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CHAPTER

Quantum Theory

Quantum physics, which originated in the year 1900, spans the first quarter of the twentieth century.
At the end of this important period, Quantum Mechanics emerged as the overruling principle in
Physics.

1.1 Planck’s Quantum Hypothesis

Quantum physics originated with Max Planck’s explanation of the black body radiation curves.
Planck assumed that the atoms of the walls of the black body behave like tiny electromagnetic
oscillators, each with a characteristic frequency of oscillation. He then boldly put forth the following
suggestions:

1. An oscillator can have energies given by
E, = nhv, n=0,1 2, .. (1.2)
where v is the oscillator frequency and h is Planck’s constant whose value is
6.626 x 10734 Js.
2. Oscillators can absorb energy from the cavity or emit energy into the cavity only in discrete
units called quanta, i.e.,
AE,, = Anhv = hv (1.2)
Based on these postulates, Planck derived the following equation for the spectral energy
density u, of black body radiation:
o= 8zhv? dv
v 8 exp (hw/kT) -1

(1.3)

1.2 Photoelectric Effect

On the basis of quantum ideas, Einstein succeeded in explaining the photoelectric effect. He extended
Planck’s idea and suggested that light is not only absorbed or emitted in quanta but also propagates
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as quanta of energy hv, where v is the frequency of radiation. The individual quanta of light are
called photons. Einstein’s photoelectric equation

hv = hy, + %mvz (1.4)

explained all aspects of photoelectric effect. In Eq. (1.4), hvis the energy of the incident photon, hy
is the work function of the metallic surface, and v is the threshold frequency. Since the rest mass
of photon is zero,

E=cp or p:%:—:% (1.5)

1.3 Compton Effect

Compton allowed x-rays of monochromatic wavelngth A to fall on a graphite block and measured
the intensity of scattered x-rays. In the scattered x-rays, he found two wavelengths—the original
wavelength 4 and another wavelength A" which is larger than 4. Compton showed that

, _h
A -A= m—oc(l— Ccos ¢) (16)

where mq is the rest mass of electron and ¢ is the scattering angle. The factor h/mgc is called the
Compton wavelength.

1.4 Bohr’s Theory of Hydrogen Atom

Niels Bohr succeeded in explaining the observed hydrogen spectrum on the basis of the following
two postulates:
(i) An electron moves only in certain allowed circular orbits which are stationary states in the
sense that no radiation is emitted. The condition for such states is that the orbital angular
momentum of the electron is given by

mvr = nh, n=123, ... .7
where i = h/2 is called the modified Planck’s constant, v is the velocity of the electron
in the orbit of radius r, and m is the electron mass.

(if) Emission or absorption of radiation occurs only when the electron makes a transition from
one stationary state to another. The radiation has a definite frequency ,, given by the
condition

hvin = En — Ej (1.8)
where E;, and E,, are the energies of the states m and n, respectively.
According to Bohr’s theory, the radius of the nth orbit is

i’ (o L

 kme? 4rey

(1.9)

I

where g is the permittivity of vacuum and its experimental value is 8.854 x 10712 C2 Nt m™
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The radius of the first orbit is called Bohr radius and is denoted by a, i.e.

Ameyh?
8= —0L =053 A (1.10)
me

In terms of ay, from Eq. (1.9), we have
r, = n%a, (1.11)

The total energy of the hydrogen atom in the nth state is

4
me 1 13.6
En=-—555 —5=—-——"¢8V, n=123, ... 1.12
" 32xPgn? n? n? (112)

When the electron drops from the mth to nth state, the frequency of the emitted line v, is given by

me* (1 1

:W n_Z_Fj’ m>n2>1 (1.13)

hvin

For hydrogen-like systems,

Z’me* 1
n— 2

—Wn ) n=1,2 3, .. (1.14)

The parameters often used in numerical calculations include the fine structure constant « and the
Rydberg constant R given by

2
e 1
@ Anegch 137 (1.15)
me* 1
£5¢c

The Rydberg constant for an atom with a nucleus of infinite mass is denoted by R.., which is the
same as R in (1.16).

Different spectral series of hydrogen atom can be obtained by substituting different values for
m and n in Eq. (1.13).

(i) The Lyman series

1 1 1

72 R[]__Z_F)’ m=2 3,4, .. (117)
(if) The Balmer series

1 1 1

7=R(2—2—F), m=3,4,5 ... (1.18)

(iif) The Paschen series

1 1 1
T_R(?_F)’ m=4,56, ... (1.19)
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(iv) The Brackett series

1 1 1

7=R(4—2—F), m=25,6,7, ... (1.20)
(v) The Pfund series

1 1 1

7=R(5—2—F), m=6,728, ... (1.21)

1.5 Wilson-Sommerfeld Quantization Rule

In 1915, Wilson and Sommerfeld proposed the general quantization rule
$pdg =nh,  n=01,23, .. (1.22)

where <ﬁ is over one cycle of motion. The g;’s and p;’s are the generalized coordinates and

generalized momenta, respectively. In circular orbits, the angular momentum L = mvr is a constant
of motion. Hence, Eq. (1.22) reduces to
nh
= — =123, ... 1.2
mvr = o, n=1,23, (1.23)

which is Bohr’s quantization rule. The quantum number n = 0 is left out as it would correspond to
the electron moving in a straight line through the nucleus.
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PROBLEMS

1.1 The work function of barium and tungsten are 2.5 eV and 4.2 eV, respectively. Check whether
these materials are useful in a photocell, which is to be used to detect visible light.

Solution. The wavelength A of visible light is in the range 4000-7000 A. Then,

_34 8
Energy of 4000 A light = 1o = (0620 x10 719 Bx10 M/S) _ 5,4 ¢y
A (4000 x 107%m)(1.6 x 107° J/eV)

6.626 x 107 x 3x 10°
Energy of 7000 A light = =1.77eV
v g 7000 x 107%% x 1.6 x 107
The work function of tungsten is 4.2 eV, which is more than the energy range of visible light. Hence,
barium is the only material useful for the purpose.

1.2 Light of wavelength 2000 A falls on a metallic surface. If the work function of the surface is
4.2 eV, what is the kinetic energy of the fastest photoelectrons emitted? Also calculate the stopping
potential and the threshold wavelength for the metal.

Solution. The energy of the radiation having wavelength 2000 A is obtained as

—34 8
hc  (6.626 x 10" Js) (3 x 10° m/s) — 6212 eV

A (2000 x 10 1°m)(1.6 x 1019 J/eV)
Work function = 4.2 eV
KE of fastest electron = 6.212 — 4.2 = 2.012 eV
Stopping potential = 2.012 V

hc
Work function
(6.626 x 107%*Js) (3 x 108 m/s)
(4.2 eV)(1.6 x 107%° J/eV)

1.3 What is the work function of a metal if the threshold wavelength for it is 580 nm? If light of
475 nm wavelength falls on the metal, what is its stopping potential?

Solution.

Threshold wavelength A, =

Ao = = 2958 A

34 8
Work function = E _ (6:626 %10 7 Js) (3 x 10" m/s) =214 eV

Ao (580 x 10 °m)(L.6 x 101 J/eV)

-34 8
Energy of 475 nm radiation = he = (6.626 x i? J5) 8 X}g m’s) =262 eV
A (475 x1077m)(1.6 x 1079 J/eV)

Stopping potential = 2.62 — 2.14 = 0.48 V

1.4 How much energy is required to remove an electron from the n = 8 state of a hydrogen atom?

-13.6 eV

Solution. Energy of the n = 8 state of hydrogen atom = 8—2 =-021eVv

The energy required to remove the electron from the n = 8 state is 0.21 eV.

1.5 Calculate the frequency of the radiation that just ionizes a normal hydrogen atom.
Solution. Energy of a normal hydrogen atom = -13.6 eV
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Frequency of radiation that just ionizes is equal to

E _13.66eV (1.6 x107* J/eV)
h 6.626 x 10 Js
1.6 A photon of wavelength 4 A strikes an electron at rest and is scattered at an angle of 150° to

its original direction. Find the wavelength of the photon after collision.
Solution.

= 3.284 x 10" Hz

M= 2 - A= - (- cos150°)
MoC

_ 6.626 x10*Js x 1.866
©(9.11 x 10 3Lkg)(3 x 108 m/s)
A=1+0045 A =4.045 A
1.7 When radiation of wavelength 1500 A is incident on a photocell, electrons are emitted. If the

stopping potential is 4.4 volts, calculate the work function, threshold frequency and threshold
wavelength.

=0.045 A

hc

A

34 8
_ _(6626x10J5) 3x10°mis) _ o0

(1500 x 107 °m)(1.6 x 107° J/eV)

Solution. Energy of the incident photon

Work function = 8.28 — 4.4 = 3.88 eV

3.88eV (1.6 x 101° J/eV)
6.626 x 1034 Js

¢ 3x10®m/s

Threshold wavelength = =" =
9 A Vo 9.4x10"s?

Threshold frequency v = = 9.4 x 10" Hz

= 3191 A

1.8 If a photon has wavelength equal to the Compton wavelength of the particle, show that the
photon’s energy is equal to the rest energy of the particle.

Solution. Compton wavelength of a particle = h/myc

. h
Wavelength of a photon having energy E = EC
Equating the above two equations, we get
L = E E = 2
MyC = E or = MmeC

which is the rest energy of the particle.

1.9 x-rays of wavelength 1.4 A are scattered from a block of carbon. What will be the wavelength
of scattered x-rays at (i) 180°, (ii) 90°, and (iii) 0°?
Solution.

h
/1—/1+m—oc(1—cos¢), A=14 A
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h 6.626 x 10°* Js

= =0.024 A
MeC  9.1x 1031 kg (3 x 108 m/s)

i) V=A+—x2=145A
MoC

(i) A=A+ =142 A
MoC

S, h
(iiiy A _/1+moc(1 1) =14 A

1.10 Determine the maximum wavelength that hydrogen in its ground state can absorb. What
would be the next smallest wavelength that would work?

Solution. The maximum wavelength corresponds to minimum energy. Hence, transition from
n =1to n = 2 gives the maximum wavelength. The next wavelength the ground state can absorb is
the one forn =1ton = 3.

The energy of the ground state, E; = -13.6 eV

Energy of the n = 2 state, E, = _12'6 eV =-34 eV
-13.6
Energy of the n = 3 state, E5 = —9 eV =-15eV
Maximum wavelength = he
J - E2 - El

(6.626 x 1072*Js) (3 x 10® m/s)
10.2 eV x 1.6 x 1071 J/eVv
122 x 10° m = 122 nm
hc
ES - El

1.11 State the equation for the energy of the nth state of the electron in the hydrogen atom and
express it in electron volts.

Solution. The energy of the nth state is

Next maximum wavelength = 103 nm

me* 1

E. .= — -
" 8gZh? n?

—(9.11x 107 kg) (1.6 x 107*° C)*
8(8.85 x 1072C% N"' m=2)2(6.626 x 107 Js)?n?

—21.703 x 107 o 21703 107
n? 1.6 x 107°n? J/eV

1356

n2

eV
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1.12 Calculate the maximum wavelength that hydrogen in its ground state can absorb. What would
be the next maximum wavelength?

Solution. Maximum wavelength correspond to minimum energy. Hence the jump from ground state
to first excited state gives the maximum A.

Energy of the ground state = —-13.6 eV

Energy of the first excited state = -13.6/4 = -3.4 eV

Energy of the n = 3 state = -13.6/9 = -1.5 eV

Maximum wavelength corresponds to the energy 13.6 — 3.4 = 10.2 eV

Maxi I th—E— he
aximum wavelength = —= E,—E,

(6.626 x 107 Js) x (3.0 x 108 m/s)
10.2 x 1.6 x 1070

122 x 10°° m = 122 nm

The next maximum wavelength corresponds to a jump from ground state to the second excited state.
This requires an energy 13.6 eV — 1.5 eV = 12.1 eV, which corresponds to the wavelength

hc

E3 - El

(6.626 x 10>*Js) x (3.0 x 108 m/s)
12.1x 1.6 x 1071

103 x 10°m = 103 nm

A=

1.13 A hydrogen atom in a state having binding energy of 0.85 eV makes a transition to a state
with an excitation energy of 10.2 eV. Calculate the energy of the emitted photon.

Solution.  Excitation energy of a state is the energy difference between that state and the ground
state.
Excitation energy of the given state = 10.2 eV
Energy of the state having excitation energy 10.2 eV = -13.6 + 10.2 = — 3.4 eV
Energy of the emitted photon during transition from — 0.85 eV to -3.4 eV
= -0.85 - (-3.4) = 2.55 eV
Let the quantum number of —0.85 eV state be n and that of —3.4 eV state be m. Then,

ﬁ=0.85 or n=16 or n=4
n
@=3.4 or m®=4 or m=2
m

The transition is from n = 4 to n = 2 state.
1.14 Determine the ionization energy of the He* ion. Also calculate the minimum frequency a
photon must have to cause ionization.
Solution. Energy of a hydrogen-like atom in the ground state = —Z? x 13.6 eV
Ground state energy of He™ ion = =4 x 13.6 eV = —54.4 eV
lonization energy of He* ion = 54.4 eV
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The minimum frequency of a photon that can cause ionization is

-19
%: 54.4 €V (L6 x 10 J/eV) _ oac sy

6.626 x 107*Js

1.15 Calculate the velocity and frequency of revolution of the electron of the Bohr hydrogen atom
in its ground state.

Solution. The necessary centripetal force is provided by the coulombic attraction, i.e.

mv®  ke? K 1

V=

roog2 " 4re,
Substituting the value of r from Eq. (1.9), the velocity of the electron of a hydrogen atom in its
ground state is obtained as
e (1.6 x1071°C)?
260 2(8.85 x 1072 C2N"1 m2)(6.626 x 10734 Js)
= 2.18 x 10°ms™

Vi =

. 2rr
Period T = —
Vi
Substituting the value of r and vy, we obtain the frequency of revolution of the electron in the ground
state as
me* (9.11x 103! kg)(1.6 x 107*° C)*
4e2h®  4(8.85x 1072 CPN'm2)(6.626 x 10** Js)?

6.55 x 10'° Hz

=

1.16 What is the potential difference that must be applied to stop the fastest photoelectrons emitted
by a surface when electromagnetic radiation of frequency 1.5 x 10'® Hz is allowed to fall on it? The
work function of the surface is 5 eV.

Solution. The energy of the photon is given by

hv = (6.626 x 10734 Js) (1.5 x 10"°s71)

34 15¢-1
- (6.626 x10 7 JS)(1.5x1077S ) _ o019 ay

1.6 x 1071° J/eV

Energy of the fastest electron = 6.212 — 5.0 = 1.212 eV
Thus, the potential difference required to stop the fastest electron is 1.212 V

1.17 x-rays with A = 1.0 A are scattered from a metal block. The scattered radiation is viewed at
90° to the incident direction. Evaluate the Compton shift.

Solution. The compton shift

_ (6.626 x 103 Js)(1 — cos 90°)
(9.11x 103 kg) (3 x 108ms™)

=242 x10? m = 0.024 A

h
AL = m—OC(l— coS @)
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1.18 From a sodium surface, light of wavelength 3125 and 3650 A causes emission of electrons
whose maximum Kinetic energy is 2.128 and 1.595 eV, respectively. Estimate Planck’s constant and
the work function of sodium.

Solution.  Einstein’s photoelectric equation is
hc hc

i Z + Kinetic energy
e P o128 eV x (16 x 1070 JeV)
3125x10°%m 4

hc hc
- ——~ +1595eV (1.6 x 107 JeV
3650 x 10 °m 4 ( )
he 1 1 ) 0533x16x10%)
1010|3125 3650 ) ~ 90 X RO X

_ 0.533x1.6x 10719 x 10719 x 3125 x 3650 Is
525 x 3 x 108

=6.176 x 1074 Js

From the first equation, the work function

h -34 8
ne _ (6.176 x 107" Js)(3 x 10" m/s) 2128 x 1.6 x 1019 J

A 3125x 107" m

2524 x 1.6 x 107° J = 2.524 eV
1.19 Construct the energy-level diagram for doubly ionized lithium.

h

Solution.
2
. 13.
En:_z ><2136eV:_9><236eV
n n
122.4
= -— eV
n

E, =-1224 eV E, = -30.6 eV
E; = -13.6 eV E, = -7.65 eV

These energies are represented in Fig. 1.1.

E(eV) ]
00—

-71.65 F———
-13.6 |———

-30.6 —

-122.4

Fig. 1.1 Energy level diagram for doubly ionized lithium (not to scale).
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1.20 What are the potential and kinetic energies of the electron in the ground state of the hydrogen
atom?

Solution.
e2
Potential energy = — —
9 drey 1
Substituting the value of r from Eq. (1.9), we get
Potential energy = _m—e“ = -2E; =-272¢eV
1672621 ' '

Kinetic energy = total energy — potential energy
=-136eV + 272 eV = 136 eV

1.21 Show that the magnitude of the potential energy of an electron in any Bohr orbit of the
hydrogen atom is twice the magnitude of its kinetic energy in that orbit. What is the kinetic energy
of the electron in the n = 3 orbit? What is its potential energy in the n = 4 orbit?
Solution.
Radius of the Bohr orbit r, = n?a,
e’ 1 € 27.2

i = - — = =- eV
Potential energy dme, T 47z, n2a0 2

Kinetic energy = Total energy — Potential energy

13. 27.2 13.
= - 326 eV + 5 eV = 326 eV
n n n
KE in the n = 3 orbit = % =151 eV
. . . 27.2
Potential energy in the n = 4 orbit = BT =-17¢eV

1.22 Calculate the momentum of the photon of largest energy in the hydrogen spectrum. Also
evaluate the velocity of the recoiling atom when it emits this photon. The mass of the atom =
1.67 x 107 kg.

Solution. The photon of the largest energy in the hydrogen spectrum occurs at the Lyman series
limit, that is, when the quantum number n changes from « to 1. For Lyman series, we have

ESNE RS
ﬂ_ 12 mZ, m=/Z2 o, 4, ...

For the largest energy, m = . Hence,

1

~ =R

A
Momentum of the photon = th = % =hR

(6.626 x 10734 Js) (1.0967 x 10" m™)
=7.267 x 1072 kg m s*
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momentum
mass

_27 -1
_ 7.266 x 10 2k79m5 —435ms!
1.67 x 107" kg

1.23 Show that the electron in the Bohr orbits of hydrogen atom has quantized speeds v, = ca/n,
where « is the fine structure constant. Use this result to evaluate the kinetic energy of hydrogen atom
in the ground state in eV.

Solution.  According to the Bohr postulate,
mvr = nh, n=1,2 3, ..

The coulombic attraction between the electron and the proton provides the necessary centripetal
force, i.e.,

Velocity of recoil of the atom =

mv? ke’ ko L
r r2’ Are,
ke?
mvr = —
v

Combining the two equations for mvr, we obtain

ke? ke?
—=nh O V=—
\% n#
ke ¢ ac . ke?
“in o T
. . 1 2 020(2
Kinetic energy = —mv-=—-m——
W= 2"z
_ 1(91x10%kg)(3x10°ms ')’ 1
2 1372 n
_ 21.8179x10°°)  21.8179x107"]
n? n%(1.6 x 1071° J/eV)
1
= 13.636— eV
n

Kinetic energy in the ground state = 13.636 eV

1.24 In Moseley’s data, the K, wavelengths for two elements are found at 0.8364 and 0.1798 nm.
Identify the elements.

Solution. The K, x-ray is emitted when a vacancy in the K-shell is filled by an electron from the
L-shell. Inside the orbit of L-electron, there are z-protons and the one electron left in the K-shell.
Hence the effective charge experienced by the L-electron is approximately (Z — 1)e. Consequently,
the energy of such an electron is given by

_(Z-17%136¢eV

n
n2

E
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Then, the frequency of the K, line is
_ (Z-17%13.6eV ( 1 1 j

g vz
_ 3 (Z-1°136eV
T4 h
_ 3 (Z-1°(13.6eV)(1.6 x 107 J/eV)
4 6.626 x 1073 Js

2.463 x 101 (Z - 1)? st
Since v = c¢/A, we have
3% 10®ms™!
0.8364 x 107" m
Z-1=1206 or Z=13
Hence the element is aluminium. For the other one

=2.463x10%(Z —1)?s7?

3x108ms™*
0.1798 x 10 °m
Z-1=26, Z7=27

=2.463x10"°(Z —1)*s7*

The element is cobalt.

1.25 Using the Wilson-Sommerfeld quantization rule, show that the possible energies of a linear

harmonic oscillator are integral multiples of hyy, where 14 is the oscillator frequency.

Solution. The displacement x with time t of a harmonic oscillator of frequency 1, is given by

X = Xg Sin (27 pt)
The force constant k and frequency 1, are related by the equation

1 |k
== k = 4z’mvj

. 1 .
Potential energy V = 5 kx? = 272mvgx3 sin? (2 vet)

N 1 .
Kinetic energy T = mez =2’ mvixg cos? (2zv,t)

Total energy E = T + V = 222mvix3
According to the quantization rule,

¢ pydx=nh or mg xdx =nh

(i)

(i)

(iii)

(iv)
(v)

(vi)

When x completes one cycle, t changes by period T = 1/v. Hence, substituting the values of x and

dx, we obtain
/vy

4z*mvixg | cos? (2zvgt) dt = nh, n=0,1,2, ..
0
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1/2
5 5 nh
2r°mvoXg =nh or X = 5
2z my,

Substituting the value of xq in Eq. (v), we get
E, = nhy = nho, n=20,1,2, ..

That is, according to old quantum theory, the energies of a linear harmonic oscillator are integral
multiples of hvy = ha.

1.26 A rrigid rotator restricted to move in a plane is described by the angle coordinate 8. Show that
the momentum conjugate to @is an integral multiple of #. Use this result to derive an equation for
its energy.

Solution. Let the momentum conjugate to the angle coordinate be p,which is a constant of motion.
Then,

2r 2z
J‘ pg dg = pg J‘ dg = Zﬂpg
0 0

Applying the Wilson-Sommerfeld quantization rule, we get
27pg=nh or pgy= nh, n=0,1,2,...
Since py = lw, l® = nh. Hence, the energy of a rotator is
E= %Ia)z:%(la))z
n%n?
21

1.27 The lifetime of the n = 2 state of hydrogen atom is 10 s. How many revolutions does an
electron in the n = 2 Bohr orbit make during this time?

Solution. The number of revolutions the electron makes in one second in the n = 2 Bohr orbit is
E, (13.6eV)(1.6 x 10 '° J/eV)
h T 4(6.626 x 10 # Js)
0.821 x 10" st
No. of revolutions the electron makes in 1078 s = (0.821 x 10'° s7)(1078 s)
= 8.21 x 10°

1.28 In a hydrogen atom, the nth orbit has a radius 10° m. Find the value of n. Write a note on
atoms with such high quantum numbers.

Solution. In a hydrogen atom, the radius of the nth orbit r, is
fh = N%ag
) 10 °m
nN“= ————
0.53x 10 m
n=434.37 = 434

E,= n=0,1,2, ..

‘/2:

= 1.887 x 10°
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Atoms having an outermost electron in an excited state with a very high principal quantum
number n are called Rydberg atoms. They have exaggerated properties. In such atoms, the valence
electron is in a large loosely bound orbit. The probability that the outer electron spends its time
outside the Z — 1 other electrons is fairly high. Consequently, Z. is that due to Z-protons and
(Z - 1) electrons, which is 1. That is, Z¢ = 1 which gives an ionization energy of 13.6 eV/n? for
all Rydberg atoms.

1.29 When an excited atom in a state E; emits a photon and comes to a state E;, the frequency of
the emitted radiation is given by Bohr’s frequency condition. To balance the recoil of the atom, a part
of the emitted energy is used up. How does Bohr’s frequency condition get modified?

Solution. Let the energy of the emitted radiation be E, = hvand E, be the recoil energy. Hence,
Ei - Ef =hv+ Ere

By the law of conservation of momentum,
Recoil momentum of atom = momentum of the emitted y-ray

hv
Pre = <
where ¢ is the velocity of light,
0%
®2M  2Mc?

where M is the mass of recoil atom
Substituting the value of E,, the Bohr frequency condition takes the form
2.2
2Mc
where v is the frequency of the radiation emitted and M is the mass of the recoil nucleus.

1.30 Hydrogen atom at rest in the n = 2 state makes transition to the n = 1 state.
(i) Compute the recoil kinetic energy of the atom.
(if) What fraction of the excitation energy of the n = 2 state is carried by the recoiling atom?

Solution. Energy of the n = 2 — n = 1 transition is given by

13.6eV 13.6eV

E,-E = |~ 5 =10.2 eV
2 1
=102 x 1.6 x 1071°)
(i) From Problem 1.29, the recoil energy
h?y?
2Mc?
(E, - E))*
2Mc?
(10.2 x 1.6 x 1079 J)?

2(9.1 x 1073 kg)1836 (3 x 10° m/s)?
8.856 x 10727 ]
= 5535 x 1078 eV

E.= (M-mass of the nucleus)
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(if) Excitation energy of the n = 2 state is 10.2 eV. Then,

Recoil energy  5.535x 10 eV

- = =5.4x10"°
Excitation energy 10.2 eV 5:4x10

1.31 In the lithium atom (Z = 3), the energy of the outer electron is approximated as

(2 -0)*13.6eV

r]2

E:

where ¢ is the screening constant. If the measured ionization energy is 5.39 eV, what is the value
of screening constant?

Solution.  The electronic configuration for lithium is 1s? 2 s. For the outer electron, n = 2. Since
the ionization energy is 5.39 eV, the energy of the outer electron E = -5.39 eV. Given

(2 -0)*13.6eV

r]2

E =

Equating the two energy relations, we get
_(Z-0)°13.6eV _

52 =-5.3%9eV
2 _ 4x539eV _
(Z -0) = 1366V =1.5853
Z- 0=1.259

o=3-1259 = 1741

1.32 The wavelength of the L, line for an element has a wavelength of 0.3617 nm. What is the
element? Use (Z — 7.4) for the effective nuclear charge.

Solution.  The L, transition is from n = 3 to n = 2. The frequency of the L, transition is given by
C _(Z-174)136eV ( 1 1 j

ﬂ h 22 32
3x10°m/s  (Z —7.4)*(13.6eV x 1.6 x 10 *° J/eV) .
0.3617 x 10° m 6.626 x 10734 Js 36

8.294 x 10% st = (Z — 7.4)% (0.456 x 10% s™)
Z—-74=4264 or Z=50.04
The element is tin.



CHAPTER

Wave Mechanical Concepts

2.1 Wave Nature of Particles

Classical physics considered particles and waves as distinct entities. Quantum ideas firmly
established that radiation has both wave and particle nature. This dual nature was extended to
material particles by Louis de Broglie in 1924. The wave associated with a particle in motion, called
matter wave, has the wavelength A given by the de Broglie equation

h h

A=—=—_ (2.1)

p mv
where p is the momentum of the particle. Electron diffraction experiments conclusively proved the
dual nature of material particles in motion.

2.2 Uncertainty Principle

When waves are associated with particles, some kind of indeterminacy is bound to be present.
Heisenberg critically analyzed this and proposed the uncertainty principle:

AX - Apy = h (2.2)

where Ax is the uncertainty in the measurement of position and Ap, is the uncertainty in the
measurement of the x-component of momentum. A more rigorous derivation leads to

AX - Apy 2 g (2.3)

Two other equally useful forms are the energy time and angular momentum-polar angle relations
given respecting by

AE - At > (2.4)

AL, - Ag> (2.5)

17
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2.3 Wave Packet

The linear superposition principle, which is valid for wave motion, is also valid for material particles.
To describe matter waves associtated with particles in motion, we requires a quantity which varies
in space and time. This quantity, called the wave function ¥(r, t), is confined to a small region in
space and is called the wave packet or wave group. Mathematically, a wave packet can be
constructed by the superposition of an infinite number of plane waves with slightly differing k-values,
as

W(x, t) = [ AK) exp [ikx — io(k)t] dk (2.6)

where K is the wave vector and @ is the angular frequency. Since the wave packet is localized, the
limit of the integral is restricted to a small range of k-values, say, (k, — AK) < k < (k, + Ak). The speed
with which the component waves of the wave packet move is called the phase velocity v, which is
defined as

V, =— (2.7)

The speed with which the envelope of the wave packet moves is called the group velocity v, given
by

Vg = —— (2.8)

2.4 Time-dependent Schrodinger Equation

For a detailed study of systems, Schrodinger formulated an equation of motion for ¥(r, t):

d

Ihg

¥(r,t) = {—% V2 V(r)} w(r,t) (2.9)

The quantity in the square brackets is called the Hamiltonian operator of the system. Schrodinger
realized that, in the new mechanics, the energy E, the momentum p, the coordinate r, and time t have
to be considered as operators operating on functions. An analysis leads to the following operators for
the different dynamical variables:

E—ih % p — —ihV, r—r, t—t (2.10)

2.5 Physical Interpretation of ‘¥(r, t)

2.5.1 Probability Interpretation

A universally accepted interpretation of ‘P'(r, t) was suggested by Born in 1926. He interpreted ¥*¥
as the position probability density P (r, t):

P(r, ) = (r, ) P(r, t) = [2(r, 1) (2.11)
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The quantity |‘P(r, t)|2 dr is the probability of finding the system at time t in the elementary volume
dz surrounding the point r. Since the total probability is 1, we have

oo

[ e, v dr =1 (2.12)

oo

If ¥ is not satisfying this condition, one can multiply ¥ by a constant, say N, so that N satisfies
Eq. (2.12). Then,

N[ J [ o dr =1 (2.13)
The constant N is called the normalization constant.

2.5.2 Probability Current Density

The probability current density j (r, t) is defined as
i(r, t) = % PV - ¥VY) (2.14)

It may be noted that, if ¥ is real, the vector j (r, t) vanishes. The function j (r, t) satisfies the equation
of continuity

% P(r,t) +V-j(r,t)=0 (2.15)

Equation (2.15) is a quantum mechanical probability conservation equation. That is, if the probability
of finding the system in some region increases with time, the probability of finding the system
outside decreases by the same amount.

2.6 Time-independent Schrodinger Equation

If the Hamiltonian operator does not depend on time, the variables r and t of the wave function
¥(r, t) can be separated into two functions w(r) and ¢(t) as

W(r, 0 = () o) (2.16)

Simplifying, the time-dependent Schrodinger equation, Eq. (2.9), splits into the following two

equations:

1 d¢ iE

T __= 2.17

o(t) dt 7 (217

h
[_mvz + v(r)} y(r) = Ey(r) (2.18)

The separation constant E is the energy of the system. Equation (2.18) is the time-independent
Schrddinger equation. The solution of Eq. (2.17) gives

é(t) = Ce 'EV (2.19)
where C is a constant.
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Y(r, t) now takes the form

W(r, t) = p(r)e =" (2.20)
The states for which the probability density is constant in time are called stationary states, i.e.,
P(r, t) = |'P(r, t)|> = constant in time (2.21)

Admissibility conditions on the wave functions

(i) The wave function W¥(r, t) must be finite and single valued at every point in space.
(if) The functions ¥ and Vi must be continuous, finite and single valued.
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PROBLEMS

2.1 Calculate the de Broglie wavelength of an electron having a kinetic energy of 1000 eV.
Compare the result with the wavelength of x-rays having the same energy.

Solution.  The Kinetic energy
2
T=L_ -1000ev =16x10"
2m

6.626 x 107 js
[2 x (9.11 x 107  kg) x (1.6 x 10718 J/2

0.39 x 10°m = 0.39 A

A

h_
p

For x-rays,

Energy = h—;

_(6.626 x 107** Js) x (3 x 108 m/s)
1.6 x107%

Wavelength of x-rays 1242 A
de Broglie wavelength of electron ~ 0.39 A

A =1242x 109 m=1242 A

= 3185

2.2 Determine the de Broglie wavelength of an electron that has been accelerated through a
potential difference of (i) 100 V, (ii) 200 V.
Solution.
(i) The energy gained by the electron = 100 eV. Then,
2
2'°—m =100 eV = (100 eV)(1.6 x 1071 J/eV) = 1.6 x 10717 ]
p=1[2(9.1 x 107 kg)(1.6 x 1071 J)]"2
= 5.396 x 107 kg ms™!
_h_ 6626x10*Js

P 5396 x10 % kg ms -
=1228x%x 10 m =1.128 A

2
. - _ - -17
(i) om 200 eV =32 x 10"

p=[2(9.1 x 10 kg)(3.2 x 1077 J)]*?
7.632 x 10724 kg ms™?

4= h__ 6626x10°Js
P 7.632x10*kgms?

0.868 x 107 m = 0.868 A




22 e Quantum Mechanics: 500 Problems with Solutions

2.3 The electron scattering experiment gives a value of 2 x 107> m for the radius of a nucleus.
Estimate the order of energies of electrons used for the experiment. Use relativistic expressions.

Solution.  For electron scattering experiment, the de Broglie wavelength of electrons used must be
of the order of 4 x 107° m, the diameter of the atom. The kinetic energy

T = E - mic? = /c?p? + mic* — myc?

(T + mec?)? = c?p? + mic*

2
T
et |1+ — | =c?p® + mgc
moC

T Y o
1+ 5 = =55 +1
myC Acmge
(6.626 x 10734 Js)?

(16 x 107 m?) x (9.11x 1073 kg)? x (3 x 108 m/s)?
3.6737 x 10°
T = 605.1mC?

= 605.1 x (9.11 x 1073 kg) x (3 x 108 m/s)?

496.12 x 107 J
1.6 x 107 J/eV

= 310 x 10% eV = 310 MeV

=496.12 x 1078 J =

2.4 Evaluate the ratio of the de Broglie wavelength of electron to that of proton when (i) both have
the same kinetic energy, and (ii) the electron kinetic energy is 1000 eV and the proton KE is
100 eV.
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Solution.

) b= i A= ey o Mol

LmT 7 A AmT

A of electron 1836 m,T
A of proton mT 1836 = 42.85

(i) T, = 1000 eV; T, = 100 eV

A of electron 1836 x 100
Aofproton \ 1000 13.55
2.5 Proton beam is used to obtain information about the size and shape of atomic nuclei. If the

diameter of nuclei is of the order of 1072°> m, what is the approximate kinetic energy to which protons
are to be accelerated? Use relativistic expressions.

Solution. When fast moving protons are used to investigate a nucleus, its de Broglie wavelength
must be comparable to nuclear dimensions, i.e., the de Broglie wavelength of protons must be of the
order of 107%° m. In terms of the kinetic energy T, the relativistic momentum p is given by (refer
Problem 2.3)

T
p = myc (1+ -1, 2= 210 m
myC p

i 2
2
h—zzméc2 1+ T2 -1
A myC

Substitution of 4, my, h and c gives

T =9.8912 x 107! J = 618.2 MeV
2.6 Estimate the velocity of neutrons needed for the study of neutron diffraction of crystal
structures if the interatomic spacing in the crystal is of the order of 2 A. Also estimate the Kinetic
energy of the neutrons corresponding to this velocity. Mass of neutron = 1.6749 x 107%" kg.
Solution. de Broglie wavelength
A=2x10""m

h h
A=v O V=

6.626 x 10°* Js

v = = 1.978 x 10% ms™
(1.6749 x 10727 kg)(2 x 10 2% m/s)

Kinetic energy T = % mv? = % (1.6749 x 10%" kg) (1.978 x 10 ms ™ 1)?

=3.2765 x 1072 J = 20.478 x 1073 eV

2.7 Estimate the energy of electrons needed for the study of electron diffraction of crystal
structures if the interatomic spacing in the crystal is of the order of 2 A.



24 e Quantum Mechanics: 500 Problems with Solutions

Solution. de Broglie wavelength of electrons =2 A =2 x 10 m

2 2
Kinetic energy T= zp_m = (hzlﬁ)
] (6.626 x 1073 Js)?

2% (2 %107 m)? (9.11 x 10731 kg)
60.24 x 1071° J = 37.65 eV

2.8 What is the ratio of the kinetic energy of an electron to that of a proton if their de Broglie
wavelengths are equal?

Solution.
m; = mass of electron, m, = mass of proton,
v, = velocity of electron, v, = velocity of proton.
A= h __h or myVvy; = myV
m1V1 m2v2 1v1 2V2

1 2 _ 1 2
my (Emlvl ) =m, (5 mzvz)

Kinetic energy of electron _ m,
Kinetic energy of proton ~ m,

=1836

2.9 An electron has a speed of 500 m/s with an accuracy of 0.004%. Calculate the certainty with
which we can locate the position of the electron.
Solution.
Momentum p = mv = (9.11 x 107! kg) x (500 m/s)
A—;’ x 100 = 0.004

_0.004(9.11 x 103 kg) (500 m/s)

100
=182.2 x 103 kg m s7!
—34
axz oo _OOOXIT IS 56,

Ap  182.2x10 * kgms
The position of the electron cannot be measured to accuracy less than 0.036 m.

2.10 The average lifetime of an excited atomic state is 107 s. If the spectral line associated with
the decay of this state is 6000 A, estimate the width of the line.
Solution.
At=10"s, A=6000x 10" m=6x 10" m
he hc

E = g or AE:?A/I
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_ hc h h
AE~At—?A/I-At~E—E
2 —14 2
1= A 36 x10 " m _95x10%m

4mCAt 47 (3% 108 mis) x (107%s)
2.11  An electron in the n = 2 state of hydrogen remains there on the average of about 10~ s, before
making a transition to n = 1 state.

(i) Estimate the uncertainty in the energy of the n = 2 state.
(if) What fraction of the transition energy is this?
(iif) What is the wavelength and width of this line in the spectrum of hydrogen atom?

Solution. From Eq. (2.4),
h _ 6.626x10%*Js
AmAt 47 x 108
0.527 x 1076 J = 3.29 x 107 eV
2 — n =1 transition

(i) AE >

(if) Energy of n

= —-13.6 ev(i2 - iz) =10.2 eV
22 1
. AE 3.29x10%ev 9
Fraction = 1lo2ev - 3.23x10
(i) 4= hc _ (6.626 x 10> Js) x (3 x 10° m/s)
E (10.2 x 1.6 x 10712 )
=1.218 x 107" m = 122 nm
AE AL AE
? = 7 or AAd= ? X A

AA= (3.23 x 107 (1.218 x 107 m)
=393 x 107 m =3.93 x 107 nm

2.12  An electron of rest mass my is accelerated by an extremely high potential of V volts. Show
that its wavelength

hc
A= 2\L/2
[eV (eV + 2myc?)]
Solution. The energy gained by the electron in the potential is Ve. The relativistic expression for

2
moC

2 . -
————— — Mm,yc“. Equating the two and rearranging, we get
- V2/02)1/2 0 q 9

kinetic energy =
M, C?

2 _
1- V2/02)1/2 — Mgc” =Ve
2
(L - V2/c2YH2 = Moy C
Ve + myc?
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vZ  mic?
¢® (Ve + myc?)?

2 (Ve+myc?)? —mic* Ve (Ve + 2myc?)

c (Ve + myc?)? (Ve + myc?)?

<

N

c[Ve (Ve + 2myc?)1¥?

Ve + myc?

2 a2y12
de Broglie Wavelength A= N h@=viety "

mv MoV
h  myc? Ve + myc?
T My Ve + myc? c[Ve (Ve + 2myc?)2
0 0
hc

- [Ve (Ve + 2myc?)?

2.13 A subatomic particle produced in a nuclear collision is found to have a mass such that Mc?
= 1228 MeV, with an uncertainty of = 56 MeV. Estimate the lifetime of this state. Assuming that,
when the particle is produced in the collision, it travels with a speed of 108 m/s, how far can it travel
before it disintegrates?

Solution.
Uncertainty in energy AE = (56 x 10° eV) (1.6 x 107 J/eV)
ae AL (1.05x 107%* Js) 1
2 AE 2 (56 x 1.6 x 10713))
=586 x 102 s

Its lifetime is about 5.86 x 1072* s, which is in the laboratory frame.
Distance travelled before disintegration = (5.86 x 10-24 s)(10% m/s)
=586 x 10 m

2.14 A bullet of mass 0.03 kg is moving with a velocity of 500 m s™%. The speed is measured up
to an accuracy of 0.02%. Calculate the uncertainty in x. Also comment on the result.
Solution.

Momentum p = 0.03 x 500 = 15 kg m s™*

A—;’ %100 = 0.02

_0.02x15 _ 3 1
Ap = 100 =3x 10 kgms
-34
Ax = h  6.626 x10 " Js C176x10°%m

2AD 47 x3x 102 km/s
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As uncertainty in the position coordinate x is almost zero, it can be measured very accurately. In
other words, the particle aspect is more predominant.

2.15 Wavelength can be determined with an accuracy of 1 in 108, What is the uncertainty in the
position of a 10 A photon when its wavelength is simultaneously measured?
Solution.
Al=10%m, 21=10x10""m=10"m
h h
p= 7 o Ap = =z AL
AX X AA x h
AX-Ap = —
From Eq. (2.3), this product is equal to #/2. Hence,
(Ax)(A4)h _ h
22 Y
A 108 m?
S ArAl T 4z x10°8m
2.16 If the position of a 5 k eV electron is located within 2 A, what is the percentage uncertainty
in its momentum?

Solution.

AX =7.95x10 " m

h
— -10 - . ~
AX=2x10"" m; Ap Ax_4ﬁ

h  (6.626 x 107 Js)
ATAX 4r (2x 107 m)

Ap = =2.635x 10® kgms™
p=V2mT = (2 x 9.11 x 10 x 5000 x 1.6 x 1071912
=3.818 x 102 kgms™
-25
Percentage of uncertainty = Ap x 100 = %
p 3.818 x 10~

2.17 The uncertainty in the velocity of a particle is equal to its velocity. If Ap - Ax = h, show that
the uncertainty in its location is its de Broglie wavelength.

Solution. Given Av = v. Then,

% 100 = 0.69

Ap =mMAvV =mv =p
AXX Ap=h or Ax-p=h
AX5£=/1
p

2.18 Normalize the wave function w(x) = A exp (-ax?), A and a are constants, over the domain
—o0 < X < oo,

Solution. Taking A as the normalization constant, we get

A® [ y*pdx = A% [ exp(-2ax®)dx =1
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Using the result (see the Appendix), we get

| exp(-2ax*)dx = z

2a

(za )1/4
A=|—
T

1/4
2a

¥ = [—) exp (—ax)
T
2.19 A particle constrained to move along the x-axis in the domain 0 < x < L has a wave function

w(x) = sin (nzx/L), where n is an integer. Normalize the wave function and evaluate the expectation
value of its momentum.

Solution.  The normalization condition gives

L
L, NIX
szsmzidx:l
0 L

The normalized wave function is +/2/L sin [(nzx)/L]. So,

J (-
V= v —ih—)y/dx
(P ) ax

= —inh 2 hz Lsin nzx cos hzx dx
B L L 0 L L
nz - 2nzx
= —ih— [sin dx =0
L 0

2.20 Give the mathematical representation of a spherical wave travelling outward from a point and
evaluate its probability current density.

Solution. The mathematical representation of a spherical wave travelling outwards from a point is
given by

w(r) = é exp (ikr)

where A is a constant and k is the wave vector. The probability current density
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. in %
j= 5 Wy —y*Vy)
i kr —ikr —ikr ikr
2m r r r
T 2m r r r2 r |7 ° r2
= o (B )=

2.21 The wave function of a particle of mass m moving in a potential V(x) is ¥(x, t) =

. km
A exp (—Ikt - 7X2), where A and k are constants. Find the explicit form of the potential V(x).

Solution.

. kmx?
P(x, t) = A exp | —ikt — W

oY _  2kmx

Fr

2 2..2.,2
B‘P:_ka+4kmx -
ox? h n
|h%—\P:kh‘P

Substituting these values in the time dependendent Schrddinger equation, we have

R*( 2km  4kPm’x°
= _ﬁ[_TJrh—v Ve

ki = ki — 2mk2x% + V(X)
V(x) = 2mkx?
2.22  The time-independent wave function of a system is y(x) = A exp (ikx), where k is a constant.

Check whether it is normalizable in the domain —eo < X < 0. Calculate the probability current density
for this function.

Solution.  Substitution of w(x) in the normalization condition gives

INF [ Jof ax =N Idx—

—oco

As this integral is not finite, the given wave function is not normalizable in the usual sense. The
probability current density
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. ih
= 5 WVyr—y*Vy)
- % |A|2 [eikX (—|k) efikx _ efikx (ik)eikX]

in . kh
= ﬁ|A|2 (—ik — ik) = W|A|2

2.23 Show that the phase velocity v, for a particle with rest mass m, is always greater than the
velocity of light and that v, is a function of wavelength.

Solution.

) ® h
Phase velocity v, = - vA, A= )

Combining the two, we get

pv, = hv=E = (c’p® + mjc*)"?

1/2 1/2
cpll+ mgc“ =cp|l+ mgcz
C2 p2 p2

pvp =
221/2
msc
Vp:C[1+ 02 ] or vp>¢
p
1/2
2,212
v=clt myc<A
p h2

Hence v, is a function of A.

2.24 Show that the wavelength of a particle of rest mass mg, with kintic energy T given by the
relativistic formula

hc

T2+ 2myc?T

Solution.  For a relativistic particle, we have

2{:

E?=c?p? + mic’
Now, since
E=T+ myc?

(T + mec?)? = c?p? + mic*

T2+ 2moc?T + mic* = ¢?p? + mic*

cp = A/T? +2myc?T

hc

T2 +2myc?T

de Broglie wavelength 4 = %:
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2.25 An electron moves with a constant velocity 1.1 x 10° m/s. If the velocity is measured to a
precision of 0.1 per cent, what is the maximum precision with which its position could be
simultaneously measured?

Solution. The momentum of the electron is given by
p = (9.1 x 103 kg) (1.1 x 10° m/s)
=1 x 102 kg m/s
Av_ap_ 01
v p 100
Ap = p x 107 = 10%" kg m/s
Ave N 6.626 x 10 ** Js
4rAP 4z x107%" kgm/s
2.26 Calculate the probability current density j(x) for the wave function.

w(x) = u(x) exp [ig (x)],

=66x 10" m

where u, ¢ are real.

Solution.
w(x) = u(x) exp (ig); w*(x) = u(x) exp (-ig)

Jdy  du . . d¢ .
3% = 9% exp (ig) + |ua—x exp (ig)
dJpy*  du N 09 .
I —a—xexp( ig) —iu I exp (ig)
. in dy* Loy
J<X)-m( x v ax)

in[ L(ou ., . 36 N T V
- ig) 7Y o-lg 5 2 amig | el | 22 Qg N1
= >m _ue (axe U Ix e j ue (axe + 1U Ix e )i|

in[ ou .,d¢  du za_q

ﬁ_ ox ox ox ox
[ 0] h 20
_ﬁ_ 21 ax}_mu X

2.27 The time-independent wave function of a particle of mass m moving in a potential V(x) = a?x?

IS

2
w(X) = exp [— r;;; XZJ, « being a constant.

Find the energy of the system.
Solution.  We have

2

ma®

X) = eXp | —4|— X
y(x) P[ 72 J
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dy _ [2me? me?
e 2 xexp[ o7 X

2 2 2 2
d y2/ __ 2m;x 1 2m;x X |exp | - ma2 2
dx /] /] 2n

Substituting these in the time-independent Schrddinger equation and dropping the exponential term,
we obtain

2 2 2
_h_[_ 2m_a+ 2mo X2:|+62X2 =E

2m hZ hZ
aZ
hy— —a’x*+a’x’ = E
2m
g o

J2m

2.28 For a particle of mass m, Schrodinger initially arrived at the wave equation

1 0¥  0*¥ m*?
Pr v i ewr el o
c- odt oX h
Show that a plane wave solution of this equation is consistent with the relativistic energy momentum
relationship.

Solution.  For plane waves,

Y(x, t) = A exp [i(kx — ot)]
Substituting this solution in the given wave equation, we obtain

G2 SN m2c?
2 ¥ = (ik)2Y — " ¥
—0® _ . mc?

c? n?

Multiplying by ¢?#? and writing 2@ = E and ki = p, we get
E2 = ¢2p? + m%*
which is the relativistic energy-momentum relationship.
2.29 Using the time-independent Schrddinger equation, find the potential V(x) and energy E for

which the wave function
n
_ L —X/Xg
V9 = (Xoj ©

where n, Xq are constants, is an eigenfunction. Assume that V(x) — 0 as x — oo.
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Solution. Differentiating the wave function with respect to x, we get

n-1 n
d_l// = L i e’X/XO _i i e’X/XO
dx Xo \ Xg Xo \ Xg
) -1
dzl// — n(n_l) L " e—x/xo _2_n L " e—x/xo +i L ne—x/xo
2 2 X, 21 x 2| X
dX XO 0 XO 0 XO 0
_(n=n 20 1Y
- 2 XX x2 [\ X
X 0 Xo 0

-1 2 1
_ [n(n2 )__n+_} v (x)

X XoX  x2

When X — oo, V(X) — 0. Hence,

_#*[n(-1) 2n
V(X)—ﬁ 2 _XO_X

2.30 Find that the form of the potential, for which (r) is constant, is a solution of the Schrddinger
equation. What happens to probability current density in such a case?

Solution.  Since w/(r) is constant,
Viy=0.
Hence the Schrddinger equation reduces to
Vy=Ey or V=E
The potential is of the form V which is a constant. Since w(r) is constant, Viy = V' = 0.
Consequently, the probability current density is zero.

2.31 Obtain the form of the equation of continuity for probability if the potential in the Schrédinger
equation is of the form V(r) = V4(r) + iV,(r), where V; and V, are real.
Solution.  The probability density P(r, t) = ¥*¥. Then,

. oP . 9 . 0 wf. ¥
|hﬁ= Ihﬁ(\P\P )Z\P(”}lﬁ\{’ )"F\P (”}lw)
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The Schrodinger equation with the given potential is given by

haa\f = 2?; VAW 4 (V, +iV,) ¥
Substituting the values of ihaa—\f and ihg, we have
ih%—Ft) = % (PV2Y" — ¥V2¥) 4 2iV,P
ih%—f = %[V(‘I’V‘I’* — ¥'VW¥) + 2iV,P]
%_Ft’ = V. (—%) (PVY" - ¥'VYP) + 2V72P
%t +V.jrt)=—= V P(r,t)

2.32  For a one-dimensional wave function of the form
F(x, 1) = Aexp [ig (x 1)]
show that the probability current density can be written as

"iap e

Solution. The probability current density j(r, t) is given by
i(r, t) = % (FVY - ¥VP)

Y(x, t) = Aexp [ig (x, )]
Pi(x, t) = A" exp [-ig (x, )]

= 0¥ ipeie 99
V¥ = o iAe X
« YT . i, 00
= __ ip =7
4 5 iAe I
Substituting these values, we get
- Ae'| —iATe T 22 0¢ — A'e | iAe" L
2 oxX
_ 2] 00 28¢
= g [AIAF = iAP | 5% = TIPS

2.33  Let yp(x) and w;(x) be the normalized ground and first excited state energy eigenfunctions of
a linear harmonic oscillator. At some instants of time, Ayy + Bys, where A and B are constants, is
the wave function of the oscillator. Show that (x) is in general different from zero.
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Solution. The normalization condition gives
((Ayo + Byn) | (Ayp + Byy)) = 1
Ayl ve) + Byl yy =1 or Ay +By=1
Generally, the constants A and B are not zero. The average value of x is given by
) = ((Apo + By) [X] (Ayp + Byn))
= A% (o IX] wo) + BZ(ya x| wa) + 2AB(yp || va)
since A and B are real and (yg | x| w1) = (w1 | x| wy). As the integrands involved is odd,
(o IX1 oy = (va Ixlyp) = 0

(%) = 2AB (yp I x| y1)
which is not equal to zero.

2.34 (i) The waves on the surface of water travel with a phase velocity v, = \J9A/27, where g is

the acceleration due to gravity and A is the wavelength of the wave. Show that the group velocity
of a wave packet comprised of these waves is vy/2. (ii) For a relativistic particle, show that the
velocity of the particle and the group velocity of the corresponding wave packet are the same.

Solution.
_ |92 _ |9
VoTN\27 T \/;
where Kk is the wave vector.

(i) The phase velocity
By definition, v, = alk, and hence

The group velocity

V_d_w_i\ﬁ_v_p
7 gk 2Vk 2
do dE

dk  dp

For relativistic particle, E2 = ¢%p? + m2c*, and therefore,

_dE _c?p  cPmyvyl - vP/c?

V, = —= ——
g
dp B e 1o v
2.35 Show that, if a particle is in a stationary state at a given time, it will always remain in a
stationary state.

(ii) Group velocity vy =

Solution. Let the particle be in the stationary state ¥(x, 0) with energy E. Then we have
H¥(x, 0) = E¥(x, 0)
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where H is the Hamiltonian of the particle which is assumed to be real. At a later time, let the wave
function be ¥(x, t), i.e.,
Y(x, ) = P(x, 0)e 't
At time t, ,
H¥(x, t) = H¥(x, 0) e B

= E¥(x, 0)e"*"
= EY(x 1)
Thus, P(x, t) is a stationary state which is the required result.
2.36 Find the condition at which de Broglie wavelength equals the Compton wavelength
Solution.

h
Compton wavelength Ac = e
0

where mq is the rest mass of electron and c is the velocity of light

h

de Broglie wave length 4 = —
mv

where m is the mass of electron when its velocity is v. Since

) J1-v2/c?
- h1-v2ic? _ hy(e? - v?)

Y My CV

hvye?’V? =1 h 55 o
= = -1
moc V° o

moCV
A
When 4 = A,
3—2—1:1 or 5—2—1:1
32:2 or =%

2.37 The wave function of a one-dimensional system is
w(x) = Ax"e™2 A a and n are constants

If w(x) is an eigenfunction of the Schrddinger equation, find the condition on V(x) for the energy
eigenvalue E = —h?/(2ma?). Also find the value of V(x).
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Solution.
w(x) = Axle™a

With these values, the Schrodinger equation takes the form

2n n

2m

n* [r}(n_z—l)_Z_n+i2}: E-V(¥)
a

2
_h_Ae*X/a |:n(n _1)Xn—2 _?anl + X_Z] + V(X) Axne—xla - E AXne_X/a
a

From this equation, it is obvious that for the energy E = —/%/2ma?, V(x) must tend to zero as

X — oo, Then,
2 2
- 1
V(x) = __F _#n(-1) 2n 1
2ma? 2m x2 a a2
_#[n@-y 2
T 2m x2 ax

2.38 An electron has a de Broglie wavelength of 1.5 x 1072 m. Find its (i) kinetic energy and

(i) group and phase velocities of its matter waves.

Solution.
(i) The total energy E of the electron is given by

2.2 2.4
E = {/c*p® + m§C
Kinetic energy T = E — mgc? = 4/c?p? + m3c* — myc?

de Broglie wavelength 4 = % or cp= h—/f

_ (6.626 x 1074 Js) (3 x 10° ms™)

C =
P 15x107%m
= 13.252 x 1074 J
Eop = mc? = (9.1 x 1073 kg) (3 x 108 ms™)

8.19 x 107 J

T= (13.252)2 + (8.19) x 107 J - 819 x 1074 ]
=7.389 x 107 J = 4.62 x 10° eV
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(i) E = \/(13.252)2 +(8.19)% x 107 J = 15579 x 1074 J

2 2
E
E:L or ]__V_Z(_O)

2
{1 = v?/c? c E

£ 2 1/2 8.19 2 1/2
= _| =0 —|1_ : 8 -1
V= {1 (E) } c {1 (15.579) } (3x10° ms™)

= 0.851c
The group velocity will be the same as the particle velocity. Hence,
vy = 0.851c
. 2 c
Phase velocity v, = v - 085l - 1.175¢c

2.39 The position of an electron is measured with an accuracy of 10 m. Find the uncertainty in
the electron’s position after 1 s. Comment on the result.

Solution.  When t = 0, the uncertainty in the electron’s momentum is

h
Ap = —
P 2Ax
Since p = mv, Ap = m Av. Hence,
Av 2
2MAX
The uncertainty in the position of the electron at time t cannot be more than
ht
AX); = tAv =
(Ax) 2mAX

1.054 x 1034 Js) 1
- _QOAxI0 " I91s g6,
2(9.1x 10" kg) 10 m
The original wave packet has spread out to a much wider one. A large range of wave numbers
must have been present to produce the narrow original wave group. The phase velocity of the
component waves has varied with the wave number.

2.40 If the total energy of a moving particle greatly exceeds its rest energy, show that its de Broglie
wavelength is nearly the same as the wavelength of a photon with the same total energy.

Solution. Let the total energy be E. Then,
E, = ¢?p? + mic* = c?p?
_E
P=7

de Broglie wavelength A = % = %
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For a photon having the same energy,

which is the required result.

2.41 From scattering experiments, it is found that the nuclear diameter is of the order of 107> m.
The energy of an electron in f~decay experiment is of the order of a few MeV. Use these data and
the uncertainty principle to show that the electron is not a constituent of the nucleus.

Solution.  If an electron exists inside the nucleus, the uncertainty in its position Ax = 107> m. From
the uncertainty principle,
h
(10 m) Ap > 5

_ 1.05x10°* Js
210 % m)
The momentum of the electron p must at least be of this order.

p=525x10"2 kgms™

=525x10% kgms™*

When the energy of the electron is very large compared to its rest energy,
E=cp=(3x 108 ms?)(5.25 x 1072 kgm ™)

-12
- A5 75XI0) g an 107 eV

1.6 x 1072 Jjev
98.4 MeV

I

This is very large compared to the energy of the electron in f-decay. Thus, electron is not a
constituent of the nucleus.

2.42  An electron microscope operates with a beam of electrons, each of which has an energy
60 keV. What is the smallest size that such a device could resolve? What must be the energy of each
neutron in a beam of neutrons be in order to resolve the same size of object?

Solution.  The momentum of the electron is given by
p? = 2mE = 2 (9.1 x 10! kg)(60 x 1000 x 1.6 x 1071 J)
p =13.218 x 102 kgms™
The de Broglie wavelength

h_ 6.626x10 % Js
P 13.216 x 10 ®kgms*
=501 x 10 m

The smallest size an elecron microscope can resolve is of the order of the de Broglie wavelength of
electron. Hence the smallest size that can be resolved is 5.01 x 1072 m.

The de Broglie wavelength of the neutron must be of the order of 5.01 x 102 m. Hence, the
momentum of the neutron must be the same as that of electron. Then,

Momentum of neutron = 13.216 x 1072 kgms™
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2

P
2M
_ (13.216 x 1072 kgms™)?
2 % 1836(9.1 x 107! kg)

Energy = (M is mass of neutron)

=5.227x 10718 ]

5.227 x 10718 ]

= g = 32.67eV
1.6 x 1077 J/eV

2.43 What is the minimum energy needed for a photon to turn into an electron-positron pair?
Calculate how long a virtual electron-positron pair can exist.

Solution. The Mass of an electron-positron pair is 2m.c?. Hence the minimum energy needed to
make an electron-positron pair is 2 m.c?, i.e., this much of energy needs to be borrowed to make the
electron-positron pair. By the uncertainty relation, the minimum time for which this can happen is

7
2 x 2m,c?
1.05 x 10°** Js
4(9.1x 1073 kg) (3 x 108 m/s)?
33x10%s
which is the length of time for which such a pair exists.

At =

2.44 A pair of virtual particles is created for a short time. During the time of their existence, a
distance of 0.35fm is covered with a speed very close to the speed of light. What is the value of mc?
(in eV) for each of the virtual particle?

Solution.  According to Problem 2.43, the pair exists for a time At given by

h

At =
4mc?

The time of existence is also given by

-15
At = w =1.167x 10?5
3x10°m/s
Equating the two expressions for At, we get
h

4mc

,  1.05x1073Js
4%x1.167x10%*s

= 1167 x 10% s

2

mc =2249 x 1071 J

—11
- Mﬁ’J = 14056 x 10° eV
1.6 x 107" J/eV

140.56 MeV
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2.45 The uncertainty in energy of a state is responsible for the natural line width of spectral lines.
Substantiate.

Solution.  The equation
(AE) (At) > ; (M)

implies that the energy of a state cannot be measured exactly unless an infinite amount of time is
available for the measurement. If an atom is in an excited state, it does not remain there indefinitely,
but makes a transition to a lower state. We can take the mean time for decay 7, called the lifetime,
as a measure of the time available to determine the energy. Hence the uncertainty in time is of the
order of z. For transitions to the ground state, which has a definite energy E, because of its finite
lifetime, the spread in wavelength can be calculated from

hc

E-Eg= -

hc |A4

g = el

A
Ad . AE .
2 E-E (if)
Using Eg. (i) and identifying At = 7, we get

L S
7 "2 (E-5) (iif)

The energy width 7/7 is often referred to as the natural line width.

2.46 Consider the electron in the hydrogen atom. Using (AX) (Ap) = A, show that the radius of the
electron orbit in the ground state is equal to the Bohr radius.

Solution. The energy of the electron in the hydrogen atom is the given by

2 2
P ket
2m r 4re,

where p is the momentum of the electron. For the order of magnitude of the position uncertainty, if
we take AX = r, then

" p°

Ap = Ap)? = —
p=— or (ap) 7
Taking the order of momentum p as equal to the uncertainty in momentum, we get
hZ

(Ap)* = (p?) = z

Hence, the total energy
_h ké?
Comr2 T
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For E to be minimum, (dE/dr) = 0. Then,
dE_ n* | ke

ar e
hZ

r = =
me® 0

which is the required result.

2.47 Consider a particle described by the wave function ¥(x, t) = e!(x -,
(i) Is this wave function an eigenfunction corresponding to any dynamical variable or
variables? If so, name them.
(if) Does this represent a ground state?
(iii) Obtain the probability current density of this function.

Solution.
(i) Allowing the momentum operator —i% (d/dx) to operate on the function, we have

—|h& ei(kX—wt) - |h(|k) ei(kx— at)

ik gilkx = o)

Hence, the given function is an eigenfunction of the momentum operator. Allowing the
energy operator —i# (d/dt) to operate on the function, we have

|h% ei(kx -ot) — |h(—|a)) ei(kX - at)

= hapeitkc- )

Hence, the given function is also an eigenfunction of the energy operator with an
eigenvalue z@.

(if) Energy of a bound state is negative. Here, the energy eigenvalue is 7@, which is positive.
Hence, the function does not represent a bound state.

(iii) The probability current density

_in
1= 5= WVy*—y*Vy)

hk

in o, ..
= ﬁ(—lk—lk)—ﬁ

2.48 Show that the average kinetic energy of a particle of mass m with a wave function w(x) can
be written in the form
dy [

i dx

[/
sz"‘

—oco

Solution. The average kinetic energy

RGN G 57
<T>_2m_ om Y dx

—oco
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Integrating by parts, we obtain

2 o 2 o *
Ty - h_[,,,*d_'/f} BTyt dy

- 2m dx +ﬁ7 dx dx

oo

As the wave function and derivatives are finite, the integrated term vanishes, and so

2 oo
My=1-

dy[

i dx

2.49 The energy eigenvalue and the corresponding eigenfunction for a particle of mass m in a
one-dimensional potential V(x) are

A
E =0, X) =
V() x? + a2

Deduce the potential V().
Solution. The Schrédinger equation for the particle with energy eigenvalue E = 0 is

2 2
_h__dV’JrV(X)WZO, v = A

2m dx? x2 + a2
dy  2Ax
dx? (x? + a%)?
dy 1 4k
dx? (x*+a’)* (x*+a’)?
_ 2A(3X*-a?)
(x2+a?)®

Substituting the value of d?y/dx?, we get
1 2ARX° - @) L VA _
2m  (x®*+a?)?  x*+a’

0

_nP@Ex-a%)

Vi m(x* + a?)?



CHAPTER

General Formalism of
Quantum Mechanics

In this chapter, we provide an approach to a systematic the mathematical formalism of quantum
mechanics along with a set of basic postulates.

3.1 Mathematical Preliminaries

(i) The scalar product of two functions F(x) and G(x) defined in the interval a < x <b, denoted
as (F, G), is

b
(F, G) = [ F*(x)G(x) dx (3.1)

(if) The functions are orthogonal if
b
(F.G)= [ F*(x)G(x)dx =0 (3.2)

a

(iii) The norm of a function N is defined as

b 1/2
N = (F, F)Y2 = {j IF(X)[? dx} (3.3)
a
(iv) A function is normalized if the norm is unity, i.e.,
(F, F)= jb[ F*(X)F(x) dx =1 (3.4)
a
(v) Two functions are orthonormal if

F.F) =6, 1,j=123, .. (3.5)

44
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where g; is the Kronecker delta defined by

1 ifi=j
ij = e (3.6)
0 ifi#]j
(vi) A set of functions Fy(X), Fx(X), ... is linearly dependent if a relation of the type
|

exists, where ¢;’s are constants. Otherwise, they are linearly independent.

3.2 Linear Operator

An operator can be defined as the rule by which a different function is obtained from any given
function. An operator A is said to be linear if it satisfies the relation

A e fi(X) + ¢, F,(X)] = ¢, Afy(X) + ¢, Af, (X) (3.8)
The commutator of operators A and B, denoted by [A, B], is defined as
[A, B] = AB - BA (3.9
It follows that
[A, B] = -[B, A] (3.10)

If [A, B] =0, A and B are said to commute. If AB + BA =0, A and B are said to anticommute. The
inverse operator At is defined by the relation

AR = ATTA = (3.11)

3.3 Eigenfunctions and Eigenvalues

Often, an operator A operating on a function multiplies the function by a consant, i.e.,
Ay (x) = ay(x) (3.12)

where a is a constant with respect to x. The function y(x) is called the eigenfunction of the operator
A corresponding to the eigenvalue a. If a given eigenvalue is associated with a large number of
eigenfunctions, the eigenvalue is said to be degenerate.

3.4 Hermitian Operator

Consider two arbitrary functions u;,(x) and y;,(x). An operator A is said to be Hermitian if

oo

[ s Aw,dx = | (Awy )y, dx (313)

—oo

An operator A is said to be anti-Hermitian if

J‘ l//’rr: Al//n dx = _J‘ (Al//m )* Yn dx (314)



46 e Quantum Mechanics: 500 Problems with Solutions

Two important theorems regarding Hermitian operators are:

(i) The eigenvalues of Hermitian operators are real.
(if) The eigenfunctions of a Hermitian operator that belong to different eigenvalues are
orthogonal.

3.5 Postulates of Quantum Mechanics

There are different ways of stating the basic postulates of quantum mechanics, but the following
formulation seems to be satisfactory.

3.5.1 Postulate 1—Wave Function

The state of a system having n degrees of freedom can be completely specified by a function ¥ of
coordinates gy, g, ..., , and time t which is called the wave function or state function or state
vector of the system. W, and its derivatives must be continuous, finite and single valued over the
domain of the variables of V.

The representation in which the wave function is a function of coordinates and time is called
the coordinate representation. In the momentum representation, the wave function is a function
of momentum components and time.

3.5.2 Postulate 2—Operators

To every observable physical quantity, there corresponds a Hermitian operator or matrix. The
operators are selected according to the rule

[Q Rl = in{q, r} (3.15)

where Q and R are the operators selected for the dynamical variables q and r, [Q, R] is the
commutator of Q with R, and {q, r} is the Poisson bracket of q and r.

Some of the important classical observables and the corresponding operators are given in
Table 3.1.

Table 3.1 Important Observables and Their Operators

Observable Classical form Operator
Coordinates XY, Z XY, Z
Momentum p —inVv
.0
Ener E 1h=
ay P
Time t t
2 2
S p /-
Kintetic ener — -—V
i 2m 2m
I L
Hamiltonian H —=—V +V(r)

2m
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3.5.3 Postulate 3—Expectation Value

When a system is in a state described by the wave function ¥, the expectation value of any
observable a whose operator is A is given by

oo

(@)= [ w*AY dr (3.16)

—oo

3.5.4 Postulate 4—Eigenvalues

The possible values which a measurement of an observable whose operator is A can give are the
eigenvalues a; of the equation

A\Pi = ai\Pi, i= 1, 2, ., N (317)

The eigenfunctions W¥; form a complete set of n independent functions.

3.5.5 Postulate 5—Time Development of a Quantum System

The time development of a quantum system can be described by the evolution of state function in
time by the time dependent Schrodinger equation

ih%—lf (r,t) = H¥(r,1) (3.18)

where H is the Hamiltonian operator of the system which is independent of time.

3.6 General Uncertainty Relation

The uncertainty (AA) in a dynamical variable A is defined as the root mean square deviation from
the mean. Here, mean implies expectation value. So,

(AAY? = (A = (A = (A% = (A (3.19)
Now, consider two Hermitian operators, A and B. Let their commutator be
[A, B] =iC (3.20)
The general uncertainty relation is given by
(AA) (AB) > % (3.21)

In the case of the variables x and p,, [X, p,] = i% and, therefore,

(AX) (AP,) = g (3.22)
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3.7 Dirac’s Notation

To denote a state vector, Dirac introducted the symbol | ), called the ket vector or, simply, ket.
Different states such as y,(r), w(r), ... are denoted by the kets |a), |b), ... Corresponding to every
vector, |a), is defined as a conjugate vector |a)*, for which Dirac used the notation (a|, called a bra
vector or simply bra. In this notation, the functions w;, and 4, are orthogonal if

(alby =0 (3.23)
3.8 Equations of Motion

The equation of motion allows the determination of a system at a time from the known state at a
particular time.

3.8.1 Schrodinger Picture

In this representation, the state vector changes with time but the operator remains constant. The state
vector |y4(t)) changes with time as follows:

|h_|l//s (t» = Hll//s(t» (3-24)

Integration of this equation gives

lws @) = ey (0)) (3.25)

The time derivative of the expectation value of the operator is given by

A= (A D+ 2 (326)

3.8.2 Heisenberg Picture

The operator changes with time while the state vector remains constant in this picture. The state
vector |yy) and operator Ay are defined by

Ly = €™ y(t)) (3.27)
An(D) = giHtip giHUA (3.28)

From Eqgs. (3.27) and (3.25), it is obvious that
[y = 1y4(0)) (3.29)

The time derivative of the operator Ay is

& A=A HI+ P (3.30)
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3.8.3 Momentum Representation

In the momentum representation, the state function of a system ®(p, t) is taken as a function of the
momentum and time. The momentum p is represented by the operator p itself and the posistion
coordinate is represented by the operator iV, where V, is the gradient in the p-space. The equation
of motion in the momentum representation is

2

0 |p
|h§d>( p,t) = {ﬁ+ V(r)} O(p,t) (3.31)

For a one-dimensional system, the Fourier representation ‘P'(x, t) is given by

oo

P(x, t) = % | @(k,t) exp(ikx) dk (3.32)
oK, 1) = % [ ®(x.1) exp (—iki) dk (3.33)
Changing the variable from k to p, we get
WX, 1) = ﬁ [ o(p.) exp(i%x)dp (3.34)
O, t) = ﬁ i Y(x,t) exp(—i%xj dx (3.35)

The probability density in the momentum representation is |®(p, t)|%
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PROBLEMS

3.1 Aand B are two operators defined by Aw(x) = w(x) + x and By(x) = (dw/dx) + 2y(x). Check
for their linearity.

Solution.  An operator O is said to be linear if

O [c; fi(x) + ¢, f,(X)] = ¢,0f;(X) + c,0f5(x)
For the operator A,
Alcifi(x) + cofa(x)] = [c1fa(x) + o f(X)] + X
LHS = ¢,Afi(X) + AT (X) = ¢ifi(X) + cofa(X) + ¢1X + CoX

which is not equal to the RHS. Hence, the operator A is not linear.

d
B[cifi(X) + cofa(¥)] = a[clfl(x) + CoFp(X)] + 2[cyf1(X) + ¢y fo(X)]
=c if(x)+cif(x)+20f(x)+20 f2(x)
O 27y 12 1T 2 T
_d d
= &lel(x) +2¢,f1(x) + X 2 fo(X) + 2¢, fa(x)
= ¢1Bfi(x) + c,Bfy(X)
Thus, the operator B is linear.

3.2 Prove that the operators i(d/dx) and d?/dx? are Hermitian.

< . d
Solution.  Consider the integral j l//;f(ld—x) v, dX. Integrating it by parts and remembering that

Wm and y;, are zero at the end points, we get

]fl//* ii v, dx
- m dX n

. . .7 d
iyl =1 [ yn g v

J' iil// *1// dx
dX m n

—oo

which is the condition for i(d/dx) to be Hermitian. Therefore, id/dx is Hermitian.
T d, Ly T Ty, dy
il Rl B e v

—oo

_|dy gy CT dyr o Tdiyx
_[dx y/n}m+'[cy/n e dx_:[e—dx2 dx

Thus, d?/dx? is Hermitian. The integrated terms in the above equations are zero since y;, and ¥, are
zero at the end points.
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3.3 If A and B are Hermitian operators, show that (i) (AB + BA) is Hermitian, and (ii) (AB — BA)
is non-Hermitian.

Solution.
(i) Since A and B are Hermitian, we have

Jwihw, dx = [A*yy,dx;  JyaBy,dx = [B*yky, dx
[W(AB + BA) y, dx = [y ABydx + [y BAy,dx
= [B*A*yxy, dx+ [ A*B*yxy, dx
= [ (AB + BAy*y %y, dx
Hence, AB + BA is Hermitian.
(i) [wE(AB - BA)y, dx = [ (B*A* — A*B*)yxy, dx
= —[(AB - BA yxy, dx
Thus, AB — BA is non-Hermitian.

3.4 If operators A and B are Hermitian, show that i[A, B] is Hermitian. What relation must exist
between operators A and B in order that AB is Hermitian?

Solution.
Jw#i[A Bl w, dx = i [y *ABy, dx — i [y%BAy, dx

| [B*A*yxy, dx — i [ AB*yky, dx

JGIA Bl wy)* v, dx

Hence, i [A, B] is Hermitian.
For the product AB to be Hermitian, it is necessary that

[ W ABy, dx = [ A*B*yky, dx
Since A and B are Hermitian, this equation reduces to
[B*A*y >y, dx = [ AXB*y 2y, dx
which is possible only if B*A*y ¥ = A*B*y%. Hence,
AB = BA
That is, for AB to be Hermitian, A must commute with B.

3.5 Prove the following commutation relations:
(i) [[A, B], C] + [[B, C], A] + [[C, A], B] = 0.

|9 9
(i) W 9l

(iii) [aa_x F(X)}
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Solution.
(i) [[A, B], C] +[[B, C], A] + [IC, A], BI=[A,BIC-C[A B] +[B,C]A-A[B, C]
+[C, A] B-B [C, A]
= ABC - BAC - CAB + CBA + BCA - CBA - ABC
+ ACB + CAB - ACB -BCA + BAC =0

(i) [ F(X)} = (FV)-F— v

_ dF dy _dy _dF
R AL el - el v

0 JoF
Thus, |:8_X’ F(X)} =3

3.6 Show that the cartesian linear momentum components (p;, P, p3) and the cartesian
components of angular momentum (L4, L,, L3) obey the commutation relations (i) [Ly, pi] = i%#pm;
(ii) [Ly, pe] = 0, where k, I, m are the cyclic permutations of 1, 2, 3.

Solution.

k 1
(i) Angular momentum L = |r, § 1y
Pk P Pm

. 0 0
I-k = MPm — Py = —Ih(ﬁ m —In E)

e )2 (0D
h(“arm o oY T e e, mar |V

sl 2 Py oy 9oy Oy
- or, o Mgr?  dr,  'of o, ™ g2

(L Pl ¥

A AN
_harm—lh Iharm = 1hp,w

Hence, [Ly, pi] = i7py.
. _ o, 9 9)o0 2 0 9o .9 _
(”) [Lkl pk]l// - h [rl arm Tm 5~ al] a Frd S al’k ar fm ar| V= 0

hz( Jd dy oy Jd dy . 0 8_1//)20

0
or, o ™an an, o o, ™ar, an
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3.7 Show that (i) Operators having common set of eigenfunctions commute; (ii) commuting
operators have common set of eigenfunctions.

Solution.
(i) Consider the operators A and B with the common set of eigenfunctions ;, i = 1, 2, 3, ...
as
Ay = aiyi, By = by
Then,

ABy; = Abiy; = aibiy
BAw; = Bay; = abji
Since ABy; = BAy;, A commutes with B.
(if) The eigenvalue equation for A is

Ay = ajy;, i=12 3, ...
Operating both sides from left by B, we get
BAy; = aBy;
Since B commutes with A,
ABy; = aBy;

i.e., By is an eigenfunction of A with the same eigenvalue a;. If A has only nondegenerate
eigenvalues, By can differ from y; only by a multiplicative constant, say, b. Then,

Byi = biy;
i.e., ¥ is a simultaneous eigenfunction of both A and B.

3.8 State the relation connecting the Poisson bracket of two dynamical variables and the value of
the commutator of the corresponding operators. Obtain the value of the commutator [x, p,] and the
Heisenberg’s equation of motion of a dynamical variable which has no explicit dependence on time.

Solution.  Consider the dynamical variables q and r. Let their operators in quantum mechanics be
Q and R. Let {qg, r} be the Poisson bracket of the dynamical variables g and r. The relation
connecting the Poisson bracket and the commutator of the corresponding operators is

[Q. R] = in{q, r} (i)
The Poisson bracket {x, p,} = 1. Hence,

[x, pd = in (ii)
The equation of motion of a dynamical variable g in the Poisson bracket is

dg _

= (i)

Using Eq. (i), in terms of the operator Q, Eq. (iii) becomes
12 =101y (iv)

which is Heisenberg’s equation of motion for the operator Q in quantum mechanics.
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3.9 Prove the following commutation relations (i) [Ly, r?] = 0, (ii) [Ly, p?] = 0, where r is the radius
vector, p is the linear momentum, and k, I, m are the cyclic permutations of 1, 2, 3.

Solution.
() [l r? = [Le, 2+ 62+ 2]
[Ly, rk2] + [ Ly, r|2] +[Ly, rr%]

nlby, ned + [Ly, ndne +nlb nl + [he nln +nglh r ]+ [hys r I,

=0+ 0 + rjihary + iArgr — ryian — iinr, = 0
(i) [Lw p?1= [Le, PE]+ [Li, PP]+ [Lis D]
= pellys P + [y, PP + pully, B]+ [y, PIP + Pollys Pl + [Lgs Pol P
=0+ 0+ iappy + APy Py — iAPLPy — 7P Py = 0
3.10 Prove the following commutation relations:
O Kpd=0ypl=1[pl=in
(i) xyl=1[y,z21=1[zx] =0
(ii)) [px Pyl = [Py, Pd = [P Pd =0
Solution.

(i) Consider the commutator [x, p,]. Replacing x and p, by the corresponding operators and
allowing the commutator to operate on the function w(x), we obtain

[x, - ihi} w(x) = —inx Y 4 ip 909)

dx dx dx
= —ihx%—y;+ iny + ihx%—y;
= ihy
Hence,
[x —ihi}=[x p]=ih
’ dx PEX
Similarly,

[y, py] = [z, p] = ik
(if) Since the operators representing coordinates are the coordinates themselves,
X y1=0.21=[zx1=0

.9 .. 0
[_Iha_x’_th} w(XY)

(i) [P Pyl WX, y)

0° 0°
- _y_ v v
= {ax oy ayax} v xy)

The right-hand side is zero as the order of differentiation can be changed. Hence the
required result.



General Formalism of Quantum Mechanics e 55

3.11 Prove the following:
(i) If y; and u, are the eigenfunctions of the operator A with the same eigenvalue, ¢, y; + C, 1,
is also an eigenfunction of A with the same eigenvalue, where ¢, and c, are constants.
(ii) If y4 and y, are the eigenfunctions of the operator A with distinct eigenvalues, then ¢,y
+ C,5 IS not an eigenfunction of the operator A, ¢, and ¢, being constants.

Solution.
(i) We have
Ay = app, Ay, = a1y,
Aciya + Cop) = AcLyn + AC s
=a (CLyr + Cpn)
Hence, the required result.
(i) Ay = aqpr, and  Aps = i,
Alciyn + Cp) = AcLys +m Ac s,
= qCiyn + Y,
Thus, ¢,y + Cois, s not an eigenfunction of the operator A.
3.12  For the angular momentum components L, and L, check whether L,L, + L L, is Hermitian.
Solution.  Since i(d/dx) is Hermitian (Problem 3.2), i (d/dy) and i(d/dz) are Hermitian. Hence L,
and L, are Hermitian. Since L, and L, are Hermitian,
JwrL L, + L L)y, dx = [ (LELy + LFLY) wxy, dx

= I(LxLy + Lyl-x).k‘//n.lwc W, dx
Thus, L,Ly + LyLy is Hermitian.
3.13 Check whether the operator — izx (d/dx) is Hermitian.
Solution.

d d
jy/m(lhxd )y/ndx_ Jwix ( ing )x//ndx
*
_J( |h—) X*y Xy, dx

*
# J( |hx—) wry, dx

Hence the given operator is not Hermitian.

3.14 If x and py are the coordinate and momentum operators, prove that [x, pf] = nizpf—
Solution.
[x T =[x ppd =[x pd P+ X P

= inpd + i (% P Y2+ Py [x YD)
= 2ihpy ™ + p(Ix, P P+ P X, pX7)
= 3inplt + pd[x, pr

Continuing, we have [x, pJ] = nifpit
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3.15 Show that the cartesian coordinates (r;, ry, rs) and the cartesian components of angular
momentum (L,, L,, L3) obey the commutation relations.

() [Ly ] =iar,
(if) [Ly, rd = 0, where k, I, m are cyclic permutations of 1, 2, 3.

Solution.
. . J J J J
) [L,, nJw=(Lmnr —rL = —ihllh=—-r—|hy-nlh=——1r,—
() [Lw nly = (Lan -y [('arm mar,)"” '('arm marlj'//}

Cin |2y OV 20V OV

= ihrgw
Hence, [Ly, 1] = iary,.

" . d d d d
(i) [Ly ndy = —in Kﬁ FI Wj Ny — % [ﬁm - rmgj V/] =0
Thus, [Ly, rd = 0.
3.16 Show that the commutator [x, [x, H]] = —#%/m, where H is the Hamiltonian operator.
Solution.

(% + Pl + pl)

Hamiltonian H =
2m

Since
[X, py] = [X: pz] = 07 [X, px] =ih
we have

T
[X, H] - m [X, px] - m (px[xl px] + [X, px] px)
1 .. in
[x, H] = m 2ihp, = m Px
2

[X, [X, H]] = |:X’ Ih%}:iﬁh[x’ px]:_ﬁ

3.17 Prove the following commutation relations in the momentum representation:
() [x. pd =Ly, pyl = [z, p.] = i
(i) yl=[y.21=[x=0

Solution.

() [x pd f(po

.2
P%mmdﬂm

.. 0 . d .

|hm(pr) - |hpxmf =inf
[x, pd = ih

Similarly, [y, py] = [z, p,] = ih
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. a 4
(Ih)z [El E} f(px’ py)

9 9 9 9
S ) f(p,, p,) =0
[apx apy,  Ipy apx} (P Py)

since the order of differentiation can be changed. Hence, [x, y] = 0. Similarly, [y, z] = [z, X] = 0.

(i) [x, y] f(px py)

3.18 Evaluate the commutator (i) [x, pZ], and (ii) [xyz, pZ].
Solution.
(i) [x, pil

[X, pd Pe + P [X0 P
ifp, + ihp, = 2iAp,

. . d d
2|h(—|hd—x) =2i? m
(ii) [xyz, pil = [xyz, Pd Pe + Py vz, A

=Xy [z, pd P+ Xy, P ZPx + PxXy [, P + Py [xy, P 2
Since [z, p,], the first and third terms on the right-hand side are zero. So,
[xyz, pi] = X[y, px] zpy + [x, PX] yzpx + Py XLy, PXIz + pelX, P 2
The first and third terms on the right-hand side are zero since [y, p,] = 0. Hence,
[xyz, pZ] = ihyzp, + ihp,yz = 2ihyzp,
where we have used the result

d 0
S 2 F001 = vz (%)

Substituting the operator for p,, we get

d
21 — 2 -
[XyZ: pX] = 2n yZ aX

3.19 Find the value of the operator products

o (£rfa
o3&

Solution.
(i) Allowing the product to operate on f(x), we have

d d
(&+ x)(d—x+ x) f(x) =

|
N
o
><|°-
+
=
N—
7N
o_|o_
>< —
+
=
=
N—

d? d
(d7+2x&+x +1Jf
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Dropping the arbitrary function f(x), we get

d

= +2x—+x2+1

i-ﬁ- X i-ﬁ- X dz
dx dx d)(2
y d d ([ d
(ll) (d_X+ X)(d—x—x)f— (d—X+X
= ﬁ_ ﬂ_ f+ Xi
T odx? dx dx
2
i-ﬁ- X i - X | = d—

dx

——xf)
X

3.20 By what factors do the operators (x%p2 + p2x?) and 1/2(xpy + pyX)? differ?

Solution.

2

0p2 + p2) —hz{xza—;c
ox

- 22 O
ox?

2
- _hzxza_f_hz J

ox?

ox?

2
= W% 2x* — J
x>

1
E(pr + pxx)2 f

- _ﬁ_xi 2Xa_f
2| Tox oX

2 2
= _h_ 2)(2a :
2 ox

n? (. of , 0% f

82+f]

=5 8Xa_x+ 2X

—n? [ZXZ aa R
X

The two operators differ by a term —(3/2)72.

+4X—+2

of
__(pr + pxX)|: aX

+ X=—

ox?

ER

ox

ox

|

2 9 0 )

of

ox

d

ox

d
ox

of
ox

+ 2X—

X

d

ox

+ X=— + 2X

+

f

1
2

_]f

a(xf)}

ox

——(xpX + pxx)( xa—i+ f)

+ —(ZX

of

0
ox

ox

[2f+x2

82
—n?| X2 —+2f+2x—+x

|

of
ox

2 O°f
ox

282

. 3t
ox

o2

J+

Allowing the operators to operate on the function f, we obtain
2/,2
N 0 (x“f)

+ 2X —

+ 4x

of
ox

d(xf)
ox

ER

|

|
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321 The Laplace transform operator L is defined by Lf(x) = [e *f(x)dx
0

(i) Is the operator L linear?
(i) Evaluate Le* if s > a.

Solution.

(i) Consider the function f(x) = c¢,fi(x) + ¢, f,(x), where ¢; and ¢, are constants. Then,

L[cify(0) + ¢, F,(0] = [ [erfy(x) + co T (x)]dx
0

ciLf1(X) + c,Lf(X)
Thus, the Laplace transform operator L is linear.
oo g (s-a)x > 1

i) Le™=[eeMdx=[e @ dx= =
(i E[ E[ —(s—a) , S~a

3.22 The operator e* is defined by
2 A3

A— — — e
e"=1+A+ o1 + 3 +

Show that e® = T;, where D = (d/dx) and T; is defined by T,f(x) = f(x + 1)

Solution. In the expanded form,

eD—1+i+ii+i£
- dx = 21 gx?2 = 3! gx3

ePf(x) = f(x)+ f’(x)+%f”(x)+%f”’(x)+

where the primes indicate differentiation. We now have
T f(x) = f(x + 1)
Expanding f(x + 1) by Taylor series, we get
fx+1) = f(xX)+ f'(x)+%f"(x) + .-
From Eqgs. (i), (iii) and (iv), we can write
ePf(x) = T, f(x) or e =T,

3.23 If an operator A is Hermitian, show that the operator B = iA is anti-Hermitian.

operator B = —iA?
Solution.  When A is Hermitian,

[v*Ay dr = [(Ap )<y dr

For the operator B = iA, consider the integral

¢, [e ™ f(x)dx + ¢, [ e fy(x) dx
0 0

(i)

(i)

(iii)

(iv)

How about the
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[v*Bydr = [y*iAy dr

ijl//*Ay/dr = ifA*l//*l//dT

- [(Apyydr = - [Byyy de
Hence, B = iA is anti-Hermitian. When B = —iA,

fl//*Bl//df = —ifA*l//*l//dr

[ (A y*y dr

Thus, B = —iA is Hermitian.

3.24 Find the eigenvalues and eigenfunctions of the operator d/dx.
Solution.  The eigenvalue-eigenfunction equation is

d
P = ky(x)
where k is the eigenvalue and y(x) is the eigenfunction. This equation can be rewritten as
W dx
v

Integrating In = kx + In ¢, we get

" [%j =k y=ce

where ¢ and k are constants. If k is a real positive quantity, iy is not an acceptable function since it
tends to e Or —eo @S X — oo OF —oo. When Kk is purely imaginary, say ia,

w=ce
The function w will be finite for all real values of a. Hence, y = ce®* is the eigenfunction of the
operator d/dx with eigenvalues k = ia, where a is real.

iax

3.25 Find the Hamiltonian operator of a charged particle in an electromagnetic field described by
the vector potential A and the scalar potential ¢.

Solution.  The classical Hamiltonian of a charged particle in an electromagnetic field is given by
2
1 e
H=—|p-—-A
(P eh) +or

Replacing p by its operator —ihV and allowing the resulting operator equation to operate on function
f(r), we obtain
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Hi(r) = %( Sinv - SA)(—ihV—%A) f(r) + epf(r)
= L (linv ——A invE - S Af |+ epf
©2m c ¢
=L | ey, den @ €
= o { VA TVIAR £ SR AVE g A et
. 2
= i[—hzv2f+@(V.A)f @A Vf + @A Vv + }+e¢)f
2m c c?

I g, ieh ien €
{va om VA rnAV+2mC +egp | f

Hence, the operator representing the Hamiltonian is

W _, e ieh e
He- 2 w2y g A B A v & A
2m Ver 2mc v mc v+ 2mc2 e

3.26 The wavefunction of a particle in a state is = N exp (- x%/2c), where N = (1/ze)**. Evaluate
(Ax) (Ap).

Solution.  For evaluating (Ax) (Ap), we require the values of (x), (x?), (p) and {p?). Since  is
symmetrical about x = 0, (x) = 0. Now,

2
<x2>—N2Jx exp[ de— 5

—oo

2 2
(py = —ihN? JeXp[ X ];jxexp (%J dx

2
constant J X exp ( ] dx

—oo

0 since the integral is odd.

2 2 2
(pD) = (-in)? N2 J exp[ X ] jz exp [%J dx

282 2 2N2 = 2
- I'N (Lde—h Jx exp[x]dx
o 7 a

|
——
)
x
©
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Refer the Appendix. Also,
o B? W

(AX)? (Ap)? = (x?) (p%) = P 4

() ap) = &

3.27 Show that the linear momentum is not quantized.

Solution. The operator for the x-component of linear momentum is —iz (d/dx). Let y(x) be its
eigenfunction corresponding to the eigenvalue a,. The eigenvalue equation is

. d
_'h& v () = ay (x)

dy () _ I a, dx

vi(x) &

Integrating, we get
wyu)=Cexpf%aw)

where C is a constant. The function w(x) will be finite for all real values of a,. Hence, all real values
of a, are proper eigenvalues and they form a continuous spectrum. In other words, the linear
momentum is not quantized.

3.28 Can we measure the kinetic and potential energies of a particle simultaneously with arbitrary
precision?

Solution. The operator for kinetic energy, T = —(#%2m) V2. The Operator for potential energy,

V = V(r). Hence,
2

n”o_, n”o_,
om _ﬂWOW%VG%W]W

o,
- (VA

om YV #0
Since the operators of the two observables do not commute, simultaneous measurement of both is
not possible. Simultaneous measurement is possible if V is constant or linear in coordinates.

3.29 If the wave function for a system is an eigenfunction of the operator associated with the
observable A, show that (A") = (A)".

Solution. Let the eigenfunctions and eigenvalues of the operator A associated with the observable
A be wand ¢, respectively. Then,

(A = [y*Ay dr = [y*A" Ay dr

a [y*A My dr = of [y A" Py dr

a" [y*ydr=a"
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n n
@ = (Juravde) = (aJyry o) = a,
Thus, (A" = (A)".
3.30 The wave function w of a system is expressed as a linear combination of normalized
eigenfunctions ¢, i = 1, 2, 3, ... of the operator « of the observable A as = Y c;4. Show that
i

(AN = ¥ |¢* al, ag = ag, i=12 3, ..
Solution. '
w=Ycs, &= [owrdr,  i=123 ..
i SN

(AY = [y*a"ydr= XY cfe | orag; dr
oo i oo

= XX creja] [ grgpdr=Ylcla
i ] oo i
since the ¢’s are orthogonal.

3.31 The Hamiltonian operator of a system is H = —(d%/dx?) + x2. Show that Nx exp (-x%/2) is an
eigenfunction of H and determine the eigenvalue. Also evaluate N by normalization of the function.

Solution.
w = Nx exp (—x?/2), N being a constant

i () e [
V= 0 X exp 5
2 2 2
3 x4 X xZexpl — X
NXx exp( 5 J ix exp( 2) X exp( > H

X2
3NXx exp | = 3y

Hence, the eigenvalue of H is 3. The normalization condition gives
N? | x2edx = 1

9z

N2 —5— = 1 (refer the Appendix)
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3.32 If A is a Hermitian operator and y is its eigenfunction, show that (i) (A% = JIAI/II2 dz and
(ii) (A% > 0.
Solution.

(i) Let the eigenvalue equation for the operator be

Ay = ay
Let us assume that w is normalized and a is real. Since the operator A is Hermitian,

(A% = [y*Alydr = [ A y*Ay dr
= [ 1Ay dr
(if) Replacing Ay by ay, we get
(N = [lay P dr = [laPly Pdr

= laf [ly P dr = |af

>0
3.33 Find the eigenfunctions and nature of eigenvalues of the operator
&, 2
dx? X dx

Solution. Let y be the eigenfunction corresponding to the eigenvalue A. Then the eigenvalue

equation is given by
> 2d
[dx X dx] v=ay

Consider the function u = xy. Differentiating with respect to x, we get
du dy
a7 X dx
2 2 2
ou_dv  dv Ay LW 4V

dx? dx = dx dx? dx dx?
Dividing throughout by x, we obtain

1du (2 d d?
-_— = __+_2 l//

X dx? X dX = gx
Combining this equation with the first of the above two equations, we have
1 d%u d%u
——=4 oo —=Au
xa2 Y dx?
The solution of this equation is
u= cleﬁX + cze’ﬁX

where ¢, and ¢, are constants.
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For u to be a physically acceptable function, VA must be imaginary, say, i Also, at x = 0, u = 0.
Hence, ¢; + ¢, = 0, ¢; = —C,. Consequently,

. . 1 . .
u=c (e -e', = ! (e — 7

sin fx
o Sin Bx
X

3.34 (i) Prove that the function y = sin (kyx) sin (ky) sin (ksz) is an eigenfunction of the Laplacian
operator and determine the eigenvalue. (ii) Show that the function exp (ik - r ) is simultaneously an
eigenfunction of the operators —izV and —#2V? and find the eigenvalues.

Solution.
(i) The eigenvalue equation is

Viy

82 82 82
[87 + ? + 8?] sin kyx sin kyy sin kaz

—(kZ + k2 + k§) sin kyx sin Ky sin ksz

Hence, yis an eigenfunction of the Laplacian operator with the eigenvalue —(kZ + k3 + k3).
(ii) —inVell-D = pkelk- T
_2v2eik1) = 422l T)

That is, exp (ik - r) is a simultaneous eigenfunction of the operators —i#V and —#2V?, with
eigenvalues 7k and #%k?, respectively.

3.35 Obtain the form of the wave function for which the uncertainty product (Ax) (Ap) = #/2.
Solution.  Consider the Hermitian operators A and B obeying the relation

[A, B] =iC (i)
For an operator R, we have (refer Problem 3.30)
[IRy P dz =0 (ii)

Then, for the operator A + imB, m being an arbitrary real number,

j(A—imB)*y/*(AJrimB)z// dr >0 (iii)
Since A and B are Hermitian, Eq. (iii) becomes

[w*(A —imB) (A +imB)y dr 20

[w*(A* = mC + m*B?)y dr 2 0
(A%y - m(C) + m?(B?)>0 (iv)

The value of m, for which the LHS of Eq. (iv) is minimum, is when the derivative on the LHS with
respect to m is zero, i.e.,

()

= — 2 =
0 (CYy+2m (B9 or m 28

(v)
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When the LHS of (iv) is minimum,
(A+imB)w=0
Since
[A - <A>l B - <B>] = [Al B] = IC
Eq. (vi) becomes
[(A - (A) +im (B - (B)]y=0
Identifying x with A and p with B, we get

[(x — (<) + im(p — (Y] =0, i

Substituting the value of m and repalcing p by —i%(d/dx), we obtain
28p)° . I<p>
X +[ (x = (X)) - =0

d7z/f {2(Ap) (x— () - <>} )

Integrating and replacing Ap by 7#/2(Ax), we have
2(4p)° (x = (X)), i¢p)x

In w= - Y > 7 +1In N
_ (X—(X)) L Kp)x
T X

Normalization of the wave function is straightforward, which gives

1/4
_ 1 (x = (x))? L (p)x
v (m (AX)? J P { 4(AX)? 7 }

3.36 (i) Consider the wave function

2

w(x)=Aexp [—:—2] exp (ikx)

where A is a real constant: (i) Find the value of A; (ii) calculate {(p) for this wave function.

Solution.
(i) The normalization condition gives

oo 2
A [ exp [—ZLZ] dx =1
a

—oo

g 1/2 T 1/2
AZ(Z/ 2) =1 or AZ(EJ a:l
a

" 2(ap)?

(vi)

(vii)
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(ii) (p) = jyf*(—ih%)yf dx

oo 2\ 2\
= (-in)A% [ exp [—:—2] e Ik (—2—;( + ikj exp [—:—2] e ™ dx

—oo

L 27 (2 ) (ik) A2 [ exp | =25

—oco

In the first term, the integrand is odd and the integral is from — to o. Hence the integral vanishes.
{(p) = nk (refer the appendix)

—oo

" —2x?
since A? J eXp[ > ]dx =1.
a

3.37 The normalized wave function of a particle is y(x) = A exp (iax — ibt), where A, a and b are
constants. Evaluate the uncertainty in its momentum.

Solution.
l//(X) — Aei(ax - bt)

(Ap)* = (p?) - (p)’
(py= —in [y gV dx=na Jv*y dx = ha
2 d?
(p*) = —n JW*d? y dx
12 A2 J‘e—i(ax—bt) i £l (@x-bY) 4y
dx?
~1 (i) [ y*y dx = n*a’

(Ap)? = (p?) - (p)* = h?a? - W*a® = 0
(Ap)=0

3.38 Two normalized degenerate eigenfunctions wi(x) and y»(x) of an observable satisfy the

condition j w1y, dx = a, where a is real. Find a normalized linear combination of y; and s,

which is oFongonal to i — we.
Solution. Let the linear combination of ¥4 and » be
W= Cyy + G, (Cq, Cy are real constants)

J Q1 + Cp)* (G + Copp) dx =1

—oo

2 +cs+2cCa=1
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As the combination w is orthogonal to y; — us,
I(Wl —y)* (G + Cy,)dx =0
¢,—C +ca—-cga=0
(ci—-c)(1-a)=0 or ci=¢

With this condition, the earlier condition on c; and c, takes the form
1

J2 + 2a

C5+C3+2c5a=1 or c,=

Then, the required linear combination is
_ntys

v J2 + 2a

3.39 The ground state wave function of a particle of mass m is given by w(x) = exp (—ax*/4), with
energy eigenvalue #2a?/m. What is the potential in which the particle moves?

Solution.  The Schrddinger equation of the system is given by

2 2 2 2
_ h d +V e—(xzx4/4 — o e—(xzx4/4
2m gx? m

2 2.2
h 2,2 4,6y —a?x*4 —axta Rt o2
—— (F3a° X"+ a"x’)e + Ve =—o=
2m m
oo, s 3n 5, ., ha?
V=—oax° ———ax +
2m 22m

3.40 An operator A contains time as a parameter. Using time-dependent Schrddinger equation for

the Hamiltonian H, show that
d(A) i a_A
at o A]>+<at>

Solution. The ket |y(t)) varies in accordance with the time-dependent Schrédinger equation

.0 .
|h§|l//s (t)> =H |l//s(t)> (I)
As the Hamiltonian H is independent of time, Eq. (3.24) can be integrated to give
lys(t)) = exp (-iHU7) y4(0)) (i)
Here, the operator exp (-iHt/A) is defined by
iHt) & ( iHt)" 1
exp (—7) = EB [—7) o (iii)

Equation (ii) reveals that the operator exp (-iHt/%) changes the ket |y(0)) into ket |yx(t)). Since H
is Hermitian and t is real, this operator is unitary and the norm of the ket remains unchanged. The
Hermitian adjoint of Eq. (i) is
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A CACILUAGIE )

whose solution is
W01 = w0 lexp | )

Next we consider the time derivative of expectation value of the operator A;. The time
derivative of (A,) is given by

d d .
FRGORUAGIENIZAC) (vi)
where A is the operator representing the observable A. Replacing the factors %Iy/s(t)) and

%(l//s (t)| and using Egs. (i) and (iv), we get

SR = W OIAH ~ HA Iy, () + <ws<t)‘aai; v(t)

9 (a)=LiaH] + <AS> (vl

3.41 A particle is constrained in a potential V(x) = 0 for 0 < x < a and V(X) = < otherwise. In the
X-representation, the wave function of the particle is given by

v(x) = \/E sin 27fo

Determine the momentum function ®(p).
Solution. From Eg. (3.35),

o) = [y e (—%) o

In the present case, this equation can be reduced to

1
D(p) = I
J7ha
where
a
| = [sin == 27X 227 glipdn) gy
0

27X
cos —dx
a

1]
1
|

| =
1]
35
N
)
=
(-D/-\
5
x
)
| I
o joil
|
O t—
VR
I
-5 N
;_/
-5
x
E:
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Since the integrated term is zero,

a a
| = 27 s 22X [—i)e(ipx”” ——ZEhJ _ I i [ 27 ) G 27X g
ipa a | ip . ipa gl ip a a

2,2
_ 2rh [_Ej [e(—ipx/h) -1+ ﬂ |

ipa { ip a’p?

A’ h? 27 h? ;
_ _ AR ra(-ipxin)
| (1 J = > [e* 1]

a’p’ ap
| = 27Zah2 [e(,ipa/h) _ 1]
a2p? — 4z
With this value of I,
1 27rah2 _ipalh
(p) = [P 1]
Jrha a?p? — 4n?n?
12,112 4312
- 2zt cath [e(*ipa/h) _ 1]
a2p? — 4x2n?

3.42 A particle is in a state |y) = (/2" exp (—x%2). Find Ax and Ap,. Hence evaluate the
uncertainty product (Ax) (Ap,).

Solution.  For the wave function, we have
1/2
1 2
X)y=1= xe" dx =0
w=(3) 1
since the integrand is an odd function of x. Now,

1/2 « 1/2
1 _ 1 N 1
%) = (;) j x2e ™ dx = 2(;) Tﬂ =3 (see Appendix)

(W = )~ ) = 3

V2 e 2 2
(py) = [%) | exp [_%J[_'hf_x) exp [—X?] dx

1 1/2 )
= ih (—) [ xe dx=0
a —oo
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1/2 2 2 2
1 X o d X
(pf) = [;) L exp [—7] (—in) ol P [—7] dx
1/2 ) 1/2 )
= (%) n? 'fe’x2 dx —(%) n | X2 dx
1/2 1/2 1/2 2
= (%) Wrt? - (%) n? ”T = % (see Appendix)

2
(Ap)? = (p2) — (p? = 1=

The uncertainty product

(AX)(ap,) = 5

3.43 For a one-dimensional bound particle, show that
(1) % | P*(x, t) W(x, t)ydx = 0, ¥ need not be a stationary state.

(if) If the particle is in a stationary state at a given time, then it will always remain in a
stationary state.

Solution.
(i) Consider the Schrodinger equation and its complex conjugate form:

i d¥(x,1) _ [_iaa_erV(X)} w(x, 1)

ot 2m

* "’ 92
D _ {

ot 2m gx?

Multiplying the first equation by W¥* and the second by ¥ from LHS and subtracting the second from
the first, we have

—+ V(x)} P*(x, t)

* 2 2 2wk
Ih[wa\r g ¥ }:_h_{wa_\y_\ya\y}
2m x> x>

ot ot
ey 9 (. 0P 0w+
( )_ {ax [\P x T ax H

I LN NS e S
L§(‘P ‘P)dx_m[‘ll ——\P—L

Integrating over x, we get

ox ox

%j(‘l’*‘}')dx:%[‘}'*a\y p oF }

ox o ox
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Since the state is bound, ¥ = 0 as x — *eo. Hence, the RHS of the above equation is zero. The
integrated quantity will be a function of time only. Therefore,
%L‘P*(x, t) W(x,t)dx =0

(if) Let the particle be in a stationary state at t = 0, H be its Hamiltonian which is time
independent, and E be its energy eigenvalue. Then,

H¥(x, 0) = E¥(x, 0)
Using Eg. (3.25), we have

Y(x,t) = exp(—%) Y (x,0)
Operating from left by H and using the commutability of H with exp (-iHt/A), we have

H¥(x, t) = exp(—i%) HY (x,0)

= Eexp(—%) Y (x,0) = E¥ (x,t)
Thus, W(x, t) represents a stationary state at all times.
3.44 The solution of the Schrddinger equation for a free particle of mass m in one dimension is
Y(x, t). Att=0,

Y(x, 0) = A exp a_2

Find the probability amplitude in momentum space at t = 0 and at time t.
Solution.
(i) From Eqg. (3.35),

o(p, 0) = ! i[c Y(x,0) exp (—%) dx

N2zh .
A 7 X“ ipx
= :Lexp (——2—7] dx
- A Tex i cos| 2% | dx
= o L@ h

Here, the other term having sin (px/#) reduces to zero since the integrand is odd. Using the standard
integral, we get

N

N
q
St

QD

Aa p%a®
@(p, 0) = EGXP Ty
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The Schrddinger equation in the momentum space equation (3.31) is
p2
|h—<1>(pt)— d)(pt)

p
2mh

do ip
o [ 2mh] at

Integrating and taking the exponential, we obtain

—ip%t
O (p.t) = Bexp[zfm

D(p,t) =

D(p,t)

At t =0, ®(p, 0) = B. Hence,

_ Aa —p*a® —ip’t
3.45 Write the time-dependent Schrddinger equation for a free particle in the momentum space and
obtain the form of the wave function.

Solution. The Schrddinger equation in the momentum space is

5 0®(p) _ p?
BT ﬁ‘b(ﬂt)
9® _ —ip’
ot~ 2hm
do _ —ip’
®  2im
Integrating, we get
52
_ —ip°t
In® = o + constant

_inl
o(pt)=A exp[ zli’f)mt]’ with A as constant

When t = 0, @ (p, t). Hence,

o (p, 1) = d>(p,0)exp( Ll ]

which is a form of the wave function in the momentum space.
3.46 The normalized state function ¢ of a system is expanded in terms of its energy eigenfunctions

as ¢ =Y, Gy; (r), ¢’s being constants. Show that |cil? is the probability for the occurrence of the
i

energy eigenvalue E; in a measurement.
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Solution. The expectation value of the Hamiltonian operator H is

(Hy = (gIH1g) = 2.3 ciej(yilHIy;)
i

= 22 ol Ejly)
i

= Yl PE
i
Let @, be the probability for the occurrence of the eignevalue E;. Then,
(H) = 2 ok,
1

Since E;’s are constants from the above two equations for (H),
@ = ¢l

3.47 Show that, if the Hamiltonian H of a system does not depend explicitly on time, the ket | w(t))
varies with time according to

v = exo -5 w0

Solution. The time-dependent Schrddinger equation for the Hamiltonian operator H is

in Sy (O) = Hiy)

Rearranging, we get
dlyt) _H

lw(®) ~in

Integrating, we obtain

H .
In |w(t)) = |_ht + C, with C as constant,

C =In |y(0))
Substituting the value of C, we have

ly(0)) — in

) o (iHt
ZO exp( h )

in () _ Ht

o) = exp [ -1 oy

3.48 Show that, if P, Q and R are the operators in the Schrodinger equation satisfying the relation
[P, Q] = R, then the corresponding operators Py, Q and Ry of the Heisenberg picture satisfy the
relation [PH, QH] = RH'
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Solution. The operator in the Heisenberg picture A, corresponding to the operator Ag in the

Schrédinger equation is given by ' '
AH(t) = e|Ht/h Ase"Ht’h
By the Schrodinger equation,
PQ - QP =R
Inserting e M e=HU7 = 1 hetween quantities, we obtain
Pe—th/h eth/hQ _ Qe—th/h eth/hP =R
Pre-multiplying each term by ™" and post-multiplying by e ™" we get
eth/hPe—th/th—th/h _ eth/th—th/heth/hPe—th/h — eth/hRe—th/h
PuQu — QuPH = Ry
[Pr, Qul = Ry

3.49 Show that the expectation value of an observable, whose operator does not depend on time

explicitly, is a constant with zero uncertainty.

Solution. Let the operator associated with the observable be A and its eigenvalue be a,. The wave

function of the system is

00 = v oxp -2 |

The expectation value of the operator A is

(A) = J'//n(r)exp( t)Al//n(r)eXp(E )df

[ W) Apa(n)dr = a, [ wi(n) ya(ndr

:an

That is, the expectation value of the operator A is constant. Similarly,
(A = [ yr(r) Ay, (ndr = a]

Uncertainty (AA) = (A%Y — (A’ =a2 —a> =0

3.50 For the one-dimensional motion of a particle of mass m in a potential V(x), prove the

following relations:

40 _ (P d<px>=_<dv>

dt ~ m dt dx

Explain the physical significance of these results also.

Solution. If an operator A has no explicit dependence on time, from Eq. (3.26),

'h%<A> = ([A, H]), H being the Hamiltonian operator
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P

Since H = om +V(x), we have
Gd ] P
|ha(x) = <lx om +V:|>
P 1
Px - = 2
{x, o +V} = 5 [ pEl+ [x V(0]
1 1
= ﬁ [X: px] Py + ﬁ Py [X: px]
Codh o B
= 2o =l
Consequently,
d(x) _ (py)
dt m

For the second relation, we have

. d
ih e (P = [P, HD

[P« H] = % [P P+ [Py V1= [Py, V(X)]

Allowing [py, V(X)] to operate on y(x), we get

[—ihaix,V(x)} w

.0 ., 0
—|ha—X(Vy/) + |hVa—Xy/

. aV
—|ha—x

ih%<px>=ih<—ﬂ—¥> or %<px>=<—‘;—z>

In the limit, the wave packet reduces to a point, and hence

M=% P = Py

Hence,

Then the first result reduces to

dx _

dt - pX

which is the classical equation for momentum. Since — (dV/0x) is a force, when the wave packet
reduces to a point, the second result reduces to Newton’s Second Law of Motion.

m
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3.51 Find the operator for the velocity of a charged particle of charge e in an electromagnetic field.
Solution. The classical Hamiltonian for a charged particle of charge e in an electromagnetic field

is
2
H= L (p——A)+e¢)

2m

where A is the vector potential and ¢ is the scalar potential of the field. The operator representing
the Hamiltonian (refer Problem 3.23)

2 2 A2
Heolyryp Jh g p o, g, EA
2m 2mc mc 2mc?2

+e¢

For our discussion, let us consider the x-component of velocity. In the Heisenberg picture, for an
operator A not having explicit dependence on time, we have

dA 1
dt |h[ ]
Applying this relation for the x coordinate of the charged particle, we obtain
dx 1
at s E[X’ H]

As x commutes with the second, fourth and fifth terms of the above Hamiltonian, we have

dx 1| -n* d®> ien d
__{X,__ﬁ_%_x}

dt " in|T 2m g2 mc
1|, -n d® | 1[ ien, d
= - +—| X, —A
in |7 2m gx2 | iR mc  * dx
LI i dhy P d dy)
T2mogx? |7 T 2m T gx?  2m dx  dx
_ oy [ Ay dy
Too2m T gy? T om dx? dx
_ h2 dy
m dx
ieh , 4] el dy , dow)
[X’ me dx} - ome [XAX x> T
ien
= e AV

Substituting these results, we get

dx 142 d 1 ieh 1[ . d e 1 e
I_Eﬁﬁ_ﬁm_cAX_E[_'h&_EAX}_H[pX_EAX)
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Including the other two components, the operator for

1 e .
V_H(p_EA)’ p = invV

3.52 For the momentum and coordinate operators, prove the following: (i) {pX) — {(xpy)y = —iA,

(i) for a bound state, the expectation value of the momentum operator {p) is zero.
Solution.

() = | w*(—ihdd—x) (xyr) dx

—|hj(y/ ;//+1//*x(:j )dx

—in [y* y/dx—lhjy/*x( d )y/dx

—in+ jy/*x(—ih%)y/dx
—ih + (xp)
(pX) = (xp) = —ih

(if) The expectation value of p for a bound state defined by the wave function y, is

(P = vz CinV)p, de

If y;, is odd, Vi, is even and the integrand becomes odd. The value of the integral is then zero.

If y, is even, Vi, is odd and the integrand is again odd. Therefore, (p) = 0

3.53 Substantiate the statement: “Eigenfunctions of a Hermitian operator belonging to distinct
eigenvalues are orthogonal” by taking the time-independent Schrddinger equation of a one-

dimensional system.
Solution. The time-independent Schrodinger equation of a system in state n is

2
TV 20 e V(ly, =0

The complex conjugate equation of state k is

d2
d"’; —[Ek VOl =0

Multiplying the first by y* and the second by y;, from LHS and subtracting, we get

d%y d%y*  2m
dxzn ~¥n dekJr e (En - B)yiy, =0

74

(i)

(i)

(iii)



General Formalism of Quantum Mechanics e 79

Integrating Eq. (iii) over all values of x, we obtain

oo d2 d2 *
J’ {V/* Vh -y, Vi ]dx

2m T o
h_z(Ek - Ey) :L'//k y, dx v v

dy,  dyr |
— * n _
- [l//k dX l//n dX :|

Since ¥ — 0 as X — oo, the RHS is zero. Consequently,

J Wiy, dx =0

—oo

Hence the statement.

3.54 Find the physical dimensions of the wave function y(r) of a particle moving in three
dimensional space.

Solution. The wave function of a particle moving in a three-dimensional box of sides a, b and ¢
is given by (refer Problem 5.1)

B f8 L WX . Ny . Nawl
w(r) = abcsm a sin b sin c

As the sine of a quantity is dimensionless, y(r) has the physical dimension of (length

)—3/ 2

3.55 A and B are Hermitian operators and AB — BA = iC. Prove that C is a Hermitian operator.
Solution.

Operator C = Tl(AB — BA) =-i(AB - BA)

C* = i (A*B* — B*A¥)
Consider the integral

[wiCy, dr = —i [y (AB - BA) y, dr

—i [ (B*A* — A*B*) yy, dr

i [ (A*B* — B*A¥) iy, dr

| C*yw, dr
Thus the operator C is Hermitian.

3.56 Consider a particle of mass m moving in a spherically symmetric potential V = kr, where k
is a positive constant. Estimate the ground state energy using the uncertainty principle.

Solution. The uncertainty principle states that

(Ap)(M0) 2 5
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Since the potential is spherically symmetric, {p) = {r) = 0. Hence,

(AR =(r%,  (Ap)* = (p?
We can then assume that
Ar

n

=

>
©

n
he]

h

(PN =7 o Ap= 5

2 2
_ P _ (Ap)
Energy E = om + kr = >m + k(Ar)
2
- h—z + k(Ar)
8m (Ar)

For the energy to be minimum, [dE/d(Ar)] = 0, and hence

1/3
2 hZ

_h—s +k=0 or Ar=| ——
4m (Ar) 4mk

Substituting this value of Ar in the energy equation, we get
1/3
£ 3k
2| 4m
3.57 If the Hamiltonian of a system H = (pZ/2m) + V(x), obtain the value of the commutator

[x, H]. Hence, find the uncertainty product (Ax) (AH).
Solution.

2
[x, H] {x, Zp—r;} + [x,V(X)]

1 1
ﬁ [X: px] Py + ﬁ px[Xx px]

1 . 1 .
ﬁ (Ih) Py + ﬁ px(lh)

. h .
=i-p, 0)
Consider the operators A and B. If
[A B] =iC (ii)
the general uncertainty relation states that
(AA)(AB) = <§—> (iii)

Identifying A with x, B with H and C with p,, we can write

(AX) (AH) 2 o (p,)
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3.58 If L, is the z-component of the angular momentum and ¢ is the polar angle, show that [¢, L,]

= ik and obtain the value of (A@)(AL,).

Solution. The z-component of angular momentum in the spherical polar coordinates is given by
d

LZ = —|hw

. d . d
[¢, LZ] = |:¢, —|h%j| = —|h|: ,@j‘

Allowing the commutator to operate on a function f(¢), we get

[ d}f_(bdf d(¢f)

dp| " Tdp dg
_df df _
" YT
Hence,
d
odg) 1
With this value of [¢, (d/d¢)], we have
[¢ L] = in
Comparing this with the general uncertainty relation, we get
[A B] =iC, (AA)(AB) 2 %)

(Ap)(AL)>

3.59 Find the probability current density j(r, t) associated with the charged particle of charge e and
mass m in a magnetic field of vector potential A which is real.

Solution. The Hamiltonian operator of the system is (refer Problem 3.23)

2 . .
1 (p e )_ h? v2 4 1eh ien e’ A’

= om =Y tame (VA AV o

c

The time-dependent Schrédinger equation is

Y K, ien ieh e’ A?
he—=—=V¥+ —(V-A¥ + —A-V¥ ¥
"ot oam Y Tt g (VAT e AV 2mc?
Its complex conjugate equation is
L S LR ieh ien e’A?
—ih = — V2P - (V- AP* - —A-VP* P
"ot om Y 2me VA me A VE 2mc?

Multiplying the first equation by W¥* from left and the complex conjugate equation by ¥ and
subtracting, we get
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. v P 2
Ih(‘l’*aa—t-i- ‘I’aat ) = ;l [P*V2Y — $V2g*] + [‘P*(V AV + ¥(V- A)¥Y*]

+ ﬂ[\y*(vw) A+ (VP A]

i * — in * _ * e * & rpp. . *
at(\P\P)_ﬁ[V (P*V¥ ‘PV‘P)]+mC‘P‘P(VA)+mC[‘PAV‘I’+‘I’A V¥*]

%(‘P*‘P) V[ (F*VE — PV + (‘I—‘*‘I—‘A)}

Defining the probability current density vector j(r, t) by
i - ﬂ * _ P _ & g
j(r,t) = o (PVYP* — ¥*VV¥) pos (P*YA)
the above equation reduces to
d .
ﬁP(r, )+ V-jr,t)=0

which is the familiar equation of continuity for probability.

3.60 The number operator N, is defined by N, = al a,, where a} and a, obey the commutation
relations

[ay, af] = &, [ay, ] = [a}, af] = 0
Show that (i) the commutator [N,, N;] = 0, and (ii) all positive integers including zero are the
eigenvalues of N,.
Soultion. The number operator Ny is defined by
Ne = al a

[a a, ata] = [a' a, al] a + a}[a a, a]

(i) [N N\

al [a, a'] & + [a%, al] aca + afal [aca] + af [k a] a
=alda+ 0+ 0+ aj (-5 ax
=ala -alka=0
(if) Let the eigenvalue equation of Ny be
Ny (n) = nir(ny)
where n, is the eigenvalue. Multiplying from left by y*(n,) and integrating over the entire
space, we get

ng = IW*(nk) Ny (n,)dz
= [y*(n) ala, w(n)dr
= [law(n)Pdr 20

Thus, the eigenvalues of Ny are all positive integers, including zero.
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3.61 For a system of fermions, the creation (al) and annihilation (a) operators obey the

anticommutation relations

[aw, &l. = d, [a, all. = [af, &l = 0
Show that the eigenvalues of the number operator N, defined by N, = a} a, are 0 and 1.
Solution. Since [a,, a]. = &, we have

T T

[a, all = aca) +aja, =1

aa =1-aa
Also,
[ ads = [al , &l = 0
a,a=aja =0
NE = afay afa = aj(a al)a
= a] (1 - a/a) a, = aja, - alajaay
=N,
since the second term is zero. If n, is the eigenvalue of Ny, Eq (iii) is equivalent to
nf=n, or nf-nc=0
n(ng—-1) =0

which gives
ne = 0, 1

Thus, the eigenvalues of Ny are 0 and 1.

(i)

(i)

(iii)

(iv)



CHAPTER

One-Dimensional Systems

In this chapter, we shall apply the basic ideas developed so far to some simple one-dimensional
systems. In each case, we solve the time-independent Schrddinger equation
1 dy(0
2m  gx?

FVOOp() = Ep(x)

to obtain the energy eigenvalues E and the energy eigenfunctions.

4.1 Infinite Square Well Potential

. 0, —a<x<a
(a) Potential V(x) = ) (4.2)
e, otherwise

This potential is illustrated in Fig. 4.1(a). Now, the energy eigenvalues are given by

232,22
EF@, n=123, .. (4.2)
8ma
oo V(X) oo ) oo
————> ————
-a 0 a X 0 a X
(@ (b)

Fig. 4.1 The infinite square well potential: (a) of width 2a; (b) of width a.

84
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and the energy eigenfunctions by

icosm, n=135...
A 2a
Wn(X) = (4.3)
1 [F/2

— sin —, n=246...
Ja 2a
A general solution is a linear combination of these two solutions.
. 0, 0<x<a
(b) Potential V(x) = )
oo,  Otherwise

which is illustrated in Fig. 4.1(b). Again, the energy eigenvalues

2422
£, =2 nz123 (4.4)
2ma
and the energy eigenfunction
2 . nrmXx
== sin =22 =123, .. 4.5
Va=qgz SN 0 (4.5)

4.2 Square Well Potential with Finite Walls

Vo, X<-a
Potential V(x) = <0, —a<x<a (4.6)
Vg, X>a

Case (i): E <V, The wave function inside the well can either be symmetric or anti-symmetric
about the origin. The continuity of the wave function and derivative give

Symmetric case: ka tan ka = ca (4.7
Antisymmetric case: ka cot ka = —oa (4.8)
where
2mE 2m(V, — E)
2 _ 2 _ 0
ke = P o= — (4.9

The energy eigenvalues are obtained by solving Egs. (4.7) and (4.8) graphically. The solutions give
the following results regarding the number of bound states in the well:

71_2 2
One (symmetric) if 0 <V,a® < T
242 242
. . . . 4
Two (1-symmetric, 1-antisymmetric) if ”8:1 <V0a2 < gmh (4.10)
. . ) . 4r’h? 2p?
Three (two-symmetric, one anti-symmetric)  if Az <V0a2 < " h

8m 8m
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Case (ii): E > V,. In this case, the particle is not bound and the wave function is sinusoidal in all
the regions.

4.3 Square Potential Barrier

The potential is defined by
V(X) = Vg for0<x<a (4.12)
V(x) = 0, otherwise

Consider a stream of particles of mass m, the energy E < V, approaching the square barrier from the

left. A portion of the particles is reflected back and the rest is transmitted. For a broad high barrier,
the transmission coefficient T is given by

16k?a%e2?®  16E(V, — E)e 2™
== 5 (4.12)
(@? + k?) V¢

where k and « have the same definitions as in Eq. (4.9).

4.4 Linear Harmonic Oscillator

4.4.1 The Schrodinger Method

The solution of the Schrédinger equation for the linear harmonic oscillator potential V = (1/2)kx?,
where k = ma?, gives the energy eigenvalues

En=(n+%)hv=(n+%)hw, n=0,1,2, .. (4.13)
The normalized eigenfunctions are
1/2
o 2
Waly) = [m] Ha(y)e V" (4.14)
where
1/2
ma
y=ax and a= [7) (4.15)
12 2.2
o a~X
W) = (ﬁ) exp (— > ] (4.16)
1/2 2.2
o a X
ya(x) = (—2 JZJ (2ax) exp (— > J (4.17)

4.4.2 The Operator Method

The operator method is based on the basic commutation relation [x, p] = i%, where x and p are the
coordinate and momentum operators. The creation (a") and annihilation (a) operators are defined by
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1/2 1/2
S LCH I p (4.18)
S 7 2mho :
1/2 1/2
- (e X+i # 4.19
2=\ omiw | P (4.19)
In terms of a' and a, the Hamiltonian of a linear harmonic oscillator
h
H= 7”"(aaT + a'a) (4.20)
Also, we have
almy=vn|n-1, afln=Vn+lin+1 (4.21)

With these concepts, one can easily get the energy eigenvalues of a linear harmonic oscillator.

45 The Free Particle

The free-particle Schrodinger equation

d%y ) , 2mE
has the solutions ' ,
w(x) = Ae™ and  p(x) = Ae (4.23)

As the normalization in the usual sense is not possible, one has to do either box normalization or
delta function normalization, which are, respectively,

€ and  p(x) = e (4.24)

v = —
JL 2r

where L is the size of the box.
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PROBLEMS

4.1 Obtain the energy eigenvalues and eigenfunctions of a particle trapped in the potential
V(x) = 0 for 0 < x < aand V(x) = « otherwise. Show that the wave functions for the different energy
levels of the particle trapped in the square well are orthogonal.

Solution. The Schrodinger equation is

. d’y(x)
_ = <x<
I 4l + Vi (x) = Ep(x), 0<x<a
d’y(x) 2 2 _ 2mE
— == — k7 (x), k® =
dx? () n?
w(x) = A sin kx + B cos kx, 0<x<a

w(0) =0givesB =0 or w(x)= A sin kx
w(@) =0givesAsinka=0 or sinka=0
n?z?n?

2ma? '’

w(x) = 2/a sin “fTX

ka=nz or E,= n=1,2, ..

. mzx . nxXx
sin —— sin ——dx
a a

[VEEN

Sy oty O—®

a
[ wi v, dx
0

EREN

. . X
sinnysinmydy, vy-= e

NP

[cos (n —m)y —cos (n+ m)y]dy=0

4.2 Consider a particle of mass m moving in a one dimensional potential specified by

0, —2a<x<?2a
V(x) =

oo, Otherwise

Find the energy eigenvalues and eigenfunctions.
Solution.  The time-independent Schrodinger equation for the region —2a < x < 2a (Fig. 4.2) is

>y  , , 2mE
—— + k=0, ke =
dx? v n?
oo V(X) oo
-2a 0 2a

Fig. 4.2 Infinite square well of bottom.
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Its solution is
w(X) = A sin kx + B cos kx

At x = £2a, V(X) = . Hence, w(+2a) = 0.
Application of this boundary condition gives
A sin (2ka) + B cos (2ka) = 0
—A sin (2ka) + B cos (2ka) = 0
From the above two relations,
A sin (2ka) = 0, B cos (2ka) = 0

Now, two possibilities arise: A=0,B=0and A= 0,B =0.
The first condition gives

cos (2ka) = 0; 2ka = HTE n=13,5, ...
2 = n’z?  2mE,
162>  #?
2242
E, = 22’;:2, n=135, ..
Uh = BcosrLLaX, n=13,5, ...
Normalization yields
1 N X
W”:ECOSTa’ n=1 3,5,
The condition A # 0, B = 0 leads to
2242
En:%, N=246, ..
78 :%sin n;rax’ n=2456, ..

4.3 For an electron in a one-dimensional infinite potential well of width 1 A, calculate (i) the
separation between the two lowest energy levels; (ii) the frequency and wavelength of the photon
corresponding to a transition between these two levels; and (iii) in what region of the electromagnetic
spectrum is this frequency/wavelength?

Solution.

(i) From Eg. (4.2),

2322
E,o= 27" oa=1A=10"m
8ma?
372h? 3 x 7% x (1.055 x 103* Js)? x 4
E2 — El = =

8ma’ 8(9.1x 107% kg) 1029 m?
1.812 x 107Y7 J = 113.27 eV
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(ii) hv=1.812 x 1077 J
v=2.7 x 10'®

18 -1
4:32%:1.1x10’8m
vV 27x10%5

(iif) This frequency falls in the vacuum ultraviolet region.

4.4 Show that the energy and the wave function of a particle in a square well of finite depth V,
reduces to the energy and the wave function of a square well with rigid walls in the limit Vo — .

Solution.  For a well of finite depth V,, Eq. (4.7) gives

_ o 2 _ 2mE 2 2m
tanka—?, ke = P a_h—z(\lo—E)
V, - E
tan ka = /-2 or Lt tanka— oo
Vp—>eo
2.2
ka = n77z or ka2= 1%
7[2712 2
E, = P—" [which is the same as Eq. (4.2).]
ma

The wave functions in the different regions will be

Ae™*, X <-—a
w(x)=<Bsinkx +Ccoskx, —-a<x<a
De ¥, X>a

When Vy — oo, @ — oo, and the wave function reduces to

0, X <-—a
w(x)=<Asinkx+Bcoskx, -a<x<a
0, X>a

which is the wave function of a particle in a square well with rigid walls.

4.5 Calculate the expectation values of position (x) and of the momentum (p,) of the particle
trapped in the one-dimensional box of Problem 4.1.

Solution.
nzx
x) = —j3|n DX x sin X
a
= jxsm =£'[ ( 2nm()dx
a g a

2nzx

a a
%jxdx—%jxcos dx

0 0
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As the second term vanishes when integrated by parts,

=3

Ej X ( |hi) sin 22X dx
ag a

(P q

2nr & . nmx nzx
jsm cos

a20 a a

—ih dx

=0

nz 27rnx
= —ih —zf
0

4.6 An electron in a one-dimensional infinite potential well, defined by V(x) = 0 for -a < x < a
and V(x) = o otherwise, goes from the n = 4 to the n = 2 level. The frequency of the emitted photon
is 3.43 x 10 Hz. Find the width of the box.

Solution.
2422
£, =2t =01 x10% kg
8ma
_ 127%h?
E4 - E2 = 8ma2 = hy
,_ 3h 3(6,626 x 10734 Js)

8mv  8(9.1x 10 3! kg)(3.43 x 10 1)
= 79.6 x 10 m?
a=892x10"m or 2a=1784x10Ym

4.7 A particle of mass m trapped in the potential V(x) = 0 for —a < x < a and V(x) = oo otherwise.
Evaluate the probability of finding the trapped particle between x = 0 and x = a/n when it is in the
nth state.

. 2 .
Solution.  Wave function w(x) = \/;sm % (refer Problem 1)

Probability density P(x) = = sm2 X

a/n

Required probability P = J P(x) dx=— .[ sin? nZX dx

1a/n 2 1
P:—j(l—cos nm()dx=—
a 3 a
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4.8 An alpha particle is trapped in a nucleus of radius 1.4 x 107> m. What is the probability that
it will escape from the nucleus if its energy is 2 MeV? The potential barrier at the surface of the
nucleus is 4 MeV and the mass of the a-particle = 6.64 x 1077 kg.

. L - E e 2a
I . T = 16— |1-— == -
Solution ransmission coefficient T = 16 A (1 A ) exp { P 2m (v, E)}
Mass of alpha particle = 6.64 x 107’ kg

J2m(V, —E) = [2(6.64 x 1077 kg)(2 x 10° eV) (1.6 x 107° J/eV)[2
6.52 x 107 kgms™

2a _ 2(2.8x107" m) 20 g
7sz (V, — E) 051075 6.52 x 1072 kgms™t = 3.477

T=16 X % X % x exp (—3.477) = 0.124

4.9 The wave function of a particle confined in a box of length a is

2 . mx
:/_ z2 <x<
v(X) asma, 0<x<a

Calculate the probability of finding the particle in the region 0 < x < a/2.

12
2% X
= jsmz—dx
a j a

Solution. The required probability P

al2

-1 j(l—cosh—x)dx
a 3 a

1a/2 1a/2 27X 1
== [dx-= jcosidx=—
a g a g a 2

4.10 Find (x) and {p) for the nth state of the linear harmonic oscillator.
Solution.  For the harmonic oscillator, w;(x) = AH,(X) exp (-max?/2h)

—oo

(x) = A i[c H2(x) xexp [_m%xz] dx =0

since the integrand is an odd function of x.

oo 2 2
a2 _mox® | d _ max
(p)= —inA :L Hn(x)exp( ST J_dx lHnexp( 5 H dx

mox? |  mox max?
N nexp(— - —THﬁexp - dx
=0

since both the integrand terms are odd functions of x. Here, H, = dH/dx.

|
L
St
>
N
— 3
1
I
I
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4.11 For the nth state of the linear harmonic oscillator, evaluate the uncertainty product (Ax) (Ap).

Solution.  According to the Virial theorem, the average values of the kinetic and potential energies
of a classical harmonic oscillator are equal. Assuming that this holds for the expectation values of
the quantum oscillator, we have

L= thoty M2 (na L) -
o (PO = k) == (n+2) k = ma?

(p§)=mhw(n+%), <X2>=m_ha)(n+%)

(Ax)2 = (x%) — (x)2 = (x?) [refer Problem 4.10]

(Ap)? = (pZ)

Hence,

2
(Ax)*(Ap,)* = (n + %j R, (AX)(Ap,) = [n + %)h

4.12 A harmonic oscillator is in the ground state. (i) Where is the probability density maximum?
(if) What is the value of maximum probability density?

Solution.
(i) The ground state wave function

1/4 2
(x) = Mmho exp —Mmax
Vo hr 2

1/2 2.2
. ma ma’x
P(X) = ¥oyo = [ﬁ) exp [— . ]

P(x) will be maximum at the point where
dP [@)M [_ m_a’) 2X exp [— ma*x* J
dx hx h h
x=0
Thus, the probability density is maximum at x = 0.

B mao 1/2
(ii) P(0) = (ﬁ)

4.13 A 1 eV electron got trapped inside the surface of a metal. If the potential barrier is 4.0 eV
and the width of the barrier is 2 A, calculate the probability of its transmission.

Solution. If L is the width of the barrier, the transmission coefficient

165 (1 - 5) exp [—%JZm(V - E)}

The probability density

T

2x2x10%m
1.05x 104 Js

1 3
16XZXZXEXP[_

J2(9.1x 10 kg) (3 x 1.6 x 10722 J)]

0.085
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4.14  An electron is in the ground state of a one-dimensional infinite square well with a = 107 m,
Compute the force that the electron exerts on the wall during an impact on either wall.

Solution. The force on the wall

dE
F=-—1
da
The energy of the ground state
222
E, = T h2
2ma
and hence the force on the wall
_dB| o

F=

da a=10"10 ma®

a=10"10

72(1.054 x 10734 J5)?
(9.1 x 103 kg)(10 % m)?
1.21 x 107" N

4.15 Show that the probability density of the linear harmonic oscillator in an arbitrary superposition
state is periodic with the period equal to the period of the oscillator.

Solution. The time-dependent wave function of the linear harmonic oscillator in a superposition
state is

P(x,1) = 3, Con(X) exp (~iE,t/7)

where yq(X) is the time-independent wave function of the harmonic oscillator in the nth state. The
probability density

P(x,t) =1P(x.t)? =YY CxC vk, expli(E, — E,)t/A)]

It is obvious that P(x, t) is dependent on time. Let us investigate what happens to P(x, t) if t is

replaced by t + 27/ . It follows that
i(E, — E,) 2 i(E, — E,)t i(E, — E,) 27
exp [—h t+ p= exp 7 exp 7 p
exp [l(Em - En)t}

h

since (E,, — E,) is an integral multiple of za, i.e., P(x, t) is periodic with period 277 @, the period of
the linear harmonic oscillator.

4.16 For harmonic oscillator wave functions, find the value of (y, Xu4).
Solution.  For Hermite polynomials,

Hns1(Y) = 2yHq(y) + 2nH,4(y) = 0
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Substituting the values of H,,4, H, and H,_; in terms of the oscillator wave functions, [(Eq. 4.14)],
and dropping €'"/2(hz/ma)* from all terms, we get
2" n + DI 2w - 2y @ D) 2y, + 2n[2" (0 - D112, = 0
(N + DY = V2 yy, + 0%y, =0
Since y = (ma/h)? x, the inner product of this equation with y gives
(0 + D2 @i, o) — @Ml i, xwr) + 02 (W, Yna) = 0

(n+Hn
2mao

1/2 1/2
+ ﬂ ( )
Wi, Wni1) Ty Wi Wna

an+1)/2mew ifk=n+1
(Vo X5) = Vin/2ma ifk=n-1
0 ifk #n+1

Wi, ¥n) =[

4.17 Evaluate (x?), (p?), (V) and (T) for the states of a harmonic oscillator.
Solution. From Problem 4.16,

1/2
2maw
(n+ 1)1/2 Ve — [T) XY + n'/? Yn1=0

Multiplying from left by x and then taking the inner product of the resulting equation with s, we
get

1/2
2mw
(n + 1)1/2 (l//n’ Xl//n+l) - [T) (l//n’ le//n) + nllz(l//n’ Xl//n—l) =0

Using the results of Problem 4.16, we obtain

a(n+1 2m an
\/n+1\/ ( )—\/ 2 W X) +n me =0

2mo h

an _ [2mw 2
\/m (2n+1) = \}T W, X¥y)

00) = W, XY) = (20 +1)

2
() = I [wd—"’]

dx?

The Schrddinger equation for harmonic oscillator is
d’y,  2mE, m?w?x?
o o TR

Yn
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Substituting this value of d?y;/dx? and using the result for (x?), we get

<p2> = 2mE, (l//nl l//n) - m*e® (l//nl le//n)

(p?

h
— m2,,2
2mE, - m“w o (2n+1)

2n+1 mha)—Mmha)
( 2

_ (@n+1) _ 1
= > mhw = m n+2 ho

. . 1
Expectation value of potential energy = Ek(xz)

V) = 1 n+ L hw = —
M = 2 2 2
The expectation value of kinetic energy

E

(T = %(p2)=%(n+%)hw=7”

4.18 Show that the zero point energy of (1/2) 7w of a linear harmonic oscillator is a manifestation
of the uncertainty principle.

Solution. The average position and momentum of a classical harmonic oscillator bound to the
origin is zero. According to Ehrenfest’s theorem, this rule must be true for the quantum mechanical
case also. Hence,

(AX)? = (&) = ()7 = ()
(Ap)* = (p?) = (p)* = (p*)
For the total energy E,

€)= 5 () + 3K OO, k= ma?

N R I | 2
= om (Ap)+2k(Ax)

Replacing {(Ap)? with the help of the relation

(Ap)* (AX)? > é

2

1
E)y> — + Zk{Ax)?
® 8m(Ax)? 2
For the RHS to be minimum, the differential of (E) with respect to (Ax)?> must be zero, i.e.,
n? 1 2
—————+ k=0 or (A4 S
8m (Ax)min 2 2mo

W 2meo 1, h 1
Emn =gm T 2™ 2me = 2"
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4.19 A stream of particles of mass m and energy E move towards the potential step V(x) = 0 for
X < 0 and V(x) =V, for x > 0. If the energy of the particles E > V,, show that the sum of fluxes
of the transmitted and reflected particles is equal to the flux of incident paricles.

Solution. The Schrddinger equation for regions 1 and 2 (see Fig. 4.3) are
d’y, 2 2 _ 2mE
+ kjw =0, ky = : x<0
dX2 Ol// 0 hz
d’y, 2 2_ 2m(E -V,)
——= + k7w =0, k2P="7>——92" x>0
dx? v n?
E
V = VO
Region 1 Region 2
V=0
_____________ >
0 X

Fig. 4.3 Potential step.

The solutions of the two equations are

ikgx —ikgX
1

+ Ae x<0

y,=¢

l//z — BeikX’ X > 0
For convenience, the amplitude of the incident wave is taken as 1. The second term in yj;, a wave
travelling from right to left, is the reflected wave whereas y is the transmitted wave. It may be noted
that in region 2 we will not have a wave travelling from right to left. The continuity conditions on

w and its derivative at x = 0 give

1+A=B, ky(1-A) =kB
Simplifying, we get
ko — k 2k
© ko + k' T ko +k
kot

Flux of particles for the incident wave (see Problem 2.22) =
. . ko7
Magnitude of flux of particles for the reflected wave = OTWZ

. . kh
Flux of particles for the transmitted wave = HlBl2
The sum of reflected and transmitted flux is given by

o [ ko =7
M| (e + k7

4kk, kg

(ko +k32 | m

h 2 271 _
[k |AF + kIB] =

which is the incident flux.
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4.20 A stream of particles of mass m and energy E move towards the potential step of
Problem 4.19. If the energy of particles E < V,, show that there is a finite probability of finding the
particles in the region x > 0. Also, determine the flux of (i) incident particles, (ii) reflected particles,
and (iii) the particles in region 2. Comment on the results.

Solution. The Schrédinger equation and its solution for the two regions (see Fig. 4.3) are

d%y. 2mE
—L 4+ kgy, =0, ks = s x <0
d’y, 2 2 2m(Vy — E)
— =0, = x>0
dX2 7 l//2 y/ hz
Y = eikox + Be—ikox’ X <0
¥, = Ce”, x>0

The solution e”™ in region 2 is left out as it diverges and the region is an extended one. The continuity
condition at x = 0 gives
1+B=C, ikg(L - B) = —yC
Solving, we get
kg +y C= 2ikg

iky -7’ iko =7

o [Tk Ty ) —dke + ¥ _
N e

nk,
m

The reflection coefficient

nk
Reflected flux = —?0 IBJ? =—

The negative sign indicates that it is from right to left. Since ys is real, the transmitted flux = 0
and, therefore, the transmission coefficient T = 0. However, the wave function in the region x > 0
is given by

2ik,

V2= ik~ ©

/4

Therefore, the probability that the particle is found in the region x > 0 is finite. Due to the uncertainty
in energy, the total energy may even be above V.

4.21 A beam of 12 eV electrons is incident on a potential barrier of height 30 eV and width
0.05 nm. Calculate the transmission coefficient.
Solution.  The transmission coefficient T is given by

T 228 o |2 o) |
0

16E(Vy —E) 16 x12x 18

V2 = "30x30 >
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2a 2(0.05x 107m) a1 19 /2
—1/2mV—E = X 2x(9.1x107"kg)(18 x 1.6 x 107 )
o —E) (1.054 x 107 Js) ( o )

2172

384 384

= exp @172 8a76 04

4.22 For the nth state of the linear harmonic oscillator, what range of x values is allowed
classically? In its ground state, show that the probability of finding the particle outside the classical
limits is about 16 per cent.

Solution. At the classical turning points, the oscillator has only potential energy. Hence, at the
turning points,

%ma)zx2 = (n + %) ho

1/2
‘= i[(Zn +1)h}
ma

The allowed range of x values are

_[(Zn +1)hT/2 < [(Zn +1)hT/2

mw mw

1/2 1/2
/]
When the oscillator is in the ground state, the turning points are —(%j and (—)

The ground state wave function is

1/4 2
(x) = mo exp _ Mmax
Vo 7h 2

The probability for the particle to be outside, the classical limits are

oo

1/2 0o 2
maw mawX
P=2 | |y/0|2dx:2[ﬁ) | exp[— - ]dx

(rIma)'? (rimo)*?

= —iz [eVdy= % x 0.1418 = 0.1599 = 16%
T 1 T

4.23 An electron moves in a one-dimensional potential of width 8 A and depth 12 eV. Find the
number of bound states present.

Solution. If follows from Eq. (4.10) that, if the width is 2a, Then
(@) One bound state exists if 0 < Vya? < z2h%/8m.
(b) Two bound states exist if 724%/8m < Vqa? < 4x*h%/8m.
(c) Three bound states exist if 472#%/8m < Vya2 < 97%h%/8m.
(d) Four bound states exist if 97%%%8m < Vya? < 16x%#%/8m, ...
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In the given case, the width is 8A, and hence a = 4A = 4 x 1071° m. Therefore,
Voa? = (12 x 1.6 x 1072° J) (16 x 1072 m?) = 307.2 x 107 kg m*s7?

7°h®  7%(1.05x 10 % Js)?
8m 8(9.1x 10* kg)

=14.96 x 10>° kgm*s~?

16 7%h? 25 %h?

Vea? = 307.2 x 1072 kg m* s72 lies between and T

Thus, the number of bound states present is 5.

4.24 A linear harmonic oscillator is in the first excited state. (i) At what point is its probability
density maximum? (ii) What is the value of maximum probability density?

Solution. The harmonic oscillator wave function in the n = 1 state is

o V* -a?x? ma )2
viX) =] ——=| 2oxexp o= (—)
N 2 n

3
(i) Probability density P(x) = yy* = 2% x2 exp (~a?x2)
T

P(x) is maximum when dP/dx = 0, and hence

208 1
0=% @2x - 20%x%) or X=%—

Jr
201 2« 1

Jr e Jr 2718

4.25 Sketch the probability density |%]? of the linear harmonic oscillator as a function of x for
n = 10. Compare the result with that of the classical oscillator of the same total energy and discuss
the limit n — oo,

(if) Maximum value of P(x) = = 0.415x

Solution. Figure 4.4 illustrates the probability | w4o[> (n = 10: solid curve). For n = 0, the
probability is maximum at x = 0. As the quantum number increases, the maximum probability moves
towards the extreme positions. This can be seen from the figure. For a classical oscillator, the
probability of finding the oscillator at a given point is inversely proportional to it s velocity at that

point. The total energy
_ 2
E = lmv2 + lkx2 or vs= ,fu
2 2 m
Therefore, the classical probability
m
P, /—
¢ 2E — kx?

This is minimum at x = 0 and maximum at the extreme positions. Figure 4.4 also shows the classical
probability distribution (dotted line) for the same energy. Though the two distributions become more
and more similar for high quantum numbers, the rapid oscillations of | y4,|? is still a discrepancy.



One-Dimensional Systems e 101

Fig. 4.4 The probability density |y|? for the state n = 10 (solid curve) and for a classical oscillator of the same
total energy (broken curve).

4.26 Calculate the energy levels and wave functions of a particle of mass m moving in the one-
dimensional potential well defined by

oo forx<0

V(x) =
%ma)zx2 forx >0

Solution.  The harmonic oscillator wave function is given by Eq. (4.14). As Hy(x), H3(x), H5(X)...
are zero at X = 0, w(0) = 0 for odd quantum numbers. However, for n = 0, 2, 4, ..., w(0) # 0, but
finite. The given potential is the same as the simple harmonic oscillator for x > 0 and V(x) = < for
x < 0. Hence, w(0) has to be zero. Therefore, the even quantum number solutions are not physically
acceptable. Consequently, the energy eigenvalues and eigenfunctions are the same as the simple
harmonic oscillators with n =1, 3, 5, ...

4.27 The strongest IR absorption band of 2C*%0 molecule occurs at 6.43 x 10 Hz. If the reduced
mass of 1?C%0 is 1.385 x 10726 kg, calculate (i) the approximate zero point energy, and (ii) the force
constant of the CO bond.

Solution.  Zero point energy & = (1/2)hvg, and hence
& = % (6.626 x 10>* Js) (6.43 x 10 s 1)

= 2130 x 10% ] = 0.133 eV
The force constant k = 472144, and therefore,

k=47 x (6.43 x 10" s71)2 (1.1385 x 1072 kg)
= 1860 Nm
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4.28 A particle of mass m confined to move in a potential V(x) = 0 for 0 < x < a and V(X) = «
otherwise. The wave function of the particle at time t = 0 is given by

2
(X, 0)_A5|n5LcosLX
a a

(i) Normalize w(x, 0), (ii) Find w(x, t), (iii) Is w(x, t) a stationary state?
Solution.  Given

w (X, O)—Asms—cosh—x=é(sin7”—x+sin3ﬂ—x)
a a a a

(i) The normalization condition gives
2

2 a
A—j(5|n—+5| 3”)dx-l
4 0 a

2 a
. . 7 . X
A—j (sm2 zx + sin® 37x +2sin"X sin 37 )dx =1
47 a a a

a
A’ (a a 2
—_ = — | = A:_
7] (2 + 2) 1 or \/g
Normalized (X, 0) is
w(x 0) = sin 7”—X+ sin 3z
\/5 a a

For a particle in an infinite square well, the eigenvalues and eigenfunctions are

2 9.2 2 1/2
g, =12 ¢n(x):[_) sin o5 n=123, ..
2ma? a a

Hence,
17X 37X

l//(X, O) \/— (¢7 +¢3) \/5 (S”]T-FSIH T)

(if) The time dependence of a state is given by
w(x t) = w(x, 0) e (-iEt/A)
Hence, w(x, t) in this case is
vixt) = %[@ exp (—iE;t/h) + ¢; exp (—iE;st/7A)]
(iif) It is not a stationary state since w(x, t) is a superposition state.
4.29 Consider a particle of mass m in the one-dimensional short range potential
V(x) = -Vo(x), Vo >0

where ¢ (x) is the Dirac delta function. Find the energy of the system.
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Solution. The Schrédinger equation for such a potential is

n d*y(x)
I gl Voo () y(x) = Ey(x)
d’y  2mEy  2mV,
+ =— O(x
dx? n? n? g
Since the potential is attractive, when E < 0, the equation to be solved is
>y, 2mv, , 2ml|E|
— —ky =—— (X)) v, ke =
dx? n? Ky h?
The solution everywhere except at x = 0 must satisfy the equation
d’y
—— —kpy=0
dx? v
and for the solution to vanish at x — Foo, we must have
—kx
e, x>0 .
w(x) = (i)
{ekx, x>0

The normalization factor is assumed to be unity. Integrating the original equation from -4 to +4, 4
being an arbitrarily small positive number, we get

A y) A
dy 2 _ . 2mV,
(—dx )4 k Lz/f dx = 2 7]4 S(x) w(x)dx

The integral on the RHS becomes —(2mVy/h,) w(0) (refer the Appendix). Hence, in the limit
A — 0, the above equation becomes

dy/) [dy/) 2mV,
- |3 == w(0)
[ dx x=0+ dx x=0— hz

Substituting the values of the LHS from Eq. (i), we get
2mV,

—ky(0) — ky (0) = - 7 w(0)
= MY 2m |E| _ m2Vg
h? n? nt
mV?2 mV2 e
|E|]=—> or E=-—2
2n* 2n*
4.30 Consider the one-dimensional problem of a particle of mass V() Vo

m in a potential V = o for x < 0; V=0for0<x <a,and V=V,
for x > a (see Fig. 4.5). Obtain the wave functions and show that

the bound state energies (E < V;) are given by 0 T >
N2mE E Fig. 45 Potential defined in
tan a=-—

7 Vo _E Problem 4.30.
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Solution. The Schrédinger equation for the different regions are

>y, , 2mE

—— + k°y =0, ke = , 0<x<a

dx? v n?

d’y ., 2_2m

) ¥ L= Vo )

The solution of these equations are

w = A sin kx + B cos kx, 0<x<a
w=Ce "4+ De  x>a

where A, B, C and D are constants. Applying the boundary conditions w =0atx=0and ¥ — 0
as X — oo, We get
w = A sin kx, 0<x<a

y= Ce™M¥ x>0
The requirement that y and dy/dx are continuous at X = a gives
Asin ka = Ce™®
Ak cos ka = Cke?

Dividing one by the other, we obtain

k
tanka = _k_l

o [ Y2mER)_ (B V®
n T |V,-E

4.31 Consider a stream of particles of mass m, each moving in the positive x-direction with kinetic
energy E towards the potential barrier. Then,

V(x) =0 forx<0

V(x):% for x>0

Find the fraction of the particles reflected at x = 0.
Solution. The Schrédinger equations for the different regions are

d? 2mE

_dXVZ’+ Ky =0, k= R <0 (i)
d’y 2m(3E
dxz_h_z(T_E)WZO’ x>0

2 2
d—"’+[;) w=0 x>0 (ii)
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The solution of equation (i) is
y=e®+re™  x<o0
where r is the amplitude of the reflected wave since e
x-direction. The solution of equation (ii) is
v=te
where t is the amplitude of the transmitted wave. It is also oscillatory since the height of the barrier
is less than the kinetic energy of the particle. As the wave function is continuous at x = 0,

l+r=t

represents a wave travelling in the negative

|kx/2’ x>0

Since the derivative dy/dx is continuous at x = 0,

t-n=y

Solving the two equations, r = 1/3 and hence one-ninth of the particle is reflected at x = 0.

4.32 An electron of mass m is contained in a cube of side a, which is fairly large. If it is in an
electromagnetic field characterized by the vector potential A = Byxy, § being the unit vector along
the y-axis, determine the energy levels and eigenfunctions.

Solution. The Hamiltonian operator of the electron having charge —e is

2
_ 102 Byex 2
H_zm[px+[py+ c j+pz:|

where p,, py, p; are operators. We can easily prove the following commutation relations:

[Hl py] = [H, pZ] = 07 [Hl pX] # 0
Hence, py and p, are constants. The Schrddinger equation is

1 [—h2i+ Bie?x? . 2Byepyx

+p§+p§]w=Ew

2m dx? c? C
_#2 g2 B2e2x2  B,ep,x 2

dl//+ OeX+ Opy +& w= E—ipzzl//
2m gx?2 2mc2 mc 2m 2m

we now introduce a new variable x; defined by

x—x+pr
=X
Bye
2 .2
5, 2CpX cp
X2 = x% + 2’;
Boe Bje

Multiplying by BZe?/(2mc?), we get

2,.2.,2 2,.2.2 2
Bye’x;  Bjex N Boepy x N Py

2mc? 2mc? mc 2m



106 e Quantum Mechanics: 500 Problems with Solutions

In terms of the new variable, the Schrodinger equation takes the form
2 2 2,2,,2
B,
hd'//+loexll//_ _izl//
2m dx? 2 mc?

om P2
The form of this equation is similar to that of the Schrodinger equation for a simple harmonic
oscillator. Hence, the energy eigenvalues are

1, 1 _
E—mpz—(n'f‘g)fw), n=0,1,2, ..

1 1
E:[n+§)ha)+ﬁpf, n=o0,1,2 ..
where
,_ Bge? Bye

or w=-—

maw
mcz mc

The eigenfunctions are given by

NI 1/2
V/n(Xl)=![ ) } Ha(Vax,) exp (—ax}/2)

V4 2"n1

where
_ Mo  Be

= T e

4.33 An electron is confined in the ground state of a one-dimensional harmonic oscillator such that
Ax = 107% m. Assuming that (T) = (V), find the energy in electron volts required to excite it to its
first excited state.
Solution.  Given (T) = (V). Hence,
Ep = (T) + (V) = 2(V) = ma*(x)
ho mw®(x*) or = o >
2 2m (x?)

For harmonic oscillator, (x) = 0 and, therefore,

AX= \/((x —(x)? = \/(xz) =10¥m
The energy required to excite the electron to its first excited state is
hZ

AE = ha):—z
2m({x“)

-34 2
o WOSXIOTIS) g 05769 10710y

2(9.1x 1071 kg)10° m?

.057 10719
_ 6.05 69290 J 3796V
1.6 x 1071° J/eVv
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4.34 An electron having energy E = 1 eV is incident upon a rectangular barrier of potential energy
Vo = 2 eV. How wide must the barrier be so that the transmission probability is 1073?

Solution. The transmission probability

T glf’E(\\;—g_E)e*m, ;%sz(vo E)
0
— —20a T
T =4e or Inz=—2aa
-8.294 = —20m
\/2(9 1x 10% kg) 1 eV(1.6 x 1072 J/eV)
1.05x 107 Js
= 5.1393 x 10° m™
a= 8.294 s— = 0.8069 x10°m
2x5.1395x10°m
=8.1x 10 cm

4.35 A particle of mass m confined to move in a potential V(x) = 0 for 0 < x < a and V(X) = «
otherwise. The wave function of the particle at time t = 0 is

X 3zx
2 2 >z
w(x 0) = ( sin a + sin a )

(i) Normalize w(x, 0); (ii) find (X, t).
Solution.  For a particle, in the potential given, the energy eigenvalues and eigenfunctions are given
by

2252 5 \12
E, = nZzaZ ) @, (X) = [E) sin _I’IZ'X n=123, ..
2 2
0 a a
2, @ 5a
1= A|4s+ | or —-A'=1
2
A= ,|—
5a
Y(x, 0) = L[Z 2 sin 2% 4 \/Zsin M—XJ
\/g a a a
1
= —(2¢, +¢5)
75 3
(ii) P(x, t) = % (e T 4 g e ES)



108 e Quantum Mechanics: 500 Problems with Solutions

4.36 The force constant of HCI molecule is 480 Nm™ and its reduced mass is 1.63 x 10727 kg. At
300 K, what is the probability that the molecule is in its first excited vibrational state?

Solution. The vibrational energy of the molecule is given by

1
E, = [v+§jha), v=01, 2, ..

480 Nm™

—————— =5427x 10* st
1.63x107“" kg

The number of molecules in a state is proportional to
ex _Vho exp (—vx)

where x = Za/kT, where k is the Boltzmann constant. Now,

_ ho _ (1.054 x107** J5)(5.427 x 10" s°1)
kT (1.38 x 1072 J/k) 300 K
The probability that the molecule is in the first excited state is

=13.8

—X —X

er e
e l+et+e 4.
A"

P, =

efX
Twenr t )
=eg*=¢138=102x10°

4.37 For a one-dimensional harmonic oscillator, using creation and annihilation operators, show
that

(AX) (Ap) = (n + %)h
Solution. From Egs. (4.18) and (4.19),

h t _ Mo 4
e @8 Poign, @ -3

where a and a' are annihilation and creation operators satisfying the conditions

alny=+/nin-1 and a’ny=vn+1|n+1)
We have the relations
(AX)? = (x%) — (x)?

0 = (IxInY = y|="— Knlaln) + (n]a’ )]

2mao

h
= 5= Wnnin=1) + yn+1¢nin+1)] = 0
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A =X In) =

S (nl(a + a) (@ + @) I

- Zrza) [(nlaaln) + (njaa’|n) +(n|a'a|n) + (nja'a"|n)]

= %[0+\/n+1\/n+1+\/ﬁ\/ﬁ+ 0]

h
= o (2n+1)
Similarly,

Mlplny =0, <n|p2|n>:w(2n+1)
(Ap)? = (p» = 22 (2n+1)

2
(a2 apy = ED). mh”‘j””’ _ [n +%) 2

(A%) (Ap) = (n + %) h

4.38 A harmonic oscillator moves in a potential V(x) = (1/2)kx> + cx, where ¢ is a constant. Find

the energy eigenvalues.
Solution. The Hamiltonian of the system is given by

_oRr?d?
H= _ﬁdT-'—EkX + CX
_ W T 2_02
T o2mogx2 2 k 2k
Defining a new variable x; by
X1 = X+ %
we get
2 2 2
__hd 1 o2 — <
2m dx? 2 2k
The Schrodinger equation is
n d*y 1

2
2m a2 Ay - v =By

which can be modified as

n? d? c?
2mdy2/+ kiy = [E+—]y/
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The form of this equation is the same as the Schrédinger equation for a simple Harmonic oscillator.
The energy eigenvalues are

, 1

n= (n + Ej ho

1 c?
En—[n'l'gjha)—ﬁ

4.39 An electron confined to the potential well V(x) = (1/2) kx?, where k is a constant, is subjected
to an electric field £ along the x-axis. Find the shift of the energy levels of the system.

Solution. The potential energy due to the electric field is = —u- €= —(-ex) = e € x.

n? d?
Total Hamiltonian H = — —— — + “kx’+eex
2m (x 2
- W d? +lk x+E 2— e’
2m gx? 2 k 2k

Proceeding as in Problem 4.38, the energy eigenvalues are

e2g?

1
En:(n+§)ha)— T

Hence, the energy shift due to the electric field is e?£/2k.

4.40 A particle of mass m is confined to a one-dimensional infinite square well of side 0 < x < a.
At t = 0, the wave function of the system is

¥(x, 0) = ¢, sin %X+ C, sin %,

where ¢, and ¢, are the normalization constants for the respective states.

(i) What is the wave function at time t?
(if) What is the average energy of the system at time t?

Solution. In an infinite square well 0 < x < a, the energy eigenvalues and eigenfunctions are
2232
n“zh 2 . nzx
En= e, Wa= =i, n=1,23, ..
2ma a a
(i) The wave function at time t is

W(x, t) = ¥(x 0)exp (—ilsnt)

¢, sin X exp [ 5L 4 ¢, sin 22X exp | E2t
1SN &P % 2 a P

. TTX —iz?nt . 27X —i27°nt
Clsm?exp > |+ ¢x8in a exp >

2ma ma
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(if) The average energy of the system at t is

g

inLw —in| -7 h ¢, sin X exp izt +ih| - 27 ¢, sin 2™ exp Sin it
ot © 2ma? a 2ma’ ma? ) °  a ma’

Writing ¥ = c1¢; + Co¢, We Qet
(E) ={(C101 + C28) | (E1C16 + ECoh))
= By (Cilcio) + Ex{Cor| Co0h0)
=E +E

(E)= <‘1‘(X t)|in

4.41 A particle in a box is in a superposition state and is described by the wave function

—iEt —-iEt) . 2
Y(x, t):%[exp[ Ihl )00572[—:+exp [szsm ziax} _a<x<a

where E; and E, are the energy eigenvalues of the first two states. Evaluate the expectation value
of x.

Solution.

(x) = ]c Y*(x, t) X¥(x, t) dx

—oco

Substituting the values of ¥ and ‘¥'*, we get

1 27X
(x)——jxcos dx+—jx5|n a0

1 . . a X . 27X
+ E{exp [i(E, — E,))t/R)] + exp [i(E, — E)t/A)]} :[a X c0s o sin == dx
The integrands in the first two terms are odd and hence will not contribute.

a X . 27X a x 37X
| xcos ==sin =—dx= | = 5|n—+5|n— dx
a 2 2a

Integrating each term by parts, we get

TXSi”—sﬂx dx = - 22 (x cos 7X i +2_a 2a g, 3 ’
i 2a 3 2a | . 3z \37 2a )

43° 8a’
=0+—(C-1-D)=-—
972 1-h= 7
Similarly,
T X sin S dx = E
b 2a 7
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Substituting the values of the integral, we obtain

a X . 27X 1
| xcos == sin S—dx ==
b 2a

2+ 2 2

74 T

_8a® 8a®)_ 32a°
2a 2 B

O
Replacing the exponential by the cosine function, we get

(E, — E))t( 32a’
h 972

= 3COS
®= 2

64a (E, — Ept
= cos
9r? h
4.42 For a particle trapped in the potential well, V(x) = 0 for —a/2 < x < a/2 and V(X) = < otherwise,
the ground state energy and eigenfunction are

E, = Sl = \/Z cos 2%
LT oma? Vi= a a
Evaluate (x), (x2), {p), (p? and the uncertainty product.

Solution.

2 &2 X
== x cos? 2 dx = 0
a_, a
since the integrand is an odd function.

al2 al2 2
2 2
(== [ x*cos? X ax = < X—(l + cosix) dx
a a 2 a
-al2 -al2
al2 al2
1 2
_ L | dx+= | x2 cos 2% dx
a -al2 a -al2 a
When integrated by parts, the integrated quantity in the second term vanishes.
2 al2
a 2 a . 27X
= = —-=-— [ xsin=—dx
12 a2z _, a
a® 2 a a 2ox P2 ¥ onx
TR R + | cos == dx
acrmer a2 —an
The integral in the third term vanishes, and hence
2 2
a
00 = -
12 27[2

al2
(py= 2 | cos”—x(—ihi) cos ZX dx
a_;, a dx a

2in 2 .
= 2h | cos X sin X dx = 0
a a

T
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since the integrand is an odd function. Now,
al2
(p? = 2 | cos”—x(—ihi)(—ihi) cos X dx
a_:, a dx dx a

Using the Schrddinger equation, we get

hZ d2
T ol w1(X) = By (x)

al2
(p?) = 2mE; [ yiy, dx = 2mE,
-al2
- om 7°h? _ 7°h?
2ma®  a®

2

() = () = (0 = = (2 ~6)
232

(4pY = (%)~ (2 = T

a

The uncertainty product

I/

a’(7* —6) « 7°h? B \/7[2 -6
1272 a2\ 12

4.43 In the simple harmonic oscillator problem, the creation (a") and annihilation (a) operators are

defined as
1/2 1/2 1/2 1/2
t- | M@ x—i—1 p a:M x+i—1 P
&=\ 2n omhw ) 2n 2mhw

Show that (i) [a, a'] = 1; (ii) [a, H] = 7ea, where H is the Hamiltonian operator of the oscillator;
and (iii) (n|a'a|n) > 0, where |n) are the energy eigenkets of the oscillator.

(Ax)(Ap) = \/

Solution.
ma 1/2 1 1/2 ma 1/2 1
- ‘t - o - - e _ - -
() aa {( 2h) X+I(2mhw) p} {( 2h) X I(thw) p}
U S S R B
= o0 Xt omie P T2 (P PY)
1 (Pt 1, i
= hg)(ﬁ*’gma)x th)
H 1
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where H is the Hamiltonian operator of the simple harmonic oscillator. Simlarly,

H 1
t L ..
aa hw 2 (i)
[a,a*]:aa*—a*a:—H SN S} (iii)

hw 2 ho 2
(if) From Egs. (i) and (ii),

aa' + a'a = 2H
ho
_ho vyt -
H= T(aa + a'a) (iv)

[a, H] = aH - Ha
h h
= Ta)(aaa* + aa'a) — Tw(aa*a + a'aa)
h h
= Ta)(aza* —a'a?) = Tw{a [a, a'] + [a a'la}

Substituting the value of [a, a'] = 1, we get

[a, H] = hwa (v)
Similarly,
[a', H] = —hwa! (vi)
(iii) (nla'alny = (n|a’|m) (m|aln)
=(mlaln) (m]a|n)
=Kmlaln)*>0 (vii)

4.44 Particles of mass m and charge e approach a square barrier defined by V(x) = V, for
0 < x < aand V(x) = 0 otherwise. The wave function in the region 0 < x < a is

J2m (v, - E)

e
(i) Explain why the exponentially increasing function Be™ is retained in the wave function.
(if) Show that the current density in this region is (2ace/m) [l,, (BC*)].

Solution.

(i) Itis true that ™ — o as x — eo. However, it is also an acceptable solution since the barrier
is of finite extent.
(if) The probability current density

. in dy> dy
Jx_ﬂ(w dx 7 dx)

= % o [(Be™ + Ce™) (B*e™ — C*e™ ™) — (B*e™ + C*e™*)(Be™ - Ce™™)]

v = Be®™ + Ce™®, o= E <V,

= ';l—;‘ [-BC* + CB* + B*C — C*B]

= 1% 1gic — BoH]
m
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Let B = (B, + iB;)) and C = (C, + iC;). Then,
B*C - BC* = (B, — iB))(C; + iC) — (B, + iBy)(C, — iC;)

=2i (BrCi - BiCr)
Hence,
. iho . 2ho
Ix= m 2i(B,C; — BC,) = m (BiC, — B,C;)
2ha
= m (I, (BC*))
since

(B, +1iB;)(C, +iC;j) =(B,C, + BC;) +i(BC, — B,C)

2hoe
m

Current density J = (I, (BC*)

4.45 Consider particles of mass m and charge e approaching from left a square barrier defined by
V(x) =V for 0 < x < aand V(x) = 0 otherwise. The energy of the particle E < V. If the wave function

w(x) = e + Be X <0 K2 = Z;;E
Show that the current density
ehk
== (-1BF)

Solution. The probability current density

. ih dy* 17

T (W ax 7 dx)
For the region x < 0, the Schrddinger equation is

w d*y d’y _ .,
Tmpe Y e T Y

Here, the parameter k is real.

Wd(;/;* ik (€% + By (e 4 el

ik (—1+ | B|? + B*e?** — Be=2kx)

'//*(:j_l/x/ = ik (e + Bre™ (e — Be )

ik (1—|B|? — Be 2 4 Be2lk¢)

Hence,
. in . 2 _hk 2
=5 K(=2+2|Bf") =~ (1~ |BI)

Current density Jy = %(1 —|BP?)
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4.46 Define the creation (a") and annihilation (a) operators for a harmonic oscillator and show that
(i) Haln) = (E, - hw)a|n) and Ha'|n = (E, + hw)a'|n).
(i) a|n) = VnIn—-1) and alln) = Vyn+1|n+1).

Solution.
(i) Creation and annihilation operators are defined in Problem 4.43, from which we have

[a, H] = hwa, [a', H] = -hoa'
From the first relation,

Ha| n) = aH|n) — hwa| n)
= (En - ho) aln) 0]
Similarly, from the second relation,
H afIn) = (E, + ho) a'ln) (ii)
Since E, = [n + (1/2] hw, from Eq. (i),
Haln) = [n — (1/2] hwa] n) (iii)

For the (n — 1) state, we have

1
Hin-1)= En1|n—1)=(n—1+—)ha)|n—1)

2
1 .
= (n—g) ho|n —1) (iv)
Relations (iii) and (iv) are possible only if ajn) is a multiple of |n — 1), i.e.,
aln)=aln-1) (V)

(nja"=(n - 1] o*
Hence,
(nla'any = (n - 1|af®In - 1)

Substituting the value of a'a, we get

|| = ni—— n)=(n n+——£n =n
ho 2 2 2
a=+n
Consequently,
aln) = Jnin-1) (vi)
Similarly,
a'lny = Yn+1|n+1) (vii)

4.47 In the harmonic oscillator problem, the creation (a’) and annihilation (a) operators in
dimensionless units (# = @ = m = 1) are defined by
at=X—'P

7

X +ip

TR
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An unnormalized energy eigenfunction is y, = (2x2 — 1) exp (-x%/2). What
eigenfunctions corresponding to the adjacent states.

Solution.  We have
aln) = Jnin-1), a'ln) = Vn+1|n+1)
aalny = avn+1n+1) = (n + 1)|n)

Operators for a' and a are
RO (P A O (W
- \/5 dx )’ - \/5 dx
In the given case, substituting the values of a, a" and | n),

1 d d
t = x4+ = - 2 _ —x2
aa'l y;, 5 (x dx)(x dx) (2x* — Dexp (-x°/2)

E(x+&)(4x 6x)exp (—x/2)

%(leZ —6)exp (—x?/2) = 3 (2x* — 1) exp (—x*/2)

@+ DIy,

is its state? Find the

Hence, the quantum number corresponding to this state is 2. The adjacent states are the n = 1 and

n = 3 states. Therefore,

1
W= |1>=—23|2>
= ii(x + i) (2x% = 1) exp (—x*/2)
V2 2 dx
1

> [2x3 — X + 4x + (2x% —1)(=x)] exp (-x%/2)

2x exp (—x2/2)

Substituting the values of a and |2 ), we get

cime Lty L () e 1 e X
%_B)_ﬁalz)_\@\/ﬁ(x dX)(Zx 1) exp

1 [2x3 — x —4x — (2x2 —=1)(-x)] exp — x
J6 2

2 ., x2
Z_02x*-3 -
\/g(x X) exp >

2

2
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Except for the normalization constant, the wave functions are
X2 X2
p1=Xexp - o, 1//3=(2x3—3x)exp—7

4.48 In harmonic oscillator problem, the creation (a') and annihilation (a) operators obey the
relation
ata= 1
Cho 2
Hence prove that the energy of the ground state Ey = 1/2 i and the ground state wave function is
W = No exp (—-max?/2h).

Solution. Given

L
ho 2
The annihilation operator a annihilates a state and it is known from (Eq. 4. 21) that
an) = vnin-1) (i)
Hence,
al0y=0 or a'al0)y=0 (ii)
Substituting the value of a'a, we get
H 1 E, 1
Since|0) # 0,
E, 1 1 .
%—5—0 or EO_Eha) (iv)

Substituting the value of a in a]0) = 0, we get

1/2
L R
{( 2h) 2mha) p}
1/2
me d
{(ﬁ) X+(2mha) d_x}w) 0

Multiplying by (ma/27)2, we obtain
max 1
( 2t 2h " dx )'0>

[ma)x + hij [0y =0

[0)=0

dx
dyo _ _maxy,
dx h
dyp, _ max

Yo h
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Integrating and taking the exponential, we get
v, = Ny ex __a;xz
0= Mo &P 2h

4.49 Consider the infinite square well of width a. Let u;(x) and u,(x) be its orthonormal
eigenfunctions in the first two states. If w(x) = Auy(x) + Buy(x), where A and B are constants, show
that (i) |A|? + |BI? = 1; (ii) (E) = | A|’E; + | B|’E,, where E; and E, are the energy eigenvalues of
the n = 1 and n = 2 states, respectively.

Solution. The energy eigenfunctions and energy eigenvalues of the infinite square well are

2 . nzx °h?n? .
un(x):\/;smT, E”:W’ n=123, ... (i)
(i) The normalizaiton condition gives
<l//n|l//n>=1 (”)
((Ay, + Bu,)|(Au; + Bu,)y =1 (iii)

Since the eigenfunctions are orthonormal, Eq. (iii) becomes
[Aup | ug) + [BI* Uyl up) =1
AP +|BfP=1

(ii) (Ey = ((Aup + BU,) [Eqp | (AU + By ))
= ((Au, + Bu,)|(AEu + BE,uU,))
= |APE; + |BIE;
4.50 Electrons with energies 1 eV are incident on a barrier 5 eV high 0.4 nm wide. (i) Evaluate

the transmission probability. What would be the probability (ii) if the height is doubled, (iii) if the
width is doubled, and (iv) comment on the result.

Solution. The transmission probability T is given by

2m(V, — E)

— a2 2 _ 0

T =€ (Za, = h—z

2(9.1x 1073 kg) (4 eV) (1.6 x 107*° J/eV)
(1.054 x 10734 Js)?
o = 10.24 x 10° m™

ca = (10.24 x 10° m™)(0.4 x 10° m) = 4.096

(i) o =

_ 1 1 4
T= 2oa = JCECI 2.77 % 10
(ii) a = 15.359 x 109 m™
20m = 2(15.359 x 10° m™)(0.4 x 107° m) = 12.287
_ 1 1 6
T= g2oa = gl2287 4.6 x 10
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(iii) a = 15.359 x 10° m™*
20a = 2(10.24 x 10° m™)(0.8 x 10° m) = 16.384

1

— — -8
T—m—7.69><10

(iv) When the barrier height is doubled, the transmission probability decreases by a factor of
about 100. However, when the width of the barrier is doubled, the value decreases by a
factor of about 10*. Hence, the transmission probability is more sensitive to the width of
the barrier than the height. In the same manner we can easily show that T is more sensitive
to the width than the energy of the incident particle.

4.51 Consider two identical linear oscialltors having a spring constant k. The interaction potential
is H = Ax;X,, where x; and x, are the coordinates of the oscillators. Obtain the energy eigenvalues.

Solution. The Hamiltonian of the system is

2 2 2 2
H = _;l_maan _ ;l_maaTg + %ma)zxf + %ma)zxg + AX X,

Writing

xl:i(yl+y2), Xzzi(w_yz)

5 7
We have
2 2 2 2
H = _f_m;le _ ;l_m;Té + %ma)z(yf +y3) + g(yf )

Hence the system can be regarded as two independent harmonic oscillators having coordinates y; and
y,. The energy levels are

_ 1 , A , 1 Z_ﬁ
Enn,_(n+2)h (a) +m)+(n +2)h (a) m)

452 The energy eigenvalue and the corresponding eigenfunction for a particle of mass m in a one-
dimensional potential V(x) are

A
E =0, =
X2 + a?
Deduce the potential V().
Solution.
A
X) =
) X2+ a’
dy _ 2Ax
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dy 1 L X(=2) 2x
dx? (x*+a%)? (x*+a?)?
_ _2A[x2+ a? - 4x°] _ oA a? — 3x?
(x* + a%)® (x* + a%)®

Substituting in the Schrodinger equation, we get
7, @ -3x%) VA
2m  (x®*+a?)?  x*+a’

=0

n (3x* -a%)
m (x? + a?)>
4.53 A beam of particles having energy 2 eV is incident on a potential barrier of 0.1 nm width and
10 eV height. Show that the electron beam has a probability of 14% to tunnel through the barrier.

V(x) =

Solution. The transmission probability

16E (V, — E)e2* _E
TE (0 ) aZEM

V¢ h2
where a is the width of the barrier, V; is the height of the barrier, and E is the energy of the electron.
2(9.1x 1071 kg) (8 eV x 1.6 x 1079 J/eV)
(1.05 x 1074 Js)?
211.3 x 10" m™
o= 14536 x 10° m™

o2

ca= (14.536 x 10° m™)(0.1x 107° m) = 1.4536

16 x2eV xX8eV _y9o72
T= 5 e =
(10 eV)
The percentage probability to tunnel through the barrier is 14.

0.14

454 For the ground state of a particle of mass m moving in a potential,
V(x) =0, 0 < x <aand V(X) = e otherwise

Estimate the uncertainty product (Ax)(Ap).

Solution. The energy of the ground state

242
E- T h2
2ma
This must be equal to p%2m. Hence,
2 242 242
2m  2ma? a®

(Ap?) = (p)* - (py°
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Since the box is symmetric, {p) will be zero and, therefore,
232
(ap?) = (p2) = 0
a
For the particle in the box Ax is not larger than a.
Hence,
232

°h
’ a2 = 722
a

(Ap®)(Ax)? =

(Ap)(&x) =2

455 Let yy and w, denote, respectively, the ground state and second excited state energy
eigenfunctions of a particle moving in a harmonic oscillator potential with frequency @. At t = 0,
if the particle has the wave function

w(x) = % Wo(x) + \E V(%)

(i) Find w(x, t) for t # O, (ii) Determine the expectation value of energy as a function of time,
(iii) Determine momentum and position expectation values as functions of time.

Solution. Including the time dependence, the wave function of a system is

W, (r, t)=¥,(r,0)exp (—IET”t)

(i) In the present case,

¥ (x,1) = % ¥y (x) exp [‘ifj’t] n \E v (X) exp [%Ezt)

<‘I—’ (%, t)‘ih%“l—’(x, t)>

ih J{% wo(x, 1) + \Evfz(x’ t)]{-%%(& t) - %\EWZ(X’ t)] dx

(i) E)

= %+§E2 —%ha)+§ha)
= 2hw

The cross-terms are zero since (yp(x)| w»(x)) = 0.
(iif) The momentum expectation value is

P = <‘P (x 1)

.. d
—|ha“}'(x, t)>

The functions yp(x) and y»(x) are even functions of x. When differentiated with respect to x, the
resulting function will be odd. Consequently, the integrand will be odd. This makes the integral to
vanish. Hence, (p) = 0.
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The position expectation value is
) = (¥ (x, )Ix] ¥ (x, 1))

Again, yp(x) and s (x) are even. This makes the integrand of the above integral odd, leading to zero.
Hence, {x) = 0.

456 For a harmonic oscillator, the Hamiltonian in dimensionless units (m = 7% = w = 1) is

1
H=aa - 5
where the annihilation (a) and creation (a) operators are defined by
X +ip +_ X—ip
BRI

The energy eigenfunction of a state is
v, = (2x* = 3x) exp —

What is its state? Find the eigenfunctions corresponding to the adjacent states.
Solution. We have the relations

alny = Jnin-1), allny= Jn+1|n+1
2
o &) ool

_1 d 4 2 i
= 2(X+dxj(4x 12x +3)exp[ > ]

2

—x 2
(8x° — 12x) exp [T] = 4(2x° - 3) exp [T]

= (3+1In)
We have aa' = H + % and Hln):n+%. Then,
1 1 1
1oy — = _ 1.2
aa|n)_(H+2)|n) (n+2+2)|n)
= (n+1In)

Hence, the involved state is n = 3. The adjacent states are n = 2 and n = 4. consequently,
1 11 d —x2
= —al3)=—— [x + —) (2x3 - 3x)exp | —
SN R NIV A R 2

2
= LG (6x2 — 3)exp (_ZLZ] = \/§(2x2 —1)exp [%]
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4.57 A beam of particles, each with energy E approaches a step potential of V,,.
(i) Show that the fraction of the beam reflected and transmitted are independent of the mass
of the particle.
(if) If E =40 MeV and V, = 30 MeV, what fraction of the beam is reflected and transmitted?

Solution. Details of particles approaching a potential step are discussed in Problem 4.19. We have
the relations:

koh .
Incident flux of particles = % (i)
- koh 2 .-
Reflected flux of particles = WlAl (i)
- - koh 2 -
Transmitted flux of particles = o [Bl (iii)
where
2mE 2m(E - V,) .
ks = 2 k? = h—zo (iv)
kg —k 2k
Tkt K Tk +k V)
kot | AP /m

|A]?

i) Fracti fl
(i) Fraction reflected kohm

(ko — k) k& + k*— 2Kk,
(ko + K)? k& + Kk + 2kk,

(2mE/R?) + [2m (E — V,)/n%] - 2(2min?)JE(E - V)
(2mE/R?) + [2m (E — V,)/1?] + 2(2m/iH?)JE(E — V)

_ E +(E-Vy) — 2{E(E - V) vi)
E+ (E - V) + 2{E(E — V)
That is, the fraction reflected is independent of mass.

ki|BJ? /m —LIBIZ
koh/m kg

Fraction transmitted =

ko Ak Akky
Ko (ko + k)2 (Ko + K)?

42min?)J(E - V) E
@m/A?) [E + (E = Vy) + 2{E(E - V,)]

_ 4WE-Vp)E (vii)
" E+(E - V) + 2E(E - V)]

i.e., the fraction transmitted is independent of mass.
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40 + 10 — 2,40 x 10
40 + 10 + 2,/40 x 10

(if) Fraction reflected =

_ 10mev _
= Omev 0.111
. . _ 4 %20 80
Fraction transmitted = 2051054090
= 0.889

4.58 A simple pendulum of length | swings in a vertical plane under the influence of gravity. In
the small angle approximation, find the energy levels of the system.
Solution. Taking the mean position of the oscillator as the zero of potential energy, the potential
energy in the displaced position (Fig. 4.6) is
V=mg(l -1cos 6§ =mgl(1-cos 6
When @ is small,
2

cosa=1—9—, siné’z@:5
2 I
Substituting the value of cos @ and replacing 8 = x/I, we get
1 1 X
V== 2 —— -
> mglé > mg I l
1 2 9 |9 Fig. 4.6 Simple pendulum in
= 5 Maxs, D=7 the displaced position.
In plane polar coordinates,
v, = |% =16
. Sl oL, 1o o% 1
Kinetic energy = Eml & = Eml 7 me
2m

The Hamiltonian
2
_ Py 1 2.2
H= om + > mw*x

which is the same as the one-dimensional harmonic oscillator Hamiltonian. The energy eigenvalues
are

1
En=(n+§)ha), o=]2,  n=012 .



CHAPTER

Three-Dimensional Energy

Eigenvalue Problems

In this chapter, we apply the basic ideas developed earlier to some of the important three-dimensional
potentials.

5.1 Particle Moving in a Spherically Symmetric Potential

In a spherically symmetric potential V(r), the Schrédinger equation is

2m
V2y(r) +h—2(E -V)y(r)=0 (5.1)
Expressing Eq. (5.1) in the spherical polar coordinates and writing
w(r, 6, ¢) = R(r) ©(6) ©(9) (5.2)
the Schrédinger equation can be divided into three equations:
2
d ‘f =-m’® (5.3)
do
1 d (. ,do m?
sineﬁ(sm eﬁj+[/i—m]®_0 (5.4)
1 d /[ ,dR) 2m Ao
r_ZW(r W)Jrh—z(E—V)R—r—zR—O (5.5)

where m and A are the constants to be determined. The normalized solution of the first two equations
are

D(g) = iﬂe‘”“”, m=0, 1, +2, ... (5.6)

N

126
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m _ (2|+1)(|_|m|)! m —
@,(9)_5\/ (ESETE P™ (cos 6), 1=0,1,2 .. (5.7)

where P™ (cos 6) are the associated Legendre polynomials and the constant A in Eq. (5.4) =
I(1 + 1). The spherical harmonics Y|, (8, ¢) are the product of these two functions. Hence,

_ (2|+1)(|_|m|)! m img
Yim (6, ¢) = s\/ 27 +m]1 R"(cos 6) e (5.8)
where

e= (=)™ form > 0; e=1 form<0

5.2 System of Two Interacting Particles

The wave equation of a system of two interacting particles can be reduced into two one particle
equations: one representing the translational motion of the centre of mass and the other the
representing relative motion of the two particles. In the coordinate system in which the centre of mass
is at rest, the second equation is given by

m,m,

72
o V() +V(y(r) = Ep(r), 4= o m, (5.9)

5.3 Rigid Rotator

For free rotation, V(r) = 0. As the rotator is rigid, the wave function will depend only on the angles
@ and ¢. The rigid rotator wave functions are the spherical harmonics Y, (6, ¢). The energy
eigenvalues are

2
E,:%, 1=0,1,2, ... (5.10)

5.4 Hydrogen Atom

The potential energy of a hydrogen-like atom is given by

ze?
4reyr

V(r)=-

where Z is the atomic number of the nucleus. The Schrddinger equation to be solved is

_ﬁ VZ_ ze*
2u 4rreyr

] w(r) = Ey(r) (5.11)

In spherical polar coordinates, the angular part of the wave function are the spherical harmonics
Yim (6, 9); the radial equation to be solved is

1 d(,dR) 2u I +)n*  Ze?
_ R =
7 dr (r ar ) + 2 [E 22 + dregr 0 (5.12)
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The energy eigenvalues are

uz%* 1
E.=——+——, n=123, ... 5.13
" 327%2n? n? 5-13)

The normalized radial wave functions are

3 1/2
2Z ) (n-1-1! “pl2 1y 2141

Ry(r)=— — | ——————¢ e ”pL; 5.14
() {[nao) 2n[(n+|)!]3} o) (5.14)
o= —8:2E 12012 .., (n-1) (5.15)

L2*1(p) are the associated Laguerre polynomials. The wave function is given by
Wi (1 6, 9) = Ry (r) Y, (6, 9) (5.16)

n=123,..; 1=012..,(n=-1); m=0, %1, +2, ..., #l

The explict form of the ground state wave function is

3/2
1 (z ¥
Vioo = 7 (%) O (5.17)

The radial probability density, P, (r) is the probability of finding the electron of the hydrogen atom
at a distance r from the nucleus. Thus,

P (r) = r?|Ry (5.18)
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PROBLEMS

5.1 A particle of mass m moves in a three-dimensional box of sides a, b, c. If the potential is zero
inside and infinity outside the box, find the energy eigenvalues and eigenfunctions.

Solution.  As the potential is infinity, the wave function y outside the box must be zero. Inside the
box, the Schrodinger equation is given by

P’y o’y d*w 2mE
+ + + X, ¥,2)=0
ox*  oy*  0z2 R vixy.z)
The equation can be separated into three equations by writing
v Y, 2) = X() YY) Z()
Substituting this value of w and simplifying, we get

ddxgx) 2N E X(x) =0
d*Y(y) , 2m
YRR TEN(Y) =0
42z

d§2) h—EZ(z) =0

where E = E, + E, + E,. Use of the boundary condition X(x) = 0 at x = 0 and at x = a and the
normalization condition give
2242
_ nXﬂ- h —
E, = el n=123 ..

2 .
X(x) = 4|= sin M7
a a

where n, = 0 is left out, which makes X(x) zero everywhere. Similar relations result for the other two
equations. Combining the three, we get

2
i L L S = 1,23
o Tttt e M =123

a b c

(X Y, 2) = | =— 8 gin ™™ gin Y gy N2
vy, abc a b c

5.2 In Problem 5.1, if the box is a cubical one of side a, derive the expression for energy
eigenvalues and eigenfunctions. What is the zero point energy of the system? What is the degeneracy
of the first and second excited states?

Solution. The energy eigenvalues and eigenfunctions are

7[2 hZ

2ma?

2 2 2
nenyn, = (ny + ny + n;)
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8 . nax . Nyax . n,zX
y/nxnynz(x, y,2) = ?sm sin sin

a a a
242
] /]
Zero point energy = Eqqq = 3z >
2ma

The three independent states having quantum numbers (1,1,2), (1,2,1), (2,1,1) for (ny, ny, n,) have the
energy

572 h?
2ma?

E12 = Eip1 = BEopy =
which is the first excited state and is three-fold degenerate. The energy of the second excited state
is

972 h?

2ma?

B2 = BEopp = Epp1 =

It is also three-fold degenerate.
53 A rigid rotator is constrained to rotate about a fixed axis. Find out its normalized
eigenfunctions and eigenvalues.

Solution.  As the axis of rotation is always along a fixed direction, the rotator moves in a particular
plane. If this plane is taken as the x-y plane, @is always 90°, and the wave function  is a function
of ¢ only. The Schrédinger equation now reduces to

W1 d*w(g) | _
_ﬂ[r_z 40° = Ey(9)

d’y(9) _ 2ur’Ey _ 2Ey

dg? W n?
d? 2
L

The solution of this equation is
U@ = A exp (img), m=0, £1, £2, ...
The energy eigenvalues are given by
h2m2

E. =
m 2|l

m=0, 1, 2, ...

The normalized eigenfunctions are

U9 = ﬁ exp (img), m=0, +1, £2, ...

5.4 Calculate the energy difference between the stationary states | = 1 and | = 2 of the rigid
molecule H,. Use the Bohr frequency rule to estimate the frequency of radiation involved during
transition between these two states. Suggest a method for determining the bond length of hydrogen
molecule.
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Solution. The energy of a rigid rotator is given by

Ll +1)n°

E =
| 2] )

According to Bohr’s frequency rule,

,_E-B _2r® _ h
~ h lh 242

Moment of inertia | = ur? = r
H m+ m 2

Here, m is the mass of hydrogen atom and r is the bond length of hydrogen molecule. Substituting

this value of I, we get
h ) [ h )1/2
V= or =
z°mr? z*mv

5.5 Solve the time independent Schriédinger equation for a three-dimensional harmonic oscillator
whose potential energy is

V= 2 (ke + by’ + k)

Solution. The theory we developed for a linear harmonic oscillator can easily be extended to the
case of three-dimensional oscillator. The Schrédinger equation for the system is

—h?
5 VAW (3, Y,2) + Vir(x,y,2) = Ep(x,y,2)
This equation can be separated into three equations by writing the wave function

wx, Y, 7) = X(x) Y(y) Z(2)
The Schrddinger equation now separates into three equations of the form

2
d’X(x) . 2m [Ex ~ %mwixzj X(x) =0

dx? 7

d’y(x) 2m 1
o) [Ey—gmwiyij(y) =0

dy?  7n?
2
ddzzgz) ;—T[EZ - %ma)zzzz) Z(2) =0

where E, + E, + E, = E, the total energy of the system and

k /k ,k
a)X:\/%l a)y: HZ’ a)Z: Fs



132 e Quantum Mechanics: 500 Problems with Solutions

Using the results of linear harmonic oscillator (Eq. 4.13), we get

1
E, = (nx+§)wx, n,=0,1, 2, ...
— 1 —
E, = ny+§ @y, n=2012, ...

E, = (nz+%)wz, n,=01,2, ..
The eigenfunctions are given by Eq. (4.14), and so

1
Wnen,n, = NHp (@X) Hy (BY)H, (72) exp [—5 (@*x* + 2% + VZXZ)}

x'yllz

where N is the normalization constant and

o ma)x 1/2 ﬁ_ ma)y 1/2 B mwz 1/2
T ! | A

Normalization gives

al/2ﬂ1/271/2

7[3/4 (2 Ng+Ny+n,

n!n,In, H
5.6 For the ground state of the hydrogen atom, evaluate the expectation value of the radius vector
r of the electron.

Solution. The wave function of the ground state is given by
3/2
=—|—| exp -
Y100 \/, a
L

oo 2r r2r
(r) = [Wiooryre dz = — [ rPexp (—a—) dr [ [ sin 6dodg
0 0 00
The integration over the angular coordinates gives 4. Using the relation in the Appendix, the
r-integral can be evaluated. Thus,
4 3! 3
M=Z——a=2
a3 @) 2°
The expectation value of r in the ground state of hydrogen atom is 3ay/2.

5.7 Neglelcting electron spin degeneracy, prove that the hydrogen atom energy levels are n? fold

degenerate.

Solution. In a hydrogen atom, the allowed values of the quantum numbers are n =1, 2, 3, ...;

1=0,1,2,...,(n=-1); m=0, £1, £2, ..., £I. For a given value of n, | can have the values 0, 1,
., (h = 1), and for a given value of I, m can have (21 + 1) values. Therefore, the degeneracy of

the nth state is

n§(2I+1) 22I+n_ 2(n 21)n+n 2
=0
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5.8 Calculate the expectation value of the potential energy V of the electron in the 1s state of
hydrogen atom. Using this result, evaluate the expectation value of kinetic energy T.

Solution.  Substituting the ground state wave function from Eq. (5.17) and carrying out the angular
integration, we get

2 S
V)= J'/fﬁ)o [#] Wigo A7 = —ke? 7‘;—:3 b[ exp [‘%] rdr
Using the standard integral (see appendix), we obtain
2 2 4
V)= = S = 2,
where E;, the ground state energy, is equal to (T) + (V) and, therefore,
E, =(T) + 2E;
or
(Ty=-E,
. me?
B 3272 & h?

5.9 Evaluate the most probable distance of the electron of the hydrogen atom in its 3d state.
Solution. From Eq. (5.18), the radial probability density

Pai(r) = Ry |2 r?

32 2
o ) (a) )
% 27410 \ 3 2l 3a,

2 _r
constant r exp( SaOJ

2r
P4, = constant r® -
» ' eXp( 3%)

To find the most probable distance, we have to set dP5,/dr = 0, and

6

dPi:O:GrE’exp _2_r _ZL _A

dr 3a, 33, | 33
where
r= 930

The most probable distance of a 3d electron in a hydrogen atom is 9a.
5.10 In a stationary state of the rigid rotator, show that the probability density is independent of
the angle ¢.

Solution. In stationary states, the wave functions of a rigid rotator are the spherical harmonics
Yim(6, @) given by

yim(6, @) = constant P"™(cos &) '™
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Probability density = |Y,,|? = constant |P" (cos )|
which is independent of the angle ¢.

5.11 Calculate the energy difference between the first two rotational energy levels of the
CO molecule if the intermolecular separation is 1.131 A. The mass of the carbon atom is
19.9217 x 107 kg are the mass of oxygen atom is 26.5614 x 102" kg. Assume the molecule to be
rigid.
Solution. The energy of a rigid rotator is given by
11+ )R
Y
2 2
Ey =0, El=h—, AE=E1—E0=hI—
The reduced mass
_19.9217 x 26.5614 x 10°%
- 19.9217 + 26.5614

= ur? = (11.3837 x 107%" kg) (1.131 x 10710 m)?

14.5616 x 107" kg m?

W (1.054)° x 107 J%s
| 14,5616 x 10*" kgm?

=11.3837 x 10 %" kg

AE = =763x10%)

5.12 What is the probability of finding the 1s-electron of the hydrogen atom at distances (i) 0.5 a,
(if) 0.9 ay, (iii) ag, and (iv) 1.2 aq from the nucleus? Comment on the result.

Solution. The radial probability density P (r) = |Ry|?r% Then,

2 r 4r? 2r
Rio = 27 exp [_ gj Po(r) = el exp (_a_j

0 0 0

: e’ 037

(i) Pp(0.58,) = QA

N 40,9 ;5 0536
(i) P,(0.98;) = % et = %
4e%  0.541
(i) Py(ag) = 8 @

4(1.2)*  0.523

(iv) Pyo(l.28,) = 2

P1o(r) increases as r increases from 0 to ap and then decreases, indicating a maximum at r = a,. This
is in conformity with Bohr’s picture of the hydrogen atom.
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5.13 What is the probability of finding the 2s-electron of hydrogen atom at a distance of (i) a; from
the nucleus, and (ii) 2a, from the nucleus?

Solution.

1

e 0.37

P2o(ao) = ﬁ = _8a0
P2 (2a0) = 0

5.14 For hydrogen atom in a stationary state defined by quantum numbers n, | and m, prove that

(ry=[ r*IR, Pdr
0
Solution. In a stationary state,

oo 2
() = [[[¥hint Wam d7 = [ IRy r¥dr [ [ ¥, [* sin 6 d6 d¢
0 00
Since the spherical harmonics are normalized, the value of angular integral is unity, i.e.

(r) = [IRyF ridr
0

5.15 Calculate the size, i.e., (r?'2, for the hydrogen atom in its ground state.

Solution.
1 1/2
_ —rlag
Yioo=|—3| €
mag

<r2>=i exp _20 e sin @ d@ dg dr
a3 8y

The angular integration gives 4z. Use of the integrals in the Appendix gives

" 4 41
2y 4 rex( )dr=——=32
=g e %) ey

<r2>l/2 — \/gao
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5.16 Estimate the value of (Ar)? for the ground state of hydrogen atom.
(A2 =% — (2, (= [IRyPridr
0

Solution. From Problem 5.6, for the ground state,

7 3a,
(r)——BJ exp( jdr=7
8 o
We now have (Problem 5.15)

() = 32

2

(ar = 38 ~ S =20

5.17 Calculate the number of revolutions per second which a rigid diatomic molecule makes when
it is in the (i) | = 2 state, (ii) | = 5 state, given that the moment of inertia of the molecule is I.

Solution. Rotational energy of a molecule is

(I + 1) 72

Bi=—7

Classically

1
Rotational energy = Ela)2 =271

Equating the two expressions for energy, we get

L (I + 1) h? Co21? or ve JIQ+1)n

21 27l
o N Y
(l) | = 2 state: v= m
o NCTY,
(ll) | =5 state: v = W

Note: The result can also be obtained by equating the expressions for angular momentum.

5.18 In Problem 5.5, if the oscillator is isotropic: (i) What would be the energy eigenvalues?
(if) What is the degeneracy of the state n?

Solution.

(i) For an isotropic oscillator k; = k, = k3 and ny, n, n, =0, 1, 2, ... Hence, the energy
expression becomes

E:EX+Ey+EZ:(n+§jha), n=n+n+n,=0,12 ...
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(if) Degeneracy of the state n : The various possibilities are tabulated:

Ny ny n,

n 0 0 1 way
n-1 1 0

N1 0 1 2 ways
n-2 1 1

n-2 0 2 3 ways
n-2 2 0

1 n-1 0 n ways

1 :

0 n 0

n + 1) ways

0 0 0 (n + 1) way
Total no. of ways =1+2+3+---+(n+1)

=(n+ 1 + 2)/2
Degeneracy of the state (n) = (n + 1)(n + 2)/2

5.19 Find the number of energy states and energy levels in the range E < [15R?%/(8 ma?)] of a
cubical box of side a.
Solution. For a particle in a cubic box of side a, the energy is given by (refer Problem 5.2)

7[2 h2 2

_ 2 2 2y _
E_2maz (ny+ny +n;)=

Comparing with the given expression, we get

2 2 2
oy (ny +ny +n7)

2 2 2
n,+ny +n; <15

The number of possible combinations of (n, ny n,) is

111 1 way
112,(121),(211) 3 ways
(113),(131),(311) 3 ways
122),(212),(221) 3 ways
222 1 way
(123),(132,(213),(231),(321),1312) 6 ways
Total 17 ways

Hence the No. of possible states = 17. The No. of energy levels = 6.
5.20 Show that the three 2p eigenfunctions of hydrogen atom are orthogonal to each other.

Ya10= core %% cos @, ¢, being constant

1 =c,re "% sin g et ¢, being constant
V=0
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Solution. The ¢-dependent part of the product y73;; y»; 4 gives e ¢
The corresponding ¢ integral becomes

2r
iggy - L [e2i0 7
{e Ydo= 5[], =0

The ¢ integral of
2r
JWflo Yoy d7 = ,[ e¥dgp=0
0
The ¢ integral of

2
J‘l//ZklO Yol 1 = J e?dg=0
0
Thus, the three 2p eigenfunctions of hydrogen atom are orthogonal to each other.

5.21 Prove that the 1s, 2p and 3d orbitals of a hydrogen-like atom show a single maximum in the
radial probability curves. Obtain the values at which these maxima occur.

Solution. The radial probability density P, = r]Rn|% Then,

Rio = constant x exp (—Ej
2l
R,; = constant x r exp( Zr )
21 — _E
R3, = constant x r ex (—A)
32 p 38,
Pn will be maximum when dP,/dr = 0, and hence
dPy 27r? 27r ag
ar = 2r - ex T = —
ar 0 = constant [ % p Sl r .
dP,; s zrt 7r 4a,
o Y~ ar’ - — - = 4
ar 0 = constant ( r 2 exp 2 ) r -

Similarly, dPs,/dr = 0 gives r = 9ay/Z.
In general, Fma = N%ag/Z.

Note: The result ry. = ag/Z suggests that the 1s-orbital of other atoms shrinks in proportion to the
increase in atomic number.

5.22 If the interelectronic repulsion in helium is ignored, what would be its ground state energy and
wave function?

Solution. Helium atom has two electrons and Z = 2. The ground state energy and wave function
of hydrogen-like atom are

252 4
_KZ'me’ | 13572y, KE= -t

E = =
! 2n? 4re,
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When the interelectronic repulsion is neglected, the energy of the system is the sum of the energies
of the two electrons and the wave function is the product of the two functions, i.e.

Energy E = -13.6 Z? - 13.6 22 = -108.8 eV

1 : —Z(n+1,)
Wave function v = () w(r) = ;(g) exp (#)

where r; and r, are the radius vector of electrons 1 and 2, respectively.

z

5.23 Evaluate the most probable distance of the electron of the hydrogen atom in its 2p state. What
is the radial probability at that distance?

Solution.  The radial probability density
Pnl(r) = r2|Rnl|2

3/2
R, = [ij L r exp [_ Lj
2 28, ) a3 2a,

1 r
Py (r) =r?R2, = ——r* exp [——)
2 2 2488 3

and

For P,; to be maximum, it is necessary that

U exp(_szo
dr  24a3 ag N

r =4a,

The most probable distance is four times the Bohr radius, i.e.
32
Po1(4ay) = g exp (—4)

5.24 A positron and an electron form a shortlived atom called positronium before the two annihilate
to produce gamma rays. Calculate, in electron volts, the ground state energy of positronium.

Solution. The positron has a charge +e and mass equal to the electron mass. The mass u in the
energy expression of hydrogen atom is the reduced mass which, for the positronium atom, is
Me-Me Mg
2m, 2
where m, is the electron mass.
Hence the energy of the positronium atom is half the energy of hydrogen atom.

k?m,e* _
En:—W, n—l, 2, 3,
Then the ground state energy is
_136 eV =-6.8¢eV

2
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5.25 A mesic atom is formed by a muon of mass 207 times the electron mass, charge —e, and the
hydrogen nucleus. Calculate: (i) the energy levels of the mesic atom; (ii) radius of the mesic atom;
and (iii) wavelength of the 2p — 1s transition.

Solution.
(i) The system is similar to that of hydrogen atom. Hence the energy levels are given by

4
Eo=-— 2 n=123 .
(4rey)?2h% n
where u is the proton-muon reduced mass
207m, x 1836m,
/L[ =
207m, +1836m,

(if) The radius of the mesic atom will also be similar to that of Bohr atom, see Eq. (1.9).

=186m,

nn?
Radius of the nth orbit r,, = 5
kue
h2
r, = 5 k = 8.984 x 10° N m? C2
ke
(1.05 x 1073* Js)? 1 1

X
(8.984 x 10° Nm?C?) (186 x 9.1x 10" kg) = (1.6 x 107 C)?
2.832 x 10 m = 283.2 x 107* m = 283.2 fm

kPt (11
WE-E=T 7 2

(8.984 x 10° Nm?C™)? (186 x 9.1 x 107! kg) (1.6 x 107*° C)* L3
2(1.05x 107 Js)? 4

304527.4 x 10 J = 1903.3 eV

. hc  (6.626 x 107> Js) (3 x 10° m/s)
T E-EF 304527.4 x 1072

= 0.65275 x 10 m = 0.653 nm

5.26 Calculate the value of (1/r) for the electron of the hydrogen atom in the ground state. Use the
result to calculate the average kinetic energy (p%2m) in the ground state. Given

oo

| x"e ™ dx = o
n+1
0 a
Solution.  For the ground state,
_ 1 —rlay _ /ue4
Y100 = 7[1/2a3/2 € ' By =- 3272212



Three-Dimensional Energy Eigenvalue Problems

141

1 1 1 ) 2 T 2r
Z) = it dr=—— |rexp| ——|dr sin 6 d@d
<r> .['//100 r V100 e E[ p( ao) 6[ E[ ¢

The angular part of the integral gives 4z. The r-integral gives a3/4. Hence,
<£> _ Ay 1
r/ mad 4 @&

e’ e’ /1 e?
vy = <_ 47r50r> T 4rey <F> T dreyay

Therefore,
2 4 2
P He e
rF V\_E_ =_
<2m> V) 327 5 h? - Argya,
Since
drreyh?
0= 2
e
We have
LI Y A
2m 327%gin?  167° g5 h?
_ et
- 3212 eih?

In other words, the average value of kinetic energy (KE) = —(V)/2. In fact, this condition is true for

all states (see Problem ...)

5.27 A rigid rotator having moments of inertia | rotates freely in the x-y plane. If ¢ is the angle
between the x-axis and the rotator axis, (i) find: the energy eigenvalues and eigenfunctions,

(i) the angular speed; and (iii) y(t) for t > 0 if y(0) = A cos? ¢.
Solution.
(i) The energy eigenvalues and eigenfunctions (refer Problem 5.3) are

232
i z%, w=—_exp(img), m=0 +l +2, .

2r

E
Att =0,

Y0) = Acos’ ¢ = % (1 + cos 2¢)

w0) = % + % (€' + e7129)

The first term corresponds to m = 0. In the second term, one quantity corresponds to m = 2 and the

other to m = -2.
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(i) The angular speed ¢ is given by

_ 42 _ 12
Em_2I¢ or — g
. mh
=T
(iii) ut) = 2+4e exp( o )+4e exp 5

b defafo- 5 Al ofo-4]

5.28 A particle of mass m is confined to the interior of a hollow spherical cavity of radius R; with
impenetrable walls. Find the pressure exerted on the walls of the cavity by the particle in its ground
state.

Solution.  The radial wave equation (5.5), with V(r) = 0, is

1d (rzdR)+[2mE_l(l+1)}R:0

2dr(’odr) | w2 2

For the ground state, | = 0. Writing

rR(r) = A1)
r
the radial equation reduces to [refer Eq. (5.17)]
d’y ., , 2mE
dr? d h?

whose solution is
x = A sin kr + B cos kr, A and B are constants.

R is finiteat r = 0, i.e., at r = 0, y = Rr = 0. This leads to B = 0. Hence,

x = Asin kr
The condition that R = 0 at r = R, gives
0 = Asin kR,
As A cannot be zero,
n
kR;y = nz or k:—”, n=1,23, ..
Rl
Hence the solution is
. nzr
7= Asin 2L, n=123, ..
Rl
Normalization gives
2 nzr
pa 7 =1,2,3
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with the condition that
222 .2
n h
k= 2 or E,= il 2
2mRy

Ry
The average force F exerted radially on the walls by the particle is given by

Fo(_9V\_ _[oH)\__doH) dE
"\ 9R/~ \9R/  9R  OR

The particle is in its ground state. Hence, n = 1 and

F_ & _xn
R mR?
The pressure exerted on the walls is
F zh?
p

" 47R? AmR?
5.29 At timet = 0, the wave function for the hydrogen atom is

1
W(r, 0) = —= (2%¥1q0 + Wp10 + \/E‘lel + \/5‘1121,71)

J10

where the subscripts are values of the quantum numbers n, I, m. (i) What is the expectation value
for the energy of the system? (ii) What is the probability of finding the system with | =1, m = 1?

Solution.
(i) The expectation value of the energy of the system

(E) = (YIHIY)

1
= E((Z‘Ploo + Wy + \/E\Pzn + \/g‘l"zl,—lﬂ HI(2¥ 100 + W210 + \/E\Pzn + \/5‘1"21,—1»
1
= E((Z‘Ploo +W¥op0 + \/E\Pzn + \/5\1"21,—1) [(2E{ 100 + ExWo10 + \/EEZ\Ple + \/§E2\P2l,—l)>

1 1
= E(4El +E, +2E, + 3E,) = 10 (4E, + 6E))
Since E; = -13.8 eV and E, = -3.4 eV,
(E) = %(—54.4 eV —20.4eV)=-7.48¢eV

(if) The required probability is given by
2 2 1

P _E<211|211>_E_§
5.30 Evaluate the radius for which the radial probability distribution P(r) is maximum for the 1s,
2p, 3d orbitals of hydrogen atom. Compare your result with that of Bohr theory. Prove that, in
general, when | = n — 1, P(r) peaks at the Bohr atom value for circular orbits.
Solution.  Evaluation of P(r) for these orbitals is done in Problem 5.21. For 1s, 2p and 3d orbitals,
the values are ay, 4ay, 9a,, respectively. According to Bohr’s theory, the radiis of the Bohr orbits
are given by (see Eq. 1.9)
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n?h? 1
rn = , k =

kme? dre,

From Eqg. (1.10),
hZ
%= kme?
This gives
rl = ao, r2 = 4a0, I’3 = 9a0

which is in agreement with the quantum mechanical results. Hence, the maximum radial probability
peaks at

rmax = nzaO
The above values are for s (I = 0), p (I = 1), and d (I = 2) orbitals. Generalizing, when I =n -1, P(r)
peaks at the Bohr atom value.
5.31 Evaluate the difference in wavelength A4 = A, — Ap between the first line of Balmer series
for a hydrogen atom (4,;) and the corresponding line for a deuterium atom (Ap).
Solution. The first line of the Balmer series is the tranisition n = 3 — n = 2. Then,

22 3

h3 36

szm4(1 1) 2%k ue* 5
= S N I S L
P 36ch°

Vu  5x 222K e’

B 36¢ch®
® 5 x 272K e’

Agzk_%:ﬂ(l 1]

107%k%* (i Hp

sy = mpMe s = 2m,m,
H™ ! D™ 5m L+ m
mp + mg 2m, + mg

1 1 _mp—my 1

Hy  Hp HuHp 2m,,

36ch® 1

AL =
107%k%e* 2m,

A = Ap

36 (3 x 10° m/s) (6.626 x 10°>* Js)°
107%(8.984 x 10° Nm*C ?)® (1.6 x 10 *° C)* 2(1836 x 9.1 x 10 %! k)

0.18 x 10° m = 0.18 nm
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5.32 A quark having one-third the mass of a proton is confined in a cubical box of side
1.8 x 107> m. Find the excitation energy in MeV from the first excited state to the second excited
state.

Solution. The energy eigenvalue for a particle of mass m in a cubical box of side a is given by
(refer Problem 5.2)

232
_mhT o o 9
Enynng = W(nl +n +n3)
232
. . n
First excited state: E,j;=Ejp; = Ejpp = 67[—2
2ma
232
: n
Second excited state: E,,; = E,, = Ej5y = 97[—2
2ma
—27
m= 27202200 K9 _ 055754 x 10 7 kg
232
AE = 3 h2
2ma

372 (1.05 x 107%* Js)?
2(0.55754 x 107" kg) (1.8 x 107° m)?

11y _ 9.0435 107y

9.0435x 1071 ) = T2 222 =
1.6 x 107 J/eV

565.2 MeV

5.33 A system consisting of HCI molecules is at a temperature of 300 K. In the vibrational ground
state, what is the ratio of number of molecules in the ground rotational state to the number in the
first excited state? The moment of inertia of the HCI molecule is 2.3 x 107’ kg m2

Solution. The factors that decide the number of molecules in a state are the Boltzmann factor and
the degeneracy of the state. The degeneracy of a rotational level is (2J + 1). If Ng is the number of
molecules in the J = 0 state, the number in the Jth state is

E
N;=(2J +1) Ny exp (——J)

KT
Hence,
Rotational energy E; = JU erll) " : J=0,1, 2,
e 2R
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E _ Wx1l_ (1.054 x 107** Js)®
kT KT (2.3x10% kg-m?)(1.38 x 10 2 JK 1) 300 K
= 0.117
NO 1 0.117
—=—e ' =037
TR 0.375

Note: Due to the factor (2J + 1) in the expression for Nj, the level J = 0 need not be the one having
the maximum number.

5.34 An electron of mass m and charge —e moves in a region where a uniform magnetic field
B =V x A exists in the z-direction.

(i) Write the Hamiltonian operator of the system.
(ii) Prove that p, and p, are constants of motion.
(iif) Obtain the Schrodinger equation in cartestian coordinates and solve the same to obtain the
energy values.

Solution.
(i) Given B =V x A. We have

~ aAZ aAy 2 aAz aAz " aAy an
B_I[ay _W]”(az _a_xj+k[a_x_ oy

Since the field is in the z-direction,

aﬁ ai:o
ay 0z
0A, _ai -0
0z ox
ai_ai =0
ox ay

On the basis of these equations, we can take
A=A, =0, A =Bx or A= Bx
The Hamiltonian operator

1 e .
H:ﬂ p+EA , p = —ihV
_i 2+ 2+ 2+iA2+E A+EA
= | PR RS P AT A
1 (., 5, 5, e*Bx* e e
. _
= o p§+(py+—) +p§}

where p,, py, p, are operators.
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(ii) Since the operator p, commutes with p,, p, and X,

[py, H] = [p, H] =0
Hence p, and p, are constants.

(iii) The Schrodinger equation is

1 eBx 2
ﬁ[piJr(perT) +p22:|‘//=E'//

2 2
1 2 eBx _ _ P
ﬁ[px +[py+T) V/—[E ZmJV/J

Let us change the variable by defining

CPy _
Z=X+e_B’ Py = Px
eBx_ o8 on)_eBy

Pyt =P eB| ¢

In terms of the new variables, [, p,] = iz Hence, the above equation reduces to

2 2 2
p;[ m( eB _ _ P;
[ﬁ+?[m_c) s ‘/’—[E zm]‘/’
Since p, is constant, this equation is the same as the Schrddinger equation of a simple harmonic
oscillator of angular frequency @ = eB/mc and energy eigenvalue E — (p%2m). Therefore,

2
L (PO _
E 2m—(n+2)ha), n=0,1,2, ..
- 1 p; _
E_[n+2)ha)+2m, n=0,1,2, ...

5.35 Consider the free motion of a particle of mass M constrained to a circle of radius r. Find the
energy eigenvalues and eigenfunctions.

Solution. The system has only one variable, viz. the azimuthal angle ¢. The classical energy
equation is
P
2m

where p is the momentum perpendicular to the radius vector of the particle. Since the z-component
of angular momentum L, = pr,

2Mr?

The operator for L, is —if (0/0¢).
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Replacing E and L, by their operators and allowing the operator equation to operate on the
eigenfunction #(¢, t), we have

9. 1 (. 9Y
|h§‘}' = TV (—Ih%) b4
G &
2Mr? 9¢°

A stationary state solution with energy eigenvalue E has the form

¥(o 1) = pig)e ™
where y(¢) is the solution of
4 C)
2Mr?  dg?
d’y(¢) _ 2Mr’Ey()
dg? n?

= Ey(9)

This equation has the solution
w(g) = Ae
For w to be single valued,
w(g+27) = y(9)
This requirement leads to the condition
k =m, m=20,1,2, ...

2MI%E, _ 2
hZ
h?m?
E,=——, m=0,1,2 ..
" 2mr?

The normalization of the eigenfunction leads to

V/(¢)=ﬁeim¢, m=0,1,2, ..

5.36 A particle of mass m is subjected to the spherically symmetric attractive square well potential
defined by
Vg, O<r<a
V() =
0, r>a

Find the minimum depth of the potential well needed to have (i) one bound state of zero angular
momentum, and (ii) two bound states of zero angular momentum.
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Solution.  The radial equation for a state with zero angular momentum, A =1(I + 1) =0 in Eq. (5.5)
is

1 d( ,dR 2m B
r—zw(r d—r)"rh—z(E—V)R—O

Since the potential is attractive, E must be negative. Hence,

1 d{(,dR 2m B .
r—zm(f W)Jrh—z(Vo—lEl)R—O, 0<r<a (i)
1 d(,drR) 2m|E| .
7 dr (r dr) ¥ 0, r>0 (i)
To solve Egs. (i) and (ii), we write
_un 5, 2m 2 2m|E]|
R= T: kl =h_2(Vo_|E|): kz— h2 (”')
In terms of these quantities, equations (iii) reduce to
2
Y k-0  o<r<a (iv)
dr
du ,
——ksu=0, r>0 Y
drz 2 ( )
The solutions of these equations are
u(r) = A sin kyr + B cos kyr (vi)
u(r) = C exp (=kor) + D exp (kor) (vii)

As r — 0, u(r) must tend to zero. This makes B zero. The solution exp (kyr) is not finite as r — oo.
Hence, D = 0, and the solutions are

u(r) = A sin kyr, 0O<r<a (viii)
u(r) = Cexp (kor), r>0 (ix)
Applying the continuity conditions on u(r) and du/dr at r = a, we get
A sin (kja) = C exp (-k.a)
Ak; cos kia = —k,C exp (-k.a)
Dividing one by the other and multiplying throughout by a, we obtain

kia cot kja = —k,a )
Writing
kia=p4  ka=y
we have
2
P4y = H (xi)

hZ
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which is the equation of a circle in the Splane with radius (2mVya%#?)2. Equation (x) becomes

peot =~y

To get the solution, 3 cot Bagainst Bis plotted along with circles of radii (2mVya?/#?)Y? for different
values of Vya? (Fig. 5. 1). As Band ycan have only positive values, the intersection of the two curves
in the first quadrant gives the energy levels.

(i) From Fig. 5.1, it follows that there will be one intersection if 772 < radius < 37/2

72 2mVpa®  9x?

4 < i < 4
7~ 97*n?
7 <Vo <57
8ma 8ma
1 1 1
A S :
! 1 | : |g
! S | Il
! X0 | ©
i gl ! ~
! ‘E. 1 1 §
1 ! : X
1
O
}/ 1 1
: ]
| ]
) 1 l
1 1
! b\
! L\ /
1 1
1 1
1 1
1 1
1 1
I 4

V4 32
ﬁ = kla

Fig. 5.1 Graphical solution of Egs. (x) and (xi) for four values of VoaZ.
(Dashed curve is kja cot ka = —ya.)

(if) Two intersections exist if
Radius > 377[

2mva’® 972
nw o4

222
v, > o h2
8ma
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5.37 Write the radial part of the Schrédinger equation for hydrogen atom. Neglect the terms in
1/r and 1/r? in the equation. Find the solution under these conditions in terms of the energy
eigenvalues and hence the radial probability density. For the ground state, when is the probability
density maximum? Comment on the result. Use the energy expression for the ground state.

Solution. The radial part of the equation is

1 d(2dR) 2u|_ _1(+Dn* ke® | _ ,
r? dr(r drj+h2 [E 2ur? H R=0 ®

where k = 1/4rg, 1 = 0, 1, 2, ... . Simplifying, we get

2 2 2
_dR+3d_R+2_,U E_—I(I+1)h +ki R=0
dr2 rdr p? 2r? r

Neglecting the terms in 1/r and 1/r? we obtain

d’R  2uER .
dr? n? )
For bound states, E is negative. Hence,
d’R » 2u|E|
—— AR =0, A= i
dr? n? (i
where solution is
R(r) = Ce™ + C,e™™
where C; and C, are constants.
The physically acceptable solution is
R(r) = C,e ™ (iv)

The radial probability density
P = R%r? = CZrh2e 2"
For P to be maximum, it is necessary that
dP

o= CZ (2re™™ - 2Ar%eA) =0

1 h
1-Ar=0 of r=—=—u (v)
A [2m|E|

For the ground state, we have

Substituting this value of | E| in the expression for r, we get

W dre,
= 2 = ao

Cokue® e
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where a, is the Bohr radius, i.e., for the ground state, the radial probability density is maximum at
the Bohr radius. The Bohr theory stipulates that the electron will be revolving at a distance ay from
the origin. Here, the probability density is maximum at the Bohr radius with the possibility for a
spherical distribution.

5.38 A crystal has some negative ion vacancies, each containing one electron. Treat these electrons
as moving freely inside a volume whose dimensions are of the order of lattice constant. Assuming
the value of lattice constant, estimate the longest wavelength of electromagnetic radiation absorbed
by these electrons.

Solution. The energy levels of an electron in a cubical box of side a is (refer Problem 5.2)

232
°h

e (nZ +nj +n?2), Ny Ny, N =123, ..
ma

NNy, —

Lattice constant a = 1A = 10720 m.
The energy of the ground state is given by
°n? “3o 7%(1.05% 102 Js)? x 3

E = =
T oma? 2(9.1x 10  kg) (1070 m)?

= 1.795x 107"
The longest wavelength corresponds to the transition from energy E;4; to E,q4, and hence
232
n
By = 2 X0 359 x1017 )
2ma

c ch
Longest wavelength A= —= ————
v B — B

1= (3% 108 ms1)(6.626 x 107%* Js)
1.795x 10717

= 11.07x10°m =11.07 nm

5.39 A particle of mass m is constrained to move between two concentric spheres of radii a and
b (b > a). If the potential inside is zero, find the ground state energy and the form of the wave
function.

Solution. When the system is in the ground state and when V = 0, the radial wave equation (5.5)
takes the form

1d 2 dR 20 _ 2 _ 2mE .
r2dr(r dr)+kR_0’ K= 0
Writing R(r) = yr)/r, Eq. (i) takes the form
2
—3?+k21:0, a<r<b (i)
r
The solution of this equation is
x = Asin kr + B cos kr (iii)

where A and B are constants.
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The function g(r) must be zero at r = a and at r = b. For y to be zero at r = a, Eq. (iii) must be
of the form

7(n) =Asink(r-a) (iv)
() =0 at r = (b) gives
0=Asink(-a)
This is possible only if

nz
k —_— = k =
(b-2a)=nxz or b_a
Substituting the value of k, we get
2mE 2_2
=l =123,
n (b-a)
2322
z°hn
nTE T (v)
2m(b — a)
The ground state energy
242
7°h .
_ Vi
' om(b-a)? V)
Substituting the value of k in Eq. (iv), for the ground state,
#(r) = Asin %—a)
R(r) = 20 _A G mr =2

5.40 What are atomic orbitals? Explain in detail the p-orbitals and represent them graphically.

Solution.  The wave function ynm(r, 6, @), which describes the motion of an electron in a hydrogen
atom is called an atomic orbital. When | =0, 1, 2, ..., the corresponding wave functions are s-orbital,
p-orbital, d-orbital, and so on, respectively. For a given value of I, m can have the values 0, £1, 2,

., tl, and the radial part is the same for all the (2l + 1) wave functions. Hence, the wave functions
are usually represented by the angular part Y,,(6, ¢) only. Thus, the states having n = 2, | = 1 have
m =1, 0, -1, and the states are denoted by 2p;, 2pg, and 2p_;. The (& ¢) values for these three

states are
12 1/2
3 . i 3
Yy = —(—87[) singe™, Y= (_47r) cos @

3 1/2
Yii=|—| singe™
1-1 (87[) sin e

For m = 0, the orbitals are imaginary functions. It is convenient to deal with real functions obtained
by linear combination of these functions. For the p-orbitals,

1/2
w(po) = vip=1 :L/Zi//(p =D (%) sin 6 cos ¢
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w(py) =

) 1/2
—i[y(p = 1)J_§W(p =-01_ [%) sin @sin ¢

3 1/2
w(pz)=w(po)=[g) cos ¢

The representations of orbitals are usually done in two ways: in one method, the graphs of
w(py), w(p,) and w(p,) are plotted and, in the second approach, contour surfaces of constant
probability density are drawn. The representations of the angular part for the p-orbitals are shown
in Fig. 5.2. The plot of probability density has the cross-section of numeral 8.

Any axis L to x-axis Any axis L to y-axis Any axis L to z-axis
2p, 2p, 2p,

@ (b)

Fig. 5.2 Representation of the angular part of wave function for p-orbitals;
() Plot of Y(6, ¢); (b) Plot of [Y;n(6, @)%

Each p-orbital is made of two lobes touching at the origin. The p,-orbital is aligned along the
x-axis, the p,-orbital along the y-axis, and the p,-orbital along the z-axis. The two lobes are separated
by a plane called nodal plane.

5.41 The first line in the rotation spectrum of CO molecule has a wave number of 3.8424 cm™.
Calculate the C =0 bond length in CO molecule. The Avagadro number is 6.022 x 10%/mole.

Solution.  The first line corresponds to the | = 0 to | = 1 transition. From Eq. (5.10),

n? n?
Hr Hr
2 h h

- am®uv - Am®uve

1= (12 g/mol) (15.9949 g/mzosl) 11385 x 10 ¢
(27.9949 g/mol) (6.022 x 10°° /mol)

1.1385 x 1072% kg

- 6.626 x 103*Js

4m® (1.1385 x 10726 kg) (384.24 m 1) (3 x 10® m/s)
1.2778 x 107 m?

r=113x10%m
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5.42 The |l =0 to | = 1 rotational absorption line of 3C*0 molecule occurs at 1.102 x 10! Hz
and that of C'®0 at 1.153 x 10! Hz. Find the mass number of the carbon isotope in C°0.

Solution.  For a diatomic molecule from Eq. (5.10),

woow
E,—Ey=— = ——
1 0 | /,lrz

where g is the reduced mass.
Writing E; — Ey = hy; for the first molecule and h, for the second one, we obtain

M _H
Vo M
13 x16 m x 16
M = 29x N’ Hy = m+16)N
where N is Avagadro’s number. Substituting the above values, we get
1.102 x 10* 29m

1153 x 100 13(m +16)
Solving, we get
m = 12.07 = 12

The mass of the carbon in C10 is 12.

5.43 An electron is subjected to a potential V(z) = —e?/4z. Write the Schrédinger equation and
obtain the ground state energy.

Solution. The Hamiltonian operator

n? (02 02 02 e’
H :_ﬁ[a7+?+a7}5
The Schrodinger equation is

n( 9° 0° 0° e’ .
Writing
WX, Y, 2) = ¢dX) Py(y) 2:(2) (i)
and substituting it in Eq. (i), we get the following equations:
hZ d2
Tl 9, (X) = E9, (x)
d? 2mE,
Pl By (X) =~k (x), ki = ¥ (iii)
d? 2mE .
Y 8,(y) = —k; 8, (¥), kj = Y ! (iv)
n? d’g, €
T o ? -——¢,=E9 (V)
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where E = E, + E, + E,. Since the potential depends only on z, kZ and kf are constants. Hence,

E, = kfhz = p_i
X 2m  2m
2
Ey = &
2m
Therefore,
2 2
p Y .
& =E-om 2 (v

For hydrogen atom with zero angular momentum, the radial equation is

2
1
1 d(rzdR)+2m[E+k(re }R:O, )

drl o dr ) 52 " Ang,
Writing
R £
r

we have
d?y 2m ke? .
n? d®y ke
maz r AT Ex (viii)

Equation (v) is of the same form as Eq. (viii) with 1/4 in place of k. The hydrogen atom ground state
energy is

k2me* .
E,= —— iX
1 2h2 ( )
Hence,
4
me
E,=- X
= oo ()
From Eqgs. (x) and (vi),
2 2 4
EoPo Py me (xi)

S2m o 2m 3242

5.44 Write the radial part of the Schrddinger equation of a particle of mass m moving in a central
potential V(r). Identify the effective potential for nonzero angular momentum.

Solution. The radial equation for the particle moving in a central potential is

1d(,dR) 2m|_ L ..
r2 dr(r dr)+h2 {E v o N0
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Writing
R(r) = —Zﬁr)
the above equation reduces to
2 2
d_;(+2_r2n E —V(r)——l(I +1)2h x=0
dr h 2mr

This equation has the form of a one-dimensional Schrodinger equation of a particle of mass m
moving in a field of effective potential

Il + 1) #?

Verr = V(r) + 2

2mr
The additional potential I(I + 1)#%(2mr?) is a repulsive one and corresponds to a force
I(1 + 1)h?/mr3, called the centrifugal force.

5.45 A particle of mass m moves on a ring of radius a on which the potential is constant.
(i) Find the allowed energies and eigenfunctions
(if) If the ring has two turns, each having a radius a, what are the energies and eigenfunctions?

Solution.

(i) The particle always moves in a particular plane which can be taken as the xy-palne. Hence,
8 = 90°, and the three-dimensional Schrédinger equation reduces to a one-dimensional
equation in the angle ¢. (refer Problem 5.3). Thus, the Schrddinger equation takes the form

w1 d*p(g)

o [a_z | EO
Since ma? = I, the moment of inertia is

d’y(p) _ 2IEy
dg? n?
The solution and energy eigenvalues (see Problem 5.3) are
2.2
E, = % n=0, 1, £2, ...

v, (9) = %exp (ing), n=0,=1 £2, ...

(if) The Schrodinger equation will be the same. However, the wave function must be the same
at angles ¢ and 4r, i.e.,

(@) = ylg + 4n)
ein;a — ein(¢+ 4m)
e™7=1 or cos(n4dn =1

3

1
= +—-, +1 +—
n 01 21 1 2
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Hence, the energy and wave function are

n?n? 1
= =0, +=, +
En= =7 n=0 £, 1
v = Ae, n=0, i%, +1,.
Defining m = 2n, we get
2.2
Em="78r|n . m=0, 2L 42, ...

vm = Aexp[i(m/2)¢], m=0,+1, +2, ...

Normalization gives

) ¥4 1
AP [¥*Wdgp=1 or A=——
([ \ar

Vin = ﬁ exp [i(M/2)g]



CHAPTER

Matrix Formulation
and Symmetry

6.1 Matrix Representation of Operators and Wave Functions

In this approach, the observables are represented by matrices in a suitable function space defined by
a set of orthonormal functions uy, U,, Us, ..., U,. The matrix element of an operator A is defined as

A= | Alu;) (6.1)

The diagonal matrix elements are real and for the offdiagonal elements, A; = Aﬁ. The matrix
representation with respect to its own eigenfunctions is diagonal and the diagonal elements are the
eigenvalues of the operator. According to the expansion theorem, the wave function

lw(x)) = 2 cilu), G =AU ly) (6.2)

The matrix representation of the wave function is given by a column matrix formed by the expansion
coefficients ¢4, ¢y, C3, ..., C,. If One uses the eigenfunctions of the Hamiltonian for a representation,
then

¥, (X, 1) =y, (9) exp (— “f;tj

Ann (1) = Ay, (0) exp (%) Oy = @ (6.3)

6.2 Unitary Transformation

The transformation of a state vector w into another state vector y’ can be done by the unitary
transformation

y'=Uy (6.4)
159
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where U is a unitary matrix obeying UUT = UTU = 1. Then the linear Hermitian operator A transforms
as
A’ = UAUT or A=U'AU (6.5)

The Schrddinger equation in matrix form constitutes a system of simultaneous differential equations
for the time-dependent expansion coefficients ¢;(t) of the form

ac (t) Z Hyc (), =123 .. (6.6)

where H;; are the matrix elements of the Hamiltonian.

6.3 Symmetry

Symmetry plays an important role in understanding number of phenomena in Physics. A
transformation that leaves the Hamiltonian invariant is called a symmetry transformation. The
existence of a symmetry transformation implies the conservation of a dynamical variable of the
system.

6.3.1 Translation in Space

Consider reference frames S and S” with S’ shifted from S by p and x and x” being the coordinates
of a point P on the common x-axis. Let the functions y and y’ be the wave functions in S and S’.
For the point P,

p(x) = Y(X), X =x-p (6.7)
The wave function w(x) is transformed into y’(x) by the action of the operator ipp,/7, i.e.,

V() = (1 4 %) w(x) 6.8)

Let | x) and |x") be the position eigenstates for a particle at the coordinate x measured from O and
O’, respectively. It can be proved that

x)" = ( Ll j 1x) (6.9)

From a generalization of this equation, the unitary operator that effects the transformation is given
by

Up=1-2P (6.10)

The invariance of the Hamiltonian under translation in space requires that p must commute with H.
Then the linear momentum of the system is conserved.

6.3.2 Translation in Time

For an infinitesimal time translation 7,

Y(x,t) = [l+ w( W H‘P(x t) (6.11)
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The unitary operator that effects the transformation is
iTH
u=1-12 (6.12)
/]
From the form of U, it is obvious that it commutes with H. Hence the total energy of the system is

conserved if the system is invariant under translation in time.

6.3.3 Rotation in Space

Let oxyz and ox’y’z’ be two coordinate systems. The system ox’y’z’ is rotated anticlockwise through
an angle @ about the z-axis. The wavefunction at a point P has a definite value independent of the
system of coordinates. Hence,

y'(r) = un) (6.13)
It can be proved that
V() = (1 1o ) w() (6.14)
where L, is the z-component of angular momentum. For rotation about an arbitrary axis,
V() = (1 + 10 Lj 70 (615)

where n is the unit vector along the arbitrary axis. The unitary operator for an infinitesimal rotation
@ is given by

Ug(n, 6) = (1 ; i";' J) (6.16)

where J is the total angular momentum. This leads to the statement that the conservation of total
angular momentum is a consequence of the rotational invariance of the system.

6.3.4 Space Inversion

Reflection through the origin is space inversion or parity operation. Associated with such an
operation, there is a unitary operator, called the parity operator P. For a wave function y(r), the
parity operator P is defined by

Py(r) = Y1) (6.17)
P2y(r) = Py(—r)u(r) (6.18)

Hence, the eigenvalues of P are +1 or -1, i.e., the eigenfunctions either change sign (odd parity) or
remains the same (even parity) under inversion. The parity operator is Hermitian. The effect of parity
operation on observables r, ¢ and L is given by

Prpf = -, Ppr =-p, PLPf =L (619)

If PHP' = H, then the system has space inversion symmetry and the operator P commutes with the
Hamiltonian.
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6.3.5 Time Reversal

Another important transformation is time reversal, t' = —t. Denoting the wave function after time
reversal by W’(r, t'), we get
Y(r, t) = TY(r, t), t'=-t (6.20)

where T is the time reversal operator. If A is a time-independent operator and A" its transform, then
A=TAT™? (6.21)

To be in conformity with the time reversal invariance in classical mechanics, it is necessary that
r=TrTt=r, p=TpTl=-p, L =TLT!1=-L (6.22)

The operator T commutes with the Hamiltonian operator H.
Another interesting result is that T operating on any number changes it into its complex
conjugate.
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PROBLEMS

1 0
6.1 The base vectors of a representation are [0] and [1] Construct a transformation matrix U
for transformation to another representation having the base vectors
12 ~1\2
12 12
Solution. The transformation matrix U must be such that
2\ [UM Ulz](()j ~1N2) [Ull Ulz][oj
1/\/5 Uy Uy AL ’ 1/\/5 Uy Uy )T
Uy = 142, Uy = 142, Uy, = -142, Uy = 142

U~ [1/& —1/&] U [1/& 1/&]
N2 12 ) “1N2 2

It follows that UUT = 1. Hence U is unitary.

Solving we get

6.2 Prove that the fundamental commutation relation [X, p,] = i% remains unchanged under unitary
transformation.

Solution. Let U be the unitary operator that effects the transformation. Then,
X = UxU',  p,=UpU’
[X, pid = X'py = pxX’
= (UxUT) (Up,UT) - (Up,UT) (UxUY)
= UxpU" — Up,xUT = U(xp, — p,x) UT

= UinU' = inuU™ = in
Hence the result.

6.3 The raising (a') and lowering (a) operators of harmonic oscillator satisfy the relations
alny = Jnin-1,a’n) = Jn+1/n+1), n=0,1,2, ..

Obtain the matrices for a and a'.
Solution.  Multiplying the first equation from left by (n’|, we get

(lalny=vn@'In -1y =ns,
This equation gives the matrix elements of a. Hence,

©lally =1, {@lal2)=+2, (2lal3) =3, ..
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Multiplying the second equation from left by (n’|, we obtain

(ma’iny = Yn+1{nin+1y=yn+1 3y .0
The matrix elements are
@ralloy=1, @raliyy =2, @la'2) =3 ..

The complete matrices are

00 00

01 0 0 0 ..
5 10 0 0 ..

00 0 0 ..
a= f al=l0+v2 0 0

00 0 /30
00J§0

6.4 Show that the expectation values of operators do not change with unitary transformation.
Solution. Let A and A’ be an operator before and after unitary transformation. Then,

A =UAU', Uu=uu"=1
(A = (Al w) = (w|UTUAU'U | p)
= (Uy| UAU'|Up)
=(VIAy) = (A)

That is, the expectation value does not change with unitary transformation.
o 1 0 .
6.5 A representation is given by the base vectors 0 and 1) Construct the transformation
matrix U for transformation to another representation consisting of basis vectors
12 ~12
i/\2 -2

Also show that the matrix is unitary.
Solution. The transformation matrix U must satisfy the conditions:

pri g I v
1 1 —i

E, E, E, U22 :E

_[1/& 1/&] U [1/& —i/ﬁ]
linz iz vz iz

U, = Uy = Uy, =
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Ut = (1/\5 1/\5]{1/\5 —i/ﬁ]_(l o]
i2 —in2 )iz iz ) Lo 1

Thus, U is unitary.

6.6 For 2 x 2 matrices A and B, show that the eigenvalues of AB are the same as those of BA.

Solution.
a, a b, b
A:[ll 12]’ B:[ll 12]
8y by, by,

AB = [allbll +agphy  agby, +a55by, ]
Ay Py +apbyy  8yby, +ayby,
The characteristic equation of AB is given by

aygbyy + g0 — A4 g4y +agby,
Ay1byy + 85,0y A0y + Ay, — 4

A2 — A Tr(AB) +|AB|=0

Since |AB| = |A||B|, |AB| = |BA]. As Tr (AB) = Tr (BA), the characteristic equation for AB is the
same as the characteristic equation for BA. Hence, the eigenvalues of AB are the same these of BA.

6.7 Prove the following: (i) the scalar product is invariant under a unitary transformation; (ii) the
trace of a matrix is invariant under unitary transformation; and (iii) if [A, B] vanishes in one
representation, it vanishes in any other representation.

Solution.
(i) (1AIY) = (PIUTUAUTU ) = (UGIUAUT|Uy) = (9’| A’ ")
Setting A = 1, the above equation reduces to
@ly) =" ly")
i.e., the scalar product is invariant under unitary transformation.
(ii) Amm = <l//m [Al l/’m) = <l//m|UTUAUTU | l/’m) = <Ul//m|UAUT|Ul//m>
= (ynl Alyn) = A
Thus,
2 Anm = 2 Ar,nn
m m
In other words, the trace is invariant under a unitary transformation.
(iii) A’B’ — B’A” = UAU'T UBU™ - UBUT UAUT = UABU™ - UBAU'
= U(AB - BA)U'
If AB — BA = 0, then A’'B” — B’A’. Hence the result.
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6.8 Show that a linear transformation which preserves length of vectors is represented by an
orthogonal matrix.

Solution. Let x and X’ be the n-dimensional and transformed vectors, respectively. Then,
n n
X =Ax, Y x?=Y %
i=1 i=1

where A is the n x n transformation matrix. Substituting the value of xj, we get

Elpan(zan)-2 4

i=1

i=1

n n n n
DA A AKX X = 2 Xi2
j=1 k=1 i=1
This equation, to be valid, it is necessary that
n
D AAK= G o (AA) = O
i=1

where A” is the transpose of the matrix A. Therefore, A is an orthogonal matrix.

6.9 Prove that the parity of spherical harmonics Y, (6, ¢) is (-1)"

Solution.  When a vector r is reflected through the origin, we get the vector —r. In spherical polar
coordinates, this operation corresponds to the following changes in the angles @ and ¢, leaving r
unchanged:

0> (r-6 and ¢ — (¢ + 7
Y, m(6, @) = CP"(cos 6) exp (img), C being constant
Yim(7- 6 ¢+ m)=CP"[cos (z— ] exp [im (¢ + )]
= CP|" (-cos &) exp (im¢) exp (imzn)
= CP{"(cos &)(-1)"™exp (img)(-1)"
=(-1)"Yim (6 9)

During simplification we have used the result P'(=x) = (-1)" *™ P(x). That is, the parity of spherical
harmonics is given by (-1)"

We have

6.10 If w.(r) and w.(r) are the eigenfunctions of the parity operator belonging to even and odd
eigenstates, show that they are orthogonal.

Solution. From definition we have
Pya(r) = ya(r),  Pyc(r) = —y(r)
W) 1 ye(r)) = (ya(n) | PP yc(r))
Here, we have used the result P> = 1. Since P is Hermitian,

e y(n)) = Py P y(r)) = = (e ye(r))
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This is possible only when
(wa(n) | y(r)) = 0
Here, wi(r) and w.(r) are orthogonal.

6.11 Use the concept of parity to find which of the following integrals are nonzero. (i) (2s|x|2py);
(ii) {2p.x|2py). The functions in the integrals are hydrogen-like wave functions.

Solution. We have the result that the integral J f(x) dx is zero if f(x) is an odd function and finite

if it is an even function. In (2s| x| 2p,), the parity of the function (2s] is (-1)° = 1. Hence the parity
is even. The parity of the function | 2p,) is (-1)' = -1, which is odd. Hence the parity of the given
integral is even x odd x odd, which is even. The value of the integral is therefore finite. The parity
of the integrand in (2p,|x|2p,) is odd x odd x odd, which is odd. The integral therefore vanishes.

6.12 Obtain the generators G, G, and G, for infinitesimal rotation of a vector about z, x and y axes
respectively.

Solution. The generator for infinitesimal rotation about the z-axis (Eq. 6.14) is the coefficient of
igin (1 +i6G,), where @is the infinitesimal rotation angle. Let A be a vector with components A,,
Ay, A,. If the vector rotates about the z-axis through 6, then

A; = A cos @+ A sin 6

X
Aj = -A sin 6+ A, cos 6
A=A,

yA

Since rotation is infinitesimal, cos &= 1 and sin &= 6, and the above equation can be put in matrix
form as

A 160 0)\(A 160 0 6 0)|(A
Al=|-0 1LO||A |[=[|010[+-600]||A
A 0 0 1){A 001 0 00/[\A
Comparing the coefficient on RHS with 1 + i6G,, we get
160 0 -i 0
i0G,=|-0 1 0|=i0|i 0 O
001 000
Hence,
0 -i 0
G,=|i 00
000

Proceeding on similar lines, the generators G, and G, for rotation about the x and y-axes are given
by
00 O 00 i
Gy=|00 —if, Gy=1000
0i O - 00
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6.13 Prove that the parity operator is Hermitian and unitary.
Solution.  For any two wave functions w4 (r) and us(r), we have

[ vt () Pyp(n)dr = [ yi () y,(r)d(-r) dr

On the RHS, changing the variable r to —r, we get

J i) Py (ndr

—oo

T v w0 dn)

IRASUIAGLY

—oo

J Py(NT wa(r)dr

Hence the operator P is Hermitian, i.e., P = P". We have P? = 1 or PP" = 1. Thus, P is unitary.

6.14 Use the concept of parity to find which of the following integrals are nonzero: (i) (2s|x% 2py);
(i) (2py | X% 2py); and (iii) (2p| x|3d). The functions in the integrals are hydrogen-like wave functions.
Solution.
(i) (2s1%%2py.
The parity of the integrand is even x even x odd = odd. Hence the integral vanishes
(if) (2py[X% 2py)-
The parity of the integrand is odd x even x odd = even. Hence the integral is finite.
(iii) (2p| x|3d).
The parity of the integrand is odd x odd x even = even. Hence the integral is finite.

6.15 For a spinless particle moving in a potential V(r), show that the time reversal operator T
commutes with the Hamiltonian.

Solution.
2
-
H = om +V(r)
From Eq. (6.22),
TrTt=r

Multiplying by T from RHS, we get

TITT=rT or Tr=rT
Using the relations Tr = rT and Tp = —pT, we obtain

2
g o _ —PpPTp
TH = T—2m+TV(r)_ om + VT

2

A JRV)
2m

0

[T, HI
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6.16 Show that the time reversal operator operating on any number changes it into its complex
conjugate.

Solution. From Eg. (6.22),

X =TxTr=x  pi=TpTt=-p (i)
We now evaluate the fundamental commutation relation [x’, py]:
[X, pd = [TXT ™, TR T~ = [x, —p.d = —in (if)
The value of [x’, ps] can also be written as
X, pd = T[x, pdT™ = T(in)T™ (iii)
From Eqgs. (ii) and (iii),
T@in)T? = —in

which is possible only if T operating on any number changes it into its complex conjugate.

6.17 For a simple harmonic oscillator, @ is the angular frequency and x,(0) is the nlth matrix
element of the displacement x at time t = 0. Show that all matrix elements x,,(0) vanish except those
for which the transition frequency @, = @, where ay, = (E, — E))/A.

Solution. The Hamiltonian of a simple harmonic oscillator is
2

_p 150 .
H= om T 3 MO X (i)
The equation of motion for the operator x in the Heisenberg picture is
T = L2 2 me?x k2
Ihdt =[x, H] = 2m[x,p]+2m ma*[x, x°]
1
_in _ P
= om (PP =in_
x= P (if)

m
Similarly,

p=-maw’x (iii)

Differentiating Eq. (i) with respect to t and substituting the value of p from Eq. (ii), we obtain

X+ a0’x=0 (iv)

In matrix form,
X + a)zxnI =0 (V)

From Eq. (6.3),
Xni (t) = X (0) exp (iwyt) (vi)

Differentiaing twice with respect to t, we get

Ko1 () = — 95 %y (0) exp (i t) = —@f Xn (t) (vii)
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Combining Egs. (v) and (vii), we obtain
(@h — @) Xy (1) = 0
When t = 0,
(@h) — @) %y (0) =0
That is, if @% — @®=0 or @y, = o, then x,; (0) # 0. Thus, X, (0) matix elements vanish except
those for which the transition frequency a = t@.

6.18 When a state vector  transforms into another state vector i’ by a unitary transformation, an
operator A transforms as A’. Show that (i) if A is Hermitian, then A” is Hermitian; (ii) the eigenvalues
of A’ are the same as those of A.

Solution.
(i) We have
A = UAU'
(A" = (UAUN = UATU!
where we have used the rule (ABC)" = C'B'A". Since A is Hermitian, A = A”. Then,
(A =uAU = A
i.e., AT is Hermitian.
(if) The eigenvalue equation of A is
Ayn = anph
where a, is the eigenvalue. Since UTU = 1,
AUTUy, = a,UTuU(U )
Operating from left by U, we get
(UAUT)(Uyp) = ,UUT(Uyy)
A'(Uyn) = a(Uys)
Denoting Uy, by w;, we obtain
Ay = gy
Thus, the eigenvalues of A are also eigenvalues of A’.

6.19 Prove that (i) a unitary transformation transforms one complete set of basis vectors into
another, (ii) the same unitary transformation also transforms the matrix representation of an operator
with respect to one set into the other.

Solution.

(i) Let the two orthonormal sets of basis functions be {u;} and {v;}, i = 1, 2, 3, %. Since any
function can be expanded as a linear combination of an orthonormal set,

Up =, UnnVim, m=1,23 ..
m

where the expansion coefficient

Up = <Vm|un>
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Next consider the product UU', i.e.,

(UUNm = Y U Ul = YU Une
k k

Z <Vm|uk><vn|uk>* = % <Vm|uk><uklvn>
k

= (VplVy) = Opn (i)
Similarly,
(UTU)py = Gn (iii)

Hence, U is a unitary matrix. Let a wave function i be represented in the basis {u,} by the
coefficients ¢, forming a column vector c, and in the basis {v,,} by the coefficients b, forming a
column vector b, i.e.,

|W>:2Cn|un>l Cn:<un|l//> (IV)
|l//>:2bmlvm>l bm:<vm|l//> (V)

Substituting (| from Eg. (iv), we get
by, = 2<Vm| Up)Cy = Eumncn
n n

In matrix form,
b = Uc (vi)
which is the required result.
(i) Let A and A" be matrices representing an operator A in the bases {u} and {v}, respectively.
Then,
Ag = (UlATup, Al =Vl Al vy (vii)

Expanding |v,,y and |v,) in terms of |u) and replacing the expansion coefficients, we get
Vi) = % dluy) = % (Ul v lug)
V) = 2 filu) = zl‘, ulvpluy)
Substituting these values of |v,,) and |v,) in Eq. (vii), we get
Al = %;(Uk|Vm>*<Uk|A|U|><U||Vn>
= T2 Vil Ui U Al V)

= %; Ui A (UT)In

In matrix form,
A’ = UAUT or A=U'AU
Hence the result.
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6.20 (i) Evaluate the fundamental commutation relation [x’, py], where x” and p” are the coordinate
and momentum after time reversal. (ii) Find the form of the time-dependent Schrédinger equation
after time reversal (t —» t' = -t).

Solution.
(i) The commutator is evaluated in Problem 6.16, Hence,

[x, pi] = [TxT ™, Tp, T

=[x —py] = —in (i)
(if) The time-independent Schrodinger equation of a particle moving in a potential V(r) is
in YD (ii)
ot
Since T commutes with the Hamiltonian H,
T [ih—aqg:’ t)} = HT¥(r, 1) (i)
T operating on any number changes it into its complex conjugate. Hence, T(in)T™! = —in, ie.,

T(in) = —iAT . Equation (iii) now reduces to
—ihi,‘ll’(r, t') = H¥'(r, t')
ot
H a ’ ’ 7’ ’
ih—W'(r, t") = HY'(r, t")
ot
That is, the Schrodinger equation satisfied by the time reversed function W’(r, t') has the same form

as the original one.

6.21 Consider two coordinate systems oxyz and ox’y’z’. The system ox’y’z’ is rotated anticlockwise
through an infinitesimal angle & about an arbitrary axis. The wave functions y(r) and y/(r) are the
wave functions of the same physical state referred to oxyz and ox’y’z’ and is related by the equation

w'(r)=(l +i§n-J)w<r)

where n is the unit vector along the arbitrary axis and J is the total angular momentum. Find the
condition for the Hamiltonian H to be invariant under the transformation.

Solution. The operator that effects the transformation is

U= I+gn~‘]
H” = UHU'
17] i
= (I +7n~J)H(I sy n~J)
io

= H+7n~(JH—HJ)

= H+gn~[J, H]
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For H to be invariant under the transformation, H” = H. This is possible only when [J, H] = 0, i.e.,
the total angular momentum must commute with the Hamiltonian. In other words, the total angular
momentum must be a constant of motion.

6.22 Show that the parity operator commutes with the orbital angular momentum operator.

Solution. Let P be the parity operator and L = r x p be the orbital angular momentum operator.
Consider an arbitrary wave function f(r). Then,

PLf(r) = P(r x p) f(r)
= (=) x (=p) f(-1)
= (1) x (p) f(-1)
= LPf(r)
(PL-LP)f(r)=0
Thus, P commutes with L.
6.23 A real operator A satisfies the equation
A2 _5A+6=0
(i) What are the eigenvalues of A?

(if) What are the eigenvectors of A;
(iii) Is A an observable?

Solution.

(i) As A satisfies a quadratic equation, it will have two eigenvalues. Hence it can be
represented by a 2 x 2 matrix. Its eigenvalues are the roots of the equation

A2 -51+6=0
Solving, we get
(1-3)(1-2)=0 or A=2o0r3

The simplest 2 x 2 matrrix with eigenvalues 2 and 3 is

-

(if) The eigenvalue equation corresponding to the eigenvalue 2 is

NN

which leads to a; = 1, a, = 0. The other eigenvalue 3 leads to a; = 0, a, = 1, i.e., the eigenvectors

AEIN

(iii) Since A = AT, the matrix A is Hermitian. Hence, it is an observable.
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6.24 The ground state wave function of a linear harmonic oscillator is

max?
Wo(x) = Aexp [— T

where A is a constant. Using the raising and lowering operators, obtain the wave function of the first
excited state of the harmonic oscillator.

Solution. The lowering (a) and raising (a") operators are defined by

2mh

(i)
From the definition, it is obvious that
H 1

[a, a7 =1, a'a= ] (iii)

Allowing the Hamiltonian to operate on a'|0) and using Eq. (iii), we have
Ha'l0) = (a a+ 2)hwa |0)

= hwa'aa' |0)+ > hwa'|0)

Since[a, a1 =1 or aa'=a'a+ 1,

Ha'|0) = hwa'(a’a +1)|0) + % hwa'|0)

1
hwa'a'al0y + hwa'|0) + 5hwa*|o>

0+§ha)a*|0)

Hence,

oy | (M@ . 1

= ADDygmontizn g exp( mawx?/2h)

2h \/th dx

A 2mwxex _ma)x2
\2n X¥P | T
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6.25 If E, and E, are the energies corresponding to the eigenstates | m ) and | n), respectively, show
that

h2

3 (En — EKmIXINP = -5

n
where M is the mass of the particle.
Solution.
[[H, x], x] = Hx? — 2xHx + x?H
MIH, x], x]Im)y = (m|HX2|m) — 2(m|xHx|m) + (m|x2H|m)
= En (MX2|m) — 2(m|xHx|m) + Ep, {m|x*| m)
= 2E, (m|x?| m) — 2(m|xHx| m)

where the Hermitian property of H is used. Now,

m{xm) = ¥ (m|x|n){n|x|m)

n

= > Km|x|n)[

(mxHx|m) =3 (m|xH[n){n|x|m)

= Y E,I{m|x|n)?

Hence,
(MI[H, xI, XIIm) = 23 (Ey, — E,)[{m|x|n)[?

For the Hamiltonian,
2

=P
H= oM +V(x)

[H, X1 = e[, X1+ V(). 4

1 1 __inp
[IH, 9, X1 = — g, = -2
’ ’ - M p: M
Equating the two relations, we get
2 i
;(Em_En)|<m|X|n>| :_ZM



CHAPTER

Angular Momentum and Spin

Angular momentum is an important and interesting property of physical systems, both in classical
and quantum mechanics. In this chapter, we consider the operators representing angular momentum,
their eigenvalues, eigenvectors and matrix representation, we also discuss the concept of an intrinsic
angular momentum, called spin, and the addition of angular momenta.

7.1 Angular Momentum Operators

Replacing p,, p, and p, by the respective operators in angular momentum L = r x p, we can get the
operators for the components L,, L, and L,, i.e.,

. d d
L= —|h[ya— zd—y) (7.1)
. d d
Ly_—lh(zd—x—xaj (7.2)
. d d
LZ__Ih(Xd_y_yd_x) (7.3)
Instead of working with L, and Ly, it is found convenient to work with L, and L_ defined by
L, = Ly + iLy, Lo=L-iL, (7.4)

L, and L_ are respectively called raising and lowering operators and together referred to as ladder
operators.

7.2 Angular Momentum Commutation Relations

Some of the important angular momentum commutation relations are
[Lo L] =inL, [Ly, L] =inL,, [L, L = iaL, (7.5)
L% Ll =[%L]=[%L]=0 (7.6)
176
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From the definition of L, and L_, it is evident that they commute with L?:
[L? L] =0, [L2L]=0 (7.7)
As the components L,, L, L, are noncommuting among themselves, it is not possible to have

simultaneous eigenvectors for L2, L, L,, L,. However, there can be simultaneous eigenvectors for L2,
and one of the components, say, L,. The eigenvalue-eigenvector equations are

LY (6, 8) = 10 + DAY, (6,6),  1=0,1,2, ... (7.8)
LYim (6, @) = miYy, (6, @), m=0, 1, £2, ..., £l (7.9)

Experimental results such as spectra of alkali metals, anomalous Zeeman effect, Stern-Gerlach
experiment, etc., could be explained only by invoking an additional intrinsic angular momentum,
called spin, for the electron in an atom. Hence the classical definition L = r x p is not general enough
to include spin and we may consider a general angular momentum J obeying the commutation
relations

[y 3] = ind,, [Jy, ] = ind,, B, Jd = ind, (7.10)

as the more appropriate one.

7.3 Eigenvalues of J? and J,

The square of the general angular momentum J commutes with its components. As the components
are non-commuting among themselves, J2 and one of the components, say J,, can have simultaneous
eigenkets at a time. Denoting the simultaneous eigenkets by | jm), the eigenvalue-eigenket equations
of J? and J, are

o . 1.3
I imy = j(j + DA*ljm), j=0.5.1 5, . (7.11)

J,|jm) = ma| jm), m=—j—-j+1L...(-D,j (7.12)

7.4 Spin Angular Momentum

To account for experimental observations, Uhlenbeck and Goudsmit proposed that an electron in an
atom should possess an intrinsic angular momentum in addition to orbital angular momentum. This
intrinsic angular momentum S is called the spin angular momentum whose projection on the z-axis
can have the values S, = m¢h, mg = £1/2. The maximum measurable component of S in units of %
is called the spin of the particle s. The spin angular momentum gives rise to the magnetic moment,
which was confirmed by Dirac. Thus,

€
p= S (7.13)

For spin ~1/2 system, the matrices representing S,, S, S, are

1.(01 1. (0 i 1.(10
SX‘Eh[l 0], Sy_Eh[i 0], SZ_Eh[O _J (7.14)
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Another useful matrix is the o matrix defined by
1
==h
S > o

(01 (0 i (10 -
>“lro) 7o) T o (719

The o, oy and o, matrices are called Pauli’s spin matrices.

where

7.5 Addition of Angular Momenta

Consider two noninteracting systems having angular momenta J; and J,; let their eigenkets be | jym4)
and | jom,), respectively, i.e.,

le| hm) = (i +1) 7| hmy) (7.16)
‘lez [jgmy) = myh| jm) (7.17)
322|j2m2> = j(l2+1) 7| Jamy) (7.18)
Jzzz [Jamy) = myhl jym;) (7.19)
where
m =ju -1 ..., -y my=jaje—-1 ..., 2

Since the two systems are noninteracting,

[Bn Jbl=0,  [32,32]1=0 (7.20)

Hence the operators JZ, J;,, 33, J,, form a complete set with simultaneous eigenkets | jm, j,m,).
For the given values of j; and j,,

My jomy) = 1jimg) 1j,my) = Imym,) (7.21)
For the total angular momentum vector J = J; + J,,
[02,3,1=[3%,331=[9%J3]1=0 (7.22)

Hence, J2, J,, J2, J% will have simultaneous eigenkets and let them be | jmj, j, ). For given values
of j; and j,, this becomes | jm). The unknown kets | jm) can be expressed as a linear combination
of the known kets |m;m,) as

lim) =3, Cjmmym, |Mum;) (7.23)

My, My
The coefficients Cjqy,,, are called the Clebsh-Gordan coefficients or Wigner coefficients.
Multiplying Eq. (7.23) by the bra (mm,|, we get
(mym,| jm) = C immym, (7.24)
With this value in Eq. (7.23), we have
[jm) =Y [mm,){mm,|jm) (7.25)

my,my
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PROBLEMS

7.1 Prove the following commutation relations for the angular momentum operators L, Ly, L,
and L:
(i) [Lyw L]l =inL,; [L, L] =iaL, [L, L] =il
(i) L5 LI=[2%L]=[%L]=0
Solution. The angular momentum L of a particle is defined by
L=rxp=(yp, - 2p,)i +(2p, = xp,) | + (xp, — yp,)K
() [Lx’ Ly] = [ypz — ZPy, Zpy — szl] = [ypzl pr] - [ypzl sz] - [Zpy: pr] + [Zpy: sz]

In the second and third terms on RHS, all the variables involved commute with each other. Hence
both of them vanish. Since y and p, commute with z and p,,

[ypz’ pr] = ypx[pz’ Z] = _Ihypx

[Zpy: sz] = Xpy[Z, pz] = ithy
Therefore,

[Lxl Ly] = Ih(xpy - ypx) = IhLZ
Similarly, we can prove that

[L, L] =i,  [L, L =inL,

(i) [L% Ld = [+ L + L3, L]

[ LI +[5, LI+, L]

0+L,[Ly, LJ+I[Ly, LIL, + L, [L,, L] +[L,, L L,

Ly(—ihLZ) + (-inL,) L, + Lz(ihLy) + (ihLy) L,
=0

Thus we can conclude that

L5 LI=[%L]=[%L]=0

7.2 Express the operators for the angular momentum components L,, L, and L, in the spherical
polar coordinates.

Solution. The gradient in the spherical polar coordinates is given by

.d 10 ~ 1 0
V_ra_rJraFﬁJrqusinaﬁ

where T, 6 and é are the unit vectors along the r, @and ¢ directions. The angular momentum

L=rxp =-ik(r x V)

. .9 ~1 9 ~ 1 9
——|h(rxra—r+rx0Fﬁ+rx¢rsin6wj
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Since r = rf,F xf=0,fx6=¢ and fx ¢ = —

: ad 1 9
L= _Ih((bﬁ_gsm 9%)

Resolving the unit vectors 6 and é in cartesian components (see Appendix), we get

6 = cos 8 cos i + cos @ sin ¢] — sin Ok
&: —sin 6i + cos ¢]

Substituting the values of 6 and é we obtain

L= —ih[(—singbf +c0s¢]) aa — (cos 6 cos ¢i + cos @ sin ¢j — sin ¢k)3|;9 ;A

Collecting the coefficients of i, ] and k, we get

L

d
|h(sm ¢ag +cos¢cotaa¢)

. d
L, = —|h(cos¢ag sin ¢cot6)a¢)

9
99
7.3 Obtain the expressions for L,, L_and L? in the spherical polar coordinates.

Solution.  To evaluate L, in the spherical polar coordinate system, substitue the values of L, and L,
from Problem 7.2 in L, = L, + iL,. Then,

L, = —ih

I d d d . d
L, = —|h(sm ¢w+ cot @ cos ¢w)+h(cos ¢ﬁ—cotas|n ¢wj

= h(cos ¢ +isin ¢)%+ihcot9(cos¢+isin ¢)%

0 0
_ ig
= he (a¢+|cotaa¢)

ad ad
= —i N
L Ly—IL, =—he (80 |cotaa¢)

0 0 0 0
— 2 g |¢ _ —_
L., L = —-n% (80 |cotaa¢) (aa |cotaa¢)

- 2 9 9 cotei + cot? ei + i(cosec?d — cot? 6?)i
962 99 9¢° 99

02 0 2 02 .0
= —n? +cotd—+cot"° 80—+ 11—
[ae 06 0¢* 8¢]



Angular Momentum and Spin

181

2 2
L L,= -#° [887+ cotei+ cotzea—— i—

20 9¢*

1
L2 = Li + L%, + L% :E(L+L— + L—L+) + LZZ
2 2
= 2|y coto-L 4 corte-L 4+ 0
YD 96 d9¢*

= —hz

9> cosd 9 1 9

T I S Y P
T ae(s'”eae i

062 SN0 30 ' sinte 9¢*

sin® 6 9g°

7.4 What is the value of the uncertainty product (AL,) (ALy) in a representation in which L2 and

L, have simultaneous eigenfunctions? Comment on the value of this product when | = 0.
Solution. If the commutator of operators A and B obey the relation [A, B] = iC, then

(AA)(AB) > @

In the representation in which L? and L, have simultaneous eigenfunctions,

[Lo L] = inl;
Therefore, it follows that

h h
(ALY (ALy) > ZKL,)| = 5 m

(8L (aL,) = M

This is understandable as Y, (6, ¢) is not an eigenfunction of L, and L, when I # 0. When | = 0,

m =0, Yoo = 1/~/47 . Hence,
(AL,)(ALy) >0
7.5 Evaluate the following commutators.

Solution.
() [Ly [Ly, LI = [Ly inLy] = in[Ly, L = 0.

(i) [L2, L= L, [Ly, L+ Ly, LIL, = ik (L,L, + L,L,).
Lx [Lx' L?/] + [LX’ L2y] Lx = LX{[LX’ Ly] I-y"' Ly[LX! Ly]}

(i) [, 3]

+{[Ly, LIl + L[L,, LI}L,
in (L L,L, + LL,L, + LLL, +LLL,).
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7.6 Evaluate the commutator [L,, L,] in the momentum representation.
Solution.

Le =YP, = Zpy; Ly = 2P - Xp; L, = Xpy — ypx
[Lx Lyl = [YP: — 2Py, Zpx = XPo] = [YPz 2P — [YP2 XPa] — [2py, zp, + [zpy, XP.]
= YPx [P, 21 -0 -0 + pyx[z, p]
In the momentum representation [z, p,] = i#,
[Lo Ly = i7 (xpy — ypy) = AL,
7.7 Show that the raising and lowering operators L, and L_ are Hermitian conjugates.
Solution.

(m|L, |ny = {m|Ly[n)+i{m|L,|n)
= (nILgImy* +i{n|LyIm)*
= (L, —iLy)imy* = (n|L [my
Hence the result.

7.8 Prove that the spin matrices S, and S, have +7/2 eigenvalues, i.e.,

1 (01 1 (0 —i
sx_gh[l O] sy_gh[i 0]

Solution. The characteristic determinant of the S, matrix is given by

-A hl2
w2 -2

=0 or A2-—_=0 or A=+>nh

N~

- . 1
Similarly, the eigenvalues of S, are * Eh'

7.9 The operators J, and J_ are defined by J, = J, + iJ, and J_ = J, + iJ,, where J, and J, are the
x- and y-components of the general angular momentum J. Prove that

@ B limy =03+ - mm+ D7), m+1)

(i) J-1i,m=[i(+1-mm-Faj,m-1)
Solution. J, operating on | jm) gives

J1jm) = ma|jm) 0]
Operating from left by J,, we get
3z [jm)y = mAd,|jm)
Since
[, d]=n or J3J,=73Jd,-n,

we have

(23, = I jm) = mhd, | jm)
33 1im) = (m + D hAd, | jm) (i)
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This implies that J, | jm) is an eigenket of J, with eigenvalue (m + 1)%. The eigenvalue equation for
J, with eigenvalue (m + 1)% can also be written as

Lljm+h=m+D7xjm+1) (iii)

Since the eigenvalues of J,, see Eqs. (ii) and (iii), are equal, the eigenvectors can differ at the most
by a multiplicative constant, say, a,. Now,

Jolimy=aylj, m+1) (iv)
Similarly,
J_Ijm) =bylj, m-1) (v)
an = (Jym+13,]jm) or ay =(jm[J_|jm+1) (vi)
b = (J,m—=113_ jm) or by, ={(md_|jm+1) (vii)

Comparing Egs. (vi) and (vii), we get
8% = by (vii)
Operating Eq. (iv) from left by J_, we obtain
3.3,1jmy=a,d_[j, m+1)
It is easily seen that
JJ, =J32-02-ny,
Using this result and Eg. (v), we have
(3% = 37 = 131 im) = @by [ jm)

[i(j +2) — m? —=m] 72| jm) = | a,[* | jm)

ay=[j(j+D) - mm +D}'*n (ix)
With this value of a,,,
3o 1imy =[i(i +1) = m(m + DI"? Al j, m + 1) (x)
Gm3,imy =[G +1) —mm + D121 86, . (xi)
Similarly,
Gm aZ1imy =[G +1) —mm = D21 88, g (xii)

7.10 A particle is in an eigenstate of L,. Prove that (J,) = (J,) = 0. Also find the value of {32y and
P,
Solution. Let the eigenstate of J, be | jm). We have

J,+J
T2

J
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1. . 1. .
o = 5<Jm [J.] jm) +§<Jm [J_| jm)

= %Jj(j+1)— m(m+1)h(jm|j,m+1)+%\/j(j +1)—mm-1)a(jm|jm-1=0
since (jm|j, m + 1) = {jm|j, m — 1) = 0. Similarly, (J;) = 0. We have the relation
I+ =02-22
In the eigenstate | jm), this relation can be rewritten as
(im Q% + IP)1im) = (im| (3% - 37)I jm)
(Jm13Z 1jm) + (jm1 351 jm) = j(j + D #* —m?5?
It is expected that (J%) = (J§> and, therefore,
02y = 2 = 2L + DA - ?#]
7.11 Y\ (6, @) form a complete set of orthonormal functions of (6, ¢). Prove that

|
; Z |Ylm><YIm| =1

m=—I|

where 1 is the unit operator.
Solution.  On the basis of expansion theorem, any function of 8and ¢ may be expanded in the form

l//(@, ¢) = ZI"E CImYIm (9: ¢)

In Dirac’s notation,

) =22 Cimn [Yim)
I m

Operating from left by (Y,,| and using the orthonormality relation
<Yl’m’ |Ylm> = 5II’5mm’
we get
Cim= <Ylm |l//>
Substituting this value of C;,, we obtain

|
|l//> = Z Z |Ylm><YIm|l//>

I m=-1
From this relation it follows that
|

> 2 i XYinl =1

I m=-I

7.12 The vector J gives the sum of angular momenta J; and J,. Prove that
Do 3] = ind, [3y, I = iRdy, [I,, 3] = ind,

Is J; — J, an angular momentum?
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Solution. Given J = J; + J:
s Jy] = Pax + Jop Jiy + J]
= [P Jyyl + P Joy] + Do Iyl + [PDox Izl
inJy, + 0 + 0 + idy,
in(Jy, + Jpy) = 10,
By cyclic permutation of the coordinates, we can write the other two commutation relations. Writing
-3 =Y
[3% J;] = [Jax = Jox, Jyy - Jzy]
= [ Jiyl = Pae Joy] = [PBox Iyl + [Fow J2]
= ihd;, — 0 =0 +indy, = ih (I, + Jpy)

which is not the operator for J;. Hence J; — J, is not an angular momentum.

7.13 Write the operators for the square of angular momentum and its z-component in the spherical
polar coordinates. Using the explicit form of the spherical harmonic, verify that Y,(6, @) is an
eigenfunction of L? and L, with the quantum numbers | = 1 and m = 1.

Solution. The operators for L2 and L, are

oo | L9 (Gned ), L 9%
L= —h {sine 20 5'”‘989 +sin20 9¢?

0° ) 1 02
= —h?| = +cotld = + —
{892 90 sin?@ 8¢2}

d

LZ = _Ihﬁ

1/2
The spherical harmonic Y;; = — [%) sin ge'

1/2 M -2 2
3 0 0 1 0 . i
LYy, = (—j h?| — + cot @=— + ——— — | sin Ge
" e 00° 90 " sin29 06°
3 1/2 r )
= [—) h? | —sin 6 + cot 6 cos & — — sine}e"”
8r i sin“ @
1/2 B 2
_(3 2| cos’d 1 i
- (87[) U Y sine}e
~ illzhz [ sin?0 + cos? 6 - 1 0
“ |8 sin @
3 1/2 )
= [g) n?(-2sin@)e' = 2n%Y,
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) 3 1/2 _ y
L,Y11 +'h%(§) sin g e

3 1/2 )

Hence the required result.

7.14  The raising (J,) and lowering (J_) operators are defined by J, = J, + iJy and J_ = J, - iJ,. Prove
the following identities:

(i) [y, d.]=F I,
(i) [y, del=—ind,
(iii) [J,, 3. 1==%nd,
(iv) J,J =J2-02+nJ,
(v) JJ, =J32-0%2_ny,

Solution.
(i) [ ded = e K £i,, J,]
=0+i(in)J,
= Fh,
(i) [y 3 = [3y, L1103, 3]
= —inl,

(i) [3o 3 = [3,, 121003, 3]
= ihd, £ (-ihd,) = h (£, +13,)
= +hl,

(iv) 3.0 = (3, +id,)J, - 1))
=35 +3-i(3Jd,-3,3)
=J32-32 -i[3,,3,1=0" -+ nJ,
v) 13, = (3, i3I, —13)=3F + I +i0J, - 3,J))

=J32-32+i[,,3,1=0" -3 - nJ,
7.15 In the | jm) basis formed by the eigenkets of J? and J,, show that
(GMEI_3,Limy = (= m)(j +m + 17
where J, = J, +iJy and J_ = J, — iJ,.
Solution. In Problem 7.14, we have proved that
JJ, =32-02-ny,
(ml3_J,1jm) = (jm|3% =37 — hd,| jm)
= [i(j +)—m? —m]#*(jm| jm)
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Since {(jm|jm) = 1,
(M3, 1jmy = [j? = m?+ j — m]n?
= [(j+ m)(j—m) + (j — m)]A®
=(-m+(j+m+Dn?

7.16 In the |jm) basis formed by the eigenkets of the operators J? and J,, obtain the relations for
their matrices. Also obtain the explicit form of the matrices for j = 1/2 and j = 1.

Solution. As J? commutes with J,, the matrices for J and J, will be diagonal. The eigenvalue-
eigenket equations of the operators J? and J, are

32 jmy = j(j + 1) A%| jm) (i)
J,1jm)y = ma| jm) (ii)
where
j=0,12,1,32,..; m=j,j-1,j-2, ...,

Multiplication of Egs. (i) and (ii) from left by {jm’| gives the J? and J, matrix elements:
(M1 P1m) = j (i + 1) 72 & oy
(I3, 1jm) = MAdy Oy

The presence of the factors gy and &,y indicates that the matrices are diagonal as expected. The
matrices for J? and J, are:

N~

N
J_21 _21

j=1, m=10 -1

7.17 Using the values of J,|jm) and J_|jm), obtain the matrices for J, and J, for j = 1/2 and
j=1
Solution. In Problem 7.9, we have proved that

3, 1imy =[i(i + 1) = m(m + DI"2 Al j, m + 1) 0]
I_1jmy=[j(i +1) — m(m-J**a1j, m - 1) (if)
Premultiplying these equations by {j'm’|, we have
(G'm13,0m) =[G+ 1) — m(M + D126, 80 s (i)
G'm1om) =[G+ - m(m = D12 1880 ma (iv)

Equations (iii) and (iv) give the matrix elements for J, and J_ matrices. From these, J, and J, can
be evaluated using the relations

1 i
L=50 43, =50, -0)
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For'—l' J—h01 J—hoo
1=7" * lo o) 10
01 0 —i
JX_E , Jy:E
2{1 0 2li o0
042 0 0 0 0
For j = 1: I,=nl0 0 2] J=n|v2 0 0
0 0 O 0\/50
010 0 -i 0
h h
Jo=—110 1] Jy=-—7=|i 0 -
ﬁ01o ‘50 0

7.18 State the matrices that represent the x, y, z components of the spin angular momentum vector
S and obtain their eigenvalues and eigenvectors.

Solution.  The matrices for S,, S, and S, are

A0 1 (0 —i a1l O
Sx_E(l 0) Sy_ﬁ(i oj’ 32_5[0 —1]

Let the eigenvalues of S, be A. The values of A are the solutions of the secular determinant

—h—-21 0

a
Let the eigenvector of S, corresponding to the eigenvalue %h be [ l].
2]

1 0)\la a
lh q :lh q
2 {0 -1)la,)] 2 |a,

a a
( l]:(l] or a,=0
) aQ,

Then,



Angular Momentum and Spin e 189

The normalization condition gives
layP=1 or a =1

. . 1. . (1 .
i.e., the eigenvector of S, corresponding to the eigenvalue Eh is [0] Following the same

: . . 1. . (0
procedure, the eigenvector of S, corresponding to the eigenvalue _Eh is [J The same procedure

can be followed for the S, and S, matrices. The results are summarized as follows:

1 1 (1
Spin matrix S,: Eigenvalue —# Eigenvector —

p X g9 2 g9 2 J
Eigenvalue 1h Eigenvector L !
’ 2 2 1

Spin matrix S,: Eigenvalue lh Eigenvector L[t

g v TR 2 i
Eigenvalue —lh Eigenvector Lt
’ 2 72 i

7.19 Derive matrices for the operators J2, J,, J, and Jy for j = 3/2.

Solution. For j = 3/2, the allowed values of m are 3/2, 1/2, -1/2 and -3/2. With these values for
j and m, matrices for J? and J, are written with the help of Egs. (7.11) and (7.12). Then,

1000 30 0 O
0100 01 0 O
=Ly , =1
4 0010 2 100-1 0
0001 00 0 -3
Equations (8.44) and (8.45) give the matrices for J, and J_ as
0 \/g 0 0 00 00
J 0 02 0 J s J30 20
o 00 43 102 00
0 00 O 00430
The matrices for J, and J, follow from the relations
1 1
Je=50,+3) Jy=50,+1)
03 0 0 03 0 0
, 1,3 0 20 |- 020
" 0 2 03| 2 g 2 043
0 043 0 0 03 0
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7.20 If the angular momentum operators obey the rule [J,, J,] = —i#J, and similar commutation
relations for the other components, evaluate the commutators [J?, J,] and [J%, J,]. What would be
the roles of J, and J_ in the new situation?

Solution.
[P 30 = [3% 3 + [, 3d + [9Z, 3

=3[0y, Id + [y 313y + 3,03, 3] + [3, 3,
= indyJd, + ind,J, - ind,Jy - indyJ, = 0
Similarly, [J% J,] = 0. Hence,
[0%,3:] = [9% 3,0 +i[3% 3] =0
Let us evaluate [J,, J,] and [J,, J_]:
[ 341 = [ I 1 + i[9, 3] = —ihdy, — hdy, = —hd,

Similarly, [J,, J_] = AJ_.
Thus, with the new definition, J, would be a lowering operator and J_ would be a raising
operator.

7.21 For Pauli’s matrices, prove that (i) [oy, oy] = 2ig, (ii) o0y0; = i.

Solution.
(i) We have

S= Eho: [Sx. Sy] = 7S,
Substituting the values of S,, S, and S,, we get

1 1 1 .
|:§hO'X, EhO'yji = |h§h0’z or [O'X, q,] = 2io;

o e (00
(o 36 -6 )

7.22 Prove by direct matrix multiplication that the Pauli matrices anticommute and they follow the
commutation relations [oy, oy] = 2io;, Xyz cyclic.

R N R
ol s
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i 0 -i 0
[0w g1 = a0y = o= | o 7| 4

2i 0 (1 0 ,
= | =2i = 2io,
0 -2i 0 -1

7.23 The components of arbitrary vectors A and B commute with those of o. Show that (o - A)
(0-B)=A-B+io- (AxB).
Solution.

(o- A)(o- B) = (A + oA, + G;A) (6B« + ¢yB, + 0;B,)
= 6AB + 0/AB, + 0/AB, + oy, AB, + 0,0, ABy
+ 0,0, AB, + 0,0, AB, + 0,0, A,B, + 0,0, A,B,
Using the relations

2 2 _ 2 _
oy =0,=0;=1
0,0, =io,, 0,0, =ioy, 0,0, =0,

0,0, + 0,0, =0,0,+ 0,0, =0,0,+ 0,0, =0
we get
(o-A) (0-B)=(A-B) +ig, (AB, - AB,) + ig, (A,B, - AB,) + iox (AjB, - AB))
=(A-B) +ic-(AxB)
7.24  Obtain the normalized eigenvectors of oy and o, matrices.
Solution. The eigenvalue equation for the matrix s, for the eigenvalue +1 is

0 1)a) 1 &
1 0)la - a,
= or a; = ap
& 8,
Normalization gives |a,2 + |a)> =1 or a =a, = 1/4/2.

. . . 1 (1
The normalized eigenvector of o for the eigenvalue +1 is —[ j

N

. 1 (1
The normalized eigenvector of o, for for the eigenvalue -1 is E[ 1].

The eigenvalue equation for the matrix o, for the eigenvalue +1 is
0 —i(a ay i
. = or ail =ap
i 0)la, a,

1 i
lagl* + layil® =1 or 2af=1 a=-7=, a=—
V2 2

Normalization gives
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. . . 1 (1
The normalized eigenvector of oy, for the eigenvalue +1 is —(J
i

A

1
The normalized eigenvector of o for the eigenvalue -1 is %[ ]
—i
7.25 Using Pauli’s spin matrix representation, reduce each of the operators
(i) S2S,S7; (i) S2S7S7;  (iii) S¢S,S3
Solution.

2 2 5
. /] /] /] /]

2 2 2 6
L oe2c2c2 _ (B} 2R} ofh) o (h
(i) SxSyS; =(§ O3] %7 % =|7]"

3 5 5
(i) S.S,S; = 5 0% 50y [E) ol = [E) 0,0,0, = [E) i

7.26 Determine the total angular momentum that may arise when the following angular momenta
are added:

MNj1=Lj=1 (ii)j,=3,J,=4, (i), =2, j,=1/2.
Solution. When the angular momenta j; and j, are combined, the allowed total angular momentum
(1) values are given by (ji + o), (1 +j2 = 1), ... []1 = Jl-
(i) Forj, =1, j, =1, the allowed j values are 2, 1, 0.
(if) For j; = 3, j, = 4, the allowed j values are 7, 6, 5, 4, 3, 2, 1.
(iif) For j; = 2, j, = 1/2, the allowed j values are 5/2, 3/2.
7.27 Determine the orbital momenta of two electrons:
(i) Both in d-orbitals; (ii) both in p-orbitals; (iii) in the configuration pld*.
Solution.

(i) When the two electrons are in d orbitals, 1, = 2, I, = 2. The angular momentum quantum
number values are 4, 3, 2, 1, 0. The angular momenta in units of 7 are

JI0+1) =20, V12,6, 42,0
(if) When both the electrons are in p-orbitals, I, = 1, I, = 1. The possible values of | are 2,

1, 0. The angular momenta are \/g \/E 0.
(i) The configuration pld! means I, = 1, I, = 2. The possible | values are 3, 2, 1. Hence, the

angular momenta are \/ﬁ \/g V2.

7.28 For any vector A, show that [o; A - d] = 2IA X o
Solution. The x-component on LHS is

LO'X, Aoy, + Aoy + AZO'ZJ

Aoy ox ]+ A [O'X, ay]+ A, [O'X, O'Z]

0+ 2iA0, — 2iA,0,
Adding all the three components, we get
[, A-c]l=i2i(A0, - Ao, + [2i(A0C, - Ac,) +k2i(Ao, - Ao,) =2iAx o
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7.29 The sum of the two angular momenta J; and J, are given by J = J; + J,. If the eigenkets of
JZ and JF are | j;m,;) and | j,m,), respectively, find the number of eigenstates of J2.

Solution. Let the orthogonal eigenkets of J? and J, be |jm). The quantum number j can have the
values (j1 + jo), (Jj1 +jo— 1), ..., |j1 — Jo|- We can have (2] + 1) independent kets for each of the
values of j. Hence the total number of |jm) eigenkets are

htiz
o 23 j+2jp+1 ifj >
Ith . -z
. z (2J+1): it
e 2% j+2ji+1 iffp >
j2=I
It may be noted that the first line corresponds to j; > j,. While taking the summation, each term in
it contributes 1 which occurs (j; + jo) — (j1 — J2) = 2j, times. Since both j; — j, and j; + j, are included
in the summation, an additional 1 is also added. Similar explanation holds for the j, > j; case. Taking
J1 > Jo, we get
lhgﬂ @2j+1) = 2 (o + Jz)(él +ip+1) 2 (b — 2 _21)(11 —I2)
=il

+2j,+1

=4jjp + 2]y + 2)p + 1= 2J3(2), + 1) + (2, + 1)
=@ +1) @2t 1)
The number of simultaneous eigenstates of J and J, = (2j; + 1) (2j, + 1).

7.30 If the eigenvalues of J% and J, are given by J2|Am) = A|Am) and J,|Am) = m|Am), show
that A > m?,
Solution. Given J2|Am) = A|Am). Find

(QF +IHIAm) + IZ] Am) = 1| Am)
(Am|IZ1Am) + (Am]IZ| Am) = A(Am| Am) — (Am]JIZ| Am)
(Am]IZ1Amy + (Am]I7] Am) = 2 —m?
Since J, and J, are Hermitian, the LHS must be positive, i.e., 4 - m? > 0.

7.31 The eigenfunctions of the Pauli spin operator o; are « and f. Show that (& + ﬁ)/\/f and
(o - ﬂ)/\/g are the eigenfunctions of o, and (o + iﬂ)/\/g and (o - iﬂ)/\/g are the eigenfunctions
of g.

Solution. The Pauli operators are

(1) o0 Lo

The eigenvalues of oy are +1 and —1. The eigenfunction corresponding to +1 eigenvalue is (refer

Problem 7.24)
e e R T
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The eigenfunction corresponding to the eigenvalue -1 is

)40 O 4o

Similarly, the eigenvectors of o are (o + iﬂ)/\/g and (- iﬂ)/\/i
7.32  An electron in a state is described by the wave function
1 i - T 2.2
w = —— (" sin @ + cos ) R(r), [R(r)[Pr2dr =1
Nar E[

where @and ¢ are the polar and azimuth angles, respectively.

(i) Is the given wave function normalized?
(if) What are the possible values expected in a measurement of the z-component L, of the
angular momentum of the electron in this state?
(iii) What is the probability of obtaining each of the possible values in (ii)?

Solution.  The spherical harmonics

3 1/2 3 1/2 )
Yy = (Ej cos 6, Yy =— [Q) sin ge'?

Hence the wave function of the given state can be written as

Y= [_\/%Yll + \/%Ym] R(r)
- 2
[ Yll \/’ ]

[ e Ry

1 V2 J2

= |Y11| YlO 3 — Y11Y10 3

r2r

i) Jy* g//dr_'[lR(r)l2 r2 drjj

‘( Pt e J

sin #dodg

YlOYl’i
= i (sin? @ + cos? 6) + L sino + cosd (e +e7?)
4 4

1 .
= E(1+ sin 26 cos @)

Hence,

[v*wdr (1 + sin 26 cos ¢) sin 6d6 d¢

1
gl
o — 3
o —y

T 2r

2r
1
sin 6d@ d¢ + — sin 2@sin 6 cos ¢ d@ d

1
4>|H
O‘—.N
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As the ¢-part of second integral vanishes,
127 7 .
* =——| sin =1
Jv*ydr i '([S 0do
Therefore, the wavefunction y is normalized.
(if) The m; value in Y1, is 1 and in Yy it is zero. Hence the possible values in a measurement

of L, are & and zero.
(iii) The probabilty density P = |2 Since the wavefunction is normalized, the probability of

2
2 2
H—m—[§]—§

(3]

7.33 The rotational part of the Hamiltonian of a diatomic molecule is

and that of

1 1
E(LZX + L§)+TL§,|

which is moment of inertia. Find the energy eigenvalues and eigenfunctions.
Solution.

e 1 1
Hamiltonian H = o7 L+ L)+ T|_§

1 2 2 1, 1, 1,
= — — ==L+ —L
o0 (L + Ly + L)+ o0 L o0 + o1 L

The eigenkets are the spherical harmonics. Hence energy E is obtained as
— 1 2 2 1 2
E= (H):ﬁ(LX + 1) +TLZ

1

- 1 2 232
2II(I+1)h +2Imh

1=0,12,...
m=0,+£1%2, ..., %I

_
= oy [0+ 1) +m?] }

1
7.34 The spin functions for a free electron in a basis in which S? and S, are diagonal are [0] and

2
normalized eigenkets of S, and S,.

0 1 1 . . . - .
[J, with S, eigenvalues —# and _Eh’ respectively. Using this basis, find the eigenvalues and

Solution. We have
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In the diagonal representation of S? and S,, the eigenvalue eigenket equation for S, is

NN

where A is the eigenvalue. Simplifying, we get

da, = tha o lz—hz
17222 T4
/]
=+ —
A o2

The normalization condition gives
a2+as=1 or 2a’=1 or a=a,= =N
1 2 1
\2

Hence, the normalized eigenket corresponding to the eigenvalue (1/2)% is

o

Similarly, the normalized eigenket corresponding to —(1/2)% eigenvalue is

i

Proceeding on similar lines, the eigenvalues of S, are (1/2)a or —(1/2)h and the eigenkets are
1 (1 q 1 1
2 i J2 =i

7.35 Consider a spin (1/2) particle of mass m with charge —e in an external magnetic field B.
(i) What is the Hamiltonian of the system?
(if) If S is the spin angular momentum vector, show that
ds
dt

respectively.

:—%(Sx B)
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Solution.
(i) The magnetic moment of the particle is

e
H=—S
The interaction energy E of the moment z in an external magnetic field B is given by

E:—,u~B:%S~B

Hamiltonian H =

(if) In the Heisenberg picture,

ds 1 e
a E[S’ H]—%[S, S-B]
e
= ﬁ [S, SXBX + SyBy + SZBZ]
The x-component of the commutator on RHS is
[Sx’ S-B]= [Sx’ SXBX] + [Sx’ SyBy] + [Sx’ Ssz]

Since B,, B, and B, are constants,
[Sx. S-B]

[Sx, Sx1By +[S. Sy1By +[S4, S;1B;
0 +i4S,B, — ihS, B,
~in(S,B, - S,B,) = —iA(S x B),

Similarly,
[Sy, S - B] = —in(S x B),
[S,, S - B] = -iA(S x B),
Substituting these values, we get
[S,S-B]=-ik(Sx B)

ds

e
E——E(SX B)

7.36 The sum of two noninteracting angular momenta J; and J, is given by J = J; + J,. Prove the

following: (i) [J,, Jy] = indy; (ii) [I% If] = [92 J3] = 0.
Solution.

(i) [‘Jx’ ‘Jy] = [‘Jlx + ‘J2x’ ‘le + ‘JZy] = [‘Jlx’ ‘le] + [‘J2x’ ‘JZy] + [‘Jlx’ ‘JZy] + [‘J2x’ ‘le]

Since the two angular momenta are noninteracting, the third and the fourth terms are zero. Hence,

B ] = ihdy, +ihd,, = ih(3y, + Ip,)
= ind,
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(i) [3%, 3f1=1[01 + )% 1= [3F, 31+ 33, 31+ [3da, I + [3p3, If]
Since J; and J, are noninteracting, all term, except the first are zero. The first term is zero since both
are J? in the commutator. Hence,

[3%,3f1=0
Similarly, [J2,J3]1=0

7.37 Consider two noninteracting systems having angular momenta J; and J, with eigenkets | j,m,)
and | j,m,), respectively. The total angular momentum vector J = J; + J,. For given values of j;
and j,, the simultaneous eigenket of J2,J,, J2, J3 is | jm). Show that (i) m = m; + m,; (ii) the
permitted values of j are (ji +Jo), (j1 +j2 = 1), (1 +J2=2) ..., lj1 = J2l-
Solution.
(i) From Eg. (7.25), we have
[jm)y =3 [mm,Xmm, | jm) 0]

my, My

where (m;m, | jm) are the Clebsh-Gordan coefficients. Operating Eq. (i) from left by J,, we get

J 1jm) = Z (J1z + J3;) [mymy Xmym, | jm)

my, My

maljmy =3, (my+ my) i [mm,Xmym, | jm)
my, my

Replacing |jm) on the LHS by Eg. (i) and rearranging, we obtain

> (m—m;—m,)|mm,)mm, | jm) =0 (i)

Equaton (ii) will be valid only if the coefficient of each term vanishes separately, i.e.,
mMm-m—-my) =0 or m=my +my

which is one of the rules of the vector atom model.

(ii) m; can have values from j; to —j; and m, from j, to —j, in integral steps. Hence, the possible
values of m are (j; + j2), (i1 +j2 - 1), (i1 +j2 = 2), ..., = (j1 + jo). The largest value of m =
(j1 + o) can occur only when my = j; and m, = j,. The value of j corresponding to this value of m
is also (j1 + jo).

The next largest value of m is j; + j, — 1 which can occur in two ways: m; = j;, my=j, - 1
ormy=j; -1 my=j,. Wecan have m=j, +j,—1whenj=j, +j,orj=j, +j,—1ascan be
seen from the following. When j = (j; + j»), m can have the values (j; + J2), (j1 + j» — 1), ...,
= (ja +J2),and when (jy +jo—1), m=(js +j2—-1), (s +j2-2), ..., =(j1 + 2 — 1). That is,
m = (j; + j, — 1) can result from j = (j; + j, ) and from j = (j; + j, — 1). This process is continued
and the results are summarized in Table 7.1.
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Table 7.1 Values of j and m for Different Values of m; and m,

my m, m j

J1 J2 itz i+l
_jl jz_—l o _jl'_"jz
-1 12 iti-1 itl-1
J1 j2-2 i1+
-1 -1 ji+-2 i+i-1
-2 J2 i+j—-2
J1 -k ISP
-1 o-k+1 i+i-1
-2 jo—k+2 itk i+-2
ji—k J2 i+i-k

The smallest value of j occurs for j; — k = —j; or j, — k = —j,, i.e., when k = 2j; or 2j,. The smallest
value of jisthen jy +jo—k =j1 + jo — 2]y = jo — J1 Or j1 + jo — 2J» = j1 — jo. In other words, the
permitted values of j are

(Jo+J2) s+l =1, (Jr+J2=2)s s 11— ol
7.38 Consider a system of two spin-half particles, in a state with total spin quantum number

S = 0. Find the eigenvalue of the spin Hamiltonian H = A S, - S,, where A is a positive constant in
this state.

Solution.  The total spin angular momentum S of the two-spin system is given by
S = Sl + Sz

$2=52 +82+25-S,

$2-52-53
A
1 3 3
; 2 _ 1 92 9.2
Eigenvalue of § = 5> % 2h 4h
H 2 3 2
Eigenvalue of S; = Zh

Eigenvalue of S? = 0

0-@4)n* - @4 |_ 3

AR2
2 4

Eigenvalue of AS;-S, = A

7.39 Consider two noninteracting angular momenta J; and J, and their eigenkets | jym) and | j,m5).
Their sum J = J; + J,. Derive the expressions used for the computation of the Clebsh-Gordan
coefficients with j; = 1/2, j, = 1/2.

Solution. We shall first derive the expressions needed for the evaluation of the coefficients. In
Problem 7.17, we derived the relation

I_1imy=[i(j +2) = m(m - D>l j, m - 1) (i)
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The Clebsh-Gordan coefficients {m;m,| jm) are given by

[jm) =3, [mm,){mm,| jm) (i)

mp,my

Operating from left by J_, we get

Joljmy =3 (I + Jp ) Imgmg)(mm; | jm)

m{,ms

Using Eq. (i) and remembering that | m;m,) stands for | j; j,m;m,), we obtain

G+) - mm -1 jm-1) = ¥ [iy(y +1) — my (m] = DI*?Am; — 1 m3)(mim; | jm)

m{,m;

+ Y Liz(iz +2) — mj (my — 1)]Y2 alm{, mj — 1)(mm | jm)

m{,mj

Operating from left by bra (m;m,|, we get
[ (j+2) — m(m - D]¢mym, | j,m 1) = [jy(jy +1) — my(my + DFZ(my +1 my | jm)
+ [Jo(J2 +1) — my(m; + 1)]

Repeating the procedure with J, instead of J_, we have

Y2(m,my, +1]jm) (i)

[ (i +D - mm + D2 (mmy | j,m + 1) = [j(jy +2) — my(my - DIF*(m; —1, m, | jm)
+ LiaCip + 1) = my(my — DIY>(my, m, — 1] jm) ~ (iv)

The Clebsh-Gordan coefficient matrix has (2j; + 1) (2j, + 1) rows and columns. For the
j1 = 12, j, = 1/2 case, this will be a 4 x 4 matrix. It breaks up into smaller matrices depending on
the value of m. The first such matrix will be a 1 x 1 submatrix for which m = j; + j, and
j = J1 + Jo. Then we have a 2 x 2 submatrix for which m = j, + j, — 1 and j = j, + j, or
j=]j1 *+]Jo—1 (refer Table 7.1). Obviously, next we get a 1 x 1 submatrix. For convenience, the first
1 x 1 submatrix is selected as +1, i.e., the Clebsh-Gordan coefficient

(o bl + o b+ 522 =1 V)
To compute the 2 x 2 submatrix, set my = ji, my =j, =1, j=j; + j, and m = j; + j, in Eq. (iii). On
simplification we get
(h+ J.z)l/2 (Joh-Uh+i h+tl-D= Jélz (il i+ Jov b+ 522

Using Eq. (v), we obtain

. 1/2
T I ' .
(o b2 =Uht J2 b+ I D_(h+b) (vi)

Proceeding on similar lines with my = j; — 1, my = j,, j = ji + jo and m = j; + j,, we get

, 1/2
T O ! .
(h=L i+ bt -D= (—Jl + Jz) (vii)
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Using the unitary character of the Clebsh-Gordan coefficient, the condition
(JmImym,) = {mym, | jm)*

and Eqs. (vi) and (vii), we can obtain

. 1/2
N T T T T O A
(ol -Uh+l-Lh+i-D (—“b) (viii)
j 1/2
=L jplih+ L+ -D=-|—% i
(h=L 2l =Lt k=D (Jlﬂz) (ix)

The results are summarized in Table 7.2.

Table 7.2 Clebsh-Gordan Coefficients for |mim;) = |ji, jo — 1) and | j; — 1, jo)

m, m, [jm)
lh+ o bt Jo =D lh+j-Lh+i-D

j 12 j 12
i i _1 % %
h k2 (Jl"’]zj (Jl"'lzj

j 12 j 12
i _1 i % - %
I l2 (Jl"’]zj (11+12)

7.40 Evaluate the Clebsh-Gordan coefficients for a system having j; = 1/2 and j, = 1/2.

Solution. The allowed values of jare 1, 0. For j=1, m =1, 0, -1 and for j = 0, m = 0. The number
of eigenstates is 4. The 4 x 4 matrix reduces to two 1 x 1 and one 2 x 2 matrices, details of which
are given in Table 7.2. The values of the elements (1/2, 1/2 |1, 1) and (-1/2, -1/2 | 1, -1} are unity.
The elements (1/2, -1/2 |1, 0), (1/2, -1/20, 0), (-1/2, 1/2|1, 0) and (-1/2, 1/2|0, 0) are easily
evaluated with the help of Table 7.2. All the Clebsh-Gordan coefficients are listed in Table 7.3.

Table 7.3 Clebsh-Gordan Coefficients for j, = 1/2, j, = 1/2

I m 1 1 0 1
my > 1 0 0 -1
12 12 1 0 0 0

12 -112 0 V12 V12 0
12 12 0 Ju2 AT 0

-1/2 -1/2 0 0 0 1

N

I~
N
N

7.41 Obtain the Clebsh-Gordan coefficients for a system having j; = 1 and j, = 1/2.

Solution. The system has two angular momenta with j; = 1 and j, = 1/2. The allowed values of
jare 3/2and 1/2. For j = 3/2, m = 3/2, 1/2, -1/2, -3/2 and for j = 1/2, m = 1/2 and —1/2. The number
of | jm) eigenstates is thus six, and the 6 x 6 matrix reduces to two 1 x 1 and two 2 x 2 matrices,
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details of which are given in Table 7.4. The elements (1, 1/2|3/2, 3/2), (1, -1/2|3/2, 1/2),
0, 1/2| 372, 1/2), {1, -1/2| 1/2, 1/2) and 0, 1/2| 1/2, 1/2) are easily evaluated (refer Problem 7.39)
and are listed in Table 7.4. Evaluation of the remaining elements is done as detailed now.

Table 7.4 Clebsh-Gordan Coefficients for j; = 1 and j, = 1/2

O O e A e A N -
2'2 2'2 2'2 2' 72 2' 72 2' 2

m, m

N

N Nl
NES) %|"‘

o o
|
Nl NIE
&||—\ w| N
N
= &l

| =

-1

w|

%|"‘ w| N

-1 -

N N

0, =1/2| 3/2, -1/2):
Setting j = 3/2, m = 1/2, m; = 0 and m, = =1/2 in Eq. (iii) of Problem 7.39, we get
2(0, =1/2 | 3/2, -1/2) = 2Y%(1, -1/2]3/2, 1/2) + (0, 1/2|3/2, 1/2)
Substituting the two coefficients on RHS from Table 7.4, we obtain
(0, =172 1312, -1/2) = 23
(-1, 1/2 | 3/2, -1/2):

Setting j = 3/2, m = 1/2, m; = -1 and m, = 1/2 in Eq. (iii) of Problem 7.39 and proceeding as in
the previous case, we get

2(-1, 1/2 | 3/2, =1/2) = 2'2 (0, 1/2 | 3/2, 1/2)
(-1, 1/2 1312, -1/2) = U+3.
(0, 1/2 | 172, —1/2):
Setting j = 1/2, m = 1/2, m; = 0, m, = =1/2 in Eq. (iii) of Problem 7.39, we obtain the value as 1/\/5.

(-1, 1/2 | 1/2, -1/2):
Again, by setting j = 1/2, m = 1/2, m; = -1, m, = 1/2 in Eq. (iii) of Problem 7.39, we get the value

as —+/2/3.

Obviously, the last element (-1, -1/2 | 3/2, =3/2) = 1.
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7.42 Obtain the matrix of Clebsh-Gordan coefficients for j; = 1 and j, = 1.

Solution. The nonvanishing Clebsh-Gordan coefficients can be evaluated with the help of
Tables 7.2 and 7.5. These coefficients are

1,112, 2) = (1, -1]2, 2y = 1
1,002, 1) =(1, 0|1, 1) = (0, 1|2, 1) = (0, 1|2, -1) = (L, -1|1, 1)
= (<1, 02 - 1) =(1, -1|1, 0) = 142
(0,111, 1y = (-1, 1|1, 0) = (-1, 0|1, -1) = ~1y/2

(1, =112, 0y = (-1, 1|2, 0y = 16
(1, =110, 0y = (-1, 110, 0y = 1/\/3
(0,0]2, 0y = +/2/3; (0,0]0,0)=-1//3: (0,01, 0)=0

Table 7.5 Clebsh-Gordan Coefficients for [mm,) =|j;, ,—2), |j—1 j,—1 and |j; -2, J,)

m m2 | jm)
i+ Jo o+ 1o =~ 2) i+ lo-Lh+i—-2) lh+i-2 h+i—-2)
— o oAl
i o -2 [M}m [MT i [ (i -1) T ;
(i + J2)A (i +1,)B AB
-2 Q-1 e T’z i~ [ @y T’Z
(h+ J2)A [(is+ 12)B1" AB
-2 j [MT” _[_iz_(zh_—l)}”z [12(212 ) T’Z
' ’ (. + A (. + 1)B AB

A=2j+ 21, B=ji+j,-1

7.43 An electron is in a state described by the wave function

=L(cose+e’i¢sin O)R(r), [IRMPr?dr=1

= )

where @ and ¢ are, respectively, the polar and azimuth angles: (i) What are the possible values of
L,? (ii) What is the probability of obtaining each of the possible values of L,?

Solution.
(i) From Table 5.2 we have

3 1/2 3 1/2 )
Yio = (Ej cos 6, Yy g = (g) singe ™

Hence the given wave function can be written as

V= LS (Yoo + \/EYl,—l) R(r)

NE

The possible values of L, are 0 and #.
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(i) [ Iyl dz = % [IR(ME (Yo + ¥2Y,_)I? ¥ sin oo dg dr
(Yo + \/EYl,—l)* (Yo + \/EYl,—l)

= YigYio + 27 Y1 + \/5 (YioY1—1 + Y121Y10)

[(Yio + \/EYl,—l) ?

e (cos” @ + sin 9)+47[ cos@sind (e +¢e?)

3 .
P (1 + sin 28 cos ¢)

oo T 2r
[lw?dr %j|R(r)|2r2dr'[sin 6d6 | (1+sin 20 cos ¢)dg
4 0 0 0

171'
5 [sinodo =1
0

i.e., the given wave function is normalized. The probability density is then P = |y|>. Hence, the
probability of obtaining L, = 0 is (1/\/§)2 =1/3. The probability of obtaining L, = -1% is
(213)? = 2/3.

7.44  An operator P describing the interaction of two spin-half particles is P = a + boy - 03, where

a, b are constants, with o; and o, being the Pauli matrices of the two spins. The total spin angular
momentum S = S, + S, = (1/2) (0; + 03). Show that P, S? and S, can be measured simultaneously.

Solution. P, S? and S, can be measured simultaneously if
[P, $*1=[P,S,]=[S?,]=0

We know that [S?, S,] = 0. From the definition

hz
§%2= T(O'f + 0?2 + 20, 0,)

we have

282 1
0,0, = w7 5(0'12+ o3)
Since for each particle,
2_ 2 2 2 _
oc°=o0y +oy, +0;, =3I

where | is the unit matrix, we have

1 1

5(0'12 +02)= 5 @1+31)=3l

Hence,

0101 = h—2—3|
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2
(%P1 = [57, ] +bIS%, 0y 0] - b[sz%—sl}
, 287 5
= b{s ,h—z}—b[s ,311=0
28?
[SZI P] = [SZI a] + b|isznh_2_ 3'} = 0

Since S? and S, commute with P, all the three can be measured simultaneously.

7.45 Obtain the Hamiltonian operator for a free electron having magnetic moment 4 in an external
magnetic field B, in the z-direction in the electron’s reference frame. If another constant magnetic
field B, is applied in the y-direction, obtain the time rate of change of x in the Heisenberg picture.

Solution. The magnetic moment of the electron is given by

where S = 1/2 ho and g is the Bohr magneton. The Hamiltonian
H = —H-B= —H;b; = :uBo-sz
With the total magnetic field applied B = B,y + B,Z, the total Hamiltonian

H = i (6,8, + oBy)
From Eq. (3.30),

Y L H = [4a0, 15(0,8, + 0,B,)]
S Moo o3
= -5 loxk+ 0,y + 0,7, 0,8, + 0B8]
I s 5 y
= -2 [0,,0,]B,% +[0,. 0,1 B, +[0,,0,] B,§

+[o,, 0,1 B,y +[0,, 0,1 B,Z +[0,, 0,] B,Z

Using the commutation relations among o, oy, o;, we get

du

- = '%ﬂé [2i0,B,% + 2i0,B, X + 2i0,B,§ — 2i0,B, 7]

2 N N o
= %,Ué [(o-sz - O-ZBy)X - O-szy + O-xByZ]
2
= 2 1Blox Bl =2 13 [Bx o]

= = [Bx 4]

which is the time rate of change of the magnetic moment.
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7.46 Obtain the energy levels of a symmetric top molecule with principal moments of inertia
b= =1l
Solution. Let (X, y, z) be the coordinates of a body-fixed coordinate system. The Hamiltonian
2 2
i K o

1 2 2 1 2
He 2] =4 g2 o= (2 4 12)+ =L
2{|1+|2+|3J or BB+ ok

1, 1(1 1),
= e oL
21 +2(|3 |) Z

[Im) are the simultaneous eigenkets of L2 and L,. The Schrodinger equation is

1, 1(1 1), B

[_ZI L +5(—|3 Tj LZ]Hm)—EIIm)
n? w1 1),

Elm_ﬁl(l—'—l)—'—?[z_l_jm

which is the energy equation for symmetric top. This energy equation can be expressed in the
familiar form by writing

72 n?
p— —:C
TR

Em=BlI(+1)+(C-B)m
The constants B and C are rotational constants.
=012 ..; m=0, £1, +2, ..., *l

7.47 The kets | j, my are the simultaneous eigenkets of J? and J,. Show that | j, m) are also eigenkets
of [J,, J,] and of [J,, J,]. Find the eigenvalues of each of these commutators.

Solution.  Operating [J,, J;] on the eigenkets | jm), we obtain
[Jx, J+] |Jm> = Jx‘J+|jm> - J+Jx|jm>

1 . 1 .
= §(J+ +J.)J, | jm) — J+§(J+ +J.)|jm)
1 . 1 . 1 . 1 .
= §J+‘]+|Jm>_§J7J+|Jm>_§J+J+|Jm>_§‘1+‘]fljm>

1 _ 1 .
= 533, 0im) = 53,91 jm)

From Problem 7.14,
JJ, =0 -02-n), 3 =X-32+h
Hence,

. 1 . 1 .
[3 JJ1im) = (0% =37 = #d,)jm) = (3% = 7 + ;)| jm)

= —hJ,1jm) = —mA*| jm)
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i.e., | jm)y are eigenkets of [J,, J,] with eigenvalues —-m#2. Now,
[3y, J:1im) = Qydy = 3.3,) [im)

L
2i

(J,=3J)J, | jm) - % J, (0, =3 jm)

1 . 1 .
= —op - im) + o 3.3 [ jm)
1
2i

_ 1 _
NG —hJZ)IJm)+§(J2—Jf +hJ,) | jm)

1 . 1 .
T hd,)|jm)y = T m#?| jm)

—imA?| jm)
That is, |jm) are eigenkets of the commutator [Jy, J,] with the eigenvalue —imi?.

7.48 The state of the hydrogen atom is 2p state. Find the energy levels of the spin-orbit interaction
Hamiltonian AL - S, where A is a constant.

Solution. The 2p state means s = 1/2, | =1 and j =1 + (1/2) = (3/2) or 1 — (1/2) = (1/2). The total
angular momentum

J=L+S (i)
FP=12+5%+2L-5S

H —AL~S—A(J2—L2—SZ) (ii)

so — - 2

The eigenvector associated with the variable J2, J,, L2, S, be |jmls). In this space,

J?jmls) = j(j + 1) #?| jmls) (iii)
2| jmls)y = s(s + 1) 42| jmls) (iv)
L2| jmlsy = I (I + 1) 72| jmls) (v)

Using Egs. (ii)—(v), the energy eigenvalue of Hy, is given by

j= 51 Eo= 2{Th 21* — 3 h
_A2
_2h
_1 - _ A3, 2 3.2
j= 5 Ees Z[Zh 21* —

= —AR?
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7.49 The Hamiltonian of a system of 3 nonidentical spin-half particles is
H= AS]_ Sz - B(Sl + Sz) . 33

where A and B are constants are S;, S, and S; are the spin angular momentum operators. Find their

energy levels and their degeneracies.
ertlng S= Sl + Sz + 33 and 312 = Sl + Sz, we have

S?2=S% +S2+2S,- S,

Solution.
_1 2 Q2 @2
S-S —5(5 S — S3)
Similarly,
1
S-S, 25(5122_ 512 - 522)

since S; = 1/2 and S, = 1/2, the possible values of the quantum number S;, = 0 and 1. When

S1» = 0, the possible values of S = 1/2 and 1/3. The Hamiltonian
H= ASl'SZ - B(Sl + Sz) . 33

= DS -+ o (7 - Sh- )

In the basis | SMS;,S3)
A B
HISMS1283) = 5 (S5 = S = 83) ISM;S18g) + (87 = ST, = 55) ISM;S;,85)

The energy is then,
A
E= 57’12[512(512 +1) = 5(5 +1) = S,(S; + 1]
B
+ EhZ[S (S+1) = 5,(Sp, +1) = S3(S5 + 1]

since S; = S, = S3 = 1/2. Now,
B

Ah2{512(512+1)_%} 2 {S(S+1)_512(512+1)—%}

E512,S = 2

As S = 1/2 when S;, = 0,
3
Bowz = _th

which is 2S + 1 = 2-fold degenerate. As S = 1/2 and 3/2, when S;, = 1,
_ AL, 3 B..(3 ., 3
Ev1p = 4h (2 2j+4h [4 2 4)
A 2 32 _ A_ 2
4h Bh —(4 B)h
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which is 2S + 1 = 2-fold degenerate. We also have

A 3 B 15 3
E1’3/2 = Ehz (2 - E) + Ehz (T -2 - Z)

A B,
= (Z-‘r?)h

which is four-fold degenerate.

7.50 Two electrons having spin angular momentum vectors S; and S, have an interaction of the

type
H = A(S;-S, - 35,S,,), A being constant

Express it in terms of S = S; + S, and obtain its eigenvalues.
Solution. The sum of the angular momenta S; and S, is

S:Sl+32
S2= S? +S3+25,S,

1
~($*-87 - 5))

Sl' Sz = 2

From Eq. (i),
Sz = Slz + SZZ
Sz2 = (Slz + SZZ)Z = Slzz + S222 + 2512822
1

SleZZ = 5 (Sz2 - Slzz - S221)

Hence,
1 3
81°S, —38,8;, =5 (8"~ 87 — §3) - 5 (S7 - S, - §3,)

In the simultaneous eigenkets | SM) of S and S,,
A(S;-S; —35;,5,,) ISM)

A 3A
= 5 (8%~ ~ ) ISM) - =~(S! - S, -~ 85,) ISM)

3

_ A U B SV A P ISV INLaY AVERS
_2[8(8+1) 2><2 ZXZ};”SM) (M

2

= g[S(S+1)—3M2] 7% |SM)

. 1 1
Since S = S; + S,, the quantum number S can have the values —+ - =1 or

2 2

1

4

1

2

()
(i)
(iii)
(iv)

- %th |SM)
V)

1

5= 0. When

S=0,M=0and when S=1, M =1, 0, -1. The eigenkets and the corresponding eigenvalues, see

Eq. (v), are as follows:
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| SM) Eigenvalues
[0 0) 0
1,2
[11) —5 A
|1 0) 1 AR?
1,2
11, -1) —5 A

7.51 The wave function = Cy ¥, m, + C2¥h,1,m, IS @ combination of the normalized stationary state
wave functions ypm. For i to be normalized, show that ¢, and ¢, must satisfy |c,? + |cyl* = 1.
Calculate the expectation values of L? and L,.

Solution. Let us evaluate the value of
(wly) = (CWnim, + CoVnlm )N QW nm, + C2¥n,lom, )
= 1S Wy | Wgm, > + 1€ W gty W ngtm, )
= |y + | ¢
For y to be normalized, it is necessary that

(wlyy =l +1cff =1
The expectation value of L2 is

WIL 1Y) = (CWam, + C¥rngtomy ) L2 €W rm, + SV inm, )
= 11 Wopm | L1W am, ) + 1621 Wity | LN W g1y, )
= 1Pl + DA% + (¢l ly(l, + 1) 22
The expectation value of L, is
WL ly) = A(CWnpm + SWntm )L C¥nm + CoWitm, )
= 16 Wy | Lo W oimy > + 1€ @ oy, | Lo Wi, )
= |cyPmyh + |y My

7.52 Verify that = A sin @exp (ig), where A is a constant, is an eigenfunction of L? and L,. Find
the eigenvalues.

Solution. The operators for L2 and L, are
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0 ( . 0 1 9 . i
2= | — L — —|A '
Ly sind 0 sin @ 50 + 20 35 sin ge

19, . :

- _A 2 _ o _ I¢
h Sin g a9(5|n 6 cos 6) <y SN 0:|e

= —AR? -—sine + cos’d 1 el
- sin@ sin@
= —AR? _—sina ;1 (cos?6 —1) | e

| sin @
= AR | —sing + — (—sin?@) | !¢

| sin @

= 2AR?sin@e' = 2n%y
That is, y is an eigenfunction of L? with the eigenvalue 242, and hence
Ly =— ih%(Asinaei"’) = nAsinge"? = hy

The function i is an eigenfunction of L, also with an eigenvalue 7.

7.53 State Pauli’s spin matrices and their eigenvectors. For Pauli’s spin matrices, prove the
following relations:

() ox =0y =07 =1

(i) oo, =io,; 0,0, =ioy; 0,0, =i0,.

(iy oo, + 0,0, =00, + 0,0, =0,0, + 0,0, =0.

y y y y
Solution. The Pauli spin matrix o is defined by
1

S= EhO'

e[l) oe(to) ool

oy, 0y, 0, are the Pauli spin matrices. From the definition it is evident that their eigenvalues are *1.
Their eigenvectors are (refer Problem 7.21).

. . . 1 (1
Matrix oy: eigenvector for +1 eigenvalue —[J

: . 1 (1
eigenvector for -1 eigenvalue ﬁ( 1]
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Matrix oy

eigenvector for +1 eigenvalue
eigenvector for —1 eigenvalue
Matrix o;,: eigenvector for +1 eigenvalue
eigenvector for —1 eigenvalue

o t-{L 39

- . 2 2
Similarly, oy =05 =1.

R R

The same procedure gives the other relations.

0 oo = (1 o) 50500 )
“lo Al 1)

The same procedure proves the other relations too.

S

N

7.54 The kets | jm) are the simultaneous eigenkets of J?and J, with eigenvalues j( j + 1)#? and m#,
respectively. Show that:
(i) J.|jmy and J_|jm) are also eigenkets of J? with the same eigenvalue.
(ii) J+|jm) is an eigenket of J, with the eigenvalue (m + 1).
(iif) J_|jm) is an eigenket of J, with the eigenvalue (m — 1)A.
(iv) Comment on the results.
Solution.  Given
Fjm) = j(j + 1)a*|jm) 0]
J|jm) = m|jm) (if)
(i) Operating Eq. (i) from left by J, and using the result [J,, J,] = 0, we have
3 jm) = j(j + DA, ] jm)
J23,1jm)y = j(j + 1)R23, [jm)
Similarly,
J23|jm) = j(j + 1)A_|jm)
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(if) Operating Eq. (ii) from left by J,, we get
Jidz | jm) = ma J, |jm)

Since [J,, J,] = Wy, 3, J, = J,J, — hI,.
we have
(Jz, J+ - hJ+)|jm> = th,,ljm)

Jpdeljmy = (m + 1) A, | jm)
(iif) Operating Eq. (ii) from left by J_ and using the result [J,, J_] = —AJ_, we get
J,d_1jm)y = (m - 1) AJ_|jm)

(iv) J.|jm) is an eigenket of J, with the eigenvalue (m + 1)% and of J2 with the same eigenvalue
j(j + 1)n2. Since operation by J, generates a state with the same magnitude of angular
momentum but with a z-component higher by 7%, J. is called a raising operator. Similarly,
J_ is called a lowering operator.

7.55 The two spin — half particles are described by the Hamiltonian
H=A (S + Sz) + B(S1-Sy)

where A and B are constants and S; and S, are the spin angular momenta of the two spins. Find the
energy levels of the system.

Solution. Let the total angular momentum
S=5+3, S; =Sy, + Sy

S-S, =%(52 -S¢ - S3)

Let the spin quantum number associated with S; be s; and that with S, be S,. Since S; = 1/2 and
S, = 1/2, the possible values of S are 0 and 1. When S = 0, the possible values of My = 0. When
S =1, the possible values of Mg = 1, 0, —1. The Hamiltonian

H= A, +5,) +B(S-$)

B
AS, + 5(52 —§2 - 82)

Selecting | SM,S;S,) as the eigenkets, we get

B
H|SM,S,S,) = AS,|SMS;S,) + 5(52 ~ 82 — S2)ISM,S;S,)

The energy
Esmg = AMZi+ %hz [s (S+1) - % - ﬂ
Eoo = —%th
B

= Ah+—h?
Eis +4
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B>
Eio= —h
0= 7

Eiq= —An +%h2

Eqo is a singlet whereas the other three form a triplet.



CHAPTER

Time-Independent
Perturbation

The potential energy of most of the real systems are different from those considered, and an exact
solution is not possible. Different approximate methods have therefore been developed to obtain
approximate solutions of systems. One such method is the time-independent perturbation.

8.1 Correction of Nondegenerate Energy Levels

In the time independent perturbation approach, the Hamiltonian operator H of the system is written
as

H=H+H (8.1)
where HC is the unperturbed Hamiltonian, whose nondegenerate eigenvalues E2, n=1,2,3 ..., and
eigenfunctions y;° are assumed to be known. The functions w2, n = 1, 2, 3 ..., form a complete

orthonormal basis. The time-independent operator H’ is the perturbation. The first-order correction
to the energy and wave function of the nth state are given by

EP =W IH [yd)y=(|H'I n) (8.2)

M _ 5 (m|H’|n) 0y

== |¥m (8.3)

where the prime on the sum means that the state m = n should be excluded. The second order
correction to the energy

’ 2
ED = 2,I(mIH [

8.4
n EO _ ED (8.4)

8.2 Correction to Degenerate Energy Levels

When a degeneracy exists, a linear combination of the degenerate wave functions can be taken as
215
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the unperturbed wave function. As an example, consider the case in which E? is two-fold degenerate.
Let y° and ¥ be eigenfunctions corresponding to the eigenvalues EY = EP and let the linear
combination be

¢ = Covi + Cif° (8.5)
where C, and C; constants. The first order correction to the energies are the solutions of the
determinant
Hon —E®  Hy

) ) =0 (8.6)
Hnl HII - Er(11)

The corrected energies are
E,=E%+E® E,=E? +EWY

n+
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PROBLEMS

8.1 Calculate the first order correction to the ground state energy of an anharmonic oscillator of
mass m and angular frequency o subjected to a potential V(x) = 1/2 mw?x? + bx*, where b is a
parameter independent of x. The ground state wave function is

1/4 2
Vo [ h ) P [ 2n ]
Solution.  The first order correction to the ground state energy
mo Y’ max?
1) _ 0 7y, 0\ _ 4
P rnintr=(22]"s ot 22
Using the result given in the Appendix, we get

1/2 5/2 2
E(gl):b(Mj z.ﬁ[ij _ 3

h 8 \mo)  4m2e?

8.2 A simple harmonic oscillator of mass mg and angular frequency @ is perturbed by an additional
potential bx®. Evaluate the second order correction to the ground state energy of the oscillator.

Solution. The second order correction to the ground state energy is given by

ED - 2,|<0|0|‘|'|mg|2 ’ H = by
m E0 - Em
In terms of a" and a,
1/2
X = (Zmowj (a+ah)
Pk
O]x%m)y= {Zmoa)} Ol@@+al@+ah@+alm, m=123, ..

312
/]
(Zmoa)) [(0O|aaa|3) + (0|aaa' + aa'a|l)]

The other contributions vanish. For the nonvanishing contributions, we have
(0laaa|3) = V6, (0laaa’ +aa'a|ly=2+1=3

co _pe(_h V(_6 9 ) 112K
0= + =-
2myw -3ho -how 8m8’a)4

8.3  Work out the splitting of the P — 1S transition of an atom placed in a magnetic field B along
the z-axis.
Solution.  For P level, S = 0 and, therefore, the magnetic moment of the atom is purely orbital. The
interaction energy between magnetic moment and the field is

e

H'=—,B=——
ILIZ 2m0 LZB
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mq is the mass of electron and L, is the z-component of the orbital angular momentum. The first order
correction to energy of the P state is

e
@ = N
: <Im [Zmoj ‘

The P level thus splits into three levels as shown in Fig. 8.1. The IS level has neither orbital nor
spin magnetic moment. Hence it is not affected by the field and the P — 1S transition splits into
three lines.

Im —ﬂBm =10 -1
_2m0 | m|_ [l s T

my
—— 1

lp - I 0

N -1

15— _____ A A
B=0 B=0

Fig. 8.1 Splitting of P — 1S transition of an atom in a magnetic field.

Note: (i) If the system has more than one electron, I, = (I, + I, + ---).
(if) Splitting of a spectral line into three components in the presence of a magnetic field is
an example of normal Zeeman effect.

8.4  The unperturbed wave functions of a particle trapped in an infinite square well of bottom a are
vl = (2/a)* sin (nzx/a). If the system is perturbed by raising the floor of the well by a constant
amount V,, evaluate the first and second order corrections to the energy of the nth state.

Solution. The first order correction to the energy of the nth state is

WEIH LYy = Wl Vo L wl) = Vo w P 1wy =V,

Hence, the corrected energy levels are lifted by the amount V,. The second order correction to the
energy is

s K Ry P _ o V6 Ky v _
n E-E o E-F

The second order correction to the energy is zero.

E® =

8.5 A particle of mass my and charge e oscillates along the x-axis in a one-dimensional harmonic
potential with an angular frequency @. If an electric field g is applied along the x-axis, evaluate the
first and second order corrections to the energy of the nth state.

Solution. The potential energy due to the field £ = —eex.
The perturbation H" = —eex.
First order correction EY = —eg (n|x|n)

1/2
) (a+a")

In terms of a and a',

X= (Zmoa)
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1/2
;
EM = _eg(ZmOa)) (nja+a")n)=0
’ 2
EQ = E'Kn |0H |mo)|
m En - Em
1/2
, _ t
(nH’| m) = eg(Zmoa)j (nla+a'| m)

Here, m can take all integral values except n. The nonvanishing elements correspond to m = (n +
1) and (n — 1). Hence,

ED = 2,2 h {(\/n+1)2+(\/ﬁ)z] &g

2myw —-hw ho |

2myo°

8.6  Evaluate the first and second order correction to the energy of the n = 1 state of an oscillator
of mass m and angular frequency w subjected to a potential

1 1
V(x) = 5 ma®? + bx,  bx< 5 ma?x?

Solution.  The first order correction to energy for the n = 1 state is given by

EY

h 1/2
<1|bx|1>=b(m) Li@+ahin

h 1/2
= b[m) [Llaly+la’|n]=0

Since any=+/n|(n-1) and a’[n) = Vn+1|(n+1),

o2 A ) s K@+ )P Lk 1 2
2mew E0 _ EO - 2mo )| g0 _ EO + EO _ EO
1 k 1 0 1 2
Sppf (o2 b
- 2mo )\ ho  ho ) 2me?

8.7 Calculate the ground state energy up to first order of the anharmonic oscillator having a
potential energy V = 1/2 ma?x® + ax®;, ax® <« 1/2 mw?x?, where a is independent of x.

£

Solution. E((Jl) = (0|ax3|0>. The integrand of this integral is an odd function of x and, therefore,
the first order correction to the ground state energy is zero.

8.8 Evaluate the first order correction to the energy of the nth state of the anharmonic oscillator
having the potential energy

1 1
V= 5 ma?x? + bx*, bx* <« 5 m@?x?
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Solution.
E®

(n[H’Iny = b(n|x*|n)

2
b [Lj (nj(a+a"(a+aM@+a)a+a)n)

2mw
The six nonvanishing matrix elements are
1. (n|(aaa'a’|ny = (n+(n + 2)
(n|(aa’aa’|n) = (n + 1)
(nl(aa'a’a|ny=n(n +12)

2
3
4. (n|(a'aaa’|n)=n(n +1)
5. (n|(a’aa’a|n) = n

6

(n|(a'a’aaln) = n(n-1)
Now,

h 2
E® b[mj [(n+D(n+2)+(n+1)%+2n(n+1) +n®+n(n-1)]

h 2
— 2
= 3b[_2ma)j 2n“+2n+1)

8.9 A simple harmonic oscillator of mass m and angular frequency @ is perturbed by an additional
potential 1/2 bx?. Obtain the first and second order corrections to the ground state energy.

Solution.

EY = %b(o [X?| 0) = %b(%) (Ol(a +a")(a+a")|0)

1. ( n tio bh

- zb(meJ(Ol(aa 10) = Amw
E((,Z) - <O|H Iny[?
5 Eo - E?

, 1. ( n ;
(O|H’|n) 2b(2m )(Olaa+aa +a'a+a'al|n), nz0

ba
= m(maaln), n=2

2bn

dmw

2b2n% 1 b2n .
EP = - Eo - E, = -2
0 16mea? 200 1emio® o 0T R @
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8.10 A rotator having a moment of inertia | and an electric dipole moment u executes rotational
motion in a plane. Estimate the first and second order corrections to the energy levels when the
rotator is acted on by an electric field £ in the plane of rotation.

Solution. The energy eigenvalues and eigenfunctions of a plane rotator (Problem 5.3) are

E—ﬁ ()—Lex (img) m =0, £1, £2
m = 2] ' l//¢_\/§ p ¢l =V L4y SE e

The perturbation H = —ue cos ¢ = —% (e +e7?)

2r
E® = (n|H|n) = —ﬂ—jcos¢d¢ 0

EO = 2,|<n|H|m>|
m EY - EQ

(n|H |m)= —Zl e (el 4 e719)el™ dg

0
—_ g I +1-n I((m—1-n
= 4 E[ Ydg+ [e )

0

The integrals are finite when m = n — 1 (first one) and m = n + 1 (second one). Therefore,

0 (_E)Z - _4m
! 4 Er? - En—l Er? - En+l

_(weYarta( 11 ) pE
4z ” \2n-1 2n+1)" p2(4n2-1)

8.11 The Hamiltonian matrix of a system is

1 0
H=|eg 1 0], ex 1l
002
Find the energy eigenvalues corrected to first order in the perturbation. Also, find the eigenkets if
the unperturbed eigenkets are |@,), |¢,) and |@s).
Solution. The Hamiltonian matrix can be written as

100 0 £0
H=/0 10|+ 00 0]
002 000
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In this form, we can identify the unperturbed part H® and the perturbation H’ as

100 00
H={0 1 0 H'=|e 0 0 (ii)
002 000

The unperturbed energies are 1, 1, 2 units. The energy 1 units are two-fold degenerate. The secular
determinant corresponding to H’ is

_E(l) e 0
e -E® 0 |20 or EW _g2=0andE® =0
o o -E®

where E® is the first order correction. The solution gives
EQ=g-¢0 (iii)

Hence, the state | ¢s) is not affected by the perturbation. The eigenkets corresponding to states 1 and
2 can easily be obtained. Let these states be

b =Cld)+Cld),  n=12 (iv)
The coefficients must obey the condition
~EWc; + e, = 0 (v)
For the eigenvalue EW = ¢, this equation reduces to
—&y+e&,=0 or ¢ =0

Normalization gives ¢; = ¢, = 1/~/2.. Hence,

1 .
¢ = 7 &) +16)] (vi)

With the value E® = —¢ Eq. (v) reduces to
& +a&,=0 or ¢ =-0
Normalization gives ¢; = —¢c, = 1/+/2.. This leads to
1
, == 161 vii
] NG ) —19, (vii)
Thus, the corrected energies and eigenkets are
1
1+¢ —= o) +1o0]
7 ) +1¢,

1
1-¢ E[I%)—I%)]

2 | 3)
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8.12 A rigid rotator in a plane is acted on by a perturbation represented by
V,
H = 70 (3cos’p—1), V, = constant

Calculate the ground state energy up to the second order in the perturbation.
Solution. The energy eigenvalues and eigenfunctions of a plane rotator (refer Problem 5.3) are
given by
232
E, =%, m=0, 41, £2, ...

V() = ﬁ exp (img)

Except the ground state, all levels are doubly degenerate. The first order correction to the ground
state energy is

V7° (3 cos? ¢—1)‘y/>

E§) = <WIH'Iw>=<w

VO
=\y v)-\¥Yio |V
STV )
40 2 4
The second order energy correction
’ 2
£@ = pLOIHIm)
m EO - Em

(O|H’|m) (3cos? ¢ —1)—— e™dg

VO

5= T
— 3VO 2 2 img VO 2 img
_H'([cosm d¢—E£e dg

We can write cos?¢ = (1 + cos 2¢)/2. Also, the second integral vanishes. Hence,

3V, °f o N T imo
im _ im
(O|H’|m)y = =2 o {(1+ cos 2¢)e'™ dg = o bfcos 2¢ ™ dg

since the other integral vanishes. Putting cos 2¢ in the exponential, we get

3V,

(OIHIm) = 72

J‘ (e|2¢ + e—|2¢)e|m¢ d¢

— 3VO |(m+2)¢ 3V, 0 i(m-2)¢
= Tor j dg + > je do
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The first integral is finite when m = -2, the second integral is finite when m = +2 and their values

are equal to 3Vy/8. E,, = 2/?/1, E, = 0. Hence,
2
E(‘)’—ES:E(?—EE’z:—ZIi
Thus,
3V, [8)2 (3, |8)? 9 VZI
E(()Z) _ Vo + 0 __ 2 Vol
—21%/ —21%/ 64 p2

8.13 A plane rigid rotator in the first excited state is subjected to the interaction

V,
H = 70 (3 cos?p —1)
where V, is constant. Calculate the energies to first order in H’.
Solution.  For a plane rotator,
h?m? L im
m= o1 y(g) = E e,

Except the m = O state, all states are doubly degenerate. The energy and wave function of the first
excited state are

E m=0, +1, +2, ...

R W
=2 Jor
The first order energy corrections are given by the roots of Eq. (8.6):
Hi—EP HY
Hy  Hz —Ef

=0

Hi1 = H; =i2fv_0(3cosz¢—1)d¢
27 2m oy 2

-V ’ 2 i _ V% _V
= ﬁ{s { cos? ¢ dg — £d¢ =5 Gr-2m) =

L7 V)
8

Y :
Y T ) 2 0 e —
Hip = Hjy = — E)[e 5 (3cos® ¢ — e “dg

The secular determinant takes the form

V
-ep

% V_O _ Eil)

8 4

VS
8 -0

5V

64 0

V
(B -5 B -
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The roots of this equation are —(Vy/8) and —(5V,/8). The corrected energies are

_B 8% Vo

-2l 8 2l 8

8.14 A one-dimensional box of length a contains two particles each of mass m. The interaction
between the particles is described by a potential of the type V (X, X,) = Ad (X1 — X,), which is the
J-Dirac delta function. Calculate the ground state energy to first order in A.

Solution.  The interaction between the particles can be treated as the perturbation. The Hamiltonian
without that will be the unperturbed part. Without the J-potential

E

0, 0<x,X% <a
V(X X;) = -

Otherwise

Hy=—o—— -5~ ——5 + V(X X)

From the results of an infinitely deep potential well, the energy and wave functions are

232
Ey = i h2 (n? + k?), nk=123 ..
2ma
2 . (nmxg) . ( kwx
Wik (X1, %) = ¥ (X)) w, (Xp) = P ( a 1)S|n( 3 2)
For the ground state, n = k = 1, we have
242
T°h 2 . (mwx ) . [ 7X
Elol = ma? ' '//101()(1: Xp) = a sin (le SIH(TZ)

H = A8(x, — %,)
The first order correction to the ground state energy
AE = (11]H’|11)

2)?aa X X
= (—) | [ 26 (x —xp) sin? (—1) sin? (—2) dx, dx,
a) e a a

= (é)z A i sin“(%xl) dxl=%ga = %
The corrected energy
E'= Efl+AE=%+%
8.15 Consider the infinite square well defined by
V(x) =0 for 0<x<a
V(X) = e otherwise
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Using the first order perturbation theory, calculate the energy of the first two states of the potential
well if a portion defined by V(x) = Vyx/a, where V, is a small constant, with 0 < x < a being sliced
off.

Solution. From Problem 4.1, the energy eigenvalues and eigenfunctions of the the unperturbed

Hamiltonian are
2. 222
n“zh 2 Nz X
E,?z”—, l//r?: / snL, n=1 23, ...
2ma? a a

The perturbation H” = Vyx/a which is depicted in Fig. 8.2.

[ [

V(¥)
Vo

0 a

Fig. 8.2 Sliced infinite potential well.

The first order correction to the energy for the n = 1 state is
V, 2% X
0 0 — Y0 ia2
— — | x sin® — dx
<'//1 Vi > a a E[ a

a
= 2%‘[ 1(1—005—2”X)dx
a‘ p 2 a

VoX

a

2V, §x 2v0
=] f > de
Vo Vo
=5 +0= >
The first order correction to the n = 2 state is
V, X V, 2% 27X A
0 0 0 0 2
207 =— — |xsin"——dx =
<W2 a W2> a a E[ a 2

The corrected energies are
TV, 2°h?
> +—- a _— =
2ma 2 ma 2

8.16 The energy levels of the one-electron atoms are doublets, except the s-states because of spin-
orbit interaction. The spin-orbit Hamiltonian

1 14dv

- - L.
2m202 r dr S

SO
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Treating Hy, as a perturbation, evaluate the spin-orbit interaction energy. For hydrogenic atoms,
assume that the expectation value is

1\ 2z°
<E> T2 I(+ 1) (2l + 1)
where @, is the Bohr radius.
Solution.  For the valence electron in a hydrogen-like atom, the potential

zZ¢? dv  zé?

V()= ——4ﬂ€0r or W = 47Z'EOI'2 (i
Substituting the value of dVv/dr, we get
z¢* L-S
Hoo = — 55 —oo i
* 8mgymic® rd )
SinceJ =L + S,
2 12 o2
P=12+2+2L-S or L.S=# (iii)
Using the basis | Isjm), the expectation value of J?> — L? — S? is given by
(P-L-N=[i(j+D-10+1)-s(s+ 17 (iv)

Since the first order correction to the energy constitutes the diagonal matrix elements, substituting
the values of (1/r®) and ((J% - L? - S?)), we get

2e’n? j(j+) -1+ —s(s+1)

E. = Y;
* 8meymiclad n*l(l +1) (21 + 1) V)
The Bohr radius a; and the fine structure constant « are defined as
_ 47[80712 _ e? i)
 me? AreyCh
Using Eq. (vi), we get
4,242 Y
z"e‘h +) -1+ —-s(s+1
- €1 JU+D 105D s+ wii
8megmectay n“l(1 +1) (21 +1)
This makes the state j = | — (1/2) to have a lower energy than that with j = | + (1/2).

8.17 The spin -orbit interaction energy
Cfefme? j(j+D) -1 +1) -s(s+1D)
0O op3 I+2@2l+1)
Calculate the doublet separation AE;, of states with the same n and I. Apply the result to the 2p state
of hydrogen and obtain the doublet separation in units of eV.

Solution.  For a given value of |, j can have the values j = | + (1/2) and j = | — (1/2). The difference
in energy between these two is the doublet separation AE,,. Hence,

E
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AE, = — Zoime’ [(Hl)(uij—(l—llulj}
T oadig+p@+nl[l o 2)U 2 2\ 2

Za'm?20+1)  Ze’mc?
200+ +2) 2081 +2)

For the 2p state of hydrogen, n = 2,1 =1, z = 1. So,

(9.1x 1073  kg) (3 x 108 ms™?)

; . = 7.265x 107" J
(137)" x2x 2°x 2

AEg, =

1.765x 107%* J

= —————=45x10"eV
1.6 107" Jev

8.18 The matrices for the unperturbed (H®) and perturbation (H’) Hamiltonians in the orthonormal

basis | ¢;) and | ¢,) are
HO = E,+¢& 0 = 0 A
0 E,-¢&) A0

Determine (i) the first order correction to energy, (ii) second order correction to energy, and (iii) the
wave function corrected to first order.

Solution.
(i) The first order correction to the energy is zero since the perturbation matrix has no diagonal
element.
(i) EQ = Z—K”'H Ll e@ _ KUHI2P A2 A%
n EX ! EY — E? 2e  2¢

E@) - |[QIH D A
2 E0-EY 2

A? A?
E, = PR E, = R
1 E0+g+2€, 2= Ep—€ o

The wave function corrected to first order is given by

(m|H’|n)
% -E]

A

y = |¢1>+ﬂ
A

W = |¢z>—§ ¢1>
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8.19 Given the matrix for H® and H”:

Ho = E, O o OA
0 E) -A 0

In the orthonormal basis [1) and |2), determine (i) the energy eigenvalues, and (ii) energy
eigenfunctions.

Solution. This is a case of degenerate states |1) and |2) with energy eigenvalue E,. The secular
determinant is, then,
—E® _A

=0 or E®=+A
—A _E(l)

The eigenfunctions corresponding to these eigenvalues are obtained by a linear combination of |1)
and |2). Let the combination be cq1) + c,|2). For +A eigenvalue, the equation (H;; — El(l))cl
+ H/,c, = 0 reduces to

—ACl - AC2 =0 or —=-1
2

Normalization gives ¢, = 1A/2, ¢, = 1\/2. Hence, the combination is (|1) — [2))/\/2. The other
combination is (|1) + |2))/\/§. The energy eigenvalues and eigenfunctions are

Eo + Aand (1) — [2)A2
Eo - A and (1) + [2)A2
8.20 Prove the Lande interval rule which states that in a given L-S term, the energy difference

between two adjacent J-levels is proportional to the larger of the two values of J.

Solution. For a given L-S term the total orbital angular momentum J can have the values
J=L+S, L+S-1,..|L-S] The spin-orbit coupling energy Eg, Problem 8.16 for a given
L-S term is

Es, = constant [J(J + 1) — L(L + 1) — S(S + 1)]

The energy difference between J — 1 and J levels is AEg, given by
AEg, = constant [J(J +1) - L(L+1)-S(S+1)-JJ-1)+L(L+S)+S(S+1)]
= constant x 2J

That is, the energy difference between two adjacent J-levels is proportional to the larger of the two
values of J.

8.21 An interaction of the nuclear angular momentum of an atom (I) with electronic angular
momentum (J) causes a coupling of the I and J vectors: F = | + J. The interaction Hamiltonian is
of the type H;,; = constant | - J. Treating this as a perturbation, evaluate the first order correction
to the energy.

Solution.  Though the unperturbed Hamiltonian has degenerate eigenvalues, one can avoid working
with degenerate perturbation theory (refer Problem 8.16). The perturbing Hamiltonian

H" = costant | - J
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The first order correction to energy is the diagonal matrix element of H” = (H’) which can be obtained
as
FP=(+J)2=12+J)2+21-J

2

1-J=

(HY=constant [F(F +1) — I(l +1) - J(J +1)] %

Hence, the first order correction
E® =a[F(F+1) - 101 +1)-JJ +1)]
where a is a constant.

8.22 A particle in a central potential has an orbital angular momentum quantum number | = 3. If
its spin s = 1, find the energy levels and degeneracies associated with the spin-orbit interaction.

Solution.  The spin-orbit interaction
He, =&(r)L-S

where &(r) is a constant. The total angular momentum

J=L+S or L~S:%(J2—L2—SZ)
Hence,

1
Hso = Ef(r) (‘]2 -L2- SZ)
In the |jm;ls) basis, the first order correction

<jmjls jmjls>

%f(r) [+~ 101 +1 —s(s + 1)]#°

C ZEN @212 )

Since | = 3 and s = 1, the possible values of j are 4, 3, 2. Hence

3E(N)H?, j=4
B =9 &A%, j=3
~45nn®, j=2

The degeneracy d is given by the (2j + 1) value
9 j=4
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8.23 Consider the infinite square well
V(x) =0 for-a<x<a
V(X) = « for | x| > a
with the bottom defined by V(x) = Vyx/a, where V, constant, being sliced off. Treating the sliced-

off part as a perturbation to the regular infinite square well, evaluate the first order correction to the
energy of the ground and first excited states.

Solution.  For the regular infinite square well, the energy and eigenfunctions are given by Egs. (4.2)
and (4.3).

232
wh 0 1 TX
EO = Ll Wl =7 A
' 8ma? N,
232
°h 0 X
EQ - , 7% :—sm—
27 2ma? 2" Ja

Fig. 8.3 Infinite square well with the bottom sliced off.

VX
Perturbation H’= T
The first order correction to the ground state energy is
v, & X
ED=H 1) = -2 [ xcos? Z=dx =0
= U = 5 J g
since the integrand is odd. The first order correction to the first excited state is

ES = <l/f§

since the integrand is odd.

a
VO—XI//§> VO jxsm X 4x=0
a’

8.24 Draw the energy levels, including the spin-orbit interaction for n = 3 and n = 2 states of
hydrogen atom and calculate the spin-orbit doublet separation of the 2p, 3p and 3d states. The
Rydberg constant of hydrogen is 1.097 x 107 m™
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Solution.  Figure 8.4 represents the energy level for n = 3 and n = 2 states of hydrogen (Z = 1),
including the spin-orbit interaction.

j j j

5/2
- 32 M 3p
33— _p _ 1
312
2p
2 ——————— 12 — Y

Fig. 8.4 Energy levels for n = 3 and n = 2 states of hydrogen.

The doublet separation
_ Z%°R
I ETE)
For the 2p state, n = 2, | = 1, and hence

2 7 m-1
(AE), = (/137) (1é0>9<72>< 10'm _3653m

For the 3p state, n = 3, 1 = 1, and so

2 7 -1
(AB),, - (1/137) (12.39:; 10°m™Y) oo mt

For the 3d state n = 3, | = 2 and, therefore,

_ (1/137)%(1.097 x 10’ m™t) o
(AB)ss = 27x 2 %3 =3.61m
Note: The doublet separation decreases as | increases. The 2p doublet separation is greater than the
3p doublet which will be greater than the 4p separation (if evaluated), and so on. The d-electron

doublet splitting are also similar.

8.25 A hydrogen atom in the ground state is placed in an electric field £ along the z-axis. Evaluate
the first order correction to the energy.

Solution. Consider an atom situated at the origin. If r is the position vector of the electron, the
dipole moment
H=—er

The additional potential energy in the electric field is —u - & where @is the angle between vectors
r and & This energy can be treated as the perturbation

H” =er £cos @

The unperturbed Hamiltonian
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The unperturbed wave function

1 —r/ao

Y10 =~ o332 ©
7H2a302

The first order correction to the energy
E® = (100 | ere cos € ]100)

The angular part of this equation is

T
| cos @ sin g do =0
0

i.e., the first order correction to the energy is zero.

8.26 A particle of mass m moves in an infinite one-dimensional box of bottom a with a potential
dip as defined by
V(X) = e forx<0Oand x >a

V(x) = =V, for 0<x<%

V(x) =0 for%<x<a

Find the first order energy of the ground state.

Solution.  For a particle in the infinite potential well (Fig. 8.5) defined by V(x) =0for0 <x < a
and V(x) = « otherwise, the energy eigenvalues and eignfunctions are

2. 222

/2 .. n

En:nﬂ'z ’ v, = _5|nLX, n=1,23, ...
2ma a a

The perturbation H” = -V, 0 < x < (a/3). Hence, the first order energy correction to the ground state
is

2 3 TX
m=_2 in2 22
E Vo E)[ sin® —= dx V()
2.3 2
= -2V —(1— cosijdx
0
0 _____
a Vo wwa Vo a . 2zx]¥® l
T3 Ao g v Lo x
-Volbmroio- 4 - L —— -~ >
0 ° -al3 a
VY B Fig. 8.5 Infinite square well with
=3ty 0.866 = —0.264V, potential dip.
The energy of the ground state corrected to first order is
242
h
E=2—-0.264V,

2ma
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8.27 A particle of mass m moves in a one-dimensional potential well defined by
0 for-2a<x<-a and a<x<?2a
V(X) =4 forx >2a and X< -2a
Vp for-a<x<a

Treating Vq for —a < x < a as perturbation on the flat bottom box V(x) = 0 for —2a < x < 2a and
V(X) = « otherwise, calculate the energy of the ground state corrected up to first order.

Solution. The unperturbed energy and wave function of the ground state is
242
E](_) _ Th .
32ma

The first order correction to the energy

v, & X Vv, 1 X
gw = Yo 2% 4y =9 [ =11 -
5a :[a cos® 5~ dx oe | 5| 1+ cos dx

Vo, Voz2af . ax)?
"2 20 M2

—a
Vo Vo 11
= L 4+ 2=V, =+ =
2 "z °(2+ )

The corrected ground state energy

2,2

T°h 1 1
E, = V| =+ =
! 32ma2+0[2+7f)

8.28 A particle of mass m moves in an infinite one dimensional box of bottom 2a with a potential
dip as defined by
V(X) = forx<-aand x> a

V(x) = =V, for —a<x <—%

V(x) =0 for —%<x<a

Find the energy of the ground state corrected to first order.

Solution.  The unperturbed part of the Hamiltonian is that due to a particle in an infinite potential
defined by V(x) for —a < x < a and V(X) = < otherwise. The unperturbed ground state energy and
eignfunctions are
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The perturbation H” = -V, —a < x < —(a/3). The first order correction is

v, V3 TX v, 3 TX
W= -2 [ cos?Z=dx=-—=-2 1+ cos == |dx
E a Ja 2a 2a -[ a

—-al3
V, V, ax)
= __0()0::/3 __03(5“1 7[_)
a 2a &

- _V_0+V_05in60°:_v_0+v—°><0.866

3 2z 3 2z
EY =0.195v,
The ground state energy corrected to first order is
232
E=Z hz ~ 0.195V
8ma

8.29 A hydrogen atom in the first excited state is placed in a uniform electric field € along the
positive z-axis. Evaluate the second order correction to the energy. Draw an energy level diagram
illustrating the different states in the presence of the field. Given

3/2
l// = L i 1-— L efrlzaO

5/2
1 1 —r/2
_ ay
= — = re cos @
Vo10 1) (230)

j x"e ¥ dx =
0 a

n!

n+1

Solution.  The first excited state (n = 2) is four-fold degenerate. The possible (I, m) values are (0,0),
(1,0), (1,1) and (1,-1). The four degerate states are |nlm): |200), | 210), |211), and |21, -1). The
additional potential energy in the field can be taken as the perturbation, i.e.,

H’ = ere cos 6 0]

The energy of the n = 2 state, EJ is the unperturbed energy. Out of the 12 off-diagonal elements,
in 10 we have the factor

2r
J‘ gi(m’=m)¢ do
0

which is equal to zero if m” = m. Only two off-diagonal elements will be nonvanishing; these are

27 T oo
€e r 4 —rlay 2 ;
200|ere cos 8]210) = 1-—|r'e cos- @ singdrded
(200 |210) Wag{{{( Zao) ¢
T 0o 5
= 27 T cos?gsin0de [ | rt— e dr (i)
167[a0 0 0 2a0
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The integral in @is very straightforward. The integral in the variable r can be evaluated with the data
given. Then,

~ 2
[ cos* @ singde = = (iii)
0 3

> 5
4 T —rlag 4. _ 5 .
r——— e " dr =-36a (iv)

Substituting these integrals in Eq. (ii), we get
(200[ H'|210) = —=— x 2 (36a8) = —3eaye W)
8ag 3

Then the perturbation matrix is

(nim) —  (200)  (210) (211) (21,-1)

2
(200) 0 -3eage O 0 vi)
(210) —3eaye 0 0 0
(211) 0 0 0 0
(21,-1) 0 0 0 0
and the secular determinant is
—EY) Beaye 0 0
—3eaye —Eél) 0 0 ~0 (vii)
0 o -E® o0
0 0 0o -e®

The four roots of this determinant are 3eagg, —3eaps, 0 and 0. The states | 200) and | 210) are affected
by the electric field, whereas the states |211) and |21, —1) are not. Including the correction, the
energy of the states are

EJ —3eape,  Es and EJ + 3eaye
This is illustrated below (The eigenstates are also noted these).

e=0 e+ 0 Energy Eigenstate
1
EJ + 3ea,e 7 (1200) - 1210))

E |211), 121,-1)

1
EJ — 3eaye N (1200) +1210))
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Note: The electric field has affected the energy means that the atom has a permanent magnetic
moment. The states | 211) and | 21, —1) do not possess dipole moment and therefore do not have first
order interaction.

8.30 The ground state of the Hydrogen atom is split by the hyperfine interaction. Work out the
interaction energy using first order perturbation theory and indicate the level diagram.

Solution.  Hyperfine interaction is one that takes place between the electronic angular momentum
and the nuclear spin angular momentum. Hydrogen atom in the ground state has no orbital angular
momentum. Hence the electronic angular momentum is only due to electron spin and the interaction
is simply between the intrinsic angular momenta of the electron (S;) and proton (S,); both are
spin-half particles. The resultant angular momentum

I =S, +S,

— 1 2 2 2

Se- Sp = E(I -5 —5S})

Since both are spin half particles, the possible values of I are 0 and 1. | = 0 corresponds to a singlet
state and | = 1 to a triplet state.

1 1.3 1 3],
(S, Sp>_§[l(l+1) 7% ZXZ}h
3., :
_Zh , I = 0 (singlet state)
= 1 , .
Zh , | =1 (triplet state)

The hyperfine interaction causes the ground state to split into two, a singlet (I = 0) and a triplet
(I = 1), see Fig. 8.6.

I =1 (triplet)

I = 0 (singlet)
@ (b)

Fig. 8.6 Energy level: (a) without hyperfine interaction; (b) with hyperfine interaction.

8.31 Consider an atomic electron with angular momentum quantum number | = 3, placed in a
magnetic field of 2 T along the z-direction. Into how many components does the energy level of the
atom split. Find the separation between the energy levels.

Solution. For | = 3, m can have the values 3, 2, 1, 0, -1, -2, -3. The interaction Hamiltonian
H’ = —u - B, where g is the magnetic moment of the electron which is given by

e

=——1L
# 2my
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Here, L is the orbital angular momentum of the electron and mjq is its rest mass.

H = & L-B= i L,
2my 2my
In the | Im) basis, the energy
eB eh
E=—mhi=—Bm= u;B
2m, 2m, HgBMm

where g is the Bohr magneton which has a value of 9.27 x 1072* J/T. Since m can have seven
values, the energy level splits into seven. The energies of these seven levels are

3ugB, 2B, 1ugB, 0, -1ugB, -2ugB, -3ugB
The lines are equally spaced and the separation between any two is
UgB = (9.27 x 107 JIT) x 2T
= 1854 x 107 ]
8.32 A system described by the Hamiltonian H = oL, where L? is the square of the angular
momentum and « is a constant, exhibits a line spectrum where the line A represents transition from
the second excited state to the first excited state. The system is now placed in an external magnetic

field and the Hamiltonian changes to H = L2 + fL,, where L, is the z-component of the angular
momentum. How many distinct lines will the original line A split into?

Solution. The Hamiltonian H = aL2. The eigenkets are [Im), 1 =0, 1, 2, ...,
The first excited state is | = 1, m = 0, £1. The second excited state is | = 2, m
presence of magnetic field, H = o1.2 + AL,. The perturbation H = fL,.

=0, £1, 2, ...
0, 1, £2. In the

m
First order correction = {Im| AL, |Im)

= fmh for a given value of |
For the first excited state,

mh = ﬁiw 0, _ﬂh

For the second excited state
i = 2, fin, 0, ~h, ~2fh
Figure 8.7 illustrates the splitting of the two energy levels. The allowed transitions
Al = £1 Am =0, +1

m
2
I=2,E=6ah2% 1
0
\ -1
-2
A Al 1
=1 E =2 ! !
0
Al 1

Fig. 8.7 Transitions in the presence of magnetic field.



Time-Independent Perturbation o 239

Transitions are also shown in Figure 8.7. The energies of the levels are also given, from which the
transition energies can be evaluated. The original line will split into eight lines.

8.33 The Hamiltonian of a two-electron syatem is perturbed by an interaction &S, - S,, where o
is a constant and S; and S, are the spin angular momenta of the electrons. Calculate the splitting
between the S = 0 and S = 1 states by first order perturbation, where S is the magnitude of the total
spin.

Solution. We have S = S; + S,. Then,

$2 =82 +52+25,-S,

§2 -2 — 82

Since the spin of electron is 1/2 when the two electrons combine, the total spin S = 0 or 1. The state,
for which S = 0, is called a singlet state with mg = 0. The state, for which S = 1, is called a triplet
state with mg = 1, 0, —1. The first order correction to S = O state in the | smy) basis

<W462_§_SbaFm>

1
EM 5

% [s(s +1) — 5,(5; + 1) — 5,(s, + 1)] #*

_ofy_ 3 _3),._ 3 .
= 2(0 4 4)h =

The first order correction to the S = 1 state is

EP-uZPXZ—lxi—lxi}#

2 2 2 2 2
o
= —hz
4
- a ., 3 .,
Splitting between the two states = Zh |7 ah
= oh?

8.34  The unperturbed Hamiltonian of a system is
2

L Y
H0_2m+2ma)x

If a small perturbation

, |Ax forx>0
0 forx<0

acts on the system, evaluate the first order correction to the ground state energy.
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Solution. The given Hy is the one for a simple harmonic oscillator. Hence the unperturbed ground

state energy is
1/4 2
(X): m_a) exp max
Vo hr 2h

The first order correction to the energy is

ES = (wo(0)1 Ax]po(x)
mo ' 7 maox?
:[ﬁ) ﬂb[xexp[— - ]dx

_(mo\* (Y _4 [ n

“\ hrx 2mo ) 2\ zme
8.35 Consider an atomic state specified by angular momenta L, S and J = L + S placed in a
magnetic field B. Treating the interaction representing the magnetic moment of the electron in the

magnetic field as the perturbing Hamiltonian and writing L + 2S = g; J, obtain an expression for
(i) the g factor of the Jth state are (ii) the corrected energy.

Solution.  When placed in the magnetic field B, the interaction Hamiltonian
H =-u-B=-(u +u) B (M
where g and g are the orbital and spin magnetic moments of the electron. We have

e e ..
H = —ﬁl—: Hs = —ﬁs (i)

L is the orbital angular momentum and S is the spin angular momentum. Substituting these values
of g and us, we get

_ & .
H'=—(L+25) B

Given
gJ=L+2S

where g; is a constant. Taking the dot product with J, we obtain
9 2=J-(L+29)=J-(L+S+9)
=J-J+S)=J3-J+J-S

=3+J-S
Since L =J-S,
2= +5-2)-S
IR
J-S—f
gJJZ: J2+M

2
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In the simultaneous eigenkets of J?, J,, L2, S?,

9, (32 = (32) + %(JZ L S2 12

0,9 + D r% =3 + 1) K +%[J(J +1) +S(S+1) - L(L +1)]#°

JU+D)+S(S+1)-L(L+1D
2J(J +1)
where J, L and S are the quantum numbers associated with the angular momenta J, L and S,

respectively.
(if) The interaction Hamiltonian

g; =1+

= & g1 B2
H—2ng B ngJBcose

_ e J, e
= om WBG = om 9B

The first order correction to the energy is the diagonal matrix element

e eh
E® = o 9BMy = o Bg; M,

The corrected energy
eh
E = EO + ﬁ ng MJ

Since M; can have (2J + 1)-fold degenerate, each energy level is split into 2J + 1 equally spaced
levels.

8.36 The nuclear spin of bismuth atom is 9/2. Find the number of levels into which a Dy, term
of bismuth splits due to nuclear spin-electron angular momentum interaction. If the separation of
2Dy, term from 2Dg, is 70 cm™, what is the separation between the other adjacent levels?

Solution. ?Ds, term means 2S + 1 =2, S = (1/2), L = 2 and J = (5/2). Given | = (9/2). The total
angular momentum is F = | + J. The possible values of the quantum number F are 7, 6, 5, 4, 3, 2.
Hence, the ?Dsy, level splits into six sublevels corresponding to the F values, 7, 6, 5, 4, 3, and 2.
From Problem 8.21, we have the correction to energy as
EW=a[FF+1) - 1(1+1)-JJ+1)]
Hence, the energy difference AE between successive levels (F + 1) and F is given by
AE=a[F+1)F+2)-1(1+1)-JJd+D]-a[FF+1)-1(+1)-JJ+ 1)
Given the separation between J = 7 and J = 6 is 70 cm™, i.e.,
70cmt=2ax7 or a=5cm?
Hence,

2 2 ]
6Ds/2 — 5D5/2 = 60 cm

2 2 -1
5D5/2 — 2Ds/2 = 50 cm
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4Dsj2 — 3Ds;p =40 cm™
4D, — 5D5p =30Cm ™

8.37 Discuss the splitting of atomic energy levels in a weak magnetic field and show that an energy
level of the atom splits into (2J + 1) levels. Use L-S coupling and L + 2S = gJ, where g is the Lande
g-factor, L, S and J are respectively the orbital, spin and total angular momenta of the atom.

Solution.  Let u be the magnetic moment of the atom. Its orbital magnetic moment be g4 and spin
magnetic moment be u. The Hamiltonian representing the interactionof the magnetic field B with
M S

H =-u-B=-(u + ) B

Since

e e e

Ho=—omb Hs=mSEn?S
H = (L +25) B=—gJ-B=—gJB cos (J, B)
© 2m = 2mY = 2mY ’

Since (J, B) = (J,/9),

, & J, e

N = om 9B = 2m 9B
The first order correction to energy in the common state of JZ and J, is
®=1{J & BJ.|J
BV = (IMy |5 9Bz | Imy

e eh
ﬁgijh = mgBmJ

uggBm;
where ug = en/2m is the Bohr magneton. As m; can have (2J + 1) values, each level splits into
2(J + 1) equally spaced levels. Hence the energy of the system

E = E, + mggBM;
8.38 Discuss the splitting of atomic energy levels in a strong magnetic field. (the Paschen-Back
effect).

Solution. In a strong magnetic field, the magnetic field interaction energy is stronger than the spin-
orbit interaction energy. Hence the L-S coupling breaks. The Hamiltonian representing the
interaction of the magnetic field with u is

H'=—p - B=-(u +u) B
€ €

= —L-B+— .
om +2mZSB

&
2m

LB cos (L, B) + % 25B cos (S, B)
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_ e L, e S,
T om BT tom BBy
© BL +-2 28BS

~2m o T om z
The first order correction in the common eigenstate of L2, L,, S? and S, is

= _*
E 2 Bmh+2 2SBm,n

= ugB(m + 2m)
The energy of the level becomes
E = Ey + ugB(m_ +2m;)

8.39 A simple pendulum of length | swings in a vertical plane under the influence of gravity. In
the small angle approximation, find the energy levels of the system. Also evaluate the first order
correction to the ground state energy, taking one more term in the small angle approximation.

Solution.  The first part of the problem is discussed in Problem 4.58. The energy eigenvalues and
eigenfunctions are the same as those of a linear harmonic oscillator with angular frequency

w = 4/g/l, where | is the length of the pendulum. While evaluating the energy eigenvalues, we

assumed the angle @ (Fig. 4 .5) to be small and retained only two terms in the expansion of cos 6.
Retaining one more term, we get

6* ¢*
cos 6=1- 7+ T
The potential is, then,
6* 6
V = mgl (1 - cos 8) = mgl [—— ﬂ)
_ mglg*  mglg*
2 24
Since 8 = x/I,
: ,__mglg* — mgx*
Perturbation H” = 24" oup
The first order correction to the ground state energy is
4
EQ = (0|-2 1o
0 < 2413

In terms of the raising and lowering operators, we have

2mew me @t a)
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With this value of x,

241 )\ 2mae

2
Eé”:[‘ﬂ)( i j<0I<a+a*)(a+a*)(a+a*)(a+a*)|0>

In all, there will be 16 terms on the RHS. However, only two will be nonvanishing. They are
(0]aaa'a’|0) and (0|a a' a a'|0). Consequently,

(0laa’aa’|0y =1, (0|aaa’a’|0) =2
Hence,
o
smli*w?
8.40 Obtain the hyperfine splitting in the ground state of the hydrogen atom to first order in
perturbation theory, for the perturbation

H = AS,-S.8°(r), A being constant

E(()l) - _

where S, and S, denote the spins of the proton and electron, respectively.
Solution. The hydrogen ground state wave function is

1 1/2
Vioo = [ 3 J e "
73y

The perturbation H” = AS,, - S.0°(r). Denoting the spin function by x, the total wave function of the
ground state is

V= Voo A
The first order correction to energy

ES = W0 s AS, + Se8° (N W00 25)

W00 |AS® (N W100) (X [Sp * Sel ¥s)

A
_3 <Zs |Sp * Se |Zs>
7dy
Writing

F?— 82 — 87
F=S,+S, or SyeSe= ————

2
A F2_g2 _g2
B = —({xl——p— |zs
nay |

_ 2:a§' [F(F +1) - S,(S, +1) — S,(S, + 1]

As S, = (1/2) and S, = (1/2), the possible values of F are 1, 0. The separation between the two F
states is the hyperfine splitting AE. Thus,
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_ A 1.3 1_ 3 1.3 1_3
AE_zﬁag[[b(z_EXE_EXEJ[O_EXE_EXEH

A
7ag

8.41 In the nonrelativistic limit, the kinetic energy of a particle moving in a potential
V(x) = 1/2me? is p?2m. Obtain the relativistic correction to the kinetic energy. Treating the
correction as a perturbation, compute the first order correction to the ground state energy.

Solution. The relativistic expression for kinetic energy is

T=méc* +c?p? — myc?
2 p? " 2
= myc |1+ —myC
0 mac? 0
2 4
2 p p 2
= myc |1+ - —m,C
0 [ 2méc? 4m§c4] °
_
2my  8mic?
p4
Perturbation H = ——
8mgc
The operators a and a' are defined by
as= Moy . _ p
2h - \2mho
5 maw i
a =\ 5z X——F7=—=0>P
2h - 2mho
where
_ \/tha) t
= — (@-a)
The first order correction to the ground state energy is
4
p 1
ED = (0] - 0)=—
0 gm3c? gm3c?

2
(mea)) (a-a)a-a')a-a")a-a")

x<o

1 (tha)
gmic® \ 4

)

2
) (0l(a-a")(a-a")(a-a")a-a")l0)

E =
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When expanded, the expression will have 16 terms. Only two terms will be nonvanishing; these
terms are
(0laaa’a’|0) and (0|aa'aa’|0)

Since
a'lny=+n+1|n+1, alny=+/n|n-1
we have
(0]aaa'a’|0) =2,  (0|aa'aa’|0) =1
Hence,
EW _i (ha))2
o= na)

8.42 The Hamiltonian matrix of a system in the orthonormal basis

1 0 0
01, 1], 0
0 0 1
is given by
1 2 0
H=|2¢ 2+¢ 3¢
0 3¢ 3+c¢

Find the energy levels corrected up to second order in the small parameter &
Solution. The matrix H can be written as
100 1 2¢ 0
H=10 2 0|+|2¢ 2+¢ 3¢
003 0 3¢ 3+c¢

:HO+H/

Identifying H° and H’ as the unperturbed and perturbation part, the eigenvalues of the unperturbed
Hamiltonian H® are 1, 2 and 3. The first order correction to the energy is given by the diagonal
matrix element of H’. Then,

02 1
n=@0100)21 Ole=0
0 31)l0
20
»=(010)(213||1|e=1e
3 0
2
%3=(0 01|21 3||0je=1¢
3
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The first order correction to the energies are 0, 1g 1lg respectively. The second order
correction is given by

7 ny[2
ED = 5/ |(m(!H |n3|
m En_Em
2 0 2
H, =@ 00)[213[|1|le=(1 0 0)|1|e=2¢
0 31)\0 3
2
Hi;=@2 00)|213||0(e=@100)]|3|e=0
3
2
Hj; = (0 10)(2 1 3[|0|le=(010)|3|e=3¢
0 31
72 702
(2):|H21| [Hail — a2 — A2
E T-7 T 1.3 46 +0=—4¢
72 7 2
Egz) — |H12| +|H32| —482—9822—582

2-1 2-3
72 72
@ _ [Hisl” | [Hasl” _ 2 _ g2
Es 3.1+t 3.2 0+9¢ =0¢
The energies of the three levels corrected to second order are
E,=1+0-4£2=1-4¢
E, =2+ ¢— 5¢

E; =3+ le+ 962



CHAPTER

Variation and WKB Methods

The variation method is usually applied to obtain the ground state energy and wave functions of
quantum mechanical systems. Extension to excited states is also possible. The WKB method is based
on the expansion of the wave function of a one-dimensional system in powers of 7.

9.1 Variation Method

The essential idea of the method is to evaluate the expectation value (H) of the Hamiltonian operator
H of the system with respect to a trial wave function ¢. The variational principle states that the
ground state energy

Ei<(H) =(¢[H| & (9.1)

In practice, the trial function is selected in terms of one or more variable parameters and the value
of (H) is evaluated. The value of (H) is then minimized with respect to each of the parameters. The
resulting value is the closest estimate possible with the selected trial function. If the trial wave
function is not a normalized one, then

RO
=051 ®.2

9.2 WKB Method

The WKB method is based on the expansion of the wave function in powers of 4. This method is
applicable when the potential V(x) is slowly varying. When E > V(x), the Schrodinger equation for
a one-dimensional system is given by

2
(:jTg/ +K2y=0, K= i—T[E ~V(X)] (9.3)

The solution is given by

A .
V= % exp (il [k dx) (9.4)

248
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where A is a constant. The general solution will be a linear combination of the two. When E < V(x),
the basic equation becomes

d’y 2_ 2m[V(x) - E]
— 0, = = 9.5
™ Yy = Y ¥ (9.5)
Then the solution of Eq. (9.5) is
B
y=——-exp (£]ydx (9.6)
/—7 ( )

where B is a constant.

9.3 The Connection Formulas

When E = V(x), both the quantities k and ¥ — 0. Hence, y goes to infinity. The point at which
E = V(x) is called the turning point. On one side the solution is exponential and on the other side,
it is oscillatory. The solutions for the regions E > V(x) and E < V(x) must be connected. The
connection formulas are as follows:

Barrier to the right of the turning point at x;:

icos[}lkdx—g}— 1 exp jydx
ek 4

|
D

Barrier to the left of the turning point at x,:
iexp —Xf;/dx 2 cos jkdx z (9.8)
Jr A 4

1 {Xf J 1 } pe
———=exp| | ydx |« —=sin kdx — —
\/; X \/E Xo 4
The approximation breaks down if the turning points are close to the top of the barrier. Barrier
penetration: For a broad high barrier, the transmission coefficient

T =exp {—2 Xf 7dx} (9.9)

X1

(9.7)
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PROBLEMS

9.1 Optimize the trial function exp (—or) and evaluate the ground state energy of the hydrogen
atom.
Solution.  The trial function ¢ = exp (-ox).
W, ke?
Hamiltonian of the atom H = - —V* - —
2u r

The trial function depends only on r. Hence, V? in the spherical polar coordinates contains only the

radial derivatives. So,
p_ 1d(,d) d* 2d
Vi= 2 dr T ar _dr2+rdr

e

The angular part of dz contributes a factor 4z to the integrals in the above equation. Hence,

From Eq. (9.2),
ke?

L

r

2.d

r dr

d2
d_z

(H)o19) = _ﬂ[<¢

P a 0)= 47m2ifcr2 exp (~2er) dr = 2
ar2 - 0 P o«
2 d = Y4
<¢ T ¢> = -8z E)[rexp (-20m) dr = -~
ke2 7l'ke

¢> 4re? jrexp( 2ar) dr =
o?

(Plo) = 4r ifcrz exp (—2ar) dr = 13
0 o

Substituting these integrals, we get

V4 iz 2rx ke?
W 5G|
n’o?
= — orke?
H) == ok
Minimizing with respect to ¢, we obtain
2 2
0="% 2 o oc:kﬂs3
4 h
With this value of ¢,
uke?

Ermin =(H >m|n =
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and the optimum wave function is
1 1/2
—r
[ e
[ﬂaé’] %

9.2 Estimate the ground state energy of a one-dimensional harmonic oscillator of mass m and
angular frequency @ using a Gaussian trial function.
-n? d* 1

Solution. The Hamiltonian of the system H = m ol +5 ma?® x?

where @, is the Bohr radius.

Gaussian trial function ¢(x) = A exp (-ax?)

where A and « are constants. The normalization condition gives

oo 1/2
IRUNY _ 2 _ 2| T
1=]AF [ exp (-2ax*)dx = |A| (20{)

—oo

' . . 20 1/4 ,
Normalized trial function ¢(x) = = exp (—ax?)

(H)= <¢

20 1/2 200 /2 oo
—(7) 2aj exp (—2ax?) dx +( ) 4o [ X2 exp (—2ax?) dx

1/2 1/2 1/2 1/2
_f2e) L (m ) (2 4 1 Tl —_q
T 2« T 2«

1/2

wixlor=( 2] [ e (2o

d2
dx?

¢>+ Lme? (91x219)

12l o  mo?
()= ot = T

Minimizing with respect to «, we get

0——d<H> —ﬁ— ma” or a="12
~ da  2m  gy? h
With this value of ¢,
1

which is the same as the value we obtained in Chapter 4. Thus, the trial wave function is the exact
eigenfunction.
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9.3 The Schrédinger equation of a particle confined to the positive x-axis is

—n? dy
ﬁ d7 + MgXy = El//
with w(0) = 0, w(X) > 0 as X — o« and E is the energy eigenvalue. Use the trial function
X exp (-ax) and obtain the best value of the parameter a.
Solution.
I —h? d?
Hamiltonian H = ﬁd7+ mgx

Trial function ¢(x) = x exp (-ax)

(¢l¢) = Ixz exp (—2ax) dx = é

-n? d? 2 o= w282
Vo z|?) = —aj X exp (—2ax)dx — x? exp (—20rx) dx
< 2m dX2 > m . om E[
n? 2 72
" Z4ma  8ma 8ma
(p|mgx|¢) = mg JX3 exp (—2ax)dx = 3l?
0 8a
2 4 2.2
(H) = (¢IH|9) _ [n*/(8ma)] + (3mg/8a*) _ h*a® 3 mg

19 1/48° 2m "2 a
Minimizing (H) with respect to a, we get
n? 3 mg 3 m%g o
= — _— a=| ——
0 2rn2a 2 22 or (2 2 J
which is the best value of the parameter a so that (H) is minimum.

9.4 A particle of mass m moves in the attractive central potential V(r) = —g%/r®?, where g is a
constant. Using the normalized function (k/872)"/2 e™2 as the trial function, estimate an upper bound
to the energy of the lowest state. Given

oo

[x"e®dx =—— if n is positive and a > 0
0 an+l
= 1 |x
we have '[\/Ye*aX dx = — |2
0 2aVa

Solution. The expectation value of the Hamiltonian

- _ k® T2 k2 P 1d(,d 0 | ke
<H>_<¢|H|¢>—g4ﬂ'£re X —mr—zara —r37 e dr
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The factor 47 outside the integral comes from the integration of the angular part, and r? inside the
integral comes from the volume element dz. Then,

ii Zi —kr/i2 _ i 2d | w2 _ E_K —kr/2
ﬂdr[r drje B dr2+rdr ¢ 177

Hence,
k3 hz I 2 ,—kr/2 k2 k —kr/2 I 1/2 —kr
<H>-7(‘ﬁ]£” N { e
S ke —kr SR
= ~Tom Or dr+ jre dr — ber e dr

_ _ﬁi+ﬁi_ﬁi\ﬁ
T 16m K3 4m 2 2 2k\k
h2k2 ~ \/;g2k3/2

8m

For (H) to be minimum, o(H)odk = 0, i.e.,

nk N g2kL2

4m

=0

This leads to two values for k, and so
3J7g?m
2h?

The first value can be discarded as it leads to y = 0. Hence the upper bound to the energy of the
lowest state is

k=0 K=

HY = 8lr’g’m®  2772%¢°m® _ 277°¢°m®
min 12848 3218 12872

9.5 A trial function ¢ differs from an eigenfunction yz so that ¢ = yg + a@,, where yg and ¢, are
orthonormal and normalized and « << 1. Show that (H) differs from E only by a term of order ¢/
and find this term.

Solution. Given Hye = Eyg. We have

(Hy = (@IH1g) _ (ve +ag)IHI(ve +a¢))
(919) ((we +op)|(ve + ap))

_ WelHlve) + aye lHIg) + oo HIye) + o4 IHI4)
(Welve) + alye|d) + alplve) + (61 1)

Since H is Hermitian,
(welHl¢) = ECwelg) =0
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E+a’(glHlg) _

1+ P

as 1 + o = 1. Hence the result. (H) differs from E by the term (g, |H|4,).

9.6 Evaluate the ground state energy of a harmonic oscillator of mass m and angular frequency @

using the trial function
X
cos| —|, —a<x<a
#(x) = (Za)

E+ o’ (¢ |H|g)

(H) =

0, |x]|>a
Solution.
_ d?
(ij Pl—19 )+ 5 m0)<¢IXI¢>
(Hy = OIHID) dx*
(¢19) (¢19)
a
= 27[_X =
<¢|¢>_LCOS s dx=2a
- d? W o wX n?
(Zm J<¢ Ve ¢> amaZ 1, 22 ™~ Bma
a a 2
2 — 2 2 X o [ X l =2
(B1x2|¢) = jax cos 2adx—:[a dx + jx cosZ dx
_ E_E_gas[i_ij
T3 g 6 52
n? ) 2(1 1 )
H) = +mwa’| - - —
H 8ma? 6 7
6n’rt
For (H) to be minimum, o(H)/da = 0. Minimizing at=————— we get

8m2w? (72 — 6)

1 2-6)"
(H)min=—hw( S_J =0.568 7@

2

9.7 For a particle of mass m moving in the potential,
kx, x>0
V(X) =
o, X<0

where k is a constant. Optimize the trial wavefunction ¢ = x exp (-ax), where a is the variable
parameter, and estimate the groundstate energy of the system.
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Solution. In the region x < 0, the wave function is zero since V(X) = . The Hamiltonian of the
system

__nd _(9IHIg)
H——md7+kx, X>O, <H>—W

T 2. 2ax 1
(¢|¢)=6|'X2e 2 dX:g

dz _ .
d—z(xe ) = a’xe ™ —2ae ¥
X

o 2 o o
jxe’axj—(xe’ax) dx = [a*x*e *dx — 2a [ xe *™dx
0

0 x? 0
IR SV
" 4a 2a 4a
T —ax —ax T 3,-2ax 3k
[ xe™® (kx) xe™™dx = k [x%?™ dx = —
0 0 8a
HY = i + 3_k 4a3 = hzaz + %
)= | 3ma 8a* - 2m  2a

Minimizing with respect to a, we get

1/3
(3km 92k
a= o) (Hmin = 7

3m
9.8 The Hamiltonian of a particle of mass m is
n? d? 4
H = “omal + bx

where b is a constant. Use the trial function ¢(x) = A~ where « is the variable parameter, to
evaluate the energy of the ground state. Given

oo 1( 7 1/2
— 2 -
E)fexp( ax?) dx 2(0{)

1

X2 exp (-ax?)dx = ~———
o

oO— 3

Jz
4
x* exp (~ax?)dx = % L

C(S/Z

O — 3
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Solution. The Hamiltonian H and the trial function ¢(x) are
n? d? Y
H = ——— = —a&°X
M a4 + bx* #(X) = Aee

The normalization condition gives

n? d? .
(Hy = (gIH[g)= (¢ oM gl bx*| ¢
= iIAIZ 207 T e 2 d —ﬁ|A|2 4o T X% 27 dx + bl AP T x4e 2% g
2m . 2m . s
A
T m 2m 16 o4
_Fa® 3 b
T o2m 16 ¢
Minimizing (H) with respect to «, we have
A(H) _o- Wa 3 b
da T m 4 o

Substituting this value of ¢, we get

A ANTE AN
Hmin =71 7 w2 “la ey

9.9 An anharmonic oscillator is described by the Hamiltonian

2 2
H= —h—d—+ Ax*
2m dx?

Determine its ground state energy by selecting
11/2 _ﬂZXZ

A being a variable parameter as the variational trial wave function.
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Solution.  With the trial function ; the expectation value of H is

(Hy = An V2 T g 412 (—ﬁ @ + Ax“] g 12 gy

—oo

Using the values of the first three integrals from the Appendix, we obtain

A% 3A
=T

Minimizing (H) with respect the variable parameter 4, we get
_o(H) KA 3A

0 -2 ==

04  2m 45

1/6
6mA
=)

Substituting this value of 4, we obtain
213
by o H(BmAYT 3Af #?
(H) = am | 42 4 | 6mA

2/3 2/3
- ﬁ (ﬁ) A3 4 ﬁ [ﬁ) AL3

2 | 2m 2 | 2m
213 213
:#[%] Aus:llosz(%) N

It may be noted that numerical integration gives a coefficient of 1.08, illustrating the usefulness of
the variation method. It may also be noted that perturbation technique is not possible as there is no
way to split H into an unperturbed part and a perturbed part.
9.10 The Hamiltonian of a system is given by
—n* d?
= ﬁ d7 - a§(X)

where a is a constant and &x) is Dirac’s delta function. Estimate the ground state energy of the
system using a Gaussian trial function.

Solution. The normalized Gaussian trial function is given by ¢(x) = (2b/z)Y* exp (~bx?). Then,

? d?

HY= —— -

e 22
1/2 I 1/2 )

(%) 2b [ exp (—2bx*)dx + (Zb) 4b* | x* exp (—2bx?) dx

T

1/2 1/2 1/2 1/2
_(2b wl Z | 4 2 4b2i Tl —_p
V4 2b T 4b{ 2b

¢>—a<¢l5(x)l¢>

<
\/
1
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1/2

(@16(9)19) = (%) J () exp (=2bx*) dx

1/2 1/2
2b 2b
- [7) exp (20 b = (_)

T

Minimizing (H) with respect to b, we get

2m?a® ma?
b: ﬂ-h4 or <H>min:_ﬁ
9.11 Evaluate the ground state energy of hydrogen atom using a Gaussian trial function. Given
P 72 (2n)1
2n 2 _
E[X exp (=Ax7) dx = 020+l 4n+l/2
sznﬂ exp (-Ax?)dx = n’
0 Zn+1
Solution.
2 2
Hamiltonian H = — 2 v2 _&
2u r

The Gaussian trial function ¢(r) = exp (—br?), where b is the variable parameter. Since ¢ depends
only on r, only the radial derivative exists in V2. However, the angular integration of dzgives a factor

of 4. Hence,
hz d2 h2
2
(219)
“ 3/2
919) = 47 ] exp (-2br") dr - (%)

d2
(el

2d ¢
r dr r

(H) =

47 (-2h) jrze’Zbrzdr + 47 x 4b? jr4e’2br2dr
0 0

732 632 (= 3/2
- (2b)1/2 + (2b)5/2 - %

oo 3/2
—167b jrze’Zbrzdr = (%) (—4b)
0

<
-
1
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e2

s

o 2
¢> = 47e? jre’zbrzdr -
5 b

2 1/2
21172
(Hy = 3D 20 b 4 2% [ﬁj

N . . 8ule*
Minimizing (H) with respect to b given by b = o we get
7T

8 ( —ue*
<H>min = g [—th ] =-11.59eV

9.12 A particle of mass m is moving in a one-dimensional box defined by the potential V = 0,
0 < x < aandV = « otherwise. Estimate the ground state energy using the trial function y(x) =

Ax(a-x), 0 £x < a

Solution.  The normalization condition gives

(wly) = AZTXZ(a— x)? =1
0

a a a
A? {jazxzdx —2a [x%dx + Jx“dx} =1
0 0 0

NS 30
30 =1 or A= ?

The normalized trial function is

z//(x)=\/gx(a—x), 0<x<a
a

The Hamiltonian of the system is given by

n? d?
2
(H):—h—gj(x—x) (ax — x?) dx
2 a 2 2
_ 30k j(ax— 2y ax < I 100

ma’? 2ma

which is the ground state energy with the trial function. It may be noted that the exact ground state

energy is 72h%/(2ma?), which is very close to the one obtained here.
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9.13 Evaluate, by the variation method, the energy of the first excited state of a linear harmonic
oscillator using the trial function

¢ = Nx exp (-4x?)
where is the A variable parameter.

Solution. The Hamiltonian
nod? 1
H=————+=kx?
2m (dx? * 2 X
The trial function
¢ = Nx exp (-4x?)
where A is the variable parameter. The normalization condition gives

oo \/; 1

1= N? j x2e 22 dy = N2 x 2 x YT

S 4 (2%
5/2 23/2
N, = ALY)
7[1/2
n? d? 1 )
(H) = —ﬁ<¢ el ¢>+§k<¢|x [#)
d? < 2
¢ vl ¢) = N2 [ (-6Ax% + 44%x*) e ™ dx
X e

2[ 371/2 3412 J: 3412 \2

— + —
23/2 11/2 25/2 11/2 25/2 11/2

Substituting the value of N?, we get

2 12 5/2 93/2
¢d_2¢ =T 53/7;11/22 ;12 =-31
dx 2°2 V.
2 _ 21 o4 2 _ 37 2_ 3
(p1x%|¢) = N :Lx g X dX_WN =11
Substituting these values, we obtain
? 1 3 34 3k
<H>‘[_ﬁ](_3’”+§kxﬂ‘ﬂ+ﬁ
Minimizing (H) with respect to A, we obtain
3n? 3k Jkm

W_WZO or /1=—2h
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Substituting this value of 4 in (H), we get

3 k 3
(H)min = Eh \/% = Eha)

9.14 Estimate the ground state energy of helium atom by taking the product of two normalized
hydrogenic ground state wave functions as the trial wave function, the nuclear charge Z’e being the
variable parameter. Assume that the expectation value of the interelectronic repulsion term is
(5/4) ZWy, W = 13.6 eV.

Solution. The Hamiltonian of the helium atom having a nuclear charge Ze (Fig. 9.1) is given by

n? kze? n? kze? | ke’
H=|--—Vi——— | +|-o=Vi - —— |+ — i
( om Vi n ]+( om V2 r " M, (©
where
_ 1
 Are,
_e
2
M2
r
_e
1
rn

Fig. 9.1 The helium atom.

In terms of the variable parameter Z’e, it is convenient to write the Hamiltonian as
h2 kz/ 2 2 7,2 2
H=|-2 y2_ & 1, —h—V§—kZ—e +(2' - Z)ke? 1.1, (ii)
2m n 2m r L n n,

The product of the two normalized hydrogenic ground state wave functions is

z” z’
v=yi(n) v () =—Fexp|—— ([ +1) (iii)
ay 2

where y4(r;) and ys»(r,) are the normalized hydrogenic wave functions with Z replaced by Z’. The
expectation value of H with the trial wave function, as seen from Eq. (iii), is
2

‘//1>+<‘//2 ‘//2>
‘//1> +(2" - Z)<‘//2 ki ‘//2> + <‘//1‘//2 e

n o, kz'e?

W kz'e* n o, kz'e?
2m 1 n

—— Vi
2m r

(H) = <‘//1

2

e —Z)<m ke

2

>

iy, >
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The value of the first and second terms are equal and each is —Z’?W,,, where Wy, = k?me*/2#2.

keZ /3ke2 2r V.4 ( ZZ/r )
= dg, [sin 6, dg, [r, ex L\dr,
<'//1 ‘//1> ﬂ_ao J & ,[ ) doy ,[ 1 €Xp 2 1

n

Z"%ke? 1
A . >
a3 (2Z'1ay)
Z’ke?

- 22'W, (iv)

where the value of a; is substituted. Given

ke2
Vi¥o | —|Vi¥2 ZWH (v)
Summing up, we have
(Hy=—2Z""W,, + 4(Z’ - Z) Z'W, +%z'WH (vi)
Minimizing (H) with respect to Z’, we get
—4Z'W,, + 8Z'W,, — 4ZW, + %WH =0
,_ S .
7' -7 _ 6 (vii)

With this value of Z’, Eq. (vi) gives

5 2
E:(H):—Z[ 16) Wi,

Substitution of Wy, = 13.6 eV leads to a ground state energy of —77.46 eV.

9.15 The attractive short range force between the nuclear particles in a deuteron is described by the
Yukawa potential

—r/ﬁ
rig

where V, and S are constants. Estimate the ground state energy of the system using the trial function
3 1/2
(04 —arlf
b=|—%| €~
B

Solution. The Hamiltonian for the ground state is

V() = V0

where « is a variable parameter.

H = hz VZ v .
=TVt (r) (i)
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As the trial function depends only on r, we need to consider only the radial derivative in V2

, 1 d(,d) d* 2d .
v ——zd—[f d—rj—d?+rdr (i)
Consequently,
d? n? 2 .
(H) = <¢|H|¢>—— ¢ Fel ¢ ~ 2 o\ |2)+IVIg) (iii)

While evaluating integrals in Eq. (iii), the factor dz gives the angular contribution 4. Using the

integrals in the Appendix, we get
d2
dx

3 2
¢ = _6( 6(_47[
v

(iv)

GIV()19) ﬁs

0(3

B

Adding all the contributions, we here

2
)= -

(~47BV,) | rexp(

2
op) —L

(v)

a+1

B

r) dr

AV
(2ar + 1)?

Qo +17? V)

2n% o WNyo'

21 2

Minimizing with respect to ¢, we obtain

0=

2u F "
(2a + 1)°

o 3

2up® (2a+1)>°

3
o (vii)

WNyo? 2a + 3)

up

_ Ny + 3)

(2a +1)°

h2
2up?

a +1)>° Vi)
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Repalcing #2/2u/ in Eq. (vii) using Eq. (viii), we get

V2o +3) 4V d

= a +1)° (a + 1)
s ~
" et [(2or + 3) — 220 + 1)]
E = w

2 +1)
where « is given by Eq. (viii).
9.16 Consider a particle having momentum p moving inside the one-dimensional potential well
shown in Fig. 9.2. If E < V(x), show by the WKB method, that
2 1
2 | pdx:[n+§jh, n=0,1,2 ..

X

V()

E = V(x) E = V(xy)

Region 1 Region 2 Region 3

Fig. 9.2 A potential well with linear turning points at x; and x,.

Solution. Classically, the particle will oscillate back and forth between the turning points x; and
Xo. Quantum mechanically, the particles can penetrate into regions 1 and 2. The wave functions in
regions 1 and 2 are exponentially decreasing. When we move from region 1 to region 2, the barrier
is to the left of the turning point and, when we move from region 2 to region 3, the barrier is to the
right of the turning point. The wave function in region 1 is

1 A 2 -E )
vfl:ﬁexp[—x{ydx} p= 2= ()

Applying Eg. (9.8), we get

L _ 2m[E - V(x)]

2 r
= —= CO0S k dx — ) k2 _— ii
v, /—k [;‘; 4} 72 (i)
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The wave function that connects region 2 with the decreasing potential of region 3 being of the type

Xo pu
cos jkdx—z

X1

Hence, Eq. (ii) should be modified as

2 i P b4
W, = —— COS jkdx+jkdx—z (iii)
X2

e

Since cos () = cos @and sin (-8 = —sin 6, Eq. (iii) can be rewritten as

2 kad kad 2 kad i kad ”
Y, = —= COS X | COS X+ —|+—SIn X | sin X+ —
’ \/E Xq X 4 \/E X1 X 4

2 )]? )]? P s 2 )]? )}2 z
= —cos| | kdx |[sin| |kdx—=—|+—sin| | kdx|cos| | kdx —— (iv)

\/E Xy X 4 \/E Xy X 4
Comparison of Egs. (iv) and (9.7) shows that the second term of Eq. (iv) is the one that connects
with the decreasing exponential of region 3, while the first term connects with the increasing

exponential. Since an increasing exponential in region 3 is not acceptable, the first term has to be
zero. This is possible if

X2 X2 1
cos [kdx =0 or Jkdx:(n+§)7z, n=012 .. (v)

X X1

Substituting the value of k, we get

om 1/2 %, 1
[ ) J[E—V(x)]”zdx:(n+§)7r, n=0,1,2, .. (vi)

2
h X

which gives the allowed energy value. Classically, since the linear momentum p = [2m (E - V)]l’z,
Eq. (vi) can be rewritten as

Xo 1
2dex:[n+§)h, n=0,1,2 .. (vii)
X1

The LHS is the value of the integral over a complete cycle.

9.17 Obtain the energy values of harmonic oscillator by the WKB method.

Solution.  The classical turning points of the oscillator are those points at which the potential V(x)
=E, ie., 1/2ma?x? = E or x; = —(2E/ma?)Y? and x, = (2E/m?)Y2. For a particle constrained to move
between classical turning points x; and X, in a potential well, the energies can be obtained from the
condition (vii) of Problem 9.16. We then have

2 1/2
S S S Y “lom|E - Lmetx?
E om + 2ma) X or P { >
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Substituting this value of p in Eq. (vii) of Problem 9.16, we get

Xo 1 - 1/2 1
[|2m|E-Sma’x* || dx=|n+|zh,  n=012 ..

X

Writing sin @ = (ma?/2E)Y?x, the above integral reduces to

/2 1/2
| (2mE)"?cos® 9( 2E2 ) do = (n + %) 7h
mw

—7l2

/2

1

2E | cosedo=|n+=|7h
@ —7l2 2

E><£: n+1 z7h or E= n+1 ho
10} 2 2

9.18 Solve the following one-dimensional infinite potential well:
V(X) =0 for-a<x<a; V(X) = for|x|>a
using the WKB method and compare it with the exact solution.

Solution.  V(x) = 0 for —a < x < a and V(x) = < for | x| > a. The turning points are x; = —a and
X, = a. The allowed energies can be obtained using the relation

a
Ikdx=(n+l)7r, @=2ME n=o0 12 .
a 2 n?

1/2 a
2mE 1
(hz) jadx_(n+§)ﬂ

_ [n+ @23 2%

E ., n=01,2 ..
; 8ma?
The exact solution gives
2232
g, =220 n=123
8ma

The WKB solution has n + (1/2) in place of n. Another major difference is in the allowed values
of n.

9.19 Estimate the energy levels of a particle moving in the potential

oo, x<0
V(x) =
Ax, x>0

A being a constant.
Solution.  The classical turning points are at x; = 0 and at X, = E/A. Now,

i 1 , 2m
Jkdx:(n+§)7r, k=h—2(E—V)

X1
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In the given case,

om 1/2
k = [h_z) (E — Ax)Y?2

1/2 E/A
(Zm) j(E—Ax)llzdx=(n+%)ﬂ

h? 0

om V2 [(E - Ax)2 | 1
- (h_Z) A2 | (n * 5) i
173 2/3
n? 37zA(2n + 1
E, =(_J {L} , n=01,2, ...

2m 4

9.20 Find the energy levels of a particle moving in the potential V(x) = V| x|, Vo being a positive
constant.

Solution.  The turning points are given by
E=Vy|x| or |x|=EN, or x==E/NV,

X, 1 om 1/2
Jkdx:[n+§ T, k = h_2 (E—V()|X|)1/2

X
112 ENg
[Zm) | (E—V0|x|)l’2dx:[n+%)7r

W) En,
As the integrand is even,
1/2  EV,
2m 0 1
(h—z) 2 E)[ (E—V0|x|)1’2dx=(n+§)7r

, 2_ml/2 E —V, x| E/VO_ n+£ i
G -3V, /2 0 B 2

2/3 1/3
3( 1 n?
G L I E IR R R

9.21 Consider a particle of mass m moving in a spherically symmetric potential V = kr, k being a
positive constant. Estimate the ground state energy using a trial function of the type ¢ = exp (-ar),
where « is the variable parameter.
Solution. The Hamiltonian operator

hz

__ " g2
H= ZmV + kr
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As the trial wave function is not normalized,

=0 ?°°
_m 2w, 24, 21 _ 1

(see Appendix). Now,

- —ozri i Zi —ar 2 M3—2(xr
(IHIp=——]e > {dr(r i | rdr+k6[re dr

_— jrze 2o 4 —— jre 2074y 4 kjr3e 2ot gr
0 m % 0

Using the standard integral in the Appendix, we get

) o 1 31
H| @)= k
(pIH| @ om (2a)3+ - (2a>2+ 2a)*
R 3k
" Bma ' got
2.2
(H) = (PIH|g) o +ﬂ

(¢lg) — 2m 2«

For (H) to be minimum, it is necessary that

o(H) _

oo =0
Ra 3K [3km)“3
A 0 o a=|TF
m 202 2h

With this value of «, the ground state energy
2/3 1/3
o P (3mk)? sk (2n2 )T 3 ( ok
~2m | 252 2 [ 3km | 2| 4m

9.22 Using the WKB method, calculate the transmission coefficient for the potential barrier

[ x|
Vo = Vo(l—T), Ix] < A

0, [x|> A4
Solution. The transmission coefficient

T:exp[—ZTldx}, ,12=1—T[v(x)—E]

X
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where x; and X, are the turning points. At the turning points,

_ - _Ixl E_ _m
E—V(X)—Vo(l /1) or Vo—l 7
Vy, - E Vy, - E
= =+
| X] /1( Y, ) or X _/1( v

|
N
— X
<
o
x
|
|
N
N
X,

) N

1

T exp {_ 16Vm 2

9.23 Use the WKB method to calculate the transmission coefficient for the potential barrier

Vo — ax, x>0

V(X):{ 0 x<0

Solution. The transmission coefficient

T:exp[—Zf;/de, 7/2=il—T[V(X)—E]

X

From the value of V(x), it is clear that the turning point x; = 0. To get the other turning point, it is
necessary that
E=V(KX =Vy-ax,

Vo - E
a

Xy =

y= —ilm (Vo — ax — E)"?
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\2m %2

X2
1/2
-2 [ ydx —2Tj(v0 - E — ax)"2dx

Xq 0

= _2@3 [_%) [(Vo —E—ax)? ]Zz
42m

= 3a [(Vo —E - ax)¥? - Mo — E)*¥]

_4vam

— N =
- 3ha [VO E]

44/2m
T=exp {_—Sha v — E)S’Z]




CHAPTER

Time-Dependent Perturbation

In certain systems, the Hamiltonian may depend on time, resulting in the absence of stationary states.
The Hamiltonian can then be written as

H(r t)=Hr) + H(r, 1), H <H° (10.1)
where H? is time independent and H’ is time dependent. The time-dependent Schrédinger equation
to be solved is
Jd¥ (r,t)

ot
Let ‘Pﬁ, n=1,2, 3, ... be the stationary state eigenfunctions of H® forming a complete orthonormal

in =(H® + H") ¥(r, 1) (10.2)

set. W2 ’s are of the form

iE t
w0 =y o(r) exp (— h” ) n=123, ... (10.3)
and obey the equation
m% WO HOPO n=123 . (10.4)

10.1 First Order Perturbation

In the presence of H’, the states of the system may be expressed as a linear combination of ‘I’ﬂ ’s
as

¥ 1) =Y c,() ¥ = X ¢, (1) ¥A(r) exp (—'ETt) (105)

where c,(t)’s are expansion coefficients. The system is initially in state n and the perturbation H’ is
switched on for a time t and its effect on the stationary states is studied. The first order contribution
to the coefficient is

271
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1 t ’ 7 H r ’
cP ) = m [Hen (r, 1) exp (ioy,t") dt (10.6)
0
where
Hen = Wi IH [ypd) = (kIHIn)
(10.7)

The perturbation H’ has induced transition to other states and, after time t, the probability that a
transition to state k has occurred is given by |c{(t)[.

10.2 Harmonic Perturbation

A harmonic perturbation with an angular frequency @ has the form
H’(r,t) = 2H’(r) cos wt = H'(r) (€' + ') (10.8)
With this perturbation, we get

Hin | exp[i(@, + @)t] -1 exp[i(@, - o)t -1
h Oy + O Oy — O

CI(<1) (t) = (10.9)

The first term on the RHS of Eq. (10.9) has a maximum value when @, + @= 0 or E, = E, — hw
which corresponds to induced or stimulated emission. The second term is maximum when
E, = E, + ho which corresponds to absorption. The probability for absorption is obtained as

4|H P sin® (@, — o)t/2

— 2 -
Pn—>k(t) - |Ckn (t)l h2 (a)kn _ a))2

(10.10)

10.3 Transition to Continuum States

Next we consider transitions from a discrete state n to a continuum of states around E,, where the
density of states is p(E,). The probability for transition into range dEy is

2 ,
P(®) = —-tIHG I p(Ey) (10.11)
The transition probability @ is the number of transitions per unit time and is given by
2r .,
o = 1HG I p(Ey) (10.12)

which is called Fermi’s Golden Rule.
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10.4 Absorption and Emission of Radiation

In dipole approximation, kr = 1, k being the wave vector 2474 of the incident plane electromagnetic
wave. Under this approximation, the probability per unit time for absorption is given by

2

o = Py |/ukn |2 P (wkn) (1013)
3h
where 4, is the transition dipole moment defined by
Ui = <Klery [n) (10.14)

er being the dipole moment of the atom.

10.5 Einstein’s A and B Coefficients

The transition probability per unit time for spontaneous emission, called Einstein’s A coefficient, is
defined by

ot

3nc?

The transition probability per unit time for stimulated emission or absorption, called Einstein’s B
coefficient, is defined by

|ty (10.15)

_2r

B =
3n?

|t P (10.16)

From Egs. (10.15) and (10.16),
A 2nwd  8rhvy,

BT 3 3 (10.17)

It can easily be proved that
Spontaneous emission rate ho) 10.18
Stimulated emission rate kT (10.18)

10.6 Selection Rules

Transitions between all states are not allowed. The selection rules specify the transitions that may
occur on the basis of dipole approximation. Transitions for which g4, is nonzero are the allowed
transitions and those for which it is zero are the forbidden transitions. The selection rules for
hydrogenic atoms are

An = any value, Al = £1, Am =0, £1 (10.19)

The selection rule for electric dipole transitions of a linear harmonic oscillator is
An = +1 (10.20)
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PROBLEMS

10.1 A system in an unperturbed state n is suddenly subjected to a constant perturbation
H’(r) which exists during time 0 — t. Find the probability for transition from state n to state k
and show that it varies simple harmonically with angular frequency (Ey — E,)/2h and amplitude
4| HiPI(Ex — En)’.

Solution. Equation (10. 6) gives the value of c{?(t). When the perturbation is constant in time,
Hy,(r) can be taken outside the integral. Hence,

Ho() ¢ o, Hy i
o®(t) = # E)fexp (IOt dt’ = — ha):n [exp (ioyt) — 1]

H, . . .
= o exp (104q2) [eXp (103q2) = exp (i0yot/2)]
n

= _h_wkkn exp (iy,t/2) sin (ioy,t/2)

n

4 [HG I o
PP = = sin® (o, t/2)
/S

which is the probability for transition from state n to state k. From the above expression it is obvious
that the probability varies simple harmonically with angular frequency @./2 = (Ex — E,)/2h. The
amplitude of vibration is

4 Hu P 4lHg P
nog (B ~E,)’

10.2 Calculate the Einstein B coefficient forthen=2,1=1, m=0, - n=1,1 =0, m = 0 transition
in the hydrogen atom.

Solution. Einstein’s B coefficient is given by

28| = 22
</ 3n?

To get the value of (210| r|100), we require the values of (210|x|100), (210|y|100), (210|z|100).
In the spherical polar coordinates, x = r sin @cos ¢, y = r sin @sin ¢, z = r cos 6.

1/2
= ! L exp (—Lj cos 4
Vao T\ sarad | 3 22

1/2
[ exp[_LJ
Voo = ”ag a
2r

(210|x|100) = constant x r-part x &-part x j cosg dg =0
0

[Km[r|n)?

Bmon =

2r

(210]y|100) = constant x r-part x &-part x j singdg =0
0
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(210]2|100) = (210|r cos & |100)
2r

e 2% gr jcos 6 sin 6 do j dg

:4\/—”306[

1 41 _
 a2ral (312a,)° 3 M( )

[(210]r|100)]> = 32(g

10
3) a% = 0.1558 x 102 m?

_ 2z (1.6 x107°C)* (0.1558 x 10°°m?)
3 (1.054 x 107%* Js)?

10.3 Calculate the square of the electric dipole transition moment [(310 | |200)? for hydrogen

atom.
1/2
— 1 [2 — Lj exp [_ LJ
Voo = | 32728 3 2a

Solution.
= ; ril- r ex r cos @
0 S )7 63, ) "\ 38y

(310]z|200) = (310|r cos &200)

=7.5x10° Ntm?%s~2

i 5 6 . oo 2z
= 14J 2r“—8L+r—2 expidrjcoszesinedejd¢
547a; 6a, 6a’ ba, 7 0

Using standard integrals (see Appendix), we get

5
1 144(6a ) 2

= 1.7695a,
(310 11, 200) = -1.7695a,¢
K310 12, ] 200)2 = 3.13a2e?

Since the ¢-part of the integral is given by (310|x|200) = (310]y|200) = 0 (refer Problem 10.2),
we have
(310 2| 200)?> = 3.13a%e?

10.4 What are electric dipole transitions ? Show that the allowed electric dipole transitions are
those involving a change in parity.

Solution.  When the wavelength A of the electromagnetic radiation is large, the matrix element Hi,
of the perturbation H” between the states k and n reduces to the dipole moment matrix (k| er | n) times
the other factors. This approximation is called dipole approximation. Physically, when the
wavelength of the radiation is large, it ‘sees’ the atom as a dipole and, when A is small, the radiation
‘sees’ the individual charges of the dipole only.
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The parity of an atomic orbital with quantum number | is (-1)". Hence, s (I = 0) and d (I = 2)
orbitals have even parity, whereas p (I = 1) and f(l = 3) orbitals have odd parity. A transition is
allowed if the dipole matrix element 4, = (yiler| w,) is nonvanishing. For that to happen, the
integrand of the dipole moment matrix must have even parity. The parity of the integrand is governed

by
CD* D@ = (kT
If I, + 1, + 1 is odd, the integrand of g, will be odd and g, vanishes. Hence, for g, to be

nonvanishing, I, + I, + 1 = even or I, + I, = odd. That is, for z, to be finite, the two orbitals must
have opposite parity. This is often referred to as Laporte selection rule.

10.5 For hydrogenic atoms, the states are specified by the quantum numbers n, I, m. For a transition
to be allowed, show that

An = any value, Al = £1, Al =0, 1
Solution. The form of the radial wave functions are such that the radial part of the integral

’

(n’m’| er| nlm) is nonvanishing, whatever be the values of n’, I’, n and I. Hence,
An = any value is allowed.
By the Laporte selection rule (see Problem 10.4) , for a transition to be allowed, it is neccessary that

Ik + In = Odd
Therefore,
=1, =Al =+1

To obtain the selection rule for the quantum number m, the matrix element may be written as
M’I’'m’|r|nlm) = iA(n’I’m’| x| nlm) + ](n'l’m’|y|n|m) + I2(n’|'m'|z|n|m)

If the radiation is plane polarized with the electric field in the z-direction, the z-component is the only
relevant quantity, which is (n’I'm’|r cos 8| nlm). The @-part of this integral is

2r
J exp [i(m - m") g]dg
0
which is finite only when
m-m=0 or Am=0
If the radiation is polarized in the xy-plane, it is convenient to find the matrix elements of x £ iy since
it is always possible to get the values for x and y by the relations
1 . . 1 . .
x=5[x+iy) + (x —iy)l, y =S [(x+iy) = (x —iy)]
In the polar coordinates,
X £ iy = rsin @cos ¢+ ir sin @sin ¢ =r sin g
The matrix elements of x * iy are

+

2r
(n’I’'m’|rsin 6e*'¢|nlm) = f(r, 6)j exp [i(m—m’+ 1)g]de
0
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This integral is nonvanishing only when
m-m=+1=0 or mMm-m=41 or Am=4#1
For arbitrary polarization, the general selection rule is
Am =0, £1
Thus, the selection rules for hydrogenic atoms are
An = any value, Al = £1, Am =0, 1

10.6 Find the condition under which stimulated emission equals spontaneous emission. If the
temperature of the source is 500 K, at what wavelength will both the emissions be equal? Comment
on the result.

Solution.  Stimulated emission equals spontaneous emission when (Eq. 10.18). Hence,

th/kT _ 1 — 1 or th/kT — 2

Taking logarithm on both sides, we get

v o693 or o 069K
ot T h
v _ 0.693x1.38x 10 *° JJK
T 6.626 x 10** Js

1.44 x 10"° K5t

When T = 500 K,

<

= (1.44 x 10* K1s71) 500 K
=72x 1027

¢ 3x10°ms?

TV 72x10%s1

=417 x10° m

Wavelength of the order of 10 m corresponds to the near infrared region of the electromagnetic
spectrum.

10.7 Spontaneous emission far exceeds stimulated emission in the visible region, whereas reverse
is the situation in the microwave region. Substantiate.

Solution. Visible region: Wavelength ~ 5000 A. So,

Spontaneous emission rate GIVIKT

: > 1
Stimulated emission rate

hv _ hc _ (6.626 x107*Js)(3x 10°ms™)

kT AKT ™ (5000 x 107'° m)(1.38 x 10722J/K) 300 k

96.03

96.03

Spontaneous emission rate = (e — 1) x stimulated emission rate

= 4.073 x stimulated emission rate
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Microwave region: Wavelength = 1cm. Therefore,
hv _ (6.626 x10**Js)(3x 10°ms™)
kKT 0.01m (1.38 x 107 2J/K) 300 k
0.004

e%0% _ 1 =1.004 - 1 = 0.004
Spontaneous emission rate = 0.004 x stimulated emission rate

Hence the required result.

10.8 Obtain the selection rule for electric dipole transitions of a linear harmonic oscillator.

Solution. Consider a charged particle having a charge e executing simple harmonic motion along
the x-axis about a point where an opposite charge is situated. At a given instant, the dipole moment
is ex, where x is the displacement from the mean position. The harmonic oscillator wave function

is
1/2
&
The dipole matrix element is given by

(k|y|n) = constant | Hy(y) YH,(y) exp (-y*)dy
For Hermite polynomials,

2
VA(Y) = NoHa(y) exp (—y?],

y Ha(y) = nH_4(y) + %Hm(y)

Substituting this value of y H,(y), we get

1
(k|y|n) = constant | Hy(y) [anl(y) +5 Hnﬂ(y)} exp (-y*)dy
In view of the orthogonality relation, we have

[ He(y) Ho(y) exp (=y?)dy = constant &,

(kly|ny is finite only when k = n -1 or k = n + 1, i.e., the harmonic oscillator selection rule is
k-n=21 or An=4#1

10.9 Which of the following transitions are electric diploe allowed?

(i) 1s — 2s; (ii) 1s — 2p; (iii) 2p — 3d; (iv) 3s — 5d.

Solution.

(i) 1s — 2s: The allowed electric dipole transitions are those involving a change in parity. The
quantum number | = 0 for both 1s and 2s. Hence both the states have the same parity and
the transition is not allowed.

(if) 1s — 2p: The quantum number | for 1s is zero and for 2p it is 1. Hence the transition is
allowed.

(iif) 2p — 3d: The | value for 2p is 1 and for 3d it is 2. The transition is the refue allowed.
(iv) 3s — 5d: The | value for 3s is zero and for 5d it is 2. As both states have same parity, the
transition is not allowed.
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10.10 A hydrogen atom in the 2p state is placed in a cavity. Find the temperature of the cavity at
which the transition probabilities for stimulated and spontaneous emissions are equal.

Solution. The probability for stimulated emission = Bp(v). The probability for spontaneous
emission = A. When the two are equal,

A =Bp(v)
A 8rhv3
V)=—=
pV) =5 3
The radiation density p(v) is given by Eq.(1.3). Hence,
8rhvs, 1 B 8rhvs,
3 exp (hvy/kT) ;3
1 B hvy )
exp (k) - exp( T )‘ i
= e
" kiIn2

hvy, = (10.2 eV) (1.6 x 1072° J/eV) = 16.32 x 1072°J

16.32 x 1071°

= =17.1 x 10* K
(1.38 x 107 2J/K) 0.693

10.11 A particle of mass m having charge e, confined to a three-dimensional cubical box of side
2a, is acted on by an electric field

E=Ee™ t>0
where « is a constant, in the x-direction. Calculate the prbability that the charged particle in the
ground state at t = 0 is excited to the first excited state by the time t = oo.

Solution. The energy eigenfunctions and eigenvalues of a partcile in a cubical box of side 2a are
given by

242
”hz (P+K2+1%), . k1=1,23, ..

E. =
M 8ma

L sin I gin X2V i 172 _ jjiay

\/;3 2a 2a 2a

The ground state is |111) and the first excited states are |211), |121), |112). Since the electric field
is along the x-axis, the dipole moment z = ex and the perturbation are given by

‘ij| =

H = —u-E = —eEgxe™

The transition probability for a transition from state n to state m is obtained as
1 2

—1c®2 - =
P=|CyI" = Py

j H. . exp (io,,t) dt
0
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where @y, = (Eqn — En)/h, ciY and H,, is the transition moment.

Hion = A11|H|211) = (llll—eone‘”" [211)
= —eEoe”™(111]x|211)
_eE ef()lt 2a
= +Ix5|n55|n—dx jsm 2—ydy jsm —bdz
—eEqje ™ [ 32a° 32aeE e
= 3 -—— |xaxa=—7—
a o o
—eEe ™ %
(111|H’|121) = — E)[ xsin? —dx jsm —sm—dy jsm %dz—
Similarly,
(111|H’]112) = 0
E,—E _ 7N o 2.2 g2 g2y 3T
Wy = =——2°+1"+1° -1 -1°) =
2 h 8ma? ( ) 8ma?

Consequently,

2
o

| exp (ot + imyt) dt

[32aeE0)

0
(32aeE, )" 1
_[ or?h ) o’ + 0)221

10.12 Calculate the electric dipole transition moment (2p, | 1| 2s) for the 2s — 2p, transition in

a hydrogen atom.
1 1/2
r
- 2_ e—r/2a0
v [327ra3] [ ao)

Solution.
1 1/2
r —r/2ay
= | —— —e cos @
Ve, [327£a8’ ] 3

(2p, | 1] 2s) = (2p, |-er cos €] 2s)

_ [ 1< o0 2z
- ¢ ~| [ 2rfe ™o dr — — [ r®e ™o dr | [cos’ @ sin @ do | dg
327y | o % 9 0 0

32rag | (Uag)® @ (l/ag)®

e [2x41 1 5 F
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10.13 Calculate Einsten’s A coefficient forthen=2,1=1,m=0—-n=1, 1 =0, m = 0 transition
in the hydrogen atom.
Solution.

4® 4w e?
Einstein’s A coefficient = —™m |z 2 = —™"_ |(m|r|n[)?
3hc® [ 3hc®

1 1/2 1 1/2

r
=] —| e, = | ——| —e " cosg
Z10)0) [ﬁag] Vo10 [327[&13] 2

To evaluate (210 | r| 100), we require the values of (210 |x| 100), 210 |y| 100), and {210 |z| 100).
In the spherical polar coordinates, x = r sin 8cos ¢, y = r sin @sin ¢ and z = r cos 6. The x- and
y-components of the matrix element vanish since

2 2r
[cospdgp=0 and [singdp=0
0 0

S ) 2
- [rie 2% dr [cos? 6 sin 6 do [ dg
0 0

1
4\/571'30 0

5

1 41 Ar 2

: 5[}
427al (3/2ay)° 3 3) %

(210]z] 100) = (210 | r cos #| 100) =

10
[(210 | r| 100)|2 = 32 x (%) al = 0.1558 x 1020 m?

For n =2 — n =1 transition,
y= E2 - B _ lo'i eV 2463 x 105 Hz

®=27v= 15482 x 10 Hz

”?2 -19 -19
e2 - e :16X10 x 1.6 x10 22.3X10_28 Nmz

dre, 4 x 8.854 x 10712

15 143
A= 4% (15482 <1075 ) x 2.3 %1072 Nm? x 0.1558 x 10 2°m?

3% 1.055x10 % Js x (3% 103ms 1)
=6.2 x 108 st

10.14 Prove the following:
(i) If the source temperature is 1000 K, in the optical region (4 = 5000 A), the emission is
predominantly due to spontaneous transitions.
(i) If the source temperature is 300 K, in the microwave region (4 = 1 cm), the emission is
predominantly due to stimulated emission. The Boltzmann constant is 1.38 x 1072 JK™,
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Solution.
Spontaneous emission hv _1
Stimulated emission KT
(i) In the optical region,
c 3x108
v —=—""" _ =6x 10" Hz
A 5000 x 1070

hv 6.626x10°% ~ 6x10"

KT ~ 138x10 2 * 1000 =288

exp (28.8) — 1 = 3.22 x 102

Thus, spontaneous emission is predominant.
(if) In the microwave region,

c 3x108
v —=

- 107 - 3 x 10" Hz

hv _6.626 x 107 x 3x10'
KT 1.38x 107 x 300

exp (4.8 x 107%) — 1 = 0.0048

=48x%x107°

Therefore, stimulated emission is predominant.

10.15 Obtain Einstein’s A coefficient for a one-dimensional harmonic oscillator of angular
frequency  in its nth state.

Solution.

n—k

4, ) _ 4Py, 2
=— " = Kk x|l
Shcs ,ukn hc3 < >

For linear harmonic oscillator, ¢(k|x|n) is finite only when k =n—-1ork =n + 1.
For emission from state n, k must be n — 1. Hence,
1/2
h t
[Zma)j (a+a’) n>
n

1/2
= (—] [(n - Dlalny + ({(n - 1|a’|n)
h 1/2 ni 1/2
- (am0) [ro)=(omg) - k=n-

2mw
Substituting this value of (k|x|n},

KklxIny=<{(n -1|x|n) = <n—1

_4e*0® nh_ 26°wn

A = —
KT 3pcd 2m@w T 3mcd
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10.16 Calculate the rates of stimulated and spontaneous emission for the transition 3p — 2s
(H,, line) of hydrogen atom, essuming the atoms are at a temperature of 1000 K.

Solution.
. .. 2r 2
Stimulated emission rate = B,_,, p(v) = §|ﬂmn| p(v)

From Problem 10.3, [(200] |310)[* = 3.13a2e?
Since e2 = 2.3 x 10728 N m?

[(200] 1£|1310) ] = 3.13 (0.53 x 107°m)? x 2.3 x 107N m? = 2.0222 x 107 N m*
Es-E, 1.89x16x107"

ve——t= 5626 10 " 4.564 x 10* Hz
T 1 1
ehv/kt -1 e21.914 -1 3.289 x 109
_8h® 1 8rx6626x10% , (4.564 x 10')3
¢t ek _g (3x 1083 3.289 x 10°

=1783x 102 I m3s

27 % 2.0222 x 107 Nm* x 178.3x 107 Im~3s
3 x (1.055 x 1073* Js)?
=6.79 x 1031

Stimulated emission rate =

. 4 3273
Spontaneous emission rate A= —m0 |y | =
P anct 1 3nc®

2
| Ly |

3 143
A= 327 x(4564x107) -x 2.0222 x 107 = 2,235 x 107 5

3% 1.055 x 1073 x (3 x 108)

10.17 A harmonic oscillator in the ground state is subjected to a perturbation

t2
H = —x exp[—t—z] fromt=0tot = c.
0

Calculate the probability for transition from the ground state, given that

oo 2
—ot? +i —_il= —®
b[exp( at? +iwt) dt = |\/; exp( 40(]

Solution. The probability that a transition to state k has occurred is |c{ (t)[?

1 t ’ - 7 ’ 2
e (1) = n [Hiy exp (i t) dt’,  H’ = —x exp [—:—2]
0 0
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Since the only transition possible is 0 — 1,

@ 17 ot —t’
Cy (°°)=—E (0[x]1) &' exp | —— | dt
0 to
0]x]1) = o’ kn = W
C(l)(oo) _ _i LTGM exp _t'2 it
k T in 2mo o t5
242
t
-1 2 exp | — 20
2mhw 4

The probability for the 0 — 1 transition is

|C(l)|2= ﬁtg exp _a)ztg
K 2mhw 2

10.18 The time varying Hamiltonain H’(t) induces transitions between states | j) and | k). Using
time-dependent perturbation theory, show that the probability for a transition from state | j ) to state
| k) is the same as the probability for a transition from state | k) to state | j ).

Solution. The probability for a transition from state | j) to state | k) at time t is

Pk () = 1CL(OF

The relation for C;_, is
Cix (1) = % i<k|H’| J) exp (imgt) dt

See Eq. (10.6). The coefficient for transition from state | k) to state | j) is given by
cﬁuo:%?nwwwma%mm

Since H’ is Hermitian, <k|H’|j) = (|H"|k). Also, it follows that 7@ = E — Ej = —h@). As the
integrand of the second integral is the complex conjugate of that of the first one, we have

ICi_k (I = IC,; (B

Pimk (1) = Piyj (V)

10.19 A quantum mechanical system is initially in the ground state | 0). At t = 0, a perturbation
of the form H’(t), Hye™*', where «is a constant, is applied. Show that the probability that the system
is in state | 1) after long time is

i.e.,

KOIHo I _E-EK

0= 73, 2 Wy =
W2 (@ + wyo) Z
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Solution. In the first-order perturbation, the transition probability amplitude is given by Eq. (10.6).
So,

1 t ’ H ’ ’
c(t) = EJ‘ Hin exp (ioy,t) dt
0

where
Ek B En

He, =<k|H’|n), O = 7

Substituting the value of H” and allowing t — oo, we get

oo

1 . -
C) = 7 [ exp (imyt) ™ (1] Ho0) dt
0

_ (IH,10) [exp [ (x - iwlo)t]T
0

ih — (o —iwy)
_ AH 0 1
B in a-iwg

The probability for a transition from state | 0) to state | 1) after a long time is

[<0IHo I1)F
P10:|C1£l)|2—2 2 0 22
h(a® + i)

10.20 A hydrogen atom in the ground state is subjected to an electric field
E=Ee’, t>0, rbeing constant

along the z-axis. Calculate the probability for transition to the (200) and (210) states when it is very
large.

Solution. The interaction Hamiltonian

-t/

H = —u-E=—-uE cos@=erEye " cosé
1 1/2
Wioo = [—3] e "%
78y
3/2
Voo = L(L) (1_L) e
2\ 2a 28
5/2
1 1 —r/2ag
Vor0 = —5 | =— re cos 6
210 7[1/2 (280)
The probability for transition from n — k state is
2
I . E, —-E
Piok = h_2 ,('; Hn (1, 1) exp (i, t) dt Wyn . 7 .
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(100) to (200) transition:
H3,(t) = (2001 H'|100) = [ 509 (erEqe ™" cos 6) pyqq d7
The @part of the integral is

T
[cos 6sin g do =0
0

Hence, HY%; is zero. Therefore, the probability P,_,, = 0.
(100) to (210) transition:

eEe V7 z 2z
H3,(t) = (200/H"|100) = —5—— [r*e *"?%dr [cos* 6 sin 6 do [ dg
72”8y g 0 0
Writing y = cos 6, dy = —sin 8dé,
we have
T -1 2
jcoszesin0d9=—jy2dy=§
0 1
eEpe VT 41 2
5(t) = . X =X 27
=t 725288 (3/28,)° 3
_ 256eEqaee T _ |y
243 x 2
where
_ 256eEga,
243 x 2

t t t
[ Hy e ?tdt = A [e e ®2'dt = A [e V7 (cos m,yt + i sin m,t) dt
0 0 0

As t is very large, we can assume the limits of integral as 0 to <. Then,

| Hjy et dt = A[ Uz D1 ]
0

+i
U+ o5, (Ur?)+ wh

P =

A? Ur .y ][ Ur .y ]

+ 1 — 1
P+ ey  U?)+oi )\ (UTA) + 05 (Ur?) + ol

_ A Wweo’ o
P\ L)+ o5 [(U7%) + o)

Al
A\ (Ur?) + o3



CHAPTER

Identical Particles

Systems of identical particles are of considerable importance for the understanding of structures of
atoms, molecules and nuclei.

11.1 Indistinguishable Particles

Particles that can be substituted for each other with no change in the physical situation are said to
be indistinguishable or identical. For example, n electrons are strictly indistinguishable. Since the
interchange of coordinates of any two electrons does not change the Hamiltonian, we have

H(L 2 onijean)=H@2 i .. n) (11.1)

A particle exchange operator Pj; is defined such that when it operates on a state, the coordinates
of particles i and j are interchanged. The eigenvalue of the particle exchange operator is either +1
or -1, i.e.,

Piw@ 2, ...,0,j,...,n) =21y (L, 2, ..., )i, ..., n) (11.2)

Consequently, the indistinguishability requires that the wave function must be either symmetric or
antisymmetric with respect to the interchange of any pair of particles. The symmetry character of a
wave function does not change with time.

The solution of the Schrddinger equation of an n-identical particle system gives w which is a
function of the coordinates of the n particles. This leads to n ! solutions from one solution since
n | permutations of the n arguments are possible. All these n ! solutions correspond to the same
energy. The degeneracy arising due to this interchange is called exchange degeneracy.

11.2 The Pauli Principle

From simple considerations, Pauli has shown that the symmetry of a system is related to the spin of
the identical particles:

287
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1. Systems of identical particles with half odd integer spins (spin 1/2, 3/2, 5/2, ...) are
described by antisymmetric wave functions. Such particles obey Fermi-Dirac statistics and
are called fermions.

2. Systems of identical particles with integer spins (spin 0, 1, 2, ...) are described by
symmetric wave functions. Such particles obey Bose-Einstein statistics and are called
bosons.

One form of Pauli’s exclusion principle is that two identical fermions cannot occupy the same
state. For electrons, this is stated as “No two electrons can have the same set of quantum numbers”.
For a system having n particles, if uy(1), uy(2), ..., u,(n) are the nl particle eigenfunctions, the
normalized antisymmetric combination is given by the Slater determinant

Uy (D) uy(2) ... uy(n)
029y L [BO BE@ - w

ot

(11.3)

Up(D) Un(2) ... up(n)

The factor 1/4/n! is the normalization constant.

11.3 Inclusion of Spin

The spin can be included in the formalism by taking the single particle eigenfunctions of both
position wave function ¢ (r) and spin function y(m,), i.e.,

p(r, ms) = ¢ (r)ms) (11.4)
The spin functions of spin —1/2 system are discussed in problem

spatial spin
Boson states: W, = {WS( patial) 7, (spin) (11.5)

Was(spatial) y,(spin)

spatial spin
Fermion states: Vas = {WS( pattal) - s (5PIN) (11.6)

Was(spatial) y,(spin)

Here, s refers to symmetric and as refers to antisymmetric.
For a system with two identical electrons, the possible spin product functions alongwith the
eigenvalues are given in Table 11.1.

Table 11.1 Two Electron Spin Product Functions

Spin product functions Symmetry character Eigenvalue of Eigenvalue of
S, =Sy + Sy §? = (S + S2)2
oo Symmetric h 2n?
1
E (off + Ber) Symmetric 0 2h?
BB Symmetric —h 12

1
— (aff - pa) Antisymmetric 0 0
2 ’
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PROBLEMS

11.1 Consider a system having three identical particles. Its wave function ¥ (1,2,3) is 3 ! fold
degenerate due to exchange degeneracy. (i) Form symmetric and antisymmetric combinations of the
degenerate functions. (i) If the Hamiltonian H(1,2,3) = H(1) + H(2) + H(3) and ¥ (1,2,3) =
Ua(1) up(2) uc(3), where u,(1) uy(2) and u.(3) are the eigenfunctions of Hy, H,, Hj respectively, what
are the symmetric and antisymmetric combinations?

Solution.

(i) In the three-particle system the wave function y(1,2,3) = 6-fold degenerate. The six
functions are y(123), v (132), v (321), v (213), w(231), and y(312).
The symmetric combination is the sum of all functions:
¥ = w(123) + w(132) + w(321) + w(213) + w(231) + w(312)
The antisymmetric combination is the sum of all functions with even number of interchanges—the
sum of all functions with odd number of interchanges.

Vs = W (123) + w(231) + w(312) - w(213) + w(132) + ¥ (321)
(i) w(1,2,3) = ua(1) Up(2) ue(3)
The six product functions are
Ua(1) Up(2) Uc(3),  Ua(l) up(3) Ue(2),  Ua(2) Up(1) Ue(3)

Ua(2) Up(3) Uc(1),  Ua(3) Up(2) Uc(1),  Ua(3) Up(1) Uc(2)
The symmetric combination of these is simply the sum. The antisymmetric combination
Yas = Ua(1) Up(2) Ue(3) + Ua(2) Up(3) Ue(1) + Ua(3) up(1) ue(2)
= Ua(1) Up(3) Uc(2) — Ua(2) Up(1) Ue(3) — Ua(3) Up(2) uc(1)

Ua(1) Ua(2) ua(3)
= — U@ uy(2) u,(3)|; —— is the normalization constant

1
33! U (D) u(2) u(3) V3!

11.2 Consider a one-dimensional infinite square well of width 1 cm with free electrons in it. If its
Fermi energy is 2 eV, what is the number of electrons inside the well?

Solution. In an infinite square well, energy

2h%n?

Ep= 2y,

n

n=123, ...
2ma

Each level accommodates two electrons, one spin up and the other spin down. If the highest filled
level is n, then the Fermi energy Er = E,.

. Er2ma’
2 h?
(2x1.6 x1072J) x 2 x (9.1 x 103 kg) (0.01 m)?
72(1.05 x 10734 J5)?

5.3475 x 10

n= 2312 x 10’
The number of electrons inside the well = 2n = 4.62 x 10.
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11.3 N noninteracting bosons are in an infinite potential well defined by V(x) = 0 for 0 < x < a;
V (x) = « for x < 0 and for x > a. Find the ground state energy of the system. What would be the
ground state energy if the particles are fermions.

Solution. The energy eigenvalue of a particle in the infinite square well (Problem 4.1) is given by

2322
En:@, n=123 ..
2ma
As the particles are bosons, all the N particles will be in the n = 1 state. Hence the total energy
242
E - N7z 7;
2ma

If the particles are fermions, a state can have only two of them, one spin up and the other spin down.
Therefore, the lowest N/2 states will be filled. The total ground state energy will be

2h?

2ma?

242

7che 1[N (N N
S A AR A
ma? 6[2[2 )( 2 H

7[2712
24ma’

E=2 [12+ 22 + 3 + ... + (N/2)]

N(N+1)(N+2)
11.4 Consider two noninteracting electrons described by the Hamiltonian

H= p—12+ p_§ + V(xy) + V(xp)
2m  2m
where V(x) = 0 for 0 < x < a; V(x) = o for x < 0 and for x > a. If both the electrons are in the same
spin state, what is the lowest energy and eigenfunction of the two-electron system?
Solution. As the electrons are noninteracting, the wave function of the system w (1, 2) can be
written as

v(1,2)=y(Q1) v(2)

With this wave function, the Schrédinger equation for the system breaks into two one-particle
equations:

n? d?
Tom ol w® + Vi) w(1) = EQ p(1)

1

n? d?
a7 V@ + V) v = ED p()

2

where E® + E®@ = E, which is the total energy of the system. The energy eigenvalues and
eigenfunctions for a single particle in such a potential (see Problem 4.1) are
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2322
°h°n f2 . X
Er(i) :Tazl, l//nl(l) = E Sin %, ng = l, 2, 3,
2322
°hn 2 . nymwXx
Er(é) = Tazzl Y, (2) = ’G sin %, n=123, ..

As both the electrons are in the same spin state, the possible combinations of spin functions are « (1)
o (2) or S(1) B(2), both being symmetric. Hence the space function must be antisymmetric. As the
electrons are either spin up (@) or spin down (), n; = n, = 1 is not possible. The next possibility
isng=1n,=2

m'n® | Az’h® _ Sm'h’

2ma?  2ma’ 2ma’?

. . 2 . .
Energy eigenfunction v (1, 2) = Esm %Xlsm

Energy of the state (ny =1, n,=2) =

27X,
a

When the two electrons are interchanged, the eigenfunction

27Xy
a

2.7[X2.
2,1) = —sin —=sin
p(2 1) = Zsin=Lsi

Since both the states have the same energy, the space wave function of the system must be a linear
combination of the two functions. The antisymmetric combination is
v, 2)-y(21)
To get the complete energy eigenfunction, this space part has to be multiplied by o« or Sf. Since
the energy depends only on the space part,
572h?

Energy eigenvalue E = >
2ma

11.5 Show that for a system of two identical particles of spin I, the ratio of the number of states
which are symmetric under spin interchange to the number of states which are antisymmetric under
spin interchange is (I + 1)/I.

Solution. We shall denote the m; values of the two spins by m; and mj. The spin states of the
combined system are given by |m,; (1)) |m(2)). The products |m, (1)) |m,(2)) corresponding to
m; = m} will be symmetric and we will have (21 + 1) such product functions. The number of product
functions corresponding to m; # m will be 2I (21 + 1). With these we have to form combinations
of the type

[my (1)) [m7(2)) £ [mj (1)) [my(2))

where the plus sign gives symmetric and the minus sign gives antisymmetric functions. As we take
two product functions to form such a combination, we will have (1/2) 21 (21 + 1) symmetric and
(1/2) 21 (21 + 1) antisymmetric combinations. The total number of symmetric combinations =
@1+ 1)+ (1/2) 21 (21 + 1) = (I + 1) (21 + 1). Hence,

No. of symmetric combinations (1 +1)(21 +1) 1 +1
No. of antisymmetric combinations 121 +1) |
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11.6 Show that if a wave function w (1, 2, 3, ..., n) is an energy eigenfunction of a symmetric
Hamiltonian that corresponds to a nondegenerate eigenvalue, it is either symmetric or antisymmetric.

Solution. The eigenvalue equation of the Hamiltonian is

H@, 2, .. 0 g, o) w(@, 2, ..y g, -on) = Ew(@, 2, ..., i, J, ..., n)
Interchange of the indistinguishable particles i and j does not change the energy. Hence,
H@, 2, . jody o) w(@, 2, .., iy oon) = Ew(@, 2, ... j, 0, ..., n)
Since H is symmetric,
H@, 2, .. i g, .on) w(@, 2, ..y iy oon) = Ew(@, 2, ..., j, 0, ..., n)
H@L 2, ..., 0 ., ) Pyw (L, 2, .. 0, ], .., n) = EPyw (L, 2, ., i), .. )
=PH@L 2, ..., i), ... w@ 2 ..., 0] ..., Nn)
(HP; —PyH) w=0 or [H P]=0
Since P;; commutes with the Hamiltonian, y(1, 2, ..., i, j, ..., n) is an eigenfunction of P; also.
Piw@, 2, ..., i j,...m=py@ 2 ....ij ... Nn)
v@ 2, .. g0, ..,n=pw@ 2 ..., i] ..., n)
Operating both sides by Py, we get
vl 2 .0 .,n)=pw@ 2, ..., 0] ..., N)
Hence, p? = 1 or p = +1, i.e,,
Piw(, 2, ..., 0, ), ...,n) =%y, 2 ..,i ], ..., n)

which means that the wavefunction must be either symmetric or antisymmetric with respect to
interchange of two identical particles.

11.7 Sixteen noninteracting electrons are confined in a potential V(x) = « for x < 0 and x > 0;
V(x) =0, for 0 < x < a.
(i) What is the energy of the least energetic electron in the ground state?
(if) What is the energy of the most energetic electron in the ground state?
(iif) What is the Fermi energy E; of the system?

Solution.
7[2h2
(i) The least energetic electron in the ground state is given by E; = P
ma
(if) In the given potential, the energy eigenvalue
2322
£ =2 nz123
2ma

As two electrons can go into each of the states n = 1, 2, 3, ..., the highest filled level will
have n = 8 and its energy will be
_ mh?8 327K’

E,; =
8
2ma’ ma?
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(iii) The energy of the highest filled state is the Fermi energy Er. Hence,

3272 h?

ma?

Er =

11.8 What is the ground state energy and wave function for two identical particles in the potential
defined in Problem 11.7 if the two particles are (i) bosons, and (ii) fermions?

Solution. The solution of the Schrodinger equation of a particle in the given potential gives
2422
Thn 2 Nz X
E, = , X) = sin —, =123, ...
. Wa(X) = ,/ a n 3
(i) Bosons: Both the particles can be in the same state. Hence,

222
z°h 2 TTXq
1) omal pa(x) \}a si a

22
°h 2 TX
E ()= omal Wa(X) = 5 a sin TZ

The energy and wave function of the combined system are

E—EM+E@)<="" — [ 2] sin X4 gin 22
W E@=C0 =[] )sin Tsin

Interchange does not change . Hence it is symmetric. Therefore, the spin function of the two-
particle system must be symmetric. The wave function of the system including spin is

oo
w(X, ms):(gj sinﬁT):lsinﬁT):2 BB
(B + Ba)N2

(ii) Fermions: In the ground state, one particle has to be spin up and the other spin down.
Hence the energy and wave functions are

w2 h?

E= > w(x, mg) =(§)sstm \/_( off — Pa)

ma

11.9 Consider two identical particles described by the Hamiltonian

2
_ Pi(x) pz (X2) 1
H_—2m + === om +2ma) xl +2ma) x2
Obtain the energy spectrum of this system. Discuss its degeneracy.

Solution. The Schrédinger equation of the system splits into two equations:

1
[—ﬁ e Ema) X{ ] w(x) = By (x)
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The solution of these equations is

1 o i 2
En1 =|Mm+ 2 ho, l//nl(xl) =NH,(y,) e o N1 = “h X

1 L i 2
Enz =| N+ E ho; l//nz (XZ) = NHn(yZ) € ) Y2 = 7 Xy

where nn=0122.., n=01 23, ...
Total energy E, =E, +E,, =(m + ) ho+ hwo=(n+1) hw

Wave function of the system yf (X1, X2) = ¥y, (X)) W (%)
Each level is (n + 1)-fold degenerate.

11.10 Prove that the three column vectors

1 0 0
0, |1}, |0
0 0 1

are the spin eigenfunctions of S, of a spin s = 1 system. Also prove that they are mutually orthogonal.
Solution. The S, matrix of a spin s = 1 system is given by

1 0 0
;=100 0
0 -1n
1m0 0 )\(1) (1 1
00 0 [lo|=]0]|=1x|0
00 -1)lo) (o 0
1 0 0 \(0) (0 0
00 0 ||1]|=]0|=0n|1
0o 0 -11)lo) (o 0
1 0 0 \(0 0 0
00 0 [lo]=] 0 [=-1n|0
0 0 -1)(1) |-1n 1
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As expected, the eigenvalues of S, are 1/, 0 and —14. Thus,

0 0 1
@ 00)|1|=0, (0 10)]0|=0, (001|0|=0
0 1 0

Hence the result.

11.11 Give the zeroth order wave functions for helium atom (i) in the ground state (1s?), and
(if) in the excited state 1s 2s. Also, express them in the form of Slater determinants.

Solution.

(i) The ground state of helium is 1s. As both the electrons are in the 4, State, the space part
of the wave function is yig(ry) Wigo(r2). The spin part that multiplies this must be antisymmetric so
that the total wave function is antisymmetric. Hence, the zeroth order wave function for helium atom
in the 1s? state is

151) 1s (2) % [(1) B2) - BQ) ()]

In terms of the Slater determinant, this takes the form
1 1) () 1s(2) 2(2)

V2 [1s(1) A 1s(2) B(2)

(ii) For the 1s 2s state, taking exchange degeneracy into account, the possible product
functions are
1s(1)2s(2) and 1s(2) 2s(1)

The symmetric combination y; and the antisymmetric combination s are given by

v = % [15(1) 25(2) + 15(2) 25(1)]
Vas = % [15(1) 25(2) — 15(2) 25(1)]

Combining these with the spin wave function for a two-electron system, with the condition that the
total wave function must be antisymmetric, we get

W % [1s(1) 2s(2) + 1s(2) 2s(1)] [ (1) B(2) - B (1) «x(2)] %

L s 25(2) - 15(2) 2s(1)] (1) @(2)

N

v = % [15(1) 25(2) - 15(2) 25()] [a(1) A(2) + B(D) a(z)]%
v = % [15(1) 25(2) - 15(2) 25(1)] A(1) B(2)
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For 1s 2s configuration, we have the following spin orbital combinations: 1se, 1sf, 2s« and 2sp,
leading to the four Slater determinants (the normalization factor 1/4/2 not included.):

15() ) 15(2) (2) 1s() ) 15(2) a(2)
2s(1) (1) 2s(2) (2) 2s(1) A1) 2s(2) B(2)
1s(1) Q) 1s(2) B(2) 1s(1) Q) 1s(2) A(2)
2s(1) (1) 25(2) (2)|’ 25(1) BQ) 25(2) A(2)

A comparison of the above wave functions with these determinants shows that v, v, wa, v, are
equal to the determinants (D, — D53)/2, Dllx/f, (D, + D3)/2 and D4/\/§, respectively.

1= ) 2=

3= 4=

11.12 Prove that it is impossible to construct a completely antisymmetric spin function for three
electrons.

Solution. Let a, b, ¢ stand for three functions and 1, 2, 3 for three identical particles. In the function
a(l) b (2) c (3), particle 1 is in a, particle 2 is in b, and particle 3 is in c. Let us proceed without
specifying that these functions correspond to space or spin functions. The third-order Slater
determinant for the case is

a) a?) a@)
L lb@ b2 bE)

V6

¢ c(2) c(@3)

This is completely antisymmetrized as interchange of two spins amounts to interchanging two
columns of the determinant, which multiplies it by —1. Let us now specify the functions a, b, c as
that due to electron spins. Let a = &, b = fand ¢ = S in the above determinant. The determinant
reduces to

) a(l) 9(2) «a@d)
N B B2 BB
B B2) BB
As the second and third rows of the determinant are identical, its value is zero. In whatever way we

select a, b, c, the two rows of the determinant will be equal. Therefore, we cannot construct a
completely antisymmetric three-electron spin function.

11.13 Two particles of mass m are in a three-dimensional box of sides a, b, ¢ (a < b < c¢). The
potential representing the interaction between the particles is V = Ad(r; — ), where ¢ is the Dirac
delta function. Using the first-order perturbation theory, calculate the lowest possible energy of the
system if it is equal to (i) spin zero identical particles, (ii) spin half identical particles with spins
parallel. Given

a

jsin“”—xdx =§a,

0 a 8
Solution. The energy eigenvalues and eigenfunctions of a particle in a rectangular box of side a,
b, c are given by (Problem 5.1)

222 2 2 2
°h n n n
E=2" _X+_y+_2, n,n,n =123, ...
) 2 2 xs tys Tz

m | a b c
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8 n, 7z X nzy . nnxz
X y sin z

v(x, Y, 2)= abe sin a sin b c

(i) For a system of spin zero particles, the total wave function must be symmetric for
interchange of any pair of particles. Hence, for the two-particle system, the unperturbed wave
function can be taken as the product of two single-particle wave function which is symmetric, i.e.,

W (ry, 1) = w(ry) ‘//(rz)

8 T T 7z
sm 7 sin ™ sin —sm 222 §in Y2 sin —2
abc a b c a b c

E (11 1
T PO
The Hamiltonian representing the interaction between the two particles is

= A0 (ry - 1)

where A is a constant, can be taken as the perturbation. The first order correction to the energy

The unperturbed energy

E®

,f ye(n, n) AS(n — 1) ys(n, 1) dry dr,

AJ |'//s(r1: r1)|2 dz;
2abec 4
[abc) 1] [sm %sin ”Tzlj dx, dy, dz;
000

ry F 72}
( ) jsm Ly —rd j sin* bl dy, E[ sin® == dzy

8 )7323 3 27A
abc) 8 8 8 8abc
Consequently, the energy corrected to first order is

E —”2h2 i+i+i +ﬂ
S om (a2 p2 2/ 8abc

(if) For a system of spin half particles, the total wave function must be antisymmetric for
interchange of any pair of particles. As the spins are parallel, the spin wave function is symmetric
and, therefore, the space part must be antisymmetric. One of the particles will be in the ground state
w11, and the other will be in the first excited state s, since 1/a < 1/b? < 1/c2. The antisymmetric
combination is then given by

Wal(n, )= % 111 (n) ¥211(1) — w111 (R) Wara (1)]
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The unperturbed energy

ﬁzhz[l 1 1 4 1 1)
E,= —+t—S+—+—+—+—

2m (a2 b ¢ a? b?> ¢?

Zn (5 2 2y #w(5 1 1
2m (a2 p2 ¢2) m (222 p?2 2

The first-order correction to the energy is

EY = j va(h, ) Ad(n — ) ya(n, 1) dzy dzy

which reduces to zero when w3 and y;, are substituted. Hence,

(5 1 1
Ea = —2 + —2 + —2
m \2a b c
11.14 A one-dimensional infinite potential well of width a contains two spinless particles, each of

mass m. The potential representing the interaction between the particles V = ad (x; — X,). Calculate
the ground state energy of the system corrected to first order in A.

Solution. The energy eigenvalues and eigenfunctions of a particle in an infinite square well of
width a are given by
2422
En:@, n=123 ..
2ma

(x)—\/Esmnﬁ—X
LAY a

For the two-particle system, the unperturbed wave function

nzx, . kmx
Yk (X1, X2) = Wo (X)) wi(%p) = Sln Lsin —=
2
E, =2 hz M2+k?), nk=123 ...
2ma

For the ground state, n = k = 1. The unperturbed ground state energy is, then,
7[2h2
ma’

En =

Next we consider the perturbation H = Ad&Xx; — x,). The first-order correction to the ground state
energy

2aa
2 TTX TX
ED= Al Z sin? ==L sin®? =22 §(x, — X,) dx, dx
2 E[E[ a a (X1 = Xp) dxq dx,

4 % X 3A
—2'[5|n47[1d1—2
a‘ a
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Hence, the first-order corrected ground state energy

T
11— ma2 2a

11.15 Two identical bosons, each of mass m, move in the one-dimensional harmonic potential
V = (1/2) ma?x®. They also interact with each other via the potential

Vine = aexp [-f(x — Xz)z]

where « and /3 are positive parameters. Compute the ground state energy of the system to first order
in the parameter c.

Solution.  Since the particles are bosons, both of them can remain in the ground state. The Vj,,; term
can be treated as a perturbation. The ground state wavefunction of a harmonic oscillator is

1/4 2
@ ex _ maX
( hr ) P [ 2h J

Hence the unperturbed wavefunction of the ground state for this two-particle system is

1/4 2 1/4 2
_ (Mo} o Mok |(mo YT mox;
Yo (xu %) = | 3z o 7 2

1/4
_(ma Mmoo,

The first-order correction to the energy

moo mao
EW=——=] [ exp [—wa +x8) - BOE + xi)z} dx, dx,

Moo 1
hz \J(maln) + 2

The ground state energy of the system is, therefore,

Mot 1

E=%o+
hz J(maln) + 28

11.16 Consider the rotation of the hydrogen molecule H,. How does the identity of the two nuclei
affect the rotational spectrum? Discuss the type of transition that occurs between the rotational levels.

Solution.  The rotational energy levels of hydrogen molecule are given by
_ R0+ D)
o2
The total wave function of the molecule w is the product of electronic (yg), vibrational (),
rotational (y;) and nuclear (y;,) wave functions.

V= YW WAYA

E 1=0,1,2, ..



300 e Quantum Mechanics: 500 Problems with Solutions

The spin of proton is half . Hence the total wave function y must be antisymmetric to nuclear
exchange. Since w, and 1, are symmetric to nuclear exchange, the product w;y, must be
antisymmetric. For 1 = 0, 2, 4, ..., the rotational wave function y; is symmetric with respect to
nuclear exchange and for | = 1, 3, 5, ..., it is antisymmetric. Hence, the antisymmetric y, combines
with y; of even | states and the symmetric y, combines with y; of odd | states. As there is no
interconversion between symmetric and antisymmetric nuclear spin states, transitions can take place
between odd | and even | values. Since three symmetric nuclear spin functions and one anitsymmetric
functions are possible (similar to electron product functions), the transitions between odd | values are
considered to be strong. In other words, there will be an alternation in intensity of the rotational
spectrum of H, molecule.

Note: The hydrogen molecules corresponding to antisymmetric nuclear spin states are called para-
hydrogen, and those corresponding to symmetric spin states are called ortho-hydrogen.

11.17 Obtain the zeroth-order wave function for the state 1s® 2s of lithium atom.

Solution. The 1s orbital accomodates two electrons with opposite spins and 2s orbital the third
electron. The third-order Slater determinant is given by

a(l) a(2) a@d)
L b b2) bE)

J6

c@ ¢ cE)

where a, b, ¢ stands for the three functions and 1, 2, 3 for the three identical particles. Identifying
a, b, ¢ with the spin-orbitals: a(1) = 1s(1) «(1), b(1) = 1s(1) A (1), c(1) = 25(1) « (1), the above
determinant becomes

1s1) a(l) 1s(2) «(2) 1s(3) a(3)

% 1s(1) (1) 1s(2) A(2) 1s(3) b(3)
25() () 25(2) a(2) 2s(3) a(3)

An equally good ground state is when we take c(1) = 2s(1) b(2).

11.18 Consider a system of two identical particles occupying any of three energy levels A, B and
C having energies E, 2E and 3E, respectively. The level A is doubly degenerate (A, and A,) and the
system is in thermal equilibrium. Find the possible configurations and the corresponding energy in
the following cases:
(i) the particles obey Fermi statistics;
(i) the particles obey Bose statistics; and
(iii) the particles are distinguishable and obey Boltzmann statistics.

Solution. Denote the two states with energy E by A; and A, and the states with 2E and 3E by B
and C, respectively.
If particle 1 is in A; and particle 2 is in A,, the configuration is marked as (A;, A;). Thus, the
symbol (B, C) indicates that one particle is in B and the other is in C.
(i) If the particles obey Fermi statistics, the system has the following configuration and energy:
Configuration: (A, Ay)), (A, B), (A, B), (A, C), (A, O), (B, C)
Energy: 2E 3E 3E 4E 4E 5E
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(if) If the particles obey Bose statistics, the additional configurations: (A, A;), (A, A), (B, B)
and (C, C) are also possible. Hence the configuration and energy are
(All A2)v (All B)v (AZI B)v (All C)v (AZI C)v (B, C)v (All Al)v (AZI A2)v (B, B)v (C, C)
2E, 3E, 3E, 4E, 4E, 5E, 2E, 2E, 4E, 6E
(iif) Since the particles are distinguishable, the following configurations are also possible:
Configuration: (A, A;), (B, A), (B, Ay), (C, A), (C, Ay, (C, B)
Energy: 2E, 3E, 3E, 4E, 4E, SE

11.19 Consider the rotational spectrum of the homonuclear diatomic molecule'* N,. Show that the
ratio of intensities of adjacent rotational lines is approximately 2 : 1.

Solution.  The rotational energy levels of N, molecule are given by

R21(1 + 1) _
E'_T’ =012 ..

The spin of N is 1; hence it is a boson. The possible values of the total nuclear spin I of N,
molecule are 0, 1, 2, making it a boson. The total wave function must be symmetric to nuclear
exchange. The rotational functions corresponding to 1 = 0, 2, 4, ... combine with the symmetric spin
functions (I = 0, 2), and the functions for | = 1, 3, 5, ... combine with antisymmetric spin function
I = 1. The total degeneracy of symmetric spin functions = (2 x 0 + 1) + (2 x 2 + 1) = 6, and of
antisymmetric spin functions = (2 x 1 + 1) = 3. Since transitions are allowed only between symmetric
or antisymmetric rotational states, Al = 2. The first line will be | =0 — | = 2 and the second one
| =1 — | = 2. The nuclear spin | usually remains unchanged in optical transitions.

The energy difference between adjacent rotational levels is very small, the effect due to this
in intensity can be neglected. Hence, the intensity of the lines will be in the ratio 6:3 or 2:1.

11.20 Ignoring the interaction between the electrons and considering exchange degeneracy and
spin effects, write the wave functions for the ground and the excited states (1s)* (2p)* of helium
atom.

Solution. The Hamiltonian

2 2 2 2
h z
T < N
2m eyl 2m 4Argyr,
where V; and V, refer to the coordinates of electron 1 and 2, respectively. Distances r; and r, are
those of electron 1 and electron 2. The electrostatic repulsion between the two electrons is neglected.

Ground state. The ground state of helium is 1s%. As both the electrons are in the |100) state, the
space part of the wave function is

Wepace = 100)1 [100),

The subscripts 1, 2 refer to the two electrons. Exchange degeneracy does not exist as both the
electrons are in the same state. Since the system is of fermions, the total wave function must be
antisymmetric. The space part of the wave function is symmetric. Hence the spin part must be
antisymmetric. Multiplying ypace by the antisymmetric spin combination, the wave function of the
ground state is obtained as

yr= 1100 [100); - [() A(2) ~ SO @]
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(1s)! (2p)* state: Since | = 1, m = 1, 0, —1. Therefore, the states obtained are
[100); 1211);,  |100); [210);,  |100); |21, -1),

Taking exchange degeneracy into account, the symmetric and antisymmetric combinations of the
space part are

Vo = %= [1100), 1211), + [100), 211),]
Vot = %= [1100), 1211), 1100}, 211),]
Vo = %= [1100),1210), +100),1210),]
Viso = %= [1100),1210), — |100),1210);]
s = %= [1100), 121, —1), +1100), 21, ~1)]
Vass = %= [1100), 121, —1), — 100, 21, ~1)]

Combining these with the spin functions, we get

W(S1) = Ve tas w(t) = Vasits
W(S2) = Weokas Y(t) = VasoXs

‘//(53) = W3 fas ‘//(tS) = Vasats
where Sq, S,, S5 refer to singlet states and ty, t,, t3 refer to triplet states.

11.21 The excited electronic state (1s)* (2s)! of helium atom exists as either a singlet or a triplet
state. Which state has the higher energy? Explain why. Find out the energy separation between the
singlet and triplet states in terms of the one-electron orbitals w5(r) and wos(r).

Solution. The electrostatic repulsion between the electrons e?/(4zgry,) can be treated as
perturbation on the rest of the Hamiltonian. Here, rq, is the distance between the electrons. Taking
exchange degeneracy into account, the two unperturbed states are

l//ls(rl) l//25(r2) and l//ls(rZ) l/IZS(rl) (')

As the spin part of the wave function does not contribute to the energy, the perturbation for these
two degerate states can easily be evaluated [refer Egs. (8.5) and (8.6)]. The energy eigenvalues of
the perturbation matrix can be evaluated from the determinant

_E®
I-F K 10 (ii)
K J-E®
where
2
€
3= [ [y (0) WA (R) 7 v1s(1) Yas (1) d7y A7 (iif)

4y,
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2
€ .
K= JJ"/’fs('i) V/;s(rz)% w1s(1) vos (1) d7y d7y (iv)

Both J and K are positive. The solution of the determinant gives
(Q-E®PZ_K2=0
(-E®+K)(J-E®-K)

EW=J+K or E®=J-K (v)
These energies correspond to the normalized eigenfunctions
1 .
Ws = —= [was (W) W (1) + Wi () Was (1)] (vi)
J2
1 .
Vas = E [wis (M) Was (L) — Wi () Was ()] (vii)

The total wave function must be antisymmetric. Hence y; combines with the antisymmetric spin part
and ,s combines with the symmetric spin part, i.e.,

Ws) = W (viii)
oo
_ oy 1P+ P .
) = Vas NG (ix)
pB

The Eq. (viii) is the wave function for the singlet state as S = 0 for it. The Eq. (ix) refers to the triplet
state as S = 1 for the state. The energy of yz is J + K and that of y(t) is J — K. Hence the singlet
lies above the triplet. The energy difference

AE=(J+K)-J-K)=2K
where the value of K is given by Eq. (iv).

11.22 The first two wave functions of an electron in an infinite potential well are U;(x) and U,(x)
Write the wave function for the lowest energy state of three electrons in this potential well.

Solution. By Pauli’s exclusion principle, two electrons can go into the n = 1 state and the third
electron must go in the n = 2 state. The spin of the third can be in an up or down state with the same
energy. We shall assume it to be in the spin up state. The antisymmetric combination of the two
electrons in the n = 1 state multiplied by the function of the third electron gives

[UlT(Xl) Uu(xz) - Uli, (Xl) UlT(XZ)] UzT (X3) (I)

This product would not be antisymmetric under the interchange of any pair of electrons. To make
the product function antisymmetric, we take the product in Eq. (i) and subtract from it the same
expression with X, and X5 interchanged, as well as a second expression with x; and x5 interchanged.
We then get
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[Up (X)) Upy (X2) = Upp (%) Upp (%)] Ugp (X)) = [Upp (%) Uy (X3) = Upy (%) Upp (X3)1 U1 (X2)
—[Up1(X3) Uy (%) = Uy (X3) Upp (%)1 U1 (%p)
Multiplying, we obtain
U3 (%) Upy (X2) Upp(Xg) = Uy (X1) Upp (X2) Upp (X3) = Ugp(Xg) Upy (X3) Upp(X2)
+ Uy (%) Upp(X3) Upp (Xp) = Upp (X3) Upy (X2) Upp (X)) + Uy (X3) Upp (X2) Upp (%)
This expression changes sign under the interchange of any two electrons.

11.23 Consider two identical fermions, both in the spin up state in a one-dimensional infinitely
deep well of width 2a. Write the wave function for the lowest energy state. For what values of
position, does the wave function vanish?

Solution. The wave function and energies of a particle in an infinite potential well of side 2a is

1 . nzx
= —sin —, —-a<x<a
l//n \/g 2a
2222
h
E,= 20, n=123
8ma

In the given case, both the fermions are in the spin up states. Hence, one will be in n = 1 state and
the other will be in the n = 2 state. Taking exchange degeneracy into account, the two product
functions are

wi(l) wa(2) and  yi(2) ye(l)

For fermions, the function must be antisymmetric. The antisymmetric combination of these two
functions is

%?%W@%@-W@%m

1 . Xy . X . TTX, . TTX
= —{sm 27 sin 22— sin =22 sin Tl

J2a 2a a 2a

The function y, will be zero at x = 0, a/2, a.

11.24 Consider a system of two spin half particles in a state with total spin quantum number
S = 0. Find the eigenvalue of the spin Hamiltonian H = AS, - S,, where A is a positive constant in
this state.

Solution.  The total spin angular momentum S of this two spin-half system is

S:S]_+Sz
$?= 82 +S2+25-S,
2 Q2 @2
5, S, = S 521 S2

Hence,

H= 25"~ - 8))
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Let the simultaneous eigenkets of S?, S,, S? and S3 be | sm,). Then,

A
Hlsmg = 5 (S* = 87 - ) |sm,)

A[O—%—%)hz 3
f— ___Ahz

2 4

The eigenvalue of the spin Hamiltonian H’ is —(3/4)An?.

11.25 The valence electron in the first excited state of an atom has the electronic configuration

3st 3pl.
(i) Under L-S coupling what values of L and S are possible?

(if) Write the spatial part of their wavefunctions using the single particle functions yx(r) and

Yp(r).
(iif) Out of the levels, which will have the lowest energy and why?

Solution.
(i) Electronic configuration 3s*3p!. Hence,

lLb=0,1,=1, sy = (1/2), s, = (1/2)
L=1, S=01
(if) Taking exchange degeneracy into account, the two possible space functions are
We(r) wp(ro) and  wi(r) wp(ry)

The symmetric combination

W = Ng [ws(ry) wp(ra) + wa(ra) wp(rol
Antisymmetric combination

Was = Nas [W6(r1) wp(r2) — ws(r2) wp(ri)l
where Ng and N, are normalization constants.

(iii) Since the system is of fermions, the total wave function must be antisymmetric. Including
the spin part of the wave function, the total wave function for the singlet (S = 0) and triplet

(S = 1) states are

Waing = Ns [Ys () (1) + w5 (), ()] (D) 5(2) - A1) 0!(2)]%

a(1) a(2)
Viip = Nas W5 (1n) ¥ () — w5 () Wy ()] [ (D) 5(2) - BQ) 0!(2)]%
BOBQ)

The spin function associated with the antisymmetric space function is symmetric with
S = 1. When the space part is antisymmetric for the interchange of the electron 1 « 2, the
probability for the two electrons gets closer, is very low and, therefore, the Coulomb
repulsive energy is very small, giving a lower total energy. Thus, the triplet state (S = 1)

is the lower of the two.
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11.26 A one-dimensional potential well has the single-particle energy eigenfunctions y4(x) and
w5(X) corresponding to energies E; and E, for the two lowest states. Two noninteracting particles are
placed in the well. Obtain the two lowest total energies of the two-particle system with the
wavefunction and degeneracy if the particles are (i) distinguishable spin-half particles, (ii) identical
spin half particles, and (iii) identical spin zero particles.

Solution.

(i) Distinguishable spin-half particles. The particles have spin = half. Hence the total spin
S=0,1whenS =0, M{=0and when S=1, My =1, 0, -1. Let us denote the spin wave
functions by the corresponding | SM; ). As the particles are distinguishable, the two particles
can be in y; even when S = 1. The different wave functions and energies are

wi(X1) wi(xo) | 00), E,+E; =2E
wi(xy) wi(x) |1 My, M, =1, 0, -1, Ei+E; =2E

The degeneracy is 1 + 3 = 4.

(if) Two identical spin-half particles. Again, the total spin S = 0 or 1. When S = 0, the two
praticles are in y; with their spins in the opposite directions. The total wave function must
be antisymmetric. The space part of the wave function is symmetric. Hence the spin part
must be antisymmetric. The wave function of the system is

Ve (%) Y (%) % [a(1) 5(2) - A1) 2(2)]
with energy E; + E; = 2E;.

When S = 1, one particle will be in level 1 and the other will be in level 2. Hence, the
symmetric and antisymmetric combinations of space functions are

W = % [ (X)) w2 (%) + wi(X2) W (X))

Vas = % [1(%) W2 (%) — ¥ (%) 2 ()]

As the total wave function has to be antisymmetric, the wave functions including the spin
are

Ws) = Vs % [a)) AQ) - BQ) (2)]
o) (2)

W) = Vas %[a(l) 52) - BQ) a2)]
SO AQ)

The first equation corresponds to a singlet state and the second equation to a triplet state.
As the energy does not depend on spin function, the energy of both are equal to E; + E,.
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11.27 Consider two identical linear harmonic oscillators, each of mass m and frequency @ having

interaction potential Ax;x,, where x; and x, are oscillator variables. Find the energy levels.

Solution. The Hamiltonian of the system is
o0 n? 9* 1

H=-—— —+ = ma)xl+

L Mma?X5 + Ax;X,
2m gx? - 2m ox: 2

2
Setting

xl:i(X +X), Xy,=

NA

1
— (X =x)
2
In terms of X and x,

o9t o 1, , 1., )
H——ﬁa?—ﬁyﬁ—g(ma) +1)X +§(ma) —/1)X

Hence the system can be regarded as two independent harmonic oscillators of coordinates X and x.
Therefore, the energy

1 2 A 1 2 A
En11n2=(nl+§)h (a) +E)+(n2+§)h (a) _H)

where n;, n, =0, 1, 2, ...

11.28 What is the Slater determinant? Express it in the form of a summation using a permutation
operator.

Solution.  For the Slater determinant, refer Eq. (11.3). The determinant can also be written as

Vo= 23 1P PU) 1@ .ty ()
1

where P represents the permutation operator and p is the number of interchanges (even or odd)
involved in the particular permutation.
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Scattering

In scattering, a beam of particles is allowed to pass close to a scattering centre and their energies and
angular distributions are measured. In the process, the scattering centre may remain in its original
state (elastic scattering) or brought to a different state (inelastic scattering). We are mainly interested
in the angular distribution of the scattered particles which in turn is related to the wave function.

12.1 Scattering Cross-section

Let N be the number of incident particles crossing unit area normal to the incident beam in unit time
and n be the number of particles scattered into solid angle dQ in the direction (6, ¢) in unit time,
0 being the angle of scattering. The differential scattering cross-section is

o(6,9) = n/,jg (12.1)
The solid angle dQ in the directon (6, ¢) is
r5|n62d¢rd9 _sin 6 d6 d¢
r
T 2r
Total cross-section o= [o(8, $)dQ = [ [ o(6, ¢) sin 6 d6 d¢ (12.2)
00

For spherically symmetric potential, o (6, ¢) becomes o (6).

12.2 Scattering Amplitude

If the potential V depends only on the relative distance between the incident particle and scattering
centre, the Schrodinger equation to be solved is
h? mM

—_——_— 2 = =
ZﬂVWJrV(r)V/ Ey, M= (12.3)

308
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where m is the mass of the incident particle and M is the mass of the scattering centre. For incident
particles along the z-axis, the wave function is represented by the plane wave

v, —=—— A (12.4)

The spherically diverging scattered wave can be represented by
ikr

e
Vs —5=— A9, 9) (12.5)
where (6, ¢) is the scattering amplitude.
12.3 Probability Current Density
The probability current density corresponding to y; and ys can be calculated separately as
_ hk|AP _ plAF 2
Ji 1 7 [Al (12.6)
kh| AP 1 _VIAPIf(9)F
j it soli I 2 2
o (0) = Js per unit solid angle  v|A|7| ()| _ If(9)I2 (12.8)

js of the incident wave v A2

Partial waves. The incident plane wave is equivalent to the superposition of an infinite number of
spherical waves, and the individual spherical waves are called the partial waves. The waves with
I =0, 1,2, ... are respectively called the s-waves, p-waves, d-waves, and so on.

12.4 Partial Wave Analysis of Scattering

As the incident particles are along the z-axis, the scattering amplitude is given by

f(o) = % ; (21 + 1) (exp 2i6, — 1) R, (cos 6) (12.9)
f(e) = %Ii (21 +1) exp ig; B (cos 8) sin 4§, (12.10)
=0

The scattering cross-section o (6) is given by

2

iz Z (21 + 1) exp id, B, (cos @) sin §, (12.11)

o(0) =110 =

2UE

2 _
k—h2

(12.12)
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P, (cos &) are Legendre polynomials and ¢, are the phase shifts of the individual partial waves. The
total cross-section

T oo
o =2 6(6) sin 6 d6 = i_’; Y (2 + 1) sin? 5, (12.13)
0 1=0
Expression for phase shifts. For weak potentials,
. 2uk T
sing =6 = —hLZJV(r) ji (kr) r2dr (12.14)
0

where j; (kr) are the spherical Bessel functions.

12.5 The Born Approximation

The wave function (r) is in the form of an integral equation in which w appears inside the integral.
In the first Born approximation, w(r’) in the integral is replaced by the incoming plane wave,
exp (ik - r’). This leads to an improved value for the wave function w(r) which is used in the integral
in the second Born approximation. This iterative procedure is continued till both input and output
y’s are almost equal. The theory leads to

1) = —— [ exp (iqr)) V(1) dz’ (12.15)
2mhe
f(e) = —Z—fj AT vy r2de? (12.15a)
R? g oar
where
6
[q] = 2|k]|sin (12.16)

2
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PROBLEMS

12.1 A beam of particles is incident normally on a thin metal foil of thickness t. If Ng is the number
of nuclei per unit volume of the foil, show that the fraction of incident particles scattered in the
direction (8, @) is o (6, ) Not dQ2, where dQ is the small solid angle in the direction (6, ¢).

Solution. From Eg. (12.1), the differential scattering cross-section is

/dQ
(6,9 = =

where n is the number scattered into solid angle dQ in the direction (8, ¢) in unit time and N is the
incident flux. Hence,

n=oc(8 AN dQ

This is the number scattered by a single nucleus. The number of nuclei in a volume At = NyAt. The
number scattered by Ny At nuclei = o (6, @) N dQ NyAt. Thus, Number of particles striking an area
A = NA.

o (6, ¢) N dQ N At
NA
= 0 (6, @) Nt dQ
12.2 Establish the expansion of a plane wave in terms of an infinite number of spherical waves.
Solution.  Free particles moving parallel to the z-axis can be described by the plane wave
Vi = eikz
When the free particles are along the z-axis, the wave function must be independent of the angle ¢.

This reduces the associated Legendre polynomials in Y,, (6 ¢) to the Legendre polynomials
P, (cos ). Equating the two expressions for wave function, we get

Fraction scattered in the direction (6, ¢) =

— eikr cos 8

3 A (kr) P (cos 6) = " eos?
1=0

Multiplying both sides by P, (cos 6) and integrating over cos 6, we obtain

+1
[ e ¢ P, (cos ©) d (cos )

. 2
A, ji (kr) T+ 1
)

ikr - P’(cos 6) d (cos 6)

. +1 .
~ PI (COS 9) e|kr cos 8 +1 e|kr cos &
ikr

_1 -1

The second term on the RHS Ieads to terms in 1/r? and, therefore, it vanishes as r — oo. Since
P =1 P (1) =D)'P @) =¢e""as r— oo,

2 . _ L ke ik il
Al 2l +1 Jl(kr) - ikr (e € € )

2 1 . lz) 72 . Iz . Iz
Amﬁmn[kr—?j_ T expi kr—7 —exp —i kr—7
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A=+ 1)e" =@l +1)i
Consequently,

oo

el = 3 (21 +2) i'j(kr) P, (cos 6)
1=0

This is Bauer’s formula.

12.3 In the theory of scattering by a fixed potential, the asymptotic form of the wave function is

) ikr
Vv —= A{e'kz + (6, 9) er }

Obtain the formula for scattering cross-section in terms of the scattering amplitude (6, ¢).
Solution. The probability current density j(r, t) is given by

jmn=§%www*—WWw) 0

If j (r, t) is calculated with the given wave function, we get interference terms between the incident
and scattered waves. In the experimental arrangements, these do not appear. Hence we calculate the
incident and scattered probability current densities j; and js separately. The value of j; due to
exp (ikz) is

R oo BKIAP ,
It = 5, AR (1K) = AP (k] = =7 (i)
The scattered probability current density

LY 2| _Mk_1 ik 1
Js_2ﬂ|m|fw,m|[ hoLok,

nk o ) 1

= — A f (o, - iii

AP0, 9)F = (iii)

In the above equation, 1/r? is the solid angle subtended by unit area of the detector at the sacttering
centre. The differential scattering cross-section

o ()

Probability current density of the scattered wave per unit solid angle
Probability current density of the incident wave

_ (ki) | AP IF[0(9)]F

(nkip) | AP
=116, 9
12.4 In the partial wave analysis of scattering, the scattering amptitude
f(0) = % 3 (21 +1) exp (i6)) R, (cos ) sin 4, k? = 2;‘2E
1=0
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Obtain an expression for the total cross-section o. Hence show that

a:%Im f(0)

where Im f(0) is the imaginary part of scattering amplitude f(¢) at 8= 0.

Solution. The differential scattering cross section
2

o(0)=fO)F = iz i (21 + 1) exp (i8)) P, (cos ) sin &, (i)
o=[o()dQ,  dQ =sin 6dodg
T 2r
= j j o(6) sin 8 do dg = 27 ja(a) sin 6 do
= k2 j {Z 21 +1)e B, (cos ) sin 5,}
X {i @' +1)e P (cos 6) sin 5,,} sin 6 do (i)
I’=0

For Legendre polynomials, we have the orthogonality relation

+1 2

jl P (X) Py, (x) dx = 2|+15

Changing the variable of integration from & to x by defining cos € = x and using the orthogonal
property of Legendre polynomials, Eqg. (ii) reduces to

oo

~ 375 @1+ 1) sins, (iii)

For 6= 0, P,(1) = 1 and the scattering amptitude

(0=~ g @1 + 1) exp (i,) sin 5, (iv)
The imaginary part of £(0) is
Im f(0)=%i @l +1) sin? 5, W)
From Egs. (iii) and (v),
o= m 1(0) (vi)

Note: Equation (vi) is referred to as the optical theorem.
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12.5 Write the radial part of the Schrodinger equation that describes scattering by the square well

potential
-Vp, O<r<a
v(r) =
0, r>a

and solve the same. Assuming that the scattering is mainly due to s-waves, derive an expression for
the s-wave phase shift.

Solution.  The radial part of the Schrodinger equation is

1 d{,dR 2u S0+ o .
r? dr[r dr)th2 (E-Vo)R r? R=0 ®
Writing
u .
R = T (i)
we get
R _1du_ u  dR_ du_
dr —rdr 2’ dar  d
d (,dR d2u
—lrF—1\|=r—
dr dr drz
For s-waves, | = 0. Equation (i) now takes the form
d’u  2u
—+—S(E+Vy,)u=0
drz hz ( 0)
d%u 2
G tu=0 K="RE+V).  r<a (iii)
2
%+k2u:0, k2=2:2E, r>a (iv)
The solutions of Eq. (iii) and (iv) are
u = Asin k;r + B cos kr, r<a (v)
u = Csin kr + D cos kr, r>a (vi)

In the region r < a, the solution R = u/r = (1/r) cos kir can be left out as it is not finite at r = 0.
The solution in the region r > a can be written as

u =B sin (kr + &) r>a (vii)
u = A sin Kkyr, r<a (viii)

where we have replaced the constants C and D by constants B and &, The constant ¢, is the s-wave
phase shift. As the wave function and its derivative are continuous at r = a.

A sin kja = B sin (ka + &)
Ak, cos kja = Bk cos (ka + &)
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Dividing one by the other, we get
k
tan (ka + &y) = o tan k,a (ix)
1

5, =tan? (k—kl tan kla) —ka (X)

12.6 In a scattering problem, the scattering length a is defined by
= lim [-f
a=lim [-£(0)]

Show that (i) the zero energy cross-section o, = 4ma?, and (ii) for weak potentials &, = —ka.

Solution. When E is very low, only s-state is involved in the scattering. Consequently, from
Eq. (12.10), the scattering amplitude

f,(6) = % e'% sin &,
(i) In the limit E — 0,

1 s .
a=— e%sin g

sin &, = —kae
From Eq. (12.13) we have
o = 4k—72r sin? &, = 4k_72r k?a? = 4ra’
(i) If the potential V(r) is weak, &, will be small. Then exp (id) = 1 and sin & = &. Hence,
)
o) =
a= —%0 or & = -ka

12.7 Consider the scattering of a particle having charge Z’e by an atomic nucleus of charge Ze. If
the potential representing the interaction is
77’%¢? oot

V() =- .

where « is a parameter. Calculate the scattering amplitude. Use this result to derive Rutherford’s
scattering formula for scattering by a pure Coulomb potential.

Solution. In the first Born approximation, the scattering amplitude f(@) is given by Eq. (12.15).
Substituting the given potential

1.2 oo
f(0) = ZZZ# [ sin gqre™*" dr (i)
qh 0
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The value of this integral is evaluated in Problem 12.7. Substituting the value of the integral, we get
2uz7Z7’¢* q  2uZZ’¢?

f(©) = 7 P+ = W + o) (i)
The momentum transfer
|q|:2|k|sing (iii)
If the momentum transfer q > «, then
q°+a® =q® = 4k? sinzg (iv)
With this value of g2, the differential scattering cross-section is
o(0) - 110 - L LL* W

4n*k* sin*(0/2)
which is Rutherford’s scattering formula for Coulomb scattering.

12.8 In a scattering experiment, the potential is spherically symmetric and the particles are
scattered at such energy that only s and p waves need be considered.
(i) Show that the differential cross-section o () can be written in the form o (6) = a + b cos 8
+ ¢ C0s%6.
(if) What are the values of a, b, c in terms of phase shifts?
(iif) What is the value of total cross-section in terms of a, b, c?
Solution.

(i) The scattering amplitude

f(6) =

|

Y (21 +1) €% P(cos 6) sin &,
1=0

[e" sin &, + 3e' cos 6 sin ]

~|

since
Po(cos 6) = 1, P,(cos @) = cos @

s(0) = |[f(O) = 1 [sin? & + 6 sin & sin & cos (& — &) cos @ + 9 sin? &; cos? 6]
k2
o(6)=a+bcos 6+ ccos’ @

2
(i) a = sin” d , b= 5 in O sin 8, ¢cos (8 — &), €= 2 in? )
k? k?

k2
. 4 . .
(iii) Total cross-section o= k—z (sin? &, + 3sin? §))

drc c
= 4dra+—=4r|la+ =
ra+ 22 ﬁ( 3)
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12.9 Consider scattering by a central potential by the methods of partial wave analysis and Born
approximation. When ¢, is small, prove that the expressions for scattering amplitude in the two
methods are equivalent. Given
. in gr

T (21 +1) P, (cos 6) j?(kr) = %

|
where g = 2k sin (42).
Solution. In the case of partial wave analysis, the scattering amplitude is given by Eq. (12.9), and
hence

f(0) = i ; @l +1) ¥ —1) P, (cos 6)
Since &, is very small, e —1 = 2i8,, and, therefore,
f(6) ;%; 21 +1) 6,P (cos 6)
Substituting the value of & from Eq. (14.75), we get
f(6) = —i—‘z’; (21 +1) B (cos 6) TV(r) jé (kr) r2dr
0

Using the given result in the question, we obtain

2u 7 singr 2
f(@)=——— | ——V(r)rodr
0)= =35 | =GV

which is the expression for the scattering amplitude under Born approximation (12.15).
12.10 Evaluate the scattering amplitude in the Born approximation for scattering by the Yukawa

potential

—ar
V(r) = Vo exp ——
where V, and « are constants.
Also show that o(8) peaks in the forward direction (8= 0) except at zero energy and decreases
monotonically as & varies from 0 to .

Solution.  Substituting the given potential in the expression for (&), we get

2u .
f(6) = —7% JV(r) rsingr dr, q = 2k sin 42
an” o

f(6) = _2;1% [e " sinqrdr
q

0
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Writing | = je”’" sin gr dr and integrating by parts, we obtain
0

—(e”” M) _Z [cosqre ™ dr
9 Jo 45

1 af ,singr)” a® . _
:———(e””—q) — = [sinqgre dr
0 0

q g q
a? q
l=—=———-1 or I=
q q? q° + o
) 2uV,
f(e):_zzfvoz ST, 2 quo-z
(g + ) h°(a” + 4k” sin” 6/2)
VY
o (0) = 11O)F = £

n*(ar® + 4k? sin? 6/2)?
o () is maximum when 4k? sind/2 = 0, i.e., when 8= 0 except at k or E is zero. o (@) decreases
from this maximum value as 6 — .

12.11 Obtain an expression for the phase shift & for s-wave scattering by the potential

o for0<r<a
v(r) =
0 forr>a

Assuming that the scattering is dominated by the | = 0 term, show that the total cross-section
oy = 4rma.

Solution.  For the s-state, as V = o, the wave function = 0 for r < a. For r > a, from Eq. (iv) of
Problem (12.5),

2
du 2mBu_, v
dr? n? r
2mE

u=Bsin (kr+ &), K= 2

, r>a
Asu=0atr=a,
Bsin(ka+ &) =0, or sin(ka+ &) =0
ka + & = nz, (n being an integer)
& =nx-ka

When scattering is dominated by | = 0, E/k is very small and, therefore, sin ka = ka. The total cross-
section
Am . ViV
oy = k—f sin g, = k—f sin? (nz — ka)

- 4z sin’ ka = 4ra’®
k2
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12.12 Using Born approximation, calculate the differential and total cross-sections for scattering of
a particle of mass m by the J-function potential V(r) = go (r), g-constant.

Solution. From Eg. (12.15), the scattering amplitude

£(6) = _2:1‘12 [exp (iq- ') V(r) dz’

where g = k — k" and | 8] = 2k sin &2. Here, k and k’ are, respectively, the wavevectors of the
incident and scattered waves. Substituting the value of V(r), we get

£(6) = —2:22 [exp (iq- ) 5(r') dz’

Using the definition of &-function given in the Appendix, we get
mg
27h?

£(6) = -

The differential scattering cross-section is

o(0) = 1f(O)]2 = -3

Since the distribution is isotropic, the total cross-section is given by
ngz

o =4ro(0) =
) e

12.13 For the attractive square well potential,
V() =-Vy, for0<r<r

V(r) = 0 for r > ry. Find the energy dependence of the phase shift &, by Born approximation. Hence
show that at high energies,
mr,V, 2mE
5, (k) - —20 K2 =
o) =2 e

Solution. In the Born approximation for phase shifts, the phase shift 9, is given by Eq.(12.14).
Then the phase shift

2mk % 2mE
50=h_v0j jé(kr) r3dr, k% = e

since jo (kr) = sin (kr)/kr. Now,

2mkV, 2mkV,  1-
O = mzzo j sin? (kr) dr = nlzo | 1 - cos (2kr)
hk k 2
_ 2mkVy |y sin (2kr)
TRk |2 4k
_ M

= 22 [kro —%sin (2kr0)}
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which is the energy dependence of the phase shift J,. At high energies, k — . When k — <, the
second term

— 3= sin (2kry) — 0

Hence at high energies,
5otk > Moo

12.14 In the Born approximation, calculate the scattering amplitude for scattering from the square
well potential V(r) = =V, for 0 < r < ryand V(r) = 0 for r > ry

Solution. In the Born approximation, from Eq. (12.15a), the scattering amplitude

sin qr

f(o) = - JV()

where q = 2k sin (6/2), k? = 2uE/h?, @is the scattering angle. Substituting V(r) in the above equation,
we get

Iy

f(0) = rsin gr dr

0

= 2;1V0 { r cos qr jcos qr dr}

2

2;1V0 [ fo COS gl sin qro]
a

,u =S (sin gry —qry cos qry)
’q°

12.15 In Problem 12.14, if the geometrical radius of the scatterer is much less than the wavelength
associated with the incident particles, show that the scattering will be isotropic.

Solution. When the wavelength associated with the incident particle is large, wave vector k is small
and, therefore, kry << 1 or qro < 1. Expanding sin qry and gry cos gro, we get

24N, n)° 22
#(6) = HVg {qrt)‘(qg) _roq(l_qzo H

h2q3
24N,y
3n?
which is independent of 8. Thus, the scattering will be isotropic.

12.16 Consider scattering by the attractive square well potential of Problem 12.14. Obtain an
expression for the scattering length. Hence, show that, though the bombarding energy tends to zero,
the s-wave scattering cross-section oy tends to a finite value.
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Solution. From Eg. (ix) of Problem 12.5,
k
tan (kry + &) = o tan kiry
1
where

2 UE 2
:—2, kf:h—‘z‘(mvo)

Expanding tan (kry + &) and rearranging, we get

k? =

k tan ki, — k; tan kr,

n =
tan d k, + k tan kry tan kir,

In the zero energy limit, kK — 0, krg — kry. Hence,

24NV,

1/2
2uV,
k1r0—>( Y ) Iy = Kolp, kZ = HVo

h2

k tan kry tan kirg — korg tan kgr

which may be neglected in comparison with k,. Therefore,

k tan kyly — Kokr k
tan &, = 00 070 or &y =— tan kol
ko Ko
. o tan Ko
The scattering length a = — =2 =, — ——22
K ko
tan kor, \’
G = ma? = 4} (1 - Aj
Kol

That is, the s-wave scattering cross-section oy tends to a finite value.

— kry

12.17 Use the Born approximation to calculate the differential cross section for scattering by the

central potential V(r) = a/r?, where o is a constant. Given

(X V4
j(sm;)dx_g

0

Solution. In the Born approximation,

SNAT v 1y r2 dr, q =2k sin 2

_ o 2u
f(@) = h2£ ar 5

_2;120(]" sin qr dr=_2ﬂ;x]° sin x dx,
R4 ar qr’ 5 X

2ua o —muo
qhz 2 qhz

X =qr
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72120 B 72 120

g’n*  4k2h® sin? @12

o (0) = If(O)F =

12.18 Consider scattering by the Yukawa potential V(r) = V, exp (—ar)/r, where Vy and o are
constants. In the limit E — 0, show that the differential scattering cross-section is independent of 8
and ¢.

Solution.

£(0) ——‘Z’j '“qu()r dr
0

& [ e singrdr= 2N 4 _ 2/

th 5 th q2 + a2 hZ(q2+ a2)

AsE —- 0,k - 0and g = 2k sin 42 — 0. Hence,
4,u V0

o0 =1f@O)F =

which is independent of 8 and ¢.

12.19 Consider the partial wave analysis of scattering by a potential V(r) and derive an expression
for the phase shift ¢, in terms of V(r) and the energy E of the incident wave.

Solution. The radial part of the Schrodinger equation that describes the scattering is

1 d ( ,dR, 2UE 2V 1(1+1) B .
> dr [r ar )+[ Py Y " R =0 (i
Writing
u .
R = TI (ii)
we get
d?y, [2;15 2V I+ 1)}
+ - - u =0 iii
dr? n? n? r? I (i)
In the incident wave region V = 0 and, therefore,
d?y, [ , 10+ 1)} 2mE
— + | k"~ u(r) = k? = iv
dr? r (1) = 2 )
whose solution is
u(kr) = krj; (kr) (v)
Assymptotically,
Uy (kr) —=z— sin (kr - %r) (vi)
Similarly, the approximate solution of
d?v, [ . 2V(@) I+ 1)}
— L ilk? - - v, =0 vii
dr? n? r2 ' i
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V (Kr) ——=z— sin (kr —%r+ 5|)

Multiplying Eq. (iv) by v,, Eq. (vii) by u; and subtracting, we get
d2U| d2V| ZIUV
v -u =— UV
' dr? ' dr? 2o
Integrating from O to r and remembering that u,(0) = v,(0) = 0, we obtain

dy, dv,

_ Zﬂr ’ ’ ’ ’
Vige U T h—zbfV(r)U|(r)V|(r)dr

Allowing r — < and substituting the values of u,(r) and v,(r), we have
. V4 Iz . Iz 4
k sin (kr —7+5|) cos(kr —7) —ksin (kr —7) cos (kr —7+5,)

- _i_é‘ [V() uy(kr) v, (kr) dr
0

s (o)

k sin 0, = —i—éj TV(r) uy(kr) v, (kr) dr
0

Since

the equation reduces to

which is the equation for the phase shift 4.

(viii)

(ix)

12.20 Show that an attractive potential leads to positive phase shifts whereas a repulsive potential

to negative phase shifts.
Solution.  From Problem 12.19, the equation for phase shift ¢, is given by
sin &, = —k% V) uy(kr) v, (kr) dr
0

where

2mE
2 _
ke = 7

At high energies, for weak potential, the phase shifts are small and
uy(kr) = vy(kr) = kr jy(kr)

The spherical Bessel function ji(kr) is related to ordinary Bessel function by

N
Ji(kr) = [m) Jiczy (kr)
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sin g =4, = —2—”" j V(r) jé(kr)r?dr

=7 [ V) [y (0 T r e
0

From this equation it is obvious that an attractive potential (V < 0) leads to positive phase shifts,
whereas repulsive potential (V > 0) to negative phase shifts.

12.21 Use the Born approximation to obtain differential scattering cross-section when a particle
moves in the potential V(r) = -V, exp (-r/ry), where V, and r, are positive constants. Given
< . 2ab
x exp (—ax) sin (bx) dx = ———, a>0
{ (@® + b?)?

Solution.  The scattering amplitude

f(6) = —Z—éIJMV(r)r2 dr =2ﬂ—V2° [re”"osin gr dr
R ar qn" %
2ab

E)rXeiaXSin bx dx=m, a>0

2
(0 = 2N 2L _4,UV0[ G ]

ai? [+’ P, \L+q?
16,12V 2rd

o@)=|f(@ |2 =~
6) =11(6) s o)

12.22 Calculate the scattering amplitude for a particle moving in the potential

c—r r
V(r) = Vo exp (__)
To
where Vg and ry are constants.
Solution.
f(8) = _2;1\20 | €T e ¢ singr dr
qh
21V, [ p
= —ﬂ—zo [ ce™ singrdr - [ re”™™ singr dr}
ar” | o 0
2, |
g | P+ W) N [W)+ o
_ 2 [ cr? 2y
o1+ 9 L+ )
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12.23 In scattering from a potential V(r); the wave function y(r) is written as an incident plane
wave plus an outgoing scattered wave: w = e + f(r). Derive a differential equation for f(r) in the
first Born approximation.

Solution. The Schrédinger equation that describes the scattering is given by

h2
o Viy +V(r) v = Ey
Writing
2UE 2N (r
k2= luz ’ U()— lu ()
h h?

we get
(VZ+Kk)y=Uny
Substituting w; we obtain
(V2 +K%) (" + f)=UE" + f)
Since (V2 + k?) el =0,
(V2 +K%) f(r)=UE" + f)

In the first Born approximation, e* + f(r) = ¢, and hence the differential equation for f(r) becomes
(V2 +K?) £(r) = i—TVeikz

12.24  Use the Born approximation to calculate the differential scattering cross-section for a particle
of mass m moving in the potential V(r) = A exp (-r?/a?), where A and a are constants. Given

2
-2 005 bx dx = \/7 exp [4b ]

o—3
®

23 a2

Solution. In the Born approximation, we have

f(6) = j sin (qr D vy r2dr
0

0o 2
= —%J r sin (qr) exp [LZ] dr
an- o a

.6
lq] = 2ksm§

Integrating by parts, we get

2mA | @’ exp (-r’/a® ) :|M a’q ( J
f(6) = - ngr| - — cos gr dr
a7’ 2 , gnt 2 {
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As the integrated term vanishes

f(6) = m:a je’r "2 cos (qr) dr
_ mA@® Jraexp (-q%a%/4) _  mAa’z'? ox —q%a?
7 2 217 P74

22,6 2,2
_ 2 MA%a’rx —-Qg-a
o(6)= 11O = T exp[ > J

12.25 A particle of mass m and energy E is scattered by a spherically symmetric potential
AJ (r — a), where A and a are constants. Calculate the differential scattering cross-section when the
energy is very high.

Solution. At high energies, the Born approximation is more appropriate. From Eq. (12.15a), the
scattering amplitude

2m 7 sin sinqr
f(o)=- V(r) r?dr
(6) 7 { ar (r)
Substituting the value of V(r), we get
f(9) = —Z—TAJ SINAT 5 a) r2 dr
7 o ar

_2mA asin ga
R q
The differential scattering cross-section

272,42 qin2
o(60) = 11O = W
12.26 For the attractive square well potential,

V==V, for0<r<a,
V=0 forr>a

Calculate the scattering cross-section for a low energy particle by the method of partial wave
analysis. Compare the result with the Born approximation result. Given

b
a? + b?

| exp (—ax) sin bx dx =

Solution.  The scattering of a particle by an attractive square well potential of the same type by the
method of partial wave analysis has been discussed in Problem 12.5. The phase shift & is given by

k
tan oy = o tan (k;a) — ka
1
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where
K2 2uE K2 = 21(E + V)
- B2 17 72
For low energy particles,
21V,

k—0 ki—oky= 7

Consequently, the above relations reduce to

k
5, = ka [M . 1}
koa
The total scattering cross-section
4 . 1y 4
o= k—25|n250 :k—25§
2
_ aga? (tan (ko) 1)
koa

If kpa <« 1,

2 2
koa (ko) (koa)®
2| %o 0 _ — 2 0
o= 4ra [_koa + —Skoa 1 4ra 3kga

_ 167a° 2V¢
9n*

In the Born approximation, the scattering amplitude (refer Problem 12.14)

f(6) = 252 [sin (38) - 4a cos (qa)]

’q
4uN?
o) =) = ﬂ4 2 [sin (ga) — ga cos (qa))’
h'q
where
_ .0 , 2uE
g = 2k sin o ke = h_2

where @ is the scattering angle. At low energies, k — 0, g — 0, and hence

. 1 1
sin (qa) = ga - o7 (@),  cos (ga) =1- - (qa)’

Hence,

4uPVEab

o) =g,
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The total cross-section for scattering is

T 2r
o= [o(@)dQ=| [ o(6)sin6 do dp
00
_ 16mu?Via®
on*

At low energies the two methods give the same result.

12.27 In partial wave analysis of scattering, one has to consider waves with 1 =0, 1, 2, 3, ... . For
a given energy, for spherically symmetric potentials having range ry, up to what value of I should
one consider?

Solution. The wave vector k = ./2uE/h, where E is the energy and x is the reduced mass.
The linear momentum of the particle p = ki
Angular momentum = 1%

If b is the impact parameter, classically, then
Angular momentum = pb = k&b

Equating the two expressions for angular momentum, we get

kib = 1n or 1=kb

When the impact parameter b > ry, the particle will not see the potential region and a classical
particle will not get scattered if | > kry. Hence we need to consider partial waves up to | = kry.

12.28 (i) Write the asymptotic form of the wave function in the case of scattering by a fixed
potential and explain.
(if) What is Born approximation?
(iif) What is the formula for the first Born approximation for scattering amplitude f(&)?
(iv) Under what condition is the Born approximation valid?

Solution.
(i) The general asymptotic solution is
. eikz
Y —— A[e'kz + 10, 9) = } (i)

where A is a constant.
In this, the part e
given by

2 represents the incident plane wave along the z-axis. The wave vector k is

_ 2mE
=

k? :
where E is the energy.

The second term of Eq. (i) represents the spherically diverging scattered wave. The amplitude
factor (6, ¢) is called the scattering amplitude.

(if) A general analysis of the scattering problem requires expressing the wave function in the
form of an integral equation. In this expression for the wave function, the wave function appears
under the integral sign. In the first Born approxiamtion, y(r) in the integrand is replaced by the
incoming plane wave exp (ik - r). This leads to an improved value for the wave function which is
used in the integral in the second Born approximation. This iterative procedure is continued till the
input and output ¥’s are almost equal.
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(iii) In the first Born approximation, the scattering amplitude
2u 7 sin (qr) N oD
f@)=-—— | ——=V({I)r=dr
h? { qr
where g is the momentum transfer from the incident particle to the scattering potential and

.0
gl =2[k]sin >
with angle @ being the scattering angle, V(r) the potential, and x the reduced mass.

(iv) The Born approximation is valid for weak potentials at high energies.

12.29 In the scattering experiment, the measurement is done in the laboratory system. Discuss its
motion in the centre of mass system and illustrate it with a diagram.

Solution. Consider a particle of mass m moving in the positive z-direction with velocity v, and
encountering a scattering centre of mass M which is at rest at O. After scattering, it gets scattered
in the direction (4, ¢,). The velocity of the centre of mass

mv,
ch -
m+ M

We shall now examine the situation with respect to an observer located at the centre of mass. The
observer sees the particle M approaching him from the right with velocity —mv,/(m + M), the particle
m approaching him from left with velocity

mv, mv,

Loem ™  my M m+M

After encounter to keep the centre of mass at rest, the two particles must be scattered in the opposite
directions with speeds unchanged (elastic scattering). The collision process in the centre of mass
system is illustrated in Fig. 12.1.

Centre
m of mass M of mass A O, 9c .
—>—-o--——-—-- ~---® B ettt z-axis
Vv MVL _ mv, 1
¢ m+M T m+ M |
M@ ™
P m+ M
v
@ (b)

Fig. 12.1 Motion of the particles in the centre of mass system: (a) before collision; (b) after collision.



CHAPTER

Relativistic Equations

The quantum mechanics discussed so far does not satisfy the requirements of the Special Theory of
Relativity as it is based on a nonrelativistic Hamiltonian. Based on the relativistic Hamiltonian, two
relativistic wave equations were developed, one by Klein and Gordon and the other by P.A.M. Dirac.

13.1 Klein-Gordon Equation

The Klein-Gordon equation is based on the relativistic energy expression
E2 = ¢%p? + m%c* (13.1)

where m is the rest mass of the particle and p its momentum. Replacing p by —-iAV and E by
in(d/ot), we get

1 82 2.2
[VZ—C—Zg}P(r, Y=g (Y (13.2)

which is the Klein-Gordon equation.
To get the equation of continuity (2.15) in the relativistic theory, we have to define the position

probability density by
in LO¥ ov*
P(r,t)= P— (‘P S50 v 5 ) (13.3)

and the probability current density by the same definition, Eq. (2.14). This definition of P(r, t) leads
to both positive and negative values for it. By interpreting eP as the electrical charge density and ej
as the corresponding electric current, the Klein-Gordon equation is used for a system of particles
having both positive and negative charges.

13.2 Dirac’s Equation for a Free Particle

To get a first derivative equation in both time and space coordinates, Dirac unambignously wrote the

Hamiltonian as 330



Relativistic Equations e 331

E=H=c(xps + opy + &p,) + fmc? (13.4)
E=H=ca p+ Amc

where &, &, o, and j3 are matrices. Replacing E and p by their operators and allowing the resulting
operator equation to operate on #(r, t), we obtain

0P () 9 9 Kl 2
ih 3 ich [ax 5 % 3 + o, azj Y (r, t) + Smc ¥ (r, t) (13.5)

which is Dirac’s relativistic equation for a free particle. The e and S matrices are given by

(0 oy B 0 o (13.6)
%= o, 0) %= o, 0 '

weln bl

where g,, o, and o, are Pauli’s spin matrices and I is a unit 2 x 2 matrix. Since «, ¢, ¢, and
p are 4 x 4 matrices, the Dirac wave function ¥(r, t) must be a 4-coulumn vector

k21

v
LUDES W AR SR I ) (13.7)

3

¥,
The probability density P(r, t) and the probability current density j(r, t) are defined by the relations
P(r,t) =¥, jr,t)=c¥a¥ (13.8)
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PROBLEMS

13.1 Starting from the Klein-Gordon equation, obtain the equation of continuity.
Solution. The Klein-Gordon equation and its complex conjugate are

2

_p? a_‘f = -2V (r, t) + m*cty(r, 1)
AN LS

_p2 a{% = _ 2 R2VAW* 4+ m2chp*

Multiplying the first equation from the LHS by ¥* and the second equation from the LHS by ¥ and
subtracting, we get

2 2\px
S S S CP(P*VAP — PV

a2 ot
d LOF B ov* _ 2 . wx
ﬁ(\y v )_ 2V (WVW* — WV P)

%P(r, H+V-jr,)=0

P(r,t)=2ih( ov a\P*)’

S P -
mc

: in .

13.2  Show that the Dirac matrices e, ¢, o, and £ anticommute in pairs and their squares are unity.

Solution.
0 oy 0 o 0 o, I 0
o, = , = , o, = , =
§ [O‘X O] % [ay 0] ’ (az 0 A 0 -1
0 o)(0 oy 0 o,)(0 oy
+ oo = +
ol % [O‘X OJ[O'y 0] [ay 0 )Jlo, O
oo, 0 oo, 0
= +
0 o0, 0 oo,

Since o0y = 0, 0y0; = —io,, We have

ic, 0 —-io, O
Gy F 0% = 0 io - 0 -io =0

i.e., o and ¢, anticommute. Similarly,

00y + 00 = 0405 + 05, = 0
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B+ B 0 o,)(1 O N I 0 0 oy
o, o, =
o, 010 -l 0 -1)loy, O
[ 0 —O'X|] [ 0 |O'X]
= +
ol 0 -loy, O

As | commutes with o;, RHS of the above vanishes, and hence

of + oy, = oo ff + Py, = 0

0 - 0 o,)(0 o) (of 0) (10
* o, 0)lo, O 0 o2 01
since o2 = 1. Similarly, o7 = a?= % = 1. Hence, &, 04, o, and S anticommute in pairs and their
squares are unity.

13.3 Write Dirac’s equation for a free particle. Find the form of the probability density and the
probability current density in Dirac’s formalism.

Solution. Dirac’s equation for a free particle is
9
ot

Here, « and S are 4 x 4 matrices and W(r, t) is a four-column vector. The Hermitian conjugate of
Eq (i) is

in — ¥(r,t) = —icha- V¥ + Smc*¥ (i)

—ih%‘}” =ichV¥' - a + ¥'pmc? (ii)

Multiplying Eq (i) by ' on left, Eq (ii) by ¥ on the RHS, and subtracting one from the other, we
get

;
in [\P*%—\f—% J:—ich(\y*a.vw+vw* - a'?P)

% (PY) + V- (c¥Ta¥) =0

I P9+ V- j(r,9=0 (i)
where
jr, ) = c¥'a¥,  P(r, t) = ¥¥ (iv)
Equation (iii) is the continuity equation and the quantities P(r, t) and j(r, t) are the probability density
and probability current density, respectively.

13.4 In Dirac’s theory, the probability current density is defined by the relation j(r, t) = c¥'or P,
where ¥ is the four-component wave vector. Write the relations for jy, j, and j, in terms of the
components of ¥, i.e.,
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jr, ) = ¥, = c¥a¥

000 1)(¥,
ho= coerwswerwy |0 0 PO
0100 ¥,
100 0¥,
\P4
\PS
= ¢ (¥ PE WS W)
\PZ
\Pl

c(¥YrY¥Y, + ¥7¥; + V3%, + Y3¥,)

Proceeding on a similar line, we have

Jy = ic (WFY, + Y3, - WY, + IV

z
13.5 Prove that the operator ce, where « stands for Dirac matrix, can be interpreted as the velocity
operator.

Solution. In the Heisenberg picture, the equation of motion of the position vector r, which has no
explicit time dependence, is given by

¢ (YW, - W3, + ¥3¥, - 7))

dr 1 B 2
E_ﬁ[r’H]’ H=ca p+ fmc
Since a commutes with x, the x-component of the above equation reduces to
dx 1 1 c
a - E [X: H] = E(XH - HX) = E (Xaxpx - axpxx)
c
= E ax(pr - pxx) = Cay
- dy dz
larl - = — =
Similarly, T ar - ¢

Thus, ce is the velocity vector.
13.6 Show that (o - A) (- B) = (A - B) +io”- (A x B), where A and B commute with & and

, (o 0
o’ = )
0 o
Solution.
(- A) (- B) = (s Ay + Ay + 4 A) (6B, + 4B, + 4,B))

= al AB,+ ol AB,+ af AB, + aa/AB, + axAB,

+ a@axAyBX + ayaZAsz + 0,00 AB, + azayAsz
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Since o = o = af =1, ayex, = —axyer, and the cyclic relations
(¢-A)(a-B) = (A-B) + o (AB, - AB,) + oy, (AB, - AB))

+ azay (Asz - Asz)

0 oy 0 oy oo, 0 (o, O .,
0504 = = =1 =lo,
o, 0)lo, O 0 o0, 0 o,
Using this results and the cyclic relations, we get
(x-A)(x-B) = (A-B) +io’ - (AxB)
13.7 Consider the one-dimensional Dirac equation

. 2 _ 0
|hW_[capz+ﬁmc +V(2)] v, p, =—in 3

0 o, 10 I 0
o= , o, = , ﬂ =
o, 0 0 -1 0 -l
Show that

i o—:(o-z OJ
0 o,

commutes with H; (ii) The one-dimensional Dirac equation can be written as two coupled first order

differential equations.
Solution. The Hamiltonian

H= ca(—ih%} + Amc? + V(2)

The commutator

_|(o, O 0 o,)| (o, 0} 0 o 0 o,)\o,
[O-’a]_OO'ZO'ZO_OO'ZO'ZO_O'ZO 0 o

Similarly,
o, 0 I 0

[o, H] = c[o, o] p, + [0, Bl mc® =0

Hence,
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As [0, H] = 0, the two operators oand H have common eigenfunctions o is a diagonal matrix whose

eigenfunction is

v,) (1 00 O
w,| |0 -10 0
O =
w,| [0 01 0
wv,) 0 00 -1

From the form of ¢, it is obvious that
V1
0

V3
0

4
L)
Y3
Va

and

L4 141 0
_| 7V | _ 0 | Y2
Y3 Y3 0
Y 0 Vs
0
L)
0
Va

are the eigenfunctions of o with the eigenvalues +1 and —1, respectively. Substituting these functions

in the Dirac equation, we get

L4 Y1
0 0
ino = [—ihcai+ Bmc? + V)
It | yy dz Vs
0 0
0 0
o9 (Ve | (. d 2 V2
|h§ 0 _( |i’zcotaZ + fmc +V) 0
Y Va4
oy, loz 0 01 0)fdwloz Vs
0 0 00 -1 0 0| 0
(04 = = —
dy,loz 1 00 O0flowsloz| 97|y,
0 0-10 O 0 0
4 100 41 41
sl 0| [0t 0o 0fol
Vs 00 -1 0 ||ys Vs
0 00 0 -1)LO
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Similarly,
0 0 01 0O 0 0
" ow,loz _ 0 00 -1} dy,loz :i —W,
0 1 00 0 0 Jz| 0
ow,loz 0 -1 0 0){dy,loz -,

Substituting this equation in the Dirac equations, we have

L4 Ys L4 41
0

in2 - hci + mc? +V(2)
Ity 9| yy B4 3
0 0 0 0
0 0 0 0
L2 N Nl e 2| V2 )
|h§ 0 |” iac 7| o + mc 0 +V(2) 0
Va V> Y Va

Each of these two equations represents two coupled differential equations.

13.8 For a Dirac particle moving in a central potential, show that the orbital angular momentum
is not a constant of motion.

Solution. In the Heisenberg picture, the time rate of change of the L = r x p is given by

dL
in-g =L H]

Its x-component is

d
i Ly = L HI=[yp, — 2p, cer - p+ fmc’]

Since & and S commute with r and p,
d
IhELX = [ypz’ Cay py] - [Zpyl Ca, pz]
= c[y, py] pzay - C[Z1 pz] pyaz
= Ccihp,a — cihpyy

= ich (pza - pyaz)

which shows that L, is not a constant of motion. Similar relations hold good for L, and L,
components. Hence the orbital angular momentum L is not a constant of motion.

13.9 Prove that the quatity L + (1/2)c’, where L is the orbital angular momentum of a particle,

o 0
and o’ = 0 o is a constant of motion for the particle in Dirac’s formalism. Hence give an
o

interpretation for the additional angular momentum 1/2 ho”.
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Solution. In Dirac’s formalism, the Hamiltonian of a free particle is
H=ca- p+ pmc?

In the Heisenberg picture, the equation of motion for an operator M is given by

. d
ih g M =[M, H]

(i)

(i)

Hence, for a dynamical variable to be a constant of motion, it should commute with its Hamiltonian.

Writing
1
M=L+—-no’
+5ho

where equation of motion is

. d 1. ,)_ 1., 2
|hE(L+§ha)_[L+§ha,ca p+ Amc }
The x-component of Eq. (iv) is

. 1
|h%(LX +§ha;) = [LX +%ha;, cor - p +,Bmcz}

1
= [L,, ca - p + fmc?] + Sh [0}, car - p + Bmc?]
Let us now evaluate the commutators on the right side of (v) one by one

[Lx: Ca-p+ ﬁmcz] = [ypz - Zpyl Coy py + COtypy + Ca,p, + ﬂmcz]

Since o and £ commute with r and p,

[Lx’ Ca-p+ ﬁmCZ] = [ypz’ Caypy] - [sz’ Ca, pz]

C[y! py]pzay - C[Z! pz]pyaz

ich (aypz -, py)
The second commutator in Eq. (v) is
[o], ca- p+ pmc?] = [0}, ca,p, + caypy + Co,p, + Amc?]
= [0}, ca ] + [0, caypy] + [0%, ¢, p,] + [0, fmc?]

From Problem 13, we have

05, A1=0.  [o5.a]=0, [0} a]=2i,, [0}, )= -2ia,

Substituting these commutators in the above equation, we get

[0y, ca- p+ fmc’] = cloy, &1 py +c oy, 1P,

2ica, p, — 2icayp,

(iii)

(iv)

(v)

(vi)

(vii)
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From Egs. (v)—(vii),

i d 1 ’ i l H -
|ha (LX + Ehax) = ich(ayp, — o, py) + Eh x 2ic(a, p, — a,p,) (viii)
=0
1., -
L, + Ehax = constant (ix)

Similar relations are obtained for the y- and z-components. Hence,
1.,
L+ Eha = constant )

From the structure of the o’ matrix, we can write

ol =0 =07=1

L . 1., 1 1 o
This gives the eigenvalues of Eha as +§h or _Eh' Thus, the additional angular momentum

1., . . .
Eha can be interpreted as the spin angular momentum, i.e.,

o 0
s=1
2 0 o
13.10 If the radial momentum p, and radial velocity ¢, for an electron in a central potential are
defined by

r-p-—ih a-r
pl’ = +l all’ = T
show that
ink e,

r

(a~p) =0 prt

B(o’-L+h)
—
Solution.  The relativistic Hamiltonian of an electron in a central potential V(r) is given by

H = c(a-p) + Amc® + V(1)

where k =

If A and B are operators, then
(@-A@a-B)=(A-B)+ o0 -(AxB)
Setting A = B = r, we have (a - r)?> = r% Taking A = r and B = p, we get
@-n@-p)=(@r-p)+ioc’-L
Given

k:M or O-’.sz_h_h

h B
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Substituting this value of ¢’ - L and multiplying by « - r, we obtain

@-n@-p=(@-n {(f- D)+i(%—hﬂ

Since
@@a-n?=r?
we have
_a-r o dki | a-r | (r-p)—in  ikh
a-p= 7 [(r p) |h+ﬁ}_r[ ; +ﬁr
Using the definitions of p, and o, we get
inke, ink A2e,
o-p= ap +ﬁ—rr:arpr +Tr
= ap + |hkrﬂ0(r

13.11 If one wants to write the relativistic energy E of a free particle as
2
— =(x-p+ pmey?,
c
show that «’s and f’s have to be matrices and establish that they are nonsingular and Hermitian.
Solution.  The relativistic energy (E) of a free particle is given by
E2 - CZpZ + mZC4 - CZ( p2 + mZCZ)
When E?/c? is written as given in the problem,
p? + m’c? = (- p + fmc)’ = afp; + o ps + afpl
+ ﬂZmZCZ + (axay + ayax) Px py + (axaz + 0(20()() Px P;
+ (ayaz + azay) py P, + (axﬂ + ﬂax) mepy
+ (ayf + pay) mep, + (a8 + pa,) mep,
For this equation to be valid, it is necessary that

0{5 = 0(5 = azz :ﬂz =1 [y, ay]+ =0, [ayv a,], =0

[ax’az]+ =0, [ax’ﬂ]+ =0, [ay!ﬂ]+ =0, [aZ!ﬂL =0

It is obvious that the &’s and /8 cannot be ordinary numbers. The anticommuting nature of the s
and /3 suggests that they have to be matrices. Since the squares of these matrices are unit matrices,
they are nonsingular. As the «’s and S determine the Hamiltonian, they must be Hermitian.
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o 0
13.12 If ¢’ = , show that
o

(ii) [ox, ,1=0, [0y, /] =2ie,, [0y, ;] = 2ie,

where o is the Pauli matrix and e, o, o are the Dirac matrices.

Solution.
, [0 0 , (ox O
o = ) O'X:
0 o 0 oy

-,z_O'XOO'XO_O'fO_lo
(I)O-X_OO'X 0 o) 0 o2) 01

A similar procedure gives the values of O'f and ;2. Hence the result

o, o, O OO'X_OO'XO'XO
W) o o] 0 o )lo, 0 o, 0)L0 o,

[oy, ]

0 ooy ~ 0 oy _ 0 0,0y — 0,0y
oo, 0 oo, 0 0,0, — 0,0y 0

0 2ig, .
= . = 2ic,
2ic, O

Proof of the other relation is straightforward.

o
13.13 Show that matrix o’ = [
0 o

j is not a constant of motion.

Solution. The equation of motion of ¢’ in the Heisenberg picture is

.. do’ ,
in it =[o’, H]

Hence for ¢” to be a constant of motion, oy, o, and o, should commute with the Hamiltonian.
Thus,
[0}, H] = [0, ca- p + fmc’]
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Since o, commutes with /3,
(o7, H1=[o7, cap, ]+ | 0%, caypy | + [, carp, |
From Problem 13.12,
[ox, o ]=0, La;,ayJ:Ziaz, (o), &, | = -2ia,
[ov, H]=2ic (,p, — ayp,) # 0
Hence the result.

13.14 Show that Dirac’s Hamiltonian for a free particle commutes with the operator o - p, where
p is the momentum operator and ois the Pauli spin operator in the space of four component spinors.

Solution. Dirac’s Hamiltonian for a free particle is
H=c(a-p)+ Amc?
where

[.p 0]
o-p=o-pl=
0 o-p

[ p ca- p+ pmc]

cl(c:p), @-p]+[o-p pmc?]

(S At | F S LA A (2|

Hence the result.



CHAPTER

Chemical Bonding

With the advent of quantum mechanics, elegant methods were developed to study the mechanism that
holds the atoms together in molecules. The molecular orbital (MO) and valence bond (VB) methods
are the two commonly used methods. Recent computational works mainly use the MO methods.

14.1 Born-Oppenheimer Approximation

In molecules, one has to deal with not only the moving electrons but also the moving nuclei. Born
and Oppenheimer assumed the nuclei as stationary and in such a case, the Hamiltonian representing
the electronic motion is

2
+zz"ri2+zz Mgt (14.1)

ij>i i) a fa of

kz,e?
fie

n? )
where i, j refer to electrons, ¢, £ to nuclei and k = 1/(4x &).

14.2 Molecular Orbital and Valence Bond Methods

In the molecular orbital method, developed by Mulliken, molecular wavefunctions, called molecular
orbitals, are derived first. In the commonly used approach, the molecular orbital y is written as a
linear combination of the atomic orbitals (LCAQO) as

v =Cy, +CY, +... (14.2)

where 4, s, ... are the individual atomic orbitals. The constants cy, Cy, ... are to be selected in such
a way that the energy given by i is minimum.

In the valence bond approach, atoms are assumed to maintain their individual identity in a
molecule and the bond arises due to the interaction of the valence electrons. That is, a bond is formed
when a valence electron in an atomic orbital pairs its spin with that of another valence electron in
the other atomic orbital.

343
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14.3 Hydrogen Molecule-ion

Hydrogen molecule-ion consists of an electron of charge —e associated with two protons a and b
separated by a distance R (see Fig. 14.1). The electron’s atomic orbital, when it is in the

neighbourhood of a is
1 1/2 r
Va=|—5| exp (_—aj (14.3)
may 8y

Fig. 14.1 The H3 molecule.

and when it is in the neighbourhood of b, it is

1/2
Vo= L exp [ij (14.4)
"7 zad E '
A reasonable MO will be
V=Gt Gy (14.5)
where ¢; and ¢, are constants. Then the energy E of the system is given by
(wIHly)
E=~1—1" 14.6
Wwly) (14.6)

Substituting the value of w and simplifying, we get the energies as
Voo + Vay , ke®

El: EH - 1 i S T (147)
V,, — V. ke?
E,=E4 — aifsab 5 (14.8)
where
ke? ke?
Vaa = <'//a T ‘//a>: Vab = <‘//a r_ ‘//b> (14-9)
a

S=Walvp) =Wplva) (14.10)
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The normalized wavefunctions corresponding to these energies are

_Yat ¥y _Ya— Vb (14.11)

4 : 4
o 2+25 * J2-2s
The wavefunction w4 corresponds to a build-up of electron density between the two nuclei and is

therefore called a bonding molecular orbital. The wavefunction ys is called an antibonding orbital
since it corresponds to a depletion of charge between the nuclei.

14.4 MO Treatment of Hydrogen Molecule

In MO theory the treatment of hydrogen molecule is essentially the same as that of HY, molecule.
One can reasonably take that in the ground state both the electrons occupy the bonding orbital w4
(Eg. 14.1) of HY% which is symmetric with respect to interchange of nuclei. The trial wave function
of H, molecule can then be taken as

[va (@) + vy W] [ya(2) + v, (2)]
21+ 9)

Wmo =¥1(1) ¥1(2) = (14.12)

With this wave function, the energy is calculated.

14.5 Diatomic Molecular Orbitals

Figure 14.2 illustrates the formation of bonding and antibonding orbitals from two 1s atomic orbitals.
Both are symmetrical about the internuclear axis. Molecular orbitals which are symmetrical about the
internuclear axis are designated by o (sigma) bond, and those which are not symmetrical about
the internuclear axis are designated by & (pi) bond. The bonding orbital discussed is represented by
the symbol 1so since it is produced from two 1s atomic orbitals. The antibonding state is represented
by the symbol 1so*, the asterisk representing higher energy.

wa(1s) + wp(1s)

(@)

3

wa(1s) — wip(1s)

(b)

3

Fig. 14.2 Combination of 1s orbitals to form (a) bonding orbital 1sc, and (b) antibonding orbital 1so*.
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If an inversion of a molecular orbital about the centre of symmetry does not change the sign
of w, it is said to be even and is denoted by the symbol g as a subscript. If the sign changes, the
orbital is said to be odd and a subscript u is assigned to the symbol. In this notation, the bonding
and antibonding orbitals are respectively denoted by 1s6, and 1scy. Two 2s atomic orbitals combine
to form again a bonding 2sc, and an antibonding 2scf molecular orbitals. The terminology followed
for labelling MOs in the increasing order of energy is

156 < 1s6™ < 256 < 256* < 2p,6 < (2p, 7 = 2p,7) < (2p,7* = 2p,n*) < 2p,c*  (14.13)
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PROBLEMS

14.1 llustrate, with the help of diagrams the combination of two p-orbitals, bringing out the
formation of bonding o4, antibonding o, bonding =, and antibonding r;* orbitals.

Solution. The two lobes of each of the p-orbitals have opposite signs. If the internuclear axis is
taken as the x-direction, two p, atomic orbitals combine to give the molecular orbitals 2p,c, and
2p,o.F, which is illustrated in Fig. 14.3 Both have symmetry about the bond axis. The combination

Atomic Orbitals Molecular Orbitals

o (OLQOND - 60
a b 2p><cg

Ya(Px) — wb(py)

o (XL QN - G0 O
a b 2p,0%

va(Py) + (P
Fig. 14.3  Formation of (a) bonding orbital 2p,c,, and (b) antibonding 2p,c;* molecular orbitals from two p,
orbitals.

of two py orbitals gives the molecular orbitals 2p,r, and 2p g, see Fig. 14.4. The pym, MO consists
of two streamers, one above and one below the nuclei. In this case, the bonding orbital is odd and
the antibonding orbital is even, unlike the earlier ones. Formation of m molecular orbitals from
atomic p, orbitals is similar to the one from atomic p, orbitals.

Atomic Orbitals Molecular Orbitals

LG
O

(¥
(A

wa(py) + w(py) 2py Ty

=

a8
(A

V/zi(py) - '//b(py) 2py ﬂé‘

Fig. 14.4 The formation of (a) bonding orbital 2p,m,, and (b) antibonding 2p,rj from two 2p, orbitals.
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14.2 Outline the Heitler-London wavefunctions for hydrogen molecule. What are singlet and triplet
states of hydrogen?

Solution. Hydrogen molecule is a system of two hydrogen atoms and, therefore, can be described
by the wave function

ul, 2) = ya(1) w(2) (i)

where a and b refer to the two nuclei, 1 and 2 to the two electrons. The function y;(1) w,(2) means
electron 1 is associated with the atom whose nucleus is a and electron 2 is associated with the atom
whose nucleus is b. The electrons are indistinguishable. Hence,

w2, 1) = pa(2) w(1) (i)

is also a wave function. The wave function of the two-electron system is a linear combination of the
two.

Since an exchange of electron 1 and electron 2 leaves the Hamiltonian of the system
unchanged, the wavefunctions must either be symmetric or antisymmetric with respect to such an
exchange. The symmetric i and antisymmetric y,, combinations are

¥ = Ns[wa(l) w(2) + va(2) w(1)] (iii)
Was = Nas [¥a(1) ¥4(2) - wa(2) wa(1)] (iv)

where Ng and N, are normalization constants. The spin functions of a two-spin half system is given
by

1

Jas = N [2() B(2) - BQ) a(2)] (v)
o) x(2)

%= % (@) B2) + AQ) ()] vi)
5O AQ)

As the total wave function has to be antisymmetric, the symmetric space part combines with the
antisymmetric spin part and vice versa. Hence, the inclusion of electron spin leads to the Heitler-
London wave functions

Ns [ @) v () + va (2 vy (1)]% [e(D) B(2) - B (2] (vii)
a(l) o(2)

Nas [Wa (D) v (2) — 9, (2) w,, (D] = % [a() 5(2) + A1) «(2)] (viii)
B B2)

Equation (vii) corresponds to a singlet state since S = 0, whereas Eq. (viii) is a triplet state as
S=1
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14.3 In the hydrogen molecule ion, the wave functions corresponding to energy E; and E, are
v = c(w, + w) and v, = Co(, — W), Where y, and iy, are hydrogenic wave functions. Normalize
the functions. What will be the normalization factor if the two nuclei are at infinite distance?

Solution.  Given
vi=caVat W) ¥ = Col¥a— W)
The normalization of y; gives

ey P (@a + W) lwa + ) = 1
&1 P Lwa [Wa) + W W) + Wa W) + W lwa)] = 1

Writing (w, lwy,) = (W, lv,), refer Eq. (14.10), we get
c2[1+1+S+85]=1

6 = 1 ’ y = Vet Vo
J2v2s J2v2s
Normalization of w», gives
G2 P LWa lWa) + W W) — Walw) — Wi lwa)] = 1
1 Va ¥y

J2-2s’ %:1/2—25

When the two nuclei are at infinite distance, the overlap integral (w4 |u) = (| = 0. Hence the
normalization factor for both y; and s is 142.

Co =

14.4 The Heitler-London wave functions for hydrogen molecule are
¥ = No[ya(l) w(2) + va(2) w(1)]

Was = Na[¥a(1) w(2) — wa(2) w(1)]

Evaluate the normalization constants Ny and N,. What will be the normalization factor if the nuclear
separation is infinite.

Solution.  The normalization condition of the symmetric Heitler-London trial function gives
ING P (W (D) ¥5(2) + ¥a () o O1Ya @ wu(2) + v v (VD =1
INg P [ v (192 (O 95(2) + @ ) ¥ (21w (2) v, ()

+ (W (2) w1y () v, () + W (D w1y, (2) w, ()] =1
1

2 + 282

WD) va(1)) = (w2 wh(2) = (wa) | va(2)) = (D w(1)) = 1
W) () | Va2 up(1)) = (WD) (L) (w6(2) | Ya(2)y =S - S = §2

INP[1+S*+S2+1] =1, N;=

since
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Similarly,
1

2 — 282

For infinite nuclear separation, S = 0, Ny = N, = 1/\/5.

Na =

14.5 Write the electronic configuration of N, molecule in the MO concept and explain the
formation of the triple bond N = N.

Solution. The 14 electrons in the nitrogen molecule are distributed as
KK (250,)* (250%)" (2p,0,)" (2pym = 2p,m)°

The presence of two electrons in the bonding orbital 2s64 and two electrons in the antibondiong
250" leads to no bonding. The remaining bonding orbitals (2pxcsg)2 (2pyr = 2p,m)* are not cancelled
by the corresponding antibonding orbitals. These six bonding electrons give the triple bond N = N,
one bond being ¢ and the other two are  bonds.

14.6 Write the electronic configuration of O, and S, and account for their paramagnetism.
Solution. The sixteen electrons in the O, molecule are distributed as

KK (2504)* (250%)* (2poy)* (2pm,)* (2pms)°

where KK stands for (1scg)2(1scsfj)2. The orbital 2pry is degenerate. Hence the two electrons in

that antibonding orbital will go one each with parallel spins (Hund’s rule). Since the last two
electrons are with parallel spins, the net spin is one and the molecule is paramagnetic.

The electronic configuration of S = 1s? 2s? 2p® 3s? 3p* and, therefore, the electronic
configuration of S, is

KKLL (3s0)? (3s50*)* (3px0)? (3py = 3p,m)* (3p,m* = 3p,m*)°

where LL stands for the n = 2 electrons. The orbitals 3p,m* = 3p,m* can accommodate four electrons.
By Hund’s rule, the two available electrons will enter each of these with their spins parallel, giving
a paramagnetic molecule.

14.7 The removal of an electron from the O, molecule increases the dissociation energy from
5.08 to 6.48 eV, whereas in Ny, the removal of the electron decreases the energy from 9.91 to
8.85 eV. Substantiate.

Solution. The bonding MOs produce charge building between the nuclei, and the antibondig MOs
charge depletion between the nuclei. Hence, removal of an electron from an antibonding MO
increases the dissociation energy D, or decreases the bond length of the bond, whereas removal of
an electron from a bonding MO decreases D, or increases the bond length. The electronic
configuration of O, is

KK (2s0,)* (250%)* (2p,0,)° (2, = 2p,m,)" (2pm3)?

The highest filled MO is antibonding. Hence removal of an electron increases the D, from 5.08 to
6.48 eV. The electronic configuration of N is

KK (256,)° (250%)%(2p,54)*(2p,m, = 2p,m,)"*
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Removal of an electron from the highest filled bonding orbital decreases the dissociation
energy from 9.91 to 8.85 eV.

14.8 Discuss the type of bonding in the heteronuclear diatomic molecule NO. Why is the bond in
NO™ expected to be shorter and stronger than that of NO?

Solution.  Nitrogen and oxygen are close to each other in the periodic table and, therefore, their
AOs are of similar energy. The nitrogen atom has seven electrons and the oxygen atom eight. The
energy levels of the various MOs are the same as those for homonuclear diatomic molecules.
Therefore, the electronic configuration of NO molecule is

KK (2s0,)* (250%)* (2px54)* (2P, T, = 2p,m,)" (2p7y)’

The inner shell is nonbonding, the bonding and antibonding (2scy) and (2scy) orbitals cancel.
Though the four electrons in (2p,m, = 2p,m,)* orbital can give two m bonds, a half-bond is cancelled
by the presence of one electron in the antibonding 2prj orbital. This leads to a ¢-bond (Zchsg)2 a
full m-bond and a half w-bond form 2p electrons. The molecule is paramagnetic since it has an
unpaired electron. Removal of an electron from the system means the removal of an electron from
the antibonding orbital. Hence, the bond in NO" is expected to be shorter and stronger.

14.9 Compare the MO wavefunction of hydrogen molecule with that of the valence bond theory.

Solution. Equation (14.12) gives the MO wavefunction and the Heitler-London function for
hydrogen molecule is given in Problem 14.4. So,

Wimo = constant [ya(1)wa(2) + up(1)wp(2) + va(L)wa(2) + wh(1)wa(2)]

waL = constant [y4(1) ys(2) = ya(2)ys(1)]

The first two terms in y;,, represent the possibility of both the electrons being on the same proton
at the same time.These represent the ionic structures Hz Hy and H; Hy. The third and the fourth
terms represent the possibility in which the electrons are shared equally by both the protons, and
hence they correspond to covalent structures. Both the terms in the valance bond wavefunction
correspond to covalent structures as one electron is associated with one nucleus and the second
electron is associated with the other nucleus.

14.10 Write the electronic configuration of Na, and S, molecules in the MO concept.
Solution. The electronic configuration of Na: 1s? 2s? 2p° 3s.
The electronic configuration of Na, molecule is
Na, [KK (250)? (256°)* (2p,n = 2p;m)* (2p,0)° (2py* = 2p*)* (2p,0*)* (350)°]
= Na, [KK LL (3s0)3]
This result may be compared with the electronic configuration of Li,, another alkali metal.
The electronic configuration of S: 1s? 2s? 2p® 3s? 3p*. The electronic configuration of S,

molecule is
S, [KK LL (350)? (350*)* (3p,0)* (3pym = 3p.m)* (3pym* = 3p.w*)?]

Though the orbitals 3p,n* = 3p,m* can accomodate four electrons, there are only two. Hence by
Hund’s rule, one electron will enter each of these with their spins parallel giving a paramagnetic
molecule.
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14.11 (i) Write the electronic configuration of N, molecule and N,* ion
(ii) explain the type of bonding in them.
(iif) which one has the longer equilibrium bond length?
(iv) which one has larger dissociation energy.

Solution.  Nitrogen molecule has 14 electrons. They are distributed among the MOs as
N, [KK (255,)°(250%)* (2po,)* (2pm, )]
The electron configuration of N3 is
3 [KK (2s0,)" (2s0%)° (2p0g)° (2pm,)’]

The two electrons in 2sc and the two in 2sc;* antibonding orbital together leads to no bonding. The
(2pcsg)2 and (2pr,)* bonding orbitals together give a triple N = N bond, one bond being ¢ and the
other two being mt-bonds, in N, molecule. In N5 ion the two electrons in 2pc, gives rise to a single
o-bond, two electrons in 2pm, gives a m-bond, and the third electron in 2pmr, makes a half-bond.

Bonding MOs produce charge building. Hence removal of an electron from 2pm, orbital
decreases the charge building . Hence, N, has larger equilibrium bond length. Since charge density
is less in Ny, the dissociation energy in it is less, or N, has larger dissociation energy.

14.12 Using the MO concept of electronic configuration of molecules, show that (i) oxygen is
paramagnetic, (ii) the removal of an electron from O, decreases the bond length, and (iii) evaluate
the bond order of the O, molecule.

Solution. The 16 electrons in oxygen molecule gives the electronic configuration
0, [KK (2504)*(250%)?(2po4)* (2pm,)* (2pms)*]

The antibonding MO, 2prg is degenerate and can accomodate four electrons. As we have only two
electrons in that orbital, the two will align parallel in the two-fold degenerate orbital (Hund’s rule).
Aligning parallel means, effective spin is 1. Hence the molecule is paramagnetic.

(if) Removal of an electron from an antibonding orbital increases charge building. Hence, bond
length decreases and the equilibrium dissociation energy increases.

(iif) The bond order b is defined as one-half the difference between the number of bonding
electrons (n), between the atoms of interest, and the antibonding electrons (n"):

b:%(n—n*)

Since 2s6y, 2pog and 2pr, are bonding orbitals and 2sc; and 2pry are anti-bonding orbitals, the
bond order

1
b=§(8—4)=2

14.13 Write the electronic configuration of the F, molecule and explain how the configurations of
Cl, and Br, are analogous to those of F,.

Solution. The electronic configuration of F, molecule is

F, [KK (2s6,)(2s6%)?(2pm,)* (2po,4)? (2pms)*]
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The inner shell is nonbonding and the filled bonding orbitals (2s6,)* (2pm,)* are cancelled by the
antibonding orbitals (2s6*)? (2p1cg*)4. This leaves only the o-bond provided by the 2pcy orbital. For
Cl, and Br,, the electronic configurations are

Cl, [KK LL (350,)° (350%)”(3pm,)* (3po)’ (3pm5) ]
Br, [KK LL MM (4sc,)’ (4s6%)?(4pm, )* (4poy) (4pmt)*]
All the three molecules have similar electronic configurations leading to a ¢ bond.

14.14  On the basis of directed valence, illustrate how the p-valence shell orbitals of nitrogen atom
combine with the s-orbitals of the attached hydrogen atoms to give molecular orbitals for the NH;
molecule.

Solution. In NHg, the central nitrogen atom has the electron configuration
1s? 2% 2px 2py 2p;
The maximum overlapping of the three p orbitals with the 1s hydrogen orbitals are possible along

the x, y and z-directions (Fig. 14.5). The bond angle in this case is found to be 107.3°, which is again
partly due to the mutual repulsion between the hydrogen atoms.

A

Fig. 145  The formation of ammonia molecule. (The singly occupied 2p,, 2p, and 2p, orbitals of nitrogen
overlap with the hydrogen 1s orbitals).

14.15 A gas consisting of B, molecules is found to be paramagnetic. What pattern of molecular
orbitals must apply in this case?

Solution. The 10 electrons in this molecule are expected to be distributed as
B, [KK (2564)*(256%)(2p0,)°]

The next orbital is 2pr, which has nearly the same energy as that of 2pcy. Hence, instead of (2pcsg)2,
the alternate configuration (2pcsg)l (2pm,)t, leading to a total spin of one is possible. These two
unpaired electrons per molecule lead to the observed paramagnetism of B,. The molecular orbital
pattern of B, is, therefore,

B, [KK (256,)° (250%)?(2p0 )" (2pm,)']
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14.16 Find the relative bond strengths of (i) F, molecule and F,* ion; (ii) F, and O, molecules.
Solution.
(i) The electronic configaration of F, is

F, [KK (2s6,4)?(2s6%)*(2pm,)* (2po,4)? (2pnt)*]

Removal of an electron means, only three electrons in the antibonding orbital 2png. Removal of an
electron from an antibonding orbital means an increase in charge building in the bond. Hence bond

strength increases in F,. The electronic configuration of O, is
0, [KK (250,4)* (256%)% (2p0,)* (2pm, )* (2p75)°]

(if) In O,, there is an excess of four bonding electrons over the antibonding ones, whereas
in F, there is an excess of only two bonding electrons over the antibonding ones. Hence the bond
in O, is stronger than that in F,,

14.17 In sp hybridization, show that the angle between the two hybrid bonds is 180°.

Solution.  As the two hybrids are equivalent, each must have equal s and p character. Hence the
wave function of the first hybrid is
1 1

=—=Ss+—p
1 > > 1

and that of the second hybrid is

1 1
=—S+ —
2 5 5 P2
Since (yalyz) = 0,
1

<ﬁ(s+p1) %(s+p2)>=o

1 1 1 1
§<5|5> + §<p1|p2> + §<5| Py + §<p1|5> =0

The last two terms are zero. If 4, is the angle between the hybrids,

1 1
§+§c05912:0 or cosf,=-1

6, = 180°
14.18 Show that the three hybrid bonds in sp? hybridization are inclined to each other by 120°.

Solution.  Of the 3p-orbitals we leave one, say the p,, unmixed and the other two to mix with the
s-orbital. Hence, the three hybrid orbitals should be directed in the xy-plane. Consider the linear
combination of these two p-orbitals

¢ = apy + bpy
which gives rise to py in the direction of the first hybrid bond. Then the wave function of the first
hybrid can be written as

Y1 =GS +CPy
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where ¢, and ¢, are constants. As all the three hybrids are equivalent, each one must have the same
amount of s-character and the same amount of p-character. Hence, each bond will have one-third
s-character and two-third p-character, i.e., w? must have (1/3)s? and (1/3)p% Therefore,

2
cf=(%) and c§=(%) or cl:%and Cy ==

The hybrid orbital of the first bond is

w

Since y; and y» are orthogonal,

2 2
<'//1|'//2>:<[%5+\/;p1] [%s+\/;p2]>=0

i\

T<S|p2> +t 3

Since the net overlap between an s and a p orbital centred on the same nucleus is zero, the third and
the fourth terms are zero. Writing

S618) + 2 1pa) + (py1)=0

P2 = P1 COS Oy
we have

1 2 1
§+§(pl|pl> cos 0, =0 or 005912:—5

912 =120°
14.19 Prove that the angle between any two of the sp® hybrids is 109° 28’

Solution. It can be proved that the linear combination of three p-orbitals ¢ = ap, + bp, + cp, can
give rise to another p-orbital oriented in a direction depending on the values of the constants a, b,
and c. Consider an appropriate combination p; of the three p-orbitals in the direction of the first
bond. Then the wavefunction of the hybrid of the first bond can be written as

Yi=0CS+ Gy
where ¢y, C, are constants.
As all the four hybrids are equivalent, each one must have the same amount of s-character and
the same amount of p-character. Hence each bond will have 1/4 s-character and 3/4 p-character, i.e.,
¥4 must contain 1/4s? and 3/4p?. Therefore, ¢ = 1/4 and ¢ = 3/4.

NG

Hybrid orbital of the first bond: v = ls + =Py

2
Na

Hybrid orbital of the second bond: y, = %s + =P,
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Since y; and y, are orthogonal,

<l//l|l//2>:<[%5+§pl]

3 NE]
4 4
The net overlap between a s-and a p-orbital centred on the same nucleus is zero, which makes the

third and the fourth terms zero. Writing p, = p; cos &;,, we have

2

1s+§p2>:0

SIS+ Dy 1p) + S 61D, + o (py 1) = 0

1 3
Z+ Z(pllpl) cos g, =0

1
cos 912 = —§ or 012 = 109° 28’

14.20 Sketch the molecular orbital formation in ethane and ethylene.

Ethane (C,Hg): In ethane each atom is sp® hybridized. Three of these hybrid orbitals in each
carbon atom overlap with the s-orbitals of three hydrogen atoms and the fourth one with the
corresponding one of the other carbon atom. All the bonds are of s type. The molecular orbital
formation is illustrated in Fig. 14.6.

Formation of d.;& £=D

c-orbitals C C \

(a) sp® hybrids of C and 1s atomic orbitals of H (b) Molecular orbitals

Fig. 14.6 Molecular orbital formation in ethane.

Ethylene (C,H,): Each carbon atom is sp? hybridized. Two of these form localized o-type MO by
overlapping with 1s orbital of hydrogen atom and the third overlaps with the second carbon forming
another localized o MO (Fig. 14.7a). These three c-bonds lie in a plane, the molecular plane. Each
carbon atom is left with a singly occupied p-orbital with its axis perpendicular to the plane of the
molecule. The lateral overlap of these two p-orbitals give a m-bond (Fig. 14.7b), the second bond
between the two carbon atoms. The plane of the molecule is the nodal plane of the w-orbital.
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Unused m-orbitals

Formation of

c-orbitals
(@)
H. +H
Formation of m
B C. . C
c-orbitals @
H - “H
m-orbitals
(b)

Fig. 14.7 Formation of (a) c-orbitals (b) m-orbitals in ethylene.




APPENDIX

Some Useful Integrals

T exp (cax?) dx = [ Z
1. E)[exp(ax)dx—z 5
= Jr (1
2. E)fxzexp (—axz)dx=T(a3T)
= Wz (1
3. E)fx“exp (—axz)dx=T(a5T)
< A N
4. E[X exp (-ax*) dx = = i
5 i[cxexp(—axz)dx=£a
N 5
6 i[cx3exp (—axz)dx=£a2
| 5
T 5 2 1
7. | x®exp (—ax?) dx = =
o a
8. [ x"exp(-ax?) dx=0 if n is odd
- 0
0. E)fx exp(—ax)dx=an+1, n>0a>0
10 ]" xdx _ z*
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w3 4
1. ,[ xX dx _r
0 -1 15
12. ]c cos bx exp (—ax) dx = ——— . a>0
0 (@ + b?)
13. ]c sin bx exp (—ax) dx=L, as>o0
0 (a® + b?)
< h2/4a2
14. | cos bx exp (-a?x?) dx = 7 exp (-b*/4a%)
0

2a '

eax

15. Jxeaxdx:(ax_l)_z
a

2axd _ X2 2X 2 ax

16. [ x%e™dx = Tt
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Absorption, 273
Angular momentum(a), 55, 56, 81, 176-178, 229
addition, 178, 184, 193, 197, 198, 199
commutation relations, 176, 179, 190
eigenvalues, 177
operators, 176, 190
spin, 177, 196, 199, 209
Anharmonic oscillator, 256
Annihilation operator, 83, 113
Antibonding orbital, 345, 347
Anti-Hermitian operator, 45, 59
Antisymmetric spin function, 296, 303
Atomic orbital, 153

Bauer’s formula, 312
Bohr
quantization rule, 4
radius, 3
theory, 2-4
Bonding molecular orbital, 345, 347
Born approximation, 310, 315, 317, 319-321,
324-328
Born-Oppenheimer approximation, 343
Bose-Einstein statistics, 288
Boson, 288, 290, 293, 299
Bra vector, 48

Centrifugal force, 157
Chemical bonding, 343-346
Clebsh—-Gordan coefficients, 178, 199-203
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Compton
effect, 2
wavelength, 2, 6, 36
Connection formulas, 249
Coordinate representation, 46
Correction to energy levels, 215, 219-221, 232, 235
Creation operator, 83, 113
Cubic well potential, 129, 145, 279

De Broglie

equation, 17

wavelength, 17, 36, 38
Diatomic bonding orbital, 345
Dipole approximation, 275
Dirac delta function, 225
Dirac matrix, 341
Dirac’s equation, 330, 333, 335
Dirac’s notation, 48

Eigenfunction, 34, 42, 45, 53, 55, 60
Eigenvalue, 45, 47, 55, 60, 210

Einstein’s A and B coefficients, 273, 274, 281
Electric dipole moment, 275

Electron diffraction, 23

Equations of motion, 48

Exchange degeneracy, 287

Expectation value, 47, 75

Fermi’s golden rule, 272
Fermi-Dirac statistics, 288
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Index

Fermion, 288, 293, 304
Fine structure constant, 3
Free particle, 87

General uncertainty relation, 47
Group velocity, 18, 35, 37

Hamiltonian operator, 18, 35, 56, 60
Harmonic oscillator, 86, 93, 99, 113, 116, 131, 169,
174, 217, 254
electric dipole transition, 278
energy eigenfunctions, 122
energy eigenvalues, 109
energy values, 265, 307
Heisenberg representation, 48, 334, 337, 341
Heitler-London wavefunctions, 348, 349
Helium atom, 138, 261, 295
Hermitian operator, 45, 46, 50, 51, 55, 59, 79, 160
Hybridization, 354, 355
Hydrogen atom, 2-4, 127-128, 132-141, 151, 232,
244, 250, 258
Bohr theory, 2-4
electric dipole moment, 280
spectral series, 3, 4
Hydrogen molecule, 130, 299, 348, 349, 351
ion, 344, 349
Hyperfine interaction, 237

Identical particles, 287-288, 291, 293
Infinite square well potential, 84

Ket vector, 48, 74
Klein-Gordon equation, 330, 332
Kronecker delta, 45

Ladder operators, 176

Lande interval rule, 229

Laplace transform operator, 59

Laporte selection rule, 276

Linear harmonic oscillator, 86, 93, 94, 96, 99
Linear operator, 45, 50

Linearly dependent functions, 45

Lithium atom, 300

Lowering operator, 163, 174, 176, 182, 186

Matrix representation, 159
Matter wave, 17
Molecular orbital (MO), 343, 350-353, 356
Momentum
operator, 78
representation, 46, 49, 182

Natural line width, 41
Norm of a function, 44
Number operator, 82

Orbital momentum, 92
Orthogonal functions, 44
Ortho-hydrogen, 300
Orthonormal functions, 44, 184

Para-hydrogen, 300
Parity operator, 161, 166, 168, 173
Partial wave, 309, 312, 317, 322, 326
Particle exchange operator, 287
Pauli
principle, 287
spin matrices, 178, 190, 192, 204, 211, 341
spin operator, 193
Perturbation
time dependent, 271-273
time independent, 215-216
Phase velocity, 18, 37
Photoelectric effect, 1, 2
Einstein’s photoelectric equation, 2
threshold frequency, 2
work function, 2
Photon, 2
Planck’s constant, 1, 2
Probability current density, 19, 28, 29, 31, 34, 309,
333
Raising operator, 163, 174, 176, 182, 186
Relativistic equations, 330-331
Dirac’s equation, 330, 333, 335
Klein-Gordon equation, 330, 332
Rigid rotator, 127, 130, 133, 141, 123, 224
Rotation in space, 161
Rutherford’s scattering formula, 315
Rydberg
atoms, 15
constant, 3
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Scalar product, 44, 165
Scattering, 308-310
amplitude, 308, 316, 317, 324, 328
cross-section, 308, 316, 318, 319, 321, 324-326
isotropic, 320
length, 315, 320
Schrodinger equation, 126
time dependent, 18, 68, 73
time independent, 19, 31, 32, 78
Schrodinger representation, 48
Selection rules, 273, 278
Singlet state, 239, 302
Slater determinant, 307
Space inversion, 161
Spherical Bessel function, 310
Spherically symmetric potential, 126-127, 148, 326,
328
Spin angular momentum, 177, 196, 199, 209
Spin function, 195
Spin-half particles, 304
Spin-zero particles, 304
Spontaneous emission, 277, 279, 283
Square potential barrier, 86
Square well potential, 84-85
finite square well, 85, 90
infinite square well, 84, 89, 94, 102, 119, 226, 231,
289, 304
State function, 46
Stationary states, 20, 35
Stimulated emission, 272, 277, 279, 283
Symmetric transformation, 160
System of two interacting particles, 127

Time dependent perturbation, 271-273, 283, 284

first order perturbation, 271, 296
harmonic perturbation, 272
transition to continuum states, 272
Time independent perturbation, 215-216
Time reversal, 162, 168, 169
Transition
dipole moment, 273
probability, 272
Translation in time, 160
Triplet state, 239, 302

Uncertainty principle, 17, 38, 39, 41
Unitary transformation, 159, 163, 164, 170

Valence bond method, 343

Variation method, 248, 260
principle, 248

Virial theorem, 93

Wave function, 18, 194, 210, 218
normalization constant, 19
probability interpretation, 18
Wave packet, 18
Wigner coefficients, 178
Wilson-Sommerfeld quantization, 4, 13
WKB method, 248, 264, 265, 266, 268, 269

Yukawa potential, 262, 317, 321

Zeeman effect, 218
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