

on the calcite crystal (see Fig. 26.16)? We can express a 45°

polarized photon by the vector:

 
cos 45 1 1

LP 45
2 2sin 45

x y (26.43)

The photon gets detected either by the detector D1 or by D2

(never by both); there is half probability of it getting de-

tected by the detector D1 and half by the detector D2. No one

can predict beforehand as to whether it will be detected by

D1 or by the detector D2. In fact before detection, the photon

is in a state of superposition of being in both paths as de-

scribed by the above equation.

If we rotate the calcite crystal, as shown in Fig. 26.17, we

will obtain an  (u-v) device where the u-v axes are obtained

by rotating the x-y axes as shown in Fig. 26.17. Thus when

an arbitrarily polarized photon is incident normally on the

(u-v) device, there will be a certain probability of detecting

an u-polarized photon and a certain probability of detecting a

v polarized photon.

Fig. 26.14 Monoenergetic fullerene molecules [see (a)]  fall on a multiple slit arrangement and produce the interference
pattern. The diagram shows the distribution of the count rates as a function of the detector position; the
distribution agrees with the calculated interference pattern using wave theory. Diagram adapted from
Ref. 26.9.

vy S
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Fig. 26.15 (a) when a
 

x-polarized photon is incident
normally on a suitable oriented  calcite crystal, it
will propagate as an x-polarized photon and
(b) when a y-polarized photon  is incident
normally on the crystal, it will propagate as a y-
polarized photon.

Fig. 26.16 When a linearly polarized light beam (making
an angle  with the x-axis) is incident on a
(suitably oriented) calcite crystal, it would, in
general, split up into an x-polarized beam and a
y-polarized beam. In the figure we have
assumed 45 .

Fig. 26.17 By rotating the (x-y) device by a certain angle
about the z-axis, we obtain an (u-v) device.
Adapted from
http://www.upscale .utoronto.ca/PVB/
Harrison/BellsTheorem/BellsTheorem.html

26.10.2 What is Entanglement?

There are atoms which emit two photons in quick succession

and the two photons are of different frequencies propagat-

ing in opposite directions. There are actual transitions where

the two photons are characterized by the property that the

polarization of one is always orthogonal to that of the other.

Thus if the photon travelling to the left is passed through a

x-y device and if the photon is found to be x-polarized then

the photon travelling to the right will surely be y-polarized

(see Fig. 26.18); the two photons are said to be "entangled".

This can be seen by making what is known as "coincidence"

measurements. Thus in Fig. 26.18, there are events when the

detector D1 on the left and the detector D4 on the right click

simultaneously; such simultaneous measurements are called

"coincidence" measurements. However, there are no events

when the detector D1 on the left and the detector D3 on the

right click simultaneously.

Fig. 26.18 Two photons (emitted by the same atom)
propagating in opposite directions are
characterized by the property that the
polarization of one is always othogonal to  the
other; the polarization of the photon (traveling
to the left � or to the right) is not known before
one of them is measured. If the photon
travelling to the left is passed through a

 
x-y

device and if the photon is found to be
x-polarized then the photon travelling to the
right will be y-polarized; we know the
polarization of the photon moving to the right
without measuring it.

The word "entanglement" was introduced by Erwin

Schrödinger in a paper published in 1935 (Ref. 26.10). In 1935,

Einstein (along with Podolsky and Rosen) published a paper

(Ref. 26.11) in which they argued that if  quantum theory was

correct, then two particles (which are millions of kilometers

apart) can be entangled in the sense that by determining a
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property of one of the particles, the property of the second

particle can be instantaneously changed. And special theory

of relativity forbids the transmission of any signal faster than

the speed of light. This came to be known as The EPR Para-

dox. About thirty years later, experiments confirmed the

predictions of quantum mechanics, namely, Einstein's impos-

sible proposition was in fact correct: instantaneous changes

in widely separated systems did occur.

26.10.3 Non-locality of Quantum
Theory

According to quantum theory,

the polarization of the photon (traveling to the

left-or to the right) is not known before one of them

is measured; and, if the polarization of the photon

going to the left is measured as x-polarized then

the polarization of the photon going to the right

collapses to state in which its polarization state is

y-polarized. Similarly, if the polarization of the

photon going to the left is measured as u-polarized

then the polarization of the photon going to the

right collapses to state in which its polarization

state is for sure v-polarized.

The two photons can be hundreds of kilometers apart.

This collapse of the wave function is usually referred to as

the "Copenhagen interpretation" of quantum mechanics.

Thus quantum theory is "non-local" �i.e., measurement on

one particle can instantaneously affect the state of another

particle which is very far away. Einstein could never accept

this; he felt that this will contradict special theory of relativ-

ity according to which no signal can travel faster than light.

Einstein called this "Spooky action at a distance". Einstein

believed in "locality"; i.e., measuring the state of one particle

will not affect the other. Einstein believed that if one could

predict the polarization of the second photon by measuring

the polarization of the first photon, then both photons had

definite states of polarization all the time. Thus associated

with the photons are "hidden variables" so that the polariza-

tion  of the photons are known before the measurements are

carried out. In their 1935 paper (Ref. 26.11), EPR wrote:

if without in anyway disturbing a system, we can

predict with certainty (i.e., with probability equal

to unity) the value of a physical quantity, then the

second particle must  have possessed the measured

property before the measurement was carried out.

Einstein had also written (p. 85 in Ref. 26.12; see also Ref.

26.13).

But on one supposition we should, in my opinion,

absolutely hold fast: the real factual situation of

the system S
2
 is independent of what is done with

the system S
1
, which is spatially separated from the

former.

According to Alan Aspect "Einstein therefore argued for

what he felt was the only reasonable description: that each

particle in the pair carries a property, decided at the mo-

ment of separation, which determines the measurement

results. But since entangled particles are not described

separately in the quantum formalism, Einstein concluded

the formalism was incomplete". In his 1964 paper (Ref. 26.13),

John Bell wrote

It is the requirement of locality, or more precisely

that the result of a measurement on one system be

unaffected by operations on a distant system with

which it has interacted in the past, that creates the

essential difficulty.

26.10.4 Hidden Variables

As mentioned above, Einstein had written that "�. the sec-

ond particle must have possessed the measured property

before the measurement was carried out�". Assuming this,

we construct a theory based on "hidden variables" so that

we know the number of photon pairs which have their own

independent attributes when passed through a ,x y device

or a ,u device or a , device; the ,x y axes,

,u axes and ( , n) axes are defined in Fig. 26.19. Thus we

can assign values of all observables of a system before the

measurement is carried out. For example, if a photon de-

scribed by , ,x u is passed through a ,x y device, we will

for sure measure -polarization.x if it were to pass through a

,u device, we will for sure measure -polarizationu and if it

were to pass through a , device, we will for sure mea-

sure -polarization.  Further, if a photon described by

, ,x u is propagating to the left then the photon propagat-

ing to the right will be described by ,y v (see Fig. 26.20)

so that if the  photon propagating to the right is passed

through a (x, y) device, we will for sure measure

-polarization,y if it is passed through a ,u device, we will

for sure measure v-polarization  and if it is passed through a

, device, we will for sure measure -polarization.

Let there be

N1 photons (going to the left) characterized by , ,x u and

equal number of photons (going to the right) characterized

by ,y v
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Fig. 26.19 The (u,v) axes are obtained by rotating the (x,y)

axes by an angle  similarly the , axes are
obtained by rotating the (x,y) axes by an angle .

Similarly, we may have

N2 photons (going to the left) characterized by , ,x u

and equal number of photons (going to the right) charac-

terized by ,y v

Obviously, we can have 8 possible pairs as listed in

Table 26.1. If P(x, u) represents the probability that the pho-

ton (going to the left) is x-polarixed and the photon (going to

the right) is -polarizedu (see Fig. 26.20) then from Table 26.1

it is obvious that

    
3 4,

N N
P x u

N
(26.44)

Fig. 26.20 We assume that the photon must carry all the
information; thus there must exist �hidden
variables� so that we can assign values of all
observables of a system.

where

      1 2 3 4 5 6 7 8N N N N N N N N N (26.45)

Similarly, if ,P x represents the probability that the

photon (going to the left) is - polarizedx and the photon

(going to the right) is -polarized then (again from

Table 26.1)

    
2 4,

N N
P x

N
(26.46)

Similarly, if ,P u represents the probability that the

photon (going to the left) is -polarized  and the photon

(going to the right) is - polarizedu then (again from

Table 26.1)

3 7,
N N

P u
N

(26.47)

Table 26.1 Possible hidden variable pairs

 Photons going to the left Photons going to the right

N1  pairs characterized by ,x ,y v

N2  pairs characterized by ,x ,y v

N3  pairs characterized by , ,x v ,y

N4  pairs characterized by ,x v ,y

N5  pairs characterized by ,y ,x v

N6  pairs characterized by ,y ,x v

N7  pairs characterized by ,y v ,x

N8  pairs characterized by ,y v ,x
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Thus

2 4 3 7, ,
N N N N

P x P u
N

 Since

3 4 2 4 3 7N N N N N N

we will have

, , ,P x u P x P u (26.48)

This is a simple form of Bell's inequality. In 1964, John Bell

published his famous theorem (now referred to as Bell�s

theorem) in a paper entitled "On the Einstein-Podolsky-

Rosen Paradox" (Ref. 26.13). Many experiments have shown

that above inequality is violated. The theorem was a

revolutionary contribution to the understanding of quantum

mechanics.

26.10.5   Results from Quantum Theory

We will now calculate expressions for , , ,P x u P x and

,P u using simple quantum theory. If N represents the

total number of photons (going to the left) then N/2 photons

will appear -polarizedx . The corresponding photon going to

the right will appear y-polarized. Thus, the probability that the

photon (going to the left) is - polarizedx and the photon

(going to the right) is - polarizedu (see Fig. 26.21) will be

given by:

2 21 1
, cos sin

2 2 2
P x u

Fig. 26.21 The entangled photons are made to pass through
an (x-y) device and an (u-v) device.

where the angle   is defined in Figs. 26.19 and 26.21. Simi-

larly

21
, sin

2
P x

where the angle is defined in Fig. 26.19. Similarly

21
, sin

2
P u

Thus, if Bell�s inequality is consistent with quantum theory,

we must have

 
2 2 2sin sin sin

If we  assume 2 , the above inequality takes the form

2 2sin 2 2sin

which is violated for .
6

Thus, quantum theory and Bell�s

inequality are not  compatible which implies that either quan-

tum theory is right or theory based on hidden variables, but

not both. Many have carried out experiments which are al-

ways in agreement with quantum theory and against the

results obtained by using hidden variables (see References

26.14, 26.15 and other references in Ref. 26.16). Figure 26.22

shows the experimental set  up of Aspect and his co-workers

(Ref. 26.16) for performing Bell test. The photon 1 after

passing through the -x y device will emerge as x-polarized

or, as y-polarized. Similarly, the photon 2 after passing

through the -u device will emerge as u-polarized  or, as

v-polarized. In Ref. 26.17, Aspect et. al write:

�The linear-polarization correlation of pairs of photons

emitted in a radiative cascade of calcium has been measured.

The new experimental scheme, using two-channel polarizers

(i.e., optical analogs of Stern-Gerlach filters), is a straightfor-

ward transposition of Einstein-Podolsky-Rosen-Bohm

gedanken experiment. The present results, in excellent agree-

ment with the quantum mechanical predictions, lead to the

greatest violation of generalized Bell's inequalities ever

achieved.��

Fig. 26.22 An apparatus for performing Bell test. The
photon 

1 
after passing through the (x-y) device

will emerge as x-polarized or, as y-polarized.
Similarly, the photon  2 after passing through
the (u- ) device will emerge as u-polarized or,
as v-polarized. Adapted from Ref. 26.16. A
colored diagram appears as Fig. 36 in the
Prelim pages.
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John Bell has written:

It seems to me then beyond dispute that there was at

least one Einstein, that of the EPR paper and the

Schilpp volume [Ref. 26.12], who was fully committed to

the view that quantum mechanics was incomplete and

should be completed�which is the hidden variable

program.

Bell�s theorem proved that the above view (of Einstein) is

incorrect!

26.10.6 Correlation Function

We define a correlation function C

, , , ,C P x P y u P x u P yv v

Now, according to quantum theory

 

21
, sin

2
P x u

Similarly,

21
, cos

2
P x v ,

21
, cos

2
P y u

and
21

, sin
2

P y v

Thus, according to quantum theory, the correlation function

C is given by

2 2, , , , cos sin

cos 2

C P x P y u P x u P yv v

The above variation of the correlation function C with

 was verified very accurately by experiments carried out by

Freedman and Clauser in 1972 (Ref. 26.14).

Summary

In putting forward the fact that radiation energy consists of

indivisible quanta of energy  .... , Einstein in 1905 discov-

ered  wave-particle duality; this was extended by de Broglie

(in 1922) to all of the physical world, and  wave-particle dual-

ity led to quantum theory. And predictions based on

quantum theory have been verified to  tremendous degree of

accuracy. In spite of the great success of quantum theory,

Einstein never quite believed in it; in his Autobiographical

Notes, Einstein (when he was about 67 years old) wrote (see

p.51 of  Ref. 26.12):

This double nature of radiation (and of material

corpuscles) is a major property of reality, which

has been interpreted by quantum mechanics in an

ingenious and amazingly successful fashion. This

interpretation, which is looked upon as essentially

final by almost all contemporary physicists, ap-

pears to me as only a temporary way out�..

Then came Bell's theorem which is considered (to quote from

Ref. 26.2)

�as one of the most profound discoveries since

Copernicus� Bell delivered a death blow to the

local realistic picture of the world... many experi-

ments have demonstrated that the predictions of

quantum mechanics for entangled particles are

fully correct � and the world is really as "crazy"

as predicted by quantum mechanics.

Nobel Laureate Brian Josephson remarked that Bell's in-

equality is the most important recent advance in physics.

John Bell's response was "I would say that's probably a bit

exaggerated. But if you are primarily concerned with the

philosophy of physics, I can see the point" (see p.30 of Ref.

26.18).

Problems

26.1 An atom emits two (entangled) photons in quick succession

of different frequencies propagating in opposite directions.

The two photons are characterized by the property that the

polarization of one is always orthogonal to that of the other.

The photon travelling to the left is passed through a (x-y)

device and is found to be
2
y-polarized. If the photon (propa-

gating to the right) is passed through a (u-v) device where

the u-axis makes an angle of  30° with the x-axis, what will

be the probability of finding it u-polarized?

[Ans: 0.75]

26.2 Consider a particle of mass  in a one-dimensional infinitely

deep potential well characterized by the following potential

energy variation

( ) 0 for 0

for 0 and   for 

V x x a

x x a

Since the particle is inside an infinitely deep potential well,

it is always confined in the region 0 < x < a and, therefore,

 must vanish for x < 0 and x > L; and for  to be

continuous, we must have 0 0x x a . Solve

the one-dimensional Schrödinger equation [see Eq. (F.22) of

Appendix F] in the  region  0 x a  and use the above

boundary conditions to obtain the energy eigenvalues and the

corresponding (normalized) eigenfunctions.

        

2 2 2

2

2
[  ; 1,2,...; sin for 0 ;

2

0 everywhere else]

n

n n
E E n x x x an

a aa
Ans : 
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26.3 (a) We next consider the square well potential for which

0

( ) 0 for
2 2

for | |
2

a a
V x x

a
V x

(see Fig. 29.7 in Sec. 29.6). Assume E < VH and show that the

Schrödinger equation [see Eq. (F. 22) of Appendix F] in each

region can be written in the form given by Eqs. (29.15) and

(29.16). Write the symmetric and antisymmetric solutions of

the Schrödinger equation and use the continuity of (x) and

d /dx at x = a/2 to derive the following transcendental

equations determining the energy eigenvalues of the problem:

  2 2tan (symmetric states)

2 2cot (antisymmetric states)

where

1/22

2

2

2 4

ka Ea
 and

1/22
0
2

2

4

V a

The transcendental equations are identical to the ones we had

obtained in Sec. 29.2 while discussing the modes of a planar

waveguide.

(b) Show by using a graphical method (see Fig. 29.2) that

for 0 / 2 , there will be only one symmetric state;

for / 2 , there will be one symmetric state and one

antisymmetric state;

For 3 /2 , there will be two symmetric states and

one antisymmetric state; etc.

26.4 In continuation of the above problem, write short programs

(may be using software like MATLAB) to solve the

transcendental equations in the previous problem for the

following cases:

(a) Assume  = 2 and show that the solution of the transcen-

dental equations would give the following eigenvalues:

1.02987for the symmetric state and

1.89549 for the antisymmetric  state

(b) Consider a proton
27with 1.672  10 kg  pm in a po-

tential well characterized by 19
0 1 eV 1.6 10 JV and

100.5 Å = 0.5 10 ma . Calculate the value of and

solve the transcendental equations to obtain the energy eigen-

values.

[Ans: E
I
  0.0585 eV, E

P
  0.2316 eV, E

Q
  0.5101 eV

and E
R
  0.8623 eV]

26.5 For the linear harmonic oscillator problem,

2 21
( )

2
V x x

show that the one-dimensional Schrödinger equation [see

Eq. (F. 22) of Appendix F] can be written in the form

2
2

2 0
d

x
d

where ,x  and 
2E

. Show that for the

wave function not to blow up at x =  (which represents the

boundary condition),  must be equal to an odd integer (see

Sec. 29.5 and Appendix H); i.e.

1
2 1 ; 0,1,2,3,....

2mm E E m m

which are the eigenvalues of the problem. The corresponding

eigenfunctions are the Hermite Gauss functions discussed in

Sec. 29.5 and Appendix H.

26.6 Show that the free particle wave function [see Sec. 26.7]

1
;

2
p

i
    px px

satisfy the following equations (for convenience, we have re-

moved the subscript x on p�see Sections 9.5 and 26.7):

         *
p px x dx p p and

which represent the orthonormality condition and the com-

pleteness condition respectively.

*
p px x dp x x
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In The War of Worlds, written before the turn of the century, H.G. Wells told a fanciful story of
how Martians invaded and almost conquered the earth. Their weapon was a mysterious �sword
of heat�, from which flickered �a ghost of a beam of light�, it felled men in their tracks, made
lead run like water and flashed anything combustible into masses of flame. Today Wells� sword
of heat comes close to reality in the laser�

�Thomas Meloy

ve�i��X2ex2sx��yh�g�syx

Chapter
Twenty
Seven

*The Nobel lectures of Townes, Basov and Prochorov [Refs 27.1�27.3] give a nice perspective of the field; these are reprinted in Ref. 27.4.

Important Milestones

1917 The theory of stimulated emission was put forward by Albert Einstein.

1924 Richard Tolman suggested optical amplification through stimulated emission of radiation.

1954 The phenomenon of stimulated emission was first used by Charles Townes in 1954 in the construction of a

microwave amplifier device called the maser which is an acronym for wicrowave emplification by �timulated

imission of �adiation. At about the same time, a similar device was also proposed by Prochorov and Basov

in USSR.

1958 The maser principle was later extended to the optical frequencies by Schawlow and Townes in 1958, which led

to the realization of the device now known as the laser. Townes, Basov and Prochorov were awarded the 1964

Nobel Prize in physics for their fundamental work in the field of Quantum Electronics, which has led to the

construction of oscillators and amplifiers based on the laser�maser principle.*

1960 The first successful operation of a laser device (  ~ 0.6943 m) was demonstrated by Theodore Maiman in

1960 using a ruby crystal.

1961 Within a few months of the operation of the ruby laser, Ali Javan and his associates constructed the first gas

laser (  ~ 0.6328 m), namely the helium-neon laser.

1961 The first fiber laser (barium crown glass doped with NdQC ions) was fabricated by Elias Snitzer.

1962 Semiconductor laser (which are now extensively used in fiber-optic communication systems) was discovered by

four independent groups.

1963 C.K.N. Patel discovered the COP laser (  ~ 10.6 m).

1964 W. Bridges discovered the Ar-ion laser (  ~ 0.515 m);

J.E. Geusic and his co-workers discovered the Nd:YAG laser (  ~ 1.064 m).

Since then, laser action has been obtained in a large variety of materials including liquids, ionized gases, dyes,

semiconductors, etc.

LO 1: describe the main components of the laser and lasing action..
LO 2: explain fiber laser, Ruby laser and He-Ne laser..
LO 3: discuss optical resonators and their working.
LO 4: discuss Einstein coefficients and optical amplifications.
LO 5: describe typical forms of the line-shape function, g( ).
LO 6: calculate typical parameters for a ruby laser.
LO 7: discuss monochromaticity of a laser beam.
LO 8: discuss Raman laser and Raman amplification.
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27.1 INTRODUCTION

LASER is an acronym for Light Amplification by Stimulated
Emission of Radiation. The light emitted from a laser often
possesses some very special characteristics�some of these
are:

(a) Directionality: The divergence of the laser beam is
usually limited by diffraction (see Sec. 18.4) and the
actual divergence can be less than 10�5 radians (see
Fig. 23 in the prelim pages); this leads to the applica-
tion of the laser in surveying, remote sensing, lidar, etc.

(b) High Power: Continuous wave lasers having power
levels ~ 105 W and pulsed lasers having a total energy
~ 50,000 J can have applications in welding, cutting,
laser fusion, etc.

(c) Tight Focusing: Because of highly directional proper-
ties of the laser beams, they can be focused to areas ~
few ( m)2 � this leads to applications in surgery, mate-
rial processing, compact discs, etc. Laser pulses with
very small cross sectional area can be guided through
special fibers leading to very intersting non linear ef-
fects (see Sec. 10.4 and Fig. 14 in prelim pages)

(d) Spectral Purity: Laser beams can have an ex-
tremely small spectral width because of which they
find applications in holography, optical communica-
tions, spectroscopy etc.

Because of such unique properties of the laser beam, it finds
important applications in many diverse areas and indeed one
can say that after the discovery of the laser, optics has be-
come an extremely important field of study. For example, in
Example 18.5, we had shown that a 2 mW diffraction limited
laser beam incident on the eye can produce an intensity of
about 106 W/m2 at the retina�this would certainly damage
the retina. Thus, whereas it is quite safe to look at a 500 W
bulb, it is very dangerous to look directly into a 5mW laser
beam. Indeed, because a laser beam can be focused to very
narrow areas, it has found applications in areas like eye sur-
gery, laser cutting, etc.

The basic principle involved in the lasing action is the
phenomenon of stimulated emission, which was predicted by
Einstein in 1917 [Ref. 27.5]*. In Sec. 27.7.1 we will discuss
spontaneous and stimulated transitions, which will be fol-
lowed by brief discussions of the main components of a laser
and the underlying principle as to how the laser works. In
Sec. 27.2, we will briefly discuss the working of a fiber laser
and in Sec. 27.3, we will discuss the working of the ruby la-
ser, which was the first laser to be fabricated. In Sec 27.4, we
will discuss the working of the helium-neon laser. In Sec.
27.5, we will have a slightly more detailed account of resona-

tors and in Sec. 27.6, we will discuss Einstein coefficients
and optical amplification. In Sec. 27.7, we will discuss the line
shape function and finally in Sec. 27.8, we will discuss the
monochromaticity of the laser beam.

27.1.1 Spontaneous and Stimulated
Emissions

Atoms are characterised by discrete energy states. Accord-
ing to Einstein, there are three different ways in which an
atom can interact with electromagnetic radiation:

(a) Spontaneous emission: Atoms in the energy state E2

can make a (spontaneous) transition to the energy state E1

with the emission of radiation of frequency

= 
E E2 1 (27.1)

where
= h

2
  1.0546  10�34 Js

and h (  6.626  10�34 Js) is known as the Planck�s constant.
Since this process can occur even in the absence of any ra-
diation, this is called spontaneous emission [see Fig. 27.1 (a)].
The rate of spontaneous emission is proportional to the num-
ber of atoms in the excited state.

(b) Stimulated emission: As put forward by Einstein, when
an atom is in the excited state, it can also make a transition to
a lower energy state through what is known as stimulated

emission in which an incident signal of appropriate frequency
triggers an atom in an excited state to emit radiation�this re-
sults in the amplification of the incident beam [see Fig. 27.1(b)].
The rate of stimulated emission depends both on the intensity
of the external field and also on the number of atoms in the
excited state.

* The original paper of Einstein is reprinted is Ref. 27.6.

E1

E1

E1

E2

E2

E2

Spontaneous emission

Stimulated emission

Absorption

(a)

(b)

(c)

Fig. 27.1 (a) Spontaneous emission. (b) Stimulated emission.
(c) Stimulated absorption.

LO 1
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(c) Stimulated absorption: Stimulated absorption (or simply
absorption) is the process in which the electromagnetic
radiation of an appropriate frequency (corresponding to the
energy difference of the two atomic levels) can pump the
atom to its excited state [see Fig. 27.1(c)]. The rate of stimu-
lated absorption depends both on the intensity of the
external field and also on the number of atoms in the lower
energy state.

Einstein also  s owed that the probability of stimulated
emission is the same as that of stimulated absorption (be-
cause B12 = B21 � see Sec. 27.6); however, although the
phenomenon of stimulated emission was predicted by
Einstein in 1917, it was only in 1924 that Richard Tolman sug-
gested optical amplification through stimulated emission. In
a paper published in Physical Review,  wrote:

...The possibility arises ... that molecules in the up-

per quantum state may return to the lower quantum

state in such a way as to reinforce the primary

beam by �negative absorption� ... (which) would

presumably be of such a nature as to reinforce the

primary beam.

This was the first hint of the possibility of optical
amplification.

Now when the atoms are in thermodynamic equilibrium,
there are larger number of atoms in the lower state implying
that the number of absorptions exceeds the number of stimu-
lated emissions; this results in the attenuation of the beam
[see Fig. 27.2(a)]. On the other hand, if we are able to create

a state of population inversion in which there are larger num-
ber of atoms in the upper state then the number of stimulated
emissions would exceed the number of absorptions resulting
in the (optical) amplification of the beam [see Fig. 27.2(b)].
The amplification process due to stimulated transitions is
phase coherent, i.e., the energy delivered by the molecular

system has the same field distribution and frequency as the

stimulating radiation (quoted from Ref. 27.1).

27.1.2 Main Components of the Laser

The three main components of any laser are (see Fig. 27.3):

(a) The active medium: The active medium consists of a
collection of atoms, molecules or ions (in solid, liquid
or gaseous form), which is capable of amplifying light
waves. Under normal circumstances, there are always a
larger number of atoms in the lower energy state than
in the excited energy state. An electromagnetic wave
passing through such a collection of atoms would get
attenuated; this is discussed in detail in Sec. 27.6. In
order to have optical amplification, the medium has to
be kept in a state of population inversion, i.e., in a
state in which the number of atoms in the upper energy
level is greater than that in the lower energy level�this
is achieved by means of the pump.

Active medium
Pout

M2M1

Pump

Mirror
100% reflecting

Semi-transparent
Mirror
~ 90% reflecting

Fig. 27.3 The three basic components of a laser are (i) the
active medium (which provides amplification),
(ii) the optical resonator (which provides
frequency selection and optical feedback) and
(iii) the pump (which supplies power to the
active medium to achieve population inversion).

E2

E2

E1

E1

Attenuation

State of population inversion amplificationfi

(a)

(b)

Fig. 27.2 (a) Larger number of atoms in the lower state re-
sult in the attenuation of the beam. (b) Larger
number of atoms in the upper state (which is
known as population inversion) result in the
amplification of the beam.

Optical amplifierIin
Iout

Fig. 27.4 The active medium essentially consists of a
collection of atoms in a state of population
inversion which can amplify the input light
beam (or spontaneously emitted light) by
stimulated emission. This is known as optical
amplification.

h

eh
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(b) The pumping source: The pumping mechanism pro-
vides for obtaining such a state of population inversion
between a pair of energy levels of the atomic system and
when we have a state of population inversion, the input
light beam can get amplified by stimulated emission
(see Fig. 27.4).

(c) The optical resonator: A medium with population in-
version is capable of amplification; however, in order
that it acts as an oscillator, a part of the output energy
must be fed back into the system.*  Such a feedback is
brought about by placing the active medium in a reso-
nator; the resonator could just be a pair of mirrors
facing each other.

We may mention here that although Einstein had pro-
posed the theory of stimulated emission in 1917, the concept
of population inversion to amplify the light beam came much
much later. According to Charles Townes**:

The laser invention happened because I wanted

very much to be able to make an oscillator at fre-

quencies as high as the infrared in order to extend

the field of microwave spectroscopy in which I was

working. I had tried several ideas, but none

worked very well. At the time, I was also chairman

of a committee for the navy that was examining

ways to obtain very short-wave oscillators. In

1951, on the morning before the last meeting of this

committee in Washington, I woke up early worry-

ing over our lack of success. I got dressed and

stepped outside to Franklin Park, where I sat on a

bench admiring the azaleas and mulling over our

problem.

Why couldn�t we think of something that would

work at high frequencies? I went through the pos-

sibilities, including, of course, molecules, which

oscillate at high frequencies. Although I had con-

sidered molecules before, I had dismissed them

because of certain laws of thermodynamics***. But

suddenly I recognized, �Hey, molecules don�t have

to obey such a law if they are not in equilibrium�.

And I immediately took a piece of paper out of my

pocket and wrote equations to see if selection of

excited molecules by molecular beam methods

could produce enough molecules to provide a feed-

back oscillator. Wow! It looked possible.

I went back to my hotel and told Art Schawlow

about the idea, since he was staying at the same

place. � Its extension to waves as short as light

came a few years later, after much excitement over

the maser and as a result of my continued collabo-

ration with Schawlow, then at Bell Labs. An

essential element in this discovery, I believe, was

my experience in both engineering and physics: I

knew both quantum mechanics and the workings

and importance of feedback oscillators.

27.1.3 Understanding Optical
Amplification: The EDFA

Perhaps the easiest way to understand optical amplification
is to discuss the working principle of an EDFA (Erbium
Doped Fiber Amplifier), which is shown in Fig. 27.5. The
EDFA essentially consists of about 20�40 meters of a silica
optical fiber the core of which is doped with erbium oxide
(Er2O3)�we will have a detailed discussion on the optical
fiber in Chapters 28 and 30, it may suffice here to say that
light is guided through the optical fiber because of total

* Since some of the energy is coupled back to the system, it is said to act as an oscillator. Indeed, in the early stages of the development
of the laser, there was a move to change its name to LOSER which is an acronym for Light Oscillation by Stimulated Emission of
Radiation. Since it would have been difficult to obtain a research grant for LOSERs, it was decided to retain the name LASER.

** Lasers and Fiber Optics Essay by Charles H. Townes, Ref. http://www.greatachievements.org/?id=3717
*** In his Nobel lecture (reprinted in Ref. 27.4) Townes writes �Why not use the atomic and molecular oscillators already built for us by

nature? This had been one recurring theme which was repeatedly rejected. Thermodynamic arguments tell us that the interaction
between electromagnetic waves and matter at any temperature cannot produce amplification�. However, Townes realized that if popu-
lation inversion is somehow achieved then the radiation can be amplified. Quoting Townes again �This condition is of course one of
non-equilibrium for the group of molecules, which hence successfully obviates the limits set by blackbody radiation�.

Pump laser
(980 nm)

Input signal
(1550 nm)

Amplified
signal

Optical
isolator

Coupler

Er-doped fiber

Fig. 27.5 The Erbium Doped Fiber Amplifier (EDFA) in which the input optical pulses (at 1550 nm) are
amplified by stimulated emission of radiation.
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internal reflections (see Fig. 28.7). The radius of the core of
the optical fiber is typically about 2�3 m. The erbium
concentration is about 1025 ions/m3. Figure 27.6 shows the
first three energy levels of Er3+ ion in silica host glass.
Actually, each level shown in the diagram consists of a large
number of very closely spaced levels�but to keep the
analysis simple we have shown them as single levels. The
energy difference between E1 (the ground state) and E3

corresponds to a wavelength of about 980 nm and the energy
difference between E1 and E2 corresponds to a wavelength
of about 1530 nm; thus E3 � E1  1.3 eV and E2 � E1  0.81 eV.

E1

E2

E3

Amplified
signal

Energy level diagram

Pump: 980 nm

Signal: 1550 nm

Absorption of 980 nm pump

Population inversion between andE E2 1

Amplification of signal (at 1550 nm)

Ø

Ø

Fig. 27.6 The energy level diagram of the erbium atom in
host silica.

Now, when a laser beam corresponding to the wavelength
980 nm is passed through the erbium doped fiber, the erbium
atoms in the ground state E1 absorb this radiation and get
excited to the energy state E3. This laser beam is usually
referred to as a pump because it pumps the atoms to the
higher energy state E3. The atom in the energy state E3 makes
an almost immediate non-radiative transition to state E2; in a
non-radiative transition, a photon is not emitted�the energy
released could, for example, add to the vibrational energy of
the host medium, resulting in its heating. The state E2 is a
metastable state characterized by a long lifetime (~ few
milliseconds). Thus, although the erbium atom in the state E2

can undergo a spontaneous transition to the state E1;
however, since the lifetime is large the atom would sit in the
excited state for a long period of time before it makes a
transition to the state E1. Now if the pump power is high, the
rate at which the erbium atom goes over to the state E2 can
be so high that we may have a state of population inversion
between E1 and E2; i.e., the number of erbium atoms in the
state E2 is greater than that in E1. When this happens, a
signal beam at 1550 nm can get amplified by stimulated
emission of radiation�this is the underlying principle of
optical amplification which is nothing but light amplification

through stimulated emission of radiation (see Fig. 27.4).
Conversely, if the population of the level E2 is less than that
of the level E1 the number of stimulated absorptions will
exceed stimulated emission resulting in the attenuation of the
signal beam at 1550 nm. The variation of the pump and signal
powers with distance along the doped fiber is shown
schematically in Fig. 27.7. We notice that because of
absorption by erbium atoms, the pump power gets attenuated
as it propagates through the erbium doped fiber. Because of
this absorption, the erbium atoms are in a state of population
inversion and the signal at 1550 nm gets amplified. However,
as we propagate through the erbium doped fiber, the pump
power decreases and the erbium atoms are no more in a state
of population inversion and the signal starts attenuating
because of absorption by erbium atoms. Thus, for a given
pump power, there is always an optimum length of the erbium
doped fiber for which maximum amplification occurs. For a
typical erbium doped fiber, we may have

Er3+ concentration  7  1024 ions/m3, Pump power  5 mW,
and, the optimum length of the erbium doped fiber  7m

A typical gain spectrum of an EDFA (using a 50 mW pump
at 980 nm) is shown in Fig. 27.8(a). The gain is usually mea-
sured in dB which is defined as

Erbium doped fiber

(a)

(b)

(c)

Pump (980 nm)

Signal
(1550 nm)

Signal power

Pump power

Optimum length for maximum gain
z

Fig. 27.7 (a) The pump (corresponding to 980 nm wave-
length) and the signal (corresponding to 1550 nm
wavelength) propagates in the core of an erbium
doped fiber. (b) and (c) represent the schematic
variation of the pump and signal power as the two
beams propagate through the erbium doped fiber.
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Gain in dB = 10 log10 
P

P

output

input

The gain (corresponding to the optimum length) is usually
between 20 and 30 dB; a 20 dB gain implies a power
amplification of 100; and a 30 dB gain implies a power
amplification of 1,000. If the pump power is higher, the
optimum length and also the gain would be higher. The gain
spectrum can be made flat over a certain wavelength region
by a variety of techniques (e.g., by putting an appropriate
filter after the EDFA). Figure 27.8(b) shows an almost flat
gain (of about 28 dB) of an EDFA for wavelengths lying

between 1530 nm and 1560 nm; a 28 dB gain corresponds to
a power amplification of about 631. The wavelength region
1530 nm <  < 1560 nm is extremely important for optical
communications (see Chapter 28).*

We may mention here that there can be two laser diodes
providing the pump power for the erbium-doped fiber (see
Fig. 27.9). A commercially available EDFA, along with its main
characteristics, is shown in Fig. 27.10.

27.1.4 The Resonator

As mentioned earlier, a medium with population inversion is
capable of amplification but in order that it act as an
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Fig. 27.8 (a) The gain spectrum of a typical erbium doped fiber amplifier using a 50 mW pump at
980 nm (Adapted from Ref. 27.10). (b) Through varoius mechanisms, the gain spectrum of an EDFA can
be made almost flat. The above figure corresponds to an EDFA which has an almost flat gain (of
about 28 dB) in the wavelength region 1530 nm to 1560 nm (Adapted from Ref. 27.11).

* For more details on EDFA, you may look up Refs 27.7 and 27.8.
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oscillator, a part of the output energy must be fed back into
the system. Such a feedback is brought about by placing the
active medium between a pair of mirrors facing each other
(see Fig. 27.3). Such a system formed by a pair of mirrors is
referred to as a resonator, a slightly more detailed account of
which will be given in Sec. 27.5. The sides of the cavity are
usually open and hence such resonators are also referred to
as open resonators. A resonator is characterized by various
modes of oscillation with different field distributions and fre-
quencies*. One can visualise a mode as a wave having a
well-defined transverse amplitude distribution which forms a
standing wave pattern. The transverse intensity distribution
of the fundamental mode is usually a Gaussian [see Eq.
(27.13)]. Because of the open nature of the resonator, all
modes have a finite loss due to the diffraction spillover of
energy at the mirrors. In addition to this basic loss, scatter-
ing from the laser medium, absorption at the mirrors and
output coupling at the mirrors also contribute to the cavity
loss. In an actual laser, the modes that keep oscillating are

those for which the gain provided by the laser medium com-
pensates for the losses. When the laser oscillates in steady
state, the losses are exactly compensated for by the gain.
Since the gain provided by the medium depends on the ex-
tent of population inversion, for each mode there is a critical
value of population inversion (known as the threshold popu-
lation inversion) below which that particular mode would
cease to oscillate in the laser (see Sec. 27.6).

27.1.5 The Lasing Action

The onset of oscillations in a laser cavity can be understood
as follows: Through a pumping mechanism, one creates a
state of population inversion in the laser medium placed in-
side the resonator system. Thus the medium is prepared to
be in a state in which it is capable of coherent amplification
over a specified band of frequencies. The spontaneous emis-
sion occurring inside the resonator cavity excites the various
modes of the cavity. For a given population inversion, each
mode is characterised by a certain amplification coefficient
due to the gain and a certain attenuation coefficient due to
the losses in the cavity. The modes for which the losses in
the cavity exceed the gain die out. On the other hand, the
modes whose gain is higher than the losses get amplified by
drawing energy from the laser medium. The amplitude of the
mode increases rapidly until the upper level population
reaches a value when the gain equals the losses, and the
mode oscillates in steady state. When the laser oscillates in
the steady state, the losses are exactly compensated for by
the gain provided by the medium, and the wave coming out
of the laser can be represented as a continuous wave.

27.2 THE FIBER LASER

If we put the doped fiber between two mirrors (which act as
a resonator)�then with an appropriate pump we would have
a fiber laser (see Fig. 27.11). Indeed in 1961, Elias Snitzer
wrapped a flashlamp around a glass fiber (having a 300 m
core doped with Nd3+ ions clad in a lower index glass) and

*For more details, see Refs. 27.4 and 27.9.

LD
980 nm

LD
980 nm

WDM WDM

Er
3+

Fig. 27.9 Schematic set-up of a simple erbium doped
fiber amplifier with two laser diodes (LDs)
providing the pump power for the erbium-
doped fiber. [Figure adapted from http://www.
rpphotonics.com/erbium_doped_fiber_amplifiers.
html].

Erbium doped fiber amplifier (EDFA)

Fig. 27.10 An erbium doped optical fiber amplifier for
telecommunication  application developed
jointly by CGCRI, Kolkata and NeST, Cochin.
The main characteristics are: 32 wavelengths
can be simultaneously amplified in the wave-
length region from  1532 nm to  1565 nm. The
input power (of each channel) can be between
-4 dBm (  0.4 mW) to + 3 dBm ( 2 mW) and the
output power is always 18 dBm ( 63 mW) with
a gain flatness of  ± 0.5 dB [Photo courtesy Dr.
Shyamal Bhadra of CGCRI and Dr. Suresh Nair of
NeST]; see also Fig. 38 in the prelim page.

Doped
fiber

Dichroic
mirror

Laser
light

Lens

Dichroic
mirror

Pump
light

Lens

Fig. 27.11 Set-up of a simple fiber laser. Pump light is launched
from the left side through a dichroic mirror into the
core of the doped fiber. The generated laser light is
extracted on the right side. [Figure adapted from
http://www.rp-photonics.com/fiber_lasers.html].
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when suitable feedback was applied, the first fiber laser was
born [Ref. 27.12]. Thus the fiber laser was fabricated within a
year of the demonstration of the first ever laser by Theodore
Maiman. These days fiber lasers are commercially available
in the market which have applications in many diverse areas
because of their flexibility and high power levels. The lower
curve in Fig. 27.12 corresponds to the output spectrum of an
EDFA just before it starts lasing. As we increase the pump
power, the EDFA starts lasing and the spikes correspond to
the various resonator modes; the ends of the fiber act as the
resonator. A detailed theory of fiber lasers can be found in
Ref. 27.4.

Fiber lasers now find widespread applications in welding,
cutting, drilling and also in medical surgery. Figure 27.13
shows a 2 kW fiber laser mounted to a robotic system cut-
ting mild steel.

27.2.1 MOPA*

The term master oscillator power amplifier (MOPA) refers
to a configuration consisting of a master laser (or seed laser)
and an optical amplifier to boost the output power. A special
case is the master oscillator fiber amplifier (MOFA), where
the power amplifier is a fiber device. Although a MOPA
configuration is in principle more complex than a laser which
directly produces the required output power, the MOPA
concept can have the advantage of the ease to achieve the
required performance e.g., in terms of line-width, beam qua-
lity or pulse duration if the required power is very high. In the
MOPA configuration (shown in Fig. 27.14), the seed laser
consists of a 54.7 cm length of EDF (Erbium Doped Fiber)
comprising of two high reflective FBGs (Fiber Bragg
Gratings) written directly on the both ends of the EDF; we
had discussed FBGs in Sec. 15.6 and had shown that they
are characterized with high reflectivity at a particular
wavelength with a very small bandwidth; thus the two FBGs
form a resonator. The important characteristics of both the

* May be, skipped at the first reading; the writeup for this section along with Figs. 27.14�27.16 have been kindly provided by
Mr. Mrinmay Pal and Mr. Kamal Dasgupta, CGCRI, Kolkata.

WDM
Coupler

Optical
spectrum
analyzer

FBG I FBG II

EDF I
L = 54.7 cm

EDF II
L = 15 cm

Isolator

Amplifier
output

Laser
output

Fig. 27.14 Schematic of the Master Oscillator Power Amplifier (MOPA) configuration.

1519.11 nm

l0 (nm)

1541.22 nm

Fig. 27.12 The lower and upper curves show the output of
an EDFA just before and after it starts lasing.
(Photograph courtesy: Professor Thyagarajan and
Mr. Mandeep Singh).

Fig. 27.13 A 2 kW fiber laser mounted to a robotic sys-
tem cutting mild steel. [Photograph courtesy;
McGraw-Hill Digital Access Library.]
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gratings are given in the Table 27.1. The EDF has a 0.18 NA
and 500 ppm Er-ion in the fibre core. EDF in the cavity is
pumped through a WDM coupler by a 976 nm laser diode of
pump power  100 mW. Lasing emission starts at the peak
wavelength when the threshold is achieved. Since, there is a
small off-set in the peak wavelengths of the two FBGs, FBG-
II is slightly stretched to match the peak wavelength with
that of the  FBG-I. When these two wavelengths coincide,
laser emission is obtained from the FBG-II with maximum
output power and very good beam quality. In this MOPA,
seed laser at 1549.45 nm of output power 1mW is generated
(shown in Fig. 27.15). To amplify the laser output power, an
extra length of 15 m EDF is spliced to the cavity. This extra
EDF is pumped by the residual pump power of 976 nm laser
diode. An optical isolator is placed after the amplifier to
prevent the back reflection which otherwise degrades the
noise figure. In the output, 16.05 dBm ( 40 mW) of laser

power is obtained (shown in Fig. 27.16). This power can be
further enhanced by increasing the pump power.

Table 27.1 Charactersistics of the two Fiber Bragg

Gratings used in MOPA

Parameters FBG-I FBG-II

Peak wavelength (nm) 1549.456 1549.168

3-dB bandwidth 0.344nm 0.216nm

Reflectivity 99% 90%

27.3 THE RUBY LASER

In the first laser fabricated by Maiman in 1960 [Ref. 27.13],
the population inversion was achieved in the following
manner. It was made from a single cylindrical crystal of ruby
whose ends were flat, with one of the ends completely
silvered and the other partially silvered (see Figs 27.17
and 27.18). Ruby consists of Al2O3 with some of the

0.04 dBm

Marker Bandwidth
0.20 nm

MKR BW AMPLITUDE
–3.00 dB

*SENS –61 dBm
10.00 dB/DIV

1540 1550 1560

Wavelength (nm)

Fig. 27.15 Spectrum of  the seed laser. The peak wavelength is 1548.73 nm with peak power of  �0.05 dBm
and bandwidth of  0.225 nm. [Figure courtesy: Mr. Mrinmay Pal and Mr. Kamal Dasgupta, CGCRI,
Kolkata]

*

MKR #1 WVL 1548.5 nmRL0.00 dBm
SENS –74 dBm
10.00 dB/DIV

1500 1600
Wavelength (nm)

Fig. 27.16 Laser output spectrum from MOPA configuration.
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states in the band E2�this is known as optical pumping and
the photons which are absorbed by the chromium ions are
produced by the flash lamp (see Fig. 27.17). In either case, it
immediately makes a non-radiative transition (in a time ~
10�8 sec) to the metastable state M�in a non-radiative tran-
sition, the excess energy is absorbed by the lattice and does
not appear in the form of electromagnetic radiation. Also
since the state M has a very long life, the number of atoms in
this state keeps increasing and one may achieve population
inversion between states M and G. Thus we may have a larger
number of atoms in states M and G. Once population inver-
sion is achieved, light amplification can take place, with two
reflecting ends of the ruby rod forming a cavity. The ruby
laser is an example of a three level laser.

In the original set-up of Maiman, the flashlamp (filled with
xenon gas) was connected to a capacitor (see Fig. 27.17) which
was charged to a few kilovolts. The energy stored in the ca-
pacitor (~a few thousand joules) was discharged through the
xenon lamp in a few milliseconds. This results in a power
which is ~a few megawatts. Some of this energy is absorbed
by the chromium ions resulting in their excitation and subse-
quent lasing action.

27.3.1 Spiking in Ruby Laser

The flash operation of the lamp leads to a pulsed output of
the laser. Even in the short period of a few tens of
microseconds in which the ruby is lasing, one finds that the
emission is made up of spikes of high intensity emissions as
shown in Fig. 27.20. This phenomenon is known as spiking

and can be understood as follows. When the pump is

M

l = 6943 Ål ~ 6600 Å
l ~ 4000 Å

G

Pump
Photon

E1

E2

Fig. 27.19 The energy levels of the chromium ion; G and
M represent the ground and metastable states,
respectively.

aluminum atoms replaced by chromium.* The energy states
of the chromium ion are shown in Fig. 27.19. The chief
characteristic of the energy levels of a chromium ion is the
fact that the bands labeled E1 and E2 have a lifetime of
~ 10�8 s whereas the state marked M has a lifetime of ~ 3 
10�3 s �the lifetime represents the average time an atom
spends in an excited state before making a transition to a
lower energy state. A state characterized by such a long
lifetime is termed a metastable state.

Glass tube Flash lamp Ruby rod

Laser
beam

Partially
silvered

Fig. 27.17 The ruby laser.

Fig. 27.18 The first ruby laser. [Photograph in the public do-
main. A color photo appears as Fig. 39 in the prelim
pages].

The chromium ion in its ground state can absorb a photon
(whose wavelength is around 6600 Å) and make a transition
to one of the states in the band E1; it could also absorb a
photon of  ~ 4000 Å and make a transition to one of the

* The Al2O3 crystal which serves as a medium to suspend the chromium ions is known as the host crystal. The characteristics of the
host crystal affect the laser action and also the broadening of the energy levels of the activator atoms which in this case is chromium.
For a good lasing action, the ruby crystal consists of about 0.05% (by weight) of chromium; however, higher concentrations of
chromium have also been used. For a detailed discussions of host crystals, see Ref. 27.14.
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suddenly switched on to a value much above the threshold,
the population inversion builds up and crosses the threshold
value, as a consequence of which the photon number builds
up rapidly to a value much higher that the steady state value.
Since the photon number is higher than the steady state
value, the rate at which the upper level depletes (because of
stimulated transitions) is much higher than the pump rate.
Consequently, the inversion becomes below threshold and
the laser action ceases. Thus the emission stops for a few
microseconds, within which time the flashlamp again pumps
the ground state atoms to the upper level, and laser
oscillations begin again. This process repeats itself till the
flashlamp power falls below the threshold value and the
lasing action stops (see Fig. 27.15.20).

27.4 THE He�Ne LASER

We will now briefly discuss the He�Ne laser which was first
fabricated by Ali Javan and his coworkers at Bell Telephone
Laboratories in USA [see Ref. 27.15]. This was also the first
gas laser to be operated successfully.

The He�Ne laser consists of a mixture of He and Ne in a
ratio of about 10:1, placed inside a long narrow discharge
tube (see Figs 27.21 and 27.22). The pressure inside the tube
is about 1 Torr.* The gas system is enclosed between a pair
of plane mirrors or a pair of concave mirrors so that a resona-
tor system is formed. One of the mirrors is of very high
reflectivity while the other is partially transparent so that
energy may be coupled out of the system.

Mirror Mirror

He + Ne

Discharge
electrodes

Laser
beam

Fig. 27.21 The helium�neon laser.

Fig. 27.22 A helium-neon laser demonstration at the
Kastler-Brossel Laboratory at Univ. Paris 6. The
glowing ray in the middle is an electric dis-
charge producing light in much the same way
as a neon light. It is the gain medium through
which the laser passes,2not the laser beam itself,
which is visible there. The laser beam crosses
the air and marks a red point on the screen to the
right. [Photograph by Dr. David Monniaux; used
with kind permission of Dr. Monniaux. A color photo
appears as Fig. 37 in the prelim pages].

* 1 Torr = 1 mm of Hg=133 Pascal 133  10�5 N/m2; the unit �Torr� is named after Torricelli, the seventh-century Italian mathema-
tician who invented the mercury manometer.

The first few energy levels of He and Ne atoms are shown
in Fig. 27.23. When an electric discharge is passed through
the gas, the electrons traveling down the tube collide with
the He atoms and excite them (from the ground state F1) to
the levels marked F2 and F3. These levels are metastable, i.e.,
He atoms excited to these states stay in these levels for a
sufficiently long time before losing energy through colli-
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Fig. 27.20 The characteristic spiking of a ruby laser.
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Fig. 27.23 Relevant energy levels of helium and neon.
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sions. Through these collisions, the Ne atoms are excited to
the levels marked E4 and E6 which have nearly the same en-
ergy as the levels F2 and F3 of He. Thus, when the atoms in
levels F2 and F3 collide with unexcited Ne atoms, they raise
them to the levels E4 and E6 respectively. Thus, we have the
following two step process:

(a) Helium atom in the ground state F1 + collision with
electron

 Helium atom in the excited state (F2 or F3)
+ electron with lesser kinetic energy.

(b) The excited states of He (F2 or F3) are metastable*�
they would not readily lose energy through
spontaneous emissions (the radioactive life time of
these excited states would be about one hour). How-
ever, they can readily lose energy through collisions
with Ne atoms:

He atom in the excited state F3 + Ne atom in the ground
state

He atom in the ground state
+ Ne atom in the excited state E6.

Similarly,

He atom in the excited state F2 + Ne atom in the ground
state

He atom in the ground state
+ Ne atom in the excited state E4.

This results in a sizeable population of the levels E4 and
E6. The population in these levels happens to be much more
than those in the lower levels E3 and E5. Thus a state of
population inversion is achieved and any spontaneously
emitted photon can trigger laser action in any of the three
transitions shown in Fig. 27.23. The Ne atoms then drop
down from the lower laser levels to the level E2 through
spontaneous emission. From the level E2 the Ne atoms are
brought back to the ground state through collision with the
walls. The transition from E6 to E5, E4 to E3 and E6 to E3 re-
sult in the emission of radiation having wavelengths 3.39 m,
1.15 m and 6328 Å, respectively. It may be noted that the
laser transitions corresponding to 3.39 m and 1.15 m are
not in the visible region. The 6328 Å transition corresponds
to the well-known red light of the He�Ne laser. A proper se-
lection of different frequencies may be made by choosing
end mirrors having high reflectivity over only the required
wavelength range. The pressures of the two gases must be
so chosen that the condition of population inversion is not
quenched. Thus, the conditions must be such that there is

an efficient transfer of energy from He to Ne atoms. Also,
since the level marked E2 is metastable, electrons colliding
with atoms in level E2 may excite them to level E3, thus de-
creasing the population inversion. The tube containing the
gaseous mixture is also made narrow so that He atoms in
level E2 can get de-excited by collision with the walls of the
tube. Referring to Fig. 27.23, it may be mentioned that actu-
ally there are a large number of levels grouped around E2, E3,
E4, E5 and E6. Only those levels are shown in the figure
which correspond to the important laser transitions.**

Gas lasers are, in general, found to emit light, which is
more directional and more monochromatic. This is because
of the absence of such effects as crystalline imperfection,
thermal distortion and scattering, which are present in solid-
state lasers. Gas lasers are capable of operating continuously
without need for cooling.

27.5 OPTICAL

 RESONATORS

In Sec. 27.1, we had briefly discussed that a light beam pass-
ing through a suitable medium with population inversion may
be amplified. In order to construct an oscillator, which can
supply light energy and act as a source of light, one must
couple a part of the output back into the medium. This can
be achieved by placing the active medium between two mir-
rors which reflect most of the output energy back to the
system�see Fig. 27.3. Such a system of two mirrors repre-
sents a resonant cavity.

Now, in order to obtain an output beam, one of the mirrors
is made partially reflecting. Thus, imagine a wave that starts
from one of the mirrors and travels towards the other. In
passing through the active medium, it gets amplified. If the
second mirror is partially reflecting, then the wave is partially
transmitted and the rest reflected back towards the first
mirror. In traveling to the first mirror, it again gets amplified
and returns to the position it has started from. Thus, in
between the two mirrors, we have waves propagating along
both directions. For resonance, it is necessary that when a
wave returns after one round trip it is in phase with the
existing wave. For this to happen, the total phase change
suffered by the wave in one complete round trip must be an
integral multiple of 2  so that standing waves are formed in
the cavity. Thus if d represents the length of the cavity, then
we may write

2  2d = 2 m ; m = 1, 2, 3,��. (27.2)

* The spectroscopic states corresponding to the states F1, F2 and F3 are 11S0, 2
3S1 and 21S0, respectively.

** Further details on He�Ne Laser can be found in Refs. 27.16 and 27.17.
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where  is the wavelength of the radiation in the medium
enclosed by the cavity; if n0 represents the refractive index
of the medium enclosed by the cavity then

= 0

0n
(27.3)

If we put 0 = c/v, Eq.(27.2) gives

v = vm = m
c

n d2 0

(27.4)

which gives the discrete frequencies of oscillation of the
modes. If we assume

n0  1

(like in a He�Ne laser), Eq. (27.4) simplifies to

v = vm = m c

d2
(27.5)

Different values of m lead to different oscillation frequencies,
which constitute the longitudinal modes of the cavity; for
further details and for reasons why they are known as longi-
tudinal modes the reader is referred to any textbook on lasers*.
The frequency difference between adjacent longitudinal
modes is given by

v = c

d2
(27.6)

Returning to Eq. (27.4), we would like to mention that for
a practical optical resonator, m is a very large number.
For example, for an optical resonator of length d  60 cm op-
erating at an optical frequency of v  5  1014 Hz
(corresponding to   6000 Å), we obtain

m  
5 10 2 60

3 10

14

10
 = 2  106

Equation (27.4) tells us that the cavity will support only
those frequencies for which the round trip phase shift is an
integral multiple of 2 . We may mention here that an open
resonator consisting of two plane mirrors facing each other
is nothing but the Fabry�Perot interferometer discussed in
Chapter 16 the main difference is that in a Fabry�Perot inter-
ferometer, the spacing between the mirrors is small compared
to the transverse dimension of the mirrors while in an optical
resonator, the converse is true. Now, in Sec. 16.3, we had
shown that for a light beam incident normally on a Fabry�
Perot interferometer, transmission resonances occur when

 = 
4

0

d
= 2 m ; m = 1, 2, 3,��. (27.7)

where we have assumed n0 = 1 and cos = 1 since we have
assumed normal incidence. Comparing Eqs. (27.2) and (27.7)
we readily observe that transmission resonances occur for
the modes of the cavity.

Example 27.1 Consider a light beam of central frequency 

= 0 = 6  1014 Hz and a spectral width of 7000 MHz incident
normally on a resonator as shown in Fig. 27.24 with n0 = 1,

d = 10 cm. The spacing of two adjacent modes will be

v = 
c

d2
 = 1500 MHz (27.8)

Thus the output beam will have frequencies

v0 � 2 v, v0 � v, v0, v0 + v and v0 + 2 v (27.9)

corresponding to

m = 399998, 399999, 400000, 400001 and 400002 (27.10)

respectively. In the above example, if the reflectivity of one of the
mirrors R = 0.95 and if output power corresponding to one of the
modes is 1 mW, then the corresponding power inside the cavity
will be = 1 mW/(1�0.95) = 20 mW.

v v
d7000 MHz

1500 MHz

Fig. 27.24 A light beam of central frequency v = vH
= 6 10IR Hz and a spectral width of 7000 MHz
is incident normally on a resonator. The out-
put beam corresponds to the resonant
frequencies of the optical cavity.

Figure 27.25 shows the output of a typical multilon-
gitudinal mode (MLM) laser. The wavelength spacing of two
adjacent modes is about 0.005 m.

1.54 1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.591.55 1.56 1.57

( m)m ( m)m
l l

Fig. 27.25 The output of a single longitudinal mode laser
(a) and of a typical multilongitudinal mode
(MLM) laser. (b) (Adapted from Ref. 27.18).

*See, e.g., Refs. 27.4, 27.9, 27.14, 27.16 and 27.17.
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In obtaining Eq. (27.4) for the various oscillating frequen-
cies, we have assumed that a plane wave can propagate to
and fro unmodified inside the resonator. This would not be
true in practice since the mirrors of any practical resonator
system have finite transverse dimensions and hence only
that portion of the wave which strikes the mirror would get
reflected; the portion of the wave lying outside the trans-
verse dimension of the mirror would be lost from the
resonator. The wave which travels back to the first mirror has
now finite transverse dimensions, determined by the trans-
verse dimensions of the mirror. As we have seen in Chapters
18 and 20, a beam with a finite transverse dimension diffracts
as it propagates. Thus, when the beam comes back to the
first mirror, it would have a larger transverse dimension than
the mirror. Further, since only that portion of the wave that is
intercepted by the mirror would be reflected; the remaining
portion lying outside the mirror would be lost. This loss con-
stitutes a basic loss mechanism and is referred to as diffraction
loss.

If we consider a resonator made of mirrors of transverse
dimension a and separated by a distance d, then from Eq.
(18.26) of Chapter 18 we see that the wave after reflection at
one  of the mirrors undergoes diffraction divergence at an
angle ~ /a. The angle subtended by one of the mirrors at
the other mirror is ~ a/d. Hence for diffraction losses to be
low,

a
<< 

a

d

or

a

d

2

>> 1 (27.11)

The quantity a2/ d is known as the Fresnel number.
As an example, if the resonator mirrors have transverse di-
mension of 1 cm and are separated by 60 cm, then for a
wavelength of 5000 Å, we have

a

d

2

 330 >> 1

and hence the diffraction losses will be extremely small. The
losses in a resonator formed by the plane parallel mirrors
would be extremely sensitive to the parallelism of the two
mirrors because a slight angular misalignment would cause a
large amount of light energy to escape from the resonator.
The loss can be reduced by using spherical mirrors to form
the resonant cavity (see Fig. 27.26). The spherical mirrors
help in focusing which leads to much less loss due to dif-
fraction spill over.

We will show below that under certain conditions, a
Gaussian beam with the appropriate spot size will resonate

between the mirrors of the resonator system shown in
Fig. 27.26.

Fig. 27.26 A resonator consisting of two spherical mirrors.

We consider a general spherical resonator consisting of
two mirrors of radii of curvatures R1 and R2 separated by a
distance d (see Fig. 27.26). The radius of curvature is
assumed to be positive if the mirror is concave towards the
resonator and negative if it is convex towards the resonator.
We will now derive the condition for the resonator to be
stable or unstable.

We consider a Gaussian beam propagating along the
z-direction and whose amplitude distribution on the plane
z = 0 is given by

2 2

2
0

( , ,0) = exp
x y

u x y a
w

(27.12)

Thus the phase front is plane at z = 0. In Sec. 20.5 (and
Appendix D), we had shown that as the Gaussian beam
propagates along the z-direction, the intensity distribution
remains Gaussian:

I (x, y , z) = 
2 2

0

22

2( )
exp

( )
1

I x y

w zz
(27.13)

where w (z) = w0

2

1
z

and  = 
2 4

0

2

w
(27.14)

Also as the beam propagates, the radius of curvature of
the wavefront is given by (see Sec, 20.5 and Appendix D):

R(z) = z + 
z

(27.15)

Let the poles of the mirrors M1 and M2 be at z = z1 = � d1

and at z = z2 = +d2, respectively. We are assuming the origin
somewhere between the mirrors so that both d1 and d2 are



Lasers: An Introduction PUFIU
u

positive quantities. Thus, the distance between the two
mirrors is given by

d = d1 + d2

Now, for the Gaussian beam to resonate between the two
mirrors, the radii of the phase front (at the mirrors) should be
equal to the radii of curvatures of the mirrors:

� R1 = � d1 � 
1d

and R2 = d2 + 
2d

In such a case, the Gaussian beam would be normally
incident on the mirrors and hence will retrace its path to the
other mirror where it is normally incident. Thus such a
Gaussian beam can resonate in the resonator and would form
a mode of the resonator.

With the sign convention mentioned earlier, for the type
of mirrors shown in Fig. 27.26, both R1 and R2 are positive.
Thus,

 = d1(R1 � d1) = d2(R2 � d2)

If we use the relation d2 = d � d1, we would readily get

d1 = 2

1 2

( )

2

R d d

R R d
and d2 = 1

1 2

( )

2

R d d

R R d

We define

g1 = 1 � 
1

d

R
and g2 = 1 � 

2

d

R
(27.16)

From the above equations we may write R1 = 
11

d

g
and

R2 = 
21

d

g
 and we obtain

d1 = 
2 1

1 2 1 2

(1 )

2

g g d

g g g g
and d2 = 1 2

1 2 1 2

(1 )

2

g g d

g g g g
(22.17)

Thus,

= d1(R1 � d1) = 
2

1 2 1 2

2
1 2 1 2

(1 )

( 2 )

g g d g g

g g g g
(27.18)

Since = 
2 4

0

2

w
, we get for the spot size at the waist

w 2
0 = 1 2 1 2

1 2 1 2

(1 )
2

d
g g g g

g g g g (27.19)

For w0 to be real we must have 0  g1g2 1, or

0 
1 2

1 1
d d

R R
  1 (27.20)

where R1 and R2 are the radii of curvatures of the mirrors.
The above equation represents the stability condition for a

resonator consisting of two spherical mirrors. Figure 27.27
shows the stability diagram and the shaded region corre-
spond to stable resonator configurations.  Figure 27.28
shows different resonator configurations.

The spot sizes of the Gaussian beam at the two mirrors are
given by

w2(z1) = 2

1 1 2(1 )

gd

g g g
(27.21)

and

w2 (z2) = 1

2 1 2(1 )

gd

g g g
(27.22)

Since most of the energy in a Gaussian beam is contained
within a radius of about twice the beam width, if the trans-
verse dimensions of the mirrors are large compared to the
spot sizes at the mirrors, then most of the energy is reflected
back and the loss due to diffraction spill over from the edges
of the mirrors is small. It can be easily seen from Eqs. (27.21)
and (27.22) that when g1g2  0 or g1g2  1, w (z1) or w (z2) or
both become very large and our analysis would not remain
valid.

Example 27.2 We consider a simple resonator configuration

consisting of a plane mirror and a spherical mirror separated by a
distance d (see Fig. 27.29); indeed such a configuration is used to
produce a single transverse mode oscillation in a ruby laser. Thus
R1 =  and R2 = R giving g1 = 1 and g2 = 1 � d/R. Simple manipu-
lation of the above equation gives

w 2
0 = 1

d R

d
(27.23)

Thus,

R = d
2 4
0

2 2
1

w

d
(27.24)

Example 27.3 For a typical He-Ne laser ( = 0.6328 m)

we may have d = 50 cm and R = 100 cm (see Fig. 27.29), giving
g1 = 1 and g2 = 0.5, and the resonator configuration is well within
the shaded region of Fig. 27.27 and is very much stable. Further,
g1g2 = 0.5 and w0 = 0.32 mm. If we increase R to 200 cm, we will
get w0 = 0.38 mm. For R < d, w0 will become imaginary and the
resonator will become unstable.

Example 27.4 We next consider another resonator configuration

consisting of two spherical mirrors separated by a distance d = 150 cm
with R1 = 100 cm and R2 = 75 cm, giving g1 = � 0.5, g2 = �1.0 and
g1g2 = 0.5. Thus the values of g1 and g2 are such that the resonator
configuration is well within the shaded region of Fig. 27.27 and is very

much stable. For  = 1 m one can readily show that w0 = 0.31 mm.
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Example 27.5 When g1 = g2 = g, Eq. (27.19) simplifies to

w 2
0 = 

1

2 1

d

g

g
(27.25)

The symmetric concentric resonator will correspond to
R1 = R2 = d/2 so that the centers of curvature of both mirrors are at
the center [see Fig. 27.28]. Thus g1 = g2 = � 1 and g1g2 = 1 and w0

becomes zero! The symmetric confocal resonator will correspond
to R1 = R2 = d the symmetric confocal resonator R1 = R2 = d and
g1 = g2 = 0. Thus g1g2 = 0 and

w0 = 
d

(27.26)

Finally, for plane parallel mirrors R1 = R2 = , g1 = g2 = 1 and
w0 becomes infinity!!! All three configurations discussed above
(concentric, confocal and planar) lie on the boundary of the
stability diagram so that a small variation of the parameters can

make the system unstable and will have very large loss.

Fig. 27.27 The stability diagram for optical resonators. The
shaded region corresponds to stable configura-
tions.

Fig. 27.29 A simple resonator consisting of a plane mirror
and a concave mirror of radius R [see Eq.
(27.24)].

If one chooses a closed resonator system, then the
number of modes (which can get amplified and which can os-
cillate in a resonator of practical dimensions) becomes so
large that the output would be far from monochromatic. In
order to overcome this problem, one uses open resonators
where the number of modes (which can oscillate) is only a
few and even single mode oscillation is possible; further-
more, the open sides of the resonator can be used for optical
pumping as in ruby lasers. Because of the open nature of the
resonator, all modes have a finite loss due to the diffraction
spillover of energy at the mirrors. In addition to this basic
loss, scattering from the laser medium, absorption at the mir-
rors and output coupling at the mirrors also contribute to the
cavity loss. One can visualize a mode as a wave having a
well-defined transverse amplitude distribution which forms a
standing wave pattern. In an actual laser, the modes that
keep oscillating are those for which the gain provided by the
laser medium compensates for the losses. When the laser

Fig. 27.28 Different configurations of the optical resonator.
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where B12 is the coefficient of proportionality and is a char-
acteristic of the energy levels.

Let us now consider the reverse process namely the emis-
sion of radiation at a frequency  when the atom de-excites
from the level E2 to E1. As mentioned in Sec. 27.1, an atom in
an excited level can make a radiative transition to a lower
energy level either through spontaneous emission or through
stimulated emission. In spontaneous emission, the probabil-
ity per unit time of the atom making a downward transition is
independent of the energy density of the radiation field and
depends only on the levels involved in the transition. The
rate of spontaneous transitions (per unit volume) from level
E2 to E1 is proportional to N2 and thus

dN

d t
2 = � A21 N2 = � 

N

tsp

2 (27.29)

where A21 represents the coefficient of proportionality and is
known as the Einstein A coefficient and depends on the en-
ergy level pair and

tsp = 1

21A
(27.30)

represents the spontaneous emission lifetime of the upper
level. The solution of Eq. (27.29) is given by

N2(t) = N2(0) e
t
tsp (27.31)

implying that the population of level 2 reduces by 1/e in a
time tsp. For example, for the 2P  1S transition in hydrogen
atom A  6  108 s�1 giving a mean lifetime (  1/A) of about
1.6  10�9 s.* In the case of stimulated emission, the rate of
transition to the lower energy level is directly proportional to
the number of atoms in the upper energy level as well as to
the energy density of the radiation at the frequency . Thus,

Number of stimulated emissions
(per unit time per unit volume) = N2 B21 u( )

with B21 representing the corresponding proportionality con-
stant. The quantities A21, B12 and B21 are known as Einstein
coefficients and are determined by the atomic system. At
thermal equilibrium, the number of upward transitions must
be equal to the number of downward transitions. Thus, we
may write (at thermal equilibrium):

N1 B12 u( ) = N2 A21 + N2 B21 u( )
or

u( ) = 
A

N

N
B B

21

1

2
12 21

(27.32)

* See, e.g., Chapters 27 and 28 of Ref. 27.19.

oscillates in steady state, the losses are exactly compensated
for by the gain. Since the gain provided by the medium de-
pends on the extent of population inversion, for each mode
there is a critical value of population inversion (known as the
threshold population inversion) below which that particular
mode would cease to oscillate in the laser.

27.6 EINSTEIN COEFFICIENTS

AND OPTICAL

AMPLIFICATION

The consideration which led Einstein to the prediction of
stimulated emission was the description of thermodynamic
equilibrium between atoms and the radiation field. Consider
an atom having two states. Let N1 and N2 be the number
of atoms (per unit volume) in states 1 and 2, respectively; the
levels correspond to energies E1 and E2 (see Fig. 27.30). As
mentioned earlier, an atom in the lower energy level
can absorb radiation and get excited to the level E2. This ex-
citation process can occur only in the presence of radiation.
The rate of absorption depends on the density of radiation
at the particular frequency corresponding to the energy sepa-
ration of the two levels. Thus, if

E2 � E1 = (27.27)

E1

E2

N1

N2

Absorption

Emission

Fig. 27.30 E
I
 and E

P
 represent the energy levels of an

atom. N
I2

and N
P
 represent the number of atoms

(per unit volume) in the energy levels E
I
 and

E
P
, respectively.

then the absorption process depends on the energy density
of radiation at the frequency ; this energy density is de-
noted by u( ) and is defined such that

u( ) d = Radiation energy per unit volume within the fre-
quency interval  and  + d .

The rate of absorption is proportional to N1 and also to
u( ). Thus, we may write

Number of absorptions per
unit volume per unit time = N1 B12 u( ) (27.28)

LO 4
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Now according to a fundamental principle in thermodynam-
ics, at thermal equilibrium, we have the following expression
for the ratio of the populations of two levels:

N

N
1

2

= exp
E E

k TB

2 11

3
2

4

6
5  = exp

k TB

1

3
2

4

6
5 (27.33)

where kB (= 1.38  10�23 J/K) represents the Boltzmann con-
stant and T represents the absolute temperature. Equation
(27.23) is known as the Boltzmann�s law. Thus, we may write

u( ) = 
A

B e B
k TB

21

12 21
/ ( )

(27.34)

Now, at thermal equilibrium, the radiation energy density is
given by Planck�s law:

u( ) = 
3
0
3

2 3

1

1

n

c e
k TB/ ( )

(27.35)

where n0 represents the refractive index of the medium. Com-
paring Eqs. (27.34) and (27.35), we obtain*

B12 = B21 = B (say) (27.36)

and

A

B
21

21

= 
3
0
3

2 3

n

c
(27.37)

Notice that if we had not assumed the presence of stimulated
emission we would not have been able to arrive at an expres-
sion for u( ); Einstein in 1917 had predicted the existence of
stimulated emission which was later confirmed by rigorous
quantum theory. (see, e.g., Chapter 27 of Ref. 27.19).

It may be noted that at thermal equilibrium the ratio of the
number of spontaneous to stimulated emissions is given by

A

B u
21

21 ( )
= e k TB/ ( )

1 (27.38)

We may note the following two important points:

(a) For normal optical source, T ~ 103 K with   3 
1015 s�1 (corresponding to   6000 Å) we have

k TB

  
34 15 1

23 3

1 .054 10 (J s ) 3 10 s

1 .38 10 (J / K ) 10 (K )
  23

giving
A

B u
21

21 ( )
 = 1010

Thus, when the atoms are in thermal equilibrium, the
emission (at optical frequencies) is predominantly due
to spontaneous transitions and hence the emission
from ordinary light sources is incoherent.

(b) From Eq. (27.37), one can see that the coefficient B21

is inversely proportional to 3 implying that laser ac-
tion would become more difficult as we go to higher
frequencies.

27.6.1 Population Inversion

In the previous section, we had assumed that the atom
is capable of interacting with radiation of a particular fre-
quency . However, if one observes the spectrum of the
radiation due to spontaneous emissions from a collection of
atoms, one finds that the radiation is not monochromatic but
is spread over a certain frequency range. This would imply
that energy levels have widths and atoms can interact over a
range of frequencies. As an example, in Fig. 27.31, we have
shown that the 2P level of hydrogen atom has a certain
width E (= ) so that the atom can absorb/emit radiation
over a range of frequencies . For the 2P  1S transition

E  4  10�7 eV   6  108 s�1

Since 0  1.55  1016 s�1, we get

0

 4  10�8

1 S

2 P DE E E2 1– 10.2 eVª

D ª ¥E 4 10 eV–7

Fig. 27.31 The 2P level of hydrogen atom has a certain
width E (= ) so that the atom can absorb/
emit radiation over a range of frequencies .

Thus, in general,  << 0 showing the spectral purity of
the source. We introduce the normalized line shape function
g( ) such that

Number of spontaneous emissions/unit time/unit volume
so that the emitted frequency lies between  and  + d

= N2 A21 g( ) d

Similarly,

Number of stimulated emissions/unit time/unit volume
so that the emitted frequency lies between  and  + d

= N2 B21 u( ) g( ) d

Number of stimulated absorptions/unit time/unit volume
so that the absorbed frequency lies between  and  + d

= N1 B12 u( ) g( ) d

* If the levels 1 and 2 are g1 and g2 fold degenerate, then N1/N2 = (g1 / g2) exp ( /kBT), B12 = B21 (g2/g1) and A21/B21 = n3
0 

3/ 2c3.
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Thus, the total number of stimulated emissions/unit time/unit
volume will be given by

W21 = N2 B21

0

s u( ) g( ) d

= N2 
2 3

0
3 3

0

c

t n

u

sp

( )
s  g( ) d

where we have used Eqs. (27.37) and (27.30). Now, for a near
monochromatic radiation field (as it is indeed the case for the
laser), u( ) is very sharply peaked at a particular value of 
(say ) and in carrying out the above integration,
g( ) / 3 can be assumed to be essentially constant over the
region where u( ) is appreciable to give

W21  N
c

t n

g
U

sp

2

2 3

0
3 3

( )
(27.39)

where g( ) represents the value of the line�shape function
evaluated at the radiation frequency  and U represents the
energy density associated with the radiation field:*

U = u d( )

0

s (27.40)

Now the energy density U and the intensity I  are related
through the following equation** [sec See. 23.5]

I = v U = 
c

n0
 U (27.41)

where v (= c/n0) represents the velocity of the radiation field
in the medium, n0 being its refractive index. [The quantity I
represents energy per unit area per unit time, the MKS units
of I  would therefore be Jm�2s�1; we may mention that the
quantity U is denoted by u  in Sec. 23.5]. Thus, the total
number of stimulated emissions/unit time/unit volume will be
given by

W21 = N
c

t n

g
I

sp

2

2 2

0
2 3

( )
(27.42)

where we have dropped the prime on . Similarly, the number
of stimulated absorptions per unit time per unit volume
would be given by

W12 = N
c

t n

g
I

sp

1

2 2

0
2 3

( )
(27.43)

We next consider a collection of atoms and let a near mono-
chromatic beam of frequency  be propagating through it
along the z-direction. In order to obtain an expression for the
rate of change of the intensity of the beam as it propagates,
we consider two planes of area S perpendicular to the
z-direction at z and z + dz (see Fig. 27.32). The volume of the
medium between planes P1 and P2 is S dz and hence the num-
ber of stimulated absorptions per unit time is W12 S dz. Since
each photon has an energy , the energy absorbed per unit
time in the volume element S dz is

W12 S dz

P1

P2

z

dz

z dz+

z

Iw( )z

Iw( + )z dz

Fig. 27.32 Electromagnetic wave propagating along the
z-direction through a collection of atoms.

Similarly the corresponding energy gain (because of stimu-
lated emissions) is

W21 S dz

where we have neglected the radiation arising out of sponta-
neous emissions, because such radiations propagate in
random directions and are, in general, lost from the beam.
Thus, the net amount of energy absorbed per unit time in the
volume element S dz is

(W12 � W21) S dz

If I (z) represents the intensity of the beam in the plane P1,
then the total energy entering the volume element S dz per
unit time is

I (z)S

* The argument essentially implies

u( )  U (  � )

where ( � ) represents the Dirac�delta function.
** This is analogous to the equation J = v, where  represents the number of particles per unit volume (all propagating with velocity v)

and J represents the number of particles crossing a unit area perpendicular to the direction of propagation per unit time. This can be
easily seen from the fact that the number of particles crossing a unit area per unit time would be those contained in a cylinder of length
v units with unit area of crosssection.
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Similarly, if I (z + dz) represents the intensity in the plane P2 ,
then the total energy leaving the volume element per unit
time is

I (z + dz)S = 1  (z)S + 
I

z
dz S

Hence, the net amount of energy leaving the volume element
per unit time is

I

z
dz S

This must be equal to the negative of the energy absorbed
by the medium between z and z + dz. Thus,

I

z
S dz = � (W12 � W21) S dz

= � 
2 2

3
0
2

c

t nsp

 g( ) I  S dz (N1 � N2)

or

I

I

I

z
 = (27.44)

where

= 
2 2

2
0
2

c

t nsp

 (N2 � N1) g( ) (27.45)

Since the line shape function g( ) is very sharply peaked
(see Sec. 27.7), the function  is also a sharply peaked func-
tion. Equation (27.44) can be readily integrated to give*

I (z) = I  (0) e z (27.46)

Thus if N1 > N2,  is negative and the intensity of the beam
decreases exponentially with z; the intensity decreasing to
1/e of its value at z = 0 in a distance 1/| |. Hence at thermal
equilibrium, since the number of atoms in the lower level
is greater than that in the upper level, the intensity of the
beam (as it propagates through the medium) decreases expo-
nentially. On the other hand, if there are more atoms in the
higher energy level than in the lower level, (i.e., if there is a
population inversion) then  > 0 and there would be an expo-
nential increase in intensity of the beam; this is known as
light amplification.

27.6.2 Cavity Lifetime

In an actual laser system, the active medium (which is ca-
pable of amplification) is placed between a pair of mirrors
forming what is known as a resonator (see Sec. 27.5). In or-

der that oscillations be sustained in the cavity, it is essential
that the net losses suffered by the beam be compensated for
by the gain of the medium. At threshold and under steady
state operation, the two are exactly compensated. In order to
obtain the threshold condition, we first calculate the passive
cavity lifetime tc which is the time in which the energy W(t)
in the (passive) cavity decreases by a factor 1/e in the
absence of the amplifying medium:

W (t) = W (0) exp[�t/tc] (27.47)

Let d represent the length of the active medium. In one round
trip, the beam traverses a distance 2d through the active
medium and gets attenuated by a factor

R1R2 exp [�2 c d]

where R1 and R2 are the reflectivities of the mirrors at the two
ends of the resonator and the term exp [�2 c d] represents
losses caused by absorption, scattering, diffraction, etc.
Now the time taken for one round trip is given by

t = 
2

0

d

c n/

Thus

exp
( / )

1

3
2

4

6
5

2

0

d

c n tc
= R1R2 exp [�2 c d] (27.48)

giving the following expression for the passive cavity life-
time:

1

tc
= 

c n

d

/ 0

2
 [2 c d � ln (R1R2)] (27.49)

It can be easily seen that the cavity lifetime can also be
expressed as

tc = 
2

1

1

0n d

c
x

ln
%
'&

(
0)

(27.50)

where

x = 1 � R1 R2 e
�2 c d (27.51)

is the fractional loss per round trip.

27.6.3 Threshold Condition

Now, because of population inversion, in one round trip, the
beam gets amplified by a factor exp (2  d) and therefore, for
the laser oscillation to begin, we must have

22
1 2

cdde R R e  1 (27.52)

* In obtaining Eq. (27.47) from Eq. (27.44), it has been assumed that N1 � N2 (and hence ) is independent of I . Such an approximation
is valid only for small values of I . For intense light beams (when I  becomes very large) saturation of the levels set in and the
attenuation is linear rather than exponential (see, for example, Ref. 27.4, Secs. 4.2 and 4.3).
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which can be rewritten in the form

e
d

c n t

d

c

2

0

21

3
2

4

6
5exp

( / )
 1

or

 
1

0( / )c n tc
(27.53)

Substituting for   from Eq. (27.45), we get

(N2 � N1)
2

0
3

2 3

n t

c t g

sp

c ( )
(27.54)

The equality sign in the above equation gives the threshold
population inversion required for the oscillation of the laser.
Thus, for the frequency , the threshold population inver-
sion is given by

(N2 � N1 )th = 
2

0
3

2 3

n t

c t g

sp

c ( )
(27.55)

Now, as we will show in the next section, for a He�Ne laser,
g( ) is given by

g( ) d  = 2 2
1
2

D

ln%
'&

(
0)

 exp ln
( )

( )

1

3
2
2

4

6
5
5

4 2 0
2

2
D

d

(27.56)

where

D = 2 0 
2

2
2

1
2k T

Mc

B ln
%
'&

(
0)

(27.57)

represents the FWHM of the line; in Eq. (27.57), T represents
the absolute temperature of the gas and M represents the
mass of the atom responsible for the lasing transition (neon
in the case of a He�Ne laser). Equation (27.57) describes the
line-shape function due to Doppler effect and is shown in
Fig. 27.33. Figure 27.34 shows the actual spectrum of a
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Fig. 27.34 Spectrum of a helium neon laser showing the very high spectral purity intrinsic to most lasers. [Figure adapted
from http://en.wikipedia.org/wiki/Helium-neon_laser].

g(
)

w

w0

DwD

w

Fig. 27.33 The Gaussian line�shape function corresponding
to a He�Ne laser; h represents the FWHM and
usually / H <<< 1.
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helium neon laser; the figure shows the very high spectral
purity intrinsic to most lasers. We may note that

(a) The minimum threshold value of N2 � N1 would corre-
spond to the center of the line where g( ) is a maximum
and for the case of Doppler broadening the maximum
value is given by:

g( 0) = 
2 2

1
2

D

ln%
'&

(
0)

(27.58)

Thus, smaller values of D will give rise to smaller
threshold value of N2 � N1. Further, as the laser me-
dium is pumped harder and harder, the population
inversion between the two levels goes on increasing.
The mode that lies nearest to the resonance frequency
of the atomic system reaches threshold first and begins
to oscillate. As the pumping is further increased, the
nearby modes may also reach the threshold and start
oscillating.

(b) From Eq. (27.55) it also follows that for smaller values
of the threshold population inversion N2 � N1, one
must have a small value of tsp implying strongly al-
lowed transitions; however, for strongly allowed
transitions larger pumping power will be required. In
general, for a large value of tsp, population inversion is
more easily obtained.

Example 27.6 Typical parameters for a He�Ne
laser

We consider a He�Ne laser; we assume T  300° K. Thus, for the

0  6328 Å radiation

D = 
2 2

221

1
2ω

c

k T

M
B ln

1
32

4
65

= 
4 2 138 10 300 0 693

20 167 100

23 1

27

1
2

π

λ

× × × ×

× ×

1

3
2

4

6
5

− −

−

. ( ) ( .

. (

JK K)

kg)

 8230 MHz

implying

vD = 
Δω

π
D

2

 1310 MHz

where we have assumed

MNe  20 MH  3.34  10�26 kg

The frequency variation of g( ) is shown in Fig. 27.33. We may

mention that for 0 = 6328 Å

= 
2

0

π

λ

c
  2.98  1015 s�1

Thus,

Δω

ω
D  2.8  10�6

showing that the line�shape function is usually a very sharply

peaked function. Further,

g( 0) = 
2 2

1
2

Δω πD

ln%
'

(
0   1.1  10�10 s (27.59)

(In Sec. 27.7.4, we will show that for a He�Ne laser, the Doppler
broadening dominates over natural broadening and collisional broad-
ening). If we assume a cavity with the following values of various
parameters

d = 60 cm, n0  1, R1  1, R2  0.98, c  0

we would get

tc  20  10�8 s

Further, for the He�Ne laser

tsp  10�7 s ; n0  1; 0  6328 Å

giving [Using Eq. (27.55)]

(N2 � N1)th  1.5  108 cm �3

For a given value of (N2 � N1) (which is greater than the threshold
value), a typical gain curve ( ) (which has a bandwidth of about
1300 MHz) is shown in Fig. 27.35. The horizontal line represents

the value of

1

0( / )c n tc
(27.60)

n0
n

DnD = 1300 MHz

dn = 250 MHzg n( )

Fig. 27.35 For a given value of (N
P
 � N

I2
), a typical varia-

tion of the gain curve (v). The vertical lines
show the longitudinal modes of the cavity.

For n0  1, tc  2  10 �7 s the above value is  1.7  10 �4 cm �1. If
we assume a 60 cm long He�Ne laser then the longitudinal mode

spacing would be given by

v = 
c

d2
  250 MHz (27.61)

and, as shown in Fig. 27.35, there will be seven longitudinal modes
for which gain will exceed loss and which will oscillate. On the
other hand, if d was only 10 cm then

v would be 1500 MHz
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and we will have single mode oscillation; the value of tc and hence
the position of the horizontal line in Fig. 27.35 would have changed

slightly. More examples can be found in Ref. 27.24.

27.7 THE LINE-SHAPE

FUNCTION

Since the line-shape function g( ) determines the threshold
population inversion [see Eq. (27.55)], we digress here to dis-
cuss some of the typical forms of g( ) corresponding to
different conditions.

We first consider the Doppler broadening which is due to
the thermal motion of gas atoms. Also, in the He�Ne laser
(which is probably the most popular laser), the line broaden-
ing mechanism is mainly due to Doppler broadening.

27.7.1 Doppler Broadening

In astronomy, we can determine how fast the stars or galaxies
are moving (either directly away or directly towards us) by
measuring the Doppler shift of spectral lines. For v/c << 1,

 � 0 = 0 
v
c

; (27.62)

the + sign corresponds to when the source of light is moving
towards the observer and the � sign corresponds to when
the source of light is moving away from the observer [see
Sec. 32.2]. Thus when the star is moving away from the
observer, the measured frequency is slightly less than the
actual value leading to the well-known red shift of spectral
lines. Now, the probability that an atom has a z-component
of velocity lying between vz and vz + dvz is given by the
Maxwell distribution

P(vz)dvz = M

k T

M

k T
d

B

z

B
z

2 2

1 2 2%
'&

(
0)

%

'&
(

0)
/

exp
v

v (27.63)

where M is the mass of the atom and T the absolute
temperature of the gas. Notice that (using formula given in
Appendix A):

P z( )vs dvz = 1

as it indeed should be. Now, the probability g( ) d  that the
transition frequency lies between  and  + d  is equal to
the probability that the z-component of the velocity of the
atom lies between vz and vz + dvz where

vz = 
( )0

0

c (27.64)

Thus,

g( )d  = c M

k TB0

1 2

2

%
'&

(
0)
/

exp
( )1

3
2

4

6
5

Mc

k T
d

B

2
0
2

0
22

(27.65)

which corresponds to a Gaussian distribution. The line-
shape function is peaked at 0, and the FWHM is given by

D = 2 0 
2

2
2

1 2
k T

Mc

B ln

/
%
'&

(
0)

(27.66)

where the subscript D implies that we are considering Dop-
pler broadening. In terms of D Eq. (27.66) can be written as

g( )d  = 
2 2

1 2

D

ln
/

%
'&

(
0)

 exp ln
( )

( )

1

3
2
2

4

6
5
5

4 2 0
2

2
D

d

(27.67)

and it satisfies Eq. (27.73).

A typical plot of the Gaussian line�shape function corre-
sponding to the He�Ne laser is shown in Fig. 27.33.

27.7.2 Natural Broadening

The frequency spectrum associated with spontaneous emis-
sion is described by the Lorentzian line shape function

g( ) = 1

2

1

1

4
0
2

2

t

t
sp

sp

( )

(27.68)

where

tsp = 
1

21A
(27.69)

represents the spontaneous emission lifetime. The FWHM of
the Lorentzian is

= 1
t sp

 = A21 (27.70)

Thus, in terms of , Eq. (27.68) can be written in the form

g( ) = 
2

1

20
2

2

( )
%
'

(
0

(27.71)

giving

g( 0) = 2

( )
(27.72)

Further,

g ( )

0

s d  g ( )s d  = 1 (27.73)
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27.7.3 Collisional Broadening

In a gas, random collisions occur between the atoms. In such
a collision process, when the atoms are very close to each
other, the energy levels of the atoms change due to their
mutual interaction. This leads to a Lorentzian line shape func-
tion given by

g( ) = 0

0
2

0
2

1

1 ( )
(27.74)

where 0 represents the mean time between collisions;* The
FWHM will be

c = 
0

In a typical gas laser 0 ~ 10 �6 s giving

c  2 MHz
or

vc  0.3 MHz

For the He�Ne laser, the Doppler line width is about
1300 MHz (see Example 27.3); on the other hand, the natural
broadening is about 20 MHz and the collision broadening at
0.5 Torr is about 0.64 MHz. Thus, for He�Ne laser parameters,
the Doppler broadening dominates over natural broadening
and collision broadening.

The various line broadening mechanisms can be broadly
classified under homogeneous and inhomogeneous broad-
ening. Certain line broadening mechanisms, such as collision
broadening or natural broadening, act to broaden the
response of each atom in an identical fashion; such broaden-
ing mechanisms come under the class of homogeneous
broadening. On the other hand, Doppler broadening or
broadening produced due to local inhomogeneties in a crys-
tal lattice act to shift the central frequency of the response of
individual atoms by different amounts and thereby lead to an
overall broadening of the response of the atomic system.
Such a form of broadening is referred to as inhomogeneous
broadening. If the effects which cause the inhomogeneous
broadening are random in origin, then the broadened line is
Gaussian in shape. In contrast, homogeneous broadening in
general results in a Lorentzian line shape.

We return to Eq. (27.55) and notice that in order to have a
low threshold value of population inversion:

(a) The value of tc should be large, i.e., the losses in the
cavity must be small.

(b) The value of g( ) at the centre of the line is  0.64/
for a Lorentzian line and  0.94/  for a Gaussian line
(see Eqs. 27.72 and 27.58). Thus, smaller the value of 

(the width of the line), smaller will be the threshold
population inversion.

(c) Smaller values of tsp (i.e., strongly allowed transitions)
also lead to smaller values of threshold inversion. It
must be noted here that, for shorter relaxation rates,
larger pumping power is required to maintain a given
amount of population inversion. In general, population
inversion is more easily obtained on transitions which
have longer relaxation times.

(d) The value of g( ) at the center of the line is inversely
proportional to , which, for example, in the case
of Doppler broadening is proportional to  [see
Eq. (27.57)]. Thus, the threshold population inversion
increases approximately in proportion to the third
power of  (apart from the frequency dependence of
the other terms). Hence, it is much easier to obtain
laser action at infrared wavelengths than in the ultra-
violet region.

27.8 TYPICAL PARAMETERS

FOR A RUBY LASER

In order to get an idea of the magnitude of population inver-
sion required for oscillation, we consider a ruby laser
(see Sec. 27.3). Let us consider the laser to be oscillating at
the frequency corresponding to the peak of the emission line.
We assume a concentration of 0.05 % of Cr3+ ions in the
crystal; this corresponds to a population of

N = 1.6  1019 Cr3+ ions/cm3

For the case of ruby, the line is homogeneously broadened
and the value of g( ) at the peak of the line is 2/( ).
Hence the threshold population inversion density is

(N2 � N1 )th = 
2

0
3

2 3

n t

c t g

sp

c ( )

= 
4

2
0
3

0
3

n t

t

sp

c

(27.75)

where 0 is the free space wavelength, tsp is the spontaneous
relaxation time of the upper laser level and tc is the cavity
lifetime. For ruby laser transition, one has

0 = 6943 Å   2.715  1015 s�1

 9.4  1011 s�1;

tsp  3  10�3 s ; n0  1.76

* The derivation of Eq. (27.74) is given at many places, see, e.g. Sec. 8.8.2 of Ref. 27.20.
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where n0 (= 1.76) represents the refractive index of ruby. If we
assume a cavity length of 5 cm and a loss per round trip of
10 % then x = 0.1 and using Eq. (27.50) we get

tc  6  10�9 s

Substituting all these values in Eq. (27.75) we get for the
threshold population inversion density

(N2 � N1 )th  1.1  1017 Cr3+ ions/cm 3

Since the total density of Cr3+ ions in ruby is about 1.6 
1019 cm�3, the fractional excess population required is very
small.

We will next calculate approximately the minimum power
required to maintain population inversion. Since tsp repre-
sents the spontaneous relaxation time of the upper laser level,
the number of atoms decaying per unit time from the upper
laser level is approximately N2 /tsp. For each atom lifted to
level 2, one has to supply at least an amount of energy given
by hvp where vp represents the average pump frequency.
Hence in order to maintain N2 atoms in the level 2, the mini-
mum power P to be spent (per unit volume of the active
material) would be given by

P = 
N hv

t

p2

sp

(27.76)

Now, since (N2 � N1)th << N (where N represents the total
number of atoms per unit volume), we may write

N2  
N

2
(27.77)

Thus, the minimum pumping power per unit volume required
to maintain population inversion in a three level laser system
is

Pth  N
hv

t

p

2 sp

(27.78)

Taking the average pumping frequency as

vp  6.25  1014 Hz

(which is averaged over the green and violet absorption
bands), we obtain

Pth  
( . ) . .16 10

2

6 6 10 6 25 10

3 10

19 34 14

3

 1100 W/cm3

If we assume that the efficiency of the pumping source
is 25% and also that only 25% is absorbed in passage
through the ruby rod, then the electrical threshold power
comes out to be about 18 kW/cm3 of the active material. This

is consistent with the threshold powers determined experi-
mentally.

The threshold power calculation is particularly simple for
the ruby laser where only three levels are involved. In gen-
eral, in order to calculate the steady state population
difference between the actual levels involved in the laser
transition (for a given pumping rate) and also to know
whether an inversion of population is achievable in a transi-
tion and if so, what would be the minimum pump power
required to maintain a steady population inversion for con-
tinuous wave operation of the laser, it is necessary to solve
equations which govern the rate at which populations of
various levels change under the action of a pump and in the
presence of laser radiation. These equations are referred to
as �rate equations� and have been discussed at many places;
see, for example, Refs. 27.4, 27.9, 27.16 and 27.17. We should
mention that even for a three-level laser system the equation
N2 = N/2 [see Eq. (27.77)] is only approximately valid and in
order to obtain a more accurate expression, it is necessary to
solve the rate equations.

27.9 MONOCHROMATICITY OF

THE LASER BEAM

Figure 27.36 shows the various line widths associated with a
laser. The broad solid curve represents the spectral width
due to Doppler broadening of the laser medium. As an exam-
ple if we consider the He�Ne laser operating at 6328 Å, the
Doppler broadened linewidth is about 1,300 MHz. Inside the
broad curve are shown the cavity modes as sharp peaks. The
frequency separation between two adjacent cavity modes is
c /2d [see Eqs. (27.6) and (27.61)] which for a typical laser
cavity 60 cm long corresponds to 250 MHz; this is much less
than the Doppler width (see Example 27.3). As we have dis-

Doppler Width

Laser Output
Width of Fabry

Perot Resonance

Fig. 27.36 The solid curve represents a typical Doppler
broadened spectral line. The closely spaced cav-
ity modes are shown as narrow peaks inside the
curve. The sharp line represents the output of the
laser (Ref. 27.21).
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cussed earlier, the cavity modes are also broadened due to
the various losses in the cavity. Thus, for a 60 cm long cav-
ity specified by a fractional loss per round trip of 4  10�2, the
width of the cavity mode is about 1.5 MHz. This is much
smaller than the spacing between adjacent cavity modes.
When the losses in the cavity are compensated for by the
active medium placed inside the cavity, the resultant emission
becomes extremely narrow and is limited due to the presence
of spontaneous emission (which are random) and the fluctu-
ations in the resonator parameters. The ultimate linewidth of
an oscillating laser is determined solely by random sponta-
neous emissions can be shown to be given by*

( )sp  
v v

2

02 ( )p h

P

π Δ

where v0 is the frequency of oscillation, P° is the output
power and

vp = 1

2 tc

is known as the passive cavity linewidth, tc being the cavity
lifetime (see Sec. 27.6.2). The subscript �sp� refers to the fact
that the linewidth is due to spontaneous emissions. The de-
crease in ( )sp with increase in power output is due to the
fact that for a given mirror transmittance, increase in P° cor-
responds to increase in laser power inside the resonator
cavity, and this leads to the dominance of stimulated emis-
sions over spontaneous emission.

As a typical example, vp  1 MHz, P° = 1 mW = 10�3 W,
hv = 2  10�19 J (corresponding to the red region of the
spectrum) so that ( v)sp  10�3 Hz �an extremely small
quantity indeed! Thus, the ultimate monochromaticity is
determined by the spontaneous emissions occurring inside
the cavity because the radiation coming out due to
spontaneous emission is incoherent. However, in practice,
the monochromaticity is limited by external factors like
temperature fluctuations, mechanical vibrations of the optical
cavity, etc. For example, if we assume the oscillation
frequency of a mode is given by Eq. (27.4) then, the change
in frequency v caused by a change in length d is given by

v

v
= 

d

d

Thus for d  50 cm, if we assume a stability of d  1Å then
for v  5  1014 Hz

v  105 Hz

which is much much larger than ( v)sp. We may mention here
that v  105 Hz correspond to   10�6 Å . Indeed, for a

single moded He�Ne laser, we can have v  105 Hz. On the
other hand, for a multimoded He�Ne laser  ~ 0.02 Å imply-
ing a coherence length of about 20 cm.

27.10 RAMAN AMPLIFICATION

AND RAMAN LASER

We will first discuss the physics of Raman effect. When a
monochromatic light beam gets scattered by a transparent
substance, one of the following may occur:

(a) Over 99% of the scattered radiation has the same
frequency as that of the incident light beam; this is known
as Rayleigh scattering which has been discussed in
Sec. 7.6. The sky looks blue because of Rayleigh scattering
and the light that comes out from the side of the opti-
cal fiber (see Fig. 28.2) is also due to Rayleigh
scattering.

(b) A very small portion of the scattered radiation has a
frequency different from that of the incident beam �
this may arise due to one of the following three pro-
cesses:

(i) The incident radiation may lead to translatory
motion of the molecules � this would result in shift
of frequency which is usually very small and
difficult to measure. This is known as Brillouin

scattering**.
(ii) A part of the energy hv of the incident photon is

taken over by the molecule in the form of rotational
(or vibrational) energy and the scattered photon
has a smaller energy hv . This leads to what are

* See., e.g., Ref. 27.22.
** The shift in frequency is usually denoted by v  and is measured in wavenumber units which is defined later in this section. In

Brillouin scattering, v  ~  0.1 cm�1. On the other hand, in Raman scattering v  ~  104 cm�1.

Raman Scattering

Rotation-vibration energy
levels of the molecule

hv

Raman scattered
photon of lower
energy (Stokes
line)

E3
+

E1
Molecule in a

higher energy state
Molecule in the

ground state

+

Molecule in a
higher energy state

hv

+

(a)

(b)

Molecule in a
lower energy state

Raman scattered
photon of higher
energy (anti-
Stokes line)

E3

E1

+

hv ¢

hv ¢

hv E E¢= – ( – )3hv 1

hv E E¢= + ( – )3hv 1

Fig. 27.37 The generation of the Raman Stokes and the
Raman anti-Stokes lines.
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known as Raman � Stokes lines [see Figs. 27.37(a)
and 27.38].

(iii) On the other hand, the photon can undergo scat-
tering by a molecule which is already in an excited
state. The molecule can de-excite to one of the
lower energy states and in the process, the inci-
dent photon can take up this excess energy and
come out with a higher frequency. This leads to
what are known as Raman anti-Stokes lines [see
Figs. 27.37(b) and 27.38].

The difference energy, which is (hv � hv ) for the Raman
Stokes line and (hv  � hv) for the Raman anti-Stokes line,
would therefore correspond to the energy difference between
the rotational (or vibrational) energy levels of the molecule
and would therefore be a characteristic of the molecule itself.

The quantity (hv � hv ) or (hv  � hv) is usually referred to
as the �Raman-shift� [see Fig. 27.38] and is independent of
the frequency of the incident radiation. Through a careful
analysis of the Raman spectra, one can determine the struc-
ture of molecules; there lies the tremendous importance of

(or atomic) energy levels, these are usually denoted by the
symbol Tn:

Tn = 
E

hc
n

The photon�s energy is hv and therefore, in wavenumber
units

hv

hc
= v

c
 = 1

is just the inverse of the wavelength and is usually denoted
by the symbol v .Thus,

v = 1

Now, the energy levels of the hydrogen atom in
wavenumber units are given by

 Tn = 
E

hc
n  = � R

n
2

; n = 1,2,3,...

where R (  109678 cm�1) is known as the Rydberg constant

and n (=1,2,3,�) is the total quantum number of the state.
Thus corresponding to the n = 3 to n = 2 transition (one of
the lines of the Balmer series) we will get a photon of
wavenumber

v  = %
'

(
0R

1

9

1

4
 = 5
36

  109678  15233 cm�1

The inverse of the above number (  6.56  10�5 cm)
represents the wavelength of the emitted photon.

Figure 27.38 shows the intensity distribution of the Raman
spectrum of CCl4 molecule* when the incident radiation
corresponds to the Argon-ion laser line having a wavelength
of 5.145  10�5 cm; in wavenumber units the value is
19436.3 cm�1. The central peak in the figure corresponds to
this wavelength and is due to Rayleigh scattering. The
Raman shift for the Stokes lines is the same as for the anti-
Stokes lines although the latter is much weaker. This is due
to the fact that at room temperature, the number of molecules
in the ground state is much larger than the molecules present
in excited states. This leads to very low intensities of the
Raman anti-Stokes lines. The actual Raman spectrum of the
CCl4 molecule for the 4046Å lines of mercury lamp is shown
in Fig. 27.39. The photograph is adapted from the 1930 Nobel
lecture of C.V. Raman. It may be of interest to mention that
on 28th February 1928, K.S. Krishnan and C.V. Raman ob-
served �Raman effect� in several organic vapours like
pentane � which they called �the new scattered radiation�.
Raman made a newspaper announcement on 29th February
and on 8th March 1928, he communicated a paper entitled �A
Change of Wavelength in Light Scattering� to Nature; the

* The Raman spectrum from a mixture of hydrogen and deuterium molecules (when the mixture is illuminated by a laser beam at
l = 488 nm) is discussed in Ref. 27.23.

Rayleigh scattering
(no frequency change)

Raman Stokes lines

Raman Anti Stokes
lines
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0 500 Raman shift
hv (cm )–1

v (cm )–1

19436.3 cm–1

(corresponding to
= 514.5 nm)

l

Fig. 27.38 Raman spectra of CClR excited by 514.5 nm line
of an Argon-ion laser [Adapted from http://
epsc.wustl.edu/Haskin-group/Raman/faqs.htm]

Raman effect. The intensity distribution of a typical Raman
spectrum for the CCl4 molecule is shown in Fig. 27.38.

In spectroscopy, the energy levels of atoms or molecules
and also the energy of a photon are measured in wavenumber
units which are obtained by dividing the energy by hc, where
h (  6.56  10�27 ergs-s)  is the Planck�s constant and  c (  3

 1010 cm/s)  is the speed of light in free space � in spec-
troscopy everyone uses CGS units!! In the case of molecular
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Now, in fused silica, because of interaction between adja-
cent SiO2 molecules, the vibrational bands are very broad; this
leads to a very broad Raman shift lying between 430 cm�1 to
470 cm�1 [this corresponds to a Raman frequency shift between
13 and 14 THz (1 THz = 1012 Hz)]. Thus, if we have a pump laser
at 1450 nm ( v  = 6897 cm�1) then an incoming beam at 1550 nm
(v  = 6452 cm�1) will get amplified by stimulated Raman scatter-
ing [ v  = 445 cm�1] as shown in Fig. 27.40(a). In an actual
commercially available single mode fiber of length about 30 km,
one can obtain a Raman gain of about 15 dB (i.e., a power
amplification by a factor of about 30) by using a pump laser of
500 mW power.

Input signal
1550 nm

Raman amplified
signal at 1550 nm

Signal mode fiber

Pump laser at
1450 nm

(a)

Signal mode fiber
Raman amplified
signal at 1300 nm

Input signal
1300 nm Pump laser at

1230 nm
(b)

Fig. 27.40 Raman fiber amplifiers at 1550 nm and 1300 nm
wavelengths. [Figure adapted from Ref. 27.23].

Similarly, if we want to amplify an incoming beam at
1300 nm (v  = 7692 cm�1) then we must use a pump laser
at about 1230 nm wavelength (v  = 8130 cm�1) as shown in
Fig. 27.40(b). This is the great advantage of the Raman fiber
amplifier. One can amplify signal at any wavelength provided
we choose the pump laser frequency separated by about
13.5 THz (equivalent to a wavenumber shift of about
450 cm�1). On the other hand, as we may recall, in Erbium
Doped Fiber Amplifiers (EDFAs), one can amplify signals only
around 1550 nm wavelength; however, the laser power re-
quired is much smaller.

The above principle can be used to build the cascaded
Raman laser (see Fig. 27.41). The vertical bars represent
FBGs (Fiber Bragg Gratings) which are strongly reflecting at
the wavelengths written on the top (see Sec. 15.6.1 for a brief
account on FBGs). Thus, the input wavelength of 1100 nm

4
0

4
6

Å

4
3

5
8

Å

Fig. 27.39 The observed Raman spectra of CClR for the
4046Å and 4358Å lines of mercury lamp. The
photograph is adapted from the 1930 Nobel
lecture of C.V.Raman.

paper was published on 21st  April 1928. Although in the
paper, he acknowledged that the observations were made by
K.S.Krishnan and himself, the paper had Raman as the
author and therefore the phenomenon came to be known as
Raman effect although many scientists (particularly in India)
kept on referring it as the Raman�Krishnan effect. Subse-
quently, there were several papers written by Raman and
Krishnan. Raman got the Nobel prize in 1930 for �his work on
the scattering of light and for the discovery of the effect
named after him�. At about the same time, Landsberg and
Mandel shtam (in Russia) were also working on light scatter-
ing and according to Mandel shtam, they observed the
�Raman-lines� on February 21, 1928. But the results were pre-
sented in April 1928 and it was only on 6th May 1928 that
Landsberg and Mandel shtam communicated their results to
the journal Naturwissenschaften. But by then it was too late!
Much later, scientists from Russia kept calling Raman scat-
tering as Mandel shtam-Raman scattering. For a very nice
historical account of Raman effect, we refer the reader to a
book by G. Venkataraman on �Journey into Light: Life and
Science of C.V. Raman� published by Penguin Books (1994).

In 1958, thirty years after  the discovery of the Raman ef-
fect, Raman wrote an article on �Raman effect� in
Encyclopaedia Britannica. In that article, he wrote �The rota-
tions of the molecules in gases give more readily observable
effects, viz., a set of closely spaced but nevertheless discrete
Raman lines located on either side of the incident line. In liq-
uids, only a continuous wing or band is usually observed in
the same region, indicating that the rotations in a dense fluid
are hindered by molecular collisions. The internal vibrations
of the molecules, on the other hand, give rise in all cases to
large shifts of wave length. The Raman lines attributed to
them appear well separated from the parent line and are there-
fore easily identified and measured.�

In stimulated Raman emission, the radiation emitted in the
ordinary Raman effect is made to stimulate further Raman
emission. This can lead to what is usually referred to as the
�Raman amplification� of the beam.
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(  9091 cm�1) produces Raman scattered line at 1155 nm
(  8658 cm�1 implying a Raman shift of about 433 cm�1); this
resonates between two FBGs having peak reflectivity at
1155 nm. Now, this 1155 nm (  8658 cm�1) beam produces
Raman scattered line at 1218 nm (  8210 cm�1 implying a
Raman shift of about 448 cm�1) which resonates between two
FBGs having peak reflectivity at 1218 nm, etc. This way laser
output can be generated anywhere from 1100 � 1600 nm [see
Fig. 27.41].

Summary

u Laser is an acronym for Light Amplification by Stimulated

Emission of Radiation. The light emitted from a laser often
possesses some very special characteristics - some of these
are (a) Directionality: because of which a laser beam can be
focused to areas ~ few ( m)2 leading to applications in sur-
gery, material processing, compact discs, etc. (b) High power:

continuous wave lasers having power levels ~ 105 W and
pulsed lasers having a total energy ~ 50000 J have applica-
tions in welding, cutting, laser fusion, etc., and (c) Spectral

purity: Laser beams can have an extremely small spectral
width , because of which lasers find applications in holog-
raphy, optical communications, spectroscopy, etc.

u As put forward by Einstein, when an atom is in the excited
state then, in addition to the spontaneous emission, it can
also make a transition to a lower energy state by what is
known as stimulated emission in which an incident signal of
appropriate frequency triggers an atom in an excited state to
emit radiation - this results in the amplification of the inci-
dent beam. If we are able to create a state of population
inversion in which there are larger number of atoms in the
upper state then the number of stimulated emissions would
exceed the number of stimulated absorptions resulting in the
(optical) amplification of the beam.

u The three main components of any laser are

(i) The active medium which consists of a collection of
atoms, molecules or ions (in solid, liquid or gaseous
form), which is capable of amplifying light waves,

(ii) The pumping mechanism which allows us to obtain a
state of population inversion between a pair of energy
levels of the atomic system, and

(iii) The optical resonator, which provides the feedback.

u Through a pumping mechanism, one creates a state of

population inversion in the laser placed inside the resonator
system. The spontaneous emission occurring inside the
resonator cavity excites the various modes of the cavity. The
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Fig. 27.41 The cascaded  Raman laser;  output can be generated  anywhere from 1100 - 1600 nm. [Adapted from the lecture
notes of K. Rottwitt on "Raman Amplification using Optical Fibers", CGCRI, Kolkata].
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modes for which the gain is higher than the losses get
amplified by drawing energy from the laser medium. The
amplitude of the mode increases rapidly until the upper level
population reaches a value when the gain equals the losses

and the mode oscillates in steady state.

u Two mirrors facing each other form a resonant cavity. The

discrete frequencies of the resonator modes are given by v =

vm = m
c

d2
. Different values of m lead to different oscillation

frequencies, which constitute the longitudinal modes of the
cavity. For example, for an optical resonator of length d 
60 cm operating at an optical frequency of v  5  1014 Hz
(corresponding to   6000 Å), we obtain m  2  106.

u The first successful operation of a laser device (  ~
0.684 m) was demonstrated by Theodore Mainman in 1960
using a ruby crystal. Within a few months of the operation
of the ruby laser, Ali Javan and his associates constructed
the first gas laser (  ~ 0.633 m), namely the helium � neon
laser.

u If we put a fiber (doped with Erbium or Neodymium) be-
tween two mirrors (which act as a resonator)�then with an
appropriate pump we would have a fiber laser. In 1961, the
first fiber laser (barium crown glass doped with Nd+3 ions)
was fabricated by Elias Snitzer.

u The threshold population inversion required for the oscilla-

tion of the laser is given by

(N2 � N1)th = 
2 3

0

2 3 ( )

sp

c

n t

c t g

ω

π ω

where tsp is the spontaneous emission life time, tc is the pas-

sive cavity life time and g( ) is the line shape function. For

a He � Ne laser

g( ) = 
2 2

4 2

1
2 2

Δ Δω π

ω ω

ωD D

ln
exp ln

( )%
'

(
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−1

3
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where D = 2 0
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2k T

Mc

B ln
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(
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 represent the FWHM (Full

Width at Half Maximum) of the line kB the Boltzmann con-
stant, T represents the absolute temperature of the gas and
M represents the mass of the atom responsible for the lasing
transition (neon in the case of a He � Ne laser). Notice that
the minimum threshold value of N2 � N1  would correspond
to the center of the line where g( ) is a maximum and for
He � Ne laser at T = 300 K, D  8230 MHz giving g( 0)

 1.1  10�10 s. Assuming M = 20 MH  3.3  10�23 g, tc 

10�7 s  tsp, n0  1, we get (N2 � N1)th  4  108 cm�3.

Problems

27.1 Determine the MKS units of u( ), u , A and B.

[Ans. J s m�3; J m�3; s�1; m3 J�1 s�2].

27.2 For the 2P  1S transition in the hydrogen atom calculate
. Assuming the spontaneous emission lifetime of the 2P

state to be 1.6 ns, calculate the Einstein B coefficient. As-
sume n0  1.

[Ans:   1.5  1016 Hz,
B21  4.2  1020 m3 J�1 s�2]

27.3 (a) Consider a He�Ne laser with cavity life time tc  5 
10 �8 s. If R1 = 1.0 and R2 = 0.98, calculate the cavity
length d; assume n0  1.

(b) Calculate p and compare with the longitudinal mode
spacing .

[Ans: (a) d  15 cm
(b) p  3.2 MHz;   1 GHz]

27.4 In a typical He�Ne laser (  = 6328 Å) we have d  20 cm,
R1  R2  0.98, c  0, tsp  10�7 s, vD  1.3  109 Hz and
n0 = 1. Calculate tc and (N2 � N1 )th.

[Ans: 33 ns; 8.8  108 cm�3]

27.5 Consider the D1 line of Na (   5890 Å)

(a) The spontaneous emission lifetime tsp  16 ns. Calcu-
late N and N.

(b) Assume T = 500 K. Calculate D and D.

[kB  1.38  10�23 J/ K; MNa  23 MH ; MH  1.67 
10�27 kg].

[Ans: N  10�4 Å; D  0.02 Å]

27.6 In a CO2 laser ( 0  10.6 m), the laser transition occurs
between the vibrational states of the CO2 molecule. At
T  300 K, calculate the Doppler linewidth D and D

[MCO2 
 44 MH].

[Ans: D  53 MHz; D  0.2 Å]

27.7 Consider a light beam of all frequencies lying between
 = 0 = 5.0 1014 Hz to  = 5.00002  1014 Hz incident

normally on a resonator (see Fig. 27.24) with R = 0.95,
n0 = 1 and d = 25 cm. Calculate the frequencies (in the
above frequency range) and the corresponding mode num-
ber which will correspond to transmission resonances.

[Ans:  =  0 + 400 MHz (m = 833,334),

0 + 1000 MHz (m = 833,335)
and 0 + 1600 MHz (m = 833,336)]

27.8 Referring to Fig. 27.26, if d = 2R1 = 2R2 show that all rays
passing through the common center of curvature of the
mirrors will retrace their path and hence be trapped inside
the cavity.

27.9 Consider a He�Ne laser ( 0 = 0.6328 m) with
d = 30 cm, n0  1, R1  1, R2  0.99. Calculate the passive
cavity linewidth p and the passive cavity life time tc. You
may assume c  0.

[Ans: 0.8 MHz, 0.2 s]

27.10 (a) For the He�Ne laser described in Problem 27.9, if the
power level is 0.5 mW, calculate the ultimate linewidth
( )sp.

(b) Discuss the stability of the mirror position d to
obtain the ultimate linewidth.



�I have heard a ray of light laugh and sing. We may talk by light to any visible distance without

any conducting wire�.

�Alexander Graham Bell(1880)

[After succeeding in transmitting a

voice signal over 200 metres using light as the signal carrier.]
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Chapter
Twenty
Seven

Important MilestonesB

I841 Daniel Colladon demonstrates (in Geneva) light guiding in water jets.

1842 Jaques Babinet demonstrates (in Paris) light guiding in water jets and also in bent glass rods.

1854 John Tyndall demonstrates light guiding in water jets, duplicating but not acknowledging Babinet.

1880 Alexander Graham Bell invents Photophone in Washington.

1926 C.W. Hansell outlines the principles of fiber-optic imaging bundle.

1930 Heinrich Lamm, a medical student in Munich, first assembled a bundle of transparent fibers to transmit an image.

1954 van Heel in Netherlands and Hopkins and Kapany in UK suggest cladding will improve transmission charac-

teristics.

1960 Maiman fabricates the first laser.

1961 Snitzer publishes the theory of single mode fibers and also fabricates the first fiber laser (barium crown glass

doped with NdQC ions).

1966 Kao and Hockham predict that if it was possible to produce optical fibers with attenuation less than 20 dB/km,

it could compete effectively with the conventional communication systems.

* A nice historical account on the development of the optical fiber has been given in Ref. 28.1 � some of the dates given above are as

given in References. 28.1 and 28.2.
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Chapter
Twenty
Eight

LO 1: know about Graham Bell�s photophone experiment.

LO 2: understand light guidance by total internal reflection.

LO 3: describe various types of optical fibers.

LO 4: examine why glass fibers are used in sensors and telecommunications.

LO 5: know about coherent bundle and their various applications.

LO 6: understand numerical aperture of an optical fiber and its measurement.

LO 7: analyse attenuation and dispersion as important characteristics of an optical fiber.

LO 8: discuss multimode optical fibers and pulse dispersion.

LO 9: relate pulse dispersion to maximum bit rate estimation.

LO 10: express ray dispersion corresponding to power law profile.

LO 11: understand basic principles behind a few fiber optic sensors.
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Optics is today responsible for many revolutions in science

and technology. This has been primarily brought about by

the invention of the laser in 1960 and subsequent develop-

ment in realizing extremely wide variety of lasers. One of the

most important applications of lasers with its direct impact

on our lives has been in communications. Use of electromag-

netic waves in communication is quite old and the

development of the laser gave communication engineers with

a source of electromagnetic waves with extremely high fre-

quency compared to microwaves and millimeter waves. The

development of low loss optical fibers and also EDFAs

(Erbium Doped Fiber Amplifiers) led to  phenomenal growth

in fiber optic communication systems. Today more than 10

terabits of information can be transmitted per second

through one hair thin optical fiber; this amount of informa-

tion is equivalent to simultaneous transmission of about 150

million telephone calls - this is certainly one of the very im-

portant technological achievements of the 20th century. We

may also mention that in 1961, within one year of the demon-

stration of the first ever laser by Theodore Maiman, Elias

Snitzer fabricated the first fiber laser which is now finding

extremely important applications in many diverse areas from

defense to sensor physics.

In 2009, Professor Charles Kao was awarded half of the

Nobel Prize in Physics for "groundbreaking achievements

concerning the transmission of light in fibers for optical

communication". This is truly a very apt recognition of an

area which has touched almost everyone. While awarding the

Nobel Prize, the Chair of the Nobel Committee said

Charles Kao's discovery made in 1966 led to a

breakthrough in Fiber Optics�.. and revolution-

ized the way in which information can be

transmitted globally

The plan of this chapter is as follows:  Following a histori-

cal introduction, we will use ray optics to discuss the basic

principle of light guidance in an optical fiber. This will be

followed by a brief discussion in the use of optical fibers in

medical endoscopy and also use of plastic fibers in solar

lighting. The most important application of optical fibers is in

the field of telecommunications and the  two important char-

acteristics of the optical fiber (used in telecommunications)

are attenuation and pulse dispersion. We will discuss both

attenuation and dispersion in what are known as multimode

fibers. Although multimode fibers were being used in earlier

communication systems, today most fiber based communica-

tion systems use single mode fibers and to understand

propagation in single mode fibers, it is necessary to use the

concept of modes which we will discuss in the following two

chapters. Fiber amplifiers and fiber lasers have been briefly

discussed in the previous chapter. Other applications of the

optical fiber can be found in Refs. 28.3, 28.4, and 28.5.

PVFP �ywi2 rs��y�sgev
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Communication implies transfer of information from one

point to another. When it is required to transmit some

information such as speech, images, data, etc., over a

distance, one generally uses the concept of carrier wave

communication. In such a system, the information to be sent

modulates an electromagnetic wave such as radio wave, or

microwave which acts as a carrier. This modulated wave is

then transmitted to the receiver through a channel and the

receiver receives the modulated wave and demodulates it to

retrieve the signal. For example, the AM broadcast band

usually ranges from about 600 kHz to about 2 MHz (the

abbreviation AM wave stands for an amplitude modulated

wave). If we assume that the highest frequency associated

1970 Schulz, Keck and Maurer (at Corning Glass in USA) are successful in producing silica fibers with a loss of about

17 dB/km.

1970 Alferov in Leningrad and Panish and Hayashi at Bell Labs demonstrate room temperature operation of Semi-

conductor Lasers.

1975 Continuous-wave semiconductor laser operating at room temperature commercially available.

1975 Payne and Gambling show very small pulse dispersion at 1.27 m.

1976 Bell Labs test parabolic index fiber-optic communication system transmitting 45 Mbits/s.

1978 NTT (Japan) transmits 32 Mbits/s through 53 km of graded index fibers at 1.3 m.

1987 Payne, Mears and Reekie (at University of Southampton) and Desurvire, Becker and Simpson (at AT&T Bell

Laboratories) develop EDFAs (Erbium Doped Fiber Amplifiers) operating at 1.55 m.

1988 First transatlantic fiber cable, using single mode fibers was made operative at 1.3 m.

1996 Fujitsu, NTT Labs and Bell Labs independently report sending over 1 Tbit/s through one single mode fiber using

WDM techniques.

LO 1
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with music is about 20 kHz (= 0.02 MHz), then at a carrier

frequency of 1.5 MHz, the spectral range of the AM wave

must vary between 1.48 MHz to 1.52 MHz � a bandwidth of

40 kHz. Thus in the entire AM broadcast range from about

600 kHz to about 2 MHz, we can have at most about 30

channels; indeed we will have less number of channels if we

use more bandwidth for each channel. On the other hand, in

TV transmission since we have to scan pictures, more

information needs to be sent and we require much greater

bandwidth (about 5 MHz) � necessitating higher carrier

frequency; the carrier frequencies associated with the TV

broadcast range from about 500 MHz to about 900 MHz.

Since optical beams have frequencies in the range of

1014 � 1015 Hz, the use of such beams as carrier�would imply

a tremendously large increase in the information transmis-

sion capacity of the system as compared to systems

employing radio waves or microwaves. It is this large infor-

mation-carrying capacity of a light beam that has generated

interest amongst communication engineers to develop a com-

munication system using light waves as carrier waves.

The idea of using light waves for communication can be

traced to as far back as 1880 when Alexander Graham Bell

invented the photophone (see Fig. 28.1) shortly after he in-

vented the telephone* in 1876. In this remarkable experiment,

speech was transmitted by modulating a light beam, which

traveled through air to the receiver. The transmitter consisted

of a flexible reflecting diaphragm which could be activated by

sound and which was illuminated by sunlight. The reflected

light was collimated by a lens and the reflected beam was

received by a parabolic reflector placed at a distance. The

parabolic reflector concentrated the light on a

photoconducting selenium cell, which forms a part of a cir-

cuit with a battery and a receiving earphone. Sound waves

present in the vicinity of the diaphragm vibrate the dia-

phragm which leads to a consequent variation of the light

reflected by the diaphragm. The variation of the light falling

on the selenium cell changes the electrical conductivity of

the cell, which in turn changes the current in the electrical

circuit. This changing current reproduces the sound on the

earphone. To quote from http://en.wikipedia.org/wiki/

Photophone:

The photophone was invented jointly by Alexander

Graham Bell and his assistant Charles Sumner

Tainter on February 19, 1880. � The device

allowed for the transmission of sound on a beam of

light. On June 3, 1880, Bell transmitted the first

wireless telephone message on his newly-invented

photophone. The photophone used crystalline se-

lenium cells as the receiver. This material�s

electrical resistance varies inversely with the illu-

mination, i.e., its resistance is higher when it is in

the dark, and lower when it is lighted. The idea of

the photophone was thus to modulate a light

beam: the resulting varying illumination of the re-

ceiver would induce corresponding varying

resistance in the  selenium cells, which could be

used by a telephone to regenerate the sounds cap-

tured at the receiver. The modulation of the light

beam was done by a  vibrating mirror: a thin mir-

ror would alternate between concave and convex

forms, thus focussing or dispersing the light from

the light source. The photophone functioned simi-

larly to the telephone, except the photophone used

light as a means of projecting the information,

while the telephone relied on electricity.

To quote from Ref. 28.7

In 1880 he (Graham Bell) produced his �photophone�

which to the end of his life, he insisted was �... the

greatest invention I have ever made, greater than

the telephone ...� Unlike the telephone, it had no

commercial value.

Fig. 28.1 The diagram of the Photophone; this has been
taken from Alexander Graham Bell�s 1880 paper
�On the Production and Reproduction of Sound
by Light�, American Journal of Sciences, Third
Series, vol. XX, #118, pp. 305�324, October 1880.
In this system, sunlight was modulated by a
diaphragm and transmitted through a distance of
about 200 meters in air to a receiver containing
a selenium cell connected to the earphone.
Figure adapted from http://en.wikipedia.org/
wiki/Image:Photophone.jpg

* Actually according to recent reports (published in June 2002), an Italian immigrant Antonio Meucci, was the inventor of telephone.

According to this report, Antonio Meucci demonstrated his "teletrfono" in New York in 1860. Alexander Graham Bell took out his

patent 16 years later; some details can be found in http://en.wikipedia.org/wiki/Antonio_Meucci.
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The modern impetus for telecommunications with carrier

waves at optical frequencies owes its origin to the discovery

of the laser in 1960. Earlier, there was no suitable light source

available that could reliably be used as the information car-

rier.  We may mention here that although incoherent sources

like light emitting diodes (LED) are also often used in

present-day optical communication systems, it was discov-

ery of the laser, which triggered serious interest, for the first

time, in the development of optical communication systems.

The advent of lasers thus immediately triggered a great deal

of investigations aimed at examining the possibility of build-

ing optical analogues of conventional communication

systems. The very first such modern optical communication

experiments involved laser beam transmission through the

atmosphere. However, it was soon realized that laser beams

could not be sent in open atmosphere through reasonably

long distances to carry signals unlike, for example, microwave

or radio systems operating at longer wavelengths. This is

due to the fact that a light beam (of wavelength about 1 m)

is severely attenuated and distorted owing to scattering and

absorption by the atmosphere. Thus for reliable light wave

communication, it would be necessary to provide a transmis-

sion medium that can protect the signal carrying light beam

from the vagaries of the terrestrial atmosphere. This guiding

medium is the optical fiber (having core diameters from a few

m to about 50 m) which guides the light beam from one

place to another (see Fig. 28.2); the guidance of the light

beam through the optical fiber takes place because of the

phenomenon of total internal reflection which we will discuss

in the following section.

Fig. 28.2 A step index multimode fiber illuminated by
HeNe laser with bright output light spot. The
light coming out of the optical fiber is primarily
due to Rayleigh scattering. A color photograph
appears as Fig. 43 in the prelim pages of the
book. [The fiber was produced at the fiber draw-
ing facility at CGCRI, Kolkata. Photograph
courtesy Dr Shyamal Bhadra and Ms. Atasi Pal].

In addition to the capability of carrying a huge amount of

information, optical fibers fabricated with recently developed

technology are characterized by extremely low losses  (< 0.25

dB/km) as a consequence of which the distance between two

consecutive repeaters (used for amplifying and reshaping the

attenuated signals) could be as large as 250 km; the attenua-

tion is usually measured in dB (decibels) - we will define this

in Sec. 28.8. We may mention here that a loss of 0.25 dB/km

would imply that the power will decrease by a factor of 2 in

traversing a distance of  about 12 km. It was the important

paper of Kao and Hockham in 1966 (Ref. 28.9) that suggested

that optical fibers based on silica glass could provide the

necessary transmission medium if metallic and other impuri-

ties could be removed. To quote from the 1966 paper of  Kao

and Hockham:

Theoretical and experimental studies indicate that

a cladded glass fiber with a core diameter of about

0 and an overall diameter of about 1000 0 repre-

sents a possible practical optical waveguide with

important potential as a new form of communica-

tion medium. The refractive index of the core needs

to be about 1% higher than that of cladding. How-

ever, the attenuation should be around 20 dB/km

which is much higher than the lower limit of loss

figure imposed by fundamental mechanisms.

Indeed this 1966 paper triggered the beginning of serious

research in purifying silica and developing low loss optical

fibers. In 1970,  Kapron, Keck and Maurer (at Corning Glass

in USA) were successful in producing silica fibers with a loss

of about 17 dB/km at a wavelength of 0.633  m (Ref. 28.10).

Since then, the technology has advanced with tremendous

rapidity. By 1985 glass fibers were routinely produced with

extremely low losses (< 0.25 dB/km). Figure 28.3 shows the

basic layout of a typical optical fiber communication system.

It consists of a transmitter which could be either an LED or a

laser diode, the light from which is coupled into an optical

fiber. Along the path of the optical fiber, there are splices

which are permanent joints between sections of fibers and

also repeaters which boost the signal and correct any distor-

tion that may have accumulated along the path of the fiber.

At the end of the link, the light is detected by a photodetec-

tor and electronically processed to retrieve the signal.
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Fig. 28.3 Typical optical fiber communication system. It
consists of a transmitter T which could be either
a laser diode or an LED, the light from which is
coupled into an optical fiber by means of a
connector C. Along the path of the optical fiber,
there are splices (denoted by S) which are
permanent joints between sections of fibers and
also repeaters (denoted by R) which boost the
signal and correct any distortion that may have
accumulated along the path of the fiber. At the
end of the link, a coupler C is used to couple the
light to a photo detector D and processed to
retrieve the signal.
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At the heart of an optical communication system is the

optical fiber that acts as the transmission channel carrying the

light beam loaded with information; and as mentioned earlier,

the guidance of the light beam (through the optical fiber) takes

place because of the phenomenon of total internal reflection

(often abbreviated as TIR). Now, if a ray is incident at the in-

terface of a rarer medium (n2 < n1) then the ray will bend away

from the normal [see Fig. 28.4(b)]. The angle of incidence, for

which the angle of refraction is 90°, is known as the critical

angle and is denoted by c. Thus, when

1 = c = sin�1 n

n
2

1

%
'&

(
0)

(28.1)

the angle of refraction 2 = 90°. When the angle of incidence

exceeds the critical angle (i.e., when 1 > c), there is no re-

fracted ray and we have what is known as total internal

reflection see Fig. 28.4(b). We may mention here that for

1 > c , energy does penetrate into the rarer medium result-

ing in what is known as an evanescent wave (see Sec. 24.6);

however, the reflection coefficient is unity.

Fig. 28.4 (a) For a ray incident on a rarer medium (nP < nI),
the angle of refraction is greater than the angle
of incidence, (b) if the angle of incidence is
greater than critical angle, it will undergo total
internal reflection.

Example 28.1 For the glass-air interface, n1 = 1.5, n2 = 1.0

and the critical angle is given by c  41.8°. On the other hand,

for the glass-water interface, 1 21.5, 1.33n n  and c  62.7°

The phenomenon of total internal reflection can be very

easily demonstrated through a simple experiment as shown

in Fig.28.5. When the angle of incidence (at the water-air in-

terface) exceeds the critical angle (  62.7°), the laser beam

undergoes total internal reflection. If you do this experiment

in your laboratory, then in order to see the laser beam propa-

gating through water, you may have to add a few drops of

milk (see Fig. 12 in the prelim pages).

Although the phenomenon of total internal reflection has

been known for hundreds of years, light guidance by total

internal reflection was first carried out by Daniel Colladon in

1841as shown in Fig. 28.6; light undergoes total internal re-

flection at the water-air interface and travels along the curved

path of water emanating from an illuminated vessel. Later

Colladon wrote:

Fig. 28.5 Total internal reflection of a laser beam at the
interface of water and air. Photograph adapted
from http://ecphysicsworld.blogspot.in/2012/
03/total-internal-reflection.html. A color photo
appears as Fig. 41 in the prelim pages.

Fig. 28.6 Diagram from Colladon�s original paper;
adapted from http://en.wikipedia.org/wiki/
Optical_fiber#mediaviewer/File:Danielcoll-
adon%27s_lightfountain_or_Light-fountain_
or_Lightpipe,LaNature(magazine,1884.JPG

LO 2
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I managed to illuminate the interior of a stream in

a dark space. I have discovered that this strange

arrangement offers �.. one of the most beautiful,

and most curious experiments that one can perform

in a course on Optics.

As mentioned by Johnston (Ref. 28.16) "For many de-

cades, the pioneers of fiber optics development erroneously

assigned the credit for light guiding phenomenon to the char-

ismatic Tyndall instead of to Daniel Colladon". For a nice

historical survey, we refer the reader to Ref. 28.1 and 28.17.

PVFR �ri2 y��sgev2 psfi�

Figure 28.8(a) shows an optical fiber, which consists of a (cy-

lindrical) central dielectric core cladded by a material of

slightly lower refractive index. The corresponding refractive

index distribution (in the transverse direction) is given by

n n r a

n r a

=

=

1

2

0 < <

>

@
A
B

(28.2)

where n1 and n2(< n1) represent respectively the refractive

indices of core and cladding and a represents the radius of

the core. We define a parameter  through the following

equations:
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When n1  n2, i.e., when << 1 (as is true for most silica fi-

bers)
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For a typical (multimoded) fiber, a  25 m, n2  1.45 (pure

silica) and   0.01 giving a core index of n1  1.465. The

cladding is usually pure silica while the core is usually silica

doped with germanium; doping by germanium results in an

increase of refractive index.

Now, for a ray entering the fiber, if the angle of incidence

(at the core-cladding interface) is greater than the critical

angle c, then the ray will undergo TIR at that interface. Thus,

for TIR to occur at the core-cladding interface.

 > c = sin�1 n

n
2

1

%
'&

(
0)

(28.5)

Further, because of the cylindrical symmetry in the fiber

structure, the ray will suffer TIR at the lower interface also

and therefore get guided through the core by repeated total

internal reflections.  Even for a bent fiber, light guidance can

occur through multiple total internal reflections.  Figure 28.2

shows the actual guidance of a light beam as it propagates

through a long optical fiber; in the photograph, the light

emerging from the side of the fiber is mainly due to Rayleigh

scattering, the same phenomenon that is responsible for the

blue color of the sky and the red color of the rising or the

setting sun (see Sec. 7.6).

Core (   = )n n1

Cladding (   = )n n2

Cladding

Air

Air

i

q
f

n0

A B

z

C

Cladding

Cladding

Core

(a)

(b)

(c)

1

n2

n1

n r( )

Core
Cladding

Air

a b r

2 125 mb ª m

Fig. 28.7 (a) A glass fiber consists of a cylindrical central core cladded by a material of slightly lower refractive index.
(b) Light rays incident on the core-cladding interface at an angle greater than the critical angle are trapped
inside the core of the fiber. (c) Refractive index distribution for a step-index fiber. The diameter of the cladding
is almost always 125 m. For multimode fibers, the core diameters are usually in the range of 25�50 m. For
single-mode fibers, the core diameters are usually between 5 and 10 m.
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The necessity of a cladded fiber (Fig.28.7) rather than a bare

fiber i.e., without a cladding, was felt because of the fact that

for transmission of light from one place to another, the fiber

must be supported, and supporting structures may consider-

ably distort the fiber thereby affecting the guidance of the

light wave.  This can be avoided by choosing a sufficiently

thick cladding.  Further, in a fiber bundle, in the absence of

the cladding, light can leak through from one fiber to another.

The idea of adding a second layer of glass (namely, the clad-

ding) came in 1955 from Hopkins and Kapany  in the UK;

however, during that time the use of optical fibers was mainly

in image transmission rather than in communications. Indeed,

the early pioneering works in fiber optics (in the 50's) were

by Hopkins and Kapany in the UK and by Van Heel in Hol-

land; these works led to the use of the fiber in optical devices

(see Ref. 28.18).

The retina of the human eye consists of a large number of

rods and cones which have the same kind of structure as the

optical fiber, i.e. they consist of dielectric cylindrical rods

surrounded by another dielectric of slightly lower refractive

index (see Fig. 28.8). The core diameters are in the range of a

few microns.  The light absorbed in these "light guides" gen-

erates electrical signals, which are then transmitted to the

brain through various nerves.

Fig. 28.8 The rods and cones of the eye; adapted from http://www.biologymad.com/NervousSystem/eyenotes.htm and
http://faculty.washington.edu/chudler/retina.html.

Fig. 28.9 (a) Commercially available 8 mm/11 mm solid core end glow cable with black PVC jacket. Ref.  http://
www.aliexpress.com. (b) Wrapped in optical fiber carrying sunlight from the roof. The person shown is Jeff Muhs who at
Oak Ridge National Laboratory developed this solar technology; adapted from http://web.ornl.gov/info/ornlreview/
v38_1_05/article09.shtml; see Fig. 44 in the prelim pages.
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28.4.1 Large Diameter Plastic Fibers

We should mention that Plastic Optical Fibers [see

Fig. 28.9(a)] are now extensively used by many companies in

bringing in sunlight inside the rooms. In Fig. 28.9(b) we have

shown Jeff Muhs surrounded by the light carrying optical fi-

ber, who at Oak Ridge National Laboratory developed this

solar technology. Figure 28.10(a) shows  the basic layout for

using sunlight to illuminate dark rooms, Fig. 28.10(b) shows

the Patent describing light gathering techniques and

Fig. 28.10(c) shows the light collectors on the roof top. Fig-

ure 28.11 (a) shows optical fibers bringing sunlight to rooms.

Unfortunately the losses in such fibers are quite high;

Fig. 28.11(b) shows that there is 50% decrease in power in

traversing a distance of only about 50 feet. Quoting from an

article entitled Letting The Sunshine In (Ref. 28.19)

A rooftop hybrid solar lighting (HSL) system col-

lects, concentrates, and transmits sunlight through

optical fibers to hybrid light fixtures inside the

building, which also contain high-efficiency fluo-

rescent lighting. When the transmitted sunlight

completely illuminates each room, the electric

lights stay off�

Plastic Optical Fibers are briefly discussed in Sec. 28.13.
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In telecommunications and also in sensors, one always uses

glass fibers. Why  glass fibers? Quoting Professor W.A. Gam-

bling, who is one of the pioneers in the field of fiber optics

(Ref. 28.2): We note that glass is a remarkable material

which has been in use in 'pure' form for at least 9000 years.

The compositions remained relatively unchanged for millen-

nia and its uses have been widespread. The three most

important properties of glass which makes it of unprec-

edented value are:

1. First, there is a wide range of accessible temperatures

where its viscosity is variable and can be well con-

trolled unlike most materials, like water and metals

which remain liquid until they are cooled down to their

freezing temperatures and then suddenly become solid.

Glass, on the other hand, does not solidify at a discrete

freezing temperature but gradually becomes stiffer and

stiffer and eventually becoming hard. In the transition

region, it can be easily drawn into a thin fiber.

Fig. 28.10 (a) Basic layout for using sunlight to illuminate dark rooms. (b) An US Patent describing light gathering tech-
niques. (c) collectors on the roof top. Diagrams adapted from http://www.parans.com/eng/sp3; used with permission.
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2. The second most important property is that highly pure

silica is characterized with extremely low-loss; i.e., it is

highly transparent. Today in most commercially avail-

able silica fibers 96% of the power gets transmitted

after propagating through 1 km of optical fiber. This in-

deed represents a truly remarkable achievement.

3. The third most remarkable property is the intrinsic

strength of glass. Its strength is about 2000,000 lb/in2

so that a glass fiber of the type used in the telephone

network and having a diameter (125 m) of twice the

thickness of a human hair, can support a load of 40 lb.

(a)

(b)

Fig. 28.11 (a) Optical fibers transporting sunlight into a
room. (b) Typical loss curve for a plastic optical fiber. Dia-
grams adapted from
http://parans.com/eng/sp3/L1_luminaire.cfm; used with
permission.
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If a large number of fibers are put together, it forms what is

known as a bundle.  If the fibers are not aligned, i.e. they are

all jumbled up, the bundle is said to form an incoherent

bundle. However, if the fibers are aligned properly, i.e., if the

relative positions of the fibers in the input and output ends

are the same, the bundle is said to form a coherent bundle.

Now, if a particular fiber is illuminated at one of its ends, then

there will be a bright spot at the other end of the same fiber;

thus a coherent bundle will transmit the image from one end

to another (see Fig. 28.12).

Fig. 28.12 A bundle of aligned fibers. A bright (or dark)
spot at the input end of the fiber produces a
bright (or dark) spot at the output end.  Thus an
image will be transmitted (in the form of
bright and dark spots) through a bundle of
aligned fibers.

In an incoherent bundle the output image will be

scrambled.  Incoherent bundles are used in illumination such

as in traffic lights or road signs. They can also be used as

cold light sources by removing the heat radiation using a fil-

ter at the input to the fiber bundle. The light emerging from

the bundle is also free from UV radiation and is suitable for

illumination of paintings etc. in museums.

(a) (b)

Fig. 28.13 (a) An optical fiber medical probe called an
endoscope enables doctors to examine the
inner parts of the human body, and (b) a
stomach ulcer as seen through an endoscope;
see the coloured photograph which appears as
Fig. 45 in the prelim pages. [Photographs
courtesy United States Information Service,
New Delhi].

Perhaps the most important application of a coherent

bundle is in a fiber-optic endoscope where it can be put in-

side a human body and the interior of the body can be

viewed from outside, thus avoiding invasive surgery. In an

endoscope; for illuminating the portion that is to be seen, the

bundle is enclosed in a sheath of fibers which carry light
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from outside to the interior of the body (see Fig.28.13). An

incoherent bundle is often used to illuminate the area under

investigation. And, a coherent bundle is used to transmit

back the image. A typical fiber endoscope can have about

10000 fibers which would form a bundle of about 10 mm in

diameter. Fiber endoscopes have revolutionized medical di-

agnosis and treatment.

PVFU �ri2 x�wi�sgev
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We return to Fig. 28.7 and consider a ray which is incident on

the entrance aperture of the fiber making an angle i with the

z-axis. Let the refracted ray make an angle  with the axis.

Assuming the outside medium to have a refractive index n0

(which for most practical cases is unity), we get

sin

sin

i

θ
= 
n

n
1

2

 (28.6)

Obviously if this ray has to suffer total internal reflection

at the core-cladding interface,

sin (= cos ) > 
n

n
2

1

(28.7)

or

2

2

1

sin 1
n

n
 

2 2
1 2

2
0

sin
n n

i
n

(28.8)

In most cases, the outside medium is air, i.e.; no = 1, and

therefore the maximum value of sin i for a ray to be guided is

given by

sin im = 
2 2 2 2
1 2 1 2

2 2
1 2

if 1

1 if 1

n n n n

n n

(28.9)

Thus, if a cone of light is incident on one end of the fiber, it

will be guided through it provided the semi-angle of the cone

is less than im. The quantity sin im is known as the numerical

aperture (NA) of the fiber and is a measure of the light gath-

ering power of the fiber.

In almost all practical situations, 2 2
1 2 1n n , and therefore

one defines the numerical aperture of the fiber by the

following equation:

2 2
1 2NA n n (28.10)

Example 28.2 For a typical step index (multimode) fiber

with n1  1.45 and   0.01, we get

sin im  0.205  im  12°

Now, in a short length of an optical fiber, if all rays between

i = 0 and im are launched, then, the light coming out of the fiber will

also appear as a cone of semi-angle im emanating from the fiber end.

If we now allow this beam to fall normally on a white paper

(see Fig. 28.14) and measure its diameter we can easily calculate the

NA of the fiber. This allows us to estimate the NA of the optical

fiber by a very simple experiment. The procedure is as follows:

D

z

Multimode fiber

Fig. 28.14 Measurement of the diameter D of the spot on
a screen placed at a far-field distance z from the
output end of a multimode fiber can be used to
measure the NA of the fiber.

Several concentric circles of increasing radii-say, starting from

0.5 cm to 1.5 cm, are drawn on a small paper screen and the screen

is positioned in the far-field such that the axis of the fiber, at the

output end, passes perpendicularly through the center of these

circles on the screen. The fiber end, which is mounted on a XYZ-

stack, is moved slightly towards or away from the screen so that

one of the circles just circumscribes the far-field radiation spot. The

distance z between the fiber-end and the screen, and the diameter D

of the coinciding circle are measured accurately. The NA is calcu-

lated using the following equation:

NA = sin im = sin tan
−1

2

D

z
(28.11)
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Attenuation and pulse dispersion represent the two most

important characteristics of an optical fiber that determine the

information carrying capacity of a fiber-optic communication

system. Obviously, lower the attenuation (and similarly lower

the dispersion), greater will be the required repeater spacing

and therefore lower will be the cost of the communication

system. Pulse dispersion will be discussed in the next sec-

tion, while in this section, we will briefly discuss the various

attenuation mechanisms in an optical fiber.

The attenuation of an optical beam is usually measured in

decibels (dB). If an input power Pinput results in an output

power Poutput, then the loss in decibels is given by

Loss (dB) = 10 log10

P

P

input

output

%

'&
(

0)
(28.12)
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Thus,

if the output power is the same as the input power,

then the loss is = 0 dB;

if the output power is only one tenth of the input

power, then the loss is = 10 dB;

if the output power is only one hundredth of the in-

put power, then the loss is = 20 dB; and

if the output power is only one thousandth of the

input power, then the loss is = 30 dB; etc.

Also, in a typical  fiber amplifier,  a power amplification by

a factor of 100 implies a power gain of  20 dB  and a gain of

30 dB would imply a power amplification by a factor of 1000..

Example 28.3 If the output power is only half of the input

power, then the loss is 10 log 2 3 dB.  On the other hand, if 96%

of the light is transmitted through the fiber, the loss is

1
10 log 0.18 dB.

0.96

Figure 28.15 shows the variation of the loss coefficient (i.e., loss

per kilometer length of the optical fiber) as a function of wave-

length of a typical silica optical fiber. One can notice two important

low loss windows around 1.3 m and 1.55 m. Typical losses at

these wavelengths are about 0.8 dB/km and about 0.25 dB/km re-

spectively. This is the reason why most fiber optic systems

operate either in the 1.3 m window or 1.55 m window. The lat-

ter window has become extremely important in view of the

availability of optical amplifiers (see Sec. 27.1.3).

The losses are caused due to various mechanisms such

as Rayleigh scattering, absorption due to metallic impurities

and water and due to intrinsic absorption of silica molecule

itself. Even 1 ppm (part per million) of iron can cause a loss

of about 0.68 dB/km around 1.1 m. Similarly a concentration

of 1 ppm of OH� ion can cause a loss of 4 dB/km at 1.38 m.

This shows the level of purity that is required to achieve very

low loss optical fibers. In Fig. 28.15 the two peaks are due to

traces of water (and other impurities) present in the fiber.

However, with sophisticated fabrication techniques it is pos-

sible to remove these impurities and one can obtain very low

loss in the wavelength region 1.2 m to 1.65 m� see

Fig. 28.16.

Fig. 28.15 Typical wavelength dependence of loss for a
silica fiber. The peaks in the attenuation curve
in the wavelength regions 1.25 m and 1.40 m
are due to the presence of minute amount of
water and other impurities. Notice that the
lowest loss occurs at 1.55 µm [adapted from
Ref. 28.14].

Fig. 28.16 Using sophisticated techniques, it is possible to remove the trace amount of water and other impurities. The
loss is less than 0.4 dB/km in the entire wavelength range from 1250 nm to 1600 nm. The diagram corresponds
to the fiber fabricated by Sterlite Industries at Aurangabad and  provided to the author by Mr S Bhatia of
Sterlite Industries.
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It is possible to demonstrate the wavelength dependence

of Rayleigh scattering using a long optical fiber. White light

(from a lamp such as a tungsten halogen lamp) is coupled

into approximately a 1 km long multimode optical fiber and

we look into the output and notice the color of the light.

Next, we cut the fiber leaving about 1 m from the input end of

the fiber and repeat the experiment with this 1 m of the fiber.

One would see that in the former case, the emerging light

looks reddish while in the latter case it looks white. This dif-

ference is due to the decrease of loss with increase in

wavelength due to Rayleigh scattering; light wavelengths

toward the blue region have suffered greater scattering out

of the fiber than those of the red region. Thus although at

the input end all wavelengths are coupled, there is more

power in the red part at the output giving it a reddish color.

Example 28.4 Calculation of losses using dB scale become

very easy. For example, if we have a 40 km fiber link (with a loss

of 0.4 dB/km) having 3 connectors in its path and if each connector

has a loss of 1.8 dB then the total loss will be 0.4 dB/km  40 km

+ 3  1.8 dB = 21.4 dB.

Example 28.5 Let us assume that the power of a 5 mW

laser beam decreases to 30 W after traversing through 40 km

of an optical fiber. The attenuation of the fiber is therefore

1 5 mW
10 log 0.56dB/km

40 0.03mW

It is often very convenient to measure the power level in dBm

which is defined as

P(dBm) = 10 log10 P(mW) (28.13)

Thus,

1 mW 0 dBm 1 W 30 dBm

1 W �30 dBm 1 nW �60 dBm

Similarly, 0.2 W = 200 mW   23 dBm. Using the dBm scale

Eq. (28.12) becomes

Loss(dB) = Pinput(dBm) � Poutput(dBm) (28.14)

or,

Poutput(dBm) = Pinput(dBm) � Loss (dB) (28.15)

Because of the above equation, calculation of power levels losses

using the dBm scale become very easy as shown in the examples

below.

Example 28.6 Consider a 5mW laser beam passing through

a 40 km fiber link of loss 0.5 dB/km. The total loss is 20 dB. Since

the input power of 5mW corresponds to 6.99 dBm, the power at

the output would be � 13.01 dBm which is equal to 0.05 mW.

Between a source and a detector, let Ns represent the number of

splices and in each splice, the loss (in dB) is ls; a splice represents

the point where one fiber is joined to the other.

Similarly, let Nc represent the number of connectors and in each

connector the loss (in dB) is lc. Thus, the power received (in dBm)

at the detector is given by

Preceived = Pinput � Nclc � Nsls � L

where  = Fiber loss (in dB/km) and L presents the fiber length in

km.

Example 28.7 Let Pinput = 1 mW  0 dBm; lc = 1 dB/connec-

tor, Nc = 2; ls = 0.5 dB/splice, Ns = 4;  = 0.5 dB/km, L = 40 km. Thus

the loss in the fiber is 20 dB and

Preceived = 0 � 2 � 2 � 20 = �24 dBm   4 W

Example 28.8 In a typical optical communication system,

let the available components be as given below:

Laser Output 1.5 mW (  1.76 dBm)

Laser Wavelength 1300 nm

Fiber Loss 1 dB/km

Required Length of Link 20 km

Loss in fiber 20  1 dB/km 20 dB

Splice (every 5 km) Loss 0.5 dB/splice

Splices 3  0.5 dB 1.5 dB

Laser to Fiber Coupling Loss 8 dB

Fiber to Detector Loss 2 dB

Total Loss 31.5 dB

Since the laser power is 1.76 dBm, the power available at the

detector is �29.74 dBm (  1.06  W) and if the Detector  Margin is

� 40 dBm [i.e., the detector is able to detect �40 dBm of power

(= 0.1 W)], then there is an excess power margin of 10.26 dBm

at the detector. The above represents a typical power budget calcu-

lation.

28.8.1 The Attenuation Limit

Let Np represent the minimum number of photons (per bit of

information) required for the pulse to be detected. The corre-

sponding average optical power received by the detector

would be given by

Pmin = 
1

2
 Np BE (28.16)

where E = hv = energy of each photon and B represents the

bit rate (the number of bits per second) in the communication

system. Typically Np  1000 and B  2.5 G bits/s.

Example 28.9 For 0 = 1.3 m,

34 8
19

6
0

6.626 10 3 10
1.53 10 J

1.3 10

hc
E h

9 19
min

1 1
1000 2.5 10 1.53 10

2 2

0.19

pP N BE

Thus if Pin  1 mW (= 0 dBm) then the system can have a maxi-

mum loss of about 37 dB. If we neglect the splice and connector

losses then for a fiber loss of  = 0.5 dB/km, Lmax  70 km.
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Example 28.10 For 0  155 m,

34 8
19

6
0

6.626 10 3 10
1.28 10 J

1.55 10

hc
E h

9 19
min

1 1
1000 2.5 10 1.28 10

2 2

0.16

pP N BE

Thus if Pin  1 mW (= 0 dBm) then the system can have a maxi-

mum loss of about 38 dB. If we neglect the splice and connector

losses then for a fiber loss of  = 0.2 dB/km, Lmax  190 km.
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In the next section we will discuss broadening of an optical

pulse as it passes through a multimode optical fiber. The

obvious question that arises is as to what do we understand

by a multimode optical fiber? The concept of modes will be

discussed in the following two chapters - it will suffice here

to say that if we solve Maxwell's equations for an optical

waveguide then we obtain discrete modes which represent

transverse field distributions that suffer only a phase

change as they propagate through the waveguide along z.

Each mode has a specific transverse field distribution and

also a specific group velocity [see Sections 29.5 and 30.5].

Now, while studying the propagation of rays in an optical

fiber [see Fig. 28.7(b)], we had assumed that all rays charac-

terized by c will be guided through the optical fiber. In

Sec. 29.3, we will show by solving Maxwell�s equations that

each mode of the waveguide may be assumed to correspond

to a �discrete� value of  which would imply discrete ray

paths; thus, qualitatively speaking, we may say that only

discrete values of  are possible. When the number of such

discrete ray paths becomes very large, we have what is

known as a multimode fiber and may assume the validity of

geometrical optics.

28.9.1 Power Law Profile

A broad class of multimoded graded index fibers can be

described by the following refractive index distribution (see

Fig. 28.17):

n2(r) = n2
1 1 2

q
r

a
;  0 < r < a (28.17)

= n2
2 = n2

1(1 � 2 );     r > a

where r corresponds to a cylindrical radial coordinate, n1

represents the value of the refractive index on the axis (i.e., at

r = 0), n2 represents the refractive index of the cladding and

a represents the radius of the core. Equation (28.17)

describes what is usually referred to as a power law profile or

a q-profile; q = 1, q = 2 and q = correspond to the linear,

parabolic, and step index profiles, respectively (see Fig.

28.17).  One defines the normalized waveguide parameter

V = 2 2
1 2

0

2
a n n (28.18)

Fig. 28.17 Power law profiles for the refractive index
distribution given by (Eq. 28.17).

where 0 is the wavelength of operation. The waveguide pa-

rameter V is an extremely important parameter describing the

optical fiber and will be discussed in the next 2 chapters. The

total number of modes in a highly multimoded graded index

optical fiber characterized by Eq. (28.17) are approximately

given by (see, e.g., Ref. 28.15).

N 
2

2(2 )

q
V

q
(28.19)

Thus, a parabolic index fiber (q = 2) with V = 10 will sup-

port approximately 25 modes. Similarly, a step index fiber

(q = ) with V = 10 will support approximately 50 modes.

When the fiber supports such a large number of modes, the

fiber is said to be a multimoded fiber. Each mode travels with

a slightly different group velocity leading to what is known

as intermodal dispersion. In References 28.15 and 28.22 it

has been shown that for a highly multimoded graded index

optical fiber, the value of intermodal dispersion is very nearly

the same as obtained from ray analysis. Thus in highly

multimoded fibers (V  10), one is justified to use the ray-

optics result for intermodal (or ray) dispersion. We may

note that for a given fiber (i.e., for given values of n1, n2 and

a), the value of V depends on the operating wavelength 0;

thus, as the wavelength becomes smaller the value of  V (and

hence the number of modes) increases and in the limit of the
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operating wavelength becoming very small, we have the geo-

metric optics limit. Also, as will be shown in Chapter 30, a

step index fiber (q = ) has only one mode when V < 2.4048

and we have what is known as a single mode fiber. For a

given step index fiber, the wavelength at which V becomes

equal to 2.4045 is known as the ��cut-off wavelength�� and for

all wavelengths greater than the ��cut-off wavelength�� the

fiber is said to be single moded (see Sec. 30.3.1). A parabolic

fiber (q = 2)  has only one mode when V < 3.518. In single-

mode (or few mode) fibers, we cannot use ray optics; indeed,

analysis of single mode fibers will require solution of the

wave equation which we will do in the next 2 chapters.

In all what follows, we will assume the V number to be large

(  10), so that we  may use ray optics to calculate pulse

dispersion.

PVFIH ��v�i2 hs��i��syx2 sx

w�v�swyhi2 y��sgev
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In digital communication systems, information to be sent is

first coded in the form of pulses and then these pulses of

light are transmitted from the transmitter to the receiver

where the information is decoded. Larger the number of

pulses that can be sent per unit time and still be resolvable at

the receiver end, larger would be the transmission capacity

of the system. A pulse of light sent into a fiber broadens in

time as it propagates through the fiber; this phenomenon is

known as pulse dispersion and occurs primarily because of

the following mechanisms:

1. In multimode fibers, different rays take different times

to propagate through a given length of the fiber. We

will discuss this for a step index fiber and for a para-

bolic index fiber in this and the following sections. In

the language of wave optics, this is known as

intermodal dispersion because it arises due to differ-

ent modes traveling with different velocities.

2. Any given light source emits over a range of wave-

lengths and, because of the intrinsic property of the

material of the fiber, different wavelengths take differ-

ent amounts of time to propagate along the same path.

This is known as material dispersion and obviously, it

is present in both single mode and multimode fibers.

3. On the other hand, in single-mode fibers since there is

only mode, there is no intermodal dispersion; however,

we have what is known as waveguide dispersion which

is due to the geometry of the fiber. We will discuss

single-mode fibers and waveguide dispersion in Chap-

ter 30. Obviously, waveguide dispersion is present in

multimode fibers also but the effect is very small and

can be neglected.

28.10.1 Ray Dispersion in Multimode
Step-Index Fibers

We first consider ray paths in a step-index fiber as shown in

Fig. 28.7. As can be seen, rays making larger angles with the

axis (those shown as dotted rays) have to traverse a longer

optical path length and therefore take a longer time to reach

the output end.

We will now derive an expression for the intermodal dis-

persion for a step-index fiber. Referring back to Fig. 28.7, for

a ray making an angle  with the axis, the distance AB is tra-

versed in time

tAB = 
AC CB

c n

+

/ 1

 = 
AB

c n

/cos

/

θ

1

 = 
n AB

c
1

cos θ
(28.20)

where c/n1 represents the speed of light in a medium of

refractive index n1, being the speed of light in free space.

Since the ray path will repeat itself, the time taken by a ray to

traverse a length L of the fiber would be

tL = 
n L

c
1

cos θ
(28.21)

The above expression shows that the time taken by a ray

is a function of the angle  made by the ray with the z-axis,

which leads to pulse dispersion. If we assume that all rays

lying between  = 0 and  = c = cos�1(n2/n1) are present

[see Eq. (28.7)], then the time taken by these extreme rays for

a fiber of length L would be given by

tmin = 
n L

c
1 corresponding to  = 0 (28.22)

tmax = 
n L

cn
1
2

2

 corresponding to  = c = cos�1(n2/n1) (28.23)

Hence, if all the input rays were excited simultaneously,

the rays would occupy a time interval at the output end of

duration

i = tmax � tmin = 
n L

c

n

n
1 1

2

1
%
'&

(
0)
−

1

3
2

4

6
5 (28.24)

or

Δ Δτ i
n L

c

L

n c
≅ ≈

1

1

2

2
( )NA (28.25)

The above equation represents the intermodal dispersion

in multimode SIF where  has been defined earlier [see Eqs.

(28.3) and (28.4)] Assuming the validity of ray optics, Eq.

(28.24). is exact; however, in writing Eq. (28.25) we have as-

sumed 1, which is true for almost all commercially
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available silica fibers. The quantity i represents the pulse

dispersion due to different rays taking different times in

propagating through the fiber which, in wave optics, is noth-

ing but the intermodal dispersion and hence the subscript i.

Note that the pulse dispersion is proportional to the square

of NA. Thus, to have a smaller dispersion, one must have a

smaller NA which of course reduces the acceptance angle

and hence, the light gathering power. Now, if at the input end

of the fiber, we have a pulse of width 1 then after propagat-

ing through a length L of the fiber, the pulse would have a

width 2 given approximately by

2
2 = 1

2 + i
2 (28.26)

Consequently, the pulse broadens as it propagates

through the fiber (see Fig. 28.18). Hence, even though two

pulses may be well resolved at the input end, because of the

broadening of the pulses they may not be so at the output

end.

100 ns

100 ns

1 km

2 km

Resolvable

Not resolvable

Fig. 28.18 Pulses separated by 100 ns, at the input end
would be resolvable at the output end of 1 km
of the fiber. The same pulses would not be re-
solvable at the output end of 2 km of the same
fiber. Figure adapted from Ref. 28.13.

Example 28.11 For a typical (multimoded) step-index

fiber, if we assume n1 = 1.5,  = 0.01, L = 1 km, we would get

i = 
1 5 1000

3 108

. ×

×
  0.01 = 50 ns/km (28.27)

i.e., a pulse after traversing through the fiber of length 1 km will be

broadened by 50 ns. Thus, two pulses separated by, say, 500 ns at

the input end would be quite resolvable at the end of 1 km of the

fiber. However, if consecutive pulses are separated by, say, 10 ns at

the input end, they would be absolutely unresolvable at the output

end. Hence in a 1 Mbit/s fiber optic system, where we have one

pulse every 10�6s, a 50 ns/km dispersion would require repeaters

to be placed every 3�4 km. On the other hand, in a 1 Gbit/s fiber

optic communication system, which requires the transmission of

one pulse every 10�9s, a dispersion of 50 ns/km would result in

intolerable broadening even within 50 meters or so which would be

highly inefficient and uneconomical from a system point of view.

Where the output pulses are not resolvable, no

information can be retrieved. Thus, smaller the pulse

dispersion, greater will be the information carrying capacity

of the system.

From the discussion in the above example, it follows that

for a very high information carrying system, it is necessary

to reduce the pulse dispersion; two alternative solutions ex-

ist�one involves the use of near parabolic index fibers and

the other involves single mode fibers. We will discuss para-

bolic index fibers in this chapter, single mode fibers will  be

discussed in Chapter 30.

28.10.2 Parabolic-Index Fibers (PIF)

In a step-index fiber, such as that pictured in Fig. 28.7, the

refractive index of the core has a constant value. By contrast, in

a parabolic-index fiber, (often abbreviated as PIF) the refractive

index in the core decreases continuously (in a quadratic fash-

ion) from a maximum value at the center of the core to a

constant value at the core-cladding interface. (see Fig. 28.17

corresponding to q = 2 ). The refractive index variation given by

n2(r) = n1
2 1 2

2

− %
'

(
0

1

3
2

4

6
5Δ

r

a
  0 < r < a core

(28.28)

= n2
2 = n1

2(1 � 2 ) r > a      cladding

with  as defined in Eq. (28.4). In Sec. 3.4.1 we had shown

that the ray paths in a parabolic waveguide are sinusoidal

[see Fig. 28.19]. For a typical (multimode) parabolic-index

silica fiber   0.01, n2  1.45 and a  25 m.

20

0

–20
zp

x
(

m
)

m

10

z (mm)

q1 = 4°

q1 = 8.13°

q1 = 20°

Core

Cladding

Fig. 28.19 Ray paths in a parabolic index fiber.

Now, even though rays making larger angles with the axis

traverse a larger path length, they do so now in a region of

lower refractive index (and hence greater speed). The longer

path length is almost compensated for by a greater average

speed such that all rays take approximately the same amount

of time in traversing the fiber. In Sec. 3.4.2, we had made a

detailed calculation of determining the time taken by a par-
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ticular ray to propagate through a parabolic index waveguide;

the final result for the intermodal dispersion is given by (see

also Example 28.16):

2

2 1 2

22
i

n L n n

c n
 Pulse dispersion in multimode PIF

(28.29)

(In  Sec. 28.12 we have given the general expression for pulse

dispersion corresponding to the power law profile). When 

<< 1, the above equation can be written as

422

3
1

NA
2 8

i

n L L

c cn
(28.30)

Note that as compared to a step index fiber, the pulse disper-

sion is proportional to the square of . For a typical

(multimode parabolic index) fiber with n2  1.45 and   0.01,

we would get

i  0.25 ns/km (28.31)

Comparing with Eq. (28.27) we find that for a parabolic index

fiber the pulse dispersion is reduced by a factor of about 200

in comparison to the step index fiber.  It is because of this

reason that first and second generation optical communica-

tion systems used near parabolic index fibers. In order to

further decrease the pulse dispersion, it is necessary to use

single mode fibers because there will be no intermodal dis-

persion. We must mention that although in almost all long

distance fiber optic communication systems one uses single

mode fibers; nevertheless, in many local area communication

systems (like intra office networks), one still uses parabolic

index multimode fibers. One of the main advantages of using

multimode fibers (in communication networks) is the fact that

they have very large core diameters allowing easy splicing at

joints. Now, in addition to the intermodal dispersion dis-

cussed above, in all fiber optic systems we will have material

dispersion which is a characteristic of the material itself and

not of the waveguide; we will discuss this in the following

section.

28.10.3 Material Dispersion

We have earlier considered the broadening of an optical

pulse due to different rays taking different amounts of time

to propagate through a certain length of the fiber. However,

every source of light has a certain wavelength spread which

is often referred to as the spectral width of the source. Thus,

a white light source (like the sun) would have a spectral

width of about 300 nm; on the other hand, an LED would

have a spectral width of about 25 nm and a typical laser

diode (LD) would have a spectral width of about 2 nm or

less. In Chapter 10 we had discussed that the refractive index

of the medium (and hence the group velocity vg) depends on

the wavelength. Thus, each wavelength component (of the

pulse) will travel with a slightly different group velocity

through the fiber, resulting in a broadening of a pulse. In

Chapter 10 we had shown that the pulse broadening (due to

wavelength dependence of the refractive index) is given by

m = �
L

c

d n

d

Δλ

λ
λ

λ

0

0
0
2

2

0
2

1

3
2

4

6
5 (28.32)

where L is the length of the fiber, 0 is the spectral width of

the source and c the speed of light in free space; the sub-

script m in Eq.(28.32) refers to the fact that we are considering

material dispersion. We assume 9
0 1 nm 10 m  and

L = 1 km = 1000 m so that

2
20
0 2

0 0

m

L d n

c d

9 2
2
0 26 8

00

1000 m 10 m
s

d n

d

    = 
8 2

12 2
0 2

0 0

10
ps

3 ( m)

d n

d

where 121 ps 10 s , 0 is measured in  m and the quantity

inside the square brackets is dimensionless. Thus, we may

define the material dispersion coefficient (which is measured

in ps/km-nm):

4 2
2
0 2

0 0 0

10

3

m
m

d n
D

L d
ps/km.nm (28.33)

which represents the material dispersion in picoseconds per

kilometer length of the fiber per nanometer spectral width of

the source; the wavelength 0 is measured in m. At a par-

ticular wavelength, the value of Dm is a characteristic of the

material and is (almost) the same for all silica fibers. The val-

ues of Dm for different wavelengths (for pure silica) are

tabulated in Table 10.1. When Dm is negative, it implies that

the longer wavelengths travel faster; similarly, a positive

value of Dm implies that shorter wavelengths travel faster.

Example 28.12 The LED�s used in the earlier optical com-

munication systems had a spectral width 0 of about 20 nm

around 0 = 850 nm (= 0.85 m); at this wavelength (see Table 10.1)

2
2

2
0

0.0297
d n

d

 

2
2
0 2

0

0.85 0.85 0.0297 0.02146
d n

d

Thus,

4 2 4
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0 2

0 0

10 10
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Thus a pulse will broaden by (disregarding the sign)

0 84.2 ps/km.nm 1 km 20 nmm mD L

  1700 ps 1.7 ns

in traversing 1 km length of the fiber. On the other hand, if we

carry out a similar calculation around 0  1300 nm (where

Dm  2.4 ps/km.nm), we will obtain a much smaller value of m:

    m = (Dm)  (L)  0)

= (2.4 ps/km.nm)  (1 km)  (20 nm)  0.05 ns

in traversing 1 km length of the fiber. The very small value of m is

due to the fact that vg (and hence ng) is approximately constant

around 0  1300 nm, as shown in Fig. 10.6. Indeed the wavelength

0  1270 nm is usually referred to as the zero material dispersion

wavelength, and it is because of such low material dispersion that in

early 80�s, the optical communication systems shifted their opera-

tion to around 0  1300 nm.

Example228.13 In the optical communication systems that

are in operation today, one uses LD�s (Laser Diodes) with

0 1550 nm having a spectral width of about 2 nm. At this

wavelength, 21.5 ps/km.nmmD (see Table 10.1).  Thus, for a 1 km

length of the fiber, the material dispersion m becomes

m = (Dm)  (L)  0)

              = (21.5 ps/km.nm)  (1 km)  (2 nm)  43 ps

the positive sign indicating that higher wavelengths travel slower

than lower wavelengths. [Notice from Table 10.1 that for 0  1300

nm, ng increases with 0].

PVFII hs��i��syx2exh
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We may mention here briefly that in a digital communication

system employing light pulses, pulse broadening would

result in an overlap of pulses, resulting in loss of resolution

and leading to errors in detection. Thus, pulse broadening is

one of the mechanisms (other than attenuation) that limits

the distance between two repeaters in a fiber optic link. It is

obvious that larger the pulse broadening, smaller would be

the number of pulses per second that can be sent down a

link. There are different criteria based on slightly different

considerations that are used to estimate the maximum permis-

sible bit rate (Bmax) for a given pulse dispersion. However, it

is always of the order of 1/ . In one type of extensively

used coding [known as NRZ (Non Return to Zero)] we have

Bmax  
0 7.

Δτ
(28.34)

The above formula takes into account (approximately)

only the limitation imposed by the pulse dispersion in the

fiber.  In an actual link the source and detector characteris-

tics should also be taken into account while estimating the

maximum bit rate. It should also be pointed out that in a fiber,

the pulse dispersion is caused, in general by intermodal dis-

persion, material dispersion and waveguide dispersion.

However, waveguide dispersion is important only in single

mode fibers and may be neglected in carrying out analysis

for multimode fibers. Thus, (considering multimode fibers), if

i and m are the dispersion due to intermodal and material

dispersions respectively, then the total dispersion is given

by

= ( ) ( )Δ Δτ τi m
2 2
+ (28.35)

Example 28.14 We consider a step index multimode fiber

with n1  1.46,   0.01 operating at 850 nm. For such a fiber, the

intermodal dispersion (for a 1 km length of the fiber) is

i = 
n L

c
1 Δ

  
1 1000 0 01

3 108

.46 .× ×

×
  49 ns

which is usually written as

i  49 ns/km

If the source is an LED with 0 = 20 nm, then using

Table 10.1 the material dispersion m is 1.7 ns/km [see Example

28.12]. Thus, in step index multimode fibers, the dominant pulse

broadening mechanism is intermodal dispersion and the total dis-

persion is given by

 = ( ) ( )Δ Δτ τi m
2 2
+  = 49 ns/km = 49  10�9 s/km

Using Eq. (28.35), this gives a maximum bit rate of about

Bmax  
0 7.

Δτ
 = 

0 7

49 10 9

.

×
−

 bits-km/s  14 M bit-km/s

Thus, a 10 km link can at most support only 1.4 Mbit/s.

Example 28.15 Let us now consider a parabolic index mul-

timode fiber with n1 = 1.46,  = 0.01 operating at 850 nm with an

LED of spectral width 20 nm. For such a fiber, the intermodal dis-

persion, using Eq. (28.28), is

i = 
n

c
1

2
2L  0.24 ns/km

The material dispersion is again 1.7 ns/km. Thus, in this case, the

dominant mechanism is material dispersion rather than intermodal

dispersion. The total dispersion is

= 0 24 1 72 2. .+   1.72 ns/km

This gives a maximum bit rate of about

Bmax  
0 7

1 72 10 9

.

. ×
−

 bits-km/s  400 Mbits-km/s

giving a maximum permissible bit rate of 20 Mbit/s for a 20 km

link.

Example 28.16 If we now shift the wavelength of opera-

tion to 1300 nm and use the parabolic index fiber of the previous

example, we see that the intermodal dispersion remains the same as

0.24 ns/km while the material dispersion (for an LED of 0 =

LO 9
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20 nm) becomes 0.05 ns /km (see Example 27.11). The material disper-

sion is now negligible in comparison to intermodal dispersion. Thus,

the total dispersion and maximum bit rate are respectively given by

= 0 24 0 052 2. .+   0.25 ns/km Bmax  2.8 Gbit-km/s

Indeed, the fiber optic communication systesms operating (around

1981) at 1300 nm used parabolic-index multimode fibers and had a

bit rate of 45 Mbits/s with repeater spacing of 30 km implying

1.35 Gbit - km/s. We should reiterate that in the examples discussed

above the maximum bit rate has been estimated by considering the

fiber only.  In an actual link, the temporal response of the source

and detector must also be taken into account.

We end this section by mentioning that around 1977, we

had the first generation optical communication systems

which used graded index multimode fibers and the source

used was the LED operating at 850 nm wavelength; the loss

was  3dB/km, the repeater spacing was  10 km and the bit

rate was  45 Mbits/s. Around 1981, we had the second gen-

eration optical communication systems which again used

graded index multimode fibers but  now operating at 1300 nm

wavelength (so that the material dispersion is very small); the

bit rate was almost the same ( 45 Mbits/s) but since the loss

was  1 dB/km and the dispersion was also less, the repeater

spacing increased to 30 km. The third and fourth genera-

tion optical communication systems used single-mode fibers

operating at 1300 nm and at 1550 nm wavelengths, respec-

tively.

PVFIP2 qixi�ev2 i���i��syx
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The time taken to propagate through a length L of a

multimode fiber described by a q-profile (see Eq. 28.17) is

given by

( ) =
B

A L (28.36)

where

A = 
2

(2 )c q
; B = 

2
1

(2 )

qn

c q
(28.37)

and for rays guided by the fiber n2 < < n1. In the ray optics

approximation, Eq. (28.36) is rigorously correct [see

References 28.15 and 28.22 for derivation of Eq. (28.36)].

Using the above equations, we can calculate the ray

dispersion in fibers with different q values. For the step

profile, q =  and

A = 0; and B = 
2
1n

c

2
1

2

( ) =
n

L
cn

(28.38)

Thus,

max = (  = n2) = 
2
1

2

n

cn
L and min = (  = n1) = 1n

c
L

(28.39)

giving

= max � min = 1 1 2

2

( )n n n

c n
L (28.40)

which is the same expression as given by Eq. (28.24). For the

parabolic profile, q = 2 and

A = 
1

2c
; and B = 

2
1

2

n

c
( ) = 

2
1

2

n

cn
L (28.41)

Thus,

max = (  = n2) = 

2
1

2
2

1

2

n
n

c n
L

and min = (  = n1) = 1n

c
L (28.42)

giving

= max � min = 

2

2 1 2

22

n n n

c n
L (28.43)

which is the same expression as given by Eq. (28.29). The

calculation of the optimum value of q (which would give mini-

mum ray dispersion) requires a plot of ( ) as a function of

 for different values of q. The details are given in Refer-

ence 28.15 and the minimum dispersion occurs for q  2�2

where the pulse dispersion is given by

(optimum profile) = 

2

1 1 2

28

n n n

c n
L (28.44)

However, because of the fact that in a given fiber the

profile itself depends on wavelength (because the refractive

changes slightly with wavelength) most graded index fibers

used in optical communication systems correspond to q  2.

PVFIQ �ve��sg2 y��sgev2 psfi��

We had briefly mentioned about Plastic optical fibers (usu-

ally abbreviated as POFs) in Sec. 28.4.1. POFs are fibers made

from plastic materials such as PMMA (poly methyl methacry-

late) (n = 1.49), polystyrene (n = 1.59), polycarbonates

(n = 1.5�1.57), fluorinated polymers etc. These fibers share

the same advantages as glass optical fibers in terms of insen-

sitivity to electromagnetic interference, small size and weight,

low cost and potentially capable of carrying information at

high rates. The most important attribute of POFs is their large

LO 10
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core diameters of around 1 cm as compared to glass fibers

with core diameters around 50 m. Such a large diameter (in

POF�s) results in easy alignments at joints. They are also

more durable and flexible than glass fibers. In addition, they

usually have a large numerical aperture and therefore much

larger light gathering power. Thus, coupling to a POF is

much easier than for a normal silica based optical fiber. One

of the major disadvantages of the POFs is their having much

higher losses as compared to silica-based fibers. The low

loss windows of POFs are around 570 nm, 650 nm and

780 nm. For example, a graded-index PMMA fiber would have

a loss of about 110 dB/km around the wavelength of 650 nm.

This value is much larger than for silica fibers. Because of

such high losses, POF's are never used in long distance com-

munication systems but are being used in intra office

communication systems where one requires only a few hun-

dred meters of the fiber. Thus, although silica-based optical

fibers dominate the long-distance optical communication

systems, POFs are providing low cost solutions to short dis-

tance applications such as Local Area Networks (LAN),

high-speed internet access, etc.

PVFIR psfi�2 y��sg
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Sensors that exploit the optical properties and light guiding

capabilities of fibers are called fiber-optic sensors (FOS). In

the recent past, there has been tremendous interest in the de-

velopment of fiber-optic sensors; this is due to high immunity

of the optical fiber to electromagnetic interference, applicabil-

ity to remote sensing, etc. another important attribute is the

possibility of having distributed sensing geometries.

Fiber optic sensors can be broadly classified into two cat-

egories: extrinsic and intrinsic. In the case of extrinsic

sensors, the optical fiber simply acts as a device to transmit

and collect light from a sensing element, which is external to

the fiber. The sensing element responds to the external per-

turbation and the change in the characteristics of the sensing

element is transmitted by the return fiber for analysis. The

optical fiber here plays no role other than that of transmitting

the light beam. On the other hand, in the case of intrinsic

sensors, the physical parameter to be sensed directly alters

the properties of the optical fiber, which in turn leads to

changes in a characteristic such as intensity, polarization,

phase etc. of the light beam propagating in the fiber.

We give below descriptions of a few fiber-optic sensors.

28.14.1  Precision Displacement Sensor

An extrinsic type intensity-based displacement sensor ar-

rangement is shown in Fig. 28.20. As shown in the diagram a

GRIN lens is butted with two multimode optical fibres in a

Y-splitting configuration. Two 50/125 m fibres enter the

probe-head, with one attached to a 680 nm laser-diode

source and the other attached to a photodiode detector. In a

typical setup, the probe-head is pencil-shaped, 5 mm in

diameter and 35 mm in length. A movable reflective surface is

used as the transducing device, while a GRIN lens efficiently

guides the light between the multimode fibers. The

setting-up procedure includes butting the GRIN lens against

the fibre ends and aligning the reflective surface with the

y-axis of the probe. The lens is manipulated within the x-y

plane for maximum detected light, and bonded to the fibre

ends using epoxy. Translation and displacement of the reflec-

tive surface were allowed along the z-axis. A photograph of a

typical fiber-optic displacement sensor (cabled) probe is

shown in Fig. 28.21.

In Fig. 28.22 we have shown a typical variation of the

detector output with displacement using both plane mirror

and polished steel reflectors. The reflector has been moved

forward and backward along z-axis using translation stage.

The detected optical intensity increases to a maximum value

at about 1 mm displacement (the beam waist position) and

decreases thereafter giving a usable monotonic

displacement-measurement range of at most from about 1 mm

to 5.5 mm, indicating a practical working range of some

4.5 mm.

Fig. 28.20 Intensity based displacement sensor using two multimode fibers [adapted from Refs. 28.23 and 28.25].

*   This section was kindly written by Dr. Tarun Gangopadhyay of CSIR-CGCRI, Kolkata.
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28.14.2 Precision Vibration Sensor Using
FPI Principle

A non-contact vibration-monitoring technique based on tran-

sient measurements from a FPI (Fabry Perot Interferometric)

displacement sensor is shown in Fig. 28.23. In this scheme

one single mode fibre (SMF) is used for both purposes, to

inject light input to the sensor and return reflected signal to

the detector. A pig-tailed laser diode was spliced to a 50:50

coupler. Back-reflection from the unused coupler port was

avoided by immersion in index matching gel. A single SMF

was used both to illuminate the sensing element and to col-

lect the reflected signal. In order to guide the input and

output light, a gradient index rod (GRIN) lens was butted to

the end of the SMF. To provide the interference reference sig-

nal, a coating of 25% reflectivity was applied to the output

face of the GRIN lens, while a movable reflector (which is to

be attached to the vibrating surface being monitored) acts as

the second FPI mirror. The FPI has a low finesse of at most

1.34. Light reflected from the GRIN lens mixes coherently with

phase modulated light from the movable reflector to produce

interference fringes.

Now, a monochromatic wave of free-space wavelength  0

reflected within an FPI defined by two parallel mirror-

surfaces, as shown in Fig. 28.23, experiences a round-trip

phase-lag given by

= 
0

4 nd
(28.45)

where n is the refractive index of the medium between the

mirrors, and d is the mirror separation. For vibration

measurements, the phase-modulated signal may be derived

via reflection from the vibrating surface being monitored,

with the reference signal reflected from a static mirror. As one

fringe is equivalent to one  change in optical path-

difference, for a FPI with a reflective configuration in air

(n = 1), it is also equivalent to a /2 displacement. If D

represents the maximum displacement amplitude from zero

position, then the number of fringes counted in half a cycle

will be given by

N = 
0 /2

D
D = 0

2

N
(28.46)

Fig. 28.23 Schematic diagram of the FPI sensor system
with single-mode fiber ; diagram courtesy: Dr
Tarun Gangopadhyay, CSIR-CGCRI, Kolkata.

A typical detector output for interferometric precision

vibration measurement is shown in Fig. 28.24. The figure

shows the fringe patterns obtained at low and high amplitude

excitation at 1 kHz. The wavelength of the laser diode is

780 nm. At the low excitation there are twenty-two fringes and

from Eq. (28.46), we obtain

D = 
22 0.78 m

2
 = 8.58 m

At the high excitation there are 34 fringes, which is equiva-

lent to D = 13.26  m.

Fig. 28.21 Typical cabled probe used for displacement
measurement; photpgraph courtesy: Dr Tarun
Gangopadhyay, CSIR-CGCRI, Kolkata.

Fig. 28.22 Displacement measurement using the plane
mirror and  polished steel reflectors; figure
adapted from Ref. 28.24.
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Fig. 28.24 1 kHz response of the EFPI sensor system with
one single-mode fiber (a) at 8.58 m vibration
amplitude (  22 fringes) (b) at 13.26 m vibra-
tion amplitude ( 34 fringes) [adapted from
Refs. 28.26 and 28.27.]

28.14.3 FBG-based Sensors

We had discussed Fiber Bragg Gratings (FBGs) in Sec. 15.6.

As discussed there, the wavelength corresponding to

maximum reflectivity depends both on the periodicity of the

FBG and the refractive index. A change in the temperature or

application of strain will result in a change in the wavelength

corresponding to maximum reflectivity (see Figs. 28.26(a) and

(b). Distributed FBGs (each having a different wavelength

corresponding to maximum reflectivity) are now extensively

used in concrete structures (like bridges) to study the

variation of stress. Each grating has a slightly different

period because of which each one of them will have peak

reflectivity at a different wavelength; see Figs. 15.17 and

15.18. In the presence of stress, one will observe a shift in

the wavelength corresponding to peak reflectivity.

Fig. 28.25 The response of an FBG before and after application of strain. Notice the shift in the wavelength corresponding
to maximum reflectivity; adapted from Ref. 28.27.

 

(a) (b)

Fig. 28.26 Wavelength shift (in pico meters) corresponding to maximum reflectivity of a FBG sensor  with (a) applied
strain (b) temperature. Diagrams courtesy: Dr Tarun Gangopadhyay, CSIR-CGCRI, Kolkata.
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Problems

28.1 Consider a step index fiber with n1 = 1.5,  = 0.015 and a =

25 m placed in air. Calculate n2 and the maximum accep-

tance angle (im). If the fiber tip is immersed in water

(n = 1.33), calculate the maximum acceptance angle (im).

[Ans: 1.477; 0.26; 15o; 11.3°]

28.2 A step index optical fiber with n1 = 1.46, n2 = 1.44, and core

radius a = 50 m is placed in air. Calculate the maximum

acceptance angle. If the fiber is now immersed in water

(n = 1.33), calculate the maximum acceptance angle.

[Ans: 13.9°; 10.4°]

28.3 A step index fiber with n1 = 2, 2 3n  is placed in air; what

is the maximum angle an incident ray can make with the axis

of the fiber at the input end in air, so that it is guided after

entering the fiber. [Ans. 90°]

28.4 Consider a bare fiber with: n1 = 1.46 (pure silica), n2 = 1.0

(air) and core radius a = 30 m.

(a) Show that all rays (inside the core) making an angle

< 46.77° with the z-axis will be guided through the

fiber.

(b) Assume  = 30° and calculate the number of reflections

that will occur in propagating through 1 km length of

the fiber. Assume only 0.01% decrease in power at each

reflection; calculate the power loss at each reflection and

also in propagating through 1 km length of the fiber.

[Ans. 9.6  106, 4.34  10�4 dB 4179 dB/km]

28.5 The power of a 2 mW laser beam decreases to 15 W after

traversing through 25 km of a single mode optical fiber.

Calculate the attenuation of the fiber.

[Ans: 0.85 dB/km]

28.6 A 5 mW laser beam passes through a 26 km fiber of loss

0.2 dB/km. Calculate the power at the output end.

                                                      [Ans: 1.5 mW]

28.7 Consider a 15 mW laser beam passing through a 40 km fiber

link of loss 0.5 dB/km. Calculate the output power in dBm

and then in mW.

                                        [Ans: 0.15 mW]

28.8 The power of a 10 mW laser beam decreases to 40 W after

traversing through 40 km of an optical fiber. Calculate the

attenuation of the fiber in dB/km.

[Ans: 0.6 dB/km]

28.9 Consider a 50 km fiber link (with a loss of 0.25 dB/km) hav-

ing 4 connectors in its path and if each connector has a loss

of 1.8 dB then calculate the total loss. The loss at the source

to the fiber is 2 dB and the loss from the fiber to the detector

is 2.5 dB. The input laser power is 10 mW; calculate the out-

put power in dBm and also in mW.

28.10 (a) Consider a step index fiber with n1 = 1.46, n2 = 1.44, and

a = 50 m. Assume that the operating wavelength 0 =

0.85  m, calculate the V value and show that it is a

multimoded fiber. Calculate the ray dispersion in ns/km.

(b) Next consider a bare step index fiber with n1 = 146,

n2 = 1.0 and a = 50 m. Assume that the operating

wavelength 0 = 0.85 m, calculate the V value and

show that it is a multimoded fiber. Calculate the ray dis-

persion.

[Ans: (a) 67.6 ns/km  (b) 2239 ns/km]

28.11 In Sec. 28.9.1 we had discussed the power law profile. The

time taken for a ray (characterized by ) to propagate

through a length L of a multimode fiber described by a

q-profile [see Eq. (28.17)] is given by:

B
A L

where all symbols have been defined in Sections 28.9.1 and

28.12. Assume n1 = 1.46, n2 = 1.44, a  = 50 m and L = 1km.

Calculate and plot for q = , q = 2 and

2 2q for 2 1n n and hence calculate the ray disper-

sion in each case and compare your results with that obtained

in Sec. 28.12.

28.12 In the following problem assume that the material dispersion

coefficient Dm is given by

4 2
2
0 2

0 0 0

10

3

m
m

d n
D

L d
ps/km.nm

where 0 is measured in m. For silica fibers
2

2
0

d n

d
0.0297

( m)�2 at 0 = 0.85 m;  0.0120 ( m)�2 at 0 = 1.0 m;

 � 0.00055 ( m)�2 at 0 = 1.30 m and  �0.00416 ( m)�2

at 0 = 1.55 m

(a) At 0 = 0.85 m, 1.0 m, 1.30 m and 1.55 m, calcu-

late the material dispersion [in ns/km] when 0 (the

spectral width of source) is 50 nm (LED) and 2.5 nm

(LD) respectively.

(b) Consider a SIF with n1 = 1.5, a = 40 m and = 0.015

operating at 850 nm with a spectral width of 50 nm. Is

this a single mode fiber or a multimode fiber? Calculate

the material dispersion, ray dispersion, the total pulse

dispersion and hence the maximum bit rate.

(c) Next, consider a parabolic index fiber with n1 = 1.5,

a = 40 m and  = 0.015 operating at 850 nm with a

spectral width of 50 nm. Is this a single mode fiber or a

multimode fiber? Calculate the material dispersion, ray

dispersion, the total pulse dispersion and hence the

maximum bit rate.

(d) Finally, consider a parabolic index fiber with n1 = 1.5, a

= 40 m and  = 0.015 operating at 1300 nm with a

spectral width of 50 nm. Calculate the material disper-

sion, ray dispersion, the total pulse dispersion and

hence the maximum bit rate.

 [Ans. (b) 4.2 ns/km, 75 ns/km, 75.1 ns/km

 (c) 4.2 ns/km, 0.6 ns/km, 4.2 ns/km]
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In the design of an optical communication system, it is very

necessary to have a good understanding of the propagation

characteristics of the optical fiber. In the previous chapter,
we had used ray optics to understand the propagation char-

acteristics of the optical fiber. Such an analysis is valid when

the fiber supports a large number of modes. However, today,

single mode fibers are extensively used in optical communi-

cation systems. In single mode fibers, ray optics is not

applicable at all and one has to solve Maxwell�s equations to

determine the modes of the waveguide. Thus, the first thing

to do would be to understand the concept of modes, which

we plan to do in this chapter. In order to understand the con-

cept of modes, it is probably best to consider the simplest

planar optical waveguide that consists of a thin dielectric film

sandwiched between materials of slightly lower refractive in-
dices and is characterized by the following refractive index

variation (see Fig. 29.1):

n(x) = 
n x

d

n x
d

1

2

2

2

; | |

; | |

<

>

7

8
u

9
u

(29.1)

d

n
2

n
2

n
1z

x

y

Fig. 29.1 A planar dielectric waveguide of thickness d
(along x direction) but infinitely extended along
the y direction. Light propagates along the
z direction.
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Chapter
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with n1 > n2. Equation (29.1) describes what is usually referred

to as a step-index profile. The waveguide is assumed to

extend to infinity in the y and z directions. To start with, we

will first consider a more general case of the refractive index

depending only on the x coordinate:

n
2

= n
2
(x) (29.2)

When the refractive index variation depends only on the x

coordinate, we can always choose the z-axis along the direc-

tion of propagation of the wave and we may, without any

loss of generality, write the solutions of Maxwell�s equations

in the form

i = E(x)ei( t� z) (29.3)

r = H(x)e
i ( t� z) (29.4)

The above equations define the modes of the system. Thus,

modes represent transverse field distributions that
suffer only a phase change as they propagate

through the waveguide along z.

The transverse field distributions described by E(x) and H(x)

do not change as the field propagates through the

waveguide. The quantity  represents the propagation con-

stant of the mode. If we substitute the above solutions in

Maxwell�s equations, we will obtain two independent sets of

equations (see Appendix G). The first set of equations corre-

spond to non-vanishing values of Ey, Hx and Hz with Ex, Ez

and Hy vanishing, giving rise to what are known as TE modes

because the electric field has only a transverse component.

The second set of equations correspond to non- vanishing

values of Ex, Ez and Hy with Ey, Hx and Hz vanishing, giving

rise to what are known as TM modes because the magnetic

field now has only a transverse component.

LO 1

LO 1: understand the concept of modes in planar optical waveguides.

LO 2: derive TE modes of a symmetric step index planar waveguides.

LO 3: provide a physical understanding of modes.

LO 4: derive TM modes of a symmetric step index planar waveguides.

LO 5: derive TE modes of a parabolic index planar waveguide.

LO 6: discuss the relationship between waveguide theory and quantum mechanics.
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For TE modes, we have shown in Appendix G that Ey(x)

satisfies the following differential equation:

d E

d x

y
2

2
 + [k0

2n
2
(x) � 

2
]Ey = 0 (29.5)

where

k0 = ω ε μ0 0  = 
ω
c

(29.6)

is the free space wave number and c =
1

0 0

%
'&

(
0)

 is the

speed of light in free space. Once Ey(x) is known, we can

determine Hx and Hz from the following equations (see

Appendix G):

Hx = �
β

ωμ 0

Ey(x) and Hz = 
i d E

d x

y

ωμ 0

(29.7)

We may mention here that whenever the refractive index

distribution depends only on the x coordinate, the above

equations are rigorously correct.

PWFP �i2 wyhi�2 yp2 e

��wwi��sg2 ��i�2 sxhi�

�vexe�2 �e�iq�shiB

Until now our analysis has been valid for an arbitrary

x-dependent profile. We now assume that the refractive index

variation is given by Eq. (29.1) [see Fig. 29.1]. Substituting

for n(x) in Eq. (29.5) we obtain

d E

d x

y
2

2
 + (k0

2n1
2 � 2)Ey = 0; |x | < 

d

2
 film (29.8)

d E

d x

y
2

2
 + (k0

2n2
2 � 2)Ey = 0; |x | > 

d

2
 cover (29.9)

We will solve Eqs. (29.8) and (29.9) subject to the appropriate

boundary and continuity conditions. Since Ey and Hz repre-

sent tangential components on the planes x = d/2, they

must be continuous at x = d/2 and since Hz is proportional

to  dEy /dx [see Eq. (29.7)], we must have

Ey and 
dE

d x

y
 continuous at x = d/2 (29.10)

The above represents the continuity conditions that have to

be satisfied**. Now, guided modes are those modes that are

mainly confined to the film and hence their field should

decay in the cover, i.e., the field should decay in the region

|x | > d
2

, so that most of the energy associated with the modes

lies inside the film. Thus, we must have

2 > k0
2n2

2 (29.11)

When 2
 < k0

2n2
2, the solutions are oscillatory in the

region |x | > d
2

 and they correspond to what are known as ra-

diation modes of the waveguide. These radiation modes

correspond to rays that undergo refraction (rather than total

internal reflection) at the film-cover interface and when these

are excited, they quickly leak away from the core of the

waveguide. Furthermore, we must also have 
2 < k0

2n1
2,

otherwise the boundary conditions cannot be satisfied*** at

x = d/2. Thus, for guided modes we must have

n 2
2 < 

β 2

0
2

k
 < n1

2 GUIDED MODES (29.12)

At this point, we recall our discussion in Sec. 3.4 where

we said that for an optical waveguide, guided rays corre-

spond to

n2 < 
~
β  < n1     GUIDED RAYS (29.13)

and refracting rays correspond to 
~
β  < n2; further, there

cannot be any ray with 
~
β  > n1. Thus, 

~
β  (in ray optics)

corresponds to /k0 in wave optics:

~
β   

β
k0

(29.14)

Using Eq. (29.12), we write Eqs. (29.8) and (29.9) in the form

d E

d x

y
2

2
 + 2Ey = 0; |x | < 

d

2
 film (29.15)

d E

d x

y
2

2
 � 2Ey = 0; |x | > 

d

2
 cover (29.16)

where
2 = k0

2n1
2 � 2 (29.17)

and
2 = 2 � k0

2n2
2 (29.18)

Now, when the refractive index distribution is symmetric

about x = 0; that is, when

n2(�x) = n2(x) (29.19)

the solutions are either symmetric or antisymmetric functions

of x (see, Problem 29.8). Thus, we must have

* More details about waveguide modes can be found in Refs. 29.1�29.4.

** The very fact that E
y
 satisfies Eq. (29.5) also implies that E

y
 and dE

y
/dx are continuous unless nP(x) has an infinite discontinuity.

This follows from the fact that if dE
y

/dx is discontinuous, then dP
E
y
/dx

P will be a delta function (see Problem 9.5) and Eq. (29.5) will

lead to an inconsistent equation.

*** It is left as an exercise for the reader to show that if we assume P > k
H

P
n
I

P and also assume decaying fields in the region |x | > d
2

, then

the boundary conditions at x = +d/2 and at x = �d/2 can never be satisfied simultaneously.

LO 2
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Ey(�x) = Ey(x)    symmetric modes (29.20)

Ey(�x) = �Ey(x)  antisymmetric modes (29.21)

For the symmetric mode, we must have

Ey(x) = 
A x x

d

Ce x
dx

cos ; | |

; | |
| |

7

8
u

9
u

2

2

(29.22)

where we have neglected the exponentially amplifying solu-

tion in the region |x | > 
d

2
. Continuity of Ey(x) and dEy/ dx at

x = d/2 gives us

A cos
κ d
2

%
'

(
0 = Ce

d
−
γ
2 (29.23)

and

� A sin
κ d
2

%
'

(
0 = � Ce

d
−
γ
2 (29.24)

respectively. Dividing Eq. (29.24) by Eq. (29.23) we get

 tan = 
γ d
2

(29.25)

where

 
κ d
2

(29.26)

Now, if we add Eqs. (29.17) and (29.18), we would get

( 2 + 2)
d
2

4
= 

1

4
[k0

2d2(n1
2 � n2

2)] = 
1

4
V 2 (29.27)

where

V = k0d n n1
2

2
2− (29.28)

is known as the dimensionless waveguide parameter which

is an extremely important parameter in waveguide theory.

Thus

γ d
2

= 
1

4

2 2
V − ξ (29.29)

and Eq. (29.25) can be put in the form

 tan = 
1

4

2 2
V − ξ (29.30)

Similarly, for the antisymmetric mode, we have

Ey(x) = 

B x x
d

De x
d

De x
d

x

x

sin ; | |

;

;

7

8

u
u

9

u
u

2

2

2

(29.31)

and following an exactly similar procedure, we get

�  cot = 
1

4

2 2
V − ξ (29.32)

Thus, we have

 tan = 
V

2

2
2%

'
(
0 − ξ   for symmetric modes (29.33)

and

�  cot = 
V

2

2
2%

'
(
0 − ξ  for antisymmetric modes (29.34)

Since the equation

= 
V

2

2
2%

'
(
0 − ξ (29.35)

(for positive values of ) represents a circle (of radius V/2) in

the first quadrant of the �  plane*, the numerical evalua-

tion of the allowed values of  (and hence of the propagation

constants) is quite simple. In Fig. 29.2, we have plotted the

functions  tan  (solid curve) and �  cot  (dashed curve)

as a function of . For a given value of V, the points of inter-

section of these curves with the quadrant of the circle would

determine the allowed (discrete) values of . The two circles

in Fig. 29.2 correspond to V/2 = 2 and V/2 = 5. Obviously, as

10 2 3 4 5 6 7 8 9
–4

–2

0

2

4

6

x xtan -x xcot

25 –
2
x

4 –
2
x

x

Fig. 29.2 Variation of  tan  (solid curve) and �  cot 
(dashed curve) as a function of . The points of
intersection of these curves with the quadrant of a
circle of radius V/2 determine the discrete propa-
gation constants of the waveguide.

* This follows from the fact that if we square Eq. (29.35), we would get P + P = 
V

2

2

 which represents a circle of radius V/2.
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can be seen from the figure, for V = 4, we will have one sym-

metric and one antisymmetric mode and for V = 10, we will

have two symmetric and two antisymmetric modes*.

It is often very convenient to define the dimensionless

propagation constant

b  
β 2

0
2

2
2

1
2

2
2

/k n

n n

−

−
(29.36)

Thus,

b = 
β 2

0
2

2
2

0
2

1
2

2
2

−

−

k n

k n nQ V
 = 

γ 2 2

2

d

V

giving

γ d
2

= 
1

2
V b (29.37)

Further, using Eqs. (29.27) and (29.38), we can write

 = 
κ d
2

= 
1

4 4

2
2 2

V
d

−
%
'&

(
0)

γ

= 
1

2
1V b− (29.38)

Thus Eqs. (29.33) and (29.34) can be written in the form

1

2
1

1

2
1V b V b−%

'
(
0 −%

'
(
0tan = 

1

2
V b

for symmetric modes (29.39)

− −%
'

(
0 −%

'
(
0

1

2
1

1

2
1V b V bcot = 

1

2
V b

for antisymmetric modes (29.40)

Obviously, because of Eq. (29.12), for guided modes we will

have

0 < b < 1 (29.41)

For a given value of V, solutions of Eqs. (29.39) and (29.40)

will give us discrete values of b; the mth solution (m = 0, 1, 2,

3,�) is referred to as the TEm mode. In Table 29.1, we have

tabulated the discrete values of b for various values of V;

these discrete values have been obtained by using the soft-

ware in Ref. 29.7. The universal curves describing the

dependence of b on V are shown in Fig. 29.3. For any given

(step index) waveguide, we just have to calculate V, and then

obtain the corresponding value of b either by solving

Eqs. (29.39) and (29.40) or by using Table 29.1. A numerical

method for solving Eqs. (29.39) and (29.40) is discussed in

Ref. 29.11. From the values of b, one can obtain the propaga-

tion constants by using the following equation [see

Eq. (29.36)]:

β
k0

= [ ( )]n b n n2
2

1
2

2
2+ − (29.42) Figure 29.4 shows typical field patterns of some of the low

order TEm modes of a step index waveguide.

* Those who are familiar with basic quantum mechanics will notice that the procedure for determining the discrete TE modes in a

planar waveguide is almost identical to the one used in obtaining the discrete energy eigenvalues of the one-dimensional Schrödinger

equation. Similarly, the modal analysis of the parabolic index planar waveguide is almost identical to the linear harmonic oscillator

problem in quantum mechanics (see Sec. 29.6).

0 2 4 6 8 10 12 14

V

0

1

b

TE

TM

= 1.5

n
1

n
2

Fig. 29.3 Dependence of b on V for a step index planar
waveguide. For the TE modes, the b � V curves are
universal; however, for the TM modes, the b � V
curves require the value of nI/nP; [Adapted from
Ref. 29.2].

d

TE
0

TE
2

Ey

d

TE
3

TE
1

Ey

x

x

Fig. 29.4 Typical mode field distributions for TE modes
in a step index planar waveguide; TEH and TEP

modal patterns are symmetric in x and are known
as even modes, while TEI and TEQ modal patterns
are anti symmetric in x and are known as odd
modes.
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Example 29.1 We consider a step index planar waveguide

with d = 3 m, n
I
 = 1.5 and n

P
 = 1.49153. The value of n

P2
is chosen

such that n n1
2

2
2−  = 

1

2π
 so that V = 

2

0
1
2

2
2π

λ
d n n−  = 

d

λ0

 =

3

0λ
 (where 

H2
is measured in m) and

β
k0

= n
b

2
2

2
4

+1

3
2

4

6
5π
.

For 
H2

= 1.5 m, V is equal to 2.0 and from Table 29.1, we see that

there will be only one TE mode with b = 0.453753; the correspond-

ing value of /k
H
  1.49538. The same waveguide operating at 

H2
=

1.0 m will have V = 3.0 and from Table 29.1, we see that there

will be again only one TE mode with b = 0.628017; the correspond-

ing value of /k
H
  1.49686. However, for 

H2
= 0.6 m, V = 5.0 and

there will be two TE modes with b = 0.802683 (the TE
H
 mode) and

the other with b = 0.277265 (the TE
I
 mode). The corresponding

values of /k
H
  1.49833 and 1.49389. Finally, for 

H2
= 0.4286 m,

V = 7.0 and there will have 3 TE modes with b = 0. 879298 (TE
H
),

0.533727 (TE
I
) and 0.061106 (TE

P
). The corresponding values of

/k
H
 are  1.4990, 1.49606 and 1.49205 respectively. Notice that all

the values of /k
H
 lie between n

I
 and n

PF2
We must mention here that,

in each case, the waveguide will support equal number of TM modes

(see Sec. 29.5). Further, as the wavelength is made smaller, the

waveguide will support larger number of modes and in the limit of

the wavelength tending to zero, we will have a continuum of modes

which is nothing but the ray-optics limit.

Example 29.2 We next consider a step index planar

waveguide with d = 2.5 m, n
I
 = 1.5 and n

P
 = 1.47. Assuming the

operating wavelength 
H2

= 1.0 m, we get V = 4.6888. If we carry

out linear interpolation we would obtain for the TE
H
 mode

b = 0.780563 + 
0 788321 0 780563

0 125

. .

.

−
  0.0638  0.78452

We therefore get 
β
k0

  1.49359. Similarly for the TE
I
 mode.

b = 0.213390 + 
0 235151 0 213390

0125

. .

.

−
  0.0638  0.22450

and the corresponding value of 
β
k0

 will be  1.47679.

PWFQ �r��sgev
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To have a physical understanding of modes, we consider the

electric field pattern inside the film (�d/2 < x < d/2). For

example, for a symmetric TE mode, this is given by [see

Eq. (29.22)] Ey(x) = A cos x. Thus the complete field inside

the film is given by

iy (x, z, t) = A cos xei( t� z)

= 
1

2
Ae i( t� z� x) + 

1

2
Aei( t� z+ x) (29.43)

Now,

exp[i( t � k.r)] = exp[i( t � kxx � kyy � kzz)]

represents a wave propagating along the direction of k

whose x, y, and z components are kx, ky and kz, respectively.

Thus, for the two terms on the RHS of Eq. (29.43) we will

have

k x = , ky = 0, kz = (29.44)

and

kx = � , ky = 0, kz = (29.45)

which represent plane waves with propagation vectors paral-

lel to the x-z plane making angles +  and �  with the z-axis

(see Fig. 29.5) where

tan = 
k

k
x

z

 = 
κ
β

Table 29.1 Values of the normalized propagation con-

stant (corresponding to TE modes) for a

symmetric planar waveguide.

The values are generated by using the software in

Ref. 29.7. Notice that for V < , we will have only one TE

mode which will be symmetric in x and for  < V < 2 , we

will have 2 TE modes-one of them will be symmetric in x and

the other antisymmetric in x.

� �@�iHA �@�iIA � �@�iHA �@�iIA �@�iPA

1.000 .189339 4.000 .734844 .101775

1.125 .225643 4.125 .745021 .123903

1.250 .261714 4.250 .754647 .146349

1.375 .297049 4.375 .763756 .168864

1.500 .331290 4.500 .772384 .191259

1.625 .364196 4.625 .780563 .213390

1.750 .395618 4.750 .788321 .235151

1.875 .425479 4.875 .795686 .256461

2.000 .453753 5.000 .802683 .277265

2.125 .480453 5.125 .809335 .297523

2.250 .505616 5.250 .815663 .317210

2.375 .529300 5.375 .821689 .336310

2.500 .551571 5.500 .827429 .354817

2.625 .572502 5.625 .832902 .372731

2.750 .592169 5.750 .838123 .390056

2.875 .610649 5.875 .843107 .406800

3.000 .628017 6.000 .847869 .422976

3.125 .644344 6.125 .852420 .438596

3.250 .659701 .002702 6.250 .856772 .453676

3.375 .674151 .011415 6.375 .860938 .468231 .001845

3.500 .687758 .024612 6.500 .864926 .482278 .008819

3.625 .700579 .041077 6.625 .868748 .495834 .019189

3.750 .712667 .059875 6.750 .872412 .508916 .031806

3.875 .724073 .080292 6.875 .875926 .521541 .045942

4.000 .734844 .101775 7.000 .879298 .533727 .061106
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or

cos = 
β

β κ2 2+
 = 

β
k n0 1

(29.46)

Thus, a guided mode can be considered to be

 a superposition of two plane waves propagating

at angles  cos�1 β
k n0 1

 with the z-axis

(see Fig. 29.5). Referring to the waveguide discussed in

Example 29.1, at 0 = 0.6 m, V will be 5.0 and we will have

2 TE modes with /k0  1.49833 and 1.49389. Since n1 = 1.5,

the values of cos  will be 0.99889 and 0.99593 and therefore

 2.70 and 5.17

corresponding to the symmetric TE0 mode and the antisym-

metric TE1 mode, respectively. Each mode is therefore

characterized by a discrete angle of propagation m. We may

mention here that, according to ray optics, the angle  could

take all possible values from 0 (corresponding to a ray

propagating parallel to the z-axis) to cos
�1

(n2/n1) (corre-

sponding to a ray incident at the critical angle on the

core-cladding interface). However, we now find that accord-

ing to wave optics, only discrete values of  are allowed and

each �discrete� ray path corresponds to a mode of the

waveguide. This is the basic principle of the prism film-cou-

pling technique for determining the (discrete) propagation

constants of an optical waveguide (see Fig. 29.6). The

method consists of placing a prism (whose refractive index is

greater than that of the film) close to the waveguiding film. In

the presence of the prism, the rays undergo refraction and

leaks away from the waveguide. The direction at which the

light beam emerges from the prism is directly related to m.

From the measured values of m, one can obtain the discrete

values of the propagation constant  by using the following

formula:

= k0n1 cos (29.47)

For a given waveguide, if 0 is made to go to 0, the value

of V would become very large and the waveguide will

support a very large number of modes. In this limit, we can

assume all values of  to be allowed and it will be quite

appropriate to use ray optics in studying the propagation

characteristics of the waveguide.

From Fig. 29.3, we can derive the following conclusions

about TE modes (similar discussion can be made for TM

modes, which are discussed in the next section):

(a) If 0 < V/2 < /2 � that is, when

0 < V < (29.48)

we have only one discrete (TE) mode of the waveguide

and this mode is symmetric in x. When this happens,

we refer to the waveguide as a single-moded

waveguide. In Example 29.1, the waveguide will be

single moded for 0 > 0.955 m; this wavelength (for

which V becomes equal to ) is referred to as the cutoff

wavelength*.

(b) From Fig. 29.2, it is easy to see that if /2 < V/2 <  (or

 < V < 2 ), we will have one symmetric and one

antisymmetric TE mode. In general, if

2m < V < (2m + 1) (29.49)

* Actually for V < , the waveguide will support one TE and one TM mode (see Sec. 29.5) and when n
I
 has a value very close to n

P
,

the two modes will have very nearly the same propagation constants.

Screen

Screen

(b)(a)

Fig. 29.6 The prism film-coupling technique for determining the (discrete) propagation constants of an
optical waveguide.

–q

Fig. 29.5 A guided mode in a step index waveguide corre-
sponds to the superposition of two plane waves
propagating at particular angles  with the
z-axis.
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we will have (m + 1) symmetric modes and m antisym-

metric modes, and if

(2m + 1) < V < (2m + 2) (29.50)

we will have (m + 1) symmetric modes and (m + 1) anti-

symmetric modes where m = 0, 1, 2,�. Thus, the total

number of modes will be the integer closest to (and

greater than) V/ .

(c) When the waveguide supports many modes (i.e., when

V >> 1), the points of intersection (in Fig. 29.2) will be

very close to  = /2, 3 /2, �.. Thus, the propagation

constants corresponding to the first few modes can be

approximately determined by the following equation:

 = m = k n
d

m0
2

1
2 2

2
− β   (m + 1) 

π
2

; V  >> 1 (29.51)

where

m = 0, 2, 4, �. correspond to symmetric modes

and

m = 1, 3, 5, �. correspond to antisymmetric modes.

PWFR2 2 �w2 wyhi�2 yp2 e

��wwi��sg2 ��i�2 sxhi�

�vexe�2 �e�iq�shi

In the above discussion, we considered the TE modes of the

waveguide. A very similar analysis can also be performed for

the TM modes. In Appendix G we have shown that for TM

modes Hy(x) satisfies the following equation:

n2(x)
2 2 2
02

1
( )

( )

ydHd
k n x

dx dxn x
Hy (x) = 0 (29.52)

For a step index waveguide [see Eq. (29.1)], n2 (x) will be

constant in each region and therefore Hy(x) will also satisfy

Eqs. (29.15) and (29.16) in the regions | x | < 
2

d  and | x | > 
2

d

respectively. Now Hy(x) is a tangential component and hence

it will be continuous at the core-cladding interface. Further,

since

Ez = 
2

0

1

( )

ydH

dxi n x
(29.53)

(see Appendix G) and since Ez(x) is a tangential component,

the continuity conditions are now

H y and
2

1 ydH

dxn
continuous at x =  d/2 (29.54)

If we incorporate these continuity conditions and use the

same procedure as in Sec. 29.2, we would get the following

transcendental equations

 tan = 

2 2
21

2 2

n V

n

for symmetric TM modes (29.55)

A similar derivation gives us

�  cot = 

2 2
21

2 2

n V

n

for antisymmetric TM modes (29.56)

where  and V have been defined earlier. One can again use a

graphical method to determine the discrete propagation con-

stants for TM modes. In terms of  the parameters b and  V, we

have

2

1

2

1 1 1
1 tan 1 =

2 2 2

n
V b V b V b

n

for symmetric TM modes (29.57)

�

2

1

2

1 1 1
1 cot 1 =

2 2 2

n
V b V b V b

n

for antisymmetric TM modes (29.58)

One now requires the value of 

2

1

2

n

n
to obtain the b-V

curves (see Fig. 29.3). Obviously if n1 has a value very close

to n2 then 

2

1

2

n

n
is very close to 1 and the propagation

constants for TM modes will be very close to the propaga-

tion constants for TE modes�this is known as the weakly

guiding approximation.

PWFS �i2 wyhi�2 yp2 e

�e�efyvsg2 sxhi�

�vexe�2 �e�iq�shi

As another example, we consider parabolic variation of

refractive index (see Sec. 3.4.1)

n2(x) = n1
2 � 2 x2 (29.59)

Thus Eq. (29.5) takes the form

2

2

yd E

dx
 + [(k2

0 n
2
1 � 2) �k2

0 
2x2] Ey = 0 (29.60)
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which can be written in the form

2

2

yd E

d
 + [  � 2] Ey = 0 (29.61)

where = x and we have chosen  = 0k . Further,

= 
2 2 2
0 1

2

k n
 = 

2 2 2
0 1

0

k n

k
(29.62)

For the wave function not to blow up at x =   (which rep-

resents the boundary condition),  must be equal to an odd

integer (see Appendix H); i.e.,

= 
2 2 2
0 1

0

k n

k
 = (2m + 1); m = 0, 1, 2, 3,� (29.63)

[Equation (29.61) is identical to the one obtained while solv-

ing the one-dimensional Schrödinger equation for the linear

harmonic oscillator problem (see, e.g., Refs. 29.5 and 29.6)].

Equation (29.63) would give us the following expression for

the discrete propagation constants:

= m = k0 n1

1/2

2
0 1

(2 1)
1

m

k n
; m = 0, 1, 2, 3,� (29.64)

The corresponding modal patterns are Hermite�Gauss func-

tions:

Ey(x) = NHm( ) exp 21

2
; m = 0, 1, 2, 3,� (29.65)

where N is a constant and Hm( ) are the Hermite polynomials:

H0( ) = 1, H1( ) = 2 ,

H2( ) = 4 2 � 2, H3( ) = 8  � 12 3,� (29.66)

Notice that the modes corresponding to even values of m

are symmetric in x and modes corresponding to odd values of

m are anti-symmetric in x. This is because of the fact that the

refractive index variation n2(x) is symmetric in x. Equations

(29.65) and (29.66) represent rigorously correct propagation

constants and field profiles (corresponding to TE modes) in

an infinitely extended parabolic index medium; of course the

refractive index distribution is itself unrealistic. A more realistic

distribution is given by (see Sec. 3.4.1)

n2(x)  x = n2
1

2

1 2
x

a
, | x | < a CORE

= n2
2 = n2

1(1 � 2 ),  | x |  > a CLADDING

(29.67)

The region | x | < a is known as the core of the waveguide

and the region | x | > a is referred to as the cladding. Thus,

= 1 2n

a
(29.68)

The waveguide parameter is given by

V = k0a 2 2
1 2n n  = k0an1 2 (29.69)

In a typical parabolic index medium,

n1 1.5, 0.01, a  20 m (29.70)

giving n2  1.485 and   1.0607  104 m�1. For discrete

guided modes we must have

n2
2 < 

2

2
0k

 < n2
1 (29.71)

and therefore the maximum value of m will correspond to

= m = min = k0n2. Indeed when the waveguide supports a

very large number of modes, the low order modes would be

accurately given by Eq. (29.64). Now when 
2

0 1k n
 << 1 and

for not too large values of m, we may carry out a binomial

expansion in Eq. (29.64) to obtain

= m  k0n1 � 
1

2
m

1n

c
n1 � 

1

2
m

1n
; m = 0, 1, 2, 3,� (29.72)

Thus, the group velocity vg of the mode will be given by

11
=

g

nd

d cv

(29.73)

independent of the mode number !!!! Thus, in this approxi-

mation, all modes travel with the same group velocity. Indeed,

using ray optics, we had shown in Sec. 3.4 that all rays take

approximately the same time to propagate through a certain

distance of a parabolic index waveguide. It is for this reason

that parabolic index waveguides are often used in fiber-optic

communication systems.

For a cladded waveguide, if we assume the validity of

Eq. (29.63), we can easily calculate the total number of

modes. Since the minimum value of  is k0n2  we will have

2 2 2
0 1 2

0

( )k n n

k
= (2mmax + 1) (29.74)

where mmaxrepresents the maximum value of m. Thus the total

number of modes is given by

N  2mmax  V (29.75)

where we have used Eqs. (29.68) and (29.69) and the fact that

there would be an equal number of TM modes. For the

parameters given by Eq. (29.70) we obtain  N  27.
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In Sec. 29.3, we had shown that for a given waveguide, if 0  is

made to go to 0, the value of V would become very large and

the waveguide will support a very large number of modes. In

this limit, we can assume all values of  to be allowed and it

will be quite appropriate to use ray optics to study the propa-

gation characteristics of the waveguide.

In this section, we will show that for a given quantum well

structure, if  is made to go to 0, the quantum well structure

will have a very large number of bound states and in this

limit, we can assume all values of energy to be allowed and it

will be quite appropriate to use classical mechanics. Further,

the one dimensional Schrodinger equation is very similar to

the wave equation for TE modes; the former leads to the

bound states of a quantum mechanical problem and the latter

leads to guided modes of a waveguide problem. Obviously,

the methodology of solving either of the equations is the

same. Indeed the modal analysis of the step-index planar

waveguide is almost identical to the procedure used for solv-

ing the one dimensional Schrodinger equation corresponding

to the symmetric potential well. Similarly, the modal analysis

of the parabolic index planar waveguide is almost identical to

the linear harmonic oscillator problem in quantum mechanics

(see, e.g., Refs. 29.5 and 29.6). Thus, it is often easier to un-

derstand a concept in quantum mechanics through fiber

optics and vice versa. Further, we can say that

The relationship between geometric and wave op-

tics is very similar to the relation between classical

and quantum mechanics. In the limit of 0  0,

wave optics goes over to ray optics and in the limit

of   0, quantum mechanics goes over to classi-

cal mechanics.

Now, for a particle of mass  the one-dimensional

Schrodinger equation is given by

2

2

d

dx
 + 

2

2
[E � V (x)]( ) = 0 (29.76)

We consider a potential energy function given by the fol-

lowing equation [cf. Eq. (29.1)]

V (x) = 
2

0 2

0;

;

d

d

x

V x
(29.77)

(see Fig. 29.7). Thus, the Schrodinger equation can be writ-

ten in the form

2

2

d

dx
 + 

2
(x) = 0; |x | < 

2

d (29.78)

2

2

d

dx
 � 2 (x) = 0;  |x | > 

2

d (29.79)

where

2 = 
2

2 E
(29.80)

and

2 = 
2

2
[V0 � E] (29.81)

Fig. 29.7 The potential energy variation as given by Eq.
29.75, the dashed horizontal lines represent the
discrete energy states�similar to the discrete
bound states in a planar optical waveguide.

As in the waveguide problem, we will solve Eqs. (29.78)

and (29.79) subject to the appropriate boundary and conti-

nuity conditions. The continuity conditions are

and 
d

dx
continuous at x =  d/2 (29.82)

Now, for a bound state, the wave function is mainly con-

fined to the film and hence their field should decay in the

region | x | > 
2

d , so that there is a large probability of finding

the particle inside the well. Thus, we must have

E < V0

When E > V0, the solutions are oscillatory in the region

| x | > 
2

d and they correspond to what are known as scattering

states. Furthermore, E cannot be less than the minimum value

of V(x) (in this case the minimum value is zero) otherwise the

boundary conditions cannot be satisfied at x =  d/2. Thus,

for bound states we must have

0 < E < V0 Bound States (29.83)

Now, when the potential energy variation is symmetric

about x = 0; that is, when

V (� x) = V (x) (29.84)

LO 6
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the solutions are either symmetric or antisymmetric functions

of x (see Problem 29.8; see also pp. 126�127 of Ref. 29.2);

thus we must have

(�x) = (x) Symmetric states (29.85)

(�x) = � (x) Antisymmetric states (29.86)

Carrying out an analysis identical to that in Sec. 29.2, we will

find that the wave function for symmetric states will be given

by Eq. (29.22) and the wave function for antisymmetric states

will be given by Eq. (29.31). Continuity of and 
d

dx
  at x =

 d/2 will give us the following equations

tan = 2 2 for symmetric states (29.87)

� cot  = 2 2 for antisymmetric states (29.88)

where

 
2

0

2

2 V d
(29.89)

For a given value of , the solutions of Eqs. (29.87) and

(29.88) will give the bound states for the potential well prob-

lem given by Eq. (29.77). Obviously, for  < /2 we will have

only bound state � similar to the condition we had for a

single mode waveguide. For given values of V0, and d, as

  0, the value of  will become large and we will have a

continuum of states implying that all energy levels are pos-

sible. Thus in the limit of  0, we have the results of

classical mechanics.

Now, when E < V0 there is a finite probability of finding

the particle in the region | x | > d/2, this region is forbidden in

classical mechanics because the total energy E is less than

the potential energy (= V0) and therefore the kinetic energy

will be negative. Similarly, in the waveguide problem the ray

undergoes total internal reflection at the core cladding

interface and a geometrical ray is not possible in the rarer

medium; on the other hand, while solving Eq. (29.16) we had

the evanescent wave in the region | x | > d/2. Indeed when a

light beam is incident on a layer of lower refractive index at

an angle of incidence greater than the critical angle, then a

part of the beam �tunnels through� the rarer medium and

appears in the third medium as shown in Fig. 29.8 (a); this

phenomenon is known as frustrated total internal reflection

(usually abbreviated as FTIR) and is a consequence of the

evanescent wave present in the rarer medium. (The tunneling

coefficient can be calculated using a procedure similar to that

discussed in Sec. 24.4.) Such a tunneling is not allowed in

geometrical optics because the beam will undergo total

internal reflection at the first interface. An almost identical

situation arises in quantum mechanics when a particle of

energy E(< V0), incident on a potential barrier (of height V0),

has a finite probability of tunneling through as shown in

Fig. 29.8 (b). Such a tunneling is not possible in classical

mechanics and, as shown in almost all text books in quantum

mechanics; the tunneling probability will go to zero when

  0.

We may mention here that in 1897, Professor Jagadish

Chandra Bose was the first to demonstrate optical tunneling

using microwaves. His apparatus is shown in Figs. 29.9 and

29.10; the two prisms shown are right-angled isosceles

prisms. Microwaves were incident normally on a 45° prism

and underwent total internal reflection at the second face of

the prism. In the presence of the second prism, optical

tunneling was observed. There was a small air-gap between

Fig. 29.8 (a) When a light beam is incident on a layer of lower refractive index at an angle of incidence greater than the
critical angle, a part of the beam tunnels through to the third medium; this phenomenon is known as frustrated
total internal reflection (usually abbreviated as FTIR) and is a consequence of the evanescent wave present in
the rarer medium. (b) A particle of energy E (< VH), incident on a potential barrier (of height VH), has a finite
probability of tunneling through the potential barrier.
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the two prisms. For detailed discussions on this, see

Refs. 29.8�29.10.

Fig. 29.9 Layout of J C Bose�s experiment demonstrating
FTIR (Frustrated Total Internal reflection); P and
P  are the right angled isoceles prisms, A and B
are two positions of the receiver. [Adapted from
Ref. 29.10].

Fig. 29.10 One of J. C. Bose�s original double-prism attenu-
ators, with adjustable air gap. [Adapted from
Ref. 29.9].

Finally we consider the linear harmonic oscillator problem

in quantum mechanics where the potential energy function is

given by

V (x) = 
1

2

2x2 (29.90)

and the Schrodinger equation [Eq. (29.76)] would become

2

2

d

d
 + [ � 2] = 0 (29.91)

where  = x and we have chosen

= so that 2E (29.92)

For the wave function not to blow up at   x =   (which

represents the boundary condition),  must be equal to an

odd integer (see Appendix H); i.e.,

= 2E  = (2m + 1); m = 0, 1, 2, 3,� (29.93)

The above equation would give us the following expres-

sion for the discrete energy eigenvalues:

E = Em = 
1

2
m ; m = 0, 1, 2, 3,� (29.94)

The relationship of the quantum mechanical oscillator with

classical oscillator is discussed in detail in Ref. 29.6 and the

relationship of ray optics in a parabolic index waveguide  with

the results obtained in modal theory is discussed in Ref. 29.2.

Problems

29.1 Consider a symmetric step-index waveguide [see Eq. (29.1)]

with n
I
 = 1.50, n

P
 = 1.46, d = 4 m operating at

H
 = 0.6328 m. Calculate the number of TE and TM

modes.

29.2 Consider TE modes in a step index planar waveguide with

d = 2.0 m, n
I
 = 1.5 and  the  value of n

P2
is chosen such

that
2

2 2
1 2nn  = 

1
. For 

H2 2
= 1 m, 0.8 m and

0.66667 m calculate (using Table 29.1) the values of b and

the corresponding value of /k
H
. Show that the values of

/k
H
 lie between n

I
 and n

P
.

29.3 Consider now a parabolic index waveguide [see Eq. (29.60)]

with n
I
 = 1.50, n

P
 = 1.46, a = 2 m operating again at

H
 = 0.6328 m. Assuming the validity of Eq. (29.57) and

that for discrete guided modes we must have nP
P
 < 

2

2
0k

 < nP
I
,

calculate the maximum value of m and the total number

of TE modes.

29.4 Consider a step index symmetric waveguide with n
I
 = 1.50,

n
P
 = 1.48 operating at 

H
 = 0.6328 m. Calculate the value

of d so that V = 6. Using Table 29.1 calculate the values of

b, the corresponding propagation constants 
0k

 and the

angles that the component waves make with the z-axis.

[Ans: d = 2.4752 m]

29.5 We consider the same waveguide as in the previous prob-

lem. At what wavelength will the value of V be equal to 3.

Using Table 29.1 calculate the value of b and the corre-

sponding propagation constant
0k

.
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29.6 (a) Consider a symmetric step-index waveguide [see Eq.

(29.1)] with n
I
 = 1.49, n

P
 = 1.46, d = 4 m operating

at 
H
 = 0.6328 m. Solve Eqs. (29.39) and (29.40)

numerically (see Ref. 29.11) to calculate the values of

0k
.

(b) Calculate the corresponding values of 
m

    [Ans: (a) The values of 
0k

 are 1.4885, 1.4839,1.4765

and 1.4668

                 (b) 
I
 2.6°; 

P
 5.2°;   7.7°; 

R
  10.1°]

29.7 (a) Consider a step index symmetric waveguide with n
I
 =

1.503, n
P
 = 1.500 and d = 4 m. For 

H
 = 1 m, calculate

the value of V and use linear interpolation of the numbers

given in Table 29.1 to calculate the value of 
0k

.

(b) If  the operating wavelength is changed to 0.5 m,

show that V = 4.771 and by linear interpolation of the

numbers given in Table 29.1 calculate the discrete

values of 
0k

 ands the corresponding angles that the

waves make with the z-axis.

[Ans: (a)
0k

  1.5016 (b) 
0k

  1.5024 and 1.5007]

29.8 In Eq. (29.5), make the transformation  x   �x and as-

suming n
P

2
(� x) = nP

2
(x) show that E

y2
(� x) satisfies the same

equation as E
y2
(x); hence we must have E

y2
(� x ) =  E

y2
(x).

Make the transformation x  � x again to prove that the

solutions are either symmetric or antisymmetric functions

of x [i.e., prove Eqs. (29.20) and (29.21)].
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At the heart of an optical communication system is the

optical fiber that acts as the transmission channel

propagating the light beam carrying the information.

According to ray optics, the light beam gets guided through

the optical fiber due to the phenomenon of total internal

reflection (often abbreviated as TIR); we had discussed this

in Chapter 28. However, for a single mode fiber (which are

now extensively used in optical communication systems), the
core diameter is very small (few microns) and ray optics does

not remain valid. Here, one has to use Maxwell�s

electromagnetic theory to study the propagation

characteristics of the (single mode) fiber. In the previous

chapter, we had carried out modal analysis of planar

waveguides which enabled us to understand the concept of

modes. In this chapter, we will carry out modal analysis of

the step index fiber that would help us in the design of a fiber

optic communication system.

QHFP fe�sg2 i��e�syx�

The simplest refractive index variation is that of a step index

fiber which is characterized by the following refractive index

distribution (see Fig. 30.1):

psfi�2y��sg�2sssX

�sxqvi2wyhi2psfi��

Chapter
 Thirty

A new era is dawning in the West, the era of light. Under city streets and beneath oceans, in

commercial skyscrapers�, a host of new technologies based on lasers, ultrapure glass fibers

and exotic new materials are challenging the wonders of conventional electronic gadgetry�..

With growing speed, the new technology promises to turn the electronic age into the age of

optics, in which gadgetry built around beams of light becomes virtually indispensable.

�TIME Magazine, October 6, 1986

n(r) = n1 0 < r < a core

= n2 r > a cladding (30.1)

LO 1: understand the modes of an optical fiber.

LO 2: derive basic equations which give us the modes of a step index fiber.

LO 3: discuss the propagation characteristics of a single mode step index fiber.

LO 4: describe pulse dispersion in single-mode fibers.

LO 5: discuss dispersion compensating fibers.

Cladding

Core

(a)

n1

n2

Core
Cladding

n1

n2

a

r

n r( )

(b)

Cladding

Core

(a)

n1

n2

Core
Cladding

n1

n2

a

r

n r( )

(b)

Fig. 30.1 (a) A step index fiber is a cylindrical structure in
which the refractive index is n1 for 0 < r < a and
n
2
 for r > a. (b) The refractive index variation of

a step index fiber.

LO 1
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where we are using the cylindrical system of coordinates

(r, , z). In actual fibers

n n

n
1 2

2

−
 0.01 (30.2)

and this allows use of the so-called scalar wave approxima-

tion (also known as the weakly guiding approximation
*
). In

this approximation, the modes are assumed to be nearly

transverse and can have an arbitrary state of polarization.

Thus, the two independent sets of modes can be assumed to

be x-polarized and y-polarized, and in the weakly guiding ap-

proximation, they have the same propagation constants.

These are usually referred to as LP modes (LP stands for lin-

early polarized). We may compare this with the discussion in

Sec. 29.5 where we mentioned that when n1  n2, the modes

are nearly transverse and the propagation constant of the TE

and TM modes are almost equal. In the weakly guiding ap-

proximation, the transverse component of the electric field

(Ex or Ey) satisfies the scalar wave equation

2 = 0 0n2 ∂

∂

2

2

Ψ

t
 = 

n

c t

2

2

2

2

∂

∂

Ψ
(30.3)

where c =
1

0ε μ0

%
'&

(
0)

  3  108 m/s is the speed of light in free

space. In most practical fibers n2 depends only on the cylin-

drical coordinate r and therefore it is convenient to use the

cylindrical system of coordinates (r, , z) and write the solu-

tion of Eq. (30.3) in the form

(r, , z, t) = (r, )ei( t� z) (30.4)

where  is the angular frequency and  is known as the propa-

gation constant. The above equation defines the modes of the

system. Since (r, ) depends only on the transverse coordi-

nates r and ,

the modes represent transverse field configurations

that do not change as they propagate through the

optical fiber except for a phase change.

In the cylindrical system of coordinates (r, , z) we have

2 = 
∂

∂
+

∂

∂
+

∂

∂
+
∂

∂

2

2 2

2

2

2

2

1 1Ψ Ψ Ψ Ψ

r r r r zφ
(30.5)

Now, from Eq. (30.4) it readily follows that

∂

∂

2

2

Ψ

t
= � 2  = � 2 (r, )ei( t� z) (30.6)

and

∂

∂

2

2

Ψ

z
= � 2  = � 2 (r, )ei ( t� z) (30.7)

Substituting Eq. (30.4) in Eq. (30.3) and using Eqs. (30.5)�

(30.7), we obtain

2

2 2

2

2

1 1

r r r r
 + [k0

2n
2
(r) � 

2
]  = 0 (30.8)

where

k0 = 
ω
c

 = 
2

0

π
λ

is the free space wave number. Because the medium has

cylindrical symmetry, i.e., n2 depends only on the cylindrical

coordinate r, we can solve Eq. (30.8) by the method of sepa-

ration of variables:

(r, ) = R(r) ( )

On substituting and dividing by (r, )/r2, we obtain

r

R

d R

dr r

d R

dr

2 2

2

1
+

%

'&
(

0)
+r2[n2(r)k0

2 � 2] = �
1

2

2Φ
Φd

dφ
 = l2 (30.9)

Thus the variables have separated out and we have set each

side equal to a constant (= l2). Solving the equation depend-

ing only on , we find that the  dependence will be of the

form cos l  or sin l  and for the function to be single valued

[i.e., for (  + 2 ) = ( )] we must have

l = 0, 1, 2,�, etc.

Negative values of l correspond to the same field distribu-

tion. Thus the complete transverse field is given by

(r, , z, t) = R(r)ei ( t� z)
cos

sin

l

l

φ

φ

%
'&

(
0)

; l = 0, 1, 2,� (30.10)

where R(r) satisfied the radial part of the equation

r2 d R

dr

2

2
 + r

d R

dr
 + {[k0

2n2(r) � 2]r2 � l2}R = 0 (30.11)

Since for each value of l, there can be two independent

states of polarization, modes with l  1 are four-fold degener-

ate (corresponding to two orthogonal polarization states and

to the  dependence being cos l  or sin l ). Modes with

l = 0 are  independent and have two-fold degeneracy**.

* For more details about the weakly guiding approximation see, e.g., Refs. 30.1 and 30.2.
** The word �degeneracy� means that for the same value of the propagation constant, there are more than one field profiles. For

l = 0, we will have two independent state of polarization. Thus, the mode is said to be two-fold degenerate. On the other hand, for

l = 1, 2, 3� the mode will be four-fold degenerate because (for the same value of 2) we will have two field profiles: one propor-

tional to cos l  and the other to sin l  and for each field profile, we will again have two independent states of polarization.
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We may mention here that on the right hand side of Eq. (30.9)

we cannot set it equal to a negative constant, because then

the  dependence of the field will not be single valued. In the

next section, we have given the solution of Eq. (30.11) for a

step index profile. However, for an arbitrary cylindrically sym-

metric profile having a refractive index that decreases

monotonically from a value n1 on the axis to a constant value

n2 beyond the core-cladding interface r = a [see Fig. 30.2],

QHFQ q�shih2 wyhi�2 yp2 e

��i�2 sxhi�2 psfi�

In this section, we obtain the modal fields and the corre-

sponding propagation constants for guided modes in a step

index fiber for which the refractive index variation is given by

Eq. (30.1). For such a fiber, for guided modes [for which

n2
2 < 

β 2

0
2

k
 < n1

2], Eq. (30.11) can be written in the form

r2 d R

dr
r

d R

dr
U

r

a
l

2

2
2

2

2
2+ + −

%
'&

(
0)

R = 0; 0 < r < a (30.14)

and

r2 d R

dr
r

d R

dr
W

r

a
l

2

2
2

2

2
2+ − +

%
'&

(
0)

R = 0; r > a (30.15)

where

U  a k n0
2

1
2 2− β (30.16)

and

W  a k nβ 2
0
2

2
2− (30.17)

Because of Eq. (30.12), both U and W are real. The normalized

waveguide parameter V is defined by

V = U W
2 2+  = k0a n n1

2
2
2− (30.18)

In terms of the wavelength

V = 
2

0
1
2

2
2π

λ
a n n− (30.19)

The waveguide parameter V is an extremely important quan-

tity characterizing an optical fiber. It is convenient to define

the normalized propagation constant

b = 

β 2

0
2 2

2

1
2

2
2

k
n

n n

−

−
 = 

W

V

2

2
(30.20)

Thus

W = V b (30.21)

and

U = V 1 − b (30.22)

From Eq. (30.12) we find that for guided modes 0 < b < 1.

The two independent solutions of Eq. (30.14) are Jl(Ur/a) and

Yl(Ur/a) [see, e.g., Refs. 30.4�30.6]. However, the solution

Yl(Ur/a) has to be rejected since it diverges as r  0. The

solutions of Eq. (30.15) are the modified Bessel functions

Kl(Wr/a) and Il(Wr/a); the solution Il(Wr/a) has to be rejected

* For more details about radiation modes and also excitation of leaky modes, see, e.g. Refs. 30.1 and 30.3.

n1

n2

a
r

Core
Cladding

n r( )

Fig. 30.2 A cylindrically symmetric refractive index pro-
file having a refractive index that decreases
monotonically from a value n

1
 on the axis to a

constant value n
2
 beyond the core-cladding in-

terface r = a.

we can make the general observation that the solutions of

Eq. (30.11) can be divided into two distinct classes [compare

with the discussions in Sec. 29.2]; the first class of solutions

correspond to

n 2
2 < 

β 2

0
2

k
 < n1

2 GUIDED MODES (30.12)

For 2 lying in the above range, the field R(r) are oscilla-

tory in the core and decay in the cladding and 2
 assumes

only discrete values. These are known as the guided modes

of the waveguide. For a given value of l, there will be a finite

number of guided modes, these are designated as LPlm
modes (m = 1, 2, 3,�). The second class of solutions corre-

spond to

2 < k0
2n2

2 RADIATION MODES (30.13)

For such  values, the field are oscillatory even in the

cladding and  can assume a continuum of values. These are

known as the radiation modes*.

We will discuss in detail the guided modes of a step index

fiber.
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since it diverges as r   . Thus, for guided modes, the

transverse dependence of the modal field is given by

(r, ) = 

A

J U
J

Ur

a

l

l
r a

A

K W
K

Wr

a

l

l
r a

l
l

l
l

( )

cos

sin
;

( )

cos

sin
;

%
'

(
0
1

3
2

4

6
5

%
'

(
0
1

3
2

4

6
5

7

8
uu

9
u
u

(30.23)

where A is a constant and we have assumed the continuity of

 at the core-cladding interface (r = a). Continuity of / r

at r = a and use of identities involving Bessel functions

[see, e.g., Ref. 30.3] give us the following transcendental

equations which determine the allowed discrete values of the

normalized propagation constant b of the guided LPlm
modes:

V(1 � b)1/2
J V b

J V b

l

l

− −

−

1
1 2

1 2

1

1

[ ( ) ]

[ ( ) ]

/

/
= �Vb1/2

K Vb

K V b

l

l

−1
1 2

1 2

[ ]

[ ]

/

/
; l  1

(30.24)

and

V(1 � b)1/2 J V b

J V b

1
1 2

0
1 2

1

1

[ ( ) ]

[ ( ) ]

/

/

−

−
= Vb1/2 K Vb

K Vb

1
1 2

0
1 2

[ ]

[ ]

/

/
; l = 0

(30.25)

The solution of the above transcendental equations will

give us universal curves describing the dependence of b (and

therefore of U and W) on V. For a given value of l, there will

be a finite number of solutions and the mth solution (m = 1, 2,

3,�) is referred to as the LPlm mode. The variation of b with

V form a set of universal curves, which are plotted in

Fig. 30.3. Table 30.1 gives the numerical values of b

(corresponding to the LP01 mode) for values of V lying

between 1.0 and 2.5.

30.3.1 Cut-off Frequencies

From Fig. 30.3, we see that the value of b decreases as we de-

crease the value of V. For every mode, there is a value of V

when b becomes zero (i.e., when /k0 becomes equal to n2)

and the mode ceases to be a guided mode. The value of V for

which b becomes zero is known as the cut-off frequency of

the mode. Now, for a given step-index fiber, the value of V de-

creases as we increase the wavelength [see Eq. (30.19)] and

the value of the wavelength at which b becomes zero is

known as the cut-off wavelength for that mode.

We can see from Eq. (30.25) that the cutoff frequencies of

the LP0m modes will occur at the zeroes of J1(V), i.e., when

V = 0 (LP01), 3.8317 (LP02), 7.0156 (LP03), 10.1735 (LP04),�.

Similarly, we can see from Eq. (30.24) that the

cutoff frequencies of the LP1m modes will occur at the zeroes

of J0(V), i.e., when V = 2.4048 (LP11), 5.5201 (LP12), 8.6537

(LP13), 11.7915 (LP14),�;

cut-off frequencies of the LP2m modes occur at the zeroes of

J1(V) (excluding the value V = 0), i.e., when V = 3.8317 (LP21),

7.0156 (LP22), 10.1735 (LP23),�.

For l  1, cut-off frequencies of the LPlm modes will occur

at the zeroes of Jl�1(V) (excluding the value V = 0); thus*

cut-off frequencies of the LP3m modes occur when

V = 5.1356 (LP31), 8.4172 (LP32), 11.6198 (LP33),�.

cut-off frequencies of the LP4m modes occur when

V = 6.3802 (LP41), 9.7610 (LP42), 13.015 (LP43),�.

* The values of the zeros of the Bessel functions are taken from Ref. 30.9.

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

b

V

LP01

LP11 LP21

LP02

LP12

LP22

Fig. 30.3 Variation of the normalized propagation con-
stant b with normalized waveguide parameter V
corresponding to a few lower order modes
[Adapted from Ref. 30.2].

Table 30.1 Values of b, (bV)  and V(bV)  vs V for a step

index fiber; the values in the second, fourth

and fifth columns are generated by solving

Eq. (30.25) for a step index fiber using the

software given in Refs. 30.7 and 30.8.

V b b [using Eq. (30.30)]
d

dV
(bV) V(bV)

1.5 0.229248 0.229249 0.849 1.063

1.6 0.270063 0.270712 0.913 0.919

1.7 0.309467 0.310157 0.965 0.785

1.8 0.347068 0.347471 1.006 0.664

1.9 0.382660 0.382653 1.039 0.556

2.0 0.416163 0.415767 1.065 0.462

2.1 0.447581 0.446911 1.086 0.380

2.2 0.476969 0.476200 1.102 0.309

2.3 0.504416 0.503754 1.114 0.248

2.4 0.530026 0.529693 1.124 0.195

2.5 0.553915 0.554131
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cut-off frequencies of the LP5m modes occur when

V = 7.5883 (LP51), 11.0647 (LP52),�.

cut-off frequencies of the LP6m modes occur when

V = 8.7715 (LP61), 12.3386 (LP62),,�

Thus, as can also be seen from the figure:

For 0 < V < 2.4048 we will only have the LP01 mode (which

is referred to as the fundamental mode); V = 2.4048 repre-

sents the cut-off of the LP11 mode where (for the LP11 mode)

b becomes 0, i.e., /k0 becomes equal to n2.

For 2.4048 < V < 3.8317 we will only have LP01 and LP11

modes; V = 3.8317 represents the cut-off of the LP02 and the

LP21 modes where (for the LP02 and the LP21 modes) b be-

comes 0, i.e., /k0 becomes equal to n2.

For 3.8317 < V < 5.1356 we will only have LP01, LP02, LP11

and LP21 modes; V = 5.1356 represents the cutoff of the LP31

mode.

Thus at a particular V value, the fiber can support only a

finite number of modes. We must mention here that each

LP0m mode is two-fold degenerate; i.e., there are two indepen-

dent modes with the same value of b, corresponding to two

independent states of polarization. Further each LPlm mode

(l > 1) is four-fold degenerate; i.e., there are four independent

modes with the same value of b, corresponding to -depen-

dence of cos l  and sin l  with each mode having two

independent states of polarization.

Example 30.1 We consider a step index fiber with n1 = 1.5,

n2 = 1.49 and the core radius a = 3.0 m. Thus,

V = 
2

0
1
2

2
2π

λ
a n n−  = 

3 2594

0

.

λ

where 0 is measured in m. Thus the cut-off wavelength of the

LP11 mode will be 1.355 m, cut-off wavelengths of the LP21 and

LP
02 

modes will be 0.8506 m, cut-off wavelength of the LP
31 

mode

will be 0.6347 m, �..

The LP
01 

mode has no cutoff. Thus for 
0 

> 1.355 m, we will

only have the LP
01 

mode and for 0.8506 m < 
0
 < 1.355 m, we

will have LP01 and LP11 modes. For 0.6347 m < 0 < 0.8506 m,

we will have LP01, LP11, LP21 and LP02 modes.

A manufacturer would always specify the cut-off wavelength of

the fiber; that cut-off wavelength would correspond to that of the

LP11 mode. In the above example, the cut-off wavelength would be

1.355 m because for all wavelengths greater than this, the fiber

will be single moded supporting only the LP01 mode. Thus,

the minimum wavelength for which we will have only

the LP
HI

 mode (which, for a step-index fiber will cor-

respond to V = 2.4045)*  is known as the cut-off

wavelength and is denoted by 
c
.

It is 
c
 that is almost always mentioned in the data sheet of a

silica fiber [see. e.g., Ref. 30.11].

Example 30.2 We consider a step index fiber with n
1
 = 1.5,

n
2
 = 1.48 and core radius a = 6.0 m. Assuming the operating wave-

length 
0 
= 1.3 m, we get V = 7.0796. Thus we will have two each

of LP
01

, LP
02

 and LP
03

 modes, four each of LP
11

, LP
12

, LP
21

, LP
22

,

LP31 and LP41 modes and we will have a total of 30 modes. Now the

total number of modes in a highly multi-moded (V 10) step index

fiber is approximately given by

N  
1

2
V2 (30.26)

For V = 7.0796, we get N  25. For higher value of V, the values

given by Eq. (30.26) will become closer to the exact value (see

Problem 30.3).

30.3.2 Power Law Profile
We may mention here that a broad class of multi-moded

graded index fibers can be described by the following refrac-

tive index distribution (see Fig. 30.4):

n2(r) = n1
2 1 2− %

'
(
0

1

32
4

65
Δ

r

a

q

; 0 < r < a

= n2
2 = n1

2(1 � 2 ); r > a
(30.27)

where r corresponds to a cylindrical radial coordinate, n1 rep-

resents the value of the refractive index on the axis (i.e., at

r = 0), and n2 represents the refractive index of the cladding.

Equation (30.27) describes what is usually referred to as a

power law profile or a q-profile; q = 1, q = 2 and q =  corre-

spond to the linear, parabolic, and step index profiles,

respectively (see Fig. 30.4). The total number of modes in a

highly multimoded graded index optical fiber characterized by

Eq. (30.27) are approximately given by [Ref. 30.12 (see also

Ref. 30.3)]

*For a graded index fiber with parabolic variation of refractive index in the core, the cut-off wavelength will correspond to V = 3.518

(Ref. 30.10).

2
4

8

q = 1

¥
n1

2

n2
2

n2( )r

0 a
r

Fig. 30.4 Power law profiles for the refractive index dis-
tribution given by Eq. (30.27).
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N  
q

q2 2( )+
V 2 (30.28)

Thus, a parabolic index fiber (q = 2) with V = 10 will sup-

port approximately 25 modes. Similarly, a step index fiber

(q = ) with V = 10 will support approximately 50 modes.

When the fiber supports such a large number of modes,

then use of ray optics to calculate pulse dispersion would

give  accurate results. Now, in multimode fibers, in addition

to the material dispersion (see Sec. 28.10.3) we also have

intermodal dispersion which arises due to different modes

traveling with different group velocities. In Ref. 30.12 (see

also Ref. 30.3), it has been shown that for a highly multi-

moded graded index optical fiber, the value of intermodal

dispersion is very nearly the same as obtained from ray

analysis. In Chapter 28, we had used ray optics to calculate

intermodal dispersion in step index and parabolic index fi-

bers. Such an analysis will give accurate results for a highly

multimoded fiber with V  10.

QHFR �sxqviEwyhi2 psfi�

The LP01 mode (for which l = 0 and m = 1) is known as the

fundamental mode. As mentioned earlier, for a step index fi-

ber when 0 < V < 2.4048, we will only have the fundamental

mode. When this happens, the fiber is referred to as a single-

mode fiber which are extensively used in optical fiber

communication systems. For the fundamental mode, the

actual numerical values of b for various values of V are tabu-

lated in Table 30.1. Thus for a given step index fiber

operating at a particular wavelength, we just have to calcu-

late the value of V and then use simple interpolation to

calculate the value of b from Table 30.1. From the value of b,

one can obtain the corresponding propagation constant by

using the following equation [see Eq. (30.20)]:

β
k0

= [ ( )]n b n n2
2

1
2

2
2+ −   n b2 1 2+ ( )Δ (30.29)

where in the last step we have assumed n1  n2.

Example 30.3 We consider a step index fiber with n
2
 =

1.447,  = 0.003 and a = 4.2 m giving V = 2.958/ 0, where 0 is

measured in m. Thus for 0 > 1.23 m, the fiber will be single

moded. The cut-off wavelength 
c
 (for which V = 2.4045) is 1.23

m. We assume the operating wavelength 
0
 = 1.479 m so that V

= 2.0 and therefore (from Table 30.1)

b  0.4162
β
k0

  n b2 1 2+ ( )Δ   1.4488

 6.1549  106 m�1

Example 30.4 In continuation of the previous problem,

we consider the same step index fiber [n2 = 1.447,  = 0.003 and

a = 4.2 m] now operating at 0 = 1.55 m. Thus, V  1.908 and

we again have a single mode fiber. Using Table 30.1 and linear inter-

polation, we get

b  0.382660 + 
0 0 382660

01

.416163 .

.

−
  0.008

 0.38534

β
k0

 n b2 1 2+ ( )Δ   1.4487

 5.8725  106 m�1

Example 30.5 For reasons that will be discussed later, the

fibers used in IV generation optical communication systems (oper-

ating at 1.55 m) have a small value of core radius and a large value

of . A typical fiber (operating at 0  1.55 m) would have

n2 = 1.444,  = 0.0075 and a = 2.3 m. Thus, at 0 = 1.55 m

V = 
2

155

π
.

  2.3  1.444  0 015.   1.649

The fiber will be single moded at 1.55 m and

b  0.270063 + 
0 309467 0 270063

01

. .

.

−
  0.049 = 0.28937

β
k0

 n b2 1 2+ ( )Δ   1.44713

Further, for the given fiber, we may write

V = 
2 556

0

.

λ

and therefore the cut-off wavelength will be

c
= 2.556/2.4045  1.06 m.

30.4.1 Empirical Formula for the
Normalized Propagataion Constant

For a single mode step index fiber, a convenient empirical

formula for b(V) is given by

b(V) = A
B

V
−%

'
(
0

2

; 1.5 �  V � 2.5 (30.30)

with A  1.1428 and B  0.996. The above formula gives val-

ues of b which are within about 0.2% of the exact values

(see Table 30.1).

30.4.2 Spot Size of the Fundamental
Mode

As mentioned earlier, a single mode fiber supports only one

mode that propagates through the fiber; this is also referred

to as the fundamental mode of the fiber. The transverse field

LO 3
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distribution associated with the fundamental mode of a

single mode fiber is an extremely important quantity and it

determines various important parameters like splice loss at

joints, launching efficiencies, bending loss, etc. For a step

index fiber, one has analytical expression for the fundamental

field distribution in terms of Bessel functions (see Sec. 30.3).

For most single mode fibers, the fundamental mode field dis-

tributions can be well approximated by a Gaussian function,

which may be written in the form

(x, y) = A e

x y

w
−

+2 2

2

 = A e

r

w
−

2

2

(30.31)

where w is referred to as the spot size of the mode field pat-

tern and 2w is called the mode field diameter (MFD). MFD is

a very important characteristic of a single mode optical fiber.

For a step index fiber, one has the following empirical expres-

sion for w (see Ref. 30.13):

w

a
 0.65 + 

1619 2 879
3 2 6

. .
/

V V
+ ; 0.8  V  2.5 (30.32)

where a is the core radius. Many single mode fibers used in

optical communication systems do not have a step variation

of refractive index; in fact, they often have very special

refractive index distribution. Nevertheless, the modal field is

very nearly Gaussian and one usually describes the fiber

though the MFD. We may mention here that the light coming

out of a He-Ne laser (or of a laser pointer) has a transverse

intensity distribution very similar to that coming out from a

single mode fiber except that the spot size is much larger.

Example 30.6 Consider a step index fiber (operating at

1300 nm) with n2 = 1.447,  = 0.003 and a = 4.2 m (see Example

30.2). Thus V  2.28 giving w  4.8 m. The same fiber will have

a V value of 1.908 at 0 = 1550 nm giving a value of the spot size

 5.5 m. Thus, the spot size increases with wavelength.

Example 30.7 For a step index fiber (operating at 1550 nm)

with n
2
 = 1.444, = 0.0075 and a = 2.3 m (see Example 30.5).

Thus V  1.65 giving w  3.6 m. The same fiber will have a V value

of 1.97 at 0 = 1300 nm giving a value of the spot size 3.0 m.

30.4.3 Splice Loss Due To Transverse
Misalignment

The most common misalignment at a joint between two simi-

lar fibers is the transverse misalignment similar to that shown

in Fig. 30.5. Corresponding to a transverse misalignment of u

the loss in decibels is given by (see Problem 30.6)

Fig. 30.5 A transverse alignment between two fibers
would result in a loss of the optical beam.

(dB)  4.34 (u/w)
2 (30.33)

Thus, a larger value of w will lead to a greater tolerance to

transverse misalignment. For w  5 m, and a transverse

offset of 1 m the loss at the joint will be approximately

0.17 dB; on the other and, for w  3 m, a transverse offset of

1 m will result in a loss of about 0.5 dB.

Example 30.8 For a single mode fiber operating at 1300 nm,

w = 5 m, and if the splice loss is to be below 0.1 dB, then from

Eq. (30.18) we obtain u < 0.76 m. Thus, for a low-loss joint, the

transverse alignment is very critical and connectors for single-mode

fibers require precision matching and positioning for achieving low

loss.

Many data sheets describing a commercially available

single mode fiber would not always give the actual refractive

index profile. They would instead give the MFD may be at

more than one wavelength. They would also give the cutoff

wavelength (see for example Ref. 30.11). For example, the

standard single mode fiber designated as G.652 fiber when

operating at 1.3 m has a MFD of 9.2  0.4 m; the same fiber

when operating at 1.55 m has a MFD of 10.4  0.8 m.

QHFS ��v�i2hs��i��syx

sx2�sxqviEwyhi2psfi��

In single-mode fibers, there is only one mode and there is no

intermodal dispersion. However, we have (in addition to ma-

terial dispersion) waveguide dispersion which is

characteristic of the transverse refractive index variation*. In

Sec. 28.10.3 we have discussed material dispersion. In this

section, we will show that even if n1 and n2 are independent

of wavelength (i.e., even if there is no material dispersion),

the group velocity of a particular mode will depend on the

wavelength. This leads to what is known as the waveguide

dispersion.

* At very high bit rates, we also have what is known as polarization mode dispersion (abbreviated as PMD). This may arise due to

many factors, for example, if there is slight ellipticity in the core of the fiber, then the two states of polarization travel with slightly

different group velocities leading to what is known as PMD. However, this phenomenon becomes important at very high bit rates �

above 40 Gb/s. For a nice overview of PMD, see Ref. 30.14; for more details see references therein.
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Since  represents the propagation constant, the group

velocity of a particular mode is given by [see the analysis in

Secs. 10.2 and 10.3]:

1

gv

= 
d

d

β
ω

(30.34)

Now from Eq. (30.20)

b = 

β β
k

n

n n

k
n

n n
0

2

1 2

0
2

1 2

−

−

+

+
(30.35)

Since for a guided mode /k0 lies between n1 and n2, and

since for all practical single mode fibers n1 is very close to n2

(see Examples 30.6 and 30.7), we may write the above equa-

tion as

b = 

β
k

n

n n
0

2

1 2

−

−
(30.36)

Thus,

= 
ω
c

[n2 + (n1 � n2)b(V)] (30.37)

We will assume that n1 and n2 are independent of  and cal-

culate group velocity:

1

gv
 = 

d

d

β
ω

 = 
1

c
[n2 + (n1 � n2)b(V)] + 

ω
c

(n1 � n2)
db

dV

dV

d
⋅
ω

(30.38)

Now,

V = 
2

0

π
λ

a n n1
2

2
2− = 

ω
c

a n n1
2

2
2− (30.39)

Thus,

dV

dω
= 

V

ω
(30.40)

implying

1

gv
=
1

c
[n2 + (n1� n2)b(V)] +

1

c
(n1 � n2)V

db

dV
(30.41)

or

1

gv
= 

n

c

n n

c

d

dV
bV2 1 2+

− 1

3
2

4

6
5( ) (30.42)

Thus, the time taken by a pulse to traverse length L of the

fiber is given by

= 
g

L

v

 = 
L

c
n2 1 +

1

3
2

4

6
5Δ

d

dV
bV( ) (30.43)

where

 
n n

n

1
2

2
2

1
2

2

−
  

n n

n
1 2

2

−
(30.44)

and we have assumed n1  n2 . From Eq. (30.43) we see that

even if n1 and n2 are independent of wavelength (i.e., if there

is no material dispersion), the group velocity (and hence )

will depend on  because, as obvious from Fig. 30.3 [and

also Eq. (30.30)] b depends on V. This leads to what is known

as the waveguide dispersion. Physically this arises due to the

fact that the spot size depends on the wavelength (see Ex-

amples 30.6 and 30.7). For a source having a spectral width

0, the corresponding waveguide dispersion is given by

w = 
d

d

τ
λ0

0  
L

c
n2

d

dV

2

2
(bV)

dV

dλ 0
0 (30.45)

From Eq. (30.39) we find

dV

dλ0

= �
V

λ 0

(30.46)

Thus,

w = �
Ln

c
2Δ f (V) 0 (30.47)

where

f(V)  V
d

dV

2

2
(bV) (30.48)

For a step index fiber, b as a function of V is an universal

curve; in fact this is true for a fiber with a power law profile

given by Eq. (30.27). Therefore, the variation of f(V) with V

will also be universal (see Table 30.1). A convenient empirical

formula for a step index fiber is given by [Ref. 30.15]

f (V)  0.080 + 0.549(2.834 � V)2; 1.3 < V < 2.4 (30.49)

A comparison between the above empirical values with the

exact values have been made in Ref. 30.3. Thus,

w = �
L

c
n2 [0.080 + 0.549(2.834 � V)2]

Δλ

λ
0

0

for 1.3 < V < 2.4 (30.50)

As in Sec. 28.10.3, we assume 0 = 1nm = 10�9 m and

L = 1 km = 1000 m, and define the dispersion coefficient as

(see Sec.28.10.3):

Dw  
Δ

Δ

τ

λ
w

L 0

  �
n2

03

Δ

λ
  107 

[0.080 + 0.549(2.834 � V)2] ps/km.nm (30.51)

where 0 is measured in nanometers and we have assumed

c = 3  10�4 m/ps [meters per picosecond]. The quantity Dw

is referred as the waveguide dispersion coefficient (because

it is due to the waveguiding properties of the fiber) and

hence the subscript w on D. In the single-mode regime, the

quantity within the bracket in Eq. (30.51) is usually positive.

Hence the waveguide dispersion is negative indicating that

longer wavelengths travel faster. Since the sign of material
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dispersion depends on the operating wavelength region, it is

possible that the two effects namely, material and waveguide

dispersions cancel each other at a certain wavelength. Such

a wavelength, which is a very important parameter of single-

mode fibers, is referred to as the zero-dispersion wavelength

( ZD).

The total dispersion is given by the sum of material and

waveguide dispersions*:

Dtot = Dm + Dw (30.52)

Let us consider the two single mode fibers discussed in

Examples 30.6 and 30.7.

30.5.1 Conventional Single Mode
(G 652) Fibers

We consider the fiber discussed in Example 30.6 for which

n2 = 1.447,  = 0.003 and a = 4.2 m so that V = 2958/ 0,

where 0 is measured in nanometers. Substituting in

Eq. (30.51), we get

Dw =�
1 10

4

0

.447 ×

λ
0 080 0 549 2 834

2958

0

2

. . .+ −
%
'&

(
0)

1

3
2
2

4

6
5
5λ

ps/km.nm

Elementary calculations show that at 0  1300 nm,

Dw = �2.8 ps/km.nm. The variations of Dm, Dw and Dtot with

0 are shown in Fig. 30.6; the variation of Dm is calculated by

* Strictly speaking, material and waveguide dispersions are not additive. For a given variation of n2(r), one really should solve Eq. (30.11)

at different wavelengths taking into account the wavelength dependence of the refractive index and determine  as a function of 0. This

is indeed done in the software developed in Ref. 30.8.
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Fig. 30.7 The wavelength dependence of Dm, Dw and Dtot

for a typical dispersion shifted fiber (DSF) with
parameters as given in Example 30.7. The zero
dispersion wavelength is around 1550 nm.

–30

–20

–10

0

10

20

30

D
is

p
e

rs
io

n
 (

p
s
/n

m
-k

m
)

1.2 1.3 1.4 1.5 1.61.1

l0 ( m)m

CSF

Dtot

Dm

Dw

Fig. 30.6 The wavelength dependence of Dm, Dw and Dtot

for a typical conventional single mode fiber
(CSF) with parameters as given in Example 30.6.
The total dispersion passes through zero around

0  1300 nm which is known as zero dispersion
wavelength.

using Eq. (28.33) and Table 10.1. The total dispersion passes

through zero around 0  1300 nm which is the zero total dis-

persion wavelength and represents an extremely important

parameter. Such fibers which have zero dispersion around 0

 1300 nm are known as conventional single mode (or G 652)

fibers and are extensively used in optical communication sys-

tems.

30.5.2 Dispersion Shifted (G 653) Fibers

We next consider the fiber discussed in Example 24.7 for

which n2 = 1.444,  = 0.0075 and a = 2.3 m, so that

V = 2556/ 0, where, once again, 0 is measured in nanometers.

Substituting in Eq. (30.51), we get

Dw = �
3 61 10

4

0

. ×

λ
 

0 080 0 549 2 834
2556

0

2

. . .+ −
%
'&

(
0)

1

3
2
2

4

6
5
5λ
ps/km.nm

Thus at 0  1550 nm,

Dw = �20 ps/km.nm

On the other hand, the material dispersion at this wavelength

is given by [see Table 10.1]

Dm = +20 ps/km.nm
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We therefore see that the two expressions are of opposite

sign and almost cancel each other. Physically, because of

waveguide dispersion, longer wavelengths travel slower than

shorter wavelengths and because of material dispersion,

longer wavelengths travel faster than shorter wavelengths�

the two effects compensate each other resulting in zero total

dispersion around 1550 nm. The corresponding variation of

Dm, Dw and Dtot with wavelength is shown in Fig. 30.7. As

can be seen from the figure, we have been able to shift the

zero dispersion wavelength by changing the fiber param-

eters; these are known as the dispersion shifted fibers. Thus

dispersion shifted fibers are those fibers whose total disper-

sion becomes zero at a shifted wavelength. We should

mention here that dispersion shifted fibers (which are abbre-

viated as DSF and referred to as G 653 fibers) usually do not

have a step variation of refractive index.

QHFT hs��i��syx

gyw�ix�e�sxq2 psfi��

In many countries, there already exist millions of kilometers

of conventional single mode fibers (of the type discussed in

Example 30.6) in the underground ducts operating at 1310 nm.

As mentioned in Sec. 30.5.1, these fibers have very low dis-

persions around 1310 nm. One could significantly increase

the transmission capacity of these system by operating

these fibers at 1550 nm (where the loss is extremely small)

and we can have the added advantage of using EDFA

(Erbium Doped Fiber Amplifiers) for optical amplification in

this wavelength range (see Sec. 27.1.3). However, if we oper-

ate the conventional single mode fibers at 1550 nm, we will have

a significant residual dispersion; and as discussed in

Sec. 30.5.1, this residual dispersion would be about

20 ps/km.nm. Such a large dispersion would result in signifi-

cant decrease in the information carrying capacity of the

communication system. On the other hand, replacing the ex-

isting conventional single mode fibers by dispersion shifted

fibers (DSF�s) would involve huge costs. As such, in recent

years there has been considerable amount of work in

upgradation of the installed 1310 nm optimized optical fiber

links for operation at 1550 nm. This is achieved by develop-

ing fibers with very large negative dispersion coefficients, a

few hundred meters to a kilometer of which can be used to

compensate for dispersion over tens of kilometers of the

fiber in the link.

In Secs. 30.5.1 and 30.5.2, we have seen that by changing

the refractive index profile, we can alter the waveguide

dispersion and hence the total dispersion. Indeed, it is

possible to have specially designed fibers whose dispersion

coefficient (Dtot) is large and negative at 1550 nm. A typical

refractive index profile, which is characterized by Dtot  �

1800 ps/km.nm at 1550 nm, is shown in Fig. 30.8 [Ref. 30.16]*.

These types of fibers are known as dispersion compensating

fibers (DCF�s). A short length of DCF can be used in

conjunction with the 1310 nm optimized fiber link so as to

have small total dispersion value at the end of the link (see

Fig. 30.9).
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Fig. 30.8 The refractive index profile of a typical dispersion
compensating fiber (DCF) characterized by
D

tot
  �200 ps/km.nm at 1550 nm [Adapted from

Ref. 30.16].

D1 (> 0)

D2 (< 0)
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Principle of dispersion compensation

D L D L1 1 2 2+ = 0

Fig. 30.9 A short length of a DCF can be used in conjunc-
tion with the conventional single mode fiber
(CSF) so as to have small dispersion value at the
end of the link.

In order to understand this phenomenon, we have plotted

in Fig. 30.10 (as a solid curve) a typical variation of the group

velocity vg with wavelength for a conventional single mode

fiber (CSF) with zero dispersion around 1300 nm wavelength.

As can be seen from the figure, vg attains a maximum value

at the zero dispersion wavelength and on either side, it

* The refractive index variation used in Ref. 30.16 is based on the refractive index profile suggested in Ref. 30.17.

LO 5
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monotonically decreases with wavelength. Thus, if the

central wavelength of the pulse is around 1550 nm, then the

red components of the pulse (i.e., longer wavelengths) will

travel slower than the blue components (i.e., smaller

wavelengths) of the pulse. Because of this, the pulse will get

broadened. Now, after propagating through a CSF for a

certain length L1, the pulse is allowed to propagate through

a length L2 of the DCF in which the group velocity vg varies

as shown by the dashed curve in Fig. 30.10. The red

components (i.e. longer wavelengths) will now travel faster

than the blue components and the pulse will tend to reshape

itself into its original form. Indeed if the lengths of the two

fibers (L1 and L2) are such that

D1 L1 + D2 L2 = 0 (30.53)

then the pulse emanating from the second fiber will be almost

identical to the pulse entering the first fiber as shown in

Fig. 30.9.

We may mention here that the latest trend in optical com-

munication has been to use DWDM (Dense Wavelength

Division Multiplexed) systems in which many closely spaced

wavelengths (in the wavelength region 1530�1565 nm) are si-

multaneously propagated and amplified by Erbium Doped

Fiber Amplifiers (EDFA). Now, if the fiber is operated at the

zero dispersion wavelength then all nearby wavelengths will

travel with the same group velocity because of which they

interact with each other to create new frequencies � this is

known as four wave mixing, usually abbreviated as FWM. To

overcome this difficulty, the use of small dispersion fiber has

been suggested, where the dispersion is typically in the range

2�8 ps/(km.nm). Because of this, different wavelengths travel

with different velocities and the unwanted frequencies are not

generated. In the inset of Fig. 30.11, we have given typical re-

fractive index variations of a small dispersion fiber named as

Small Residual Dispersion Fiber (SRDF). The figure also

shows the corresponding total dispersion (DN) as a function

wavelength; the tolerance of the dispersion characteristics

on the refractive index profile are shown by dotted lines.

However, if one wants repeaterless transmission over very

large distances, the residual dispersion (2�8 ps/(km.nm)) in

these fibers will go on accumulating and will limit the number

of bits that can be sent at each wavelength. To overcome

this difficulty, one has to use a DCF which will compensate

the accumulated dispersion at all wavelengths simulta-

neously. The design of DCF, therefore, has to be compatible

with the small residual dispersion fibers. In the inset of
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Fig. 30.12, we have given typical refractive index variations

of the corresponding DCF. The corresponding wavelength

dependence of the total dispersion (DC) has also been

shown. The dispersion slopes are so adjusted that a small

length of the DCF will approximately compensate the accu-

mulated dispersion in SRDF simultaneously at all

wavelengths. In Fig. 30.13, we have plotted

DE = (L1DN + L2DC)/(L1 + L2) (30.54)

for L1 = 36.74 L2, where DN and DC represent the dispersions

associated with the SRDF and DCF, respectively. It may be

noted that the maximum value of the effective dispersion, is

less than 0.08 ps/(km.nm).
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Fig. 30.13 Variation of the effective dispersion (DE) of the
system as a function wavelength [Figure adapted
from Ref. 30.18].
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With the availability of extremely low loss optical fibers (loss

< 0.25 dB/km) and with the availability of EDFAs

(characterized by amplification of about 20-30 dB over the

wavelength range from 1200 nm to 1600 nm) it has been

possible to send tremendous amount of information through

one hair thin optical fiber.You may recall that in Fig. 27.8(b)

we had shown an almost flat gain (of about 30 dB) of an

EDFA for wavelengths lying between 1530 nm and 1560 nm.

The wavelength region 1530 nm <  < 1560 nm is extremely

important for optical communications; thus we can now

simultaneously send information by using a large number of

wavelengths propagating through one optical fiber; all

optical pulses get simultaneously amplified by the EDFA. In

2001, a French company propagated simultaneously 256

wavelength channels through one optical fiber sending

10.2 Tb/s of information; 10.2 Tb/s of information implies 150

million telephone channels through one hair thin optical

fiber !! This was a great technological achievement. Many

other companies also achieved similar information carrying

capacity and during the past 10 years or so there has been a

remarkable increase in the information carrying capacity. This

has led to what is usually referred to as the fiber optic

revolution. Figure 30.14 shows the layout of a typical

wavelength division multiplexed (usually abbreviated as

WDM) fiber optic system with each wavelength carrying an

independent channel. The capacity of each channel can

be ~ 10 Gigabits/s and if we have 100 channels, it will result

in a total capacity of the link ~1 terabit/s. The pulses are

amplified periodically by EDFAs and the dispersion is

compensated by DCFs.

l1
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l3

lN

Fiber Link

Optical
amplifier

Dispersion
compensator

Mux

~ 80 km

~ 600 km

Drop/Add
channels

Demux

l1

l2

l3

lN

Fig. 30.14 A typical WDM fiber optic system with each wavelength carrying an independent channel. The capacity of each
channel can be ~ 10 Gigabits/s and if we have 100 channels, it will result in a total capacity of the link
~1terabit/s. Diagram courtesy Prof K Thyagarajan.
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In Fig. 30.15 we have shown Commercial Lightwave

System Capacity; it can be seen that before the advent of

EDFA there was only one channel (i.e., only wavelength) that

was being sent though the fiber. With the availability of gain

flattened EDFA, as mentioned before, one can

simultaneously send a large number of wavelengths through

the fiber because of which larger amount of information can

be sent through the fiber. In Fig. 30.16 (a) we have shown

that the information carrying capacity of the optical fiber has

been doubling every year and in Fig. 30.16 (b) we have

shown that the cost of transport has fallen approximately by

35% every year. Today calling overseas (or even calling

within the country) has become quite inexpensive because of

the fiber optics revolution. Figure 30.17 (a) shows that the

fiber connects us across the oceans through

undersea fiber optic systems and (b) shows that most major

cities in India are connected through fiber optic links.
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Fig. 30.16 (b) Cost of transport has fallen approximately
by 35% every year. Reference: Gawrys (AT
&T) NFOEC 2001; slide courtesy: Dr.Atul
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Fig. 30.17 (a)  Fiber connects us across the oceans through undersea fiber optic systems. (b) Most major cities in India are
connected through fiber optic links.
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Problems

30.1 Consider a step index fiber with n
1
 = 1.474, n

2
 = 1.470 and

having a core radius a = 4.5 m Determine the cutoff

wavelength.

30.2 Consider a step index fiber with n
1
 = 1.5, n

2
 = 1.48 and

having a core radius a = 6.0 m.

(a) Determine the operating wavelength 0 for which

V = 8.

(b) Calculate the total number of modes for V = 8 and

(c) Compare with the approximate value given by

Eq. (30.26).

30.3 Consider a step index fiber with n
1
 = 1.474, n

2
 = 1.470 and

having a core radius a = 3.0 m operating at a wavelength

0.889 m. Calculate the spot size of the fundamental mode.

30.4 We consider a step index fiber with n1 = 1.5, n2 = 1.48 and

the core radius a = 3.0 m. Calculate the range of the

values of 0 for which LP01, LP11, LP21 and LP02 modes will

exist.

30.5 Consider a step index fiber with n1 = 1.5, n2 = 1.48 and

core radius a = 6.0 m. Assuming the operating wavelength

0
 = 1.3 m calculate the number of modes and compare

with that obtained by using the approximate formula

[Eq. (30.20)].

30.6 We consider a step index fiber with n
2
 = 1.447,  = 0.003

and a = 4.2 m. Calculate the domain of single mode

operation. Find the value of 0 for which V = 2.0 and

therefore use Table 30.1 to determine b and then the values

of /k0 and of .

30.7 In continuation of the previous problem, we consider the

same step index fiber [n2 = 1.447,  = 0.003 and

a = 4.2 m] now operating at 0 = 1.55 m. Use Table 30.1

and linear interpolation to determine b and then the values

of /k
0
 and of .

30.8 Fibers used in IV generation optical communication systems

(operating at 1.55 m) have a small value of core radius and

a large value of . Consider a fiber with n
2
 = 1.447,

 = 0.0075 and a = 2.3 m. Assuming the operating

wavelength to be 0 = 1.55 m, calculate the values of

b and /k0.

30.9 Consider a step index fiber (operating at 1300 nm) with n2

= 1.447, D = 0.003 and a = 4.2 m. Using the empirical

formula [Eq. (30.32)], calculate the spot size of the

fundamental mode at 0 = 1300 nm and at 0 = 1550 nm.

30.10 For a step index fiber with n2 = 1.444,  = 0.0075 and

a = 2.3 m. Using the empirical formula [Eq. (30.32)],

calculate the spot size of the fundamental mode at

0
 = 1300 nm and at 

0
 = 1550 nm and show that the spot

size increases with wavelength.

30.11 Assume the single mode fiber to have a Gaussian spot size

w = 4.5 m. Calculate the splice loss at a joint between

two such identical fibers with a transverse misalignment of

1, 2 and 3 m.

30.12 Consider a step index fiber with n2 = 1.447,  = 0.003 and

a = 4.2 m (see Problem 30.7). Calculate and plot D
m
, D

w

and D
total

 and determine the wavelength corresponding to

zero total dispersion.

30.13 We next consider the fiber discussed in Problem 30.9 for

which n
2
 = 1.447,  = 0.0075 and a = 2.3 m. Calculate

and plot D
m
, D

w
 and Dtotal and determine the wavelength

corresponding to zero total dispersion.

30.14 The modal field is said to be normalized if

2
( , ) 1x y dx dy

Show that the normalized Gaussian field is given by

2 2 2

2 22 1 2 1
( , )

x y r

w wx y e e
w w

30.15 Consider two identical single mode fibers joined together

with a transverse misalignment of u (along the x-axis). The

fractional power that is coupled to the fundamental mode

of the second fiber is given by the overlap integral

2

1 2( , ) ( , )T x y x y dx dy

Show that T = 
2

2
exp

u

w
. Thus

Loss in dB = 10 log T = 4.34

2
u

w

30.16 Consider a parabolic index fiber characterized by the

following refractive index variation

         n2(r) = n
i

2

2 2 2
2

2
1 2 1 2i

r x y
n

a a
  0 < r < a core

= n2

2
   r > a cladding

The corresponding propagation constants for guided modes

are approximately given by

2
 = 2

mn
  k

0

2 n2

1
 � 2(m + n + l )  k

0
; m, n = 0, 1, 2, 3, 

where 
1 2n

a

(a) Show that the group velocity is approximately

independent of the mode number.

(b) Assuming Eq. (30.12), calculate approximately the

number of modes for a given value of V.
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31.1 INTRODUCTION

A train is moving past a platform. For a person on the plat-

form, the train is moving at a speed of say 50 km/hour. I am

inside the train and if I throw a tennis ball horizontally (along

the length of the train) at a speed of 10 km/hr, then for a per-

son on the platform the ball will move away at a speed of

about 60 km/h. I next hold a laser pointer (I am still inside the

moving train); for the person on the platform, the laser

pointer is also moving with the speed of the moving train. I

switch on the laser pointer and quickly switch it off to pro-

duce a light pulse. The light pulse emitted by the laser pointer

travels with the same speed with respect to me as well as for

the observer on the platform. Thus the speed of light in

vacuum (which is denoted by c) does not depend on the

speed of the source of light. This was the remarkable state-

ment that was made by Albert Einstein in his famous 1905

paper (Ref. 31.1). To quote from the English translation of

this paper (reprinted in Ref. 31.2):

�he two men (Einstein and his close friend Michele Besso) regularly discussed science and

philosophy�including the nature of time. After one such discussion, Einstein came to a sudden

realization: time is not absolute. In other words, despite our common perception that a

second is always a second everywhere in the universe, the rate at which time flows depends

upon where you are and how fast you are traveling. Einstein thanked Besso in his first paper

on the Special Theory of RelativityB.

SPECIAL THEORY OF

RELATIVITY I:

Time Dilation and Length Contraction

Chapter
Thirty
One

light always propagates in empty space with a

definite velocity V that is independent of the state

of motion of the emitting body ....

[The quantity V in Einstein�s original paper is now usually

denoted by c]. That the speed of light does not depend on

the speed of the source of light has since been verified in

many experiments. The most important experiment was car-

ried out by Alvager (and his colleagues) in 1964 (Ref. 31.3).

In this experiment, neutral pi mesons traveling with speeds

very close to that of light were produced; neutral pi mesons

(denoted by 0) have a mass of about 264 times the mass of

an electron and decay (with a mean lifetime of about

8  10�17 seconds) to 2 gamma ray photons:

0  + 

The photons (from the decay of very fast moving neutral pi

mesons) were found to travel with speed c. The measurement

of the speed of the gamma ray photons was difficult, but it

* Adapted from http://www.amnh.org/exhibitions/einstein/time/index.php; the conversation between Einstein and Besso was just before

Einstein�s paper on Special Theory of Relativity which was published in 1905 (Ref. 31.1).

LO 1: know about the concept of time delation.

LO 2: explain mu-meson experiment.

LO 3: discuss the concept of length contraction.

LO 4: analyze mu-meson experiment with length contraction.

LO 5: interpret simultaneity of two events.

LO 6: understand the concept of twin paradox.

LO 7: explain the Michelson�Morley experiment.
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was unambiguously established that their speed was equal

to c. Why do we require a fast moving 0 meson as a source

of photon? This is because of the fact that it would be ex-

tremely difficult (and would require an enormous amount of

energy) to make an object like an ordinary light source travel

with a speed close to that of light � see Example 32.1.

We will first state the two postulates of the special theory

of relativity put forward by Einstein in 1905. However, in or-

der to understand the two postulates, it is necessary to

define an inertial system which is defined as

An inertial system is one in which Newton�s first

law holds.

That raises the question What is Newton�s first law?

Newton wrote his famous laws in his incredible book entitled

Principia. The book was in Latin and according to the

English translation of this book; the first law is (Quoted from

Ref. 31.4):

Every body perseveres in its state of rest, or of uni-

form motion in a straight line, unless it is compelled

to change that state by forces impressed thereon.

Feynman writes Newton�s first law as (Ref. 31.5):

If something is moving, with nothing touching it

and completely undisturbed, it will go on forever,

coasting at a uniform speed in a straight line. (Why

does it keep on coasting? We do not know, but that

is the way it is).

Feynman further writes �Newton modified this idea, saying

that the only way to change the motion of a body is to use

force. If the body speeds up, a force has been applied in the

direction of motion�. Any system moving with constant ve-

locity with respect to an inertial system is also an inertial

system. And Newton had written that the laws of mechanics

(which determine the motion of bodies) are the same in all

inertial systems. This implies, for example, that (to quote

Feynman)

if a space ship is drifting along at a uniform speed,

all experiments performed in the space ship will

appear the same as if the ship was not moving, pro-

vided of course, that one does not look outside.

That is the meaning of the principle of relativity.

Einstein found that for the laws of electricity and magne-

tism (described by Maxwell�s equations) to remain the same

in a moving space ship, the speed of light in vacuum should

not depend on the speed of the source of light. This led

Einstein to put forward (in 1905) the following two postulates

of the special theory of relativity:

1. The laws of physics are the same in all inertial systems.

2. The speed of light in vacuum (which is denoted by c)

does not depend on the speed of the source of light.

The first postulate was known much before Einstein. Isaac

Newton, in one of his corollaries to the laws of motion had

written* :

The motions of bodies included in a given space

are the same among themselves, whether that space

is at rest or moves uniformly forward in a straight

line.

The first postulate is also known as the principle of rela-

tivity and in 1904 the famous French mathematician Henri

Poincare had stated this very precisely**

According to the principle of relativity, the laws of

physical phenomena must be the same for a fixed

observer as for an observer who has a uniform

motion of translation relative to him, so that we

have not, nor can we possibly have, any means of

discerning whether or not we are carried along in

such a motion.

31.2 SPEED OF LIGHT FOR A

MOVING OBSERVER

Let us consider two coordinate systems S and S  which are

in uniform relative motion along the x axis as shown in Fig.

31.1. We have two persons A and B; A is at rest in the coor-

dinate system S and B is at rest in the coordinate systems S ;

thus according to A, B is moving in the + x direction with a

constant velocity u. On the other hand, according to B, A is

moving in the minus x direction with the same speed u.

Figure 31.1 shows A holding a light source (like a laser

pointer) and of course, according to A the speed of light is c.

Now, according to the observer B, the laser pointer is mov-

ing in the minus x direction with speed u and therefore

according to the second postulate of Einstein, B must also

measure the same speed of light. Thus we infer that

A person moving with respect to a light source

measures the same speed of light as the person who

is stationary with respect to the light source.

* The author found this in Ref. 31.5; see also Ref. 31.4.
** The author found this in Ref. 31.5. Poincare was also the first to present the Lorentz transformations in their modern symmetrical

form.
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31.3 TIME DILATION

Consider an observer B inside a train moving with speed u

on a railway track. Inside the train (which is our reference

frame S ), B produces a light pulse (by switching on a bulb

and very quickly switching it off), allows the light beam to

get reflected by a mirror M (which is right above the bulb)

and detects the reflected light by a detector D (see Fig. 31.2).

We have therefore two events: the first event is the switch-

ing on the bulb producing a light pulse and the second event

is its subsequent detection by the detector. B measures the

time interval t  between the two events; this time would ob-

viously be given by

t = 
2H

c
(31.1)

where H is the distance between the floor and the mirror as

shown in Fig. 31.2. For an observer A on the platform (which

is our reference frame S), the whole train is moving with

speed u, and therefore the light beam will take a diagonal

path which would be longer than observed by B

[see Fig. 31.3]. Since the velocity of light is always the same,

the time interval between the two events (as observed by A)

will take a longer time by his clock. If t represents the time

interval measured by A then

t = 
PM MD

c
 = 

2
22

2

u t
H

c
(31.2)

where we have used the fact that the speed of light for the

observer outside the train will be the same as observed by

the person inside the train. If we substitute for H from

Eq. (31.1) in Eq. (31.2), we would obtain

t =  t (31.3)

where

= 
2

2

1

1
u

c

(31.4)

is known as the Lorentz factor. For the observer B on the

train, the light bulb and the detector are at the same place so

that the two events (switching on the bulb and its subse-

quent detection by the detector) occur at the same position.

The time interval between two events occurring at the same

position is known as the proper time; thus t  represents the

proper time between the two events. To quote from Ref. 31.6

The proper time interval between two events is the

time interval measured in the reference frame in

which the two events occur at the same position.

Time intervals that occur at different positions are

called improper.

Fig. 31.1 A is on the platform and B is inside a train moving with velocity u in the + x direction. According to A, B is
moving in the x direction with a constant velocity u. On the other hand, according to B, A is moving in the
-x direction with the same speed u. A is holding a light source (like a laser pointer) and both A and B measure
the same speed of light.
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Fig. 31.2 An observer B is inside a train which is moving with speed u on a railway track. Inside the train (which is our
reference frame S ), B switches on a bulb, allows the light beam to get reflected by a mirror M (which is right
above the bulb) and detects the reflected beam by a detector D.

Fig. 31.3 According to A (who is on the platform), when the light reaches the detector D (via the mirror M), the detector
has moved through a distance u t.



Special Theory of Relativity I: Time Dilation and Length Contraction QIFU
u

On the other hand, for the observer A (outside the train)

both the light bulb and the mirror are moving with velocity u

and the two events occur at different places. Thus Eq. (31.3)

represents the important result that

Time interval between the two events in reference

frame S moving with relative speed u with respect to

the reference frame S

= Time interval between two events occurring

at the same place in the reference frame S

(referred to as the proper time) (31.5)

Since the Lorentz factor is always greater than 1, the

time interval between two events as seen by any reference

frame (which is moving with respect to the frame where the

events occur at the same place) gets �dilated�.

31.4 THE MU�MESON

EXPERIMENT

A mu-meson (also known as muon) is a negatively charged

elementary particle which has exactly the same charge as the

electron but has a mass about 207 times the mass of the elec-

tron. In 1937, mu-mesons were first detected in cosmic rays

by S.H. Neddermeyer and C.D. Anderson. These particles are

created at the top of our atmosphere, i.e., at a height of about

5000 meters. It is believed that when high energy protons

(from outer space) collide with molecules in the outer region

of the atmosphere, many particles (including the mu-mesons)

are created. Mu�mesons have also been created in the labo-

ratories. Mu-mesons are radioactive and undergo the

following decay

Mu-meson  Electron + Neutrino + Anti-neutrino (31.6)

The half life for this decay is about 1.5 s. This would imply

that if initially (in the rest frame of the mu�mesons) there are

1000 mu�mesons then in 1.5 s about half of them will under-

go decay. After 3 s about 750 mu�mesons would have

undergone decay and only (1/4)th of the original number

(about 250) would have remained. In 1941, Rossi and Hall

(Ref. 31.7) carried out an experiment at the top of Mt. Wash-

ington which is about 1920 m above sea level. It was found

that about 568 mu�mesons were detected*  in about 1 hour.

The velocities of mu�mesons were found to be about 0.995c

and therefore for an observer on the earth, it would take

about

8

1920 m

0.995 3 10 m/s
 6.4 s (31.7)

to traverse the distance of 1920 meters [see Fig. 31. 4(a)].

This traversal time approximately corresponds to 4 half-lives;

as such, after traversing a distance of 1920 meters only

(1/16)th of the original number (i.e., about 40) should have re-

mained and about 530 mu�mesons should have undergone

decay; a more accurate calculation has been done later in this

section. However, when the experiment was performed, it was

found that about 412 mu�mesons were detected.

Fig. 31.4 (a) For an observer on the earth, a mu-meson (moving with a velocity of about 0.995c) would take about 6.4 s
to traverse the distance of 1920 meters; (b) Inside the space ship, the mu-meson is at rest and an observer inside
the spaceship sees the earth moving towards him with a speed 0.995c and a contracted distance of 192 meters
which is covered in 0.64 s.

* Numbers taken from http://www.egglescliffe.org.uk/physics/relativity/muons1_.htm
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 Now, for u  0.995c, 10 and if t  represents the time

interval in the reference frame of the mu�meson and t repre-

sents the time interval in the reference frame of the earth,

then in the reference frame of the mu�meson, the two events

occur at the same space point, so the time elapsed is the

proper time and therefore t  0.1 t [see Eq. (31.3)]. Thus,

although in the reference frame of the earth, the time elapsed

is 6.4 s; in the reference frame of the mu�meson (which is

moving at a speed of 0.995c with respect to the earth), the

time elapsed is only one tenth of that, viz., 0.64 s and in this

time only a very few mu�mesons would have undergone de-

cay. We do the calculation more carefully:

The mean lifetime of the mu�meson decay process

[as given by Eq. (31.6)] is about 2.2 s. Thus, if there are N0

muons at t = 0 (at rest in the laboratory) then at a later time t,

the number of mu-mesons which would not have undergone

decay will be given by

N (t) = N0 e
�t/ (31.8)

where  (  2.2 s) represents the mean lifetime of the mu�

meson. The quantity

t1/2 = (ln 2) 0.693 

represents the half life. For the mu�meson, t1/2 1.525 s. In

this time, half the number of mu�mesons would not have un-

dergone decay:

1000 exp 
1.525

2.2

s

s
500

As mentioned earlier, in the experiment of Rossi and Hall

(Ref. 31.7) 568 mu�mesons were detected in about 1 hour at

the top of Mt. Washington. For the observer on the earth, it

would take about 6.4 s to traverse the distance of

1920 meters [see Eq. (31.10)]. In this time, the number of

mu�mesons that should reach the surface of the earth would

be about

568 exp 
6.4

2.2

s

s
  568e�2.9  31

Thus in traversing the distance of 1920 m, about 537 mu�

mesons should have undergone decay and only 31 of them

should have reached the surface of the earth. However, when

the experiment was performed, it was found that about

412 mu�mesons were detected. This is because of the fact

that in the reference frame of the muon, the time elapsed is

only 0.64 s [see the discussion below Eq. (31.7)], and

therefore the number of muons that should reach the surface

of the earth would be about

568 exp 
0.64

2.2

s

s
  425 (31.9)

which agrees well with the observed value. Thus,

whereas in the reference frame of the earth, the time

elapsed is 6.4 s; in the reference frame of the mu�

meson (which is moving at a speed of 0.995c with

respect to the earth), the time elapsed is only

0.64 s.

We may mention here that (to quote from Lord Penney�s

paper in Proceedings of Royal Society � see Ref. 31.8

[reprinted in Ref. 31.9]):

Homi Bhabha* was the first to point out that the

measured lifetime of a meson in flight is affected by

the time dilation predicted by Einstein�s Special

Theory of Relativity, and we know today that this

measurement is the most direct demonstration of

that phenomenon�

Example 31.1 In an experiment at CERN (in Geneva) by

Bailey and his co-workers (Ref 31.11), both positive and negative

mu�mesons were accelerated (in a circular path) to a velocity so

that the Lorentz factor

 29.33 which implies u 0.99942c. The measured lifetimes were
+ = 64.419  0.058 s2for positively charged mu�mesons and
� = 64.368  0.029 s for negatively charged mu�mesons

Using Eq. (31.3), Bailey and his co-workers (Ref. 31.11) found the

mean proper lifetime for negatively charged mu�mesons to be equal

to 2.195 s which represents one of the most accurately deter-

mined values of the mu�meson lifetime. Thus if we create two

mu�meson twins in the laboratory, one of them remains at rest and

the other is accelerated to a speed of 0.9994c, then the mu�meson

(moving with a speed of 0.9994c) would come back to find its

�twin� has undergone decay long long time back!!!!

31.5 LENGTH

 CONTRACTION

We again consider two coordinate systems S and S  which

are in uniform relative motion along the x axis as shown in

* In a paper published in 1938 (see Ref. 31.10), Bhabha wrote that positively and negatively charged mesons should spontaneously

decay into a positron and electron respectively. He further wrote (quoting from his paper)

This disintegration being spontaneous, the U-particle may be described as a �clock�, and hence it follows merely from

considerations of relativity that the time of disintegration is longer when the particle is in motion.

The U-particles in Bhabha�s paper referred to mesons.
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Fig. 31.5. We have two persons A and B; A is at rest in the

coordinate system S and B (inside a moving train) is at rest in

the coordinate systems S . Consider a rod RR  (of length L0)

at rest in the reference frame S. Now,

The length of the rod L0, measured in an inertial

frame in which the rod is at rest, is known as the

proper lengthF

In the inertial frame S  (moving with velocity u with respect

to the frame S), we have an observer B and also an arrow G

as shown in Fig. 31.5. We have two events: the first event is

when the arrow G is in front of the end R of the rod and the

second event is when the arrow G is in front of the end R  of

the rod.

The observer A in the inertial frame S sees the arrow move

with velocity u and if t is the time elapsed (as measured by

A) for the arrow to go from the end R of the rod to the end R ,

then

L0 = u t (31.10)

In the inertial frame S , the observer B sees the rod mov-

ing with speed u in the minus x direction. Thus the length L

of the rod as measured by B would be given by

L = u t (31.11)

where t  is the time elapsed (as measured by B) as the ends

R and R  of the rod cross the arrow. Now, t  represents the

time interval of the two events occurring at the same place G

(in the reference frame S ) and therefore it is the proper time

and since t =  t , we get

L = 
2

2
1

u

c
 L0 = 0L (31.12)

The Lorentz factor  is always greater than 1, and there-

fore the observer B measures a contracted length given by

the above equation. This is known as length contraction.

31.6 UNDERSTANDING THE

MU�MESON EXPERIMENT

VIA LENGTH

CONTRACTION

We go back to the mu�meson experiment. For the observer A

(in the reference frame S at rest on the earth) the mu�meson

moves with velocity u = 0.995c and traverses the distance of

1920 m (the height of Mt. Washington) in about 6.4 s [see

Fig. 31.4 (a)].

u

S′ B

Q′

G

X′

S

X

R R′

L0

A

Fig. 31.5 A is on the platform and B is inside a train moving with velocity u in the + x direction. A rod RR  (of length LH)
is at rest in the reference frame S. In the inertial frame S  (moving with velocity u with respect to the frame S),
we have an observer B and also an arrow G.
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We next consider the mu�meson inside a space ship and

the space ship moving with the same velocity as the mu�

meson. Thus the mu-meson is at rest inside the space ship

[see Fig. 31.4 (b)]. For an observer B inside the space ship,

the earth is moving towards it with velocity u = 0.995c which

implies 10. Now, because of length contraction, for the

observer inside the space ship, the distance between the top

of Mt. Washington and the earth is not 1920 m but the

contracted distance of 192 m. This distance is traversed (by

the earth) in only

192 m

0.995c
= 

8

192 m

0.995 3 10 m/s
 = 0.64 s

and in this time, only 425 number of muons will undergo de-

cay [see Eq. (31.9)].

31.7 LENGTH CONTRACTION

OF A MOVING TRAIN

Consider a mirror M placed inside a train (moving with speed

u) as shown in Fig. 31.6. A pulse of light emitted from the

light source P gets reflected by the mirror and is detected at

D. Obviously, the time interval (as measured by the observer

B  in the moving train) between the emission of light and its

subsequent detection will be given by

t  = 02L

c
@QIFIQA

where L0 is the distance between the light source and the mir-

ror as measured by the observer B in the moving train.

We next consider the events as seen by a person on the

platform; for him, the speed of light is the same and we as-

sume that the distance between the point P and the mirror M

is L. If t1 represents the time interval (as observed by the

person A on the platform) for light to travel to the mirror then

t1 = 
1L u t

c
1

1

L
t

u
c

c

(31.14)

where we have taken into account the fact that in time t1
the mirror has moved through a distance u t1 (see Fig. 31.7).

Similarly, if t2 represents the time interval (as observed by

the person A on the platform) for light to travel from the mir-

ror to the detector then (see Fig. 31.8).

t2 = 
1 1 2L u t u t t

c
2

1

L
t

u
c

c

(31.15)

Fig. 31.6 A mirror M placed inside a moving train. A pulse of light emitted from the light source P gets reflected by the
mirror and is detected at D. For the observer B, the mirror and the source of light are stationary and are at a
distance of LH from each other.
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Fig. 31.7 The observer A on the platform, sees a contracted distance L between P and the mirror (inside the moving

train).  The pulse of light emitted from the light source P reaches the mirror at 1t t and by then the mirror

has moved through the distance 1u t .

Fig. 31.8 For the observer2 A on the platform, the light beam reflected from the mirror reaches the detector D at

1 2 +  t t t .
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Fig. 31.9 For the observer B on the moving train, the atom is at rest and emits two photons simultaneously in opposite
directions. The two detectors DI2and DP2are equidistant from the atom and detect the photons simultaneously;
however, the two events are not simultaneous for observer A.

Thus if t represents the time interval (as observed by the

person on the platform) between the emission of light and its

subsequent detection, then it would be  given by

1 2 2

2

2

1

L
t t t

u
c

c
(31.16)

Thus
2

02
1

t L

t u
L

c

(31.17)

But, since t  represents the time interval between two

events occurring at the same place inside the moving train,

t  and t will be related by the equation

2

2
1

u
t t

c
(31.18)

Thus

2

02
1

u
L L

c
(31.19)

Thus because the speed of light is the same in all inertial

frames, the observer on the platform will calculate a shorter

length of the train.

31.8 SIMULTANEITY OF TWO

EVENTS

We next consider an atom (at rest in the moving train) emit-

ting simultaneously two photons; the two detectors D1 and

D2 are at the same distance (= L0) from the atom and there-

fore for an observer B in the reference frame S , the photons

are detected simultaneously (see Fig. 31.9). For the observer

A on the platform, let t1 and t2 represent the time taken by

the two photons to reach the two detectors D1 and D2, re-

spectively. Using the arguments given in the previous

section

t1 = 

1

L

u
c

c

and t2 = 

1

L

u
c

c

(31.20)

where L is the contracted distance between the atom and

either of the detectors. The difference in the two time

intervals will be

t2 � t1 = 2 

2

2uL

c
 = 0

2

2uL

c
(31.21)
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where  is the Lorentz factor. Thus whereas the two events

are simultaneous in the reference frame S , they are not simul-

taneous in the reference frame S; we will discuss this again

in Example 32.1.

Example 31.2 We assume L0 = 10 m. For u 0.995c, which

implies 10 and the time interval between the two events (as

observed in the reference frame S) will be

0
2

2u L

c
10 

8

2 0.995 10

3 10
 6.7  10�7 s = 0.67 s

On the other hand, for u = 30 km/s = 0.0001c (which is about 10

times faster than the fastest aircraft), the Lorentz factor will be

1.000000005 and the time interval between the two events (as

observed in the reference frame S) will be  6.7 ps.

31.9 THE TWIN PARADOX

We illustrate the twin paradox through a few examples. The

effect due to general theory of relativity is take into account

Example 31.3 We consider a star which is 15 light years

away*. Thus a light beam will take about 15 years to travel from

earth to this star. Now,

1 year = 365  24  60  60 s  3.15  107 s

(An easy way to remember the above formula is that one year is

very nearly equal to  107 s). Thus, one light year is about 9.4

trillion kilometers. Thus, we are considering a star which is about

140 trillion kilometers away. We consider the following experiment:

Amitabh and Arjun are twins�they are both five years old.

Amitabh enters a spacecraft and synchronizes his watch with Arjun

(see Fig. 31.10). The spacecraft quickly accelerates to an extremely

large speed which is only about 167 kilometers per second less than

the speed of light � thus u  0.99944c and the speed of the

spacecraft is about 299,833 kilometers per second (we are assuming

the speed of light to be 300,000 kilometers per second). The Lorentz

factor is given by 30. Amitabh is at rest inside the aircraft.

According to Arjun (who is on earth), Amitabh will take about 15

years to reach the star**. Amitabh will see a contracted distance of

0.5 light years 4.7 trillion km. Thus according to Amitabh, he

will reach the star in about six months which is (1/30)th of the time

recorded by Arjun (see Fig. 31.11). Amitabh returns to earth at the

same speed. On his return journey, he finds that the earth is moving

towards him with a velocity 299,833 km/s and the contracted

distance would be covered in  0.5 light years. When Amitabh�s

space ship stops, he finds that his clock shows only 1 year whereas

Arjun�s clock would show 30 years (see Fig. 31.2).

We can understand the above situation from another point of

view. The first event corresponds to when the space ship starts

moving (with velocity u) from the earth and the second event cor-

responds to when the space ship reaches the star. In the moving

frame (i.e., inside the space ship) both events occur at the same

space point. Thus the time interval t  measured by Amitabh is the

�proper time� and would be less than the time measured by Arjun

by a factor (1/ ) (see the discussion in Sec. 31.2).

* The star closest to us is Proxima Centauri and it is about 4.2 light years away. There are stars which are thousands of light years away.
** This should be obvious because the star is 15 light years away and the spacecraft is moving with a speed which is very close to the

speed of light.

Amitabh commences his
journey when he is 5 years old

15 light years
Star

Arjun (Amitabh's twin) is also 5
years old; he stays back on earth.

Fig. 31.10 Arjun and Amitabh are twins�they are both five years old. Amitabh enters a spacecraft and synchronizes his
watch with Arjun so that t = t  = 0. The spacecraft quickly accelerates to an extremely large velocity so that the
Lorentz factor  30.
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Amitabh reaches the star and
he is five and a half years old

Star
15 light years

When Amitabh reaches the
star Arjun is 20 years old

Fig. 31.11 When Amitabh�s spacecraft reaches the star, he is five and a half years old but Arjun is now 20 years old.

When Amitabh returns
he is only 6 years old

When Amithabh returns
Arjun is 35 years old.

15 light years
Star

Fig. 31.12 When Amitabh returns, he feels that he is only 6 years old whereas Arjun is now 35 years old. This is a conse-
quence of time dilation.

Example 31.4 In the previous example, we had assumed

that the spacecraft was moving with a velocity 299,833 km/s. As

we will show in the next chapter, it would require tremendously

large amount of energy for a spacecraft to move with such a high

velocity. The fastest aircraft moves with a speed less than 3 km/s;

let us assume that the speed of the spacecraft to be 100 times of

this value; i.e., u = 300 km/s. At such speeds u/c = 0.001. Now,

t � t = 
2

2
1 1

u

c
 t 

2

2
2

u

c
 t 5  10�7 t

where we have assumed u/c  1. We assume the moon to be at a

distance of about 400,000 km from the Earth; thus, for an observer

on Earth, for a spacecraft traveling with a speed of 300 km/s,

it will take about 1330 s ( 22.2 min) to travel from Earth to moon.

Thus (for the observer on Earth) the round trip will take about

2660 s 44.4 min. The astronaut inside the spaceship will record a

slightly lesser time, the time difference being

5  10�7  2660 = 1.33  10�3 s = 1.33 ms

Thus, even for a spacecraft traveling with a speed 100 times that of

the fastest aircraft, the time difference will be extremely small.

Example 31.5 Consider an aircraft moving around the earth

at a speed of 1000 km/hr ( 278 m/s). The radius of the earth is

about 6400 km, thus the circumference 2 r is about 4  107 m and
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therefore for the observer on Earth, the round trip will take about

1.44  105 s 40 hours. Now u/c 9.3  10�7 and

t � t
2

2
2

u

c
 t  4.3 10�13 t

and the time difference will be about  6.3  10�8 s = 63 ns. The

time difference is small but measurable; however, in order to com-

pare with experiments one has to take into account the fact that

since the aircraft is at a height, it moves at a different gravitational

potential � and when this is also taken into account, theoretical

predictions agree with experiments.

Example 31.6 In continuation of Example 31.2, we consider

the case when the star was 45 light years away and the space ship

was traveling with the same speed (= 0.99944c). Let us assume

that, to start with, both Arjun and Amitabh were 5 years old. When

Amitabh returns to earth, Arjun would be about 95 years old and

Amitabh would be only 8 years old. Thus Arjun would have aged

significantly!

The above experiment has led to a lot of controversy � scien-

tists have argued that according to Arjun, Amitabh was moving with

a velocity 0.99944c and according to Amitabh, Arjun was moving

with a velocity 0.99944c (in the opposite direction). But there is

really no controversy when we consider that we must always be

careful to define the �proper time� and when Amitabh returns from

his space journey, he will be younger to Arjun. Also it is Amitabh

who undergoes acceleration (and deceleration) and because of this,

the motions of Arjun and Amitabh are not symmetrical.

 Example 31.7   Correction due to relativity in GPS satel-

lites: While using the GPS (Global Positioning System) technology

for accurate positioning of objects, it is very necessary to incorpo-

rate corrections due to special (and general) theory of relativity. We

consider satellites associated with GPS which circle the earth twice

a day. Thus the angular velocity of the satellite is

4 12 2
1.454 10 s

12 60 60T

Now, if the satellite is at a distance R (from the center of the earth)

then

1/3

2

2 2

e s e
s

G M m GM
m R R

R

where 
11 2 26.674 10 N.m kgG  is the gravitational constant,

245.972 10 kgeM is the mass of the earth and m
s
 is the mass

of the satellite. Substituting the values we get

7
2.66 10 mR

We could have also used the relation

2

2

e
e e

e

GM m
mg GM g R

R

where 
29.8m sg  is the acceleration due to gravity at the sur-

face of the earth and  
66.378 10 meR  is the average radius of

the earth. From the above equation, we find that the satellite is at a

distance of about 26600 km from the center of the earth and hence

at a height of about 20200 km from the surface of the earth. Now,

the speed of the satellite is

33.868 10 m sR

According to special theory of relativity, the satellite clock will

differ from the earth clock by a time interval

2

2
1 et t

c

Thus,

2 2

2 2
1 1

2
e e eSTR

t t t t
c c

For  t
e
 = 1 day = 86400 s, the satellite clock will be slower by

 7.18 s

2

2

1 1

45.5

e
e eGTR

e

gR
t t t

R Rc

Thus the satellite clock will be faster by about 38.2 s .

31.10 THE MICHELSON�MORLEY

EXPERIMENT

In the beginning of the nineteenth century, a few very beau-

tiful experiments were carried out which demonstrated the

interference and diffraction phenomena of light. Both inter-

ference and diffraction phenomena could only be explained

by assuming a wave model of light. However, it was believed

that a wave would always require a medium and since light

could propagate through vacuum, the presence of an �all

pervasive� medium called the ether was assumed.

If we assume the existence of this �all pervasive� ether,

then the observed velocity of light would change if we move

with respect to the ether. We know that the earth moves

around the sun in an approximately circular orbit with a

LO 5

Now, the clock inside the satellite is at a different gravitational

potential with respect to the clock on the earth. According to the

general theory of relativity (usually abbreviated as GTR), the clock

inside the satellite will be faster; the final result is
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speed of about 30 km/s (see Fig. 31.13). Thus we should ex-

pect that, whatever may be the motion of the solar system,

during a certain period of time in a year, the earth will be

moving with respect to the ether with a speed of at least

30 km/s and experience what is often referred as �the ether

wind�.

The experiment involved the famous Michelson interfer-

ometer shown in Fig. 31.14 (see also Sec. 15.11). The beam

splitter (shown as BS in the figure) splits the light beam into

two beams traveling at right angles to each other. Subse-

quently, the beams get reflected by M1 and M2 and the beam

reflected from M1 gets reflected by the beam splitter and su-

perposes with the beam reflected from M2 to form an

interference pattern. We assume the positions of the two mir-

rors to be such that the distance of the beam splitter to each

of the mirrors is exactly the same and equal to L.

If the whole interferometer is at rest with respect to the

ether then the light would travel with the same velocity in all

directions and therefore the light reflected by the mirrors M1

and M2 would reach the detector D at the same time.

Fig. 31.13 The earth rotates around the sun in an approximately circular orbit with a speed of about 30 km/s.

L

M2

Ether wind

u

M1

Q

P

L

S

BS

D

u

R

Fig. 31.14 The Michelson interferometer arrangement. An observer at rest with the interferometer, experiences the ether
wind as shown above.
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We next assume that the apparatus moving through the

ether so that with respect to the interferometer, the ether is

moving to the left with velocity u as shown in Fig. 31.15.

Thus as the light beam travels from P to R, it is opposed by

the ether wind and its velocity is c � u. On the other hand,

when the light beam travels from to R to P, it is carried by the

ether wind8 and its velocity is c + u. Thus, if tPR and tRP are

the time taken for the outward and return trips then

tPR = 
L

c u
and tRP = 

L

c u

Therefore, the total time for the light beam to travel from P to

R and back will be given by

t1 = tPR + tRP = 
2

2

2 1

1

L

c u

c

(31.22)

We next consider the light beam reflected by the mirror M2.

This case is similar to a ship trying to cross from the point A

to the point B when there is current in the river (see Fig. 31. 15).

Obviously the ship must point slightly to the right so that its

trajectory is straight. In the absence of the current, if the

speed was V then the actual speed will be 2 2
V u . Thus,

the effective speed of the light beam for the path PQ will be

2 2
c u . Similarly, the effective speed of the light beam for

the return path QP will also be 2 2
c u . Thus if tPQ and

tRP are the time taken for the outward and return trips

then

tPQ = 
2 2

L

c u

and tQR = 
2 2

L

c u

Therefore, the total time for the light beam to travel from P to

Q and back will be given by

t2 = tPQ + tQR = 
2 2

2L

c u

 = 
2

2

2 1

1

L

c u

c

(31.23)

Thus, t2 = 
2

2
1

u

c
 t1 (31.24)

and t2 will always be less than t1. The time difference t1 � t2

will be given by

t = t1 � t2 = 

1
1

2 2 2

2 2

2
1 1

L u u

c c c
  

2

3

Lu

c
(31.25)

where we have assumed u/c << 1 and made a Binomial expan-

sion of the terms inside the square brackets. This will

correspond to a path difference of

c t  
2

2

Lu

c
(31.26)

8 The easiest way to understand this is to first consider a ship which travels with a certain velocity V in still water. We next assume

that there is a current in the water moving with speed u. If the ship travels along the current, its velocity will increase to V + u. On

the other hand, if the ship travels against the current, its velocity will decrease to V � u.

Fig. 31.15 There is a current in the river. A ship is trying to cross from the point A to the point B. The ship must try to
point slightly to the right so that his trajectory is straight.



OpticsQIFIV
u

If we now rotate the interferometer by exactly 90°, the two

beams will exchange their time of traversals and therefore the

fringe shift will correspond to twice the path difference given

above. Thus, the effective path difference will be

2c t
2

2

2Lu

c
(31.27)

Now a path difference of  results in shift of one fringe; thus

the fractional fringe shift will be

2c t
 

2

2

2Lu

c

In one of the experiments carried by Michelson and

Morley L 11 m, 6  10�7 m and if we assume that the

relative velocity of the ether is at least the velocity of the

earth (i.e., u 3 104 km/s), we get

2

2

2Lu

c

4 2

7 8 2

2 (11 m) (3 10 m/s)

(6 10 m) (3 10 m/s)
  0.4

Thus a shift of about 0.4 fringe should have been observed.

During 1881�1887, Professor Michelson (along with his col-

league Edward Morley) carried out a series of very careful

measurements for different orientations of the interferometer

and they always got a null result; their apparatus was capable

of detecting 0.01 fringe shift. These came to be known as the

famous Michelson�Morley experiments which proved that

ether did not exist. David Park (Ref. 31.12) has written �He

(Michelson) was 34 when he established that ether cannot

be found; he made delicate optical measurements for 44

more years and to the end of his days did not believe there

could be a wave without some material substance to do the

waving�.

Stephen Hawking has written (Ref. 31.13):

Towards the end of the 19th century scientists be-

lieved they were close to a complete description of

the universe. They imagined that space was filled

everywhere by a continuous medium called the

ether. Light rays and radio signals were waves in

this ether just as sound is pressure waves in air. All

that was needed to complete the theory was careful

measurements of the elastic properties of the ether;

once they have those nailed down, everything else

would fall into place. Soon, however, discrepancies

with the idea of an all pervading ether begin to

appear. You would expect light to travel at a fixed

speed through the ether. So if you were traveling in

the same direction as the light, you would expect

that its speed would appear to be lower, and if you

were traveling in the opposite direction to the

light, that its speed would appear to be higher. Yet

a series of experiments failed to find any evidence

for differences in speed due to motion through the

ether.

31.11 BRIEF HISTORICAL

REMARKS

The Michelson�Morley experiments were carried out about

20 years before Einstein�s 1905 paper on Special Theory of

Relativity. Then why did we put this section at the end?

When Einstein wrote the famous five papers in 1905, he was

working in Swiss Patent office and did not have much dis-

cussion with other physicists � he studied on his own and it

appears he was not aware of the Michelson�Morley experi-

ments. Professor R.S. Shankland (of Case Institute of

Technology at Cleveland, Ohio) had a series of meetings with

Einstein in 1950; subsequently, he published an account of

his talks with Einstein in American Journal of Physics (see

Refs. 31.14 and 31.15). In his interview on February 4, 1950,

Shankland asked Einstein as to how he had learnt about the

Michelson�Morley experiments. To quote from Shankland�s

paper

... he (Einstein) told me that he had become aware

of it through the writings of H.A. Lorentz, but only

after 1905 had it come to his attention! �Other-

wise,� he (Einstein) said, �I would have mentioned

it in my paper�.

Casper and Noer (Ref. 31.6) have made a careful study of

the history and they write:

Einstein was then an unknown physicist, largely

self-taught in this area of physics, and in his patent

office job somewhat cutoff from the discussions and

ideas current in the physics community. He was

apparently only vaguely aware of the ether experi-

ments� and he did not know of the later papers of

Lorentz and Poincare. �

Einstein was of course aware of Maxwell�s equations and

laws of electricity and magnetism and the fact that Maxwell�s

equations were not invariant under Galilean transformation
*
.

Physically this implies that if Galilean transformation was cor-

rect then (to quote from Ref. 31.5)

* In Appendix B, we have shown that the scalar wave equation is invariant under Lorentz transformation; if instead we use Galilean

transformation of coordinates, the wave equation will not have the same form.



Special Theory of Relativity I: Time Dilation and Length Contraction QIFIW
u

in a moving space ship the electrical and optical

phenomena should be different from those in a sta-

tionary ship. Thus one could use these optical

phenomena to determine the speed of the ship; in

particular one could determine the absolute speed

of the ship by making suitable optical and electri-

cal measurements

Thus, for Einstein, the fundamental question was (to quote

from Ref. 31.1)

�Why should the laws of electromagnetism and

light, alone among the laws of physics, allow the

possibility of detecting the motion of an inertial

reference frame?�

Einstein started his 1905 paper by writing (Ref. 31.1)

It is well known that Maxwell�s electrodynamics

� as usually understood at present � when ap-

plied to moving bodies, lead to asymmetries that do

not seem to be inherent in the phenomena.

He further wrote (in the same paper)

The same laws of electrodynamics and optics

will be valid for all coordinate systems�We shall

raise this conjecture to the status of a postulate and

shall also introduce another postulate, namely that

light always propagates in free space with a defi-

nite velocity V that is independent of the state of

motion of the emitting body.

The null result of the Michelson�Morley experiment is con-

sistent with Einstein�s postulates. Indeed, Einstein wrote

The introduction of a �light ether� will prove to

be superfluous in as much as the view to be devel-

oped here will not require a �space at absolute

rest� endowed with special properties.

Problems

31.1 At a height of about 3 km above sea level, about 1000 mu�

mesons were detected in 1 hour. Calculate the number that

will decay before they reach sea level. Assume that the mean

lifetime of the mu�meson is about 2.2 s and that their ve-

locity about 0.9c.

31.2 At a height of about 1.2 km, about 550 mu�mesons were

detected in 1 hour and at the base about 420 mu�mesons

were detected in 1 hour. Assuming that the mean lifetime of

the mu�meson is about 2.2 s, calculate their velocity.

[Ans:  0.99c]

31.3 In an experiment, the measured lifetime of the negatively

charged mu�meson was found to be 32 µs. Calculate the ve-

locity of the mu�meson; the mean proper lifetime for the

mu�meson may be assumed to be = 2.195 µs.

31.4 A motor car of �proper length� 5 meters is passing by with

a speed of 200 km/hr. (a) Calculate the contracted length

observed by a person standing on the road. (b) Calculate the

contracted length if the velocity of the car was 0.99c.

31.5 We assume the planet Venus to be at a distance of about

60 million km from the Earth. We assume a space craft mov-

ing with a speed of 30 km/s. (a) For an observer on Earth,

calculate the time that the space craft will take for making

the roundtrip from earth to Venus and back. (b) The astro-

naut inside the spaceship will record a slightly lesser time;

calculate the time difference.

[Ans: (a) 46 days, (b) 0.02 s]

31.6 A and B are twins. B enters a spacecraft (see Fig. 31.10) and

synchronizes his watch with A (t = t  = 0). The spacecraft

closes and quickly accelerates to a velocity given by

u = 
15

16
 c  0.9682c

The spacecraft goes to a nearby star 10 light years away and

promptly returns to earth with the same speed. What will be

the age difference between A and B.

31.7 A and B are twins. B enters a spacecraft (see Fig. 31.10) and

synchronizes his watch with A (t = t  = 0). The spacecraft

closes and quickly accelerates to the same velocity as in the

previous problem (  0.9682c). The spacecraft goes to moon

(which is about 384 000 km away) and promptly returns to

earth with the same speed. What will be the age difference

between A and B.

31.8 Consider an atom (at rest inside a spaceship moving with

velocity 3 km/s) emitting simultaneously two photons; the

two detectors D1 and D2 are at the same distance (= 10 m)

from the atom and therefore for an observer B inside the

spaceship, the photons are detected simultaneously (see Fig.

31.6). For the observer A on earth calculate the time differ-

ence between the two events.



QPFI sx��yh�g�syx

In this chapter, we will derive the mass-energy equation

E = mc2 (32.1)

and discuss its consequences. This equation was put for-

ward by Einstein in 1905 (Ref. 32.1) shortly after his paper on

special theory of relativity (Ref. 32.2). If you would go to the

website in Ref. 32.3, you will be able to hear the original

voice of Einstein (with a typical German accent) and the fol-

lowing description of his famous equation:

It followed from the special theory of relativity that

mass and energy are both but different manifesta-

tions of the same thing. A somewhat unfamiliar

conception for the average mind. Furthermore the

equation E equal to m c-squared, in which energy

is put equal to mass multiplied by the square of the

velocity of light, showed that very small amounts of

mass may be converted to a very large amount of

energy and vice versa. The mass and energy were

in fact equivalent according to the formula men-

tioned before. This was demonstrated by Cockroft

and Walton in 1932 experimentally.

In order to derive the mass-energy equation, we will use

expressions for Doppler shift which tells us that when the

The principle of relativity �.. requires that mass be a direct measure of the energy contained

in a body; light carries mass with it� The argument is amusing and seductive; but for all I

know, the Lord might be laughing over it and leading me around the nose

�Albert Einstein to his friend Conrad Habicht

in his Miracle Year 1905

SPECIAL THEORY OF

RELATIVITY II:

The Mass-Energy Relation

Chapter
Thirty
Two

light source moves towards the observer the observed fre-

quency increases and conversely, when the light source

moves away from the observer the observed frequency de-

creases. In Sec. 32.3, we will derive expressions for the

Doppler shift. In the next chapter, we will derive equations

describing what are known as Lorentz transformations and

using these equations, we will rederive expressions for the

Doppler shift.

QPFP �ri2 we��Eixi�q�

�ive�syx

In this section, we will carry out a very simple and straight-

forward derivation of the mass-energy relationship. The

analysis is somewhat similar to that given in Ref. 32.4 (see

also Refs. 32.5 and 32.6). A
1
 and A

2 
are in the reference frame

S and B is in the reference frame S  which is moving with

respect to the reference frame S with velocity u (see Fig.

32.1). An atom is at rest in the reference frame S . The atom

emits two photons (of the same frequency v0) in opposite di-

rections as shown in Fig. 32.1. Thus, in the reference frame

S , the total momentum of the two photons will be zero and

from the law of conservation of momentum, the atom will re-

main at rest (in the reference frame S ). The change in the

energy of the atom (as observed by B in the reference

frame S ), will be given by

LO 1: know how to derive mass-energy relationship.

LO 2: explain how speed of stars or galaxy is determined by measuring Doppler shift of spectral lines.

LO 1
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( E)
�

= 2hv0 (32.2)

A1 and A2 are both in the reference frame S ; for A1 the atom

is moving away from the observer and for A2 the atom is

moving towards the observer. Now, in astronomy, we can

determine how fast the stars or galaxies are moving (either

directly away or directly towards us) by measuring the Dop-

pler shift of spectral lines. When the star is moving away

from us, the measured frequency is slightly less than the

actual value leading to the well-known red shift of spectral

lines (see Fig. 32.2). On the other hand, when the star is

moving towards us, the measured frequency is slightly more

than the actual value leading to what is known as the blue

shift of spectral lines. As such, A1 and A2 will observe differ-

ent Doppler shifted frequencies v1 and v2 given by

v1 = 0 
1

1

u

c
u

c

and v2 = 0

1

1

u

c
u

c

(32.3)

[The above expressions will be derived Sec. 32.3 � we will

derive them again in the next chapter by using the equations

describing the Lorentz transformations.] Thus, the change in

the energy of the atom (as observed in the reference frame S)

will be given by

( E)
�

= hv1 + hv2 =  (2hv0) =  ( E)
�

(32.4)

where  is the Lorentz factor defined in Eq. (31.4). As men-

tioned earlier, in the reference frame S , the atom (after the

emission of two photons) will remain at rest. Thus, for an

observer in the reference frame S, the atom will be moving

with velocity u before and after the emission of photons. In

the reference frame S, since 2 > 1, the momentum of the

two photons are different. Therefore, if we use the law of

conservation of momentum in the reference frame S, the atom

(which is moving with the same velocity u) must have a

slightly lesser mass given by

( m)
�
u = 2h

c
 � 1h

c
 = (2hv0) 2

u

c
 = 

2

( SE u

c
(32.5)

Fig. 32.1 A
1
 and A

2
 are at rest in the reference frame S. B is at rest in the reference frame S which is moving with speed

u with respect to the frame S. In the reference frame S , an atom is at rest and emits two photons of the same
frequency 

0
. Since the two photons will have equal and opposite momenta, the atom will remain at rest. In

the reference frame S, A
1
 and A

2
 will observe Doppler shifted frequencies.

Fig. 32.2 Absorption lines in the optical spectrum of a supercluster of distant galaxies (BAS11) (bottom), as compared to
those in the optical spectrum of the Sun (top). Arrows indicating redshift of spectral lines in the optical spec-
trum of a supercluster of distant galaxies (bottom), [Photograph courtesy: Timothy Rias].
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Thus, we get

( E)
�

= ( m)
�
c

2 (32.6)

The above equation is independent of the value of u. Fur-

ther, in Eq. (32.6), E and m need not be infinitesimal

amounts and therefore we have Eq. (32.1). Thus when a hy-

drogen atom makes a transition from an excited state to the

ground state with the emission of a photon (see Fig. 32.3),

the mass of the hydrogen atom (which still consists of one

proton and one electron) will decrease by a small amount. In

general, whenever a loosely bound system goes over to a

tightly bound system a small amount of mass gets converted

to energy. In his 1905 paper (Ref. 32.1), Einstein wrote:

If a body emits the energy L in the form of radia-

tion, its mass decreases by L/V P�. The mass of a

body is a measure of its energy content

[The quantity V in Einstein�s original paper is now usually

denoted by c.] Further, if we write

( E)
�

= ( m)
�

c
2 (32.7)

then from Eqs. (32.4) and (32.6), we get

( m)
�

= ( m)
�

(32.8)

Fig. 32.3 In a hydrogen atom, when the electron makes a
transition from an excited state, radiation is emit-
ted and there is a small loss in the mass.

Thus, the mass varies with velocity according to the fol-

lowing equation:

m = m
0

and  = 
2

2

1

1
u

c

(32.9)

where  is the Lorentz factor and m0 is the mass of the body

when it is at rest and is usually referred to as the  �rest

mass�. The momentum of a body of rest mass m0 moving

with velocity u will be given by

p = mu =  m0u (32.10)

Further the kinetic energy of a particle of rest mass m0 will be

given by

T = mc2 � m0c
2 = m0c

2 (  � 1) (32.11)

When 
u

c
 << 1,   1 + 

2

2
2

u

c
and T  

1

2
m0u2 which is the

non-relativistic expression for the kinetic energy of a particle.

If we square Eq. (32.1) we would get

E2 = m2c4 = 
2 4 2 2
0

2 22

2

1

1

m c u u

c cu

c

= 2 4 2 2
0m c p c (32.12)

For the photon, m
0
 = 0 and

p2 = 
2

2

E

c
p = 

E

c
 = 

hv

c
(32.13)

In 1932, Cockroft and Walton bombarded accelerated pro-

tons on the Lithium nucleus to produce two alpha particles:

3Li7 + proton   +  + Energy

Now, in the above nuclear reaction, the net decrease in mass

will be m  0.033  10�27 kg (see Problem 32.5) and simple

calculations will show that about 19MeV of energy will be

released (in the form of kinetic energies of the alpha par-

ticles). The experiment of Cockroft and Walton demonstrated

the first artificial splitting of a nucleus and also the first ex-

perimental proof of Einstein�s mass-energy equation;

Cockroft and Walton won the 1951 Nobel Prize in Physics for

�Transmutation of atomic nuclei by artificially accelerated

atomic particles�.

Example 32.1 Consider a body with rest mass 50 kg. If we

have to make it move with a velocity 0.9c, will be  2.3 and there-
fore the kinetic energy will be T  (50 kg)  (3  108 m/s)2 1.3

 6  1018 J. This is an enormous amount of energy. For example,

a 100 MW power station will generate 6 1018 Joules of energy in

about 2000 years [(100  106 W)  (2000  3.1  107 s)  6 
1018 Joules where we have assumed 1 year  3.1  107 s]. Even if

we have to make the mass move with a velocity 0.5c, the factor 1.3

will be replaced by 0.15 and the kinetic energy will be T  0.7 
1018 J which is also an enormous amount of energy!! Thus it would
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require a tremendously large amount of energy to make a spacecraft
(which would have a much larger rest mass) move close to the speed
of light.

Example 32.2 Energy from the sun:   The outer periph-

ery of Earth�s atmosphere receives from the Sun about 1.4 kW/m2

of energy; this would imply that about 1400 Joules of radiation is
received (per second) on 1 square meter of area placed perpendicu-
larly to the light beam coming from the Sun. The distance between
the Earth and the Sun is about 1.5  1011m (it takes about eight and
half minutes for the light to travel from Sun to Earth). If we assume
that the solar energy spreads out uniformly in all directions, then
the total energy liberated from the Sun is about 1400  4   (1.5 
1011)2  4  1026 Joules per second*. If we now use Einstein�s mass-
energy relation, we would get

m = 
2

E

c
 = 

26

8 2

4 10 J/s

(3 10 m/s)
  4  109 kg/s

Thus in our Sun, every second about 4 billion kilograms of mass is

continuously getting converted into energy.

Example 32.3 Energy Released in a Fusion Process:

We consider the fusion reaction in which a deuteron (which con-
sists of one proton and one neutron) fuses with one tritium nucleus
(which consists of one proton and two neutrons) to form a neutron
and an alpha particle (which consists of two protons and two neu-
trons):

1H
2 + 1H

3  0n
1 + 2He4 + 17.6 MeV of energy

This is usually known as the D-T reaction. Using the data given at
the end of this chapter, one can easily show that the mass loss
[ = (mD + mT) � (mn + m )] is about 0.0322415  10�27 kg which is
equivalent to about 17.6 MeV of energy. One can also calculate the
energy released from the fact that the binding energies of 1H

2, 1H
3

and 2He4 are 2.23 MeV, 8.48 MeV and 28.3 MeV, respectively;
thus, the net gain in binding energy is 28.3�(2.23 + 8.48) = 17.6 MeV.
Thus a �loosely bound� system goes over to a �tightly bound�
system and a tiny bit of mass gets converted into 17.6 MeV
of energy which appears as heat; i.e., in the form of kinetic energies
of the neutron and the alpha particle (see Fig. 32.4).

QPFQ �ri2 hy��vi�2 �rsp�

In astronomy, we can determine how fast the stars or galax-

ies are moving (either directly away or directly towards us)

by measuring the Doppler shift of spectral lines. When the

star is moving away from the observer, the measured fre-

quency is slightly less than the actual value leading to the

well-known red shift of spectral lines (see Fig. 32.2). It is this

Doppler shift that we will calculate in this section**. We will

follow the method put forward by Feynman (see Sec. 34�6 of

Ref. 32.7); an alternative method is given in the next chapter

(see Sec. 33.4).

Let us consider a light source which is at rest with respect

to the observer A. Instead of a continuous wave, we assume

that the light source emits v0 pulses in a second. We assume

that the first pulse is sent at t = 0 and the nth  pulse is sent at

Fig. 32.4 In a typical fusion reaction, deuteron and tritium
fuse to produce a neutron and a very tightly
bound alpha particle; in this fusion reaction, there
is a small loss in mass which appears as kinetic
energy of the neutron and of the alpha particle.

* This is indeed an enormous amount of energy and is equivalent to the detonation of about 100 billion megatons of TNT every second;
one ton of TNT is a unit of energy equal to 1 billion (= 109) calorie equal to about 4.2  109 Joules. One of the largest power plant
on earth produces about 6000 MW (= 6  109 Joules per second) of energy�thus a total of 2  1017 Joules of energy is given out
every year (1 year is about 31 million seconds); this would imply that about 2 billion such power plants would produce about the
same energy in one year that the sun produces in 1 second!!!

** In 1842, Christian Doppler�an Austrian physicist�was the first to point out in a treatise (see Ref. 32.8) that the observed fre-
quency of a wave will change if there is a relative motion between the observer and the source. This was verified in 1845 by Buys
Ballot when he showed that the observed frequency was higher when the source (emitting sound waves) was moving towards him and
conversely, the observed frequency was lower when the sound source was moving away from him.

LO 2
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t = t1; thus n = v0t1. The time taken by each pulse to reach A

is assumed to be ; thus the first pulse is received at t = 

and the nth pulse is received at t =  + t1; obviously, the dis-

tance between the source and observer is c  (see Fig. 32.5).

We next assume the source to be moving with velocity u

towards the observer as shown in Fig. 32.6. In time t
1 

the

observer A  will now receive larger number of pulses because

as the source moves towards the observer, the light pulse

takes lesser amount of time to reach the observer. If in time t
1

the observer receives (n + m) pulses, and if the source has

moved through the distance ut2 when the source emits the

(n + m)th pulse at t = t2 (see Fig. 32.5):

c = ut
2
 + c (  + t

1
 � t

2
) 1

2

t

t
 = 1

u

c
(32.14)

Both t1 and t2 are as measured by the observer A. Now an

observer B (who is moving with the atom) will observe the

duration t2 as

t
2

= t
2

2

2
1

u

c
(32.15)

Fig. 32.5 L is a stationary light source. Light takes time 
to reach the observer A.

Fig. 32.6 The light source L is moving towards the observer
A with velocity u. The first pulse is sent at t = 0
which is received by A at t = . According to A,
the (n + m)th pulse is sent at t = t2 which is received
by A at t =  + t1

Thus the number of pulses received by the observer A

(during the time interval t =  and t =  + t1) would be v0t2
and therefore the observed frequency will be

DS
= 0 2

1

v t

t
 = v

0

1

1

u

c
u

c

(32.16)

where we have used Eqs. (32.14) and (32.15). Equation (32.16)

represents the Doppler shifted frequency observed by A.

Thus, we may write for the Doppler shifted frequency

vDS = v0 
1

1

u

c
u

c

DS = 0

1

1

u

c
u

c

(32.17)

where the upper and the lower signs correspond respectively

to the source moving towards the observer and away from

the observer (see also Sec. 33.4). Thus, if a star is moving

away from us, we must take the lower sign and the wave-

length increases � this is known as the red shift of spectral

lines. When u/c << 1, we get the non-relativistic expressions

for the Doppler shift:

DS
 

0
1

u

c 0

  
u

c
(32.18)

Equation (32.17) correspond to what is known as the lon-

gitudinal Doppler effect because the source is moving along

the line joining the source and the observer. If the source is

moving in a direction perpendicular to the line joining the

source and the observer, we have what is known as the

transverse Doppler effect which we will discuss in the next

chapter.

Example 32.4 According to Hubble�s law, greater the dis-

tance of the galaxy greater is the velocity of the galaxy moving away
from us. Thus if u represents the velocity of the galaxy then u H D,
where D is the distance from the galaxy; the parameter H is known
as the Hubble parameter and H  15�30 km/s; we must mention
that there is a lot of controversy on the validity of Hubble�s law.
However, if we assume H  20 km/s per million light years, the
above equation implies that if a galaxy is about 150 million light
years away then it would be moving away from us with a speed of
about 3000 km/s and u/c  0.01. Thus, the fractional increase in the

Doppler shifted wavelength will be about 1%.

Problems

In the problems below, assume the rest masses of the proton, neu-
tron, deuteron, tritium and alpha particle to be given respectively
by:

mp = 1.6726231  10�27 kg, mn = 1.6749286  10�27 kg,
mD = 3.3435860 10�27 kg, mT = 5.0082403  10�27 kg,
m = 6.644656209  10�27 kg and m

3L i7
  1.165  10�26 kg.
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32.1 Calculate the rest mass energy of the proton in MeV.
[Ans.  938 MeV]

32.2 In the Large Hadron Collider (LHC), the protons are acceler-
ated to about 99.9999991% of the speed of light3. Calculate
the Lorentz factor  and  the corresponding kinetic energy of
the proton.

[Ans.   7500,  7000 GeV].
32.3 The deuteron nucleus consists of one neutron and one pro-

ton held together by nuclear forces. Show that  the  binding
energy of  the deuteron is about 2.23 MeV.  Thus it would
require about 2.23 MeV of energy to separate the neutron
and proton from the deuteron nucleus.

32.4 The alpha particle consists of two neutron and two protons
held together by nuclear forces. Calculate the binding energy
of the alpha particle. [Ans. 28.3 MeV]

3 See, e.g., http://en.wikipedia.org./wiki/Large_Hadron_Collider

32.5 Consider the nuclear reaction 3Li7 + proton   +  + En-
ergy. Calculate the net decrease in mass and the energy that
will be released (in the form of kinetic energies of the alpha
particles).

[Ans.  0.033  10�27 kg; 19 Mev].
32.6 The binding energy of the tritium nucleus (which consists of

one proton and two neutrons) is 8.482 MeV. Calculate the
rest mass of the tritium nucleus.

32.7 A distant star is moving away from us at a speed of  about
60,000 km/s. Calculate the wavelength of the Doppler shifted
spectral line corresponding to the wavelength 6000 Å; what
would be the wavelength if the  distant star was moving to-

wards us.
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In this chapter, we will derive expressions for what are known
as Lorentz transformations. Using the equations describing
Lorentz transformations, we will rederive some of the results
obtained in previous chapters including time dilation, Dop-
pler shifted frequencies, etc. In Appendix I, we have shown
the invariance of the wave equation under Lorentz transfor-
mations.

QQFP �ri2 vy�ix��

��ex�py�we�syx�

The observer A is on the platform and the observer B is in-
side a train which is moving with velocity u in the +x

direction with respect to A (see Fig. 33.1). Let t and t  be the
times measured by A and B and we assume that the two
clocks are synchronized such that at t = t  = 0, the origin O
coincides with the origin O .

A certain event occurs at the point P; the event could be
like the switching on of a light bulb. For A the event occurs
at time t at a distance of x from the origin (see Fig. 33.1). In

In the twentieth century, we have been greatly privileged to witness two major revolutions in

our physical picture of the world�. We have come to use the term �relativity� to encompass the

first of these revolutions and �quantum theory� to encompass the second� It is particularly

remarkable that a single physicist-Albert Einstein�had such extraordinary deep perceptions

of the workings of Nature that he laid foundation stones for both of these twentieth century

revolutions in the single year of 1905.

�Roger PenroseB

SPECIAL THEORY OF
RELATIVITY III:

Lorentz Transformations

Chapter
Thirty
Three

this time (according to A), O  has moved through a distance
ut. Now, according to B, the distance of the point P from her
origin is x , which A observes as the contracted distance x /
where   is the Lorentz factor defined in Eq. (31.4) of Chapter
31. Thus according to A

x = ut + 
x

x  = (x � ut) (33.1)

For B, A is moving with speed u in the minus x direction
and the event occurs at time t  at a distance x  from O . In this
time (according to B), the origin O has moved through a dis-
tance �ut . Since the distance x is measured by A, B will
measure the contracted distance x/ . Thus (see Fig. 33.2)

x = 
x

 �ut x = (x + ut ) (33.2)

In the above equation, we substitute for x  from Eq. (33.1)
and simplify to obtain

t =  
2

ux
t

c
(33.3)

If we substitute for x from Eq. (33.2) in Eq. (33.1), we
would obtain

* Roger Penrose wrote this in the Foreword of the book by John Stachel (Ref. 33.1).

LO 1: describe the Lorentz transformations.
LO 2: calculate relative velocities of two events, and derive the rule for addition of velocities.
LO 3: determine transformation laws for the components of the momentum vector.

LO 1
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ut¢

S¢

B

P

O¢O

A

S

X¢

c

2

2
1–

u
x

X¢

u

Fig. 33.2 For B, A is moving with speed u in the �x direction. For B, the event occurs at time t  at a distance x  from O .
For A, the event occurs at a distance x from O which B sees as a contracted distance as shown in the figure.

c

¢

2

2
1–

u
x

x

ut

u

S¢

B

P

O¢O

A

S

X¢

Fig. 33.1 An event occurs at the point P; for A, the event occurs at time t at a distance x from O. For B, the event occurs
at a distance x  from O  which A sees as a contracted distance as shown in the figure.

t =  
2

ux
t

c
(33.4)

Equations (33.1)�(33.4) along with the equations y  = y and
z  = z describe what are known as Lorentz transformations.
Using these equations, we will derive some of the results
that were obtained in Chapter 31.

We consider two events; in the reference frame S the two
events occur at (x

I
, t

I
) and (x

P
, t

P
) and in the reference frame

S  the two events occur at (x
I
, t

I
) and (x

P
, t

P
). Using Eq.

(33.1)

x
I

= (x
I

� ut
I
) and x

P
 = (x

P
 � ut

P
)
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and therefore
x = x

P
 � x

I
 = ( x � u t) (33.5)

We consider three cases:
(i) If the two events take place at the same place in the S

frame then x  = 0 [see Fig. 31.2] and therefore x =

u t [see Fig. 31.3]. Further, using Eq. (33.4)

t
I
 = 1

1 2

u x
t

c
and t

P
 =  2

2 2

u x
t

c

we have

t = t
P
 � t

I
 = 

2

u x
t

c
(33.6)

Since the two events take place at the same place in
the S  frame, x  = 0 and we obtain

t = t (33.7)

which expresses time dilation and is the same as
Eq. (31.5).

(ii) We next consider two events which occur at the same
time in the reference frame S  but at points separated
by 2L

H
 (see Fig. 31.6). Thus in Eq. (33.6) we must sub-

stitute t  = 0 and x  = 2L
H
 to obtain

t = L
H
 

2

2u

c
(33.8)

Thus whereas the two events are simultaneous in the
reference frame S , they are not simultaneous in the ref-
erence frame S. We had obtained the same result in
Sec. 31.7.

(iii) We next consider the two events discussed in Sec.
31.5; the two events occur at the same space point G in
the S  frame [see Fig. 31.5]. If we use Eq. (33.3), we get

t = t
P
 � t

I
 =  

2

u x
t

c
 =  

2

u x
t

c
(33.9)

where we have used Eq. (33.15). Now x = L
H
 [see Fig.

31.6] and therefore Eq. (33.8) would give us

 0

2

uL

c
 = ( P� 1) t  = 

2

2

2

2
1

u

c

u

c

t

2

2
1

u

c
 L

H
 = u t  = L

where L = u t  represents the length measured in the
S  frame. The above equation describes the length con-
traction that we had derived in Chapter 32.

Example 33.1 If we use Eqs. (33.2) and (33.4), we readily

get

x2 � c2t 2 = 2

2
2 2

2
( )

ux
x u t c t

c
 = x 2 � c2t 2

If we now use the equations y  = y and z  = z, we would get

x2 + y2 + z2 � c2t2 = x 2 + y 2 + z 2 � c2t 2 (33.10)

Consider a point source of light at the origin in the S frame. If the

source of light emits a pulse, the light wave will spread out as a

sphere whose radius will be equal to ct; thus the sphere will be

described by the equation

x2 + y2 + z2 = c2t2 (33.11)

Because of Eq. (33.10) we will have

x 2 + y 2 + z 2 = c2t 2 (33.12)

which describes a sphere (of radius ct ) in the S  frame. Thus, it

must be a spreading sphere in the S  frame also; in fact the coordi-

nate transformation in which this condition is satisfied is called the

Lorentz transformation.

Equations describing Lorentz transformations were put
forward by Lorentz much before Einstein. Lorentz (and later
Poincare) had shown that Maxwell�s equations are invariant
under Lorentz transformations; in Appendix I we have shown
the invariance of the wave equation under Lorentz transfor-
mations. In his 1905 paper, Einstein (using his two
postulates) derived Eqs. (33.1) � (33.4) but he made no men-
tion of Lorentz�s work. Many feel that Einstein was probably
not aware of the work of Lorentz. Even the length contrac-
tion (discussed in Sec. 31.5) was first suggested by
FitzGerald in 1889 (to explain the null result of the
Michelson�Morley experiment) and shortly later by Lorentz
independently; that is why length contraction is often called
FitzGerald�Lorentz contraction or Lorentz�FitzGerald con-

traction.

QQFQ ehhs�syx2 yp
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Once again we consider the situation when the observer A is
on the platform and the observer B is inside a train which is
moving with velocity u in the + x direction with respect to A.
Let t and t  be the times measured by A and B and we assume
that the two clocks are synchronized such that at t = t  = 0,
the origin O coincides with the origin O  (see Fig. 33.1). In-
side the train a tennis ball (which is initially at the origin) is
moving with velocity v in the + x direction. The displacement
of the tennis ball in the reference frame S  will be given by

x = vt x = (v + u)t (33.13)

LO 2



OpticsQQFR
u

where we have used Eq. (33.2). If we now substitute the
above equation in Eq. (33.3) we will get

t =  
2

1
u

c

v
t (33.14)

We divide Eq. (33.13) by Eq. (33.14) to obtain the following
expression for the velocity of the tennis ball as seen by the
observer in the reference frame S:

V = x
t

 = 

2
1

u

u

c

v

v

(33.15)

This is the rule for �addition of velocities�. If v = u = c/3, we

would get V = 
3

5
c. On the other hand, if v = c and

u = c/2 we would get V = c showing that the speed of light

would remain constant.
We next consider a spaceship moving (in the +x direc-

tion) with velocity u relative to the observer on the ground.
A rocket is ejected out of the spaceship with velocity v rela-
tive to the spaceship (see Fig. 33.3). Thus the velocity of the
rocket relative to the observer on the ground will be given
by

V = 

2
1

u

u

c

v

v

v = 

2
1

V u

uV

c

(33.16)

Example 33.2 Relative to the observer on the ground, two

space ships are moving in opposite directions with speed 0.5c.

Thus V = 0.5c and u = � 0.5c. Substituting in the above equation,

we obtain that with respect to an observer in the spaceship moving

towards left, the other spaceship will be moving with velocity 0.8c.

Example 33.3 A light beam is propagating (in the +x direc-

tion) through glass with velocity c/n. If the whole glass slab is

inside a train which is moving with velocity u (in the +x direction),

then the velocity of light as measured by an observer on the plat-

form will be

V =

1

c
u

n

u

nc

(33.17)

When u/c << 1, we may carry out a binomial expansion to obtain

V = 
2

1 ....
c u u

u
n nc nc

 
c

n
 + u

2

1
1

n
 + ....  

c

n
(1  g) (33.18)

where

g = 
2

| | 1
1

n u

c n
(33.19)

Fig. 33.3 A Spaceship moving (in the +x direction) with velocity u relative to the observer on the ground. A rocket is
ejected out of the spaceship with velocity v relative to the spaceship. Relative to the observer A, the spaceship
is moving with a veloscity V away from him.
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In Eq. (33.18), we must take the positive sign if the light beam

is propagating along the motion of the medium and we must take

the negative sign if the light beam is propagating in a direction op-

posite to the motion of the medium.

Example 33.4 The Fizaeu Experiment: In 1851, the

French physicist Hippolyte Fizaeu carried out the experiment to

show that the speed of light (in water) is greater when the water

flows along the direction of propagation of light in comparison to

when the water flows opposite to the direction of propagation of

light. A schematic of the apparatus is shown in Fig. 33.4. A beam of

monochromatic light is split by a beam splitter (which is nothing

but a partially silvered mirror); the beam transmitted through the

beam splitter propagates along the flow of water and the beam re-

flected by the beam splitter propagates in a direction opposite to

the flow of water. If V
p
 represents the velocity of light when it

propagates parallel to the flow of water, V
a
 represents the velocity

of light when it propagates anti-parallel to the flow of water and if

L represents the length of the moving water column, then the time

difference between the two beams will be given by

t
a

L

V
 � 

p

L

V
 L 

n

c
 

1 1

1 1g g
  L 

n

c
2g (33.20)

We assume L = 12 m, n = 1.33 (water), u = 5 m/s then

g  10�8. If we now use the above equation, we would get t 

10�15 s. Thus, if the wavelength is 0  6000 Å = 6  10�7 m then

the frequency will be v  0.5  1015 s�1 and the phase shift will be

 0.5 /6 which is measurable.
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If p
x
, p

y
 and p

z
 represent respectively the x, y and z compo-

nents of the photon in the S frame and E the corresponding
energy, then since the rest mass of the photon is zero, we
have (see Sec. 32.2):

pP

x
 + pP

y
 + pP

z
= 

2

2

E

c
(33.21)

If p
x
, p

y
 and p

z
 represent the components of the momen-

tum of the photon in the S  frame and E  the corresponding
energy, then

p P

x
 + p P

y
 + p P

z
= 

2

2

E

c
(33.22)

If we compare the above two equations with Eqs. (33.11)
and (33.12), we can conclude that for Eqs. (33.21) and (33.22)
to remain valid in all inertial frames, p

x
, p

y
, p

z
 and E/cP must

transform in the same way as x, y, z and t. Thus we may
replace x, y, z and t by p

x
, p

y
, p

z
 and E/cP in Eqs. (33.1) � (33.4)

to obtain:

p
x

=  
2x

uE
p

c
; (33.23)

LO 3

Water in

Water Out

Light Source

BS

Fig. 33.4 An experimental arrangement to determine the speed of light in a moving medium; BS represents a beam split-
ter. The beam reflected by the beam-splitter travels in a direction opposite to the flow of water. The beam
transmitted by the beam-splitter travels in a direction parallel to the flow of water.
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E =  (E � up
x
); (33.24)

p
x

=  
2x

uE
p

c
; (33.25)

E =  (E  + up
x
); (33.26)

We will also have p
y
 = p

y
 and p

z
 = p

z
. Simple manipula-

tions of the above equations will give:

p
P

x
 + pP

y
 + pP

z
 � 

2

2

E

c
 = p P

x
 + p P

y
 + p P

z 
� 

2

2

E

c
(33.27)

 pPcP + mP

H2
cR � EP = p PcP + mP

H
cR � E P

Thus, the relation EP = pPcP + mP

H
cR is valid for all particles

in all inertial frames.
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As before, we assume that the S  frame is moving (relative to
the S frame) with velocity u along the +x direction and that
the two clocks are synchronized such that at t = t  = 0, the
origin O coincides with the origin O . We have a source of
light at rest at the origin of the S  frame; let E (= hv ) and
p  (= hv /c) represent the energy and momentum of the
photon moving (in the S  frame) in a direction making an
angle of  with the x-axis; thus

p
x

= hv
c

 cos ; p
y
 = hv

c
sin and p

z
 = 0 (33.28)

In the S frame, let the energy of the photon be E(= hv)
and momentum p(= hv/c) moving in a direction making an
angle of  with the x-axis; thus

p
x
 = 

hv

c
cos ; p

y
 = 

hv

c
sin and p

z
 = 0 (33.29)

Using Eqs. (33.25), (33.28) and (33.29), we get

p
x

= hv
c

 cos =  
2

cos
hv uhv

c c

 v cos = v cos
u

c
(33.30)

p
y

= hv
c

sin = hv
c

sin   v sin = v  sin (33.31)

Using Eq. (33.26) we get

E = hv = cos
hv

hv u
c

v = v 1 cos
u

c
(33.32)

Dividing Eq. (33.30) by Eq. (33.32), we get

cos = 
cos

1 cos

u

c
u

c

(33.33)

Thus when  = 0, then = 0 [which also follows from
Eq. (33.31)], and

v = v 1
u

c
 = v

2

2

1

1

u

c

u

c

 = v  
1

1

u

c
u

c

(33.34)

which is the expression for the longitudinal Doppler effect
derived in the previous chapter; the above corresponds to the
source moving towards the observer as discussed in Sec. 32.3.
For the source moving away from the observer,  =  =
and we have the red shifted frequency:

v = v  1
u

c
 = v  

2

2

1

1

u

c

u

c

 = v 
1

1

u

c
u

c

(33.35)

Equations (33.33) and (33.34) are identical to the results de-
rived in Sec. 32.3. In order to calculate the transverse Doppler
shift, we must have  = /2 (i.e., light must be seen at right
angles to the direction of motion) and thus

cos  = � u
c

 and therefore using Eq. (33.32), we get

v = v  1 cos
u

c
 = v  

2

2

2

2

1

1

u

c

u

c

= v
2

2
1

u

c

which is known as the transverse Doppler effect.

Problems

33.1 For an observer on the platform, a train is moving with speed

0.5c along the +x direction. Inside the train, an object is

moving with speed 0.5c along the +x direction. What will be

the speed of the object for an observer on the platform?

[Ans: 0.8 c]

33.2 A spaceship is moving (in the +x direction) with velocity 0.4c

relative to the observer on the ground. Another spaceship is

moving with velocity 0.3c (in the �x direction) relative to the

observer on the ground. What would be the speed of the sec-

ond space ship as observed by the observer inside the first

spaceship?



We will first show that
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I
2 = e r dr d
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2
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Now,

e dx
x xs

2

= exp
2
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3
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6
5 exps

%
'&
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= exp 
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6
5 e dz

zs
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where z = x � 
2

. Using Eq. (A.3) we get

e dz
zs

2

= @eFRA

using which we obtain Eq. (A.1). We also get

= 2 e dx
xs

2

0

= y e dy
ys 1 2

0

/

Thus,

1

2
%
'

(
0 =2 @eFSA

where (z) is defined through the equation

@zA =2

0

s x
z�1 e�x dx Re z > 0 @eFTA
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For Re z >1, if we integrate by parts we would obtain

(z) =2(z � 1)  (z � 1) @eFUA

Since

(1) a2

0

s e
� x

 dx = 1

we obtain

(n + 1) = n! ; n = 0,1,2,... @eFVA

Further since 
1

2
%
'

(
0  = , we obtain
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'
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etc. Finally for n = 0, 1, 2�

s x e dx
n x2 2

= n%'
(
0

1

2
 = 

1 3 5 2 1

2

. . ( )n
n

@eFIHA

and

s x e dx
n x2 1 2

= 0 @eFIIA



The Laplace transform of a function f (x) is defined by the

following equation

F(p) = L[ f(x)] = 

0

∞

s e�px f(x)dx @fFIA

Now,

s

∞

s F(p)dp = 

0

∞∞

ss
s

e�px f(x)dxdp

= 

0

∞

s dx f (x) e d p
px

s

−

∞

s
1

3

2
2

4

6

5
5

Carrying out the integration over p, we get

s

∞

s F(p)dp = 
f x

x

( )

0

∞

s e
�sx

dx @fFPA

In the limit of s  0, we obtain

0

∞

s F(p)dp = 
f x

x

( )

0

∞

s dx @fFQA

We next assume

f(x) = sin gx, g > 0 @fFRA

then

F(p) = 

0

∞

s sin gx e�pxdx
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= 
1

2
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i

∞

s [e�(p� ig)x � e�(p+ ig)x]dx
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1

2

1 1

i p ig p ig−
−

+

1

32
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g

p g2 2
+

Thus,

0

∞

s F(p)dp = g
dp

p g
2 2

0
+

∞

s

= 
d x

x1
2

0
+

∞

s ; x = 
p

g

= tan
− ∞1

0
x  = 

π

2
 (for g > 0) @fFSA

Obviously, for g < 0, the above integral is � /2. Thus, using

Eq. (B.3), we get

sin gx

x
0

∞

s dx = 
π

2
for g > 0

= 0 for g = 0 @fFTA

= �
π

2
for g < 0

The integrand is an even function of x; thus

sin gx

xπ
−∞

+∞

s dx = 
2

0
π

sin gx

x

∞

s dx = 1 (g > 0) @fFUA

i�ev�e�syx2yp

�ri2sx�iq�ev2 •
–•

sin gx
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In the core of a single mode optical fiber, we assume a small

z-dependent periodic variation of the refractive index; thus

the complete refractive index variation is assumed to given

by

n(r, z) = n
H
 + n sin Kz @gFIA

where K = 
2

@gFPA

 represents the period of the z-dependent variation and we

will assume n << n
H
. The complete expression for the

reflectivity is given by

R  
2 2

2
2 2

sinh

cosh
4

L

L

@gFQA

where L is the length of the FBG,

= 4  n
H

0

1 1

B

,  = 
2

2

4
, 

f
= 2 n

H
2@gFRA

and

= 
0

n
@gFSA

is known as the coupling coefficient; 
f
 is the Bragg

wavelength. The maximum reflectivity occurs when 
H
 = 

f

(thus  = 0) and one obtains the following expression for the

peak reflectivity [see Eq. (15.47) of chapter 15].

R = tanhP

B

nL
@gFTA
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When > 2 , would become imaginary and Eq. (C.3) would

take the form

R = 
2 2

2
2 2

sin

cos
4

L

L

@gFUA

where

= 
2

2

4
@gFVA

Thus R = 0 when L = m  (m = 1, 2, 3,�). The

wavelengths at which R = 0 [see Fig. 15.13(c)] will be given

by

H
 

f2

2
2 2 2 2

02

B
L m

n L
@gFWA

Thus, the bandwidth will be given by (we substitute m = + 1

and �1 in the above equation and take half of the width in

wavelength):

H2
= 

2

02

B

n L

1/2
2 2

2
1

L 2=2

22
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B

B

n L

n L
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0

B
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2

0

( )
1

2

B

B

n L

n L
@gFIIA



If the amplitude and phase distribution on the plane z = 0 is

given by A( , ) then the diffraction pattern is given by [see

Eq. (20.23) of Chapter 20]

u(x, y, z)  � 
i

z
 exp(ikz) ss A( , ) 

exp 
7
8
9

@
A
B

ik

z
x y

2

2 2[( ) ( ) ]  d  d @hFIA

We consider a Gaussian beam propagating along the

z-direction whose amplitude distribution on the plane z = 0 is

given by

A( , ) = a exp
1

3
2

4

6
5

2 2

0
2

w
@hFPA

implying that the phase front is plane at z = 0. Thus at a dis-

tance wH from the z-axis, the amplitude falls by a factor 1/e

(i.e., the intensity reduces by a factor 1/eP). This quantity wH

is called the spot size of the beam. Substituting Eq. (D.2) in

Eq. (D.1), we obtain
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where
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@hFSA
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z
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If we now use the integral
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we would get
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w(z) = wH[1 + P]IGP = wH 1
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and
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Consider the propagation of an electromagnetic wave in a

homogeneous medium of dielectric constant ; the trans-

verse components of the electric field (Ex or Ey) would

satisfy the scalar wave equation

2 = 
0

2

2
t

@iFIA

If we assume the time dependence of the form e�i t and write

 (x, y, z, t) = U(x, y, z) e� i t @iFPA

we would obtain

2U + k2U = 0 @iFQA

where

k = 0  = 
v

@iFRA

U represents one of the Cartesian components of the electric

field and v represents the velocity of the electromagnetic

wave. The solution of Eq. (E.3) can be written as

U(x, y, z) = 
( )

( , ) x y zi k x k y k z

x yF k k e dkxdky @iFSA

where

kz = 
2 2 2

x yk k k @iFTA

For waves making small angles with the z axis we may write

k z = 
2 2 2

x yk k k  k

2 2

2
1

2

x yk k

k
@iFUA

Substituting in Eq. (E.5) we obtain

U(x, y, z) = e ik z 

2 2

( , ) exp
2

x y

x y x y

k k
F k k i k x k y z

k
dkx dky @iFVA
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Thus the field distribution on the plane z = 0 will be given by

U (x, y, z = 0) = 
( )

( , ) x yi k x k y

x yF k k e dkxdky @iFWA

The above equation tells us that U(x, y, z = 0) is the

Fourier transform of F(kx, ky). The (2-dimensional) inverse

transform will give us (see Sec. 9.6)

F(kx, ky) = 
( )

2

1
( , ,0)

(2 )

x yi k k
U e d d @iFIHA

Substituting the above expression for F (kx,ky) in

Eq. (E.10), we get
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4
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where
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and we have used the following integral
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Thus,

U(x, y, z) = 
1 ikz
e

i z
 

    
2 2( , ,0)exp {( ) ( ) }

2

ik
U x y

z
d d @iFISA

where the integral is over the area of the aperture on the

plane z = 0. The above equation is the same as Eq. (19.9) of

chapter 19.
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The simplest type of wave is a plane monochromatic wave

described by the wave function

, expt A i tr k r (F.1)

which represents a disturbance of amplitude A and of wave-

length  = 2 /k travelling in the direction of its wave vector

k with phase velocity /k. If we assume the propagation to

be along the x�axis, then ˆk kx and we have

, expx t A i kx t (F.2)

which on using the equations

E h ; =
2

h
(F.3)

and

2
;

h
p k k    (F.4)

takes the form

, exp
i

x t A px Et (F.5)

Successive differentiation of the above equation will give us

,i E x t
t

(F.6)

,i p x t
x

(F.7)

2 2 2

2
,

2 2

p
x t

m mx
(F.7)

Now for a free non-relativistic particle,
2

2

p
E

m
, and

therefore from the above equations we get

2

2

p
E

m

2 2

22
i

t m x
(F.9)

which is the one-dimensional time dependent Schrödinger

equation for a free particle. In order to solve the above equa-

tion we use the method of separation of variables:

,x t x T t (F.10)

Substituting in Eq. (F9) and subsequent division by

x T t gives us

22 2

2

1

2 2

dT t d xi p
E

T t dt m x mdx
(F.11)

Since the LHS is a function of t alone and the RHS is a func-

tion of x alone, each side must be equal to a constant; we

have set this constant equal to E, which represents the total

energy of the particle. Integrating the time dependent part,

we readily have

/
constant

iEt
T t e (F.12)

Obviously E has to be real; because if E is complex, the so-

lution will blow up as t or as t . From Eq. (F.11)

we also have

2 2

2 2
0

d x p
x

dx
(F.13)

where we have defined
2 2p mE. Integrating the above

equation, we get

/
constant

ipx
x e (F.14)

Obviously E cannot be negative because then p would be

imaginary and the solutions will blow up as x

or x . Thus we must have

(i)

2

2

p
E

m
 real and positive, and

(ii) p can take any real value between and .
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We write the solution of Eq.(F.13)  as

1
exp

2
p

i
    pxx (F.15)

which would satisfy

*
p px x dx p p (F.16)

which represents the orthonormality condition. Since p can

take any real value between and , the most general

solution of Eq. (F.9) is

2
1

, exp
22

x

-

pi
x t   a p      px t  dp

m
(F.17)

If the particle is in a potential field described by the potential

energy function V (x), then the total energy will be given by

2

2

p
E V x

m
(F.18)

And, therefore, the equation

2

, ,
2

p
E x t V x x t

m
(F.19)

will give us

2 2

2
,

2
i V x x t

t m x
(F.20)

Once again, we can use the method of separation of variables

to write

/
,

iEt
x t x e (F.21)

where x would satisfy the following equation

2

2 2

2
0

d x m
E V x x

dx
(F22)

which is the time-independent one dimensional Schrödinger

equation for a particle in a potential field described by the

potential energy function V (x). We will discuss its solutions

in Sec. 29.6 for the potential well problem and the linear har-

monic oscillator problem.

We can easily extend the analysis to 3 dimensions where

we will have (for a free particle)

2 2 21

2
x y zpE p p

m
(F.23)

and we will obtain the 3 dimensional time dependent

Schrödinger equation for a free particle:

2 2 2 2

2 2 2

,
,

2

t
i t

t m x y z

r
r (F.24)



In this appendix, we will derive the equations that are start-

ing points for modal analysis. We start with Maxwell's

equations, which for an isotropic, linear, nonconducting and

nonmagnetic medium take the form

  i = �
∂

∂

B

t
 = � i 0

∂

∂

H

t
@qFIA

  r = 
∂

∂

D

t
 = 0 n

2 E

t
@qFPA

h = 0 @qFQA

f = 0 @qFRA

where we have used the constitutive relations

f = 0 r @qFSA

h = i = 0 n
2
i @qFTA

in which i, h, f and r represent the electric field, electric

displacement, magnetic induction and magnetic intensity,

respectively, 0 (= 4   10�7 Ns2/C2) represents the free

space magnetic permeability, (= 0 n
2) represents the dielec-

tric permittivity of the medium, and n, the refractive index,

and 0 (= 8.854  10�12 C2/Nm2) is the permittivity of free

space. If the refractive index varies only in the

x-direction � that is

n 2 = n2(x) @qFUA

then, we can always choose the z-axis along the direction of

propagation of the wave and we may, without any loss of gen-

erality, write the solutions of Eqs. (G.1) and (G.2) in the form

i = i(x)ei( t� z) @qFVA

r = r(x)ei( t� z) @qFWA

where  is known as the propagation constant. Equations

(G.8) and (G.9) define the modes of the system. Thus modes

represent transverse field distributions that suffer a phase

change only as they propagate through the waveguide along

z; the transverse field distributions described by i(x) and

r(x) do not change as the field propagates through the

waveguide. The quantity  represents the propagation con-

�i2exh2�w2wyhi�2sx

�vexe�2�e�iq�shi�
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stant of the  mode. We rewrite the components of Eqs. (G.8)

and (G.9):

ij = Ej(x)ei ( t� z);  j = x, y, z @qFIHA

rj = Hj(x)ei( t� z);  j= x, y, z @qFIIA

Substituting the above expressions for the electric and

magnetic field in Eqs. (G.1) and (G.2) and taking their x, y and z

components we obtain

i Ey = �i 0Hx @qFIPA

∂

∂

E

x

y
= �i 0Hz @qFIQA

� i Hx � 
H

x

z = i 0n
2(x)Ey @qFIRA

i Hy = i 0n2(x)Ex @qFISA

H

x

y
= i 0n2(x)Ez @qFITA

�i Ex � 
∂

∂

E

x
z = �i 0Hy @qFIUA

As can be seen, the first three equations involve only Ey,

Hx and Hz and the last three equations involve only Ex, Ez and

Hy. Thus, for such a waveguide configuration, Maxwell�s

equations reduce to two independent sets of equations. The

first set corresponds to non-vanishing values of Ey, Hx and Hz

with Ex, Ez and Hy vanishing, giving rise to what are known

as TE modes because the electric field has only a transverse

component. The second set corresponds to non-vanishing

values of Ex, Ez and Hy with Ey, Hx and Hz vanishing, giving

rise to what are known as TM modes because the magnetic

field now has only a transverse component. The propagation

of waves in such planar waveguides may thus be described in

terms of TE and TM modes.

TE Modes

We first consider TE modes: we substitute for Hx and Hz from

Eqs. (G.12) and (G.13) in Eq. (G.14) to obtain

d E

d x

y
2

2
 + [k0

2 n2(x) � 2]Ey = 0 @qFIVA
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where

k0 = ω ε μ0 0  = 
ω
c

@qFIWA

is the free space wave number and c =
1

0 0ε μ
%
'&

(
0)

 is the

speed of light in free space. For a given refractive index profile

n2(x), the solution of Eq. (G.18) [subject to appropriate

boundary and continuity conditions] will give us the field

profile corresponding to the TE modes of the waveguide.

Since Ey(x) is a tangential component, it should be continuous

at any discontinuity; further since dEy /dx is proportional to

Hz(x) (which is a tangential component), it should also be

continuous at any discontinuity. Once Ey(x) is known, Hx(x)

and Hz(x) can be determined from Eqs. (G.12) and (G.13)

respectively. In Secs. 28.2 and 28.4. we have solved Eq. (G.18)

for a symmetric step-index waveguide and for a parabolic index

waveguide, respectively.

TM Modes

The TM modes are characterized by field components Ex, Ez

and Hy [see Eqs. (G.15) � (G.16)]. If we substitute for Ex and

Ez from Eqs. (G.15) and (G.16) in Eq. (G.17), we will get

n2(x)
d

d x n x

dH

d x

y1
2
( )

1

3
2

4

6
5  + [k0

2 n2(x) � 2]Hy(x) = 0 @qFPHA

The above equation is of a form that is somewhat differ-

ent from the equation satisfied by Ey for TE modes (see

Eq. (G.18)). However, for the step index waveguide shown in.

Fig. 28.1, the refractive index is constant in each region and,

we will have

d H

dx

y
2

2
 + [k0

2ni
2 � 

2
]Hy(x) = 0; @qFPIA

At at each discontinuity

Hy and
1
2

n

dH

dx

y
@qFPPA

should be continuous. This follows from the fact that since

Hy(x) is a tangential component, it should be continuous at

any discontinuity; further since 
1

2
n x

dH

dx

y

( )
 is proportional

to Ez(x) (which is a tangential component), it should also be

continuous at any discontinuity.



In this appendix, we will show that for the solution of the

following equation

2

2

d

d
 + [  � 2] ( ) = 0 (H.1)

to be well behaved we must have  = 1, 3, 5, 7, �.; i.e.,

must be an odd integer. These are the eigenvalues of

Eq. (H.1). We introduce the variable

= 2 (H.2)

Thus,

d

d
= 

d

d

d

d
 = 

d

d
2 (H.3)

and

2

2

d

d
= 4  

2

2

d

d
 + 2

d

d
(H.4)

Substituting in Eq. (H.1), we obtain

2

2

d

d
 + 

1

2

d

d
 + 

1

4 4
( ) = 0 (H.5)

In order to determine the asymptotic form, we let 

so that the above equation takes the form

2

2

d

d
 � 

1

4
( ) = 0

the solution of which would be 

1

2e . This suggests that we

try out the following solution

( ) = y( )

1

2e (H.6)

Thus,

d

d
= 

1

21

2

d y
y e

d
(H.7)
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and

2

2

d

d
= 

12

2
2

1
( )

4

d y d y
y e

dd
(H.8)

Substituting Eqs. (H.7) and (H.8) in Eq. (H.5) we get

2

2

d y

d
 + 

1

2

d y

d
 +

1

4
y( ) = 0 (H.9)

Now the confluent hypergeometric equation is given by

(see, e.g., Refs. H.1 and H.2)

x
2

2

d y

dx
 + (c � x)

dy

dx
 � a y (x) = 0 (H.10)

where a and c are constants. For c  0,  1, 2, 3, 4,.....

the two independent solutions of the above equation are

y1(x) = 1F1(a, c, x) (H.11)

and

y2(x) = x1
 
� c 1F1(a � c + 1, 2 � c, x) (H.12)

where 1F1(a, c, x) is known as the confluent hypergeometric

function and is defined by the following equation

1F1(a, c, x) = 1 + 
a

c 1!

x
 + 

( 1)

( 1)

a a

c c

2

2!

x

+ 
3( 1)( 2)

( 1)( 2) 3!

a a a x

c c c
 +..... (H.13)

Obviously, for a = c we will have

1F1(a, a, x) = 1 + 
1!

x
 + 

2

2!

x
 + 

3

3!

x
 + ..... = ex (H.14)

Thus although the series given by Eqs. (H.13) and (H.14)

are convergent for all values of x, they would blow up at

infinity. Indeed the asymptotic form of 1F1(a, c, x) is given by

1F1(a, c, x)
( )

( )x

c

a
x a� c e x (H.15)
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The confluent hypergeometric series 1F1(a, c, x) is very easy

to remember and its asymptotic form is easy to understand.

Returning to Eq. (H.9), we find that y( ) satisfies the

confluent hypergeometric equation with

a = 
1

4
and c = 

1

2
(H.16)

Thus, the two independent solutions of Eq. (H.1) are

1( ) = 1F1 

1

2
1 1

, ,
4 2

e (H.17)

and

2( ) =  1F1 

1

2
3 3

, ,
4 2

e (H.18)

We must remember that  = 2. Using the asymptotic form of

the confluent hypergeometric function [Eq. (H.15)], one can

readily see that if the series does not become a polynomial

then, as , ( ) will blow up as 

1

2e . In order to avoid

this, the series must become a polynomial. Now 1( )  be-

comes a polynomial for  = 1, 5, 9, 13,� and 2( )

becomes a polynomial for = 3, 7, 11, 15. Thus, only when

= 1, 3, 5, 7,  9,�. (H.19)

we will have a well-behaved solution of Eq. (H.1) � these are

the eigenvalues of Eq. (H.1). The corresponding wavefunctions

are the Hermite Gauss functions:

( ) = NH
m

( ) exp 21

2
; m = 0, 1, 2, 3,.... (H.20)

Indeed

H
n
( ) = (� 1) n/2 !

!
2

n

n
1F1

21
, ,

2 2

n
 for n = 0, 2, 4,....

(H.21)

and

H
n
( ) = (� 1) ( n�1)2 !

1
!

2

n

n
 2 1F1 

21 3
, ,

2 2

n

for n = 1, 3, 5,.... (H.22)



In this appendix, we will show that the scalar wave equation

2 =2
2

2 2

1

c t

@sFIA

is invariant under Lorentz transformation. In Cartesian coor-

dinates

2 = 

2 2 2

2 2 2
x y z

@sFPA

The equations describing the Lorentz transformations are

given by (see Sec. 33.2)

x = (x � ut) @sFQA

t = 
2

ux
t

c
@sFRA

with y  = y and z  = z. In the above equations

=
2

2

1

1
u

c

@sFSA

is the Lorentz factor. Since y  = y and z  = z

2

2
y

= 

2

2
y

and

2

2
z

 = 
2

2
z

@sFTA

From Eqs. (I.3) and (I.4)

x

x
= , 

t

x
 = �

2

u

c
@sFUA

Now,

x
= x

x x
 + 

y

y x
 + z

z x
 + t

t x
@sFVA

sx�e�sexgi2yp2�ri2�e�i

i��e�syx2�xhi�

vy�ix��2��ex�py�we�syx

Appendix
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Using Eq. (I.7)

x
=  

x
 � 

2

u

tc
@sFWA

and

2

2
x

=  

2 2

2

x t

x x t xx
 �

2 2

2 2

u x t

x t x xc t

= 2

2 2 22 2 2

2 2 4 2

2 u u

x tx c c t
@sFIHA

From Eqs. (I.3) and (I.4)

x

t
= � u and

t

t
 = @sFIIA

Thus,

t
 = 

x

x

t
 +  

y

y t
 + 

z

z t
 + 

t

t t

= � u 
x

 +  
t

@sFIPA

2

2
t

 = � u

2 2

2

x t

t x t tx
 +

2 2

2

x t

x t t tt

= + 2
u
2

2 2 2

2 2

2 2
2 u

x tx t
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or,  

2 2

2 2 2

1

x c t
 = 2

2 2 22 2 2

2 2 4 2

2 u u

x tx c c t

� 

2 2 22 2 2 2

2 2 2 2 2

2u u

x tc x c c t

= 

2 2

2 2 2

1

x c t

where we have used Eq. (I.5). Thus,

2 2 2 2

2 2 2 2 2

1

x y z c t

= 

2 2 2 2

2 2 2 2 2

1

x y z c t
@sFISA

which proves the invariance of the wave equation under

Lorentz transformation.
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Physical understanding of modes  29.5

Planck�s law  27.20

Plane parallel film  15.2

Plane wave  12.2

Plane wave propagation in anisotropic media  22.27

Plane waves in a dielctric  23.3

Plasma frequency  7.13

Plastic optical fibers  28.8, 28.18

Poisson spot  20.4

Polarization beam splitter  26.2

Polarization by double refraction  22.8

Polarization by reflection  22.8, 24.8

Polarization by scattering  22.9

Polarization of a photon  2.16

Polarization rotation operator  25.12

Polarizing angle  22.8

Polaroid  2.16, 22.8

Population inversion  27.20

Postulates of the special theory of relativity  31.4

Potential barrier  26.9

Power law profile  28.18

Poynting vector  24.15

for the evanescent wave  24.15

Poynting vector associated with the transmitted wave  24.15

Precision displacement sensor  28.19

Principal Foci  4.6

Principal maxima  18.23

Probabilistic interpretation of matter waves  2.12

Production of polarized light  22.7

Propagation constant  29.4, 30.2

Propagation in a conducting medium  23.12

Propagation in uniaxial crystals  22.29

Proper time  31.5

Pulse dispersion  28.10
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Pulse dispersion in multimode optical fibers  28.14

Pulse dispersion in single-mode fibers  30.7

Pumping source  27.6

�

q-profile  28.18

�

Radiation modes  30.3

Radiation pressure  23.14

Raman amplification  27.28

Raman Laser  27.28

Raman spectra of CCl
R
  27.30

Ray dispersion  28.14

Ray equation  3.13

Ray paths in an inhomogeneous medium  3.8

Ray velocity surfaces  22.15

Rayleigh  1.5

Rayleigh criterion  18.26

Rayleigh criterion of  18.17

Rayleigh scattering  7.15

RCP wave  22.12

Rectangular aperture  19.4

Rectilinear propagation  12.2

Red shift of spectral lines  32.2

Reflection by a single spherical surface  4.4

Reflection coefficient  24.13

Reflection of a plane wave  12.5

Reflection of light from a point source  12.6

Reflectivity  15.7

Reflectivity and transmittivity  24.13

Reflectivity of a dielectric film  24.19

Reflectivity of a FBG  15.8, C.1

Reflectivity of a good conductor  24.5

Refraction at an interface of two media  24.1

Refraction at a single spherical surface  4.2

Refraction matrix  5.4

Refraction of a plane wave  12.4

Refraction of a spherical wave  12.6

Refractive index of the dielectric  23.4

Rerfactive index, origin of  7.11

Resolving power of a Fabry�Perot etalon  16.29

Resolving power of a grating  18.25

Resolving power of a microscope  18.18

Resolving power of a scanning Fabry�Perot interferometer  10.7

Resonant cavity  27.14

Resonator  27.8

Resonator consisting of two spherical mirrors  27.16

Retina of the human eye  28.7

Right circularly polarized wave  22.12

Rochon prism  22.26

Rods and cones  28.7

Ruby laser  27.11, 27.12, 27.26

�

Scalar wave equation  23.7

Schrödinger equation  26.5, 26.6

Schrödinger equation, heuristic derivation of  F.1

Self-focusing  18.32

Self-phase modulation  10.11

Separated doublet  6.3

Shuster�s method,  20.3

Sign convention  4.2

Simple harmonic motion  7.3

Simultaneity of two events  31.10

Sine condition  4.12

Single-mode fiber  30.6

Single-slit diffraction pattern  18.4

Single-mode fiber  28.14, 30.1, 30.6

Single photon detectors  26.1

Single photon source  26.1

Single slit diffraction  26.9

Single-slit diffraction pattern  18.4

Single slit Fraunhofer diffraction pattern  18.6

Sinusoidal waves  11.3

Skin depth  23.13

Small residual dispersion fiber  30.11

Snell�s law  3.6, 24.2

Spatial coherence  17.5

Spatial frequency filtering  19.8

Special theory of relativity  31.3

Specific rotation  22.40

Spectral purity  17.4

Spherical aberration  6.4

Splice loss  30.7

Spontaneous emission  27.4

Spot size  30.6

Spot size of Gaussian beam  18.11, D.1

Stationary light waves  13. 6

Stationary waves on a string  13.5

Step-index profile  29.1

Step index fiber  30.1

Step index planar waveguide  29.2

Stimulated absorption  27.5

Stimulated emission  27.4

Stokes� relations 15.4

Straight edge diffraction pattern  20.9

Straight line fringes  14.8

Strutt, John William  1.5

Sum, energy from  32.4

Supercontinuum white light source  10.13

Superposition of two disturbances  22.10

Superposition of two sinusoidal waves  13.7

Superposition of waves  13.3

Susceptibility  7.14, 23.17

Symmetric modes  29.3, 29.4

System  30.12

System matrix  5.4
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System of two thin lenses  5.10
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TE modes  G.1

Temporal broadening  10.9

Theory of Faraday rotation  22.41

Theory of optical activity 22.39

The sine condition  4.12

Thin Films  15.18

Thin lens  4.5

Three-dimensional wave equation  23.7

Threshold condition  27.22

Time dilation  31.5

TIR  28.5

TM modes  G.1

Total dispersion  28.17

Total internal reflection  12.5, 24.9, 28.5

Transition to the Fraunhofer region  20.13

Transit time calculations  3.16

Translation matrix  5.3

Transmission coefficent  24.13

Transverse doppler effect  33.6

Transverse electromagnetic waves  23.3

Transverse vibrations of a plucked string  8.3

Transverse vibrations of a stretched string  11.6

Transverse wave  2.4

Two- and three-dimensional fourier transform  9.5

Two-hole interference experiment  2.13

Two-slit fraunhofer diffraction pattern  18.18

Two-beam interference 14. 1

Two thin lenses  5.10

�

Uncertainty principle  2.10, 26.8

Uniaxial medium  22.27

Unit planes  5.7

�

Vibrations of a mass held by two stretched springs  7.7

Vibrations of a stretched string  7.7

Visibility  17.12

of the fringes  17.12

Visibility of fringes  17.12

�

Water waves  14.2

Wave equation  11.6, 23.7

general solution of  11.10

Wave packet,  10.4, 10.5, 26.7

group velocity of  10.4

Wave propagation  11.1

Wave propagation in an absorbing medium  23.12

Waveguide dispersion  28.14, 30.8

Waveguide parameter  29.3, 30.3

Wavelength  11.3

Wavelength division miltiplexed systems  30.12

Wavelength division multiplexed  30.12

WDM systems  30.12

Wiener�s experiments  13.6

Wire grid polarizer  22.7

Wollaston prism  22.25

�

X-ray diffraction  18.28

�

Young�s experiment  14.7

�

Zero-dispersion wavelength  30.9

Zone-plate  20.5
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