starting out with >>>

-

From Control Structures
through Objects

EIGHTH EDITION

TONY GADDIS

STARTING OUT WITH

C++

From Control Structures

through Objects

EIGHTH EDITION

This page intentionally left blank

STARTING OUT WITH

C++

From Control Structures

through Objects

EIGHTH EDITION

Tony Gaddis

Haywood Community College

PEARSON

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sdo Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Editorial Director: Marcia Horton
Acquisitions Editor: Matt Goldstein
Program Manager: Kayla Smith-Tarbox
Director of Marketing: Christy Lesko
Marketing Coordinator: Kathryn Ferranti
Marketing Assistant: Jon Bryant

Senior Managing Editor: Scott Disanno
Senior Project Manager: Marilyn Lloyd
Operations Supervisor: Vincent Scelta
Operations Specialist: Linda Sager

Art Director, Cover: Jayne Conte

Cover Designer: Bruce Kenselaar

Manager, Visual Research: Karen Sanatar

Permissions Supervisor: Michael Joyce

Permission Administrator: Jenell Forschler

Cover Image: Sergio37_120/Fotolia

Media Project Manager: Renata Butera

Full-Service Project Manager: Jogender Taneja
Aptara®, Inc.

Full-Service Vendor: Aptara®, Inc.

Printer/Binder: Courier Kendallville

Cover Printer: Lehigh-Phoenix Color/Hagerstown

Text Designer: Joyce Cosentino Wells

Credits and acknowledgments borrowed from other sources and reproduced, with permission, appear on the
Credits page in the endmatter of this textbook.

Copyright © 2015,2012, 2009 Pearson Education, Inc., publishing as Addison-Wesley All rights reserved.
Manufactured in the United States of America. This publication is protected by Copyright, and permission
should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or
transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To
obtain permission(s) to use material from this work, please submit a written request to Pearson Education,
Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458 or you may fax your
request to 201 236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Gaddis, Tony.

Starting out with C++ : from control structures through objects/Tony Gaddis.—Eighth edition.

pages cm

Includes bibliographical references and index.

Online the following appendices are available at www.pearsonhighered.com/gaddis: Appendix D:
Introduction to flowcharting; Appendix E: Using UML in class design; Appendix F: Namespaces; Appendix G:
Writing managed C++ code for the .net framework; Appendix H: Passing command line arguments; Appendix
I: Header file and library function reference; Appendix J: Binary numbers and bitwise operations; Appendix K:
Multi-source file programs; Appendix L: Stream member functions for formatting; Appendix M: Introduction
to Microsoft Visual C++ 2010 express edition; Appendix N: Answers to checkpoints; and Appendix O:
Solutions to odd-numbered review questions.

ISBN-13: 978-0-13-376939-5

ISBN-10: 0-13-376939-9

1. C++ (Computer program language) I. Title. II. Title: From control structures through objects.

QA76.73.C153G33 2014b

005.13°3—dc23

2014000213

10987654321

PEARSON ISBN 13: 978-0-13-376939-5
ISBN 10: 0-13-376939-9

www.pearsonhighered.com/gaddis

oOoooo
slaslsf=ls
ooooooog

CHAPTER 1
CHAPTER 2
CHAPTER 3
CHAPTER 4
CHAPTER 5
CHAPTER 6
CHAPTER 7
CHAPTER 8
CHAPTER 9
CHAPTER 10
CHAPTER 11
CHAPTER 12
CHAPTER 13
CHAPTER 14
CHAPTER 15
CHAPTER 16

CHAPTER 17
CHAPTER 18
CHAPTER 19
CHAPTER 20

Contents at a Glance

Preface xv

Introduction to Computers and Programming 1
Introduction to C++ 27

Expressions and Interactivity 83

Making Decisions 149

Loops and Files 227

Functions 299

Arrays 375

Searching and Sorting Arrays 457

Pointers 495

Characters, C-Strings, and More About the string Class 547
Structured Data 599

Advanced File Operations 657

Introduction to Classes 711

More About Classes 811

Inheritance, Polymorphism, and Virtual Functions 891

Exceptions, Templates, and the Standard Template
Library (STL) 971
Linked Lists 1025
Stacks and Queues 1063
Recursion 1121

Binary Trees 1155

Appendix A: Getting Started with Alice 1185

Appendix B: The ASCIl Character Set 1211

Appendix C: Operator Precedence and Associativity 1213
Quick References 1215

vi Contents at a Glance

Index 1217
Credit 1237

Online The following appendices are available at www.pearsonhighered.com/gaddis.
Appendix D: Introduction to Flowcharting
Appendix E: Using UML in Class Design
Appendix F: Namespaces
Appendix G: Passing Command Line Arguments
Appendix H: Header File and Library Function Reference
Appendix I: Binary Numbers and Bitwise Operations
Appendix J: Multi-Source File Programs
Appendix K: Stream Member Functions for Formatting
Appendix L: Answers to Checkpoints
Appendix M: Solutions to Odd-Numbered Review Questions

www.pearsonhighered.com/gaddis

{1 0 0 0
Odofooos
ooooooon
1@ 0B
00 0.0

sinreiE Contents

ooono

Preface xv

CHAPTER 1 Introduction to Computers and Programming 1

1.1 Why Program? 1

1.2 Computer Systems: Hardware and Software 2
1.3 Programs and Programming Languages 8

1.4 What Is a Program Made of? 14

1.5 Input, Processing, and Output 17

1.6 The Programming Process 18

1.7 Procedural and Object-Oriented Programming 22

CHAPTER 2 Introduction to C++ 27

2.1 The Parts of a C++ Program 27

2.2 The cout Object 31

2.3 The #include Directive 36

2.4 Variables and Literals 37

2.5 Identifiers 41

2.6 Integer Data Types 42

2.7 The char Data Type 48

2.8 The C++ string Class 52

2.9 Floating-Point Data Types 54

2.10 The bool Data Type 57

2.11 Determining the Size of a Data Type 58
212 Variable Assignments and Initialization 59
2.13 Scope 61

2.14 Arithmetic Operators 61

2.15 Comments 69

2.16 Named Constants 71

2.17 Programming Style 73

vii

viii Contents

CHAPTER 3 Expressions and Interactivity 83

3.1 The cin Object 83

3.2 Mathematical Expressions 89

3.3 When You Mix Apples and Oranges: Type Conversion 98
3.4 Overflow and Underflow 100

3.5 Type Casting 101

3.6 Multiple Assignment and Combined Assignment 104
3.7 Formatting Output 108

3.8 Working with Characters and string Objects 118
3.9 More Mathematical Library Functions 124

3.10 Focus on Debugging: Hand Tracing a Program 130
3.11 Focus on Problem Solving: A Case Study 132

CHAPTER 4 Making Decisions 149

4.1 Relational Operators 149

4.2 The if Statement 154

4.3 Expanding the if Statement 162

4.4 The if/else Statement 166

4.5 Nested if Statements 169

4.6 The if/else if Statement 176

4.7 Flags 181

4.8 Logical Operators 182

4.9 Checking Numeric Ranges with Logical Operators 189
410 Menus 190

411 Focus on Software Engineering: Validating User Input 193
4.12 Comparing Characters and Strings 195

4.13 The Conditional Operator 199

4.14 The switch Statement 202

4.15 More About Blocks and Variable Scope 211

CHAPTER 5 Loops and Files 227

5.1 The Increment and Decrement Operators 227

5.2 Introduction to Loops: The while Loop 232

5.3 Using the while Loop for Input Validation 239

54 Counters 241

5.5 The do-while Loop 242

5.6 The for Loop 247

5.7 Keeping a Running Total 257

5.8 Sentinels 260

5.9 Focus on Software Engineering: Deciding Which Loop to Use 261
5.10 Nested Loops 262

5.11 Using Files for Data Storage 265

5.12 Optional Topics: Breaking and Continuing a Loop 284

CHAPTER 6 Functions 299
6.1 Focus on Software Engineering: Modular Programming 299
6.2 Defining and Calling Functions 300
6.3 Function Prototypes 309
6.4 Sending Data into a Function 311

6.5
6.6

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16

CHAPTER 7

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12

CHAPTER 8

8.1
8.2
8.3
8.4
8.5

CHAPTER 9

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11

Contents

Passing Data by Value 316

Focus on Software Engineering: Using Functions in a
Menu-Driven Program 318

The return Statement 322

Returning a Value from a Function 324

Returning a Boolean Value 332

Local and Global Variables 334

Static Local Variables 342

Default Arguments 345

Using Reference Variables as Parameters 348

Overloading Functions 354

The exit () Function 358

Stubs and Drivers 361

Arrays 375

Arrays Hold Multiple Values 375

Accessing Array Elements 377

No Bounds Checking in C++ 384

Array Initialization 387

The Range-Based for Loop 392

Processing Array Contents 396

Focus on Software Engineering: Using Parallel Arrays 404

Arrays as Function Arguments 407

Two-Dimensional Arrays 418

Arrays with Three or More Dimensions 425

Focus on Problem Solving and Program Design: A Case Study 427

If You Plan to Continue in Computer Science: Introduction to the
STL vector 429

Searching and Sorting Arrays 457

Focus on Software Engineering: Introduction to Search Algorithms 457
Focus on Problem Solving and Program Design: A Case Study 463
Focus on Software Engineering: Introduction to Sorting Algorithms 470
Focus on Problem Solving and Program Design: A Case Study 477
If You Plan to Continue in Computer Science: Sorting and

Searching vectors 485

Pointers 495

Getting the Address of a Variable 495

Pointer Variables 497

The Relationship Between Arrays and Pointers 504

Pointer Arithmetic 508

Initializing Pointers 510

Comparing Pointers 511

Pointers as Function Parameters 513

Focus on Software Engineering: Dynamic Memory Allocation 522
Focus on Software Engineering: Returning Pointers from Functions 526
Using Smart Pointers to Avoid Memory Leaks 533

Focus on Problem Solving and Program Design: A Case Study 536

ix

Contents

CHAPTER 10

10.1
10.2
10.3
10.4
10.5
10.6

10.7
10.8

CHAPTER 11

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10

11.11
11.12

CHAPTER 12

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10

CHAPTER 13

13.1
13.2
13.3
13.4
13.5

13.6
13.7
13.8

Characters, C-Strings, and More About the string Class 547

Character Testing 547

Character Case Conversion 551

C-Strings 554

Library Functions for Working with C-Strings 558

C-String/Numeric Conversion Functions 569

Focus on Software Engineering: Writing Your Own
C-String-Handling Functions 575

More About the C++ string Class 581

Focus on Problem Solving and Program Design: A Case Study 590

Structured Data 599

Abstract Data Types 599

Focus on Software Engineering: Combining Data into Structures 601

Accessing Structure Members 604

Initializing a Structure 608

Arrays of Structures 611

Focus on Software Engineering: Nested Structures 613

Structures as Function Arguments 617

Returning a Structure from a Function 620

Pointers to Structures 623

Focus on Software Engineering: When to Use ., When to Use ->,
and When to Use * 626

Unions 628

Enumerated Data Types 632

Advanced File Operations 657

File Operations 657

File Output Formatting 663

Passing File Stream Objects to Functions 665

More Detailed Error Testing 667

Member Functions for Reading and Writing Files 670

Focus on Software Engineering: Working with Multiple Files 678
Binary Files 680

Creating Records with Structures 685

Random-Access Files 689

Opening a File for Both Input and Output 697

Introduction to Classes 711

Procedural and Object-Oriented Programming 711

Introduction to Classes 718

Defining an Instance of a Class 723

Why Have Private Members? 736

Focus on Software Engineering: Separating Class Specification
from Implementation 737

Inline Member Functions 743

Constructors 746

Passing Arguments to Constructors 750

13.9

13.10
13.11
13.12
13.13
13.14
13.15

13.16
13.17

CHAPTER 14

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9

CHAPTER 15

15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8

CHAPTER 16

16.1
16.2
16.3
16.4
16.5

CHAPTER 17

171
17.2
17.3
17.4
17.5

Contents

Destructors 758
Overloading Constructors 762
Private Member Functions 765
Arrays of Objects 767
Focus on Problem Solving and Program Design: An OOP Case Study 771
Focus on Object-Oriented Programming: Simulating Dice with Objects 778
Focus on Object-Oriented Programming: Creating an Abstract Array
Data Type 782
Focus on Object-Oriented Design: The Unified Modeling Language (UML) 785
Focus on Object-Oriented Design: Finding the Classes and Their
Responsibilities 788

More About Classes 811

Instance and Static Members 811

Friends of Classes 819

Memberwise Assignment 824

Copy Constructors 82§

Operator Overloading 831

Object Conversion 858

Aggregation 860

Focus on Object-Oriented Design: Class Collaborations 865
Focus on Object-Oriented Programming: Simulating the Game
of Cho-Han 869

Inheritance, Polymorphism, and Virtual Functions 891

What Is Inheritance? 891

Protected Members and Class Access 900

Constructors and Destructors in Base and Derived Classes 906
Redefining Base Class Functions 918

Class Hierarchies 923

Polymorphism and Virtual Member Functions 929

Abstract Base Classes and Pure Virtual Functions 945
Multiple Inheritance 952

Exceptions, Templates, and the Standard Template
Library (STL) 971

Exceptions 971

Function Templates 990

Focus on Software Engineering: Where to Start When Defining Templates 996
Class Templates 996

Introduction to the Standard Template Library (STL) 1005

Linked Lists 1025

Introduction to the Linked List ADT 1025
Linked List Operations 1027

A Linked List Template 1043

Variations of the Linked List 1055

The STL 1ist Container 1056

xi

xii Contents

CHAPTER 18 Stacks and Queues 1063

18.1 Introduction to the Stack ADT 1063

18.2 Dynamic Stacks 1080

18.3 The STL stack Container 1091

18.4 Introduction to the Queue ADT 1093

18.5 Dynamic Queues 1105

18.6 The STL deque and queue Containers 1112

CHAPTER 19 Recursion 1121

19.1 Introduction to Recursion 1121

19.2 Solving Problems with Recursion 1125

19.3 Focus on Problem Solving and Program Design: The Recursive
ged Function 1133

19.4 Focus on Problem Solving and Program Design: Solving Recursively

Defined Problems 1134

19.5 Focus on Problem Solving and Program Design: Recursive Linked List
Operations 1135

19.6 Focus on Problem Solving and Program Design: A Recursive Binary
Search Function 1139

19.7 The Towers of Hanoi 1141

19.8 Focus on Problem Solving and Program Design: The QuickSort Algorithm 1144

19.9 Exhaustive Algorithms 1148

19.10 Focus on Software Engineering: Recursion vs. Iteration 1151

CHAPTER 20 Binary Trees 1155

20.1 Definition and Applications of Binary Trees 1155
20.2 Binary Search Tree Operations 1158
20.3 Template Considerations for Binary Search Trees 1175

Appendix A: Getting Started with Alice 1185

Appendix B: The ASCIl Character Set 1211

Appendix C: Operator Precedence and Associativity 1213
Quick References 1215

Index 1217

Credit 1237

Online The following appendices are available at www.pearsonhighered.com/gaddis.
Appendix D: Introduction to Flowcharting
Appendix E: Using UML in Class Design
Appendix F: Namespaces
Appendix G: Passing Command Line Arguments
Appendix H: Header File and Library Function Reference
Appendix I: Binary Numbers and Bitwise Operations
Appendix J: Multi-Source File Programs
Appendix K: Stream Member Functions for Formatting
Appendix L: Answers to Checkpoints
Appendix M: Solutions to Odd-Numbered Review Questions

www.pearsonhighered.com/gaddis

LOCATION OF VIDEONOTES IN THE TEXT [}

Chapter 1 Introduction to Flowcharting, p. 20
Designing a Program with Pseudocode, p. 20
Designing the Account Balance Program, p. 25
Predicting the Result of Problem 33, p. 26

Chapter 2 Using cout, p. 31
Variabe Definitions, p. 37
Assignment Statements and Simple Math Expressions, p. 62
Solving the Restaurant Bill Problem, p. 80

Chapter 3 Reading Input with cin, p. 83
Formatting Numbers with setprecision, p. 111
Solving the Stadium Seating Problem, p. 142

Chapter 4 The if Statement, p. 154
The if/else statement, p. 166
The if/else if Statement, p. 176
Solving the Time Calculator Problem, p. 221

Chapter 5 The while Loop, p. 232
The for Loop, p. 247
Reading Data from a File, p. 274
Solving the Calories Burned Problem, p. 293

Chapter 6 Functions and Arguments, p. 311
Value-Returning Functions, p. 324
Solving the Markup Problem, p. 366

Chapter 7 Accessing Array Elements With a Loop, p. 380
Passing an Array to a Function, p. 407
Solving the Chips and Salsa Problem, p. 448

Chapter 8 The Binary Search, p. 460
The Selection Sort, p. 474
Solving the Charge Account Validation Modification Problem, p. 492

Chapter 9 Dynamically Allocating an Array, p. 523
Solving the Pointer Rewrite Problem, p. 545

Chapter 10 Writing a C-String-Handling Function, p. 575
More About the string Class, p. 581
Solving the Backward String Problem, p. 594

(continued on the next page)

LOCATION OF VIDEONOTES IN THE TEXT (continuec) [

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Chapter 16

Chapter 17

Chapter 18

Chapter 19

Chapter 20

Creating a Structure, p. 601
Passing a Structure to a Function, p. 617
Solving the Weather Statistics Problem, p. 652

Passing File Stream Obijects to Functions, p. 665
Working with Multiple Files, p. 678
Solving the File Encryption Filter Problem, p. 708

Writing a Class, p. 718
Defining an Instance of a Class, p. 723
Solving the Employee Class Problem, p. 802

Operator Overloading, p. 831
Class Aggregation, p. 860
Solving the NumDays Problem, p. 885

Redefining a Base Class Function in a Derived Class, p. 918
Polymorphism, p. 929
Solving the Employee and Production-Worker Classes Problem, p. 963

Throwing an Exception, p. 972

Handling an Exception, p. 972

Writing a Function Template, p. 990

Storing Objects in a vector, p. 1010

Solving the Exception Project Problem, p. 1024

Appending a Node to a Linked List, p. 1028

Inserting a Node in a Linked List, p. 1035

Deleting a Node from a Linked List, p. 1039

Solving the Member Insertion by Position Problem, p. 1061

Storing Objects in an STL stack, p. 1091
Storing Objects in an STL queue, p. 1114
Solving the File Compare Problem, p. 1119

Reducing a Problem with Recursion, p. 1126
Solving the Recursive Multiplication Problem, p. 1153

Inserting a Node in a Binary Tree, p. 1160
Deleting a Node from a Binary Tree, p. 1166
Solving the Node Counter Problem, p. 1182

12 {1
OO0
1@ 0B
uimiin
=1 EhEl
1000
B { i

B IS I 1=
OOooOoo
1
oooog

Preface

Welcome to Starting Out with C++: From Control Structures through Objects, 8th edition.
This book is intended for use in a two-semester C++ programming sequence, or an acceler-
ated one-semester course. Students new to programming, as well as those with prior course
work in other languages, will find this text beneficial. The fundamentals of programming
are covered for the novice, while the details, pitfalls, and nuances of the C++ language are
explored in-depth for both the beginner and more experienced student. The book is written
with clear, easy-to-understand language, and it covers all the necessary topics for an intro-
ductory programming course. This text is rich in example programs that are concise, practi-
cal, and real-world oriented, ensuring that the student not only learns how to implement the
features and constructs of C++, but why and when to use them.

Changes in the Eighth Edition

C++11 is the latest standard version of the C++ language. In previous years, while the stan-
dard was being developed, it was known as C++0x. In August 2011, it was approved by
the International Standards Organization (ISO), and the name of the standard was officially
changed to C++11. Most of the popular compilers now support the C++11 standard.

The new C++11 standard was the primary motivation behind this edition. Although this
edition introduces many of the new language features, a C++11 compiler is not strictly
required to use the book. As you progress through the book, you will see C++11 icons in the
margins, next to the new features that are introduced. Programs appearing in sections that
are not marked with this icon will still compile using an older compiler.

Here is a summary of the new C++11 topics that are introduced in this edition:

e The auto key word is introduced as a way to simplify complex variable definitions.
The auto key word causes the compiler to infer a variable’s data type from its initial-
ization value.

e The long long int and unsigned long long int data types, and the LL literal
suffix are introduced.

e Chapter 5 shows how to pass a string object directly to a file stream object’s open
member function, without the need to call the ¢_str() member function. (A discus-
sion of the c_str ()function still exists for anyone using a legacy compiler.)

XV

xvi

Preface

In

The range-based for loop is introduced in Chapter 7. This new looping mechanism
automatically iterates over each element of an array, vector, or other collection,
without the need of a counter variable or a subscript.

Chapter 7 shows how a vector can be initialized with an initialization list.

The nullptr key word is introduced as the standard way of representing a null
pointer.

Smart pointers are introduced in Chapter 9, with an example of dynamic memory
allocation using unique ptr.

Chapter 10 discusses the new, overloaded to_string functions for converting numeric
values to string objects.

The string class’s new back() and front() member functions are included in
Chapter 10’s overview of the string class.

Strongly typed enums are discussed in Chapter 11.

Chapter 13 shows how to use the smart pointer unique ptr to dynamically allocate
an object.

Chapter 15 discusses the override key word and demonstrates how it can help prevent
subtle overriding errors. The £inal key word is discussed as a way of preventing a virtual
member function from being overridden.

addition to the C++11 topics, the following general improvements were made:

Several new programming problems have been added to the text, and many of the
existing programming problems have been modified to make them unique from previ-
ous editions.

The discussion of early, historic computers in Chapter 1 is expanded.
The discussion of literal values in Chapter 2 is improved.

The introduction of the char data type in Chapter 2 is reorganized to use character
literals in variable assignments before using ASCII values in variable assignments.

The discussion of random numbers in Chapter 3 is expanded and improved, with the
addition of a new In the Spotlight section.

A new Focus on Object-Oriented Programming section has been added to Chapter 13,
showing how to write a class that simulates dice.

A new Focus on Object-Oriented Programming section has been added to Chapter 14,
showing an object-oriented program that simulates the game of Cho-Han. The program
uses objects for the dealer, two players, and a pair of dice.

Organization of the Text

This text teaches C++ in a step-by-step fashion. Each chapter covers a major set of topics
and builds knowledge as the student progresses through the book. Although the chapters
can be easily taught in their existing sequence, some flexibility is provided. The diagram
shown in Figure P-1 suggests possible sequences of instruction.

Preface

Figure P-1
Chapter 1
Introduction
Chapters 2-7
Basic Language
Elements
Chapter 8 Chapter 9 Chapter 12
Searching and Poir?ters Advanced File
Sorting Arrays Operations*

Chapter 10
Characters, Strings,
and the string Class

Chapter 11
Structures

Chapter 13
Introduction to
Classes

Chapter 14
More About Classes

Chapter 15
Inheritance and
Polymorphism

Chapter 16
Exceptions,
Templates, and STL

Chapter 17
Linked Lists

*A few subtopics in
Chapter 12 require
Chapters 9 and 11.

Chapter 18 Chapter 19
Stacks and Queues rsion
Chapter 20

Binary Trees

Xvii

xviii

Preface

Chapter 1 covers fundamental hardware, software, and programming concepts. You may
choose to skip this chapter if the class has already mastered those topics. Chapters 2 through
7 cover basic C++ syntax, data types, expressions, selection structures, repetition structures,
functions, and arrays. Each of these chapters builds on the previous chapter and should be
covered in the order presented.

After Chapter 7 has been covered, you may proceed to Chapter 8, or jump to either Chapter
9 or Chapter 12. (If you jump to Chapter 12 at this point, you will need to postpone sections
12.7,12.8, and 12.10 until Chapters 9 and 11 have been covered.)

After Chapter 9 has been covered, either of Chapters 10 or 11 may be covered. After Chap-
ter 11, you may cover Chapters 13 through 17 in sequence. Next you can proceed to either
Chapter 18 or Chapter 19. Finally, Chapter 20 may be covered.

This text’s approach starts with a firm foundation in structured, procedural programming
before delving fully into object-oriented programming and advanced data structures.

Brief Overview of Each Chapter

Chapter 1: Introduction to Computers and Programming

This chapter provides an introduction to the field of computer science and covers the fun-
damentals of programming, problem solving, and software design. The components of pro-
grams, such as key words, variables, operators, and punctuation are covered. The tools of
the trade, such as pseudocode, flow charts, and hierarchy charts are also presented.

Chapter 2: Introduction to C++

This chapter gets the student started in C++ by introducing data types, identifiers, vari-
able declarations, constants, comments, program output, simple arithmetic operations, and
C-strings. Programming style conventions are introduced and good programming style
is modeled here, as it is throughout the text. An optional section explains the difference
between ANSI standard and pre-standard C++ programs.

Chapter 3: Expressions and Interactivity

In this chapter the student learns to write programs that input and handle numeric, char-
acter, and string data. The use of arithmetic operators and the creation of mathematical
expressions are covered in greater detail, with emphasis on operator precedence. Debug-
ging is introduced, with a section on hand tracing a program. Sections are also included on
simple output formatting, on data type conversion and type casting, and on using library
functions that work with numbers.

Chapter 4: Making Decisions

Here the student learns about relational operators, relational expressions and how to con-
trol the flow of a program with the if, if/else, and if/else if statements. The condi-
tional operator and the switch statement are also covered. Crucial applications of these
constructs are covered, such as menu-driven programs and the validation of input.

Preface

Chapter 5: Loops and Files

This chapter covers repetition control structures. The while loop, do-while loop, and for
loop are taught, along with common uses for these devices. Counters, accumulators, run-
ning totals, sentinels, and other application-related topics are discussed. Sequential file /O
is also introduced. The student learns to read and write text files, and use loops to process
the data in a file.

Chapter 6: Functions

In this chapter the student learns how and why to modularize programs, using both void
and value returning functions. Argument passing is covered, with emphasis on when argu-
ments should be passed by value versus when they need to be passed by reference. Scope of
variables is covered, and sections are provided on local versus global variables and on static
local variables. Overloaded functions are also introduced and demonstrated.

Chapter 7: Arrays

In this chapter the student learns to create and work with single and multidimensional
arrays. Many examples of array processing are provided including examples illustrating
how to find the sum, average, highest, and lowest values in an array and how to sum the
rows, columns, and all elements of a two-dimensional array. Programming techniques using
parallel arrays are also demonstrated, and the student is shown how to use a data file as
an input source to populate an array. STL vectors are introduced and compared to arrays.

Chapter 8: Sorting and Searching Arrays

Here the student learns the basics of sorting arrays and searching for data stored in them.
The chapter covers the Bubble Sort, Selection Sort, Linear Search, and Binary Search algo-
rithms. There is also a section on sorting and searching STL vector objects.

Chapter 9: Pointers

This chapter explains how to use pointers. Pointers are compared to and contrasted with
reference variables. Other topics include pointer arithmetic, initialization of pointers, rela-
tional comparison of pointers, pointers and arrays, pointers and functions, dynamic mem-
ory allocation, and more.

Chapter 10: Characters, C-strings, and More About the string Class

This chapter discusses various ways to process text at a detailed level. Library functions for
testing and manipulating characters are introduced. C-strings are discussed, and the tech-
nique of storing C-strings in char arrays is covered. An extensive discussion of the string
class methods is also given.

Chapter 11: Structured Data

The student is introduced to abstract data types and taught how to create them using struc-
tures, unions, and enumerated data types. Discussions and examples include using pointers
to structures, passing structures to functions, and returning structures from functions.

Xix

XX

Preface

Chapter 12: Advanced File Operations

This chapter covers sequential access, random access, text, and binary files. The various
modes for opening files are discussed, as well as the many methods for reading and writing
file contents. Advanced output formatting is also covered.

Chapter 13: Introduction to Classes

The student now shifts focus to the object-oriented paradigm. This chapter covers the fun-
damental concepts of classes. Member variables and functions are discussed. The student
learns about private and public access specifications, and reasons to use each. The topics of
constructors, overloaded constructors, and destructors are also presented. The chapter pres-
ents a section modeling classes with UML and how to find the classes in a particular problem.

Chapter 14: More About Classes

This chapter continues the study of classes. Static members, friends, memberwise assign-
ment, and copy constructors are discussed. The chapter also includes in-depth sections on
operator overloading, object conversion, and object aggregation. There is also a section on
class collaborations and the use of CRC cards.

Chapter 15: Inheritance, Polymorphism, and Virtual Functions

The study of classes continues in this chapter with the subjects of inheritance, polymor-
phism, and virtual member functions. The topics covered include base and derived class con-
structors and destructors, virtual member functions, base class pointers, static and dynamic
binding, multiple inheritance, and class hierarchies.

Chapter 16: Exceptions, Templates, and the Standard
Template Library (STL)

The student learns to develop enhanced error trapping techniques using exceptions. Discus-
sion then turns to function and class templates as a method for reusing code. Finally, the
student is introduced to the containers, iterators, and algorithms offered by the Standard
Template Library (STL).

Chapter 17: Linked Lists

This chapter introduces concepts and techniques needed to work with lists. A linked list
ADT is developed and the student is taught to code operations such as creating a linked list,
appending a node, traversing the list, searching for a node, inserting a node, deleting a node,
and destroying a list. A linked list class template is also demonstrated.

Chapter 18: Stacks and Queues

In this chapter the student learns to create and use static and dynamic stacks and queues. The
operations of stacks and queues are defined, and templates for each ADT are demonstrated.

Chapter 19: Recursion

This chapter discusses recursion and its use in problem solving. A visual trace of recursive
calls is provided, and recursive applications are discussed. Many recursive algorithms are
presented, including recursive functions for finding factorials, finding a greatest common

Preface

denominator (GCD), performing a binary search, and sorting (QuickSort). The classic Tow-
ers of Hanoi example is also presented. For students who need more challenge, there is a
section on exhaustive algorithms.

Chapter 20: Binary Trees

This chapter covers the binary tree ADT and demonstrates many binary tree operations. The
student learns to traverse a tree, insert an element, delete an element, replace an element, test
for an element, and destroy a tree.

Appendix A: Getting Started with Alice

This appendix gives a quick introduction to Alice. Alice is free software that can be used to
teach fundamental programming concepts using 3D graphics.

Appendix B: ASCIl Character Set
A list of the ASCII and Extended ASCII characters and their codes.

Appendix C: Operator Precedence and Associativity

A chart showing the C++ operators and their precedence.
The following appendices are available online at www.pearsonhighered.com/gaddis.

Appendix D: Introduction to Flowcharting

A brief introduction to flowcharting. This tutorial discusses sequence, selection, case, repeti-
tion, and module structures.

Appendix E: Using UML in Class Design

This appendix shows the student how to use the Unified Modeling Language to design
classes. Notation for showing access specification, data types, parameters, return values,
overloaded functions, composition, and inheritance are included.

Appendix F: Namespaces

This appendix explains namespaces and their purpose. Examples showing how to define a
namespace and access its members are given.

Appendix G: Passing Command Line Arguments

Teaches the student how to write a C++ program that accepts arguments from the command
line. This appendix will be useful to students working in a command line environment, such
as Unix, Linux, or the Windows command prompt.

Appendix H: Header File and Library Function Reference

This appendix provides a reference for the C++ library functions and header files discussed
in the book.

Appendix I: Binary Numbers and Bitwise Operations

A guide to the C++ bitwise operators, as well as a tutorial on the internal storage of integers.

xxi

www.pearsonhighered.com/gaddis

xxii

Preface

a9 =

<o

Appendix J: Multi-Source File Programs

Provides a tutorial on creating programs that consist of multiple source files. Function
header files, class specification files, and class implementation files are discussed.
Appendix K: Stream Member Functions for Formatting

Covers stream member functions for formatting such as setf.

Appendix L: Answers to Checkpoints

Students may test their own progress by comparing their answers to the checkpoint exer-
cises against this appendix. The answers to all Checkpoints are included.

Appendix M: Solutions to Odd-Numbered Review Questions

Another tool that students can use to gauge their progress.

Features of the Text

Concept Each major section of the text starts with a concept statement.
Statements This statement summarizes the ideas of the section.

Example Programs The text has hundreds of complete example programs, each
designed to highlight the topic currently being studied. In most
cases, these are practical, real-world examples. Source code for
these programs is provided so that students can run the programs
themselves.

Program Output After each example program there is a sample of its screen
output. This immediately shows the student how the program
should function.

In the Spotlight Each of these sections provides a programming problem and a
detailed, step-by-step analysis showing the student how to
solve it.

VideoNotes A series of online videos, developed specifically for this book, is

available for viewing at www.pearsonhighered.com/gaddis.
Icons appear throughout the text alerting the student to videos
about specific topics.

Checkpoints Checkpoints are questions placed throughout each chapter as
a self-test study aid. Answers for all Checkpoint questions can
be downloaded from the book’s Companion Web site at www.
pearsonhighered.com/gaddis. This allows students to check how
well they have learned a new topic.

Notes Notes appear at appropriate places throughout the text. They are
short explanations of interesting or often misunderstood points
relevant to the topic at hand.

www.pearsonhighered.com/gaddis
www.pearsonhighered.com/gaddis
www.pearsonhighered.com/gaddis

Preface xxiii

@ Warnings Warnings are notes that caution the student about certain C++
features, programming techniques, or practices that can lead to
malfunctioning programs or lost data.

Case Studies Case studies that simulate real-world applications appear in
many chapters throughout the text. These case studies are de-
signed to highlight the major topics of the chapter in which they
appear.

Review Questions Each chapter presents a thorough and diverse set of review

and Exercises questions, such as fill-in-the-blank and short answer, that check
the student’s mastery of the basic material presented in the chap-
ter. These are followed by exercises requiring problem solving
and analysis, such as the Algorithm Workbench, Predict the Oui-
put, and Find the Errors sections. Answers to the odd-numbered
review questions and review exercises can be downloaded from
the book’s Companion Web site at www.pearsonhighered.com/

gaddis.
Programming Each chapter offers a pool of programming exercises designed
Challenges to solidify the student’s knowledge of the topics currently being

studied. In most cases the assignments present real-world prob-
lems to be solved. When applicable, these exercises include input
validation rules.

Group Projects There are several group programming projects throughout the
text, intended to be constructed by a team of students. One
student might build the program’s user interface, while another
student writes the mathematical code, and another designs and
implements a class the program uses. This process is similar to
the way many professional programs are written and encourages
team work within the classroom.

Software Available for download from the book’s Companion Web site at
Development www.pearsonhighered.com/gaddis. This is an ongoing project
Project: that instructors can optionally assign to teams of students. It
Serendipity systematically develops a “real-world” software package: a
Booksellers point-of-sale program for the fictitious Serendipity Booksellers

organization. The Serendipity assignment for each chapter adds
more functionality to the software, using constructs and tech-
niques covered in that chapter. When complete, the program will
act as a cash register, manage an inventory database, and produce
a variety of reports.

C++ Quick For easy access, a quick reference guide to the C++ language is
Reference Guide printed on the last two pages of Appendix C in the book.
1N C++11 Throughout the text, new C++11 language features are

- introduced. Look for the C++11 icon to find these new features.

www.pearsonhighered.com/gaddis
www.pearsonhighered.com/gaddis
www.pearsonhighered.com/gaddis

XXiv

Preface

Supplements
Student Online Resources

Many student resources are available for this book from the publisher. The following items
are available on the Gaddis Series Companion Web site at www.pearsonhighered.com/gaddis:

e The source code for each example program in the book
e Access to the book’s companion VideoNotes

o A full set of appendices, including answers to the Checkpoint questions and answers
to the odd-numbered review questions

e A collection of valuable Case Studies

e The complete Serendipity Booksellers Project

Integrated Development Environment (IDE) Resource Kits

Professors who adopt this text can order it for students with a kit containing five popular
C++ IDEs (Microsoft® Visual Studio Express Edition, Dev C++, NetBeans, Eclipse, and
CodelLite) and access to a Web site containing written and video tutorials for getting started
in each IDE. For ordering information, please contact your campus Pearson Education rep-
resentative or visit www.pearsonhighered.com/cs.

Online Practice and Assessment with MyProgramminglLab

MyProgrammingLab helps students fully grasp the logic, semantics, and syntax of pro-
gramming. Through practice exercises and immediate, personalized feedback, MyProgram-
mingLab improves the programming competence of beginning students who often struggle
with the basic concepts and paradigms of popular high-level programming languages.

A self-study and homework tool, a MyProgrammingLab course consists of hundreds of
small practice exercises organized around the structure of this textbook. For students, the
system automatically detects errors in the logic and syntax of their code submissions and
offers targeted hints that enable students to figure out what went wrong—and why. For
instructors, a comprehensive gradebook tracks correct and incorrect answers and stores the
code inputted by students for review.

MyProgrammingLab is offered to users of this book in partnership with Turing’s Craft, the
makers of the CodeLab interactive programming exercise system. For a full demonstration,
to see feedback from instructors and students, or to get started using MyProgrammingLab
in your course, visit www.myprogramminglab.com.
Instructor Resources
The following supplements are available to qualified instructors only:

e Answers to all Review Questions in the text

e Solutions for all Programming Challenges in the text

e PowerPoint presentation slides for every chapter

e Computerized test bank

www.pearsonhighered.com/gaddis
www.pearsonhighered.com/cs
www.myprogramminglab.com

Preface

e Answers to all Student Lab Manual questions
e Solutions for all Student Lab Manual programs

Visit the Pearson Instructor Resource Center (www.pearsonhighered.com/irc) for
information on how to access instructor resources.

Textbook Web site

Student and instructor resources, including links to download Microsoft® Visual Studio
Express and other popular IDEs, for all the books in the Gaddis Starting Out With series
can be accessed at the following URL:

http://www.pearsonhighered.com/gaddis

Get this book the way you want it!

This book is part of Pearson Education’s custom database for Computer Science textbooks.
Use our online PubSelect system to select just the chapters you need from this, and other,
Pearson Education CS textbooks. You can edit the sequence to exactly match your course

organization and teaching approach. Visit www.pearsoncustom.com/cs for details.

Which Gaddis C++ book is right for you?

The Starting Out with C++ Series includes three books, one of which is sure to fit your course:

o Starting Out with C++: From Control Structures through Objects

o Starting Out with C++: Early Objects

o Starting Out with C++: Brief Version

The following chart will help you determine which book is right for your course.

m FROM CONTROL STRUCTURES

THROUGH OBJECTS
m BRIEF VERSION

LATE INTRODUCTION OF OBJECTS

Classes are introduced in Chapter 13 of the stan-
dard text and Chapter 11 of the brief text, after
control structures, functions, arrays, and pointers.
Advanced OOP topics, such as inheritance and
polymorphism, are covered in the following two
chapters.

INTRODUCTION OF DATA STRUCTURES

AND RECURSION

Linked lists, stacks and queues, and binary trees
are introduced in the final chapters of the standard
text. Recursion is covered after stacks and queues,
but before binary trees. These topics are not
covered in the brief text, though it does have
appendices dealing with linked lists and recursion.

m EARLY OBJECTS

EARLIER INTRODUCTION OF OBJECTS
Classes are introduced in Chapter 7, after
control structures and functions, but before
arrays and pointers. Their use is then
integrated into the remainder of the text.
Advanced OOP topics, such as inheritance
and polymorphism, are covered in Chapters
11 and 15.

INTRODUCTION OF DATA STRUCTURES
AND RECURSION

Linked lists, stacks and queues, and binary

trees are introduced in the final chapters of
the text, after the chapter on recursion.

XXV

www.pearsonhighered.com/irc
http://www.pearsonhighered.com/gaddis
www.pearsoncustom.com/cs

XXVi

Preface

Acknowledgments

There have been many helping hands in the development and publication of this text. We
would like to thank the following faculty reviewers for their helpful suggestions and expertise.

Reviewers for the 8th Edition

Robert Burn
Diablo Valley College

Michael Dixon
Sacramento City College

Qiang Duan
Penn State University—Abington

Daniel Edwards
Oblone College

Xisheng Fang
Oblone College

Ken Hang
Green River Community College

Kay Johnson
Community College of Rhode Island

Michelle Levine
Broward College

Reviewers for Previous Editions

Ahmad Abuhejleh
University of Wisconsin—River Falls

David Akins
El Camino College

Steve Allan
Utab State University

Vicki Allan
Utah State University

Karen M. Arlien
Bismark State College

Mary Astone
Troy University

[jaz A. Awan
Savannah State University

Robert Baird
Salt Lake Community College

Cindy Lindstrom
Lakeland College

Susan Reeder
Seattle University

Sandra Roberts
Snead College

Lopa Roychoudhuri
Angelo State University

Richard Snyder
Lehigh Carbon Community College

Donald Southwell
Delta College

Chadd Williams
Pacific University

Don Biggerstaff
Fayetteville Technical Community College

Michael Bolton
Northeastern Oklahoma State University

Bill Brown
Pikes Peak Community College

Charles Cadenhead
Richland Community College

Randall Campbell
Morningside College

Wayne Caruolo
Red Rocks Community College

Cathi Chambley-Miller
Aiken Technical College

C.C. Chao
Jacksonville State University

Joseph Chao
Bowling Green State University

Royce Curtis

Western Wisconsin Technical College

Joseph DeLibero
Arizona State University

Jeanne Douglas
University of Vermont

Michael Dowell
Augusta State U

William E. Duncan
Louisiana State University

Judy Etchison
Southern Methodist University

Dennis Fairclough
Utah Valley State College

Mark Fienup
University of Northern Iowa

Richard Flint
North Central College

Ann Ford Tyson
Florida State University

Jeanette Gibbons
South Dakota State University

James Gifford

University of Wisconsin—Stevens Point

Leon Gleiberman
Touro College

Barbara Guillott
Louisiana State University

Ranette Halverson, Ph.D.
Midwestern State University

Carol Hannahs
University of Kentucky

Dennis Heckman
Portland Community College

Ric Heishman
George Mason University

Preface

Michael Hennessy
University of Oregon
Ilga Higbee

Black Hawk College

Patricia Hines
Brookdale Community College

Mike Holland
Northern Virginia Community College

Mary Hovik
Lehigh Carbon Community College

Richard Hull
Lenoir-Rhyne College

Chris Kardaras
North Central College

Willard Keeling
Blue Ridge Community College

A.J. Krygeris
Houston Community College

Sheila Lancaster
Gadsden State Community College

Ray Larson
Inver Hills Community College

Jennifer Li
Oblone College

Norman H. Liebling
San Jacinto College

Zhu-qu Lu
University of Maine, Presque Isle

Heidar Malki
University of Houston

Debbie Mathews
J. Sargeant Reynolds Community College

Rick Matzen
Northeastern State University

Robert McDonald
East Stroudsburg University

James McGuffee
Austin Community College

XXVvii

xxviii Preface

Dean Mellas
Cerritos College

Lisa Milkowski
Milwaukee School of Engineering

Marguerite Nedreberg
Youngstown State University

Lynne O’Hanlon
Los Angeles Pierce College

Frank Paiano
Southwestern Community College

Theresa Park
Texas State Technical College

Mark Parker
Shoreline Community College

Tino Posillico
SUNY Farmingdale

Frederick Pratter
Eastern Oregon University

Susan L. Quick
Penn State University

Alberto Ramon
Diablo Valley College

Bazlur Rasheed

Sault College of Applied Arts and Technology

Farshad Ravanshad
Bergen Community College

Dolly Samson
Weber State University

Ruth Sapir
SUNY Farmingdale

Jason Schatz
City College of San Francisco

Dr. Sung Shin
South Dakota State University

Bari Siddique
University of Texas at Brownsville

William Slater
Collin County Community College

Shep Smithline
University of Minnesota

Caroline St. Claire
North Central College

Kirk Stephens
Southwestern Community College

Cherie Stevens
South Florida Community College

Dale Suggs
Campbell University

Mark Swanson
Red Wing Technical College

Ann Sudell Thorn
Del Mar College

Martha Tillman
College of San Mateo

Ralph Tomlinson
Towa State University

David Topham
Oblone College

Robert Tureman
Paul D. Camp Community College

Arisa K. Ude
Richland College

Peter van der Goes
Rose State College

Stewart Venit

California State University, Los Angeles

Judy Walters
North Central College

John H. Whipple
Northampton Community College

Aurelia Williams
Norfolk State University

Vida Winans
Hlinois Institute of Technology

Preface

I would like to thank my family for their love and support in all of my many projects. I
am extremely fortunate to have Matt Goldstein as my editor. I am also fortunate to have
Kathryn Ferranti as marketing coordinator. She does a great job getting my books out to
the academic community. I had a great production team led by Marilyn Lloyd and Kayla
Smith-Tarbox. Thanks to you all!

About the Author

Tony Gaddis is the principal author of the Starting Out with series of textbooks. He has
nearly two decades of experience teaching computer science courses, primarily at Haywood
Community College. Tony is a highly acclaimed instructor who was previously selected as
the North Carolina Community College Teacher of the Year and has received the Teaching
Excellence award from the National Institute for Staff and Organizational Development.
The Starting Out With series includes introductory textbooks covering Programming Logic
and Design, Alice, C++, Java™, Microsoft® Visual Basic®, Microsoft® Visual C#, Python,
and App Inventor, all published by Pearson.

XXix

To improving results

L

get with the programming

Through the power of practice and immediate personalized

feedback, MyProgramminglLab improves your performance.

My Lab™

Learn more at

ALWAYS LEARNING PEARSON

www.myprogramminglab.com

OOo0oOoono
1000000
1000008080
TN
1o0o
1000
OoOooo
OO0

Introduction to Computers
and Programming

o
(NN}
[
o
<
I
U

TOPICS

1.1 Why Program? 1.4 What Is a Program Made of?

1.2 Computer Systems: Hardware 1.5 Input, Processing, and Output
and Software 1.6 The Programming Process

1.3 Programs and Programming 1.7 Procedural and Object-Oriented
Languages Programming

=]
1.1 Why Program?

1 CONCEPT: Computers can do many different jobs because they are programmable.

Think about some of the different ways that people use computers. In school, students use
computers for tasks such as writing papers, searching for articles, sending e-mail, and partici-
pating in online classes. At work, people use computers to analyze data, make presentations,
conduct business transactions, communicate with customers and coworkers, control machines
in manufacturing facilities, and do many other things. At home, people use computers for
tasks such as paying bills, shopping online, social networking, and playing computer games.
And don’t forget that smart phones, iPods®, car navigation systems, and many other devices
are computers as well. The uses of computers are almost limitless in our everyday lives.

Computers can do such a wide variety of things because they can be programmed. This
means that computers are not designed to do just one job, but any job that their programs
tell them to do. A program is a set of instructions that a computer follows to perform a
task. For example, Figure 1-1 shows screens using Microsoft Word and PowerPoint, two
commonly used programs.

Programs are commonly referred to as software. Software is essential to a computer because
without software, a computer can do nothing. All of the software that we use to make our
computers useful is created by individuals known as programmers or software developers.
A programmer, or software developer, is a person with the training and skills necessary
to design, create, and test computer programs. Computer programming is an exciting and
rewarding career. Today, you will find programmers working in business, medicine, govern-
ment, law enforcement, agriculture, academics, entertainment, and almost every other field.

Chapter 1T Introduction to Computers and Programming

Figure 1-1 A word processing program and a presentation program

a adim

1 AaBb|amca] AL B

T T]

115 Whatls the purpone of ASCITT
116 P of ol the

Lieguages in the world?
117 Whiatdo the terms “digitsl duta” and “digital devies” mean?

1.4 Howa Program Waorks

Concept: Acomputer’s CPU can anly underitand lnidructions that ane written bn

program in machie loeguage, ethes i have been
invented.

Earlier, we stated that the CPL ks the most important component im 8 computer because
Rlatho partof the computcr that runs programs. Semctimes the CPU s called the
“comguses’s brain,” and iy describod a3 being "umann.” Although thess are commen
metaphons, you should understaed that the CPUIS et @ brain, and itls not wmant. The
CPUIx an shectronic device that is designed to de wpeciflc things. In particular, the CPU &
designed te: perform eperations such s the fllowing:

* Wasding s pece of data lrom msin memery

* Adding twe rumberi

 Subtracting o numbes from arcthar b

® Multiphying twn rumbers

® Déviding one rmber by another number

* Moving & plece of data from cne memory bocation to arcther
* Determining whether one vabue i1 equal to ancther value

® Andetorth. ..

A5 yons ean e Trom this st the CPU pe s ions on ph . Tha
CPU does rothing o it own, hawever. 1t has 10 be 10h what 10 de, sed that's the

Click to add notes

LB T e

Pagr 14 ot 87 Werde WD 3

Computer programming is both an art and a science. It is an art because every aspect of
a program should be carefully designed. Listed below are a few of the things that must be
designed for any real-world computer program:

The logical flow of the instructions

The mathematical procedures

The appearance of the screens

The way information is presented to the user

The program’s “user-friendliness”

Manuals and other forms of written documentation

There is also a scientific, or engineering, side to programming. Because programs rarely
work right the first time they are written, a lot of testing, correction, and redesigning is
required. This demands patience and persistence from the programmer. Writing software
demands discipline as well. Programmers must learn special languages like C++ because
computers do not understand English or other human languages. Languages such as C++
have strict rules that must be carefully followed.

Both the artistic and scientific nature of programming make writing computer software like
designing a car: Both cars and programs should be functional, efficient, powerful, easy to
use, and pleasing to look at.

= |
1.2 Computer Systems: Hardware and Software

1 CONCEPT: All computer systems consist of similar hardware devices and software
components. This section provides an overview of standard computer
hardware and software organization.

1.2 Computer Systems: Hardware and Software

Hardware

Hardware refers to the physical components that a computer is made of. A computer, as
we generally think of it, is not an individual device, but a system of devices. Like the instru-
ments in a symphony orchestra, each device plays its own part. A typical computer system
consists of the following major components:

e The central processing unit (CPU)
* Main memory

e Secondary storage devices

e Input devices

e Qutput devices

The organization of a computer system is depicted in Figure 1-2.

Figure 1-2

— Central Processing — |!

Unit

o

3

&

Output !

Devices

“
A Secondary

Y Storage Devices

- -ﬁ_»

Input
Devices

Main Memory
(RAM)

The CPU

When a computer is performing the tasks that a program tells it to do, we say that the
computer is running or executing the program. The central processing unit, or CPU, is the
part of a computer that actually runs programs. The CPU is the most important component
in a computer because without it, the computer could not run software.

In the earliest computers, CPUs were huge devices made of electrical and mechanical compo-
nents such as vacuum tubes and switches. Figure 1-3 shows such a device. The two women in

4

Chapter 1T Introduction to Computers and Programming

Figure 1-3

13y
A R

—

oo
==
=
==
o
R
==

ERLRURL BLICRUATA

Gl

L
|

the photo are working with the historic ENIAC computer. The ENIAC, considered by many
to be the world’s first programmable electronic computer, was built in 1945 to calculate
artillery ballistic tables for the U.S. Army. This machine, which was primarily one big CPU,
was 8 feet tall, 100 feet long, and weighed 30 tons.

Today, CPUs are small chips known as microprocessors. Figure 1-4 shows a photo of a lab tech-
nician holding a modern-day microprocessor. In addition to being much smaller than the old
electro-mechanical CPUs in early computers, microprocessors are also much more powerful.

Figure 1-4

-

Y oooo0000000
120000000000
0000000000000
£00000000000090
200000000000000
20099
290000
20000
20000
20000

20900
20000000000900000000

20000000000000080000
00000000000000000000
2o 290000000000000000

Figure

1.2 Computer Systems: Hardware and Software

The CPU’s job is to fetch instructions, follow the instructions, and produce some result.
Internally, the central processing unit consists of two parts: the control unit and the arith-
metic and logic unit (ALU). The control unit coordinates all of the computer’s operations.
It is responsible for determining where to get the next instruction and regulating the other
major components of the computer with control signals. The arithmetic and logic unit, as
its name suggests, is designed to perform mathematical operations. The organization of the
CPU is shown in Figure 1-5.

1-5

Central Processing Unit

Arithmetic and
Logic Unit
Instruction A Result
(Input) (Output)
—_———> v —_—
Control Unit

A program is a sequence of instructions stored in the computer’s memory. When a computer
is running a program, the CPU is engaged in a process known formally as the fetch/decode/
execute cycle. The steps in the fetch/decode/execute cycle are as follows:

Fetch The CPU’s control unit fetches, from main memory, the next instruc-
tion in the sequence of program instructions.

Decode The instruction is encoded in the form of a number. The control unit
decodes the instruction and generates an electronic signal.

Execute The signal is routed to the appropriate component of the computer
(such as the ALU, a disk drive, or some other device). The signal causes
the component to perform an operation.

These steps are repeated as long as there are instructions to perform.

Main Memory

You can think of main memory as the computer’s work area. This is where the computer
stores a program while the program is running, as well as the data that the program is
working with. For example, suppose you are using a word processing program to write an
essay for one of your classes. While you do this, both the word processing program and the
essay are stored in main memory.

Main memory is commonly known as random-access memory or RAM. It is called this
because the CPU is able to quickly access data stored at any random location in RAM.
RAM is usually a volatile type of memory that is used only for temporary storage while
a program is running. When the computer is turned off, the contents of RAM are erased.
Inside your computer, RAM is stored in small chips.

A computer’s memory is divided into tiny storage locations known as bytes. One byte is
enough memory to store only a letter of the alphabet or a small number. In order to do

6

Chapter T Introduction to Computers and Programming

anything meaningful, a computer must have lots of bytes. Most computers today have mil-
lions, or even billions, of bytes of memory.

Each byte is divided into eight smaller storage locations known as bits. The term bit stands
for binary digit. Computer scientists usually think of bits as tiny switches that can be either
on or off. Bits aren’t actual “switches,” however, at least not in the conventional sense. In
most computer systems, bits are tiny electrical components that can hold either a positive
or a negative charge. Computer scientists think of a positive charge as a switch in the on
position and a negative charge as a switch in the off position.

Each byte is assigned a unique number known as an address. The addresses are ordered
from lowest to highest. A byte is identified by its address in much the same way a post
office box is identified by an address. Figure 1-6 shows a group of memory cells with their
addresses. In the illustration, sample data is stored in memory. The number 149 is stored in
the cell with the address 16, and the number 72 is stored at address 23.

Figure 1-6
o] O EEE O
o R T

EI PR EY
X (7 Y

72

Secondary Storage

Secondary storage is a type of memory that can hold data for long periods of time—even
when there is no power to the computer. Frequently used programs are stored in secondary
memory and loaded into main memory as needed. Important information, such as word pro-
cessing documents, payroll data, and inventory figures, is saved to secondary storage as well.

The most common type of secondary storage device is the disk drive. A disk drive stores
data by magnetically encoding it onto a circular disk. Most computers have a disk drive
mounted inside their case. External disk drives, which connect to one of the computer’s
communication ports, are also available. External disk drives can be used to create backup
copies of important data or to move data to another computer.

In addition to external disk drives, many types of devices have been created for copying
data and for moving it to other computers. For many years floppy disk drives were popular.
A floppy disk drive records data onto a small floppy disk, which can be removed from the
drive. The use of floppy disk drives has declined dramatically in recent years, in favor of
superior devices such as USB drives. USB drives are small devices that plug into the com-
puter’s USB (universal serial bus) port and appear to the system as a disk drive. USB drives,
which use flash memory to store data, are inexpensive, reliable, and small enough to be
carried in your pocket.

Optical devices such as the CD (compact disc) and the DVD (digital versatile disc) are
also popular for data storage. Data is not recorded magnetically on an optical disc, but is
encoded as a series of pits on the disc surface. CD and DVD drives use a laser to detect the
pits and thus read the encoded data. Optical discs hold large amounts of data, and because
recordable CD and DVD drives are now commonplace, they are good mediums for creating
backup copies of data.

1.2 Computer Systems: Hardware and Software

Input Devices

Input is any information the computer collects from the outside world. The device that
collects the information and sends it to the computer is called an input device. Common
input devices are the keyboard, mouse, scanner, digital camera, and microphone. Disk
drives, CD/DVD drives, and USB drives can also be considered input devices because pro-
grams and information are retrieved from them and loaded into the computer’s memory.

Output Devices

Output is any information the computer sends to the outside world. It might be a sales
report, a list of names, or a graphic image. The information is sent to an output device,
which formats and presents it. Common output devices are monitors, printers, and speak-
ers. Disk drives, USB drives, and CD/DVD recorders can also be considered output devices
because the CPU sends them information to be saved.

Software

If a computer is to function, software is not optional. Everything that a computer does,
from the time you turn the power switch on until you shut the system down, is under the
control of software. There are two general categories of software: system software and
application software. Most computer programs clearly fit into one of these two categories.
Let’s take a closer look at each.

System Software

The programs that control and manage the basic operations of a computer are generally referred
to as system software. System software typically includes the following types of programs:

e Operating Systems
An operating system is the most fundamental set of programs on a computer. The
operating system controls the internal operations of the computer’s hardware, man-
ages all the devices connected to the computer, allows data to be saved to and retrieved
from storage devices, and allows other programs to run on the computer.

o Utility Programs
A utility program performs a specialized task that enhances the computer’s operation
or safeguards data. Examples of utility programs are virus scanners, file-compression
programs, and data-backup programs.

* Software Development Tools
The software tools that programmers use to create, modify, and test software are
referred to as software development tools. Compilers and integrated development
environments, which we discuss later in this chapter, are examples of programs that
fall into this category.

Application Software

Programs that make a computer useful for everyday tasks are known as application soft-
ware. These are the programs that people normally spend most of their time running on
their computers. Figure 1-1, at the beginning of this chapter, shows screens from two com-
monly used applications—Microsoft Word, a word processing program, and Microsoft

8

Chapter 1

X

Introduction to Computers and Programming

PowerPoint, a presentation program. Some other examples of application software are
spreadsheet programs, e-mail programs, Web browsers, and game programs.

Checkpoint

1.1 Why is the computer used by so many different people, in so many different
professions?

1.2 List the five major hardware components of a computer system.

1.3 Internally, the CPU consists of what two units?

1.4 Describe the steps in the fetch/decode/execute cycle.

1.5 What is a memory address? What is its purpose?

1.6 Explain why computers have both main memory and secondary storage.

1.7 What are the two general categories of software?

1.8 What fundamental set of programs control the internal operations of the
computer’s hardware?

1.9 What do you call a program that performs a specialized task, such as a virus
scanner, a file-compression program, or a data-backup program?

1.10 Word processing programs, spreadsheet programs, e-mail programs, Web

browsers, and game programs belong to what category of software?

Programs and Programming Languages

CONCEPT: A program is a set of instructions a computer follows in order to perform

a task. A programming language is a special language used to write
computer programs.

What Is a Program?

Computers are designed to follow instructions. A computer program is a set of instructions that
tells the computer how to solve a problem or perform a task. For example, suppose we want
the computer to calculate someone’s gross pay. Here is a list of things the computer should do:

1.
2.

(O8]

Display a message on the screen asking “How many hours did you work?”
Wait for the user to enter the number of hours worked. Once the user enters a number,
store it in memory.

. Display a message on the screen asking “How much do you get paid per hour?”
. Wait for the user to enter an hourly pay rate. Once the user enters a number, store it

In memory.

. Multiply the number of hours by the amount paid per hour, and store the result in

memory.

. Display a message on the screen that tells the amount of money earned. The message

must include the result of the calculation performed in Step 5.

Collectively, these instructions are called an algorithm. An algorithm is a set of well-defined
steps for performing a task or solving a problem. Notice these steps are sequentially ordered.
Step 1 should be performed before Step 2, and so forth. It is important that these instruc-
tions be performed in their proper sequence.

<&

1.3 Programs and Programming Languages

Although you and I might easily understand the instructions in the pay-calculating algo-
rithm, it is not ready to be executed on a computer. A computer’s CPU can only process
instructions that are written in machine language. If you were to look at a machine lan-
guage program, you would see a stream of binary numbers (numbers consisting of only 1s
and 0s). The binary numbers form machine language instructions, which the CPU interprets
as commands. Here is an example of what a machine language instruction might look like:

1011010000000101

As you can imagine, the process of encoding an algorithm in machine language is very
tedious and difficult. In addition, each different type of CPU has its own machine language.
If you wrote a machine language program for computer A and then wanted to run it on
computer B, which has a different type of CPU, you would have to rewrite the program in
computer B’s machine language.

Programming languages, which use words instead of numbers, were invented to ease the task
of programming. A program can be written in a programming language, such as C++, which
is much easier to understand than machine language. Programmers save their programs in
text files, and then use special software to convert their programs to machine language.

Program 1-1 shows how the pay-calculating algorithm might be written in C++.

The “Program Output with Example Input” shows what the program will display on the
screen when it is running. In the example, the user enters 10 for the number of hours
worked and 15 for the hourly pay rate. The program displays the earnings, which are $150.

NOTE: The line numbers that are shown in Program 1-1 are not part of the program.
This book shows line numbers in all program listings to help point out specific parts
of the program.

Program 1-1

// This program calculates the user's pay.
#include <iostream>
using namespace std;

int main()

{

double hours, rate, pay;

// Get the number of hours worked.
cout << "How many hours did you work? ";
cin >> hours;

// Get the hourly pay rate.
cout << "How much do you get paid per hour? ";
cin >> rate;

// Calculate the pay.
pay = hours * rate;
(program continues)

10

Chapter T Introduction to Computers and Programming

Program 1-1 (continued)

// Display the pay.
cout << "You have earned $" << pay << endl;
return 0;

}

Program Output with Example Input Shown in Bold
How many hours did you work? 10 [Enter]

How much do you get paid per hour? 15 [Enter]
You have earned $150

Programming Languages

In a broad sense, there are two categories of programming languages: low-level and high-
level. A low-level language is close to the level of the computer, which means it resembles
the numeric machine language of the computer more than the natural language of humans.
The easiest languages for people to learn are high-level languages. They are called “high-
level” because they are closer to the level of human-readability than computer-readability.
Figure 1-7 illustrates the concept of language levels.

Figure 1-7

High level (Easily understood by humans)

Low level (machine language)
10100010 11101011

Many high-level languages have been created. Table 1-1 lists a few of the well-known ones.

In addition to the high-level features necessary for writing applications such as payroll
systems and inventory programs, C++ also has many low-level features. C++ is based on
the C language, which was invented for purposes such as writing operating systems and
compilers. Since C++ evolved from C, it carries all of C’s low-level capabilities with it.

1.3 Programs and Programming Languages

Table 1-1

Language Description

BASIC Beginners All-purpose Symbolic Instruction Code. A general programming language
originally designed to be simple enough for beginners to learn.

FORTRAN Formula Translator. A language designed for programming complex mathematical
algorithms.

COBOL Common Business-Oriented Language. A language designed for business applications.

Pascal A structured, general-purpose language designed primarily for teaching programming.

C A structured, general-purpose language developed at Bell Laboratories. C offers
both high-level and low-level features.

C++ Based on the C language, C++ offers object-oriented features not found in C. Also
invented at Bell Laboratories.

C# Pronounced “C sharp.” A language invented by Microsoft for developing applications
based on the Microsoft .NET platform.

Java An object-oriented language invented at Sun Microsystems. Java may be used to
develop programs that run over the Internet, in a Web browser.

JavaScript JavaScript can be used to write small programs that run in Web pages. Despite its
name, JavaScript is not related to Java.

Python Python is a general-purpose language created in the early 1990s. It has become
popular in both business and academic applications.

Ruby Ruby is a general-purpose language that was created in the 1990s. It is increas-
ingly becoming a popular language for programs that run on Web servers.

Visual A Microsoft programming language and software development environment that

Basic allows programmers to quickly create Windows-based applications.

C++ is popular not only because of its mixture of low- and high-level features, but also
because of its portability. This means that a C++ program can be written on one type of
computer and then run on many other types of systems. This usually requires the program
to be recompiled on each type of system, but the program itself may need little or no change.

& NOTE: Programs written for specific graphical environments often require significant
changes when moved to a different type of system. Examples of such graphical environ-
ments are Windows, the X-Window System, and the Mac OS operating system.

Source Code, Object Code, and Executable Code

When a C++ program is written, it must be typed into the computer and saved to a file. A
text editor, which is similar to a word processing program, is used for this task. The state-
ments written by the programmer are called source code, and the file they are saved in is
called the source file.

After the source code is saved to a file, the process of translating it to machine language
can begin. During the first phase of this process, a program called the preprocessor reads
the source code. The preprocessor searches for special lines that begin with the # symbol.
These lines contain commands that cause the preprocessor to modify the source code in

11

12

Chapter T Introduction to Computers and Programming

some way. During the next phase the compiler steps through the preprocessed source code,
translating each source code instruction into the appropriate machine language instruction.
This process will uncover any syntax errors that may be in the program. Syntax errors are
illegal uses of key words, operators, punctuation, and other language elements. If the pro-
gram is free of syntax errors, the compiler stores the translated machine language instruc-
tions, which are called object code, in an object file.

Although an object file contains machine language instructions, it is not a complete pro-
gram. Here is why: C++ is conveniently equipped with a library of prewritten code for
performing common operations or sometimes-difficult tasks. For example, the library con-
tains hardware-specific code for displaying messages on the screen and reading input from
the keyboard. It also provides routines for mathematical functions, such as calculating the
square root of a number. This collection of code, called the run-time library, is extensive.
Programs almost always use some part of it. When the compiler generates an object file,
however, it does not include machine code for any run-time library routines the program-
mer might have used. During the last phase of the translation process, another program
called the linker combines the object file with the necessary library routines. Once the
linker has finished with this step, an executable file is created. The executable file contains
machine language instructions, or executable code, and is ready to run on the computer.

Figure 1-8 illustrates the process of translating a C++ source file into an executable file.

The entire process of invoking the preprocessor, compiler, and linker can be initiated with
a single action. For example, on a Linux system, the following command causes the C++
program named hello.cpp to be preprocessed, compiled, and linked. The executable code
is stored in a file named hello.

g++ -o hello hello.cpp

Figure 1-8

~m= Source code is entered
Source Code with a text editor by
the programmer.

#finclude <iostream>
using namespace std;

Preprocessor

int main()

{
cout<<{"Hello World\n";
return 0;

Modified
Source Code)

Compiler

Object Code

Linker

Executable Code

1.3 Programs and Programming Languages

Appendix G explains how compiling works in .Net. You can download Appendix G from
the book’s companion Web site at www.pearsonhighered.com/gaddis.

Many development systems, particularly those on personal computers, have integrated
development environments (IDEs). These environments consist of a text editor, com-
piler, debugger, and other utilities integrated into a package with a single set of menus.
Preprocessing, compiling, linking, and even executing a program is done with a single click
of a button, or by selecting a single item from a menu. Figure 1-9 shows a screen from the

Microsoft Visual Studio IDE.

Figure 1-9

M Gross Pay - Microsoft Visual Studio
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM SQL

O B-rald % 9-0-

TOOLS TEST
P Local Windows Debugger -

Quick Launch (Ctrl+ Q) P = 0O X
AMALYZE WINDOW HELP
G. Debug ~ A

= Solution Explorer = ow I

(Global Scope) = @ main()
// This progam calculates the user's pay.
#include <iostream>
using namespace std;

Elint main()

{

double hours, rate, pay;

// Get the number of hours worked.
cout << "How many hours did you work? ";
cin »> hours;

// Get the hourly pay rate.
cout << "How much do you get paid per hour? ™;
cin »> rate;

// Calculate the pay.
pay = hours * rate;

// Display the pay.
cout << "You have earned 3" << pay << endl;
return @;

& o-2dim

Search Solution Explorer (Ctrl+, 2 -
] Gross Pay
b 3 External Dependencies

=5 Header Files

B Resource Files
4 &3] Source Files

P ++ GrossPay.cpp

L

Solution Explorer | Team Explorer

w1
main VCCodeFunction -

s

Properties ==

(Mame) main =
File c\users\tony\d
FullName main

Islnjected False

{Name)
Sets/returns the name of the object.

Checkpoint
@) checkp

1.11 What is an algorithm?

1.12 Why were computer programming languages invented?

1.13 What is the difference between a high-level language and a low-level language?
1.14 What does portability mean?

1.15 Explain the operations carried out by the preprocessor, compiler, and linker.
1.16 Explain what is stored in a source file, an object file, and an executable file.
1.17 What is an integrated development environment?

13

www.pearsonhighered.com/gaddis

14

Chapter T Introduction to Computers and Programming

—

1.4 What Is a Program Made of?

1 CONCEPT: There are certain elements that are common to all programming languages.

Language Elements

All programming languages have a few things in common. Table 1-2 lists the common ele-
ments you will find in almost every language.

Table 1-2

Language Element

Description

Key Words
Programmer-Defined
Identifiers

Operators

Punctuation

Syntax

Words that have a special meaning. Key words may only be used for
their intended purpose. Key words are also known as reserved words.

Words or names defined by the programmer. They are symbolic names
that refer to variables or programming routines.

Operators perform operations on one or more operands. An operand is
usually a piece of data, like a number.

Punctuation characters that mark the beginning or ending of a statement,
or separate items in a list.

Rules that must be followed when constructing a program. Syntax dictates
how key words and operators may be used, and where punctuation
symbols must appear.

Let’s look at some specific parts of Program 1-1 (the pay-calculating program) to see examples
of each element listed in the table above. For your convenience, Program 1-1 is listed again.

Program 1-1

// This program calculates the user's pay.
#include <iostream>
using namespace std;

int main()

{

double hours, rate, pay;

// Get the number of hours worked.
cout << "How many hours did you work? ";
cin >> hours;

// Get the hourly pay rate.
cout << "How much do you get paid per hour? ";
cin >> rate;

// Calculate the pay.

C <

1.4 What Is a Program Made of?

pay = hours * rate;

// Display the pay.
cout << "You have earned $" << pay << endl;
return 0;

Key Words (Reserved Words)

Three of C++’s key words appear on lines 3 and 5: using, namespace, and int. The word
double, which appears on line 7, is also a C++ key word. These words, which are always
written in lowercase, each have a special meaning in C++ and can only be used for their
intended purposes. As you will see, the programmer is allowed to make up his or her own
names for certain things in a program. Key words, however, are reserved and cannot be
used for anything other than their designated purposes. Part of learning a programming
language is learning what the key words are, what they mean, and how to use them.

NOTE: The #include <iostream> statement in line 2 is a preprocessor directive.

NOTE: In C++, key words are written in all lowercase.

Programmer-Defined Identifiers

The words hours, rate, and pay that appear in the program on lines 7, 11, 15, 18, and
21 are programmer-defined identifiers. They are not part of the C++ language but rather
are names made up by the programmer. In this particular program, these are the names of
variables. As you will learn later in this chapter, variables are the names of memory loca-
tions that may hold data.

Operators
On line 18 the following code appears:
pay = hours * rate;

The = and * symbols are both operators. They perform operations on pieces of data known
as operands. The * operator multiplies its two operands, which in this example are the vari-
ables hours and rate. The = symbol is called the assignment operator. It takes the value
of the expression on the right and stores it in the variable whose name appears on the left.
In this example, the = operator stores in the pay variable the result of the hours variable
multiplied by the rate variable. In other words, the statement says, “Make the pay variable
equal to hours times rate, or “pay is assigned the value of hours times rate.”

Punctuation

Notice that lines 3, 7, 10, 11, 14, 15, 18, 21, and 22 all end with a semicolon. A semicolon
in C++ is similar to a period in English: It marks the end of a complete sentence (or state-
ment, as it is called in programming jargon). Semicolons do not appear at the end of every
line in a C++ program, however. There are rules that govern where semicolons are required

15

16

Chapter T Introduction to Computers and Programming

and where they are not. Part of learning C++ is learning where to place semicolons and
other punctuation symbols.

Lines and Statements

Often, the contents of a program are thought of in terms of lines and statements. A
“line” is just that—a single line as it appears in the body of a program. Program 1-1 is
shown with each of its lines numbered. Most of the lines contain something meaningful;
however, some of the lines are empty. The blank lines are only there to make the program
more readable.

A statement is a complete instruction that causes the computer to perform some action.
Here is the statement that appears in line 10 of Program 1-1:

cout << "How many hours did you work? ";

This statement causes the computer to display the message “How many hours did you work?”
on the screen. Statements can be a combination of key words, operators, and programmer-
defined symbols. Statements often occupy only one line in a program, but sometimes they
are spread out over more than one line.

Variables

A variable is a named storage location in the computer’s memory for holding a piece of
information. The information stored in variables may change while the program is running
(hence the name “variable”). Notice that in Program 1-1 the words hours, rate, and pay
appear in several places. All three of these are the names of variables. The hours variable is
used to store the number of hours the user has worked. The rate variable stores the user’s
hourly pay rate. The pay variable holds the result of hours multiplied by rate, which is
the user’s gross pay.

NOTE: Notice the variables in Program 1-1 have names that reflect their purpose. In
fact, it would be easy to guess what the variables were used for just by reading their
names. This is discussed further in Chapter 2.

Variables are symbolic names that represent locations in the computer’s random-access
memory (RAM). When information is stored in a variable, it is actually stored in RAM.
Assume a program has a variable named length. Figure 1-10 illustrates the way the vari-
able name represents a memory location.

Figure 1-10

] 2]

B] 5] [9]

4]
JfJ
4]

2] & [«
B & 2
& & I
Bl] [=]
Bl 2] []

3]
1] 12| 13
21] 22| B

72
h

length

1.5 Input, Processing, and Output 17

In Figure 1-10, the variable 1length is holding the value 72. The number 72 is actually stored
in RAM at address 23, but the name length symbolically represents this storage location. If it
helps, you can think of a variable as a box that holds information. In Figure 1-10, the number
72 is stored in the box named length. Only one item may be stored in the box at any given
time. If the program stores another value in the box, it will take the place of the number 72.

Variable Definitions

In programming, there are two general types of data: numbers and characters. Numbers
are used to perform mathematical operations, and characters are used to print data on the
screen Or On paper.

Numeric data can be categorized even further. For instance, the following are all whole
numbers, or integers:

5

7
-129
32154

The following are real, or floating-point numbers:

3.14159
6.7
1.0002

When creating a variable in a C++ program, you must know what type of data the program
will be storing in it. Look at line 7 of Program 1-1:

double hours, rate, pay;

The word double in this statement indicates that the variables hours, rate, and pay will
be used to hold double precision floating-point numbers. This statement is called a variable
definition. It is used to define one or more variables that will be used in the program and
to indicate the type of data they will hold. The variable definition causes the variables to be
created in memory, so all variables must be defined before they can be used. If you review
the listing of Program 1-1, you will see that the variable definitions come before any other
statements using those variables.

O NOTE: Programmers often use the term “variable declaration” to mean the same thing

as “variable definition.” Strictly speaking, there is a difference between the two terms.
A definition statement always causes a variable to be created in memory. Some types of
declaration statements, however, do not cause a variable to be created in memory. You
will learn more about declarations later in this book.

—
1.5 Input, Processing, and Output

1 CONCEPT: The three primary activities of a program are input, processing, and output.

Computer programs typically perform a three-step process of gathering input, performing
some process on the information gathered, and then producing output. Input is information

18

Chapter T Introduction to Computers and Programming

X

a program collects from the outside world. It can be sent to the program from the user, who
is entering data at the keyboard or using the mouse. It can also be read from disk files or
hardware devices connected to the computer. Program 1-1 allows the user to enter two pieces
of information: the number of hours worked and the hourly pay rate. Lines 11 and 15 use
the cin (pronounced “see in”) object to perform these input operations:

cin >> hours;
cin >> rate;

Once information is gathered from the outside world, a program usually processes it in
some manner. In Program 1-1, the hours worked and hourly pay rate are multiplied in line
18 and the result is assigned to the pay variable:

pay = hours * rate;

Output is information that a program sends to the outside world. It can be words or graph-
ics displayed on a screen, a report sent to the printer, data stored in a file, or information
sent to any device connected to the computer. Lines 10, 14, and 21 in Program 1-1 all
perform output:

cout << "How many hours did you work? ";
cout << "How much do you get paid per hour? ";
cout << "You have earned $" << pay << endl;

These lines use the cout (pronounced “see out”) object to display messages on the com-
p] play g
puter’s screen. You will learn more details about the cin and cout objects in Chapter 2.

Checkpoint

1.18 Describe the difference between a key word and a programmer-defined identifier.
1.19 Describe the difference between operators and punctuation symbols.

1.20 Describe the difference between a program line and a statement.

1.21 Why are variables called “variable”?

1.22 What happens to a variable’s current contents when a new value is stored there?
1.23 What must take place in a program before a variable is used?

1.24 What are the three primary activities of a program?

The Programming Process

CONCEPT: The programming process consists of several steps, which include design,
creation, testing, and debugging activities.

Designing and Creating a Program

Now that you have been introduced to what a program is, it’s time to consider the process
of creating a program. Quite often, when inexperienced students are given programming
assignments, they have trouble getting started because they don’t know what to do first. If
you find yourself in this dilemma, the steps listed in Figure 1-11 may help. These are the
steps recommended for the process of writing a program.

1.6 The Programming Process 19

Figure 1-11

—_

Clearly define what the program is to do.

Visualize the program running on the computer.

3. Use design tools such as a hierarchy chart, flowcharts,

or pseudocode to create a model of the program.

Check the model for logical errors.

5. Type the code, save it, and compile it.

6. Correct any errors found during compilation. Repeat
Steps 5 and 6 as many times as necessary.

7. Run the program with test data for input.

8. Correct any errors found while running the program.
Repeat Steps 5 through 8 as many times as necessary.

9. \Validate the results of the program.

A

E

The steps listed in Figure 1-11 emphasize the importance of planning. Just as there are
good ways and bad ways to paint a house, there are good ways and bad ways to create a
program. A good program always begins with planning.

With the pay-calculating program as our example, let’s look at each of the steps in more
detail.

1. Clearly define what the program is to do.

This step requires that you identify the purpose of the program, the information that is
to be input, the processing that is to take place, and the desired output. Let’s examine
each of these requirements for the example program:

Purpose To calculate the user’s gross pay.
Input Number of hours worked, hourly pay rate.
Process Multiply number of hours worked by hourly pay rate. The result is the

user’s gross pay.
Output Display a message indicating the user’s gross pay.

2. Visualize the program running on the computer.

Before you create a program on the computer, you should first create it in your mind.
Step 2 is the visualization of the program. Try to imagine what the computer screen
looks like while the program is running. If it helps, draw pictures of the screen, with
sample input and output, at various points in the program. For instance, here is the
screen produced by the pay-calculating program:

How many hours did you work? 10
How much do you get paid per hour? 15
You have earned $150

In this step, you must put yourself in the shoes of the user. What messages should the
program display? What questions should it ask? By addressing these concerns, you will
have already determined most of the program’s output.

20 Chapter 1

Introduction to Computers and Programming

3. Use design tools such as a hierarchy chart, flowcharts, or pseudocode to create a model
of the program.

While planning a program, the programmer uses one or more design tools to create a
model of the program. Three common design tools are hierarchy charts, flowcharts,
and pseudocode. A hierarchy chart is a diagram that graphically depicts the structure
of a program. It has boxes that represent each step in the program. The boxes are con-
nected in a way that illustrates their relationship to one another. Figure 1-12 shows a
hierarchy chart for the pay-calculating program.

Figure 1-12

D

VideoNote
Introduction to
Flowcharting

D

VideoNote
Designing a
Program with
Pseudocode

Calculate
Gross Pay

Multiply Hours
Worked by
Pay Rate

Get Payroll Data
from User

Display
Gross Pay

Read Number of
Hours Worked

Read Hourly
Pay Rate

A hierarchy chart begins with the overall task and then refines it into smaller subtasks. Each
of the subtasks is then refined into even smaller sets of subtasks, until each is small enough
to be easily performed. For instance, in Figure 1-12, the overall task “Calculate Gross Pay”
is listed in the top-level box. That task is broken into three subtasks. The first subtask, “Get
Payroll Data from User,” is broken further into two subtasks. This process of “divide and
conquer” is known as top-down design.

A flowchart is a diagram that shows the logical flow of a program. It is a useful tool for
planning each operation a program performs and the order in which the operations are to
occur. For more information see Appendix D, Introduction to Flowcharting.

Pseudocode is a cross between human language and a programming language. Although
the computer can’t understand pseudocode, programmers often find it helpful to write an
algorithm in a language that’s “almost” a programming language, but still very similar
to natural language. For example, here is pseudocode that describes the pay-calculating
program:

Get payroll data.
Calculate gross pay.
Display gross pay.

Although the pseudocode above gives a broad view of the program, it doesn’t reveal all the
program’s details. A more detailed version of the pseudocode follows.

1.6 The Programming Process

Display “How many hours did you work?”.

Input hours.

Display “How much do you get paid per hour?”.
Input rate.

Store the value of hours times rate in the pay variable.
Display the value in the pay variable.

Notice the pseudocode contains statements that look more like commands than the
English statements that describe the algorithm in Section 1.4 (What Is a Program Made
of?). The pseudocode even names variables and describes mathematical operations.

4. Check the model for logical errors.

Logical errors are mistakes that cause the program to produce erroneous results. Once
a hierarchy chart, flowchart, or pseudocode model of the program is assembled, it
should be checked for these errors. The programmer should trace through the charts
or pseudocode, checking the logic of each step. If an error is found, the model can be
corrected before the next step is attempted.

5. Type the code, save it, and compile it.

Once a model of the program (hierarchy chart, flowchart, or pseudocode) has been
created, checked, and corrected, the programmer is ready to write source code on the
computer. The programmer saves the source code to a file and begins the process of
translating it to machine language. During this step the compiler will find any syntax
errors that may exist in the program.

6. Correct any errors found during compilation. Repeat Steps 5 and 6 as many times as
necessary.

If the compiler reports any errors, they must be corrected. Steps 5 and 6 must be
repeated until the program is free of compile-time errors.

7. Run the program with test data for input.

Once an executable file is generated, the program is ready to be tested for run-time
errors. A run-time error is an error that occurs while the program is running. These are
usually logical errors, such as mathematical mistakes.

Testing for run-time errors requires that the program be executed with sample data or
sample input. The sample data should be such that the correct output can be predicted.
If the program does not produce the correct output, a logical error is present in the
program.

8. Correct any errors found while running the program. Repeat Steps 5 through 8 as many
times as necessary.

When run-time errors are found in a program, they must be corrected. You must identify
the step where the error occurred and determine the cause. Desk-checking is a process
that can help locate run-time errors. The term desk-checking means the programmer
starts reading the program, or a portion of the program, and steps through each state-
ment. A sheet of paper is often used in this process to jot down the current contents of
all variables and sketch what the screen looks like after each output operation. When a
variable’s contents change, or information is displayed on the screen, this is noted. By
stepping through each statement, many errors can be located and corrected. If an error
is a result of incorrect logic (such as an improperly stated math formula), you must correct
the statement or statements involved in the logic. If an error is due to an incomplete

21

22

Chapter T Introduction to Computers and Programming

13

understanding of the program requirements, then you must restate the program purpose
and modify the hierarchy and/or flowcharts, pseudocode, and source code. The program
must then be saved, recompiled and retested. This means Steps 5 though 8 must be
repeated until the program reliably produces satisfactory results.

9. Validate the results of the program.

When you believe you have corrected all the run-time errors, enter test data and deter-
mine whether the program solves the original problem.

What Is Software Engineering?

The field of software engineering encompasses the whole process of crafting computer
software. It includes designing, writing, testing, debugging, documenting, modifying, and
maintaining complex software development projects. Like traditional engineers, software
engineers use a number of tools in their craft. Here are a few examples:

e Program specifications

e Charts and diagrams of screen output

e Hierarchy charts and flowcharts

e Pseudocode

e Examples of expected input and desired output
® Special software designed for testing programs

Most commercial software applications are very large. In many instances one or more
teams of programmers, not a single individual, develop them. It is important that the pro-
gram requirements be thoroughly analyzed and divided into subtasks that are handled by
individual teams, or individuals within a team.

In Step 3 of the programming process, you were introduced to the hierarchy chart as a
tool for top-down design. The subtasks that are identified in a top-down design can easily
become modules, or separate components of a program. If the program is very large or
complex, a team of software engineers can be assigned to work on the individual modules.
As the project develops, the modules are coordinated to finally become a single software
application.

Procedural and Object-Oriented Programming

CONCEPT: Procedural programming and object-oriented programming are two ways
of thinking about software development and program design.

C++ is a language that can be used for two methods of writing computer programs: proce-
dural programming and object-oriented programming. This book is designed to teach you
some of both.

In procedural programming, the programmer constructs procedures (or functions, as they
are called in C++). The procedures are collections of programming statements that perform
a specific task. The procedures each contain their own variables and commonly share vari-
ables with other procedures. This is illustrated by Figure 1-13.

1.7 Procedural and Object-Oriented Programming 23

Figure 1-13

Program

PROCEDURE A
Variables
Programming

END OF PROCEDURE A

PROCEDURE B
Variables
Programming

END OF PROCEDURE B

Procedural programming is centered on the procedure, or function. Object-oriented pro-
gramming (OOP), on the other hand, is centered on the object. An object is a programming
element that contains data and the procedures that operate on the data. It is a self-contained
unit. This is illustrated in Figure 1-14.

Figure 1-14

Program
Object A Object B Object C
Variables Variables Variables
PROCEDURE A PROCEDURE A PROCEDURE A
Variables Variables Variables

Programming
END OF PROCEDURE A

Programming
END OF PROCEDURE A

Programming
END OF PROCEDURE A

PROCEDURE B
Variables
Programming

END OF PROCEDURE B

PROCEDURE B
Variables
Programming

END OF PROCEDURE B

PROCEDURE B
Variables
Programming

END OF PROCEDURE B

The objects contain, within themselves, both information and the ability to manipulate the
information. Operations are carried out on the information in an object by sending the
object a message. When an object receives a message instructing it to perform some opera-
tion, it carries out the instruction. As you study this text, you will encounter many other
aspects of object-oriented programming.

Checkpoint
1.25 What four items should you identify when defining what a program is to do?

1.26 What does it mean to “visualize a program running”? What is the value of such
an activity?

1.27 What is a hierarchy chart?
1.28 Describe the process of desk-checking.

24

Chapter T Introduction to Computers and Programming

1.29
1.30
1.31

1.32
1.33

Describe what a compiler does with a program’s source code.
What is a run-time error?

Is a syntax error (such as misspelling a key word) found by the compiler or when
the program is running?

What is the purpose of testing a program with sample data or input?

Briefly describe the difference between procedural and object-oriented programming.

Review Questions and Exercises
Short Answer

1.

Both main memory and secondary storage are types of memory. Describe the differ-
ence between the two.

2. What is the difference between system software and application software?

What type of software controls the internal operations of the computer’s hardware?

4. Why must programs written in a high-level language be translated into machine lan-

S.
6.
7.

Fill-

8.
9.

10.
11.
12.
13.
14.

15.
16.
17.
18.

19.
20.
21.

guage before they can be run?
Why is it easier to write a program in a high-level language than in machine language?
Explain the difference between an object file and an executable file.

What is the difference between a syntax error and a logical error?

in-the-Blank
Computers can do many different jobs because they can be

The job of the is to fetch instructions, carry out the operations com-
manded by the instructions, and produce some outcome or resultant information.

Internally, the CPU consists of the and the
A(n) is an example of a secondary storage device.

The two general categories of software are and

A program is a set of

Since computers can’t be programmed in natural human language, algorithms must
be written in a(n) language.

is the only language computers really process.
languages are close to the level of humans in terms of readability.
languages are close to the level of the computer.

A program’s ability to run on several different types of computer systems is called

Words that have special meaning in a programming language are called
Words or names defined by the programmer are called

are characters or symbols that perform operations on one or more
operands.

>

VideoNote
Designing
the Account
Balance
Program

22.

23.
24.
25.
26.
27.
28.
29.

Review Questions and Exercises

characters or symbols mark the beginning or ending of programming
statements, or separate items in a list.

The rules that must be followed when constructing a program are called

A(n) is a named storage location.
A variable must be before it can be used in a program.
The three primary activities of a program are : ,and
is information a program gathers from the outside world.
is information a program sends to the outside world.
A(n) is a diagram that graphically illustrates the structure of a program.

Algorithm Workbench

Draw hierarchy charts or flowcharts that depict the programs described below. (See
Appendix D for instructions on creating flowcharts.)

30.

31.

32.

Available Credit

The following steps should be followed in a program that calculates a customer’s
available credit:

1. Display the message “Enter the customer’s maximum credit.”
Wiait for the user to enter the customer’s maximum credit.
Display the message “Enter the amount of credit used by the customer.”

Wait for the user to enter the customer’s credit used.

@ @

Subtract the used credit from the maximum credit to get the customer’s available
credit.

6. Display a message that shows the customer’s available credit.
Sales Tax

Design a hierarchy chart or flowchart for a program that calculates the total of a
retail sale. The program should ask the user for:

— The retail price of the item being purchased

— The sales tax rate

Once these items have been entered, the program should calculate and display:
— The sales tax for the purchase
— The total of the sale

Account Balance

Design a hierarchy chart or flowchart for a program that calculates the current
balance in a savings account. The program must ask the user for:

— The starting balance

— The total dollar amount of deposits made

— The total dollar amount of withdrawals made

— The monthly interest rate

Once the program calculates the current balance, it should be displayed on the screen.

25

26 Chapter 1 Introduction to Computers and Programming

Predict the Result

Questions 33-35 are programs expressed as English statements. What would each display
on the screen if they were actual programs?

j 33. The variable x starts with the value 0.
_ The variable y starts with the value 5.
VideoNote

Predicting Add 1 to x.

the Result of Add 1 to y.

Problem 33

Add x and y, and store the result in y.
Display the value in y on the screen.

34. The variable j starts with the value 10.
The variable k starts with the value 2.
The variable 1 starts with the value 4.
Store the value of j times k in j.

Store the value of k times 1 in 1.
Add j and 1, and store the result in k.
Display the value in k on the screen.

35. The variable a starts with the value 1.
The variable b starts with the value 10.
The variable c starts with the value 100.
The variable x starts with the value 0.
Store the value of ¢ times 3 in x.
Add the value of b times 6 to the value already in x.
Add the value of a times 5 to the value already in x.
Display the value in x on the screen.

Find the Error

36. The following pseudocode algorithm has an error. The program is supposed to ask
the user for the length and width of a rectangular room, and then display the room’s
area. The program must multiply the width by the length in order to determine the
area. Find the error.

area = width X length.

Display “What is the room’s width?”.
Input width.

Display “What is the room’s length?”.
Input length.

Display area.

Introduction to C++

o
(NH]
—
oo
<
I
)

2.1 The Parts of a C++ Program 2.11 Determining the Size
2.2 The cout Obiject of a Data Type

2.3 The #include Directive 2.12 Variable Assignments
2.4 Variables and Literals and Initialization

2.5 Identifiers 2.13 Scope

2.6 Integer Data Types 2.14 Arithmetic Operators
2.7 The char Data Type 2.15 Comments

2.8 The C++ string Class 2.16 Named Constants
2.9 Floating-Point Data Types 2.17 Programming Style
2.10 The bool Data Type

The Parts of a C++ Program

CONCEPT: C++ programs have parts and components that serve specific purposes.

Every C++ program has an anatomy. Unlike human anatomy, the parts of C++ programs
are not always in the same place. Nevertheless, the parts are there, and your first step in
learning C++ is to learn what they are. We will begin by looking at Program 2-1.

Let’s examine the program line by line. Here’s the first line:
// A simple C++ program

The // marks the beginning of a comment. The compiler ignores everything from the
double slash to the end of the line. That means you can type anything you want on that line
and the compiler will never complain! Although comments are not required, they are very
important to programmers. Most programs are much more complicated than the example
in Program 2-1, and comments help explain what’s going on.

27

28

Chapter 2 Introduction to C++

Program 2-1

// A simple C++ program
#include <iostream>
using namespace std;

int main()

{
cout << "Programming is great fun!";
return 0;

}

The output of the program is shown below. This is what appears on the screen when the program runs.

Program Output

Programming is great fun!

Line 2 looks like this:

#include <iostream>

Because this line starts with a #, it is called a preprocessor directive. The preprocessor reads
your program before it is compiled and only executes those lines beginning with a # symbol.
Think of the preprocessor as a program that “sets up” your source code for the compiler.

The #include directive causes the preprocessor to include the contents of another file in
the program. The word inside the brackets, iostream, is the name of the file that is to be
included. The iostream file contains code that allows a C++ program to display output
on the screen and read input from the keyboard. Because this program uses cout to dis-
play screen output, the iostream file must be included. The contents of the iostream file
are included in the program at the point the #include statement appears. The iostream
file is called a header file, so it should be included at the head, or top, of the program.

Line 3 reads:
using namespace std;

Programs usually contain several items with unique names. In this chapter you will learn
to create variables. In Chapter 6 you will learn to create functions. In Chapter 13 you will
learn to create objects. Variables, functions, and objects are examples of program entities
that must have names. C++ uses namespaces to organize the names of program entities.
The statement using namespace std; declares that the program will be accessing entities
whose names are part of the namespace called std. (Yes, even namespaces have names.)
The reason the program needs access to the std namespace is because every name created
by the iostrean file is part of that namespace. In order for a program to use the entities
in iostream, it must have access to the std namespace.

Line 5 reads:
int main()

This marks the beginning of a function. A function can be thought of as a group of one or
more programming statements that collectively has a name. The name of this function is
main, and the set of parentheses that follows the name indicate that it is a function. The

2.1 The Parts of a C++ Program 29

word int stands for “integer.” It indicates that the function sends an integer value back to
the operating system when it is finished executing.

Although most C++ programs have more than one function, every C++ program must have a
function called main. It is the starting point of the program. If you are ever reading someone
else’s C++ program and want to find where it starts, just look for the function named main.

NOTE: C++isa case-sensitive language. That means it regards uppercase letters as being
entirely different characters than their lowercase counterparts. In C++, the name of the
function main must be written in all lowercase letters. C++ doesn’t see “Main” the same
as “main,” or “INT” the same as “int.” This is true for all the C++ key words.

Line 6 contains a single, solitary character:

{

This is called a left-brace, or an opening brace, and it is associated with the beginning of the
function main. All the statements that make up a function are enclosed in a set of braces.
If you look at the third line down from the opening brace you’ll see the closing brace.
Everything between the two braces is the contents of the function main.

WARNING! Make sure you have a closing brace for every opening brace in your
program!

After the opening brace you see the following statement in line 7:
cout << "Programming is great fun!";

To put it simply, this line displays a message on the screen. You will read more about cout
and the << operator later in this chapter. The message “Programming is great fun!” is
printed without the quotation marks. In programming terms, the group of characters inside
the quotation marks is called a string literal or string constant.

NOTE: This is the only line in the program that causes anything to be printed on the
screen. The other lines, like #include <iostream>and int main(), are necessary for
the framework of your program, but they do not cause any screen output. Remember,
a program is a set of instructions for the computer. If something is to be displayed on
the screen, you must use a programming statement for that purpose.

At the end of the line is a semicolon. Just as a period marks the end of a sentence, a semi-
colon marks the end of a complete statement in C++. Comments are ignored by the com-
piler, so the semicolon isn’t required at the end of a comment. Preprocessor directives, like
#include statements, simply end at the end of the line and never require semicolons. The
beginning of a function, like int main(), is not a complete statement, so you don’t place
a semicolon there either.

It might seem that the rules for where to put a semicolon are not clear at all. Rather than
worry about it now, just concentrate on learning the parts of a program. You’ll soon get a
feel for where you should and should not use semicolons.

30

Chapter 2

Introduction to C++

Line 8 reads:

return 0;

This sends the integer value 0 back to the operating system upon the program’s completion.
The value 0 usually indicates that a program executed successfully.

Line 9 contains the closing brace:

}

This brace marks the end of the main function. Since main is the only function in this program,
it also marks the end of the program.

In the sample program you encountered several sets of special characters. Table 2-1 provides
a short summary of how they were used.

Table 2-1 Special Characters
Character Name Description
// Double slash Marks the beginning of a comment.
Pound sign Marks the beginning of a preprocessor directive.
< > Opening and closing brackets Encloses a filename when used with the
#include directive.
() Opening and closing parentheses Used in naming a function, as in int main()
{1} Opening and closing braces Encloses a group of statements, such as the
contents of a function.
"o Opening and closing quotation Encloses a string of characters, such as a message
marks that is to be printed on the screen.
; Semicolon Marks the end of a complete programming
statement.
Checkpoint
2.1 The following C++ program will not compile because the lines have been mixed
up.
int main()
}

// A crazy mixed up program

return 0;
#include <iostream>

cout << "In 1492 Columbus sailed the ocean blue.";

{

using namespace std;

When the lines are properly arranged the program should display the following

on the screen:

In 1492 Columbus sailed the ocean blue.

Rearrange the lines in the correct order. Test the program by entering it on the
computer, compiling it, and running it.

|

2.2 The cout Object

22 The cout Object

1 CONCEPT: Use the cout object to display information on the computer’s screen.

In this section you will learn to write programs that produce output on the screen. The
simplest type of screen output that a program can display is console output, which is merely
plain text. The word console is an old computer term. It comes from the days when a
computer operator interacted with the system by typing on a terminal. The terminal, which
consisted of a simple screen and keyboard, was known as the console.

On modern computers, running graphical operating systems such as Windows or Mac OS
X, console output is usually displayed in a window such as the one shown in Figure 2-1. In
C++ you use the cout object to produce console output. (You can think of the word cout
as meaning console output.)

Figure 2-1 A Console Window

D

VideoNote
Using cout

C:\WINDOWS\system32\c

This program calculates the area of a circle.
What is the radius of the circle? 10

The area is 314.159

Press any key to continue . . .

cout is classified as a stream object, which means it works with streams of data. To print
a message on the screen, you send a stream of characters to cout. Let’s look at line 7 from
Program 2-1:

cout << "Programming is great fun!";

Notice that the << operator is used to send the string “Programming is great fun!” to cout.
When the << symbol is used this way, it is called the stream insertion operator. The item
immediately to the right of the operator is sent to cout and then displayed on the screen.

The stream insertion operator is always written as two less-than signs with no space
between them. Because you are using it to send a stream of data to the cout object, you
can think of the stream insertion operator as an arrow that must point toward cout. This
is illustrated in Figure 2-2.

Program 2-2 is another way to write the same program.

31

32 Chapter 2 Introduction to C++

Figure 2-2
cout << "Programming is great fun!";
Think of the stream insertion operator as an
arrow that points toward cout.
cout <-— "Programming is great fun!";
Program 2-2

// A simple C++ program
#include <iostream>
using namespace std;

int main()

{
cout << "Programming is " << "great fun!";
return 0;

Program Output

Programming is great fun!

As you can see, the stream-insertion operator can be used to send more than one item to
cout. The output of this program is identical to that of Program 2-1. Program 2-3 shows
yet another way to accomplish the same thing.

Program 2-3
// A simple C++ program
#include <iostream>

using namespace std;

int main()

{
cout << "Programming is ";
cout << "great fun!";
return 0;

¥

Program Output

Programming is great fun!

An important concept to understand about Program 2-3 is that, although the output is
broken up into two programming statements, this program will still display the message on
a single line. Unless you specify otherwise, the information you send to cout is displayed in
a continuous stream. Sometimes this can produce less-than-desirable results. Program 2-4
is an example.

The layout of the actual output looks nothing like the arrangement of the strings in the source
code. First, notice there is no space displayed between the words “sellers” and “during,” or

2.2 The cout Object

between “June:” and “Computer.” cout displays messages exactly as they are sent. If spaces
are to be displayed, they must appear in the strings.

Program 2-4
// An unruly printing program
#include <iostream>

using namespace std;

int main()

{
cout << "The following items were top sellers";
cout << "during the month of June:";
cout << "Computer games";
cout << "Coffee";
cout << "Aspirin";
return 0;
}

Program Output
The following items were top sellersduring the month of June:Computer
gamesCoffeeAspirin

Second, even though the output is broken into five lines in the source code, it comes out
as one long line of output. Because the output is too long to fit on one line on the screen,
it wraps around to a second line when displayed. The reason the output comes out as one
long line is because cout does not start a new line unless told to do so. There are two ways
to instruct cout to start a new line. The first is to send cout a stream manipulator called
endl (which is pronounced “end-line” or “end-L”). Program 2-5 is an example.

Program 2-5
// A well-adjusted printing program
#include <iostream>

using namespace std;

int main()

{
cout << "The following items were top sellers" << endl;
cout << "during the month of June:" << endl;
cout << "Computer games" << endl;
cout << "Coffee" << endl;
cout << "Aspirin" << endl;
return 0;
}

Program Output

The following items were top sellers
during the month of June:

Computer games

Coffee

Aspirin

34

Chapter 2 Introduction to C++

<&

NOTE: The last character in endl is the lowercase letter L, #ot the number one.

Every time cout encounters an endl stream manipulator it advances the output to the
beginning of the next line for subsequent printing. The manipulator can be inserted any-
where in the stream of characters sent to cout, outside the double quotes. The following
statements show an example.

cout << "My pets are" << endl << "dog";
cout << endl << "cat" << endl << "bird" << endl;

Another way to cause cout to go to a new line is to insert an escape sequence in the string
itself. An escape sequence starts with the backslash character (\) and is followed by one or
more control characters. It allows you to control the way output is displayed by embedding
commands within the string itself. Program 2-6 is an example.

Program 2-6

// Yet another well-adjusted printing program
#include <iostream>
using namespace std;

int main()

{
cout << "The following items were top sellers\n";
cout << "during the month of June:\n";
cout << "Computer games\nCoffee";
cout << "\nAspirin\n";
return 0;
}

Program Output

The following items were top sellers
during the month of June:

Computer games

Coffee

Aspirin

The newline escape sequence is \n. When cout encounters \n in a string, it doesn’t print it
on the screen, but interprets it as a special command to advance the output cursor to the
next line. You have probably noticed inserting the escape sequence requires less typing than
inserting endl. That’s why many programmers prefer it.

A common mistake made by beginning C++ students is to use a forward slash (/) instead of
a backslash (\) when trying to write an escape sequence. This will not work. For example,
look at the following code.

// Error!
cout << "Four Score/nAnd seven/nYears ago./n";

2.2 The cout Object 35

In this code, the programmer accidentally wrote /n when he or she meant to write \n. The
cout object will simply display the /n characters on the screen. This code will display the
following output:

Four Score/nAnd seven/nYears ago./n

Another common mistake is to forget to put the \n inside quotation marks. For example,
the following code will not compile.

// Error! This code will not compile.
cout << "Good" << \n;
cout << "Morning" << \nj;

This code will result in an error because the \n sequences are not inside quotation marks.
We can correct the code by placing the \n sequences inside the string literals, as shown here:

// This will work.
cout << "Good\n";
cout << "Morning\n";

There are many escape sequences in C++. They give you the ability to exercise greater
control over the way information is output by your program. Table 2-2 lists a few of them.

Table 2-2 Common Escape Sequences

Escape

Sequence Name Description

\n Newline Causes the cursor to go to the next line for subsequent printing.

\t Horizontal tab Causes the cursor to skip over to the next tab stop.

\a Alarm Causes the computer to beep.

\b Backspace Causes the cursor to back up, or move left one position.

\r Return Causes the cursor to go to the beginning of the current line, not
the next line.

\\ Backslash Causes a backslash to be printed.

\! Single quote Causes a single quotation mark to be printed.

\" Double quote ~ Causes a double quotation mark to be printed.

W

WARNING! When using escape sequences, do not put a space between the backslash
and the control character.

When you type an escape sequence in a string, you type two characters (a backslash fol-
lowed by another character). However, an escape sequence is stored in memory as a single
character. For example, consider the following string literal:

"One\nTwo\nThree\n"

The diagram in Figure 2-3 breaks this string into its individual characters. Notice how each
of the \n escape sequences are considered one character.

Figure 2-3

P[] T)T e)ln)

36

Chapter 2 Introduction to C++

= |
23

The #include Directive

1 CONCEPT: The #include directive causes the contents of another file to be inserted

into the program.

Now is a good time to expand our discussion of the #include directive. The following line
has appeared near the top of every example program.

#include <iostream>

The header file iostream must be included in any program that uses the cout object. This
is because cout is not part of the “core” of the C++ language. Specifically, it is part of the
input—output stream library. The header file, iostream, contains information describing
iostream objects. Without it, the compiler will not know how to properly compile a pro-
gram that uses cout.

Preprocessor directives are not C++ statements. They are commands to the preprocessor,
which runs prior to the compiler (hence the name “preprocessor”). The preprocessor’s job
is to set programs up in a way that makes life easier for the programmer.

For example, any program that uses the cout object must contain the extensive setup
information found in iostream. The programmer could type all this information into
the program, but it would be too time consuming. An alternative would be to use an edi-
tor to “cut and paste” the information into the program, but that would quickly become
tiring as well. The solution is to let the preprocessor insert the contents of iostream
automatically.

WARNING! Do not put semicolons at the end of processor directives. Because pre-
processor directives are not C++ statements, they do not require semicolons. In many
cases an error will result from a preprocessor directive terminated with a semicolon.

An #include directive must always contain the name of a file. The preprocessor inserts the
entire contents of the file into the program at the point it encounters the #include direc-
tive. The compiler doesn’t actually see the #include directive. Instead it sees the code that
was inserted by the preprocessor, just as if the programmer had typed it there.

The code contained in header files is C++ code. Typically it describes complex objects like
cout. Later you will learn to create your own header files.

Checkpoint
2.2 The following C++ program will not compile because the lines have been mixed up.

cout << "Success\n";
cout << " Success\n\n";
int main()

cout << "Success";

}

>

VideoNote
Variabe
Definitions

2.4 Variables and Literals

using namespace std;
// It's a mad, mad program
#include <iostream>
cout << "Success\n";

{

return 0;

When the lines are properly arranged the program should display the following
on the screen:

Program Output
Success
Success Success

Success

Rearrange the lines in the correct order. Test the program by entering it on the
computer, compiling it, and running it.

2.3 Study the following program and show what it will print on the screen.

// The Works of Wolfgang
#include <iostream>
using namespace std;

int main()

{
cout << "The works of Wolfgang\ninclude the following";
cout << "\nThe Turkish March" << endl;
cout << "and Symphony No. 40 ";
cout << "in G minor." << endl;
return 0;

}

2.4 On paper, write a program that will display your name on the first line, your street

address on the second line, your city, state, and ZIP code on the third line, and
your telephone number on the fourth line. Place a comment with today’s date at
the top of the program. Test your program by entering, compiling, and running it.

Variables and Literals

CONCEPT: Variables represent storage locations in the computer’s memory. Literals
are constant values that are assigned to variables.

As you discovered in Chapter 1, variables allow you to store and work with data in the com-
puter’s memory. They provide an “interface” to RAM. Part of the job of programming is to
determine how many variables a program will need and what types of information they will
hold. Program 2-7 is an example of a C++ program with a variable. Take a look at line 7:

int number;

This is called a variable definition. It tells the compiler the variable’s name and the type of
data it will hold. This line indicates the variable’s name is number. The word int stands for
integer, so number will only be used to hold integer numbers. Later in this chapter you will
learn all the types of data that C++ allows.

37

38 Chapter 2 Introduction to C++

Program 2-7
// This program has a variable.
#include <iostream>

using namespace std;

int main()

{
int number;
number = 5;
cout << "The value in number is " << number << endl;
return 0;
}

Program Output

The value in number is 5

@ NOTE: You must have a definition for every variable you intend to use in a program.
In C++, variable definitions can appear at any point in the program. Later in this chapter,
and throughout the book, you will learn the best places to define variables.

Notice that variable definitions end with a semicolon. Now look at line 9:
number = 5;

This is called an assignment. The equal sign is an operator that copies the value on its right (5)
into the variable named on its left (number). After this line executes, number will be set to 5.

O NOTE: This line does not print anything on the computer’s screen. It runs silently
behind the scenes, storing a value in RAM.

Look at line 10.
cout << "The value in number is " << number << endl;

The second item sent to cout is the variable name number. When you send a variable name
to cout it prints the variable’s contents. Notice there are no quotation marks around number.
Look at what happens in Program 2-8.

Program 2-8
// This program has a variable.
#include <iostream>
using namespace std;
int main()
{

int number;

number = 5;

2.4 Variables and Literals 39

cout << "The value in number is " << "number" << endl;
return 0;

Program Output

The value in number is number

When double quotation marks are placed around the word number it becomes a string lit-
eral and is no longer a variable name. When string literals are sent to cout they are printed
exactly as they appear inside the quotation marks. You’ve probably noticed by now that the
endl stream manipulator has no quotation marks around it, for the same reason.

Sometimes a Number Isn‘t a Number

As shown in Program 2-8, just placing quotation marks around a variable name changes
the program’s results. In fact, placing double quotation marks around anything that is not
intended to be a string literal will create an error of some type. For example, in Program
2-8 the number 5 was assigned to the variable number. It would have been incorrect to
perform the assignment this way:

number = "5";

In this line, 5 is no longer an integer, but a string literal. Because number was defined as an
integer variable, you can only store integers in it. The integer 5 and the string literal “5”
are not the same thing.

The fact that numbers can be represented as strings frequently confuses students who are
new to programming. Just remember that strings are intended for humans to read. They
are to be printed on computer screens or paper. Numbers, however, are intended primarily
for mathematical operations. You cannot perform math on strings. Before numbers can be
displayed on the screen, they must first be converted to strings. (Fortunately, cout handles
the conversion automatically when you send a number to it.)

Literals

A literal is a piece of data that is written directly into a program’s code. One of the most
common uses of literals is to assign a value to a variable. For example, in the following
statement assume that number is an int variable. The statement assigns the literal value
100 to the variable number:

number = 100;

Another common use of literals is to display something on the screen. For example, the
following statement displays the string literal “Welcome to my program.”

cout << "Welcome to my program." << endl;

Program 2-9 shows an example that uses a variable and several literals.

Program 2-9

// This program has literals and a variable.
#include <iostream>

using namespace std; (program continues)

40 Chapter 2 Introduction to C++

Program 2-9 (continued)

int main()

{
int apples;
apples = 20;
cout << "Today we sold " << apples << " bushels of apples.\n";
return 0;
¥

Program Output
Today we sold 20 bushels of apples.

Of course, the variable is apples. It is defined as an integer. Table 2-3 lists the literals found
in the program.

Table 2-3
Literal Type of Literal
20 Integer literal
"Today we sold " String literal
"bushels of apples.\n" String literal
0 Integer literal

0 NOTE: Literals are also called constants.

Checkpoint

2.5 Examine the following program.

// This program uses variables and literals.
#include <iostream>
using namespace std;
int main()
{
int little;
int big;
little = 2;
big = 2000;
cout << "The little number is " << little << endl;
cout << "The big number is " << big << endl;
return 0;

List all the variables and literals that appear in the program.

2.6 What will the following program display on the screen?

#include <iostream>
using namespace std;

int main()

cout << "The value is

{
int number;
number =
return 0;

}

|
2.5 Identifiers

"number"

<< endl;

2.5 Identifiers

1 CONCEPT: Choose variable names that indicate what the variables are used for.

An identifier is a programmer-defined name that represents some element of a program.
Variable names are examples of identifiers. You may choose your own variable names in
C++, as long as you do not use any of the C++ key words. The key words make up the
“core” of the language and have specific purposes. Table 2-4 shows a complete list of the
C++ key words. Note that they are all lowercase.

Table 2-4 The C++ Key Words

alignas const
alignof constexpr
and const_cast
and_eq continue
asm decltype
auto default
bitand delete
bitor do

bool double
break dynamic_cast
case else

catch enum

char explicit
charle_t export
char32_t extern
class false
compl float

for
friend
goto

if
inline
int

long
mutable
namespace
new
noexcept
not
not_eq
nullptr
operator
or

or_eq

private
protected
public
register
reinterpret_cast
return

short

signed

sizeof

static
static_assert
static_cast
struct

switch
template

this

thread local

throw
true

try
typedef
typeid
typename
union
unsigned
using
virtual
void
volatile
wchar t
while
Xor

Xor_eq

You should always choose names for your variables that give an indication of what the
variables are used for. You may be tempted to define variables with names like this:

int x;

The rather nondescript name, x, gives no clue as to the variable’s purpose. Here is a better

example.

int itemsOrdered;

41

42

Chapter 2 Introduction to C++

The name itemsOrdered gives anyone reading the program an idea of the variable’s use. This
way of coding helps produce self-documenting programs, which means you get an under-
standing of what the program is doing just by reading its code. Because real-world programs
usually have thousands of lines, it is important that they be as self-documenting as possible.

You probably have noticed the mixture of uppercase and lowercase letters in the name
itemsOrdered. Although all of C++’s key words must be written in lowercase, you may
use uppercase letters in variable names.

The reason the 0 in itemsOrdered is capitalized is to improve readability. Normally “items
ordered” is two words. Unfortunately you cannot have spaces in a variable name, so the
two words must be combined into one. When “items” and “ordered” are stuck together you
get a variable definition like this:

int itemsordered;

Capitalization of the first letter of the second word and succeeding words makes
itemsOrdered easier to read. It should be mentioned that this style of coding is not
required. You are free to use all lowercase letters, all uppercase letters, or any combination
of both. In fact, some programmers use the underscore character to separate words in a
variable name, as in the following.

int items_ordered;

Legal Identifiers

Regardless of which style you adopt, be consistent and make your variable names as sen-
sible as possible. Here are some specific rules that must be followed with all identifiers.

e The first character must be one of the letters a through z, A through Z, or an under-
score character (_).

o After the first character you may use the letters a through z or A through Z, the digits
0 through 9, or underscores.

e Uppercase and lowercase characters are distinct. This means ItemsOrdered is not the
same as itemsordered.

Table 2-5 lists variable names and tells whether each is legal or illegal in C++.

Table 2-5 Some Variable Names

Variable Name

Legal or Illegal?

dayOfwWeek
3dGraph
_employee_num
Junel997

Mixture#3

Legal.
Illegal. Variable names cannot begin with a digit.
Legal.
Legal.

Illegal. Variable names may only use letters, digits, or underscores.

—

2.6 Integer Data Types

1 CONCEPT: There are many different types of data. Variables are classified according

to their data type, which determines the kind of information that may be
stored in them. Integer variables can only hold whole numbers.

2.6 Integer Data Types

Computer programs collect pieces of data from the real world and manipulate them in
various ways. There are many different types of data. In the realm of numeric information,
for example, there are whole numbers and fractional numbers. There are negative numbers
and positive numbers. And there are numbers so large, and others so small, that they don’t
even have a name. Then there is textual information. Names and addresses, for instance, are
stored as groups of characters. When you write a program you must determine what types
of information it will be likely to encounter.

If you are writing a program to calculate the number of miles to a distant star, you’ll need
variables that can hold very large numbers. If you are designing software to record micro-
scopic dimensions, you’ll need to store very small and precise numbers. Additionally, if you
are writing a program that must perform thousands of intensive calculations, you’ll want
variables that can be processed quickly. The data type of a variable determines all of these
factors.

Although C++ offers many data types, in the very broadest sense there are only two: numeric
and character. Numeric data types are broken into two additional categories: integer and
floating point. Integers are whole numbers like 12, 157, -34, and 2. Floating point numbers
have a decimal point, like 23.7,189.0231, and 0.987. Additionally, the integer and floating
point data types are broken into even more classifications. Before we discuss the character
data type, let’s carefully examine the variations of numeric data.

Your primary considerations for selecting a numeric data type are

The largest and smallest numbers that may be stored in the variable
How much memory the variable uses

Whether the variable stores signed or unsigned numbers

The number of decimal places of precision the variable has

The size of a variable is the number of bytes of memory it uses. Typically, the larger a vari-
able is, the greater the range it can hold.

Table 2-6 shows the C++ integer data types with their typical sizes and ranges.

0 NOTE: The data type sizes and ranges shown in Table 2-6 are typical on many systems.
Depending on your operating system, the sizes and ranges may be different.

Table 2-6 Integer Data Types

Data Type Typical Size Typical Range

short int 2 bytes —32,768 to +32,767

unsigned short int 2 bytes 0 to +65,535

int 4 bytes —2,147,483,648 to +2,147,483,647
unsigned int 4 bytes 0 to 4,294,967,295

long int 4 bytes —2,147,483,648 to +2,147,483,647
unsigned long int 4 bytes 0 to 4,294,967,295

long long int 8 bytes —9,223,372,036,854,775,808 to

9,223,372,036,854,775,807
unsigned long long int 8 bytes 0 to 18,446,744,073,709,551,615

44

Chapter 2

W 1

Introduction to C++

Here are some examples of variable definitions:

int days;

unsigned int speed;

short int month;

unsigned short int amount;
long int deficit;

unsigned long int insects;

Each of the data types in Table 2-6, except int, can be abbreviated as follows:

short int can be abbreviated as short

unsigned short int can be abbreviated as unsigned short

unsigned int can be abbreviated as unsigned

long int can be abbreviated as long

unsigned long int can be abbreviated as unsigned long

long long int can be abbreviated as long long

unsigned long long int can be abbreviated as unsigned long long

Because they simplify definition statements, programmers commonly use the abbreviated
data type names. Here are some examples:

unsigned speed;

short month;

unsigned short amount;

long deficit;

unsigned long insects;

long long grandTotal;

unsigned long long lightYearDistance;

Unsigned data types can only store nonnegative values. They can be used when you know
your program will not encounter negative values. For example, variables that hold ages or
weights would rarely hold numbers less than 0.

Notice in Table 2-6 that the int and long data types have the same sizes and ranges, and
that the unsigned int data type has the same size and range as the unsigned long data
type. This is not always true because the size of integers is dependent on the type of system

you

are using. Here are the only guarantees:

Integers are at least as big as short integers.

Long integers are at least as big as integers.

Unsigned short integers are the same size as short integers.

Unsigned integers are the same size as integers.

Unsigned long integers are the same size as long integers.

The long long int and the unsigned long long int data types are guaranteed
to be at least 8 bytes (64 bits) in size.

Later in this chapter you will learn to use the sizeof operator to determine how large all
the data types are on your computer.

NOTE: The long long int and the unsigned long long int data types were intro-
duced in C++ 11.

2.6 Integer Data Types

As mentioned before, variables are defined by stating the data type key word followed by
the name of the variable. In Program 2-10 an integer, an unsigned integer, and a long integer
have been defined.

Program 2-10

// This program has variables of several of the integer types.
#include <iostream>
using namespace std;

int main()

{
int checking;
unsigned int miles;
long days;

checking = -20;

miles = 4276;

days = 189000;

cout << "We have made a long journey of " << miles;
cout << " miles.\n";

cout << "Our checking account balance is " << checking;
cout << "\nAbout " << days << " days ago Columbus ";
cout << "stood on this spot.\n";

return 0;

Program Output

We have made a long journey of 4276 miles.
Our checking account balance is -20
About 189000 days ago Columbus stood on this spot.

In most programs you will need more than one variable of any given data type. If a program
uses two integers, length and width, they could be defined separately, like this:

int length;
int width;

It is easier, however, to combine both variable definitions on one line:
int length, width;
You can define several variables of the same type like this, simply separating their names

with commas. Program 2-11 illustrates this.

Program 2-11

// This program shows three variables defined on the same line.
#include <iostream>
using namespace std;

int main()
(program continues)

45

46

Chapter 2 Introduction to C++

Program 2-11 (continued)

{

int floors, rooms, suites;

floors = 15;

rooms = 300;

suites = 30;

cout << "The Grande Hotel has " << floors << " floors\n";
cout << "with " << rooms << " rooms and " << suites;
cout << " suites.\n";

return 0;

Program Output

The Grande Hotel has 15 floors
with 300 rooms and 30 suites.

Integer and Long Integer Literals

In C++, if a numeric literal is an integer (not written with a decimal point) and it fits
within the range of an int (see Table 2-6 for the minimum and maximum values), then the
numeric literal is treated as an int. A numeric literal that is treated as an int is called an
integer literal. For example, look at lines 9, 10, and 11 in Program 2-11:

floors = 15;
rooms = 300;
suites = 30;

Each of these statements assigns an integer literal to a variable.

One of the pleasing characteristics of the C++ language is that it allows you to control
almost every aspect of your program. If you need to change the way something is stored in
memory, the tools are provided to do that. For example, what if you are in a situation where
you have an integer literal, but you need it to be stored in memory as a long integer? (Rest
assured, this is a situation that does arise.) C++ allows you to force an integer literal to be
stored as a long integer by placing the letter L at the end of the number. Here is an example:

long amount;
amount = 32L;

The first statement defines a long variable named amount. The second statement assigns
the literal value 32 to the amount variable. In the second statement, the literal is written as
32L, which makes it a long integer literal. This means the literal is treated as a long.

If you want an integer literal to be treated as a long long int, you can append LL at the
end of the number. Here is an example:

long long amount;
amount = 32LL;

The first statement defines a long long variable named amount. The second statement
assigns the literal value 32 to the amount variable. In the second statement, the literal is
written as 32LL, which makes it a long long integer literal. This means the literal is treated
as a long long int.

2.6 Integer Data Types

£

TIP: When writing long integer literals or long long integer literals, you can use either
an uppercase or lowercase L. Because the lowercase | looks like the number 1, you
should always use the uppercase L.

If You Plan to Continue in Computer Science:
Hexadecimal and Octal Literals

Programmers commonly express values in numbering systems other than decimal (or base
10). Hexadecimal (base 16) and octal (base 8) are popular because they make certain pro-
gramming tasks more convenient than decimal numbers do.

By default, C++ assumes that all integer literals are expressed in decimal. You express hexa-
decimal numbers by placing Ox in front of them. (This is zero-x, not oh-x.) Here is how the
hexadecimal number F4 would be expressed in C++:

0xF4

Octal numbers must be preceded by a 0 (zero, not oh). For example, the octal 31 would
be written

031

0 NOTE: You will not be writing programs for some time that require this type of

manipulation. It is important, however, that you understand this material. Good pro-
grammers should develop the skills for reading other people’s source code. You may find
yourself reading programs that use items like long integer, hexadecimal, or octal literals.

Checkpoint
) checp

2.7

2.8
2.9

2.10

Which of the following are illegal variable names, and why?

X

99bottles

july97
theSalesFigureForFiscalYear98
r&d

grade_report

Is the variable name sales the same as sales? Why or why not?

Refer to the data types listed in Table 2-6 for these questions.

A) If a variable needs to hold numbers in the range 32 to 6,000, what data type
would be best?

B) If a variable needs to hold numbers in the range —40,000 to +40,000, what
data type would be best?

C) Which of the following literals uses more memory? 20 or 20L

On any computer, which data type uses more memory, an integer or an unsigned
integer?

47

48

Chapter 2 Introduction to C++

—
2.7
|

The char Data Type

The char data type is used to store individual characters. A variable of the char data type
can hold only one character at a time. Here is an example of how you might declare a char
variable:

char letter;

This statement declares a char variable named letter, which can store one character. In
C++, character literals are enclosed in single quotation marks. Here is an example showing
how we would assign a character to the letter variable:

letter = 'qg';

This statement assigns the character 'g' to the letter variable. Because char variables
can hold only one character, they are not compatible with strings. For example, you can-
not assign a string to a char variable, even if the string contains only one character. The
following statement, for example, will not compile because it attempts to assign a string
literal to a char variable.

letter = "g"; // ERROR! Cannot assign a string to a char

It is important that you do not confuse character literals, which are enclosed in single quo-
tation marks, with string literals, which are enclosed in double quotation marks.

Program 2-12 shows an example program that works with characters.

Program 2-12

// This program works with characters.
#include <iostream>
using namespace std;

int main()

{

char letter;

letter = 'A';

cout << letter << endl;
letter = 'B';

cout << letter << endl;
return 0;

Program Output

A
B

Although the char data type is used for storing characters, it is actually an integer data type
that typically uses 1 byte of memory. (The size is system dependent. On some systems, the
char data type is larger than 1 byte.)

2.7 The char Data Type

The reason an integer data type is used to store characters is because characters are internally
represented by numbers. Each printable character, as well as many nonprintable characters,
is assigned a unique number. The most commonly used method for encoding characters is
ASCII, which stands for the American Standard Code for Information Interchange. (There
are other codes, such as EBCDIC, which is used by many IBM mainframes.)

When a character is stored in memory, it is actually the numeric code that is stored. When
the computer is instructed to print the value on the screen, it displays the character that
corresponds with the numeric code.

You may want to refer to Appendix B, which shows the ASCII character set. Notice that the
number 635 is the code for A, 66 is the code for B, and so on. Program 2-13 demonstrates
that when you work with characters, you are actually working with numbers.

Program 2-13

// This program demonstrates the close relationship between
// characters and integers.

#include <iostream>

using namespace std;

int main()

{

char letter;

letter = 65;

cout << letter << endl;
letter = 66;

cout << letter << endl;
return 0;

Program Output

A
B
Figure 2-4 illustrates that when characters, such as A, B, and C, are stored in memory, it is
really the numbers 65, 66, and 67 that are stored.
Figure 2-4

A B Cc

is stored in memory as

65 66 67

49

50

Chapter 2 Introduction to C++

Figure

The Difference Between String Literals
and Character Literals

It is important that you do not confuse character literals with string literals. Strings, which
are a series of characters stored in consecutive memory locations, can be virtually any
length. This means that there must be some way for the program to know how long a
string is. In C++ an extra byte is appended to the end of string literals when they are stored
in memory. In this last byte, the number 0 is stored. It is called the null terminator or null
character, and it marks the end of the string.

Don’t confuse the null terminator with the character '0'. If you look at Appendix B, you
will see that ASCII code 48 corresponds to the character ' 0', whereas the null terminator
is the same as the ASCII code 0. If you want to print the character 0 on the screen, you use
ASCII code 48. If you want to mark the end of a string, however, you use ASCII code 0.

Let’s look at an example of how a string literal is stored in memory. Figure 2-5 depicts the
way the string literal "Ssebastian" would be stored.

2-5

<&

s lefbfalsft]i]alflmn]w]

First, notice the quotation marks are not stored with the string. They are simply a way
of marking the beginning and end of the string in your source code. Second, notice the
very last byte of the string. It contains the null terminator, which is represented by the \0
character. The addition of this last byte means that although the string "sebastian" is 9
characters long, it occupies 10 bytes of memory.

The null terminator is another example of something that sits quietly in the background.
It doesn’t print on the screen when you display a string, but nevertheless, it is there silently
doing its job.

NOTE: C++ automatically places the null terminator at the end of string literals.

Now let’s compare the way a string and a char are stored. Suppose you have the literals
'A' and "A" in a program. Figure 2-6 depicts their internal storage.

Figure 2-6

‘A’is stored as

“A” is stored as

As you can see, 'A' is a 1-byte element and "A" is a 2-byte element. Since characters are
really stored as ASCII codes, Figure 2-7 shows what is actually being stored in memory.

2.7 The char Data Type

Figure 2-7

‘A’is stored as

“A” is stored as “

Because char variables are only large enough to hold one character, you cannot assign string
literals to them. For example, the following code defines a char variable named letter.
The character literal 'A' can be assigned to the variable, but the string literal "aA" cannot.

char letter;
letter 'A'; // This will work.
letter = "A"; // This will not work!

One final topic about characters should be discussed. You have learned that some strings
look like a single character but really aren’t. It is also possible to have a character that looks
like a string. A good example is the newline character, \n. Although it is represented by two
characters, a slash and an n, it is internally represented as one character. In fact, all escape
sequences, internally, are just 1 byte.

Program 2-14 shows the use of \n as a character literal, enclosed in single quotation marks.
If you refer to the ASCII chart in Appendix B, you will see that ASCII code 10 is the linefeed
character. This is the code C++ uses for the newline character.

Program 2-14

// This program uses character literals.
#include <iostream>
using namespace std;

int main()

{

char letter;

letter = 'A';

cout << letter << '\n'j;
letter = 'B';

cout << letter << '\n'j;
return 0;

Program Output

A
B

Let’s review some important points regarding characters and strings:

e Printable characters are internally represented by numeric codes. Most computers use
ASCII codes for this purpose.
e Characters normally occupy a single byte of memory.

51

52

Chapter 2 Introduction to C++

"V
2.8

e Strings are consecutive sequences of characters that occupy consecutive bytes of
memory.

e String literals are always stored in memory with a null terminator at the end. This
marks the end of the string.

o Character literals are enclosed in single quotation marks.

o String literals are enclosed in double quotation marks.

® Escape sequences such as '\n' are stored internally as a single character.

The C++ string Class

1 CONCEPT: Standard C++ provides a special data type for storing and working with

strings.

Because a char variable can store only one character in its memory location, another data
type is needed for a variable able to hold an entire string. Although C++ does not have a
built-in data type able to do this, standard C++ provides something called the string class
that allows the programmer to create a string type variable.

Using the string Class

The first step in using the string class is to #include the string header file. This is
accomplished with the following preprocessor directive:

#include <string>

The next step is to define a string type variable, called a string object. Defining a string
object is similar to defining a variable of a primitive type. For example, the following state-
ment defines a string object named movieTitle.

string movieTitle;
You can assign a string literal to movieTitle with the assignment operator:
movieTitle = "Wheels of Fury";

You can use cout to display the value of the movieTitle object, as shown in the next
statement:

cout << "My favorite movie is " << movieTitle << endl;

Program 2-15 is a complete program that demonstrates the preceding statements.

Program 2-15

// This program demonstrates the string class.
#include <iostream>

#include <string> // Required for the string class.
using namespace std;

2.8 The C++ string Class

int main()

{

string movieTitle;

movieTitle = "Wheels of Fury";
cout << "My favorite movie is " << movieTitle << endl;
return 0;

Program Output

My favorite movie is Wheels of Fury

As you can see, working with string objects is similar to working with variables of
other types. Throughout this text we will continue to discuss string class features
and capabilities.

Checkpoint

2.11 What are the ASCII codes for the following characters? (Refer to Appendix B)
c
F
W

2.12

2.13

2.14

2.15

2.16
2.17

Which of the following is a character literal?

"B
ng"

Assuming the char data type uses 1 byte of memory, how many bytes do the
following literals use?

o

non

"Sales"

' \n '

Write a program that has the following character variables: first, middle,
and last. Store your initials in these variables and then display them on the
screen.

What is wrong with the following program statement?
char letter = "Z";

What header file must you include in order to use string objects?

Write a program that stores your name, address, and phone number in three
separate string objects. Display the contents of the string objects on the
screen.

53

54 Chapter 2 Introduction to C++

—
2.9 Floating-Point Data Types

1 CONCEPT: Floating-point data types are used to define variables that can hold real
numbers.

Whole numbers are not adequate for many jobs. If you are writing a program that works
with dollar amounts or precise measurements, you need a data type that allows fractional
values. In programming terms, these are called floating-point numbers.

Internally, floating-point numbers are stored in a manner similar to scientific notation. Take
the number 47,281.97. In scientific notation this number is 4.728197 X 10*. (10* is equal
to 10,000, and 4.728197 X 10,000 is 47,281.97.) The first part of the number, 4.728197,
is called the mantissa. The mantissa is multiplied by a power of ten.

Computers typically use E notation to represent floating-point values. In E notation, the
number 47,281.97 would be 4.728197E4. The part of the number before the E is the man-
tissa, and the part after the E is the power of 10. When a floating point number is stored in
memory, it is stored as the mantissa and the power of 10.

Table 2-7 shows other numbers represented in scientific and E notation.

Table 2-7 Floating Point Representations

Decimal Notation Scientific Notation E Notation
247.91 2.4791 x 10? 2.4791E2
0.00072 7.2x10™ 7.2E—4
2,900,000 2.9 x10° 2.9E6

In C++ there are three data types that can represent floating-point numbers. They are

float
double
long double

The float data type is considered single precision. The double data type is usually twice
as big as float, so it is considered double precision. As you’ve probably guessed, the 1ong
double is intended to be larger than the double. Of course, the exact sizes of these data
types are dependent on the computer you are using. The only guarantees are

® A double is at least as big as a float.
* A long double is at least as big as a double.

Table 2-8 shows the sizes and ranges of floating-point data types usually found on PCs.

Table 2-8 Floating Point Data Types on PCs

Data Type Key Word Description
Single precision float 4 bytes. Numbers between +3.4E-38 and +3.4E38
Double precision double 8 bytes. Numbers between +1.7E-308 and =1.7E308

Long double precision long double 8 bytes*. Numbers between +1.7E-308 and +1.7E308

*Some compilers use 10 bytes for long doubles. This allows a range of +3.4E-4932 to +1.1E4832

2.9 Floating-Point Data Types

You will notice there are no unsigned floating point data types. On all machines, vari-
ables of the float, double, and long double data types can store positive or negative
numbers.

Floating Point Literals

Floating point literals may be expressed in a variety of ways. As shown in Program 2-16,
E notation is one method. When you are writing numbers that are extremely large or
extremely small, this will probably be the easiest way. E notation numbers may be expressed
with an uppercase E or a lowercase e. Notice that in the source code the literals were
written as 1.495979E11 and 1.989E30, but the program printed them as 1.49598e+ 011
and 1.989¢+30. The two sets of numbers are equivalent. (The plus sign in front of the
exponent is also optional.) In Chapter 3 you will learn to control the way cout displays E
notation numbers.

Program 2-16

// This program uses floating point data types.
#include <iostream>
using namespace std;

int main()

{
float distance;
double mass;

distance = 1.495979E1l1;

mass = 1.989E30;

cout << "The Sun is " << distance << " meters away.\n";
cout << "The Sun\'s mass is " << mass << " kilograms.\n";
return 0;

Program Output

The Sun is 1.49598e+011 meters away.
The Sun's mass is 1.989e+030 kilograms.

You can also express floating-point literals in decimal notation. The literal 1.495979E11
could have been written as

149597900000.00

Obviously the E notation is more convenient for lengthy numbers, but for numbers like
47.39, decimal notation is preferable to 4.739E1.

All of the following floating-point literals are equivalent:

1.4959E11
1.4959%el1
1.4959E+11
1.4959%e+11
149590000000.00

56

Chapter 2 Introduction to C++

Floating-point literals are normally stored in memory as doubles. But remember, C++ pro-
vides tools for handling just about any situation. Just in case you need to force a literal to
be stored as a float, you can append the letter F or f to the end of it. For example, the
following literals would be stored as floats:

1.2F
45.907f

NOTE: Because floating-point literals are normally stored in memory as doubles,
many compilers issue a warning message when you assign a floating-point literal to a
float variable. For example, assuming num is a £loat, the following statement might
cause the compiler to generate a warning message:

num = 14.725;

You can suppress the warning message by appending the f suffix to the floating-point
literal, as shown below:

num = 14.725f;

If you want to force a value to be stored as a long double, append an L or 1 to it, as in
the following examples:

1034.56L
89.21

The compiler won’t confuse these with long integers because they have decimal points.
(Remember, the lowercase L looks so much like the number 1 that you should always use
the uppercase L when suffixing literals.)

Assigning Floating-Point Values to Integer Variables

When a floating-point value is assigned to an integer variable, the fractional part of the
value (the part after the decimal point) is discarded. For example, look at the following
code.

int number;
number = 7.5; // Assigns 7 to number

This code attempts to assign the floating-point value 7.5 to the integer variable number. As
a result, the value 7 will be assigned to number, with the fractional part discarded. When
part of a value is discarded, it is said to be truncated.

Assigning a floating-point variable to an integer variable has the same effect. For example,
look at the following code.

int i;

float f£;

f =7.5;

i=f; // Assigns 7 to i.

2.10 The bool Data Type

When the float variable £ is assigned to the int variable i, the value being assigned (7.5)
is truncated. After this code executes i will hold the value 7 and £ will hold the value 7.5.

O NOTE: When a floating-point value is truncated, it is not rounded. Assigning the
value 7.9 to an int variable will result in the value 7 being stored in the variable.

@ WARNING! Floating-point variables can hold a much larger range of values than
integer variables can. If a floating-point value is being stored in an integer variable,
and the whole part of the value (the part before the decimal point) is too large for the
integer variable, an invalid value will be stored in the integer variable.

—
2.10) The bool Data Type

1CONCEPT: Boolean variables are set to either true or false.

Expressions that have a true or false value are called Boolean expressions, named in
honor of English mathematician George Boole (1815-1864).

The bool data type allows you to create small integer variables that are suitable for hold-
ing true or false values. Program 2-17 demonstrates the definition and assignment of a
bool variable.

Program 2-17

// This program demonstrates boolean variables.
#include <iostream>
using namespace std;

int main()
{
bool boolValue;

boolvalue = true;

cout << boolvalue << endl;
boolvalue = false;

cout << boolValue << endl;
return 0;

Program Output

1
0

As you can see from the program output, the value true is represented in memory by
the number 1, and false is represented by 0. You will not be using bool variables until

Chapter 4, however, so just remember they are useful for evaluating conditions that are
either true or false.

57

58

Chapter 2 Introduction to C++

—

2.11 Determining the Size of a Data Type

1 CONCEPT: The sizeof operator may be used to determine the size of a data type
on any system.

Chapter 1 discussed the portability of the C++ language. As you have seen in this chap-
ter, one of the problems of portability is the lack of common sizes of data types on all
machines. If you are not sure what the sizes of data types are on your computer, C++

provides a way to find out.

A special operator called sizeof will report the number of bytes of memory used by any
data type or variable. Program 2-18 illustrates its use. The first line that uses the operator

is line 10:

cout << "The size of an integer is " << sizeof(int);

The name of the data type or variable is placed inside the parentheses that follow the
operator. The operator “returns” the number of bytes used by that item. This operator
can be invoked anywhere you can use an unsigned integer, including in mathematical

operations.

Program 2-18

// This program determines the size of integers, long
// integers, and long doubles.

#include <iostream>

using namespace std;

int main()

{
long double apple;
cout << "The size of an integer is " << sizeof(int);
cout << " bytes.\n";
cout << "The size of a long integer is " << sizeof(long);
cout << " bytes.\n";
cout << "An apple can be eaten in " << sizeof(apple);
cout << " bytes!\n";
return 0;
}

Program Output

The size of an integer is 4 bytes.
The size of a long integer is 4 bytes.
An apple can be eaten in 8 bytes!

2.12 Variable Assignments and Initialization

Checkpoint
2.18 Yes or No: Is there an unsigned floating point data type? If so, what is it?

2.19 How would the following number in scientific notation be represented in E notation?

6.31 X 107

2.20 Write a program that defines an integer variable named age and a float
variable named weight. Store your age and weight, as literals, in the variables.
The program should display these values on the screen in a manner similar to
the following:

Program Output
My age is 26 and my weight is 180 pounds.

(Feel free to lie to the computer about your age and your weight—
it’ll never know!)

—
2.12) Variable Assignments and Initialization

1 CONCEPT: An assignment operation assigns, or copies, a value into a variable.
When a value is assigned to a variable as part of the variable’s definition,
it is called an initialization.

As you have already seen in several examples, a value is stored in a variable with an
assignment statement. For example, the following statement copies the value 12 into the
variable unitsSold.

unitsSold = 12;

The = symbol is called the assignment operator. Operators perform operations on data.
The data that operators work with are called operands. The assignment operator has two
operands. In the previous statement, the operands are unitsSold and 12.

In an assignment statement, C++ requires the name of the variable receiving the assign-
ment to appear on the left side of the operator. The following statement is incorrect.

12 = unitsSold; // Incorrect!

In C++ terminology, the operand on the left side of the = symbol must be an lvalue. It is
called an lvalue because it is a value that may appear on the left side of an assignment
operator. An lvalue is something that identifies a place in memory whose contents may be
changed. Most of the time this will be a variable name. The operand on the right side of
the = symbol must be an rvalue. An rvalue is any expression that has a value. The assign-
ment statement takes the value of the rvalue and puts it in the memory location of the
object identified by the lvalue.

You may also assign values to variables as part of the definition. This is called initialization.
Program 2-19 shows how it is done.

60

Chapter 2 Introduction to C++

Program 2-19

// This program shows variable initialization.
#include <iostream>
using namespace std;

int main()

{
int month = 2, days = 28;
cout << "Month " << month << " has " << days << " days.\n";
return 0;

}

Program Output
Month 2 has 28 days.

As you can see, this simplifies the program and reduces the number of statements that must
be typed by the programmer. Here are examples of other definition statements that perform
initialization.

double interestRate = 12.9;

char stockCode = 'D';
long customerNum = 459L;

Of course, there are always variations on a theme. C++ allows you to define several variables
and only initialize some of them. Here is an example of such a definition:

int flightNum = 89, travelTime, departure = 10, distance;

The variable £1ightNum is initialized to 89 and departure is initialized to 10. The variables
travelTime and distance remain uninitialized.

Declaring Variables With the auto Key Word

C++ 11 introduces an alternative way to define variables, using the auto key word and an
initialization value. Here is an example:

auto amount = 100;

Notice that this statement uses the word auto instead of a data type. The auto key word
tells the compiler to determine the variable’s data type from the initialization value. In this
example the initialization value, 100, is an int, so amount will be an int variable. Here
are other examples:

auto interestRate = 12.0;
auto stockCode = 'D';
auto customerNum = 459L;

In this code, the interestRate variable will be a double because the initialization value, 12.0,
is a double. The stockCode variable will be a char because the initialization value, 'D', is a
char. The customerNum variable will be a 1ong because the initialization value, 4591, is a 1long.

2.14 Arithmetic Operators 61

These examples show how to use the auto key word, but they don’t really show its useful-
ness. The auto key word is intended to simplify the syntax of declarations that are more
complex than the ones shown here. Later in the book, you will see examples of how the
auto key word can improve the readability of complex definition statements.

=
2.13 Scope

1 CONCEPT: A variable’s scope is the part of the program that has access to the variable.

Every variable has a scope. The scope of a variable is the part of the program where the
variable may be used. The rules that define a variable’s scope are complex, and you will
only be introduced to the concept here. In other sections of the book we will revisit this
topic and expand on it.

The first rule of scope you should learn is that a variable cannot be used in any part of the
program before the definition. Program 2-20 illustrates this.

Program 2-20
// This program can't find its variable.
#include <iostream>

using namespace std;

int main()

{
cout << value; // ERROR! value not defined yet!
int value = 100;
return 0;

}

The program will not work because line 7 attempts to send the contents of the variable
value to cout before the variable is defined. The compiler reads your program from top
to bottom. If it encounters a statement that uses a variable before the variable is defined,
an error will result. To correct the program, the variable definition must be put before any
statement that uses it.

m—
2.14 Arithmetic Operators

1 CONCEPT: There are many operators for manipulating numeric values and perform-
ing arithmetic operations.

C++ offers a multitude of operators for manipulating data. Generally, there are three types
of operators: unary, binary, and ternary. These terms reflect the number of operands an
operator requires.

62

D

VideoNote
Assignment
Statements and
Simple Math
Expressions

Chapter 2

Introduction to C++

Unary operators only require a single operand. For example, consider the following expression:
-5

Of course, we understand this represents the value negative five. The literal 5 is preceded by
the minus sign. The minus sign, when used this way, is called the negation operator. Since
it only requires one operand, it is a unary operator.

Binary operators work with two operands. The assignment operator is in this category.
Ternary operators, as you may have guessed, require three operands. C++ only has one
ternary operator, which will be discussed in Chapter 4.

Arithmetic operations are very common in programming. Table 2-9 shows the common
arithmetic operators in C++.

Table 2-9 Fundamental Arithmetic Operators

Operator Meaning Type Example
+ Addition Binary total = cost + tax;
- Subtraction Binary cost = total - tax;
* Multiplication Binary tax = cost * rate;
/ Division Binary salePrice = original / 2;
% Modulus Binary remainder = value % 3;

Each of these operators works as you probably expect. The addition operator returns the
sum of its two operands. In the following assignment statement, the variable amount will
be assigned the value 12:

amount = 4 + 8;

The subtraction operator returns the value of its right operand subtracted from its left
operand. This statement will assign the value 98 to temperature:

temperature = 112 - 14;

The multiplication operator returns the product of its two operands. In the following state-
ment, markUp is assigned the value 3:

markUp = 12 * 0.25;

The division operator returns the quotient of its left operand divided by its right operand.
In the next statement, points is assigned the value 5:

points = 100 / 20;

It is important to note that when both of the division operator’s operands are integers, the
result of the division will also be an integer. If the result has a fractional part, it will be
thrown away. We will discuss this behavior, which is known as integer division, in greater
detail later in this section.

The modulus operator, which only works with integer operands, returns the remainder of
an integer division. The following statement assigns 2 to leftOver:

leftOver = 17 % 3;

2.14 Arithmetic Operators 63

In Chapter 3 you will learn how to use these operators in more complex mathematical
formulas. For now we will concentrate on their basic usage. For example, suppose we need
to write a program that calculates and displays an employee’s total wages for the week.
The regular hours for the work week are 40, and any hours worked over 40 are considered
overtime. The employee earns $18.25 per hour for regular hours and $27.78 per hour for
overtime hours. The employee has worked 50 hours this week. The following pseudocode
algorithm shows the program’s logic.

Regular wages = base pay rate x regular hours
Overtime wages = overtime pay rate x overtime hours
Total wages = regular wages + overtime wages
Display the total wages

Program 2-21 shows the C++ code for the program.

Program 2-21
// This program calculates hourly wages, including overtime.
#include <iostream>

using namespace std;

int main()

{
double regularWages, // To hold regular wages
basePayRate = 18.25, // Base pay rate
regularHours = 40.0, // Hours worked less overtime
overtimeWages, // To hold overtime wages
overtimePayRate = 27.78, // Overtime pay rate
overtimeHours = 10, // Overtime hours worked
totalWages; // To hold total wages
// Calculate the regular wages.
regularWages = basePayRate * regularHours;
// Calculate the overtime wages.
overtimeWages = overtimePayRate * overtimeHours;
// Calculate the total wages.
totalWages = regularWages + overtimeWages;
// Display the total wages.
cout << "Wages for this week are $" << totalWages << endl;
return 0;
}

Program Output
Wages for this week are $1007.8

Let’s take a closer look at the program. As mentioned in the comments, there are variables
for regular wages, base pay rate, regular hours worked, overtime wages, overtime pay rate,
overtime hours worked, and total wages.

64

Chapter 2 Introduction to C++

Here is line 16, which multiplies basePayRate times regularHours and stores the result
In regularWages:

regularWages = basePayRate * regularHours;

Here is line 19, which multiplies overtimePayRate times overtimeHours and stores the
result in overtimeWages:

overtimeWages = overtimePayRate * overtimeHours;
Line 22 adds the regular wages and the overtime wages and stores the result in totalWwages:
totalWages = regularWages + overtimeWages;

Line 25 displays the message on the screen reporting the week’s wages.

Integer Division

When both operands of a division statement are integers, the statement will result in integer
division. This means the result of the division will be an integer as well. If there is a remain-
der, it will be discarded. For example, look at the following code:

double number;
number = 5 / 2;

This code divides 5 by 2 and assigns the result to the number variable. What will be stored
in number? You would probably assume that 2.5 would be stored in number because that is
the result your calculator shows when you divide 5 by 2. However, that is not what happens
when the previous C++ code is executed. Because the numbers 5 and 2 are both integers,
the fractional part of the result will be thrown away, or truncated. As a result, the value 2
will be assigned to the number variable.

In the previous code, it doesn’t matter that the number variable is declared as a double
because the fractional part of the result is discarded before the assignment takes place. In
order for a division operation to return a floating-point value, one of the operands must be
of a floating-point data type. For example, the previous code could be written as follows:

double number;
number = 5.0 / 2;

In this code, 5.0 is treated as a floating-point number, so the division operation will return
a floating-point number. The result of the division is 2.5.

In the Spotlight:
Calculating Percentages and Discounts

Determining percentages is a common calculation in computer programming. Although the
% symbol is used in general mathematics to indicate a percentage, most programming lan-
guages (including C++) do not use the % symbol for this purpose. In a program, you have
to convert a percentage to a floating-point number, just as you would if you were using a
calculator. For example, 50 percent would be written as 0.5 and 2 percent would be written
as 0.02.

2.14 Arithmetic Operators 65

Let’s look at an example. Suppose you earn $6,000 per month and you are allowed to contribute
a portion of your gross monthly pay to a retirement plan. You want to determine the amount of
your pay that will go into the plan if you contribute 5 percent, 7 percent, or 10 percent of your
gross wages. To make this determination you write the program shown in Program 2-22.

Program 2-22

// This program calculates the amount of pay that
// will be contributed to a retirement plan if 5%,
// 7%, or 10% of monthly pay is withheld.

#include <iostream>

using namespace std;

int main()

{

}

// Variables to hold the monthly pay and the
// amount of contribution.
double monthlyPay = 6000.0, contribution;

// Calculate and display a 5% contribution.

contribution = monthlyPay * 0.05;

cout << "5 percent is $" << contribution
<< " per month.\n";

// Calculate and display a 7% contribution.

contribution = monthlyPay * 0.07;

cout << "7 percent is $" << contribution
<< " per month.\n";

// Calculate and display a 10% contribution.

contribution = monthlyPay * 0.1;

cout << "10 percent is $" << contribution
<< " per month.\n";

return 0;

Program Output

5 percent is $300 per month.
7 percent is $420 per month.
10 percent is $600 per month.

Line 11 defines two variables: monthlyPay and contribution. The monthlyPay variable,
which is initialized with the value 6000.0, holds the amount of your monthly pay. The con-
tribution variable will hold the amount of a contribution to the retirement plan.

The statements in lines 14 through 16 calculate and display 5 percent of the monthly pay.
The calculation is done in line 14, where the monthlyPay variable is multiplied by 0.05.
The result is assigned to the contribution variable, which is then displayed in line 15.

Similar steps are taken in Lines 18 through 21, which calculate and display 7 percent of
the monthly pay, and lines 24 through 26, which calculate and display 10 percent of the
monthly pay.

66

Chapter 2 Introduction to C++

Calculating a Percentage Discount

Another common calculation is determining a percentage discount. For example, suppose
a retail business sells an item that is regularly priced at $59.95 and is planning to have a
sale where the item’s price will be reduced by 20 percent. You have been asked to write a
program to calculate the sale price of the item.

To determine the sale price you perform two calculations:

e First, you get the amount of the discount, which is 20 percent of the item’s regular
price.

e Second, you subtract the discount amount from the item’s regular price. This gives you
the sale price.

Program 2-23 shows how this is done in C++.

Program 2-23

// This program calculates the sale price of an item

// that is regularly priced at $59.95, with a 20 percent
// discount subtracted.

#include <iostream>

using namespace std;

int main()

{
// Variables to hold the regular price, the
// amount of a discount, and the sale price.
double regularPrice = 59.95, discount, salePrice;

// Calculate the amount of a 20% discount.
discount = regularPrice * 0.2;

// Calculate the sale price by subtracting the
// discount from the regular price.
salePrice = regularPrice - discount;

// Display the results.

cout << "Regular price: $" << regularPrice << endl;
cout << "Discount amount: $" << discount << endl;
cout << "Sale price: $" << salePrice << endl;
return 0;

}

Program Output

Regular price: $59.95
Discount amount: $11.99
Sale price: $47.96

Line 11 defines three variables. The regularPrice variable holds the item’s regular price,
and is initialized with the value 59.95. The discount variable will hold the amount of the
discount once it is calculated. The salePrice variable will hold the item’s sale price.

2.14 Arithmetic Operators

Line 14 calculates the amount of the 20 percent discount by multiplying regularPrice
by 0.2. The result is stored in the discount variable. Line 18 calculates the sale price by
subtracting discount from regularPrice. The result is stored in the salePrice variable.
The cout statements in lines 21 through 23 display the item’s regular price, the amount of
the discount, and the sale price.

In the Spotlight:
Using the Modulus Operator and Integer Division

The modulus operator (%) is surprisingly useful. For example, suppose you need to extract
the rightmost digit of a number. If you divide the number by 10, the remainder will be the
rightmost digit. For instance, 123 + 10 = 12 with a remainder of 3. In a computer program
you would use the modulus operator to perform this operation. Recall that the modulus op-
erator divides an integer by another integer, and gives the remainder. This is demonstrated
in Program 2-24. The program extracts the rightmost digit of the number 12345.

Program 2-24

// This program extracts the rightmost digit of a number.
#include <iostream>
using namespace std;

int main()

{
int number = 12345;
int rightMost = number % 10;

cout << "The rightmost digit in "
<< number << " is "
<< rightMost << endl;

return 0;

b

Program Output
The rightmost digit in 12345 is 5

Interestingly, the expression number % 100 will give you the rightmost two digits in number,
the expression number % 1000 will give you the rightmost three digits in number, etc.

The modulus operator (%) is useful in many other situations. For example, Program 2-25
converts 125 seconds to an equivalent number of minutes, and seconds.

68 Chapter 2 Introduction to C++

Program 2-25

// This program converts seconds to minutes and seconds.
#include <iostream>
using namespace std;

int main()

{
// The total seconds is 125.

int totalSeconds = 125;

// Variables for the minutes and seconds
int minutes, seconds;

// Get the number of minutes.
minutes = totalSeconds / 60;

// Get the remaining seconds.
seconds = totalSeconds % 60;

// Display the results.

cout << totalSeconds << " seconds is equivalent to:\n";
cout << "Minutes: " << minutes << endl;
cout << "Seconds: " << seconds << endl;

return 0;

Program Output
125 seconds is equivalent to:

Minutes: 2
Seconds: 5

Let’s take a closer look at the code:

e Line 8 defines an int variable named totalSeconds, initialized with the value 125.

e Line 11 declares the int variables minutes and seconds.

e Line 14 calculates the number of minutes in the specified number of seconds. There
are 60 seconds in a minute, so this statement divides totalSeconds by 60. Notice
that we are performing integer division in this statement. Both totalSeconds and
the numeric literal 60 are integers, so the division operator will return an integer
result. This is intentional because we want the number of minutes with no frac-
tional part.

e Line 17 calculates the number of remaining seconds. There are 60 seconds in a
minute, so this statement uses the % operator to divide the totalSeconds by 60,
and get the remainder of the division. The result is the number of remaining sec-
onds.

e Lines 20 through 22 display the number of minutes and seconds.

2.15 Comments 69

Checkpoint

2.21 Is the following assignment statement valid or invalid? If it is invalid, why?
72 = amount;

2.22 How would you consolidate the following definitions into one statement?

int x = 7;
int y = 16;
int z = 28;

2.23 What is wrong with the following program? How would you correct it?

#include <iostream>
using namespace std;

int main()
{
number = 62.7;
double number;
cout << number << endl;
return 0;

}

2.24 Is the following an example of integer division or floating-point division? What
value will be stored in portion?

portion = 70 / 3;

m—
2.15 Comments

1CONCEPT: Comments are notes of explanation that document lines or sections of a
program. Comments are part of the program, but the compiler ignores
them. They are intended for people who may be reading the source code.

It may surprise you that one of the most important parts of a program has absolutely no
impact on the way it runs. In fact, the compiler ignores this part of a program. Of course,
I’m speaking of the comments.

As a beginning programmer, you might be resistant to the idea of liberally writing com-
ments in your programs. After all, it can seem more productive to write code that actually
does something! It is crucial, however, that you develop the habit of thoroughly annotat-
ing your code with descriptive comments. It might take extra time now, but it will almost
certainly save time in the future.

Imagine writing a program of medium complexity with about 8,000 to 10,000 lines of C++
code. Once you have written the code and satisfactorily debugged it, you happily put it
away and move on to the next project. Ten months later you are asked to make a modifica-
tion to the program (or worse, track down and fix an elusive bug). You open the file that
contains your source code and stare at thousands of statements that now make no sense
at all. If only you had left some notes to yourself explaining the program’s code. Of course
it’s too late now. All that’s left to do is decide what will take less time: figuring out the old
program or completely rewriting it!

70

Chapter 2 Introduction to C++

This scenario might sound extreme, but it’s one you don’t want to happen to you. Real-
world programs are big and complex. Thoroughly documented code will make your life
easier, not to mention the other programmers who may have to read your code in the future.

Single-Line Comments

You have already seen one way to place comments in a C++ program. You simply place
two forward slashes (//) where you want the comment to begin. The compiler ignores
everything from that point to the end of the line. Program 2-26 shows that comments may
be placed liberally throughout a program.

Program 2-26

// PROGRAM: PAYROLL.CPP

// Written by Herbert Dorfmann

// This program calculates company payroll
// Last modification: 8/20/2014

#include <iostream>

using namespace std;

int main()

{
double payRate; // Holds the hourly pay rate

double hours; // Holds the hours worked
int employNumber; // Holds the employee number

(The remainder of this program is left out.)

In addition to telling who wrote the program and describing the purpose of variables, com-
ments can also be used to explain complex procedures in your code.

Multi-Line Comments

The second type of comment in C++ is the multi-line comment. Multi-line comments start
with /* (a forward slash followed by an asterisk) and end with */ (an asterisk followed
by a forward slash). Everything between these markers is ignored. Program 2-27 illustrates
how multi-line comments may be used. Notice that a multi-line comment starts in line 1
with the /* symbol, and it ends in line 6 with the */ symbol.

Program 2-27

/*
PROGRAM: PAYROLL.CPP
Written by Herbert Dorfmann
This program calculates company payroll
Last modification: 8/20/2014
*/

#include <iostream>

2.16 Named Constants

using namespace std;

int main()

{
double payRate; // Holds the hourly pay rate
double hours; // Holds the hours worked
int employNumber; // Holds the employee number

(The remainder of this program is left out.)

Unlike a comment started with //, a multi-line comment can span several lines. This makes
it more convenient to write large blocks of comments because you do not have to mark
every line. Consequently, the multi-line comment is inconvenient for writing single-line
comments because you must type both a beginning and ending comment symbol.

0 NOTE: Many programmers use a combination of single-line comments and multi-line
comments in their programs. Convenience usually dictates which style to use.

Remember the following advice when using multi-line comments:

¢ Be careful not to reverse the beginning symbol with the ending symbol.
¢ Be sure not to forget the ending symbol.

Both of these mistakes can be difficult to track down and will prevent the program from
compiling correctly.

—
2.16 Named Constants

1CONCEPT: Literals may be given names that symbolically represent them in a program.

Assume the following statement appears in a banking program that calculates data pertain-
ing to loans:

amount = balance * 0.069;

In such a program, two potential problems arise. First, it is not clear to anyone other than
the original programmer what 0.069 is. It appears to be an interest rate, but in some situa-
tions there are fees associated with loan payments. How can the purpose of this statement
be determined without painstakingly checking the rest of the program?

The second problem occurs if this number is used in other calculations throughout the
program and must be changed periodically. Assuming the number is an interest rate, what
if the rate changes from 6.9 percent to 7.2 percent? The programmer will have to search
through the source code for every occurrence of the number.

Both of these problems can be addressed by using named constants. A named constant is
like a variable, but its content is read-only and cannot be changed while the program is
running. Here is a definition of a named constant:

const double INTEREST_RATE = 0.069;

71

72

Chapter 2 Introduction to C++

It looks just like a regular variable definition except that the word const appears before
the data type name, and the name of the variable is written in all uppercase characters. The
key word const is a qualifier that tells the compiler to make the variable read-only. Its
value will remain constant throughout the program’s execution. It is not required that the
variable name be written in all uppercase characters, but many programmers prefer to write
them this way so they are easily distinguishable from regular variable names.

An initialization value must be given when defining a constant with the const qualifier, or
an error will result when the program is compiled. A compiler error will also result if there
are any statements in the program that attempt to change the value of a named constant.

An advantage of using named constants is that they make programs more self-documenting.
The following statement

amount = balance * 0.069;
can be changed to read
amount = balance * INTEREST RATE;

A new programmer can read the second statement and know what is happening. It is evident
that balance is being multiplied by the interest rate. Another advantage to this approach
is that widespread changes can easily be made to the program. Let’s say the interest rate
appears in a dozen different statements throughout the program. When the rate changes,
the initialization value in the definition of the named constant is the only value that needs
to be modified. If the rate increases to 7.2%, the definition is changed to the following:

const double INTEREST RATE = 0.072;

The program is then ready to be recompiled. Every statement that uses INTEREST RATE
will then use the new value.

Named constants can also help prevent typographical errors in a program’s code. For exam-
ple, suppose you use the number 3.14159 as the value of pi in a program that performs
various geometric calculations. Each time you type the number 3.14159 in the program’s
code, there is a chance that you will make a mistake with one or more of the digits. As a
result, the program will not produce the correct results. To help prevent a mistake such as
this, you can define a named constant for p7, initialized with the correct value, and then use
that constant in all of the formulas that require its value. Program 2-28 shows an example.
It calculates the circumference of a circle that has a diameter of 10.

Program 2-28

// This program calculates the circumference of a circle.
#include <iostream>
using namespace std;

int main()

{
// Constants
const double PI = 3.14159;
const double DIAMETER = 10.0;

// Variable to hold the circumference

2.17 Programming Style 73

double circumference;

// Calculate the circumference.
circumference = PI * DIAMETER;

// Display the circumference.
cout << "The circumference is: " << circumference << endl;
return 0;

Program Output

The circumference is: 31.4159

Let’s take a closer look at the program. Line 8 defines a constant double named P1I, initial-
ized with the value 3.14159. This constant will be used for the value of pi in the program’s
calculation. Line 9 defines a constant double named DIAMETER, initialized with the value
10. This will be used for the circle’s diameter. Line 12 defines a double variable named
circumference, which will be used to hold the circle’s circumference. Line 15 calculates
the circle’s circumference by multiplying PT by DIAMETER. The result of the calculation is
assigned to the circumference variable. Line 18 displays the circle’s circumference.

Checkpoint

2.25 Write statements using the const qualifier to create named constants for the
following literal values:

Literal Value Description

2.71828 Euler’s number (known in mathematics as e)

5.256ES Number of minutes in a year

32.2 The gravitational acceleration constant (in feet per second?)
9.8 The gravitational acceleration constant (in meters per second?)
1609 Number of meters in a mile

—
2.17 Programming Style

1 CONCEPT: Programming style refers to the way a programmer uses identifiers,
spaces, tabs, blank lines, and punctuation characters to visually arrange
a program’s source code. These are some, but not all, of the elements of
programming style.

In Chapter 1 you learned that syntax rules govern the way a language may be used. The
syntax rules of C++ dictate how and where to place key words, semicolons, commas, braces,
and other components of the language. The compiler’s job is to check for syntax errors and,
if there are none, generate object code.

When the compiler reads a program it processes it as one long stream of characters. The
compiler doesn’t care that each statement is on a separate line, or that spaces separate
operators from operands. Humans, on the other hand, find it difficult to read programs that
aren’t written in a visually pleasing manner. Consider Program 2-29 for example.

74

Chapter 2 Introduction to C++

Program 2-29

#include <iostream>

using namespace std;int main(){double shares=220.0;
double avgPrice=14.67;cout<<"There were "<<shares
<<" shares sold at $"<<avgPrice<<" per share.\n";
return 0;}

Program Output

There were 220 shares sold at $14.67 per share.

Although the program is syntactically correct (it doesn’t violate any rules of C++), it is very
difficult to read. The same program is shown in Program 2-30, written in a more reason-
able style.

Program 2-30

// This example is much more readable than Program 2-29.
#include <iostream>
using namespace std;

int main()

{
double shares = 220.0;
double avgPrice = 14.67;
cout << "There were " << shares << " shares sold at $";
cout << avgPrice << " per share.\n";
return 0;
}

Program Output

There were 220 shares sold at $14.67 per share.

Programming style refers to the way source code is visually arranged. Ideally, it is a consis-
tent method of putting spaces and indentions in a program so visual cues are created. These
cues quickly tell a programmer important information about a program.

For example, notice in Program 2-30 that inside the function main’s braces each line is
indented. It is a common C++ style to indent all the lines inside a set of braces. You will
also notice the blank line between the variable definitions and the cout statements. This is
intended to visually separate the definitions from the executable statements.

NOTE: Although you are free to develop your own style, you should adhere to com-
mon programming practices. By doing so, you will write programs that visually make
sense to other programmers.

Review Questions and Exercises

Another aspect of programming style is how to handle statements that are too long to fit on
one line. Because C++ is a free-flowing language, it is usually possible to spread a statement
over several lines. For example, here is a cout statement that uses five lines:

cout << "The Fahrenheit temperature is "
<< fahrenheit
<< " and the Celsius temperature is "
<< celsius
<< endl;

This statement will work just as if it were typed on one line. Here is an example of variable
definitions treated similarly:

int fahrenheit,
celsius,
kelvin;

There are many other issues related to programming style. They will be presented through-
out the book.

Review Questions and Exercises
Short Answer

1. How many operands does each of the following types of operators require?
Unary
Binary
Ternary
2. How may the double variables temp, weight, and age be defined in one statement?

3. How may the int variables months, days, and years be defined in one statement,
with months initialized to 2 and years initialized to 3?

4. Write assignment statements that perform the following operations with the variables
a, b, and c.

A) Adds 2 to a and stores the result in b.

B) Multiplies b times 4 and stores the result in a.
C) Divides a by 3.14 and stores the result in b.
D)

E) Stores the value 27 in a.

Subtracts 8 from b and stores the result in a.

F) Stores the character ‘K’ in c.
G) Stores the ASCII code for ‘B’ in c.

5. Is the following comment written using single-line or multi-line comment symbols?
/* This program was written by M. A. Codewriter*/
6. Is the following comment written using single-line or multi-line comment symbols?

// This program was written by M. A. Codewriter

75

76 Chapter 2 Introduction to C++

7. Modify the following program so it prints two blank lines between each line of text.

#include <iostream>
using namespace std;

int main()

{
cout << "Two mandolins like creatures in the";
cout << "dark";
cout << "Creating the agony of ecstasy.";
cout << " - George Barker";
return 0;

}

8. What will the following programs print on the screen?

A) #include <iostream>
using namespace std;

int main()

{
int freeze = 32, boil = 212;
freeze = 0;
boil = 100;
cout << freeze << endl << boil << endl;
return 0;
)

B) #include <iostream>
using namespace std;

int main()

{
int x = 0, y = 2;
X =y * 4;
cout << x << endl << y << endl;
return 0;
}

C) #include <iostream>
using namespace std;

int main()

{
cout << "I am the incredible";
cout << "computing\nmachine";
cout << "\nand I will\namaze\n";
cout << "you.";
return 0;

)

D) #include <iostream>
using namespace std;

int main()
{
cout << "Be careful\n";
cout << "This might/n be a trick ";
cout << "question\n";
return 0;

Review Questions and Exercises 77

E) #include <iostream>
using namespace std;

int main()

{
int a, x = 23;
a=x % 2;
cout << x << endl << a << endl;
return 0;
)

Multiple Choice

9. Every complete statement ends with a
A) period
B) # symbol
C) semicolon
D) ending brace

10. Which of the following statements is correct?
A) #include (iostream)
B) #include {iostream}
C) #include <iostream>
D) #include [iostream]

E) All of the above

11. Every C++ program must have a
A) cout statement
B) function main

C) #include statement
D) All of the above

12. Preprocessor directives begin with a
A) #

B) !

C) <

D) *

E) None of the above
13. The following data

72

e

"Hello World"
2.8712

are all examples of

A) Variables

B) Literals or constants

C) Strings

D) None of the above

A group of statements, such as the contents of a function, is enclosed in
A) Braces {}

B) Parentheses ()

) Brackets <>
) All of the above will do

14.

©
D

78

Chapter 2

15

16.

17.

18.

19.

20.

21.

Introduction to C++

. Which of the following are not valid assignment statements? (Circle all that apply.)
A) total = 9;
B) 72 = amount;
C) profit = 129
D) letter W'

Which of the following are no¢ valid cout statements? (Circle all that apply.)
A) cout << "Hello World";

B) cout << "Have a nice day"\n;

C) cout < value;

D) cout << Programming is great fun;

Assume w =35, x =4,y = 8,and z = 2. What value will be stored in result in each of
the following statements?

A) result = x + y;

B) result = z * 2;

C) result = y / x;

D) result = y - z;

E) result = w % 2;

How would each of the following numbers be represented in E notation?
A) 3.287 x 10°

B) -978.65 x 10'?

C) 7.65491 x 1073

D) -58710.23 x 107*

The negation operator is

A) Unary

B) Binary

C) Ternary

D) None of the above

A(n) is like a variable, but its value is read-only and cannot be changed

during the program’s execution.
A) secure variable

B) uninitialized variable

C) named constant

D) locked variable

When do preprocessor directives execute?

A) Before the compiler compiles your program

B) After the compiler compiles your program

C) At the same time as the compiler compiles your program
D) None of the above

True or False

22.
23.
24.
25.

26.

T F A variable must be defined before it can be used.

T F Variable names may begin with a number.

T F Variable names may be up to 31 characters long.

T F A left brace in a C++ program should always be followed by a right brace later
in the program.

T F You cannot initialize a named constant that is declared with the const modifier.

Programming Challenges

Algorithm Workbench

27.

28.

Convert the following pseudocode to C++ code. Be sure to define the appropriate
variables.

Store 20 in the speed variable.

Store 10 in the time variable.

Multiply speed by time and store the result in the distance variable.
Display the contents of the distance variable.

Convert the following pseudocode to C++ code. Be sure to define the appropriate
variables.

Store 172.5 in the force variable.

Store 27.5 in the area variable.

Divide area by force and store the result in the pressure variable.
Display the contents of the pressure variable.

Find the Error

29.

There are a number of syntax errors in the following program. Locate as many as
you can.

/ What's wrong with this program? /
#include iostream

using namespace std;

int main();

}
int a, b, ¢ \\ Three integers
a =3
b =4
c =a+b
Cout < "The value of c is %d" < C;
return 0;
{

Programming Challenges

Visit www.myprogramminglab.com to complete many of these Programming Challenges
online and get instant feedback.

il

Sum of Two Numbers

Werite a program that stores the integers 50 and 100 in variables, and stores the sum of
these two in a variable named total.

. Sales Prediction

The East Coast sales division of a company generates 58 percent of total sales. Based
on that percentage, write a program that will predict how much the East Coast division
will generate if the company has $8.6 million in sales this year.

. Sales Tax

Write a program that will compute the total sales tax on a $95 purchase. Assume the
state sales tax is 4 percent and the county sales tax is 2 percent.

79

www.myprogramminglab.com

80 Chapter 2

»

VideoNote
Solving the
Restaurant Bill
Problem

1)

Introduction to C++

4. Restaurant Bill

Write a program that computes the tax and tip on a restaurant bill for a patron with
a $88.67 meal charge. The tax should be 6.75 percent of the meal cost. The tip should
be 20 percent of the total after adding the tax. Display the meal cost, tax amount, tip
amount, and total bill on the screen.

. Average of Values

To get the average of a series of values, you add the values up and then divide the sum
by the number of values. Write a program that stores the following values in five dif-
ferent variables: 28, 32, 37, 24, and 33. The program should first calculate the sum
of these five variables and store the result in a separate variable named sum. Then, the
program should divide the sum variable by 5 to get the average. Display the average
on the screen.

TIP: Use the double data type for all variables in this program.

6. Annual Pay

Suppose an employee gets paid every two weeks and earns $2,200 each pay period.
In a year the employee gets paid 26 times. Write a program that defines the following
variables:

payAmount This variable will hold the amount of pay the employee earns each
pay period. Initialize the variable with 2200.0.

payPeriods This variable will hold the number of pay periods in a year. Initialize
the variable with 26.

annualPay This variable will hold the employee’s total annual pay, which will
be calculated.

The program should calculate the employee’s total annual pay by multiplying the
employee’s pay amount by the number of pay periods in a year and store the result in
the annualPay variable. Display the total annual pay on the screen.

. Ocean Levels

Assuming the ocean’s level is currently rising at about 1.5 millimeters per year, write
a program that displays:

e The number of millimeters higher than the current level that the ocean’s level will be
in 5 years

® The number of millimeters higher than the current level that the ocean’s level will be
in 7 years

® The number of millimeters higher than the current level that the ocean’s level will be
in 10 years

. Total Purchase

A customer in a store is purchasing five items. The prices of the five items are

Price of item 1 = $15.95
Price of item 2 = $24.95
Price of item 3 = $6.95
Price of item 4 = $12.95
Price of item 5 = $3.95

10.

11.

12.

13.

14.

15.

Programming Challenges

Write a program that holds the prices of the five items in five variables. Display each
item’s price, the subtotal of the sale, the amount of sales tax, and the total. Assume the
sales tax is 7%.

. Cyborg Data Type Sizes

You have been given a job as a programmer on a Cyborg supercomputer. In order to
accomplish some calculations, you need to know how many bytes the following data
types use: char, int, float, and double. You do not have any manuals, so you can’t
look this information up. Write a C++ program that will determine the amount of
memory used by these types and display the information on the screen.

Miles per Gallon

A car holds 15 gallons of gasoline and can travel 375 miles before refueling. Write a
program that calculates the number of miles per gallon the car gets. Display the result
on the screen.

Hint: Use the following formula to calculate miles per gallon (MPG):
MPG = Miles Driven/Gallons of Gas Used

Distance per Tank of Gas

A car with a 20-gallon gas tank averages 23.5 miles per gallon when driven in town
and 28.9 miles per gallon when driven on the highway. Write a program that calculates
and displays the distance the car can travel on one tank of gas when driven in town
and when driven on the highway.

Hint: The following formula can be used to calculate the distance:
Distance = Number of Gallons X Average Miles per Gallon

Land Calculation

One acre of land is equivalent to 43,560 square feet. Write a program that calculates
the number of acres in a tract of land with 391,876 square feet.

Circuit Board Price

An electronics company sells circuit boards at a 35 percent profit. Write a program that
will calculate the selling price of a circuit board that costs $14.95. Display the result
on the screen.

Personal Information

Write a program that displays the following pieces of information, each on a separate line:
Your name

Your address, with city, state, and ZIP code

Your telephone number
Your college major

Use only a single cout statement to display all of this information.

Triangle Pattern
Werite a program that displays the following pattern on the screen:

*
* %%
*kxk*k

*hkxkkkk

81

82

Chapter 2

Introduction to C++

16. Diamond Pattern

Write a program that displays the following pattern:

*

* k%
*kkk*k
*kkkkkk*k
*kkk*k
* % %

*

17. Stock Commission

18.

Kathryn bought 750 shares of stock at a price of $35.00 per share. She must pay her
stockbroker a 2 percent commission for the transaction. Write a program that calcu-
lates and displays the following:

e The amount paid for the stock alone (without the commission)
e The amount of the commission
e The total amount paid (for the stock plus the commission)

Energy Drink Consumption

A soft drink company recently surveyed 16,500 of its customers and found that
approximately 15 percent of those surveyed purchase one or more energy drinks per
week. Of those customers who purchase energy drinks, approximately 58 percent of
them prefer citrus-flavored energy drinks. Write a program that displays the following;:

e The approximate number of customers in the survey who purchase one or more
energy drinks per week
e The approximate number of customers in the survey who prefer citrus-flavored energy

drinks

il] 1) T)
e o o

|00 O00m a0
OO0Oo0peEo
1000
1088
I) o
i =l
oooo

Expressions
and Interactivity

o
(NN}
[
o
<
I
U

TOPICS

3.1 The cin Object 3.8 Working with Characters and

3.2 Mathematical Expressions string Objects

3.3 When You Mix Apples and 3.9 More Mathematical Library
Oranges: Type Conversion Functions

3.4 Overflow and Underflow 3.10 Focus on Debugging: Hand Tracing

3.5 Type Casting a Program

3.6 Multiple Assignment and 3.11 Focus on Problem Solving:
Combined Assignment A Case Study

3.7 Formatting Output

"_
3.1 The cin Object

1 CONCEPT: The cin object can be used to read data typed at the keyboard.

So far you have written programs with built-in data. Without giving the user an opportu-
nity to enter his or her own data, you have initialized the variables with the necessary start-
ing values. These types of programs are limited to performing their task with only a single
u set of starting data. If you decide to change the initial value of any variable, the program
- must be modified and recompiled.

VideoNote

Reading Input

with ci In reality, most programs ask for values that will be assigned to variables. This means the
ith cin

program does not have to be modified if the user wants to run it several times with differ-
ent sets of data. For example, a program that calculates payroll for a small business might
ask the user to enter the name of the employee, the hours worked, and the hourly pay rate.
When the paycheck for that employee has been printed, the program could start over again
and ask for the name, hours worked, and hourly pay rate of the next employee.

Just as cout is C++’s standard output object, cin is the standard input object. It reads input
from the console (or keyboard) as shown in Program 3-1.

83

84

Chapter 3 Expressions and Interactivity

Program 3-1

// This program asks the user to enter the length and width of
// a rectangle. It calculates the rectangle's area and displays
// the value on the screen.

#include <iostream>

using namespace std;

int main()

{

int length, width, area;

cout << "This program calculates the area of a ";

cout << "rectangle.\n";

cout << "What is the length of the rectangle? ";

cin >> length;

cout << "What is the width of the rectangle? ";

cin >> width;

area = length * width;

cout << "The area of the rectangle is " << area << ".\n";
return 0;

Program Output with Example Input Shown in Bold
This program calculates the area of a rectangle.
What is the length of the rectangle? 10 [Enter]
What is the width of the rectangle? 20 [Enter]

The area of the rectangle is 200.

Instead of calculating the area of one rectangle, this program can be used to get the area of
any rectangle. The values that are stored in the length and width variables are entered by
the user when the program is running. Look at lines 13 and 14:

cout << "What is the length of the rectangle? ";
cin >> length;

In line 13, the cout object is used to display the question “What is the length of the rect-
angle?” This question is known as a prompt, and it tells the user what data he or she should
enter. Your program should always display a prompt before it uses cin to read input. This
way, the user will know that he or she must type a value at the keyboard.

Line 14 uses the cin object to read a value from the keyboard. The >> symbol is the
stream extraction operator. It gets characters from the stream object on its left and stores
them in the variable whose name appears on its right. In this line, characters are taken
from the cin object (which gets them from the keyboard) and are stored in the length
variable.

Gathering input from the user is normally a two-step process:

1. Use the cout object to display a prompt on the screen.
2. Use the cin object to read a value from the keyboard.

Figure

3.1 The cin Object

The prompt should ask the user a question, or tell the user to enter a specific value. For
example, the code we just examined from Program 3-1 displays the following prompt:

What is the length of the rectangle?

When the user sees this prompt, he or she knows to enter the rectangle’s length. After the
prompt is displayed, the program uses the cin object to read a value from the keyboard
and store the value in the length variable.

Notice that the << and >> operators appear to point in the direction that data is flowing.
In a statement that uses the cout object, the << operator always points toward cout. This
indicates that data is flowing from a variable or a literal to the cout object. In a statement
that uses the cin object, the >> operator always points toward the variable that is receiving
the value. This indicates that data is flowing from cin to a variable. This is illustrated in
Figure 3-1.

3-1

cout << "What is the length of the rectangle? ";
cin >> length;

Think of the << and >> operators as arrows that point in
the direction that data is flowing.

cout <— "What is the length of the rectangle? ";
cin —» length;

The cin object causes a program to wait until data is typed at the keyboard and the [Enter]
key is pressed. No other lines in the program will be executed until cin gets its input.

cin automatically converts the data read from the keyboard to the data type of the vari-
able used to store it. If the user types 10, it is read as the characters ‘1’ and ‘0’. cin is smart
enough to know this will have to be converted to an int value before it is stored in the
length variable. cin is also smart enough to know a value like 10.7 cannot be stored in
an integer variable. If the user enters a floating-point value for an integer variable, cin will
not read the part of the number after the decimal point.

NOTE: You must include the iostrean file in any program that uses cin.

Entering Multiple Values

The cin object may be used to gather multiple values at once. Look at Program 3-2, which
is a modified version of Program 3-1.

Line 15 waits for the user to enter two values. The first is assigned to length and the
second to width.

cin >> length >> width;

85

86 Chapter 3 Expressions and Interactivity

Program 3-2

// This program asks the user to enter the length and width of
// a rectangle. It calculates the rectangle's area and displays
// the value on the screen.

#include <iostream>

using namespace std;

int main()

{
int length, width, area;
cout << "This program calculates the area of a ";
cout << "rectangle.\n";
cout << "Enter the length and width of the rectangle ";
cout << "separated by a space.\n";
cin >> length >> width;
area = length * width;
cout << "The area of the rectangle is " << area << endl;
return 0;
}

Program Output with Example Input Shown in Bold

This program calculates the area of a rectangle.

Enter the length and width of the rectangle separated by a space.
10 20 [Enter]

The area of the rectangle is 200

In the example output, the user entered 10 and 20, so 10 is stored in length and 20 is
stored in width.

Notice the user separates the numbers by spaces as they are entered. This is how cin
knows where each number begins and ends. It doesn’t matter how many spaces are entered
between the individual numbers. For example, the user could have entered

10 20

0 NOTE: The [Enter] key is pressed after the last number is entered.

cin will also read multiple values of different data types. This is shown in Program 3-3.

Program 3-3

// This program demonstrates how cin can read multiple values
// of different data types.

#include <iostream>

using namespace std;

3.1 The cin Object

int main()

{
int whole;
double fractional;
char letter;
cout << "Enter an integer, a double, and a character: ";
cin >> whole >> fractional >> letter;
cout << "Whole: " << whole << endl;
cout << "Fractional: " << fractional << endl;
cout << "Letter: " << letter << endl;
return 0;
}

Program Output with Example Input Shown in Bold

Enter an integer, a double, and a character: 4 5.7 b [Enter]
Whole: 4

Fractional: 5.7

Letter: b

As you can see in the example output, the values are stored in their respective variables. But
what if the user had responded in the following way?
Enter an integer, a double, and a character: 5.7 4 b [Enter]

When the user types values at the keyboard, those values are first stored in an area of
memory known as the keyboard buffer. So, when the user enters the values 5.7, 4, and b,
they are stored in the keyboard buffer as shown in Figure 3-2.

Figure 3-2

Keyboard buffer
(s [- [7] [+ [o e

}

cin begins
reading here.

When the user presses the Enter key, cin reads the value 5 into the variable whole. It does
not read the decimal point because whole is an integer variable. Next it reads .7 and stores
that value in the double variable fractional. The space is skipped, and 4 is the next
value read. It is stored as a character in the variable letter. Because this cin statement
reads only three values, the b is left in the keyboard buffer. So, in this situation the program
would have stored 5 in whole, 0.7 in fractional, and the character ‘4’ in letter. It is
important that the user enters values in the correct order.

Checkpoint
3.1 What header file must be included in programs using cin?

3.2 TRUE or FALSE: cin requires the user to press the [Enter| key when finished
entering data.

87

88

Chapter 3 Expressions and Interactivity

3.3

3.4

3.5

3.6

Assume value is an integer variable. If the user enters 3.14 in response to the
following programming statement, what will be stored in value?

cin >> value;

A) 3.14
B) 3
C) 0

D) Nothing. An error message is displayed.
A program has the following variable definitions.
long miles;

int feet;
float inches;

Write one cin statement that reads a value into each of these variables.

The following program will run, but the user will have difficulty understanding
what to do. How would you improve the program?

// This program multiplies two numbers and displays the result.
#include <iostream>
using namespace std;

int main()

{
double first, second, product;
cin >> first >> second;
product = first * second;
cout << product;
return 0;

}

Complete the following program skeleton so it asks for the user’s weight (in
pounds) and displays the equivalent weight in kilograms.

#include <iostream>
using namespace std;

int main()

{

double pounds, kilograms;

// Write code here that prompts the user
// to enter his or her weight and reads
// the input into the pounds variable.

// The following line does the conversion.
kilograms = pounds / 2.2;

// Write code here that displays the user's weight
// in kilograms.
return 0;

3.2 Mathematical Expressions

—
3.2 Mathematical Expressions

1 CONCEPT: C++ allows you to construct complex mathematical expressions using
multiple operators and grouping symbols.

In Chapter 2 you were introduced to the basic mathematical operators, which are used
to build mathematical expressions. An expression is a programming statement that has a
value. Usually, an expression consists of an operator and its operands. Look at the follow-
ing statement:

sum = 21 + 3;

Since 21 + 3 has a value, it is an expression. Its value, 24, is stored in the variable sum.
Expressions do not have to be in the form of mathematical operations. In the following
statement, 3 is an expression.

number = 3;

Here are some programming statements where the variable result is being assigned the
value of an expression:

result =

X;

result = 4;

result = 15 / 3;
result = 22 * number;
result = sizeof(int);

result = a + b + c;

In each of these statements, a number, variable name, or mathematical expression appears
on the right side of the = symbol. A value is obtained from each of these and stored in

the variable result. These are all examples of a variable being assigned the value of an
expression.

Program 3-4 shows how mathematical expressions can be used with the cout object.

Program 3-4

// This program asks the user to enter the numerator
// and denominator of a fraction and it displays the
// decimal value.

#include <iostream>
using namespace std;

int main()
{

double numerator, denominator;

cout << "This program shows the decimal value of ";
cout << "a fraction.\n";

(program continues)

20 Chapter 3 Expressions and Interactivity

Program 3-4 (continued)
cout << "Enter the numerator: ";
cin >> numerator;
cout << "Enter the denominator: ";

cin >> denominator;

cout << "The decimal value is ";
cout << (numerator / denominator) << endl;
return 0;

Program Output with Example Input Shown in Bold

This

program shows the decimal value of a fraction.

Enter the numerator: 3 [Enter]
Enter the denominator: 16 [Enter]
The decimal value is 0.1875

<&
<&

The cout object will display the value of any legal expression in C++. In Program 3-4, the
value of the expression numerator / denominator is displayed.

NOTE: The example input for Program 3-4 shows the user entering 3 and 16. Since
these values are assigned to double variables, they are stored as the double values 3.0
and 16.0.

NOTE: When sending an expression that consists of an operator to cout, it is always
a good idea to put parentheses around the expression. Some advanced operators will
yield unexpected results otherwise.

Operator Precedence

It is possible to build mathematical expressions with several operators. The following state-
ment assigns the sum of 17, x, 21, and y to the variable answer.

answer = 17 + x + 21 + y;
Some expressions are not that straightforward, however. Consider the following statement:
outcome = 12 + 6 / 3;

What value will be stored in outcome? 6 is used as an operand for both the addition and
division operators. outcome could be assigned either 6 or 14, depending on whether the
addition operation or the division operation takes place first. The answer is 14 because the
division operator has higher precedence than the addition operator.

Mathematical expressions are evaluated from left to right. When two operators share an
operand, the operator with the highest precedence works first. Multiplication and division
have higher precedence than addition and subtraction, so the statement above works like this:

A) 6 is divided by 3, yielding a result of 2
B) 12 is added to 2, yielding a result of 14

3.2 Mathematical Expressions

It could be diagrammed in the following way:

outcome = 12 + 6 / 3
\ /
outcome = 12 + 2

outcome = 14

Table 3-1 shows the precedence of the arithmetic operators. The operators at the top of the
table have higher precedence than the ones below them.

Table 3-1 Precedence of Arithmetic Operators (Highest to Lowest)

(unary negation) -
*/ %
+ -

The multiplication, division, and modulus operators have the same precedence. This is also
true of the addition and subtraction operators. Table 3-2 shows some expressions with
their values.

Table 3-2 Some Simple Expressions and Their Values

Expression Value

5+ 2 * 4 13

10 / 2 - 3 2

8 + 12 * 2 - 4 28

4 + 17 8 2 -1 4

6 -3 * 2+ 7 -1 6
Associativity

An operator’s associativity is either left to right, or right to left. If two operators sharing
an operand have the same precedence, they work according to their associativity. Table 3-3
lists the associativity of the arithmetic operators. As an example, look at the following
expression:

5 -3+ 2

Both the - and + operators in this expression have the same precedence, and they have left
to right associativity. So, the operators will work from left to right. This expression is the
same as:

((5 - 3) + 2)
Here is another example:
12 / 6 * 4

Because the / and * operators have the same precedence, and they have left to right asso-
ciativity, they will work from left to right. This expression is the same as:

((12 / 6) * 4)

921

92 Chapter 3 Expressions and Interactivity

Table 3-3 Associativity of Arithmetic Operators

Operator Associativity
(unary negation) - Right to left
* /0% Left to right
+ - Left to right

Grouping with Parentheses

Parts of a mathematical expression may be grouped with parentheses to force some operations
to be performed before others. In the following statement, the sum of a + b is divided by 4.

result = (a + b) / 4;

Without the parentheses, however, b would be divided by 4 and the result added to a.
Table 3-4 shows more expressions and their values.

Table 3-4 More Simple Expressions and Their Values

Expression Value
(5 +2) * 4 28
10 / (5 - 3) 5
8 + 12 * (6 - 2) 56
(4 +17) 3 2 - 1 0
(6 - 3) * (2 +7) /3 9

Converting Algebraic Expressions
to Programming Statements
In algebra it is not always necessary to use an operator for multiplication. C++, how-

ever, requires an operator for any mathematical operation. Table 3-5 shows some algebraic
expressions that perform multiplication and the equivalent C++ expressions.

Table 3-5 Algebraic and C++ Multiplication Expressions

Algebraic Expression Operation C++ Equivalent
6B 6 times B 6 * B

(3)(12) 3 times 12 3 % 12

4xy 4 times x times y 4 * x * vy

When converting some algebraic expressions to C++, you may have to insert parentheses that
do not appear in the algebraic expression. For example, look at the following expression:

a+b
¢

X =

To convert this to a C++ statement, a + b will have to be enclosed in parentheses:
x = (a + b) / c;

Table 3-6 shows more algebraic expressions and their C++ equivalents.

3.2 Mathematical Expressions

Table 3-6 Algebraic and C++ Expressions

Algebraic Expression C++ Expression
x
y = 35 y=x/ 2 * 3;
z2=3bc+ 4 z =3 * b * c + 4;
3x + 2
:ﬁ a=(3*x+2)/ (4 *a-1)

Figure

No Exponents Please!

Unlike many programming languages, C++ does not have an exponent operator. Raising
a number to a power requires the use of a library function. The C++ library isn’t a place
where you check out books, but a collection of specialized functions. Think of a library
function as a “routine” that performs a specific operation. One of the library functions is
called pow, and its purpose is to raise a number to a power. Here is an example of how
it’s used:

area = pow(4.0, 2.0);

This statement contains a call to the pow function. The numbers inside the parentheses are
arguments. Arguments are data being sent to the function. The pow function always raises
the first argument to the power of the second argument. In this example, 4 is raised to the
power of 2. The result is returned from the function and used in the statement where the
function call appears. In this case, the value 16 is returned from pow and assigned to the
variable area. This is illustrated in Figure 3-3.

3-3

arguments

area = <€«———pow(4.0, 2.0) ;
16.0
return value

The statement area = pow(4.0, 2.0) is equivalent to the following algebraic statement:
area = 42

Here is another example of a statement using the pow function. It assigns 3 times 6° to x:
X = 3 * pow(6.0, 3.0);

And the following statement displays the value of 5 raised to the power of 4:
cout << pow(5.0, 4.0);

It might be helpful to think of pow as a “black box” that you plug two numbers into, and
that then sends a third number out. The number that comes out has the value of the first
number raised to the power of the second number, as illustrated in Figure 3-4:

923

94

Chapter 3 Expressions and Interactivity

Figure 3-4

Argument 1 x —

pow function p— x¥
Argument2 y —

There are some guidelines that should be followed when the pow function is used. First, the
program must include the cmath header file. Second, the arguments that you pass to the
pow function should be doubles. Third, the variable used to store pow’s return value should
be defined as a double. For example, in the following statement the variable area should
be a double:

area = pow(4.0, 2.0);

Program 3-5 solves a simple algebraic problem. It asks the user to enter the radius of a circle
and then calculates the area of the circle. The formula is

Area = mr?
which is expressed in the program as

area = PI * pow(radius, 2.0);

Program 3-5

// This program calculates the area of a circle.

// The formula for the area of a circle is Pi times
// the radius squared. Pi is 3.14159.

#include <iostream>

#include <cmath> // needed for pow function

using namespace std;

int main()

{
const double PI = 3.14159;
double area, radius;
cout << "This program calculates the area of a circle.\n";
cout << "What is the radius of the circle? ";
cin >> radius;
area = PI * pow(radius, 2.0);
cout << "The area is " << area << endl;
return 0;
}

Program Output with Example Input Shown in Bold

This program calculates the area of a circle.
What is the radius of the circle? 10 [Enter]
The area is 314.159

3.2 Mathematical Expressions

NOTE: Program 3-5 is presented as a demonstration of the pow function. In reality,
there is no reason to use the pow function in such a simple operation. The math state-
ment could just as easily be written as

area = PI * radius * radius;

The pow function is useful, however, in operations that involve larger exponents.

In the Spotlight:
Calculating an Average

Determining the average of a group of values is a simple calculation: You add all of the
values and then divide the sum by the number of values. Although this is a straightforward
calculation, it is easy to make a mistake when writing a program that calculates an average.
For example, let’s assume that a, b, and c are double variables. Each of the variables holds
a value, and we want to calculate the average of those values. If we are careless, we might
write a statement such as the following to perform the calculation:

average = a + b + ¢ / 3.0;

Can you see the error in this statement? When it executes, the division will take place
first. The value in ¢ will be divided by 3.0, and then the result will be added to the sum of
a + b.That is not the correct way to calculate an average. To correct this error we need to
put parentheses around a + b + c, as shown here:

average = (a + b + ¢c) / 3.0;

Let’s step through the process of writing a program that calculates an average. Suppose you
have taken three tests in your computer science class, and you want to write a program that
will display the average of the test scores. Here is the algorithm in pseudocode:

Get the first test score.

Get the second test score.

Get the third test score.

Calculate the average by adding the three test scores and dividing the sum by 3.
Display the average.

In the first three steps we prompt the user to enter three test scores. Let’s say we store
those test scores in the double variables test1, test2, and test3. Then in the fourth
step we calculate the average of the three test scores. We will use the following state-
ment to perform the calculation and store the result in the average variable, which is a
double:

average = (testl + test2 + test3) / 3.0;

The last step is to display the average. Program 3-6 shows the program.

95

%26 Chapter 3 Expressions and Interactivity

Program 3-6

// This program calculates the average
// of three test scores.

#include <iostream>

#include <cmath>

using namespace std;

int main()

{
double testl, test2, test3; // To hold the scores
double average; // To hold the average
// Get the three test scores.
cout << "Enter the first test score: ";
cin >> testl;
cout << "Enter the second test score: ";
cin >> test2;
cout << "Enter the third test score: ";
cin >> test3;
// Calculate the average of the scores.
average = (testl + test2 + test3) / 3.0;
// Display the average.
cout << "The average score is: " << average << endl;
return 0;
}

Program Output with Example Input Shown in Bold

Enter the first test score: 90 [Enter]
Enter the second test score: 80 [Enter]
Enter the third test score: 100 [Enter]
The average score is 90

Checkpoint

3.7 Complete the table below by writing the value of each expression in the “Value”
column.

Expression Value

6 + 3 * 5

12 / 2 - 4

9 + 14 * 2 - 6

5+ 19 % 3 - 1

(6 + 2) * 3

14 / (11 - 4)

9 + 12 * (8 - 3)

(6 + 17) $ 2 - 1

(9 - 3) * (6 +9) / 3

3.8

3.9

3.10

3.2 Mathematical Expressions

Write C++ expressions for the following algebraic expressions:

y = 6x

a = 2b+ 4c

y = &

_x+ 2

8=)
e

=2

Study the following program and complete the table.

#include <iostream>
#include <cmath>
using namespace std;

int main()

{

double valuel, value2, value3;

cout << "Enter a number: ";

cin >> valuel;

value2 = 2 * pow(valuel, 2.0);

value3 = 3 + value2 / 2 - 1;

cout << value3 << endl;

return 0;
}

The Program Will Display What Number

If the User Enters... (Stored in value3)?
2
5
4.3
6

Complete the following program skeleton so it displays the volume of a
cylindrical fuel tank. The formula for the volume of a cylinder is

Volume = 7r*h
where
s 3.14159

r is the radius of the tank
b is the height of the tank

#include <iostream>
#include <cmath>
using namespace std;

97

98 Chapter 3 Expressions and Interactivity

int main()

{
double volume, radius, height;
cout << "This program will tell you the volume of\n";
cout << "a cylinder-shaped fuel tank.\n";
cout << "How tall is the tank? ";
cin >> height;
cout << "What is the radius of the tank? ";
cin >> radius;
// You must complete the program.
}

—
3.3) When You Mix Apples and Oranges: Type Conversion

1 CONCEPT: When an operator’s operands are of different data types, C++ will
automatically convert them to the same data type. This can affect
the results of mathematical expressions.

If an int is multiplied by a float, what data type will the result be? What if a double is
divided by an unsigned int? Is there any way of predicting what will happen in these
instances? The answer is yes. C++ follows a set of rules when performing mathematical
operations on variables of different data types. It’s helpful to understand these rules to
prevent subtle errors from creeping into your programs.

Just like officers in the military, data types are ranked. One data type outranks another if it
can hold a larger number. For example, a £1loat outranks an int. Table 3-7 lists the data
types in order of their rank, from highest to lowest.

Table 3-7 Data Type Ranking

long double
double

float
unsigned long
long

unsigned int

int

One exception to the ranking in Table 3-7 is when an int and a long are the same size. In
that case, an unsigned int outranks long because it can hold a higher value.

When C++ is working with an operator, it strives to convert the operands to the same type.
This automatic conversion is known as type coercion. When a value is converted to a higher
data type, it is said to be promoted. To demote a value means to convert it to a lower data
type. Let’s look at the specific rules that govern the evaluation of mathematical expressions.

Rule 1: chars, shorts, and unsigned shorts are automatically promoted to int.

3.3 When You Mix Apples and Oranges: Type Conversion

You will notice that char, short, and unsigned short do not appear in Table 3-7. That’s
because anytime they are used in a mathematical expression, they are automatically pro-
moted to an int. The only exception to this rule is when an unsigned short holds a value
larger than can be held by an int. This can happen on systems where shorts are the same
size as ints. In this case, the unsigned short is promoted to unsigned int.

Rule 2: When an operator works with two values of different data types, the lower-ranking
value is promoted to the type of the higher-ranking value.

In the following expression, assume that years is an int and interestRate is a float:
years * interestRate
Before the multiplication takes place, years will be promoted to a float.

Rule 3: When the final value of an expression is assigned to a variable, it will be converted
to the data type of that variable.

In the following statement, assume that area is a long int, while length and width are
both ints:

area = length * width;

Since length and width are both ints, they will not be converted to any other data type.
The result of the multiplication, however, will be converted to long so it can be stored in
area.

Watch out for situations where an expression results in a fractional value being assigned to
an integer variable. Here is an example:

int x, y = 4;
float z = 2.7;
X:y*z;

In the expression y * z,y will be promoted to float and 10.8 will result from the multi-
plication. Since x is an integer, however, 10.8 will be truncated and 10 will be stored in x.

Integer Division

When you divide an integer by another integer in C++, the result is always an integer. If
there is a remainder, it will be discarded. For example, in the following code, parts is
assigned the value 2.0:

double parts;
parts = 15 / 6;

Even though 15 divided by 6 is really 2.5, the .5 part of the result is discarded because we
are dividing an integer by an integer. It doesn’t matter that parts is declared as a double
because the fractional part of the result is discarded before the assignment takes place. In
order for a division operation to return a floating-point value, at least one of the operands
must be of a floating-point data type. For example, the previous code could be written as:

double parts;
parts = 15.0 / 6;

In this code the literal value 15.0 is interpreted as a floating-point number, so the division
operation will return a floating-point number. The value 2.5 will be assigned to parts.

929

100 Chapter 3 Expressions and Interactivity

—
3.4 Overflow and Underflow

1 CONCEPT: When a variable is assigned a value that is too large or too small in range
for that variable’s data type, the variable overflows or underflows.

Trouble can arise when a variable is being assigned a value that is too large for its type.
Here is a statement where a, b, and c are all short integers:

a=>b * c;

If b and c are set to values large enough, the multiplication will produce a number too big
to be stored in a. To prepare for this, a should have been defined as an int, or a long int.

When a variable is assigned a number that is too large for its data type, it overflows.
Likewise, assigning a value that is too small for a variable causes it to underflow. Program
3-7 shows what happens when an integer overflows or underflows. (The output shown is
from a system with two-byte short integers.)

Program 3-7

// This program demonstrates integer overflow and underflow.
#include <iostream>
using namespace std;

int main()

{
// testVar is initialized with the maximum value for a short.
short testVar = 32767;

// Display testVar.
cout << testVar << endl;

// Add 1 to testVar to make it overflow.
testvVar = testvar + 1;
cout << testVar << endl;

// Subtract 1 from testVar to make it underflow.
testVar = testvVar - 1;

cout << testVar << endl;

return 0;

Program Output
32767

-32768
32767

Typically, when an integer overflows, its contents wrap around to that data type’s lowest
possible value. In Program 3-7, testvar wrapped around from 32,767 to -32,768 when
1 was added to it. When 1 was subtracted from testvar, it underflowed, which caused its

3.5 Type Casting 101

contents to wrap back around to 32,767. No warning or error message is given, so be care-
ful when working with numbers close to the maximum or minimum range of an integer. If
an overflow or underflow occurs, the program will use the incorrect number and therefore
produce incorrect results.

When floating-point variables overflow or underflow, the results depend upon how the
compiler is configured. Your system may produce programs that do any of the following;:

e Produces an incorrect result and continues running.

e Prints an error message and immediately stops when either floating point overflow or
underflow occurs.

e Prints an error message and immediately stops when floating point overflow occurs,
but stores a 0 in the variable when it underflows.

¢ Gives you a choice of behaviors when overflow or underflow occurs.

You can find out how your system reacts by compiling and running Program 3-8.

Program 3-8

Bx

// This program can be used to see how your system handles
// floating point overflow and underflow.

#include <iostream>

using namespace std;

int main()

{
float test;

test = 2.0e38 * 1000; // Should overflow test.
cout << test << endl;

test = 2.0e-38 / 2.0e38; // Should underflow test.
cout << test << endl;

return 0;

Type Casting

CONCEPT: Type casting allows you to perform manual data type conversion.

A type cast expression lets you manually promote or demote a value. The general format
of a type cast expression is

static_cast<DataType>(Value)

where Value is a variable or literal value that you wish to convert and DataType is the
data type you wish to convert value to. Here is an example of code that uses a type cast
expression:

double number = 3.7;
int val;
val = static_cast<int>(number);

102

Chapter 3 Expressions and Interactivity

This code defines two variables: number, a double, and val, an int. The type cast expres-
sion in the third statement returns a copy of the value in number, converted to an int.
When a double is converted to an int, the fractional part is truncated so this statement
stores 3 in val. The original value in number is not changed, however.

Type cast expressions are useful in situations where C++ will not perform the desired conver-
sion automatically. Program 3-9 shows an example where a type cast expression is used to
prevent integer division from taking place. The statement that uses the type cast expression is

perMonth = static_cast<double>(books) / months;

Program 3-9
// This program uses a type cast to avoid integer division.
#include <iostream>

using namespace std;

int main()

{
int books; // Number of books to read
int months; // Number of months spent reading
double perMonth; // Average number of books per month
cout << "How many books do you plan to read? ";
cin >> books;
cout << "How many months will it take you to read them? ";
cin >> months;
perMonth = static_cast<double>(books) / months;
cout << "That is " << perMonth << " books per month.\n";
return 0;

}

Program Output with Example Input Shown in Bold
How many books do you plan to read? 30 [Enter]

How many months will it take you to read them? 7 [Enter]
That is 4.28571 books per month.

The variable books is an integer, but its value is converted to a double before the division
takes place. Without the type cast expression in line 15, integer division would have been
performed resulting in an incorrect answer.

@ WARNING! In Program 3-9, the following statement would still have resulted in
integer division:

perMonth = static_cast<double>(books / months);

The result of the expression books / months is 4. When 4 is converted to a double, it
is 4.0. To prevent the integer division from taking place, one of the operands should be

converted to a double prior to the division operation. This forces C++ to automatically
convert the value of the other operand to a double.

Program 3-10 further demonstrates the type cast expression.

Program 3-10

3.5 Type Casting

// This program uses a type cast expression to print a character

// from a number.
#include <iostream>
using namespace std;

int main()

{

int number = 65;

// Display the value of the number variable.
cout << number << endl;

// Display the value of number converted to
// the char data type.

cout << static_cast<char>(number) << endl;
return 0;

Program Output

65
A

<&

Let’s take a closer look at this program. In line 8 the int variable number is initialized with
the value 65. In line 11, number is sent to cout, causing 65 to be displayed. In line 15, a
type cast expression is used to convert the value in number to the char data type. Recall
from Chapter 2 that characters are stored in memory as integer ASCII codes. The number
65 is the ASCII code for the letter ‘A’ so this statement causes the letter ‘A’ to be displayed.

NOTE: C++ provides several different type cast expressions. static_cast is the most
commonly used type cast expression, so we will primarily use it in this book.

Checkpoint

3.11 Assume the following variable definitions:

int a = 5, b = 12;
double x = 3.4, z = 9.1;

What are the values of the following expressions?

A) b / a
B) x * a
C) static_cast<double>(b / a)
D) static_cast<double>(b) / a

E) b / static_cast<double>(a)

F) static_cast<double>(b) / static_cast<double>(a)
G) b / static_cast<int>(x)

H) static_cast<int>(x) * static_cast<int>(z)

I) static_cast<int>(x * z)

=

static_cast<double>(static_cast<int>(x) * static_cast<int>(z))

103

104

Chapter 3 Expressions and Interactivity

—
3.6

3.12 Complete the following program skeleton so it asks the user to enter a character.
Store the character in the variable letter. Use a type cast expression with the
variable in a cout statement to display the character’s ASCII code on the screen.

#include <iostream>
using namespace std;
int main()

{
char letter;
// Finish this program
// as specified above.
return 0;

}

3.13 What will the following program display?

#include <iostream>
using namespace std;

int main()
{
int integerl, integer2;
double result;
integerl = 19;
integer2 = 2;
result = integerl / integer2;
cout << result << endl;
result = static_cast<double>(integerl) / integer2;
cout << result << endl;
result = static_cast<double>(integerl / integer2);
cout << result << endl;
return 0;

Multiple Assignment and Combined Assignment

1 CONCEPT: Multiple assignment means to assign the same value to several variables

with one statement.

C++ allows you to assign a value to multiple variables at once. If a program has several
variables, such as a, b, ¢, and d, and each variable needs to be assigned a value, such as 12,
the following statement may be constructed:

a=Db=c=d-=12;

The value 12 will be assigned to each variable listed in the statement.*

* The assignment operator works from right to left. 12 is first assigned to d, then to ¢, then to b,
then to a.

3.6 Multiple Assignment and Combined Assignment

Combined Assignment Operators
Quite often, programs have assignment statements of the following form:
number = number + 1;

The expression on the right side of the assignment operator gives the value of number plus
1. The result is then assigned to number, replacing the value that was previously stored
there. Effectively, this statement adds 1 to number. In a similar fashion, the following state-
ment subtracts 5 from number.

number = number - 5;

If you have never seen this type of statement before, it might cause some initial confusion
because the same variable name appears on both sides of the assignment operator. Table
3-8 shows other examples of statements written this way.

Table 3-8 (Assume x = 6)

Value of x
Statement What It Does After the Statement
X x + 4; Adds 4 to x 10
X x - 33 Subtracts 3 from x 3
x = x * 10; Multiplies x by 10 60
x =x/ 2; Divides x by 2 3
X =x % 4 Makes x the remainder of x / 4
These types of operations are very common in programming. For convenience, C++ offers
a special set of operators designed specifically for these jobs. Table 3-9 shows the com-
bined assignment operators, also known as compound operators, and arithmetic assign-
ment operators.
Table 3-9
Operator Example Usage Equivalent to
+= x += 5; X = X + 5;
-= y == 2; y=y-2;
*= z *= 10; z =z * 10;
/= a /= b; a=a/ b;
%= c %= 3; c =c % 3;

As you can see, the combined assignment operators do not require the programmer to type
the variable name twice. Also, they give a clear indication of what is happening in the state-
ment. Program 3-11 uses combined assignment operators.

105

106 Chapter 3 Expressions and Interactivity

Program 3-11

// This program tracks the inventory of three widget stores
// that opened at the same time. Each store started with the
// same number of widgets in inventory. By subtracting the
// number of widgets each store has sold from its inventory,
// the current inventory can be calculated.

#include <iostream>

using namespace std;

int main()

{
int beglInv, // Beginning inventory for all stores
sold, // Number of widgets sold
storel, // Store 1l's inventory
store2, // Store 2's inventory
store3; // Store 3's inventory

// Get the beginning inventory for all the stores.

cout << "One week ago, 3 new widget stores opened\n";
cout << "at the same time with the same beginning\n";
cout << "inventory. What was the beginning inventory? ";
cin >> begInv;

// Set each store's inventory.
storel = store2 = store3 = beglInv;

// Get the number of widgets sold at store 1.
cout << "How many widgets has store 1 sold? ";
cin >> sold;

storel -= sold; // Adjust store 1's inventory.

// Get the number of widgets sold at store 2.
cout << "How many widgets has store 2 sold? ";
cin >> sold;

store2 -= sold; // Adjust store 2's inventory.

// Get the number of widgets sold at store 3.
cout << "How many widgets has store 3 sold? ";
cin >> sold;

store3 -= sold; // Adjust store 3's inventory.

// Display each store's current inventory.
cout << "\nThe current inventory of each store:\n";

cout << "Store 1l: " << storel << endl;
cout << "Store 2: " << store2 << endl;
cout << "Store 3: " << store3 << endl;

return 0;

3.6 Multiple Assignment and Combined Assignment

Program Output with Example Input Shown in Bold

One week ago, 3 new widget stores opened

at the same time with the same beginning

inventory. What was the beginning inventory? 100 [Enter]
How many widgets has store 1 sold? 25 [Enter]

How many widgets has store 2 sold? 15 [Enter]

How many widgets has store 3 sold? 45 [Enter]

The current inventory of each store:
Store 1: 75
Store 2: 85
Store 3: 55

More elaborate statements may be expressed with the combined assignment operators.
Here is an example:
result *= a + 5;

In this statement, result is multiplied by the sum of a + 5. When constructing such state-
ments, you must realize the precedence of the combined assignment operators is lower than
that of the regular math operators. The statement above is equivalent to

result = result * (a + 5);
which is different from
result = result * a + 5;

Table 3-10 shows other examples of such statements and their assignment statement

equivalencies.
Table 3-10
Example Usage Equivalent to
X += b + 5; x =x + (b + 5);
y -= a * 2; y =y - (a*2);
z *= 10 - c; z =2z * (10 - c);
a /=b + c; a=a/ (b+c);
c %=d - 3; c=c% (d- 3);
Checkpoint

3.14 Write a multiple assignment statement that assigns 0 to the variables total,
subtotal, tax, and shipping.

3.15 Write statements using combined assignment operators to perform the following;:
A) Add 6 to x.
B) Subtract 4 from amount.

C) Multiply y by 4.

D) Divide total by 27.

E) Store in x the remainder of x divided by 7.

F) Addy * 5 tox.

G) Subtract discount times 4 from total.

H) Multiply increase by salesRep times 5.

[) Divide profit by shares minus 1000.

107

108 Chapter 3 Expressions and Interactivity

3.16 What will the following program display?

#include <iostream>
using namespace std;

int main()

{
int unus, duo, tres;
unus = duo = tres = 5;
unus += 4;
duo *= 2;
tres -= 4;
unus /= 3;
duo += tres;
cout << unus << endl;
cout << duo << endl;
cout << tres << endl;
return 0;

}

=]
3.7 Formatting Output

1 CONCEPT: The cout object provides ways to format data as it is being displayed.
This affects the way data appears on the screen.

The same data can be printed or displayed in several different ways. For example, all of the
following numbers have the same value, although they look different:

720

720.0
720.00000000
7.2e+2
+720.0

The way a value is printed is called its formatting. The cout object has a standard way of
formatting variables of each data type. Sometimes, however, you need more control over
the way data is displayed. Consider Program 3-12, for example, which displays three rows
of numbers with spaces between each one.

Program 3-12

// This program displays three rows of numbers.
#include <iostream>
using namespace std;

int main()

{

int numl = 2897, num2 = 5, num3 = 837,

3.7 Formatting Output

num4 = 34, num5 = 7, num6 = 1623,
num?7 390, num8 3456, num9 = 12;

// Display the first row of numbers
cout << numl << " " << num2 << " " << num3 << endl;

// Display the second row of numbers
cout << num4 << " " << num5 << " " << num6 << endl;

// Display the third row of numbers
cout << num7 << " " << num8 << " " << num9 << endl;
return 0;

Program Output

2897
34
390

5 837
7 1623
3456 12

Unfortunately, the numbers do not line up in columns. This is because some of the numbers,
such as 5 and 7, occupy one position on the screen, while others occupy two or three posi-
tions. cout uses just the number of spaces needed to print each number.

To remedy this, cout offers a way of specifying the minimum number of spaces to use for
each number. A stream manipulator, setw, can be used to establish print fields of a specified
width. Here is an example of how it is used:

value = 23;
cout << setw(5) << value;

The number inside the parentheses after the word setw specifies the field width for the
value immediately following it. The field width is the minimum number of character posi-
tions, or spaces, on the screen to print the value in. In the example above, the number 23
will be displayed in a field of 5 spaces. Since 23 only occupies 2 positions on the screen,
3 blank spaces will be printed before it. To further clarify how this works, look at the fol-
lowing statements:

value = 23;
cout << " (" << setw(5) << value << ")";

This will cause the following output:
(23)

Notice that the number occupies the last two positions in the field. Since the number did
not use the entire field, cout filled the extra 3 positions with blank spaces. Because the
number appears on the right side of the field with blank spaces “padding” it in front, it is
said to be right-justified.

Program 3-13 shows how the numbers in Program 3-12 can be printed in columns that line
up perfectly by using setw.

109

110 Chapter

3 Expressions and Interactivity

Program 3-13

// This program displays three rows of numbers.
#include <iostream>

#include <iomanip> // Required for setw
using namespace std;

int main()

{
int numl = 2897, num2 = 5, num3 = 837,
num4 = 34, num5 = 7, num6 = 1623,
num7 = 390, num8 = 3456, num9 = 12;
// Display the first row of numbers
cout << setw(6) << numl << setw(6)
<< num2 << setw(6) << num3 << endl;
// Display the second row of numbers
cout << setw(6) << numé4 << setw(6)
<< num5 << setw(6) << numé << endl;
// Display the third row of numbers
cout << setw(6) << num7 << setw(6)
<< num8 << setw(6) << num9 << endl;
return 0;
}

Program Output

2897 5 837
34 7 1623
390 3456 12

<&

By printing each number in a field of 6 positions, they are displayed in perfect columns.

NOTE: A new header file, iomanip, is included in Program 3-13. It must be used in
any program that uses setw.

Notice how a setw manipulator is used with each value because setw only establishes a
field width for the value immediately following it. After that value is printed, cout goes
back to its default method of printing.

You might wonder what will happen if the number is too large to fit in the field, as in the
following statement:

value = 18397;
cout << setw(2) << value;

In cases like this, cout will print the entire number. setw only specifies the minimum num-
ber of positions in the print field. Any number larger than the minimum will cause cout to
override the setw value.

3.7 Formatting Output

You may specify the field width of any type of data. Program 3-14 shows setw being used
with an integer, a floating-point number, and a string object.

Program 3-14

// This program demonstrates the setw manipulator being
// used with values of various data types.

#include <iostream>

#include <iomanip>

#include <string>

using namespace std;

int main()

{
int intValue = 3928;
double doublevValue = 91.5;
string stringValue = "John J. Smith";
cout << " (" << setw(5) << intValue << ")" << endl;
cout << " (" << setw(8) << doubleValue << ")" << endl;
cout << " (" << setw(1l6) << stringValue << ")" << endl;
return 0;

}

Program Output
(3928)

(
(

D

VideoNote
Formatting
Numbers with
setprecision

91.5)
John J. Smith)

Program 3-14 can be used to illustrate the following points:

e The field width of a floating-point number includes a position for the decimal
point.

e The field width of a string object includes all characters in the string, including
spaces.

e The values printed in the field are right-justified by default. This means they are
aligned with the right side of the print field, and any blanks that must be used to pad
it are inserted in front of the value.

The setprecision Manipulator

Floating-point values may be rounded to a number of significant digits, or precision, which
is the total number of digits that appear before and after the decimal point. You can control
the number of significant digits with which floating-point values are displayed by using
the setprecision manipulator. Program 3-15 shows the results of a division operation
displayed with different numbers of significant digits.

111

112

Chapter 3 Expressions and Interactivity

Program 3-15

// This program demonstrates how setprecision rounds a

// floating point value.
#include <iostream>
#include <iomanip>
using namespace std;

int main()

{

double quotient,

quotient

cout
cout
cout
cout
cout
cout

<<
<<
<<
<<
<<
<<

numberl

132.364,

= numberl / number2;
quotient << endl;

setprecision(5)
setprecision(4)
setprecision(3)
setprecision(2)
setprecision(1l)

return 0;

Program Output

.91877
.9188
.919
.92

4
4
4
4
4.9
5

<<
<<
<<
<<
<<

quotient
quotient
quotient
quotient
quotient

number?2

<<
<<
<<
<<
<<

endl;
endl;
endl;
endl;
endl;

The first value is displayed in line 12 without the setprecision manipulator. (By default,
the system in the illustration displays floating-point values with 6 significant digits.) The
subsequent cout statements print the same value, but rounded to 5, 4, 3, 2, and 1 signifi-

cant digits.

If the value of a number is expressed in fewer digits of precision than specified by setprecision,
the manipulator will have no effect. In the following statements, the value of dollars only has
four digits of precision, so the number printed by both cout statements is 24.51.

double dollars = 24.51;

cout << dollars << endl;

cout << setprecision(5) << dollars << endl;

// Displays 24.51
// Displays 24.51

Table 3-11 shows how setprecision affects the way various values are displayed.

Table 3-11

Number

Manipulator

Value Displayed

28.92786
21

109.5
34.28596

setprecision(3)
setprecision(5)
setprecision(4)

setprecision(2)

28.9
21
109.5
34

3.7 Formatting Output 113

Unlike field width, the precision setting remains in effect until it is changed to some other
value. As with all formatting manipulators, you must include the header file iomanip to
use setprecision.

Program 3-16 shows how the setw and setprecision manipulators may be combined to
fully control the way floating point numbers are displayed.

Program 3-16

// This program asks for sales figures for 3 days. The total
// sales are calculated and displayed in a table.

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{
double dayl, day2, day3, total;

// Get the sales for each day.

cout << "Enter the sales for day 1: ";
cin >> dayl;

cout << "Enter the sales for day 2: ";
cin >> day2;

cout << "Enter the sales for day 3: ";
cin >> day3;

// Calculate the total sales.
total = dayl + day2 + day3;

// Display the sales figures.

cout << "\nSales Figures\n";

cout << M———mm————— \n";

cout << setprecision(5);

cout << "Day 1l: " << setw(8) << dayl << endl;
cout << "Day 2: " << setw(8) << day2 << endl;
cout << "Day 3: " << setw(8) << day3 << endl;
cout << "Total: " << setw(8) << total << endl;
return 0;

Program Output with Example Input Shown in Bold

Enter the sales for day 1: 321.57 [Enter]
Enter the sales for day 2: 269.62 [Enter]
Enter the sales for day 3: 307.77 [Enter]

Sales Figures

114 Chapter 3 Expressions and Interactivity

The fixed Manipulator

The setprecision manipulator can sometimes surprise you in an undesirable way. When
the precision of a number is set to a lower value, numbers tend to be printed in scientific
notation. For example, here is the output of Program 3-16 with larger numbers being
input:

Program 3-16

Program Output with Example Input Shown in Bold

Enter the sales for day 1: 145678.99 [Enter]
Enter the sales for day 2: 205614.85 [Enter]
Enter the sales for day 3: 198645.22 [Enter]

Sales Figures

Day 1l: 1.4568e+005
Day 2: 2.0561e+005
Day 3: 1.9865e+005
Total: 5.4994e+005

Another stream manipulator, fixed, forces cout to print the digits in fixed-point notation,
or decimal. Program 3-17 shows how the fixed manipulator is used.

Program 3-17

// This program asks for sales figures for 3 days. The total
// sales are calculated and displayed in a table.

#include <iostream>

#include <iomanip>

using namespace std;

int main()
{
double dayl, day2, day3, total;

// Get the sales for each day.

cout << "Enter the sales for day 1: ";
cin >> dayl;
cout << "Enter the sales for day 2: ";
cin >> day2;
cout << "Enter the sales for day 3: ";

cin >> day3;

// Calculate the total sales.
total = dayl + day2 + day3;

3.7 Formatting Output

// Display the sales figures.
cout << "\nSales Figures\n";

cout << Memmmmmmm—— \n";

cout << setprecision(2) << fixed;

cout << "Day 1l: " << setw(8) << dayl << endl;
cout << "Day 2: " << setw(8) << day2 << endl;
cout << "Day 3: " << setw(8) << day3 << endl;
cout << "Total: " << setw(8) << total << endl;
return 0;

Program Output with Example Input Shown in Bold

Enter the sales for day 1: 1321.87 [Enter]
Enter the sales for day 2: 1869.26 [Enter]
Enter the sales for day 3: 1403.77 [Enter]

Sales Figures

Day 1: 1321.87
Day 2: 1869.26
Day 3: 1403.77
Total: 4594.90

The statement in line 25 uses the £ixed manipulator:
cout << setprecision(2) << fixed;

When the fixed manipulator is used, all floating point numbers that are subsequently
printed will be displayed in fixed point notation, with the number of digits to the right of
the decimal point specified by the setprecision manipulator.

When the fixed and setprecision manipulators are used together, the value speci-
fied by the setprecision manipulator will be the number of digits to appear after the
decimal point, not the number of significant digits. For example, look at the following
code.

double x = 123.4567;
cout << setprecision(2) << fixed << x << endl;

Because the fixed manipulator is used, the setprecision manipulator will cause the
number to be displayed with two digits after the decimal point. The value will be displayed
as 123.46.

The showpoint Manipulator

By default, floating-point numbers are not displayed with trailing zeroes, and floating-point
numbers that do not have a fractional part are not displayed with a decimal point. For
example, look at the following code.

double x = 123.4, y = 456.0;
cout << setprecision(6) << x << endl;
cout << y << endl;

115

116

Chapter 3 Expressions and Interactivity

The cout statements will produce the following output.

123.4
456

Although six significant digits are specified for both numbers, neither number is displayed
with trailing zeroes. If we want the numbers padded with trailing zeroes, we must use the
showpoint manipulator as shown in the following code.

double x = 123.4, y = 456.0;
cout << setprecision(6) << showpoint << x << endl;
cout << y << endl;

These cout statements will produce the following output.

123.400
456.000

NOTE: With most compilers, trailing zeroes are displayed when the setprecision
and fixed manipulators are used together.

The left and right Manipulators
Normally output is right justified. For example, look at the following code.

double x = 146.789, y = 24.2, z = 1.783;
cout << setw(1l0) << x << endl;
cout << setw(1l0) << y << endl;
cout << setw(1l0) << z << endl;

Each of the variables, x, y, and z, is displayed in a print field of 10 spaces. The output of
the cout statements is

146.789
24.2
1.783

Notice that each value is right-justified, or aligned to the right of its print field. You can
cause the values to be left-justified by using the 1eft manipulator, as shown in the follow-
ing code.

double x = 146.789, y = 24.2, z = 1.783;
cout << left << setw(10) << x << endl;
cout << setw(1l0) << y << endl;

cout << setw(1l0) << z << endl;

The output of these cout statements is

146.789
24.2
1.783

In this case, the numbers are aligned to the left of their print fields. The left manipulator
remains in effect until you use the right manipulator, which causes all subsequent output
to be right-justified.

Table 3-12 summarizes the manipulators we have discussed.

3.7 Formatting Output

Table 3-12
Stream Manipulator Description
setw(n) Establishes a print field of 7 spaces.
fixed Displays floating-point numbers in fixed point notation.
showpoint Causes a decimal point and trailing zeroes to be displayed, even if
there is no fractional part.
setprecision(n) Sets the precision of floating-point numbers.
left Causes subsequent output to be left justified.
right Causes subsequent output to be right justified.
Checkpoint
3.17 Write cout statements with stream manipulators that perform the following;:
A) Display the number 34.789 in a field of nine spaces with two decimal places
of precision.
B) Display the number 7.0 in a field of five spaces with three decimal places of
precision.
The decimal point and any trailing zeroes should be displayed.
C) Display the number 5.789e+12 in fixed point notation.
D) Display the number 67 left justified in a field of seven spaces.
3.18 The following program will not compile because the lines have been mixed up.

#include <iomanip>

¥
cout << person << endl;
string person = "Wolfgang Smith";

int main()

cout << person << endl;
{

#include <iostream>
return 0;

cout << left;

using namespace std;
cout << setw(20);

cout << right;

When the lines are properly arranged the program should display the following:

Wolfgang Smith
Wolfgang Smith

Rearrange the lines in the correct order. Test the program by entering it on the
computer, compiling it, and running it.

117

118 Chapter 3 Expressions and Interactivity

3.19 The following program skeleton asks for an angle in degrees and converts it to
radians. The formatting of the final output is left to you.

#include <iostream>
#include <iomanip>
using namespace std;

int main()

{
const double PI = 3.14159;
double degrees, radians;

cout << "Enter an angle in degrees and I will convert it\n";
cout << "to radians for you: ";

cin >> degrees;

radians = degrees * PI / 180;

// Display the value in radians left Jjustified, in fixed

// point notation, with 4 places of precision, in a field

// 5 spaces wide, making sure the decimal point is always

// displayed.

return 0;

—
3.8 Working with Characters and string Objects

1 CONCEPT: Special functions exist for working with characters and string objects.

Although it is possible to use cin with the >> operator to input strings, it can cause prob-
lems that you need to be aware of. When cin reads input, it passes over and ignores any
leading whitespace characters (spaces, tabs, or line breaks). Once it comes to the first non-
blank character and starts reading, it stops reading when it gets to the next whitespace
character. Program 3-18 illustrates this problem.

Program 3-18

// This program illustrates a problem that can occur if

// cin is used to read character data into a string object.
#include <iostream>

#include <string>

using namespace std;

int main()

{
string name;
string city;

cout << "Please enter your name: ";
cin >> name;

cout << "Enter the city you live in: "
cin >> city;

3.8 Working with Characters and string Objects

cout << "Hello, " << name << endl;
cout << "You live in " << city << endl;
return 0;

Program Output with Example Input Shown in Bold
Please enter your name: Kate Smith [Enter]

Enter the city you live in: Hello, Kate
You live in Smith

Notice that the user was never given the opportunity to enter the city. In the first input
statement, when cin came to the space between Kate and smith, it stopped reading, stor-
ing just Kate as the value of name. In the second input statement, cin used the leftover
characters it found in the keyboard buffer and stored smith as the value of city.

To work around this problem, you can use a C++ function named getline. The getline
function reads an entire line, including leading and embedded spaces, and stores it in a
string object. The getline function looks like the following, where cin is the input stream
we are reading from and inputLine is the name of the string object receiving the input.

getline(cin, inputLine);

Program 3-19 illustrates using the getline function.

Program 3-19

// This program demonstrates using the getline function
// to read character data into a string object.
#include <iostream>

#include <string>

using namespace std;

int main()

{
string name;
string city;

cout << "Please enter your name: ";
getline(cin, name);

cout << "Enter the city you live in: ";
getline(cin, city);

cout << "Hello, " << name << endl;
cout << "You live in " << city << endl;
return 0;

Program Output with Example Input Shown in Bold

Please enter your name: Kate Smith [Enter]
Enter the city you live in: Raleigh [Enter]
Hello, Kate Smith

You live in Raleigh

119

120

Chapter 3 Expressions and Interactivity

Inputting a Character

Sometimes you want to read only a single character of input. For example, some programs
display a menu of items for the user to choose from. Often the selections are denoted by the
letters A, B, C, and so forth. The user chooses an item from the menu by typing a character.
The simplest way to read a single character is with cin and the >> operator, as illustrated
in Program 3-20.

Program 3-20

// This program reads a single character into a char variable.
#include <iostream>
using namespace std;

int main()

{
char ch;
cout << "Type a character and press Enter: ";
cin >> ch;
cout << "You entered " << ch << endl;
return 0;
}

Program Output with Example Input Shown in Bold

Type a character and press Enter: A [Enter]
You entered A

Using cin.get

As with string input, however, there are times when using cin >> to read a character does
not do what you want. For example, because it passes over all leading whitespace, it is
impossible to input just a blank or [Enter] with cin >>. The program will not continue
past the cin statement until some character other than the spacebar, tab key, or [Enter] key
has been pressed. (Once such a character is entered, the [Enter] key must still be pressed
before the program can continue to the next statement.) Thus, programs that ask the user
to "Press the Enter key to continue." cannot use the >> operator to read only the
pressing of the [Enter] key.

In those situations, the cin object has a built-in function named get that is helpful. Because
the get function is built into the cin object, we say that it is a member function of cin.
The get member function reads a single character, including any whitespace character. If
the program needs to store the character being read, the get member function can be called
in either of the following ways. In both examples, assume that ch is the name of a char
variable that the character is being read into.

cin.get(ch);
ch = cin.get();

3.8 Working with Characters and string Objects

If the program is using the cin.get function simply to pause the screen until the [Enter] key
is pressed and does not need to store the character, the function can also be called like this:

cin.get();
Program 3-21 illustrates all three ways to use the cin.get function.
Program 3-21
// This program demonstrates three ways
// to use cin.get() to pause a program.
#include <iostream>

using namespace std;

int main()

{
char ch;
cout << "This program has paused. Press Enter to continue.";
cin.get(ch);
cout << "It has paused a second time. Please press Enter again.";
ch = cin.get();
cout << "It has paused a third time. Please press Enter again.";
cin.get();
cout << "Thank you!";
return 0;

}

Program Output with Example Input Shown in Bold

This program has paused. Press Enter to continue. [Enter]

It has paused a second time. Please press Enter again. [Enter]
It has paused a third time. Please press Enter again. [Enter]
Thank you!

Mixing cin >> and cin.get

Mixing cin >> with cin.get can cause an annoying and hard-to-find problem. For exam-
ple, look at Program 3-22.

Program 3-22

// This program demonstrates a problem that occurs
// when you mix cin >> with cin.get().

#include <iostream>

using namespace std;

int main()

{
char ch; // Define a character variable
int number; // Define an integer variable

(program continues)

121

122 Chapter 3 Expressions and Interactivity

Program 3-22 (continued)

cout << "Enter a number: ";

cin >> number;

cout << "Enter a character:

ch = cin.get();
cout << "Thank You!\n";
return 0;

n

// Read an integer

r

// Read a character

Program Output with Example Input Shown in Bold

Enter a number: 100 [Enter]
Enter a character: Thank You!

When this program runs, line 12 lets the user enter a number, but it appears as though the
statement in line 14 is skipped. This happens because cin >> and cin.get use slightly
different techniques for reading data.

In the example run of the program, when line 12 executed, the user entered 100 and
pressed the [Enter] key. Pressing the [Enter] key causes a newline character (*\n') to be
stored in the keyboard buffer, as shown in Figure 3-5. The cin >> statement in line 12
begins reading the data that the user entered, and stops reading when it comes to the new-
line character. This is shown in Figure 3-6. The newline character is not read, but remains

in the keyboard buffer.

Figure 3-5

Keyboard buffer

0|0 [\n

1
cin begins _f

reading here.

Figure 3-6

Keyboard buffer

11010 |\n

cin stops reading here, _f
but does not read the \n
character.

When the cin.get function in line 14 executes, it begins reading the keyboard buffer where
the previous input operation stopped. That means that cin.get reads the newline charac-
ter, without giving the user a chance to enter any more input. You can remedy this situation
by using the cin.ignore function, described in the following section.

3.8 Working with Characters and string Objects 123

Using cin.ignore

To solve the problem previously described, you can use another of the cin object’s member
functions named ignore. The cin.ignore function tells the cin object to skip one or more
characters in the keyboard buffer. Here is its general form:

cin.ignore(n, c¢);

The arguments shown in the parentheses are optional. If used, n is an integer and c is a
character. They tell cin to skip n number of characters, or until the character ¢ is encoun-
tered. For example, the following statement causes cin to skip the next 20 characters or
until a newline is encountered, whichever comes first:

cin.ignore(20,'\n');
If no arguments are used, cin will skip only the very next character. Here’s an example:
cin.ignore();

Program 3-23, which is a modified version of Program 3-22, demonstrates the function.
Notice that a call to cin.ignore has been inserted in line 13, right after the cin >>
statement.

Program 3-23

// This program successfully uses both

// cin >> and cin.get() for keyboard input.
#include <iostream>

using namespace std;

int main()

{
char ch;
int number;

cout << "Enter a number: ";

cin >> number;

cin.ignore(); // Skip the newline character
cout << "Enter a character: ";

ch = cin.get();

cout << "Thank You!\n";

return 0;

Program Output with Example Input Shown in Bold

Enter a number: 100 [Enter]
Enter a character: Z [Enter]
Thank You!

124

Chapter 3 Expressions and Interactivity

—
3.9

string Member Functions and Operators

C++ string objects also have a number of member functions. For example, if you want
to know the length of the string that is stored in a string object, you can call the object’s
length member function. Here is an example of how to use it.

string state = "Texas";
int size = state.length();

The first statement creates a string object named state and initializes it with the string
"Texas". The second statement defines an int variable named size and initializes it with
the length of the string in the state object. After this code executes, the size variable will
hold the value S.

Certain operators also work with string objects. One of them is the + operator. You
have already encountered the + operator to add two numeric quantities. Because strings
cannot be added, when this operator is used with string operands it concatenates them,
or joins them together. Assume we have the following definitions and initializations in a
program.

string greetingl = "Hello ";
string greeting2;

string namel = "World";
string name2 = "People";

The following statements illustrate how string concatenation works.

greeting2 = greetingl + namel; // greeting2 now holds "Hello World"
greetingl = greetingl + name2; // greetingl now holds "Hello People"

Notice that the string stored in greetingl has a blank as its last character. If the blank
were not there, greeting2 would have been assigned the string "Helloworld".

The last statement in the previous example could also have been written using the += com-
bined assignment operator, to achieve the same result:

greetingl += name2;

You will learn about other useful string member functions and operators in Chapter 10.

More Mathematical Library Functions

1 CONCEPT: The C++ runtime library provides several functions for performing com-

plex mathematical operations.

Earlier in this chapter you learned to use the pow function to raise a number to a power. The
C++ library has numerous other functions that perform specialized mathematical opera-
tions. These functions are useful in scientific and special-purpose programs. Table 3-13
shows several of these, each of which requires the cmath header file.

3.9 More Mathematical Library Functions

Table 3-13

Function Example Description

abs y = abs(x); Returns the absolute value of the argument. The argument and
the return value are integers.

cos y = cos(x); Returns the cosine of the argument. The argument should be an
angle expressed in radians. The return type and the argument
are doubles.

exp y = exp(x); Computes the exponential function of the argument, which is

fmod

log

logl0

sin

sgrt

tan

x. The return type and the argument are doubles.

y = fmod(x, z); Returns, as a double, the remainder of the first argument
divided by the second argument. Works like the modulus opera-
tor, but the arguments are doubles. (The modulus operator
only works with integers.) Take care not to pass zero as the
second argument. Doing so would cause division by zero.

y = log(x); Returns the natural logarithm of the argument. The return type
and the argument are doubles.

y = loglO(x); Returns the base-10 logarithm of the argument. The return type
and the argument are doubles.

y = sin(x); Returns the sine of the argument. The argument should be an
angle expressed in radians. The return type and the argument
are doubles.

y = sqrt(x); Returns the square root of the argument. The return type and
argument are doubles.

y = tan(x); Returns the tangent of the argument. The argument should be
an angle expressed in radians. The return type and the argu-
ment are doubles.

Each of these functions is as simple to use as the pow function. The following program seg-
ment demonstrates the sqrt function, which returns the square root of a number:

cout << "Enter a number: ";

cin >> num;

s = sdgrt(num);

cout << "The square root of " << num << " is " << s << endl;

Here is the output of the program segment, with 25 as the number entered by the user:

Enter a number: 25
The square root of 25 is 5

Program 3-24 shows the sqrt function being used to find the hypotenuse of a right triangle.
The program uses the following formula, taken from the Pythagorean theorem:

c=Va*+b

In the formula, c is the length of the hypotenuse, and @ and b are the lengths of the other
sides of the triangle.

125

126

Chapter 3 Expressions and Interactivity

Program 3-24

// This program asks for the lengths of the two sides of a
// right triangle. The length of the hypotenuse is then

// calculated and displayed.

#include <iostream>

#include <iomanip> // For setprecision

#include <cmath> // For the sgrt and pow functions
using namespace std;

int main()

{
double a, b, c;
cout << "Enter the length of side a: ";
cin >> a;
cout << "Enter the length of side b: ";
cin >> b;
c = sqgrt(pow(a, 2.0) + pow(b, 2.0));
cout << "The length of the hypotenuse is ";
cout << setprecision(2) << c << endl;
return 0;

}

Program Output with Example Input Shown in Bold

Enter the length of side a: 5.0 [Enter]
Enter the length of side b: 12.0 [Enter]
The length of the hypotenuse is 13

The following statement, taken from Program 3-24, calculates the square root of the sum
of the squares of the triangle’s two sides:

c = sgrt(pow(a, 2.0) + pow(b, 2.0));
Notice that the following mathematical expression is used as the sqrt function’s argument:
pow(a, 2.0) + pow(b, 2.0)

This expression calls the pow function twice: once to calculate the square of a and again to
calculate the square of b. These two squares are then added together, and the sum is sent
to the sqrt function.

Random Numbers

Random numbers are useful for lots of different programming tasks. The following are just
a few examples:

e Random numbers are commonly used in games. For example, computer games that let
the player roll dice use random numbers to represent the values of the dice. Programs
that show cards being drawn from a shuffled deck use random numbers to represent
the face values of the cards.

3.9 More Mathematical Library Functions 127

e Random numbers are useful in simulation programs. In some simulations, the com-
puter must randomly decide how a person, animal, insect, or other living being will
behave. Formulas can be constructed in which a random number is used to determine
various actions and events that take place in the program.

e Random numbers are useful in statistical programs that must randomly select data for
analysis.

e Random numbers are commonly used in computer security to encrypt sensitive data.

The C++ library has a function, rand(), that you can use to generate random numbers.
(The rand() function requires the cstdlib header file.) The number returned from the
function is an int. Here is an example of its usage:

y = rand();

After this statement executes, the variable y will contain a random number. In actuality,
the numbers produced by rand()are pseudorandom. The function uses an algorithm that
produces the same sequence of numbers each time the program is repeated on the same
system. For example, suppose the following statements are executed.

cout << rand() << endl;
cout << rand() << endl;
cout << rand() << endl;

The three numbers displayed will appear to be random, but each time the program runs,
the same three values will be generated. In order to randomize the results of rand(), the
srand() function must be used. srand() accepts an unsigned int argument, which acts
as a seed value for the algorithm. By specifying different seed values, rand () will generate
different sequences of random numbers.

A common practice for getting unique seed values is to call the time function, which is part
of the standard library. The time function returns the number of seconds that have elapsed
since midnight, January 1, 1970. The time function requires the ctime header file, and you
pass 0 as an argument to the function. Program 3-25 demonstrates. The program should
generate three different random numbers each time it is executed.

Program 3-25

// This program demonstrates random numbers.
#include <iostream>

#include <cstdlib> // For rand and srand
#include <ctime> // For the time function
using namespace std;

int main()

{
// Get the system time.

unsigned seed = time(0);

// Seed the random number generator.
srand(seed);

(program continues)

128

Chapter 3 Expressions and Interactivity

Program 3-25 (continued)

// Display three random numbers.
cout << rand() << endl;

cout << rand() << endl;

cout << rand() << endl;

return 0;

Program Output

23861
20884
21941

If you wish to limit the range of the random number, use the following formula:
y = (rand() % (maxValue - minValue + 1)) + minValue;

In the formula, minvalue is the lowest number in the range, and maxvalue is the highest
number in the range. For example, the following code assigns a random number in the
range of 1 through 100 to the variable y:

const int MIN VALUE = 1;
const int MAX VALUE = 100;
y = (rand() % (MAX VALUE - MIN VALUE + 1)) + MIN VALUE;

As another example, the following code assigns a random number in the range of 100
through 200 to the variable y:

const int MIN_VALUE 100;
const int MAX VALUE = 200;
y = (rand() % (MAX VALUE - MIN VALUE + 1)) + MIN VALUE;

The following “In the Spotlight” section demonstrates how to use random numbers to
simulate rolling dice.

In the Spotlight:
Using Random Numbers

Dr. Kimura teaches an introductory statistics class and has asked you to write a program
that he can use in class to simulate the rolling of dice. The program should randomly gener-
ate two numbers in the range of 1 through 6 and display them. Program 3-26 shows the
program, with three examples of program output.

Program 3-26

// This program simulates rolling dice.
#include <iostream>

#include <cstdlib> // For rand and srand
#include <ctime> // For the time function
using namespace std;

3.9 More Mathematical Library Functions

int main()

{

}

// Constants
const int MIN VALUE = 1; // Minimum die value
const int MAX VALUE = 6; // Maximum die value

// Variables
int diel; // To hold the value of die #1
int die2; // To hold the value of die #2

// Get the system time.
unsigned seed = time(0);

// Seed the random number generator.
srand(seed);

cout << "Rolling the dice..\n";

diel = (rand() % (MAX VALUE - MIN VALUE + 1)) + MIN VALUE;
die2 (rand() % (MAX VALUE - MIN VALUE + 1)) + MIN VALUE;
cout << diel << endl;

cout << die2 << endl;

return 0;

Program Output

Rolling the dice...

5
2

Program Output

Rolling the dice...

4
6

Program Output

Rolling the dice...

3
1

Checkpoint

3.20 Write a short description of each of the following functions:
cos log sin
exp loglo0 sqgrt
fmod pow tan

3.21

3.22

Assume the variables anglel and angle2 hold angles stored in radians. Write
a statement that adds the sine of anglel to the cosine of angle2 and stores the
result in the variable x.

To find the cube root (the third root) of a number, raise it to the power of /3. To
find the fourth root of a number, raise it to the power of %. Write a statement that
will find the fifth root of the variable x and store the result in the variable y.

129

130

Chapter 3 Expressions and Interactivity

3.23 The cosecant of the angle a is

1
sin a

Write a statement that calculates the cosecant of the angle stored in the variable
a, and stores it in the variable y.

'.‘
3.10 Focus on Debugging: Hand Tracing a Program

|

Hand tracing is a debugging process where you pretend that you are the computer execut-
ing a program. You step through each of the program’s statements one by one. As you look
at a statement, you record the contents that each variable will have after the statement exe-
cutes. This process is often helpful in finding mathematical mistakes and other logic errors.

To hand trace a program you construct a chart with a column for each variable. The rows
in the chart correspond to the lines in the program. For example, Program 3-27 is shown
with a hand trace chart. The program uses the following four variables: num1, num2, num3,
and avg. Notice that the hand trace chart has a column for each variable and a row for
each line of code in function main.

Program 3-27

// This program asks for three numbers, then
// displays the average of the numbers.
#include <iostream>

using namespace std;

int main()

{ numl num2 num3 avg

double numl, num2, num3, avg;

cout << "Enter the first number: ";

cin >> numl;

cout << "Enter the second number: ";

cin >> num2;

cout << "Enter the third number: ";

cin >> num3;

avg = numl + num2 + num3 / 3;

cout << "The average is " << avg << endl;

return 0;

3.10 Focus on Debugging: Hand Tracing a Program

This program, which asks the user to enter three numbers and then displays the average
of the numbers, has a bug. It does not display the correct average. The output of a sample
session with the program follows.

Program Output with Example Input Shown in Bold
Enter the first number: 10 [Enter]

Enter the second number: 20 [Enter]

Enter the third number: 30 [Enter]

The average is 40

The correct average of 10, 20, and 30 is 20, not 40. To find the error we will hand trace
the program. To hand trace this program, you step through each statement, observing the
operation that is taking place, and then record the contents of the variables after the state-
ment executes. After the hand trace is complete, the chart will appear as follows. We have
written question marks in the chart where we do not know the contents of a variable.

Program 3-27 (with hand trace chart filled)

// This program asks for three numbers, then
// displays the average of the numbers.
#include <iostream>

using namespace std;

int main()

{ numl num?2 num3 avg
double numl, num2, num3, avg; ? ? ? ?
cout << "Enter the first number: "; ? ? ? ?
cin >> numl; 10 ? ? ?
cout << "Enter the second number: "; 10 ? ? ?
cin >> num2; 10 20 ? ?
cout << "Enter the third number: "; 10 20 ? ?
cin >> num3; 10 20 30 ?
avg = numl + num2 + num3 / 3; 10 20 30 40
cout << "The average is " << avg << endl; 10 20 30 40

return 0;

Do you see the error? By examining the statement that performs the math operation in line
14, we find a mistake. The division operation takes place before the addition operations, so
we must rewrite that statement as

avg = (numl + num2 + num3) / 3;

Hand tracing is a simple process that focuses your attention on each statement in a pro-
gram. Often this helps you locate errors that are not obvious.

131

132

Chapter 3 Expressions and Interactivity

m—

3.11 Focus on Problem Solving: A Case Study

|

General Crates, Inc. builds custom-designed wooden crates. With materials and labor, it
costs GCI $0.23 per cubic foot to build a crate. In turn, they charge their customers $0.50
per cubic foot for the crate. You have been asked to write a program that calculates the

volume (in cubic feet), cost, customer price, and profit of any crate GCI builds.

Variables

Table 3-14 shows the named constants and variables needed.

Table 3-14

Constant or Variable

Description

COST_PER_CUBIC_FOOT

CHARGE_PER_CUBIC_FOOT

length

width

height

volume

cost

charge

profit

A named constant, declared as a double and initialized with the
value 0.23. This represents the cost to build a crate, per cubic
foot.

A named constant, declared as a double and initialized with the
value 0.5. This represents the amount charged for a crate, per
cubic foot.

A double variable to hold the length of the crate, which is input
by the user.

A double variable to hold the width of the crate, which is input
by the user.

A double variable to hold the height of the crate, which is input
by the user.

A double variable to hold the volume of the crate. The value
stored in this variable is calculated.

A double variable to hold the cost of building the crate. The
value stored in this variable is calculated.

A double variable to hold the amount charged to the customer
for the crate. The value stored in this variable is calculated.

A double variable to hold the profit GCI makes from the crate.
The value stored in this variable is calculated.

Program Design

The program must perform the following general steps:

1. Ask the user to enter the dimensions of the crate (the crate’s length, width, and height).
2. Calculate the crate’s volume, the cost of building the crate, the customer’s charge, and
the profit made.

3. Display the data calculated in Step 2.

A general hierarchy chart for this program is shown in Figure 3-7.

3.11 Focus on Problem Solving: A Case Study

Figure 3-7

Calculate Crate Volume,
Cost, Price, and Profit.

I |
Calculate Volume Display Calculated
t t ’
Get Crate Cost, Customer Data.
Charge, and Profit.

Dimensions.

The “Get Crate Dimensions” step is shown in greater detail in Figure 3-8.

Figure 3-8

Get Crate Dimensions.

Get Length. Get Width. Get Height.

The “Calculate Volume, Cost, Customer Charge, and Profit” step is shown in greater detail
in Figure 3-9.

Figure 3-9

Calculate Volume, Cost,
Customer Charge, and

Profit.
[
I I I |
Calculate the Calculate the Calculate the Calculate the
Crate’s Volume. Crate’s Cost. Customer Charge. Profit Made.

The “Display Calculated Data” step is shown in greater detail in Figure 3-10.

Figure 3-10

Display Calculated Data.

Display the Display the Display the Display the
Crate’s Volume. Crate’s Cost. Customer Charge. Profit Made.

133

134 Chapter 3 Expressions and Interactivity

Pseudocode for the program is as follows:

Ask the user to input the crate's length.
Ask the user to input the crate's width.
Ask the user to input the crate's height.
Calculate the crate's volume.

Calculate the cost of building the crate.
Calculate the customer's charge for the crate.
Calculate the profit made from the crate.
Display the crate's volume.

Display the cost of building the crate.
Display the customer's charge for the crate.
Display the profit made from the crate.

Calculations
The following formulas will be used to calculate the crate’s volume, cost, charge, and profit:

volume = length X width X height
cost = volume X 0.23
charge = volume X 0.5

profit = charge — cost

The Program

The last step is to expand the pseudocode into the final program, which is shown in
Program 3-28.

Program 3-28

// This program is used by General Crates, Inc. to calculate
// the volume, cost, customer charge, and profit of a crate

// of any size. It calculates this data from user input, which
// consists of the dimensions of the crate.

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{
// Constants for cost and amount charged
const double COST_PER_CUBIC_FOOT = 0.23;
const double CHARGE_PER_CUBIC_FOOT = 0.5;

// Variables
double length, // The crate's length
width, // The crate's width
height, // The crate's height
volume, // The volume of the crate
cost, // The cost to build the crate

3.11 Focus on Problem Solving: A Case Study

charge, // The customer charge for the crate
profit; // The profit made on the crate

// Set the desired output formatting for numbers.
cout << setprecision(2) << fixed << showpoint;

// Prompt the user for the crate's length, width, and height
cout << "Enter the dimensions of the crate (in feet):\n";
cout << "Length: ";

cin >> length;

cout << "Width: ";

cin >> width;

cout << "Height: ";

cin >> height;

// Calculate the crate's volume, the cost to produce it,
// the charge to the customer, and the profit.

volume = length * width * height;

cost = volume * COST_PER CUBIC_FOOT;

charge = volume * CHARGE_PER CUBIC_FOOT;

profit = charge - cost;

// Display the calculated data.

cout << "The volume of the crate is ";

cout << volume << " cubic feet.\n";

cout << "Cost to build: $" << cost << endl;

cout << "Charge to customer: $" << charge << endl;
cout << "Profit: $" << profit << endl;

return 0;

Program Output with Example Input Shown in Bold

Enter the dimensions of the crate (in feet):
Length: 10 [Enter]

Width: 8 [Enter]

Height: 4 [Enter]

The volume of the crate is 320.00 cubic feet.
Cost to build: $73.60

Charge to customer: $160.00

Profit: $86.40

Program Output with Different Example Input Shown in Bold

Enter the dimensions of the crate (in feet):
Length: 12.5 [Enter]

Width: 10.5 [Enter]

Height: 8 [Enter]

The volume of the crate is 1050.00 cubic feet.
Cost to build: $241.50

Charge to customer: $525.00

Profit: $283.50

135

136

Chapter 3 Expressions and Interactivity

Review Questions and Exercises
Short Answer

1.

Assume that the following variables are defined:

int age;
double pay;
char section;

Werite a single cin statement that will read input into each of these variables.

. Assume a string object has been defined as follows:

string description;

A) Write a cin statement that reads in a one-word string.

B) Write a statement that reads in a string that can contain multiple words separated

by blanks.

. What header files must be included in the following program?

int main()

{
double amount = 89.7;
cout << showpoint << fixed;
cout << setw(8) << amount << endl;
return 0;
}

. Complete the following table by writing the value of each expression in the Value column.

Expression Value

28 / 4 - 2

6 + 12 * 2 - 8

4 + 8 * 2

6 + 17 & 3 - 2

2 + 22 * (9 - 7)

(8 + 7) * 2

(16 + 7) $ 2 - 1

12 / (10 - 6)

(19 - 3) * (2 + 2) / 4

. Write C++ expressions for the following algebraic expressions:

a=12x

z=S5x+ 14y + 6k

6.

10.

Review Questions and Exercises

Assume a program has the following variable definitions:

int units;
float mass;
double weight;

and the following statement:
weight = mass * units;

Which automatic data type conversion will take place?

A) mass is demoted to an int, units remains an int, and the result of mass * units
Is an int.

B) units is promoted to a float, mass remains a float, and the result of mass *
units is a float.

C) units is promoted to a float, mass remains a float, and the result of mass *
units is a double.

Assume a program has the following variable definitions:
int a, b = 2;

float ¢ = 4.2;

and the following statement:

g o= lp = @p

What value will be stored in a?

A) 8.4

B) 8

C) 0

D) None of the above

. Assume that gty and salesReps are both integers. Use a type cast expression to

rewrite the following statement so it will no longer perform integer division.
unitsEach = gty / salesReps;

Rewrite the following variable definition so the variable is a named constant.
int rate;

Complete the following table by writing statements with combined assignment opera-
tors in the right-hand column. The statements should be equivalent to the statements
in the left-hand column.

Statements with Statements with
Assignment Operator Combined Assignment Operator
X = X + 5;

total = total + subtotal;
dist = dist / rep;

ppl = ppl * period;

inv = inv - shrinkage;
num = num % 2;

137

138

Chapter 3 Expressions and Interactivity

11.

12.

13.

14.

Write a multiple assignment statement that can be used instead of the following group
of assignment statements:

east = 1;
west = 1;
north = 1;
south = 1;

Write a cout statement so the variable divsales is displayed in a field of 8 spaces, in
fixed point notation, with a precision of 2 decimal places. The decimal point should
always be displayed.

Write a cout statement so the variable totalage is displayed in a field of 12 spaces,
in fixed point notation, with a precision of 4 decimal places.

Write a cout statement so the variable population is displayed in a field of 12 spaces,
left-justified, with a precision of 8 decimal places. The decimal point should always be
displayed.

Fill-in-the-Blank

15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

The library function returns the cosine of an angle.

The library function returns the sine of an angle.

The library function returns the tangent of an angle.

The library function returns the exponential function of a number.

The library function returns the remainder of a floating point division.
The library function returns the natural logarithm of a number.

The library function returns the base-10 logarithm of a number.

The library function returns the value of a number raised to a power.
The library function returns the square root of a number.

The file must be included in a program that uses the mathematical functions.

Algorithm Workbench

25.

26.

A retail store grants its customers a maximum amount of credit. Each customer’s avail-
able credit is his or her maximum amount of credit minus the amount of credit used.
Werite a pseudocode algorithm for a program that asks for a customer’s maximum
amount of credit and amount of credit used. The program should then display the
customer’s available credit.

After you write the pseudocode algorithm, convert it to a complete C++ program.
Write a pseudocode algorithm for a program that calculates the total of a retail sale.
The program should ask for the amount of the sale and the sales tax rate. The sales tax
rate should be entered as a floating-point number. For example, if the sales tax rate is
6 percent, the user should enter 0.06. The program should display the amount of sales
tax and the total of the sale.

After you write the pseudocode algorithm, convert it to a complete C++ program.

Review Questions and Exercises 139

27. Write a pseudocode algorithm for a program that asks the user to enter a golfer’s score
for three games of golf, and then displays the average of the three scores.

After you write the pseudocode algorithm, convert it to a complete C++ program.

Find the Errors

Each of the following programs has some errors. Locate as many as you can.

28. using namespace std;
int main ()

{

double numberl, number2, sum;

Cout << "Enter a number: ";

Cin << numberl;

Cout << "Enter another number: ";

Cin << number?2;

numberl + number2 = sum;

Cout "The sum of the two numbers is " << sum
return 0;

}

29. #include <iostream>
using namespace std;

int main()

{
int numberl, number2;
float quotient;
cout << "Enter two numbers and I will divide\n";
cout << "the first by the second for you.\n";
cin >> numberl, number2;
quotient = float<static_cast>(numberl) / number2;
cout << quotient
return 0;

}

30. #include <iostream>;
using namespace std;

int main()

{

const int numberl, number2, product;

cout << "Enter two numbers and I will multiply\n";
cout << "them for you.\n";

cin >> numberl >> number2;

product = numberl * number2;

cout << product

return 0;

140 Chapter 3 Expressions and Interactivity

31. #include <iostream>;
using namespace std;

main

{
int numberl, number2;
cout << "Enter two numbers and I will multiply\n"
cout << "them by 50 for you.\n"
cin >> numberl >> number2;
numberl =* 50;
number2 =* 50;
cout << numberl << " " << number2;
return 0;

}

32. #include <iostream>;
using namespace std;

main
{
double number, half;

cout << "Enter a number and I will divide it\n"
cout << "in half for you.\n"

cin >> numberl;

half =/ 2;

cout << fixedpoint << showpoint << half << endl;
return 0;

}

33. #include <iostream>;
using namespace std;

int main()

{
char name, go;
cout << "Enter your name: ";
getline >> name;
cout << "Hi " << name << endl;
return 0;

}

Predict the Output

What will each of the following programs display? (Some should be hand traced and
require a calculator.)

34. (Assume the user enters 38700. Use a calculator.)

#include <iostream>
using namespace std;

35.

36.

37.

Review Questions and Exercises

int main()

{
double salary, monthly;
cout << "What is your annual salary? ";
cin >> salary;
monthly = static_cast<int>(salary) / 12;
cout << "Your monthly wages are " << monthly << endl;
return 0;
}

#include <iostream>
using namespace std;
int main()

{
long x, y, 2;
X =y =2 = 4;
X += 2;
y —= 1;
B = 3
cout << x << " " <K y << " " << z << endl;
return 0;
}

(Assume the user enters George Washington.)
#include <jiostream>

#include <iomanip>

#include <string>

using namespace std;

int main()

{
string userInput;
cout << "What is your name? ";
getline(cin, userInput);
cout << "Hello " << userInput << endl;
return 0;

¥

(Assume the user enters 36720152. Use a calculator.)

#include <iostream>
#include <iomanip>
using namespace std;

int main()
{
long seconds;
double minutes, hours, days, months, years;

cout << "Enter the number of seconds that have\n";
cout << "elapsed since some time in the past and\n";
cout << "I will tell you how many minutes, hours,\n";
cout << "days, months, and years have passed: ";

cin >> seconds;

141

142 Chapter 3 Expressions and Interactivity

>

VideoNote
Solving the
Stadium
Seating
Problem

minutes = seconds / 60;
hours = minutes / 60;
days = hours / 24;
years = days / 365;

months = years * 12;

cout << setprecision(4) << fixed << showpoint << right;
cout << "Minutes: " << setw(6) << minutes << endl;
cout << "Hours: " << setw(6) << hours << endl;

cout << "Days: " << setw(6) << days << endl;

cout << "Months: " << setw(6) << months << endl;

cout << "Years: " << setw(6) << years << endl;

return 0;

Programming Challenges

il

Miles per Gallon

Werite a program that calculates a car’s gas mileage. The program should ask the user
to enter the number of gallons of gas the car can hold and the number of miles it can
be driven on a full tank. It should then display the number of miles that may be driven
per gallon of gas.

. Stadium Seating

There are three seating categories at a stadium. For a softball game, Class A seats cost
$135, Class B seats cost $12, and Class C seats cost $9. Write a program that asks how
many tickets for each class of seats were sold, then displays the amount of income gen-
erated from ticket sales. Format your dollar amount in fixed-point notation, with two
decimal places of precision, and be sure the decimal point is always displayed.

. Test Average

Write a program that asks for five test scores. The program should calculate the aver-
age test score and display it. The number displayed should be formatted in fixed-point
notation, with one decimal point of precision.

. Average Rainfall

Write a program that calculates the average rainfall for three months. The program
should ask the user to enter the name of each month, such as June or July, and the
amount of rain (in inches) that fell each month. The program should display a message
similar to the following:

The average rainfall for June, July, and August is 6.72 inches.

. Male and Female Percentages

Werite a program that asks the user for the number of males and the number of females
registered in a class. The program should display the percentage of males and females
in the class.

Hint: Suppose there are 8 males and 12 females in a class. There are 20 students in the
class. The percentage of males can be calculated as 8 + 20 = 0.4, or 40%. The percent-
age of females can be calculated as 12 + 20 = 0.6, or 60%.

Programming Challenges

6. Ingredient Adjuster

A cookie recipe calls for the following ingredients:

e 1.5 cups of sugar
e 1 cup of butter
e 2.75 cups of flour

The recipe produces 48 cookies with this amount of the ingredients. Write a program
that asks the user how many cookies he or she wants to make, and then displays the
number of cups of each ingredient needed for the specified number of cookies.

. Box Office

A movie theater only keeps a percentage of the revenue earned from ticket sales. The
remainder goes to the movie distributor. Write a program that calculates a theater’s
gross and net box office profit for a night. The program should ask for the name of the
movie, and how many adult and child tickets were sold. (The price of an adult ticket is
$10.00 and a child’s ticket is $6.00.) It should display a report similar to

Movie Name: “Wheels of Fury”
Adult Tickets Sold: 382

Child Tickets Sold: 127

Gross Box Office Profit: $ 4582.00

Net Box Office Profit: $ 916.40
Amount Paid to Distributor: $ 3665.60

NOTE: Assume the theater keeps 20 percent of the gross box office profit.

8.

10.

11.

How Many Widgets?

The Yukon Widget Company manufactures widgets that weigh 12.5 pounds each.
Write a program that calculates how many widgets are stacked on a pallet, based on
the total weight of the pallet. The program should ask the user how much the pallet
weighs by itself and with the widgets stacked on it. It should then calculate and display
the number of widgets stacked on the pallet.

. How Many Calories?

A bag of cookies holds 30 cookies. The calorie information on the bag claims that there
are 10 “servings” in the bag and that a serving equals 300 calories. Write a program
that asks the user to input how many cookies he or she actually ate and then reports
how many total calories were consumed.

How Much Insurance?

Many financial experts advise that property owners should insure their homes or build-
ings for at least 80 percent of the amount it would cost to replace the structure. Write a
program that asks the user to enter the replacement cost of a building and then displays
the minimum amount of insurance he or she should buy for the property.

Automobile Costs

Write a program that asks the user to enter the monthly costs for the following
expenses incurred from operating his or her automobile: loan payment, insurance, gas,
oil, tires, and maintenance. The program should then display the total monthly cost of
these expenses, and the total annual cost of these expenses.

143

144

Chapter 3 Expressions and Interactivity

12.

13.

14.

15.

16.

Celsius to Fahrenheit

Write a program that converts Celsius temperatures to Fahrenheit temperatures. The
formula is

9
F==C+ 32
S

F is the Fahrenheit temperature, and C is the Celsius temperature.

Currency

Werite a program that will convert U.S. dollar amounts to Japanese yen and to euros,
storing the conversion factors in the constants YEN PER DOLLAR and EUROS_PER_
DOLLAR. To get the most up-to-date exchange rates, search the Internet using the
term “currency exchange rate”. If you cannot find the most recent exchange rates, use
the following;:

1 Dollar = 98.93 Yen
1 Dollar = 0.74 Euros

Format your currency amounts in fixed-point notation, with two decimal places of
precision, and be sure the decimal point is always displayed.

Monthly Sales Tax

A retail company must file a monthly sales tax report listing the sales for the month and
the amount of sales tax collected. Write a program that asks for the month, the year,
and the total amount collected at the cash register (that is, sales plus sales tax). Assume
the state sales tax is 4 percent and the county sales tax is 2 percent.

If the total amount collected is known and the total sales tax is 6 percent, the amount
of product sales may be calculated as:

T
S [
1.06
S is the product sales and T is the total income (product sales plus sales tax).

The program should display a report similar to

Month: October

Total Collected: $ 26572.89
Sales: $ 25068.76
County Sales Tax: S 501.38
State Sales Tax: $ 1002.75
Total Sales Tax: $ 1504.13
Property Tax

A county collects property taxes on the assessment value of property, which is 60 per-
cent of the property’s actual value. If an acre of land is valued at $10,000, its assessment
value is $6,000. The property tax is then 75¢ for each $100 of the assessment value.
The tax for the acre assessed at $6,000 will be $45. Write a program that asks for the
actual value of a piece of property and displays the assessment value and property tax.

Senior Citizen Property Tax

Madison County provides a $5,000 homeowner exemption for its senior citizens. For
example, if a senior’s house is valued at $158,000 its assessed value would be $94,800,

17.

18.

19,

Programming Challenges

as explained above. However, he would only pay tax on $89,800. At last year’s tax
rate of $2.64 for each $100 of assessed value, the property tax would be $2,370.72. In
addition to the tax break, senior citizens are allowed to pay their property tax in four
equal payments. The quarterly payment due on this property would be $592.68. Write
a program that asks the user to input the actual value of a piece of property and the
current tax rate for each $100 of assessed value. The program should then calculate
and report how much annual property tax a senior homeowner will be charged for this
property and what the quarterly tax bill will be.

Math Tutor

Write a program that can be used as a math tutor for a young student. The program
should display two random numbers to be added, such as

247
+129

The program should then pause while the student works on the problem. When the
student is ready to check the answer, he or she can press a key and the program will
display the correct solution:

247
+129
376

Interest Earned
Assuming there are no deposits other than the original investment, the balance in a
savings account after one year may be calculated as

. . Rate
Amount = Principal * (1 + ——

T
)

Principal is the balance in the savings account, Rate is the interest rate, and T is
the number of times the interest is compounded during a year (T is 4 if the interest is
compounded quarterly).

Write a program that asks for the principal, the interest rate, and the number of times
the interest is compounded. It should display a report similar to

Interest Rate: 4.25%
Times Compounded: 12
Principal: $ 1000.00
Interest: S 43.34

Amount in Savings: $ 1043.34

Monthly Payments

The monthly payment on a loan may be calculated by the following formula:

Rate * (1 + Rate)V
* 1,

Payment =
y ((1 + Rate)¥ — 1)

Rate is the monthly interest rate, which is the annual interest rate divided by 12. (12%
annual interest would be 1 percent monthly interest.) N is the number of payments, and

145

146

Chapter 3 Expressions and Interactivity

20.

L is the amount of the loan. Write a program that asks for these values and displays a
report similar to

Loan Amount: $ 10000.00
Monthly Interest Rate: 1%
Number of Payments: 36
Monthly Payment: S 332.14
Amount Paid Back: $ 11957.15
Interest Paid: S 1957.15
Pizza Pi

Joe’s Pizza Palace needs a program to calculate the number of slices a pizza of any size
can be divided into. The program should perform the following steps:

A) Ask the user for the diameter of the pizza in inches.
B) Calculate the number of slices that may be taken from a pizza of that size.
C) Display a message telling the number of slices.

To calculate the number of slices that may be taken from the pizza, you must know
the following facts:

e Each slice should have an area of 14.125 inches.
e To calculate the number of slices, simply divide the area of the pizza by 14.125.
® The area of the pizza is calculated with this formula:

Area = 17’

0 NOTE: 1 is the Greek letter pi. 3.14159 can be used as its value. The variable 7 is the
radius of the pizza. Divide the diameter by 2 to get the radius.

21.

272

23.

Make sure the output of the program displays the number of slices in fixed point nota-
tion, rounded to one decimal place of precision. Use a named constant for pi.

How Many Pizzas?

Modify the program you wrote in Programming Challenge 18 (Pizza Pi) so that it
reports the number of pizzas you need to buy for a party if each person attending
is expected to eat an average of four slices. The program should ask the user for the
number of people who will be at the party and for the diameter of the pizzas to be
ordered. It should then calculate and display the number of pizzas to purchase.

Angle Calculator

Write a program that asks the user for an angle, entered in radians. The program
should then display the sine, cosine, and tangent of the angle. (Use the sin, cos, and
tan library functions to determine these values.) The output should be displayed in
fixed-point notation, rounded to four decimal places of precision.

Stock Transaction Program
Last month Joe purchased some stock in Acme Software, Inc. Here are the details of

the purchase:

e The number of shares that Joe purchased was 1,000.

® When Joe purchased the stock, he paid $45.50 per share.

® Joe paid his stockbroker a commission that amounted to 2% of the amount he paid
for the stock.

24.

Programming Challenges

Two weeks later Joe sold the stock. Here are the details of the sale:

e The number of shares that Joe sold was 1,000.

e He sold the stock for $56.90 per share.

e He paid his stockbroker another commission that amounted to 2% of the amount
he received for the stock.

Werite a program that displays the following information:

The amount of money Joe paid for the stock.

The amount of commission Joe paid his broker when he bought the stock.

The amount that Joe sold the stock for.

The amount of commission Joe paid his broker when he sold the stock.

Display the amount of profit that Joe made after selling his stock and paying the two
commissions to his broker. (If the amount of profit that your program displays is a
negative number, then Joe lost money on the transaction.)

Word Game

Write a program that plays a word game with the user. The program should ask the
user to enter the following:

His or her name

His or her age

The name of a city
The name of a college
A profession

A type of animal

A pet’s name

After the user has entered these items, the program should display the following story,
inserting the user’s input into the appropriate locations:

There once was a person named NAME who lived in CITY. At the age of
AGE, NAME went to college at COLLEGE. NAME graduated and went to work
as a PROFESSION. Then, NAME adopted a(n) ANIMAL named PETNAME. They
both lived happily ever after!

147

This page intentionally left blank

il Making Decisions

o
(NH]
—
o
<
I
)

4.1 Relational Operators 4.10 Menus
4.2 The if Statement 4.11 Focus on Software Engineering:
4.3 Expanding the if Statement Validating User Input
4.4 The if/else Statement 4.12 Comparing Characters and Strings
4.5 Nested if Statements 4.13 The Conditional Operator
4.6 The if/else if Statement 4.14 The switch Statement
4.7 Flags 4.15 More About Blocks and Variable
4.8 Logical Operators Scope
4.9 Checking Numeric Ranges

with Logical Operators

Relational Operators

CONCEPT: Relational operators allow you to compare numeric and char values and
determine whether one is greater than, less than, equal to, or not equal
to another.

So far, the programs you have written follow this simple scheme:

e Gather input from the user.
e Perform one or more calculations.
e Display the results on the screen.

Computers are good at performing calculations, but they are also quite adept at comparing
values to determine if one is greater than, less than, or equal to the other. These types of
operations are valuable for tasks such as examining sales figures, determining profit and
loss, checking a number to ensure it is within an acceptable range, and validating the input
given by a user.

Numeric data is compared in C++ by using relational operators. Each relational opera-
tor determines whether a specific relationship exists between two values. For example,

149

150 Chapter 4 Making Decisions

the greater-than operator (>) determines if a value is greater than another. The equality
operator (==) determines if two values are equal. Table 4-1 lists all of C++’s relational

operators.
Table 4-1
Relational Operators Meaning
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to

== Equal to
1= Not equal to

All of the relational operators are binary, which means they use two operands. Here is an
example of an expression using the greater-than operator:

X >y

This expression is called a relational expression. It is used to determine whether x is greater
than y. The following expression determines whether x is less than y:

x <y

Table 4-2 shows examples of several relational expressions that compare the variables x

and y.
Table 4-2
Expression What the Expression Means
X >y Is x greater than y?
X <y Is x less than y?
X >= y Is x greater than or equal to y?
X <=y Is x less than or equal to y?
X == Is x equal to y?
X 1=y Is x equal to y?

0 NOTE: All the relational operators have left-to-right associativity. Recall that associa-
tivity is the order in which an operator works with its operands.

The Value of a Relationship

So, how are relational expressions used in a program? Remember, all expressions have a
value. Relational expressions are also known as Boolean expressions, which means their
value can only be true or false. If x is greater than y, the expression x > y will be true,
while the expression y == x will be false.

4.1 Relational Operators 151

The == operator determines whether the operand on its left is equal to the operand on its
right. If both operands have the same value, the expression is true. Assuming that a is 4,
the following expression is true:

a ==
But the following is false:

a == 2

WARNING! Notice the equality operator is two = symbols together. Don't confuse
this operator with the assignment operator, which is one = symbol. The == operator
determines whether a variable is equal to another value, but the = operator assigns the
value on the operator's right to the variable on its left. There will be more about this
later in the chapter.

A couple of the relational operators actually test for two relationships. The >= opera-
tor determines whether the operand on its left is greater than or equal to the operand
on the right. Assuming that a is 4, b is 6, and c is 4, both of the following expressions
are true:

b >= a
a >= c

But the following is false:
a > 5

The <= operator determines whether the operand on its left is less than or equal to the
operand on its right. Once again, assuming that a is 4, b is 6, and c is 4, both of the fol-
lowing expressions are true:

a <= c
b <= 10

But the following is false:
b <= a

The last relational operator is !=, which is the not-equal operator. It determines whether
the operand on its left is not equal to the operand on its right, which is the opposite of the
== operator. As before, assuming a is 4, b is 6, and c is 4, both of the following expressions
are true:

a !
b !

b
c

These expressions are true because a is 7ot equal to b and b is zot equal to c. But the fol-
lowing expression is false because a is equal to c:

a !=c¢

Table 4-3 shows other relational expressions and their true or false values.

152

Chapter 4 Making Decisions

Table 4-3 (Assume xis 10 and y is 7.)

Expression Value

X <y False, because x is not less than y.

X >y True, because x is greater than y.

X >=y True, because x is greater than or equal to y.
X <=y False, because x is not less than or equal to y.
y 1= x True, because y is not equal to x.

What Is Truth?

The question “What is truth?” is one you would expect to find in a philosophy book, not
a C++ programming text. It’s a good question for us to consider, though. If a relational
expression can be either true or false, how are those values represented internally in a pro-
gram? How does a computer store #rue in memory? How does it store false?

As you saw in Program 2-17, those two abstract states are converted to numbers. In C++,
relational expressions represent true states with the number 1 and false states with the
number 0.

O NOTE: As you will see later in this chapter, 1 is not the only value regarded as true.

To illustrate this more fully, look at Program 4-1.

Program 4-1
// This program displays the values of true and false states.
#include <iostream>

using namespace std;

int main()

{
bool truevValue, falseValue;
int x = 5, y = 10;
truevalue = x < y;
falseValue = y == x;
cout << "True is " << trueValue << endl;
cout << "False is " << falseValue << endl;
return 0;
}

Program Output

True is 1
False is 0

4.1 Relational Operators

Let’s examine the statements containing the relational expressions, in lines 10 and 11, a
little closer:

truevValue = x < y;
falsevValue = y == x;

These statements may seem odd because they are assigning the value of a comparison to
a variable. In line 10 the variable truevalue is being assigned the result of x < y. Since
x is less than y, the expression is true, and the variable truevalue is assigned the value 1.
In line 11 the expression y == x is false, so the variable falsevalue is set to 0. Table 4-4
shows examples of other statements using relational expressions and their outcomes.

0 NOTE: Relational expressions have a higher precedence than the assignment operator.
In the statement

z =x <y;

the expression x < y is evaluated first, and then its value is assigned to z.

153

Table 4-4 (Assume xis 10, yis 7, and z, a, and b are ints or bools)

Statement

Outcome

z =X <y
cout << (x > vy);
a = x >=yj;

cout << (x <= Yy);

z is assigned 0 because x is not less than y.
Displays 1 because x is greater than y.
a is assigned 1 because x is greater than or equal to y.

Displays 0 because x is not less than or equal to y.

y !'= x; b is assigned 1 because y is not equal to x.

When writing statements such as these, it sometimes helps to enclose the relational expres-
sion in parentheses, such as:

truevalue = (x < y);
falsevValue = (y == x);

As interesting as relational expressions are, we’ve only scratched the surface of how to use
them. In this chapter’s remaining sections you will see how to get the most from relational
expressions by using them in statements that take action based on the results of the comparison.

Checkpoint

4.1 Assuming x is 5, y is 6, and z is 8, indicate by circling the T or F whether each of
the following relational expressions is true or false:
A) x == 5 F
) 7 <= (x + 2)
C) z <4
D) (2 + x) =y
E) z 1= 4
F) x >= 9
G) X <= (y * 2)

=]
= A
lssllissiiesiiesiisviie!

154 Chapter 4 Making Decisions

-

4.2 Indicate whether the following statements about relational expressions are correct
or incorrect.

A) x <= yisthesameasy > x.
B) x != yisthesameasy >= x.
C) x >= yisthesameasy <= x.

4.3 Answer the following questions with a yes or no.
A) If it is true that x > y and it is also true that x < z, does that meany < =z
Is true?
B) Ifitis true that x >= y and it is also true that z == x, does that mean that
z == y IS true?
C) Ifitis true that x != y and it is also true that x 1= z, does that mean that
z 1= y s true?

4.4 What will the following program display?

#include <iostream>
using namespace std;

int main ()

{
int a =0, b =2, x =4,y = 0;
cout << (a == b) << endl;
cout << (a != y) << endl;
cout << (b <= x) << endl;
cout << (y > a) << endl;
return 0;
}

4.2 The if Statement

D

VideoNote
The if
Statement

1 CONCEPT: The if statement can cause other statements to execute only under certain

conditions.

You might think of the statements in a procedural program as individual steps taken as you
are walking down a road. To reach the destination, you must start at the beginning and
take each step, one after the other, until you reach the destination. The programs you have
written so far are like a “path” of execution for the program to follow.

The type of code in Figure 4-1 is called a sequence structure because the statements are
executed in sequence, without branching off in another direction. Programs often need
more than one path of execution, however. Many algorithms require a program to execute
some statements only under certain circumstances. This can be accomplished with a deci-
sion structure.

In a decision structure’s simplest form, a specific action is taken only when a specific condi-
tion exists. If the condition does not exist, the action is not performed. The flowchart in
Figure 4-2 shows the logic of a decision structure. The diamond symbol represents a yes/no

4.2 The if Statement

Figure 4-1
// A program to calculate the area of a rectangle
Step 1
N ffinclude <iostream>
StepZ‘ using namespace std;
A int main()
‘ Step 3 (
A double length, width, area;
Step 4
A cout <K "Enter the length of the rectangle: ";
Step 5 cin >> length;
ep cout < "Enter the width of the rectangle: ";
A cin >> width;
Step 6 ——————Pp area = length * width;
& cout << "The area is: " << area << endl

‘ return 0;
}

question or a true/false condition. If the answer to the question is yes (or if the condition is
true), the program flow follows one path, which leads to an action being performed. If the
answer to the question is no (or the condition is false), the program flow follows another
path, which skips the action.

Figure 4-2

Is it cold
outside?

Wear a coat.

1

In the flowchart, the action “Wear a coat” is performed only when it is cold outside. If it
is not cold outside, the action is skipped. The action is conditionally executed because it
is performed only when a certain condition (cold outside) exists. Figure 4-3 shows a more
elaborate flowchart, where three actions are taken only when it is cold outside.

We perform mental tests like these every day. Here are some other examples:

If the car is low on gas, stop at a service station and get gas.
If it’s raining outside, go inside.
If you’re hungry, get something to eat.

155

156 Chapter 4 Making Decisions

Figure 4-3

Is it cold Yes
outside?
Wear a coat.
No l
Wear a hat.
Wear gloves.
-

One way to code a decision structure in C++ is with the if statement. Here is the general
format of the if statement:

if (expression)
statement;

The if statement is simple in the way it works: If the value of the expression inside
the parentheses is true, the very next statement is executed. Otherwise, it is skipped.
The statement is conditionally executed because it only executes under the condition
that the expression in the parentheses is true. Program 4-2 shows an example of an if
statement. The user enters three test scores, and the program calculates their average.
If the average is greater than 95, the program congratulates the user on obtaining a
high score.

Program 4-2

// This program averages three test scores
#include <iostream>

#include <iomanip>

using namespace std;

int main()

{
const int HIGH_SCORE = 95; // A high score is 95 or greater
int scorel, score2, score3; // To hold three test scores
double average; // TO hold the average score

4.2 The if Statement

// Get the three test scores.
cout << "Enter 3 test scores and I will average them: ";
cin >> scorel >> score2 >> score3;

// Calculate and display the average score.

average = (scorel + score2 + score3) / 3.0;
cout << fixed << showpoint << setprecision(1l);
cout << "Your average is " << average << endl;

// If the average is a high score, congratulate the user.
if (average > HIGH_SCORE)

cout << "Congratulations! That's a high score!\n";
return 0;

Program Output with Example Input Shown in Bold

Enter 3 test scores and I will average them: 80 90 70 [Enter]
Your average is 80.0

Program Output with Different Example Input Shown in Bold

Enter 3 test scores and I will average them: 100 100 100 [Enter]
Your average is 100.0
Congratulations! That's a high score!

Lines 22 and 23 cause the congratulatory message to be printed:

if (average > HIGH_SCORE)
cout << "Congratulations! That's a high score!\n";

The cout statement in line 23 is executed only if the average is greater than 95, the value
of the HIGH SCORE constant. If the average is not greater than 95, the cout statement is
skipped. Figure 4-4 shows the logic of this if statement.

Figure 4-4

average
> HIGH_SCORE

True

Display "Congratulations!
That's a high score!"

Table 4-5 shows other examples of if statements and their outcomes.

157

158 Chapter 4 Making Decisions

Table 4-5

Statement

Outcome

if (hours > 40)
overTime = true;

if (value > 32)
cout << "Invalid number\n";

if (overTime == true)
payRate *= 2;

Assigns true to the bool variable overTime only
if hours is greater than 40

Displays the message “Invalid number” only if
value is greater than 32

Multiplies payRate by 2 only if overTime is equal
to true

Be Careful with Semicolons

Semicolons do not mark the end of a line, but the end of a complete C++ statement. The if
statement isn’t complete without the conditionally executed statement that comes after it.
So, you must not put a semicolon after the if (expression) portion of an if statement.

No semicolon goes here.

if (expression) /

statement;-q§___§_
Semicolon goes here.

If you inadvertently put a semicolon after the if part, the compiler will assume you are
placing a null statement there. The null statement is an empty statement that does noth-
ing. This will prematurely terminate the if statement, which disconnects it from the
statement that follows it. The statement following the if will always execute, as shown
in Program 4-3.

Program 4-3

// This program demonstrates how a misplaced semicolon
// prematurely terminates an if statement.

#include <iostream>

using namespace std;

int main()

{
int x = 0, y = 10;
cout << "x is " << x << " and y is " << y << endl;
if (x > y); // Error! Misplaced semicolon
cout << "x is greater than y\n"; //This is always executed.
return 0;
}

Program Output

x is 0 and y is 10
X is greater than y

4.2 The if Statement 159

Programming Style and the if Statement

Even though if statements usually span more than one line, they are technically one long
statement. For instance, the following if statements are identical except in style:

if (a >= 100)
cout << "The number is out of range.\n";
if (a >= 100) cout << "The number is out of range.\n";

In both the examples above, the compiler considers the if part and the cout statement
as one unit, with a semicolon properly placed at the end. Indention and spacing are for
the human readers of a program, not the compiler. Here are two important style rules you
should adopt for writing if statements:

e The conditionally executed statement should appear on the line after the if statement.
e The conditionally executed statement should be indented one “level” from the if
statement.

0 NOTE: In most editors, each time you press the tab key, you are indenting one level.

By indenting the conditionally executed statement you are causing it to stand out visually.
This is so you can tell at a glance what part of the program the if statement executes. This
is a standard way of writing if statements and is the method you should use.

O NOTE: Indentation and spacing are for the human readers of a program, not the
compiler. Even though the cout statement following the if statement in Program 4-3
is indented, the semicolon still terminates the if statement.

Comparing Floating-Point Numbers

Because of the way that floating-point numbers are stored in memory, rounding errors
sometimes occur. This is because some fractional numbers cannot be exactly represented
using binary. So, you should be careful when using the equality operator (==) to compare
floating point numbers. For example, Program 4-4 uses two double variables, a and b.
Both variables are initialized to the value 1.5. Then, the value 0.0000000000000001 is
added to a. This should make a’s contents different than b’s contents. Because of a round-
off error, however, the two variables are still the same.

Program 4-4

// This program demonstrates how floating-point

// round-off errors can make equality operations unreliable.
#include <iostream>

using namespace std;

int main()

{
(program continues)

160

Chapter 4 Making Decisions

Program 4-4 (continued)
double a = 1.5; // a is 1.5.
double b = 1.5; // b is 1.5.

a += 0.0000000000000001; // Add a little to a.

if (a == b)
cout << "Both a and b are the same.\n";
else

cout << "a and b are not the same.\n";

return 0;

Program Output

Both a and b are the same.

To prevent round-off errors from causing this type of problem, you should stick with
greater-than and less-than comparisons with floating-point numbers.

And Now Back to Truth

Now that you’ve gotten your feet wet with relational expressions and if statements, let’s
look at the subject of truth again. You have seen that a relational expression has the value 1
when it is true and 0 when false. In the world of the if statement, however, the concept of
truth is expanded. 0 is still false, but all values other than 0 are considered true. This means
that any value, even a negative number, represents true as long as it is not 0.

Just as in real life, truth is a complicated thing. Here is a summary of the rules you have
seen so far:

® When a relational expression is true it has the value 1.

e When a relational expression is false it has the value 0.

® Any expression that has the value 0 is considered false by the if statement. This
includes the bool value false, which is equivalent to 0.

* Any expression that has any value other than 0 is considered true by the if statement.
This includes the bool value true, which is equivalent to 1.

The fact that the if statement considers any nonzero value as true opens many possibili-
ties. Relational expressions are not the only conditions that may be tested. For example, the
following is a legal if statement in C++:

if (value)
cout << "It is True!";

The if statement above does not test a relational expression, but rather the contents of
a variable. If the variable, value, contains any number other than 0, the message “1t is
True!” will be displayed. If value is set to 0, however, the cout statement will be skipped.
Here is another example:

if (x + vy)
cout << "It is True!";

4.2 The if Statement 161

In this statement the sum of x and y is tested like any other value in an if statement: 0 is
false and all other values are true. You may also use the return value of function calls as
conditional expressions. Here is an example that uses the pow function:

if (pow(a, b))
cout << "It is True!";

This if statement uses the pow function to raise a to the power of b. If the result is anything
other than 0, the cout statement is executed. This is a powerful programming technique
that you will learn more about in Chapter 6.

Don’t Confuse == With =

Earlier you saw a warning not to confuse the equality operator (==) with the assignment
operator (=), as in the following statement:
if (x = 2) //Caution here!

cout << "It is True!";

The statement above does not determine whether x is equal to 2, it assigns x the value 2!
Furthermore, the cout statement will always be executed because the expression x = 2 is
always true.

This occurs because the value of an assignment expression is the value being assigned to
the variable on the left side of the = operator. That means the value of the expression x = 2
is 2. Since 2 is a nonzero value, it is interpreted as a true condition by the if statement.
Program 4-5 is a version of Program 4-2 that attempts to test for a perfect average of 100.
The = operator, however, was mistakenly used in the if statement.

Program 4-5

// This program averages 3 test scores. The if statement
// uses the = operator, but the == operator was intended.
#include <iostream>

#include <iomanip>

using namespace std;

int main()

{
int scorel, score2, score3; // To hold three test scores
double average; // TO hold the average score

// Get the three test scores.
cout << "Enter 3 test scores and I will average them: ";

cin >> scorel >> score2 >> score3;

// Calculate and display the average score.

average = (scorel + score2 + score3) / 3.0;
cout << fixed << showpoint << setprecision(1l);
cout << "Your average is " << average << endl;

(program continues)

162 Chapter 4 Making Decisions

Program 4-5 (continued)

// Our intention is to congratulate the user
// for having a perfect score. But, this doesn't work.
if (average = 100) // WRONG! This is an assignment!

cout << "Congratulations! That's a perfect score!\n";

return 0;

Program Output with Example Input Shown in Bold

Enter three test scores and I will average them: 80 90 70 [Enter]
Your average is 80.0
Congratulations! That's a perfect score!

Regardless of the average score, this program will print the message congratulating the user
on a perfect score.

Checkpoint

4.5

4.6

4.7
4.8

4.9

-

Write an if statement that performs the following logic: if the variable x is equal
to 20, then assign 0 to the variable y.

Write an if statement that performs the following logic: if the variable price is
greater than 500, then assign 0.2 to the variable discountRate.

Write an if statement that multiplies payRate by 1.5 if hours is greater than 40.
TRUE or FALSE: Both of the following if statements perform the same

operation.

if (sales > 10000)
commissionRate = 0.15;

if (sales > 10000) commissionRate = 0.15;

TRUE or FALSE: Both of the following if statements perform the same
operation.

if (calls == 20)
rate *= 0.5;

if (calls = 20)
rate *= 0.5;

43 Expanding the if Statement

1 CONCEPT: The if statement can conditionally execute a block of statements

enclosed in braces.

What if you want an if statement to conditionally execute a group of statements, not
just one line? For instance, what if the test averaging program needed to use several cout

4.3 Expanding the if Statement

statements when a high score was reached? The answer is to enclose all of the condition-
ally executed statements inside a set of braces. Here is the format:

if (expression)

{

statement;

statement;

// Place as many statements here as necessary.
}

Program 4-6, another modification of the test-averaging program, demonstrates this type
of if statement.

Program 4-6

// This program averages 3 test scores.

// It demonstrates an if statement executing
// a block of statements.

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

const int HIGH_SCORE = 95; // A high score is 95 or greater
int scorel, score2, score3; // To hold three test scores
double average; // TO hold the average score

// Get the three test scores.
cout << "Enter 3 test scores and I will average them: ";
cin >> scorel >> score2 >> score3;

// Calculate and display the average score.
average = (scorel + score2 + score3) / 3.0;
cout << fixed << showpoint << setprecision(1l);
cout << "Your average is " << average << endl;

// If the average is high, congratulate the user.
if (average > HIGH_SCORE)

{

cout << "Congratulations!\n";

cout << "That's a high score.\n";

cout << "You deserve a pat on the back!\n";
}

return 0;

(program output continues)

163

164

Chapter 4 Making Decisions

Program 4-6 (continued)

Program Output with Example Input Shown in Bold

Enter 3 test scores and I will average them: 100 100 100 [Enter]
Your average is 100.0

Congratulations!

That's a high score.

You deserve a pat on the back!

Program Output with Different Example Input Shown in Bold

Enter 3 test scores and I will average them: 80 90 70 [Enter]
Your average is 80.0

Program 4-6 prints a more elaborate message when the average score is greater than 95.
The if statement was expanded to execute three cout statements when highScore is set to
true. Enclosing a group of statements inside a set of braces creates a block of code. The if
statement will execute all the statements in the block, in the order they appear, only when
average is greater than 95. Otherwise, the block will be skipped.

Notice all the statements inside the braces are indented. As before, this visually separates
the statements from lines that are not indented, making it more obvious they are part of
the if statement.

@ NOTE: Anytime your program has a block of code, all the statements inside the
braces should be indented.

Don’t Forget the Braces!

If you intend to conditionally execute a block of statements with an if statement, don’t
forget the braces. Remember, without a set of braces, the if statement only executes the
very next statement. Program 4-7 shows the test-averaging program with the braces inad-
vertently left out of the if statement’s block.

Program 4-7

// This program averages 3 test scores. The braces
// were inadvertently left out of the if statement.
#include <iostream>

#include <iomanip>

using namespace std;

int main()

{
const int HIGH_SCORE = 95; // A high score is 95 or greater
int scorel, score2, score3; // To hold three test scores
double average; // To hold the average score

4.3 Expanding the if Statement

// Get the three test scores.
cout << "Enter 3 test scores and I will average them: ";
cin >> scorel >> score2 >> score3;

// Calculate and display the average score.
average = (scorel + score2 + score3) / 3.0;
cout << fixed << showpoint << setprecision(1l);
cout << "Your average is " << average << endl;

// ERROR! This if statement is missing its braces!
if (average > HIGH_SCORE)

cout << "Congratulations!\n";

cout << "That's a high score.\n";

cout << "You deserve a pat on the back!\n";
return 0;

Program Output with Example Input Shown in Bold

Enter 3 test scores and I will average them: 80 90 70 [Enter]
Your average is 80

That's a high score.

You deserve a pat on the back!

The cout statements in lines 25 and 26 are always executed, even when average is not
greater than 95. Because the braces have been removed, the if statement only controls
execution of line 24. This is illustrated in Figure 4-5.

Figure 4-5

Only this statement is
conditionally executed.
if (average > HIGH_SCORE)
cout << "Congratulations!\n";

These statementsare<cout < "That's a high score.\n";

always executed.

cout << "You deserve a pat on the back!\n";

Checkpoint

4.10

4.11

Write an if statement that performs the following logic: if the variable sales
is greater than 50,000, then assign 0.25 to the commissionRate variable, and
assign 250 to the bonus variable.

The following code segment is syntactically correct, but it appears to contain a
logic error. Can you find the error?

if (interestRate > .07)
cout << "This account earns a $10 bonus.\n";
balance += 10.0;

165

166 Chapter 4 Making Decisions

"
44 The if/else Statement

1 CONCEPT: The if/else statement will execute one group of statements if the

>

VideoNote
The if/else
statement

expression is true, or another group of statements if the expression
is false.

The if/else statement is an expansion of the if statement. Here is its format:

if (expression)
statement or block
else
statement or block

As with the if statement, an expression is evaluated. If the expression is true, a statement
or block of statements is executed. If the expression is false, however, a separate group of
statements is executed. Program 4-8 uses the if/else statement along with the modulus
operator to determine if a number is odd or even.

Program 4-8

// This program uses the modulus operator to determine

// if a number is odd or even. If the number is evenly divisible
// by 2, it is an even number. A remainder indicates it is odd.
#include <iostream>

using namespace std;

int main()

{
int number;
cout << "Enter an integer and I will tell you if it\n";
cout << "is odd or even. ";
cin >> number;
if (number % 2 == 0)
cout << number << " is even.\n";
else
cout << number << " is odd.\n";
return 0;
}

Program Output with Example Input Shown in Bold

Enter an integer and I will tell you if it
is odd or even. 17 [Enter]
17 is odd.

The else part at the end of the if statement specifies a statement that is to be executed
when the expression is false. When number % 2 does not equal 0, a message is printed
indicating the number is odd. Note that the program will only take one of the two paths
in the if/else statement. If you think of the statements in a computer program as steps

4.4 The if/else Statement 167

taken down a road, consider the if/else statement as a fork in the road. Instead of being
a momentary detour, like an if statement, the if/else statement causes program execu-
tion to follow one of two exclusive paths. The flowchart in Figure 4-6 shows the logic of
this if/else statement.

Figure 4-6

Tr
ue number % 2

Indicate that the
number is even.

False

Indicate that the
number is odd.

Notice the programming style used to construct the if/else statement. The word else is
at the same level of indention as if. The statement whose execution is controlled by else
is indented one level. This visually depicts the two paths of execution that may be followed.

Like the if part, the else part controls a single statement. If you wish to control more than
one statement with the else part, create a block by writing the lines inside a set of braces.
Program 4-9 shows this as a way of handling a classic programming problem: division by zero.

Division by zero is mathematically impossible to perform, and it normally causes a program to
crash. This means the program will prematurely stop running, sometimes with an error mes-
sage. Program 4-9 shows a way to test the value of a divisor before the division takes place.

This program asks the user for two numbers, numl and num2.

Program 4-9
//
// numl is divided by num2 and the result is displayed.
// Before the division operation, however, num2 is tested
// for the value 0. If it contains 0,

//

take place.

#include <iostream>
using namespace std;

int main()

{

double numl, num2, quotient;

// Get the first number.
cout << "Enter a number: ";
cin >> numl;

// Get the second number.
cout << "Enter another number: ";

the division does not

(program continues)

168 Chapter 4 Making Decisions

Program 4-9 (continued)

cin >> num2;

// If num2 is not zero, perform the division.

if (num2 == 0)

{
cout << "Division by zero is not possible.\n";
cout << "Please run the program again and enter\n";
cout << "a number other than zero.\n";

}

else

{
quotient = numl / num2;
cout << "The quotient of " << numl << " divided by ";
cout << num2 << " is " << quotient << ".\n";

}

return 0;

Program Output with Example Input Shown in Bold
Enter a number: 10 [Enter]

Enter another number: O [Enter]

Division by zero is not possible.

Please run the program again and enter

a number other than zero.

The value of num2 is tested in line 22 before the division is performed. If the user enters
0, the lines controlled by the if part execute, displaying a message that indicates that the
program cannot perform a division by zero. Otherwise, the else part takes control, which
divides num1 by num2 and displays the result.

Checkpoint
4.12 TRUE or FALSE: The following if/else statements cause the same output to
display.

A) if (x > y)
cout << "x is the greater.\n";
else
cout << "x is not the greater.\n";
B) if (y <= x)
cout << "x is not the greater.\n";
else
cout << "x is the greater.\n";

4.13 Write an if/else statement that assigns 1 to x if y is equal to 100. Otherwise it
should assign 0 to x.

4.14 Write an if/else statement that assigns 0.10 to commissionRate unless
sales is greater than or equal to 50000.00, in which case it assigns 0.20 to
commissionRate.

—

4.5 Nested if Statements

4.5 Nested if Statements

1 CONCEPT: To test more than one condition, an if statement can be nested inside

another if statement.

Sometimes an if statement must be nested inside another if statement. For example, con-
sider a banking program that determines whether a bank customer qualifies for a special,
low interest rate on a loan. To qualify, two conditions must exist: (1) the customer must
be currently employed, and (2) the customer must have recently graduated from college (in
the past two years). Figure 4-7 shows a flowchart for an algorithm that could be used in
such a program.

Figure 4-7

False

True

employed =="Y"

Y

Display "You must be
employed to qualify."

recentGrad == "Y'

A

Display "You must have Display “You qualify for
graduated from college the special interest
in the past two years to rate.”

qualify.”

4

Y

:

If we follow the flow of execution in the flowchart, we see that the expression employed ==
'Y is tested. If this expression is false, there is no need to perform further tests; we know
that the customer does not qualify for the special interest rate. If the expression is true,
however, we need to test the second condition. This is done with a nested decision structure
that tests the expression recentGrad == 'y'.If this expression is true, then the customer
qualifies for the special interest rate. If this expression is false, then the customer does not
qualify. Program 4-10 shows the code for the complete program.

169

170

Chapter 4 Making Decisions

Program 4-10
// This program demonstrates the nested if statement.
#include <iostream>

using namespace std;

int main()

{
char employed, // Currently employed, Y or N
recentGrad; // Recent graduate, Y or N

// Is the user employed and a recent graduate?
cout << "Answer the following questions\n";
cout << "with either Y for Yes or ";
cout << "N for No.\n";
cout << "Are you employed? ";
cin >> employed;
cout << "Have you graduated from college ";
cout << "in the past two years? ";
cin >> recentGrad;
// Determine the user's loan qualifications.
if (employed == 'Y')
{

if (recentGrad == 'Y') //Nested if

{

cout << "You qualify for the special ";
cout << "interest rate.\n";

}
}
return 0;

}

Program Output with Example Input Shown in Bold

Answer the following questions

with either Y for Yes or N for No.

Are you employed? Y [Enter]

Have you graduated from college in the past two years? Y [Enter]
You qualify for the special interest rate.

Program Output with Different Example Input Shown in Bold
Answer the following questions

with either Y for Yes or N for No.

Are you employed? Y [Enter]

Have you graduated from college in the past two years? N [Enter]

Look at the if statement that begins in line 21. It tests the expression employed == 'Y'.
If this expression is true, the if statement that begins in line 23 is executed. Otherwise the
program jumps to the return statement in line 29 and the program ends.

Notice in the second sample execution of Program 4-10 that the program output does not
inform the user whether he or she qualifies for the special interest rate. If the user enters an
‘N’ (or any character other than Y’) for employed or recentGrad, the program does not

4.5 Nested if Statements

print a message letting the user know that he or she does not qualify. An else statement
should be able to remedy this, as illustrated by Program 4-11.

Program 4-11

// This program demonstrates the nested if statement.
#include <iostream>
using namespace std;

int main()

{

char employed, // Currently employed, Y or N
recentGrad; // Recent graduate, Y or N

// Is the user employed and a recent graduate?
cout << "Answer the following questions\n";
cout << "with either Y for Yes or ";

cout << "N for No.\n";

cout << "Are you employed? ";

cin >> employed;

cout << "Have you graduated from college ";
cout << "in the past two years? ";

cin >> recentGrad;

// Determine the user's loan qualifications.

if (employed == 'Y')

{
if (recentGrad == 'Y') // Nested if
{

cout << "You qualify for the special ";
cout << "interest rate.\n";

}
else // Not a recent grad, but employed
{
cout << "You must have graduated from ";
cout << "college in the past two\n";
cout << "years to qualify.\n";
}
}
else // Not employed
{
cout << "You must be employed to qualify.\n";
}

return 0;

Program Output with Example Input Shown in Bold

Answer the following questions

with either Y for Yes or N for No.

Are you employed? N [Enter]

Have you graduated from college in the past two years? Y [Enter]
You must be employed to qualify.

(program output continues)

171

172

Chapter 4 Making Decisions

Program 4-11 (continued)

Program Output with Different Example Input Shown in Bold

Answer the following questions

with either Y for Yes or N for No.

Are you employed? Y [Enter]

Have you graduated from college in the past two years? N [Enter]

You must have graduated from college in the past two years to qualify.

Program Output with Different Example Input Shown in Bold
Answer the following questions

with either Y for Yes or N for No.

Are you employed? Y [Enter]

Have you graduated from college in the past two years? Y [Enter]
You qualify for the special interest rate.

In this version of the program, both if statements have else clauses that inform the user
why he or she does not qualify for the special interest rate.

Programming Style and Nested Decision Structures

For readability and easier debugging, it’s important to use proper alignment and indenta-
tion in a set of nested if statements. This makes it easier to see which actions are performed
by each part of the decision structure. For example, the following code is functionally
equivalent to lines 21 through 38 in Program 4-11. Although this code is logically correct,
it is very difficult to read and would be very difficult to debug because it is not properly

indented.
if (employed == 'Y')
{
if (recentGrad == 'Y') // Nested if '
{ Don’t write code
cout << "You qualify for the special "; like this!
cout << "interest rate.\n";
}
else // Not a recent grad, but employed
{

cout << "You must have graduated from ";
cout << "college in the past two\n";
cout << "years to qualify.\n";

}

}
else // Not employed

cout << "You must be employed to qualify.\n";

}

Proper indentation and alignment also makes it easier to see which if and else clauses
belong together, as shown in Figure 4-8.

4.5 Nested if Statements 173

Figure 4-8
» if (employed == 'Y')
{
— if (recentGrad == '¥') // Nested if
. . {
ThB.Lfaﬂdelse__ cout << "You qualify for the special ";

) go together. cout << "interest rate.\n";
This if and else 1

go together. — L—» else // Not a recent grad, but employed

{
cout << "You must have graduated from ";
cout << "college in the past two\n";
cout << "years to gualify.\n";
}
}
» else // Not employed
{

cout << "You must be emploved to gqualify.\n";
}

Testing a Series of Conditions

In the previous example you saw how a program can use nested decision structures to test
more than one condition. It is not uncommon for a program to have a series of conditions to
test and then perform an action depending on which condition is true. One way to accom-
plish this is to have a decision structure with numerous other decision structures nested inside
it. For example, consider the program presented in the following In the Spotlight section.

In the Spotlight:
Multiple Nested Decision Structures

Dr. Suarez teaches a literature class and uses the following 10-point grading scale for all of
his exams:

Test Score Grade

90 and above A
80-89 B
70-79 C
60-69 D
Below 60 F

He has asked you to write a program that will allow a student to enter a test score and then
display the grade for that score. Here is the algorithm that you will use:

Ask the user to enter a test score.
Determine the grade in the following manner:
If the score is greater than or equal to 90, then the grade is A.
Otherwise, if the score is greater than or equal to 80, then the grade is B.
Otherwise, if the score is greater than or equal to 70, then the grade is C.
Otherwise, if the score is greater than or equal to 60, then the grade is D.
Otherwise, the grade is F.

174

Chapter 4 Making Decisions

You decide that the process of determining the grade will require several nested decisions
structures, as shown in Figure 4-9. Program 4-12 shows the code for the complete program.
The code for the nested decision structures is in lines 17 through 45.

Figure 4-9 Nested decision structure to determine a grade

Display "Your
grade is A"

Display "Your

False grade is B."
>=70 ¢
Display "Your
False True grade is C."
score
>= 60

Display "Your
grade is F."

Program 4-12

// This program uses nested if/else statements to assign a
// letter grade (A, B, C, D, or F) to a numeric test score.
#include <iostream>

using namespace std;

int main()

{
// Constants for grade thresholds
const int A SCORE = 90,

B_SCORE = 80,
C_SCORE = 70,
D_SCORE = 60;

int testScore; // To hold a numeric test score

// Get the numeric test score.
cout << "Enter your numeric test score and I will\n";

4.5 Nested if Statements

cout << "tell you the letter grade you earned: ";
cin >> testScore;

// Determine the letter grade.
if (testScore >= A SCORE)

{
cout << "Your grade is A.\n";
}
else
{
if (testScore >= B_SCORE)
{
cout << "Your grade is B.\n";
}
else
{
if (testScore >= C_SCORE)
{
cout << "Your grade is C.\n";
}
else
{
if (testScore >= D SCORE)
{
cout << "Your grade is D.\n";
}
else
{
cout << "Your grade is F.\n";
}
}
}
}

return 0;

}

Program Output with Example Input Shown in Bold

Enter your numeric test score and I will
tell you the letter grade you earned: 78 [Enter]
Your grade is C.

Program Output with Different Example Input Shown in Bold

Enter your numeric test score and I will
tell you the letter grade you earned: 84 [Enter]
Your grade is B.

Checkpoint

4.15 If you executed the following code, what would it display if the user enters 5?
What if the user enters 152 What if the user enters 30? What if the user enters -1?

175

176 Chapter 4 Making Decisions

—

int number;
cout << "Enter a number: ";
cin >> number;

if (number > 0)

{ cout << "Zero\n";
if (number > 10)
{
cout << "Ten\n";
if (number > 20)
{
cout << "Twenty\n";
}
}
}

46 The if/else if Statement

1 CONCEPT: The if/else if statement tests a series of conditions. It is often simpler

D

VideoNote
The if/else if
Statement

to test a series of conditions with the if/else if statement than with a
set of nested if/else statements.

Even though Program 4-12 is a simple example, the logic of the nested decision structure is
fairly complex. In C++, and many other languages, you can alternatively test a series of con-
ditions using the if/else if statement. The if/else if statement makes certain types of
nested decision logic simpler to write. Here is the general format of the if/else if statement:

if (expression_ 1)

{
statement If expression 1 is true these state-
statement ments are executed, and the rest of the
etc. structure is ignored.

¥

else if (expression_2)

{
statement Otherwise, if expression_2 is true these
statement statements are executed, and the rest of the
etc. structure is ignored.

}

Insert as many else if clauses as necessary

else

{
statement These statements are executed
statement if none of the expressions above
etc. are true.

4.6 The if/else if Statement

When the statement executes, expression 1 is tested. If expression 1 is true, the block
of statements that immediately follows is executed, and the rest of the structure is ignored. If
expression_1 is false, however, the program jumps to the very next else if clause and tests
expression_2. If it is true, the block of statements that immediately follows is executed, and
then the rest of the structure is ignored. This process continues, from the top of the structure to
the bottom, until one of the expressions is found to be true. If none of the expressions are true,
the last else clause takes over, and the block of statements immediately following it is executed.

The last else clause, which does not have an if statement following it, is referred to as the

trailing else. The trailing else is optional, but in most cases you will use it.

O NOTE: The general format shows braces surrounding each block of conditionally
executed statements. As with other forms of the if statement, the braces are required

only when more than one statement is conditionally executed.

Program 4-13 shows an example of the if/else if statement. This program is a modifica-

tion of Program 4-12, which appears in the previous In the Spotlight section.
Program 4-13

// This program uses an if/else if statement to assign a
// letter grade (A, B, C, D, or F) to a numeric test score.

#include <iostream>
using namespace std;

int main()

{

// Constants for grade thresholds
const int A SCORE = 90,

B _SCORE = 80,

C_SCORE = 70,

D SCORE = 60;

int testScore; // To hold a numeric test score

// Get the numeric test score.

cout << "Enter your numeric test score and I will\n"
<< "tell you the letter grade you earned: ";

cin >> testScore;

// Determine the letter grade.
if (testScore >= A SCORE)
cout << "Your grade is A.\n";
else if (testScore >= B_SCORE)
cout << "Your grade is B.\n";
else if (testScore >= C_SCORE)
cout << "Your grade is C.\n";
else if (testScore >= D_SCORE)
cout << "Your grade is D.\n";
else

cout << "Your grade is F.\n";
(program continues)

177

178 Chapter 4 Making Decisions

Program 4-13 (continued)

return 0;

}

Program Output with Example Input Shown in Bold
Enter your numeric test score and I will

tell you the letter grade you earned: 78 [Enter]
Your grade is C.

Program Output with Different Example Input Shown in Bold

Enter your numeric test score and I will
tell you the letter grade you earned: 84 [Enter]
Your grade is B.

Let’s analyze how the if/else if statement in lines 22 through 31 works. First, the
expression testScore >= A SCORE is tested in line 22:

> if (testScore >= A SCORE)
cout << "Your grade is A.\n";
else if (testScore >= B_SCORE)
cout << "Your grade is B.\n";
else if (testScore >= C_SCORE)
cout << "Your grade is C.\n";
else if (testScore >= D_SCORE)
cout << "Your grade is D.\n";
else
cout << "Your grade is F.\n";

If testScore is greater than or equal to 90, the message "Your grade is A.\n" is displayed
and the rest of the if/else if statement is skipped. If testScore is not greater than or equal
to 90, the else clause in line 24 takes over and causes the next if statement to be executed:

if (testScore >= A SCORE)
cout << "Your grade is A.\n";

> else if (testScore >= B_SCORE)
cout << "Your grade is B.\n";
else if (testScore >= C_SCORE)
cout << "Your grade is C.\n";
else if (testScore >= D_SCORE)
cout << "Your grade is D.\n";
else
cout << "Your grade is F.\n";

The first if statement handles all of the grades greater than or equal to 90, so when this
if statement executes, testScore will have a value of 89 or less. If testScore is greater
than or equal to 80, the message "Your grade is B.\n" is displayed and the rest of the
if/else if statement is skipped. This chain of events continues until one of the expres-
sions is found to be true, or the last else clause at the end of the statement is encountered.

Notice the alignment and indentation that is used with the if/else if statement: The
starting if clause, the else if clauses, and the trailing else clause are all aligned, and the
conditionally executed statements are indented.

4.6 The if/else if Statement 179

Using the Trailing else To Catch Errors

The trailing else clause, which appears at the end of the 1f/else if statement, is optional,
but in many situations you will use it to catch errors. For example, Program 4-13 will
assign a grade to any number that is entered as the test score, including negative numbers.
If a negative test score is entered, however, the user has probably made a mistake. We can
modify the code as shown in Program 4-14 so the trailing else clause catches any test score
that is less then 0 and displays an error message.

Program 4-14

// This program uses an if/else if statement to assign a

// letter grade (A, B, C, D, or F) to a numeric test score.
#include <iostream>

using namespace std;

int main()

{

// Constants for grade thresholds
const int A SCORE = 90,

B_SCORE = 80,
C_SCORE = 70,
D SCORE = 60;

int testScore; // To hold a numeric test score

// Get the numeric test score.

cout <<
<<

"Enter your numeric test score and I will\n"
"tell you the letter grade you earned: ";

cin >> testScore;

// Determine the letter grade.
if (testScore >= A SCORE)

cout
else if
cout
else if
cout
else if
cout
else if
cout
else
cout

<< "Your grade is A.\n";
(testScore >= B _SCORE)
<< "Your grade is B.\n";
(testScore >= C_SCORE)
<< "Your grade is C.\n";
(testScore >= D_SCORE)
<< "Your grade is D.\n";
(testScore >= 0)

<< "Your grade is F.\n";

<< "Invalid test score.\n";

return 0;

Program Output with Example Input Shown in Bold

Enter your numeric test score and I will
tell you the letter grade you earned: -1 [Enter]
Invalid test score.

180

Chapter 4 Making Decisions

The if/else if Statement Compared
to a Nested Decision Structure

You never have to use the if/else if statement because its logic can be coded with nested
if/else statements. However, a long series of nested if/else statements has two particu-
lar disadvantages when you are debugging code:

e The code can grow complex and become difficult to understand.

e Because indenting is important in nested statements, a long series of nested if/else
statements can become too long to be displayed on the computer screen without hori-
zontal scrolling. Also, long statements tend to “wrap around” when printed on paper,
making the code even more difficult to read.

The logic of an if/else if statement is usually easier to follow than that of a long series
of nested if/else statements. And, because all of the clauses are aligned in an if/else if
statement, the lengths of the lines in the statement tend to be shorter.

Checkpoint
4.16 What will the following code display?

int funny = 7, serious = 15;
funny = serious % 2;

if (funny != 1)

{
funny = 0;
serious = 0;

}

else if (funny == 2)

{
funny = 10;
serious = 10;

}

else

{
funny = 1;
serious

1;
}

cout << funny << "" << serious << endl;

4.17 The following code is used in a bookstore program to determine how many
discount coupons a customer gets. Complete the table that appears after the
program.

int numBooks, numCoupons;
cout << "How many books are being purchased? ";
cin >> numBooks;

if (numBooks < 1)

numCoupons = 0;
else if (numBooks < 3)
numCoupons = 1;

else if (numBooks < 5)
numCoupons = 2;

4.7 Flags 181

else
numCoupons = 3;
cout << "The number of coupons to give is "
<< numCoupons << endl;

If the customer purchases
this many books This many coupons are given.

1
3
4
5
10

m—
4.7) Flags

1 CONCEPT: A flag is a Boolean or integer variable that signals when a condition
exists.

A flag is typically a bool variable that signals when some condition exists in the program.
When the flag variable is set to false, it indicates that the condition does not exist. When
the flag variable is set to true, it means the condition does exist.

For example, suppose a program that calculates sales commissions has a bool variable,
defined and initialized as shown here:

bool salesQuotaMet = false;

In the program, the salesQuotaMet variable is used as a flag to indicate whether a sales-
person has met the sales quota. When we define the variable, we initialize it with false
because we do not yet know if the salesperson has met the sales quota. Assuming a variable
named sales holds the amount of sales, code similar to the following might be used to set
the value of the salesQuotaMet variable:

if (sales >= QUOTA AMOUNT)
salesQuotaMet = true;
else
salesQuotaMet = false;

As a result of this code, the salesQuotaMet variable can be used as a flag to indicate
whether the sales quota has been met. Later in the program we might test the flag in the
following way:

if (salesQuotaMet)
cout << "You have met your sales quota!\n";

This code displays You have met your sales quota! if the bool variable salesQuotaMet
is true. Notice that we did not have to use the == operator to explicitly compare the
salesQuotaMet variable with the value true. This code is equivalent to the following;:

if (salesQuotaMet == true)
cout << "You have met your sales quota!\n";

182

Chapter 4 Making Decisions

- |

Integer Flags

Integer variables may also be used as flags. This is because in C++ the value 0 is considered
false, and any nonzero value is considered true. In the sales commission program previously
described, we could define the salesQuotaMet variable with the following statement:

int salesQuotaMet = 0; // 0 means false.

As before, we initialize the variable with 0 because we do not yet know if the sales quota
has been met. After the sales have been calculated, we can use code similar to the following
to set the value of the salesQuotaMet variable:

if (sales >= QUOTA_ AMOUNT)

salesQuotaMet = 1;
else
salesQuotaMet = 0;

Later in the program we might test the flag in the following way:

if (salesQuotaMet)
cout << "You have met your sales quota!\n";

48 Logical Operators

1 CONCEPT: Logical operators connect two or more relational expressions into one or

reverse the logic of an expression.

In the previous section you saw how a program tests two conditions with two if statements.
In this section you will see how to use logical operators to combine two or more relational
expressions into one. Table 4-6 lists C++’s logical operators.

Table 4-6

Operator Meaning Effect

&&

AND Connects two expressions into one. Both expressions must be true for
the overall expression to be true.

OR Connects two expressions into one. One or both expressions must be
true for the overall expression to be true. It is only necessary for one to
be true, and it does not matter which.

NOT The ! operator reverses the "truth" of an expression. It makes a true
expression false, and a false expression true.

The && Operator

The && operator is known as the logical AND operator. It takes two expressions as oper-
ands and creates an expression that is true only when both sub-expressions are true. Here
is an example of an if statement that uses the && operator:

if (temperature < 20 && minutes > 12)
cout << "The temperature is in the danger =zone.";

In the statement above the two relational expressions are combined into a single expression.
The cout statement will only be executed if temperature is less than 20 AND minutes is
greater than 12. If either relational test is false, the entire expression is false, and the cout
statement is not executed.

4.8 Logical Operators

T

TIP: You must provide complete expressions on both sides of the && operator. For
example, the following is not correct because the condition on the right side of the &&
operator is not a complete expression.

temperature > 0 && < 100
The expression must be rewritten as

temperature > 0 && temperature < 100

Table 4-7 shows a truth table for the s& operator. The truth table lists all the possible com-
binations of values that two expressions may have, and the resulting value returned by the
&& operator connecting the two expressions.

Table 4-7

Expression Value of Expression
true && false false (0)

false && true false (0)

false && false false (0)

true && true true (1)

As the table shows, both sub-expressions must be true for the s& operator to return a
true value.

0 NOTE: If the sub-expression on the left side of an && operator is false, the expression

on the right side will not be checked. Since the entire expression is false if only one of
the sub-expressions is false, it would waste CPU time to check the remaining expres-
sion. This is called short circuit evaluation.

The && operator can be used to simplify programs that otherwise would use nested if state-
ments. Program 4-15 performs a similar operation as Program 4-11, which qualifies a bank
customer for a special interest rate. This program uses a logical operator.

Program 4-15

// This program demonstrates the && logical operator.
#include <iostream>
using namespace std;

int main()
{
char employed, // Currently employed, Y or N
recentGrad; // Recent graduate, Y or N

// Is the user employed and a recent graduate?

cout << "Answer the following questions\n";
cout << "with either Y for Yes or N for No.\n";

(program continues)

183

184 Chapter 4 Making Decisions

Program 4-15 (continued)

cout << "Are you employed? ";
cin >> employed;

cout << "Have you graduated from college "
<< "in the past two years? ";
cin >> recentGrad;

// Determine the user's loan qualifications.
if (employed == 'Y' && recentGrad == 'Y')
{
cout << "You qualify for the special "
<< "interest rate.\n";

}
else
{
cout << "You must be employed and have\n"
<< "graduated from college in the\n"
<< "past two years to qualify.\n";
}

return 0;

}
Program Output with Example Input Shown in Bold

Answer the following questions

with either Y for Yes or N for No.

Are you employed? Y [Enter]

Have you graduated from college in the past two years? N [Enter]
You must be employed and have

graduated from college in the

past two years to qualify.

Program Output with Example Input Shown in Bold

Answer the following questions

with either Y for Yes or N for No.

Are you employed? N [Enter]

Have you graduated from college in the past two years? Y [Enter]
You must be employed and have

graduated from college in the

past two years to qualify.

Program Output with Example Input Shown in Bold

Answer the following questions

with either Y for Yes or N for No.

Are you employed? Y [Enter]

Have you graduated from college in the past two years? Y [Enter]
You qualify for the special interest rate.

The message “You qualify for the special interest rate” is displayed only when
both the expressions employed == 'Y' and recentGrad == 'Y' are true. If either of these
is false, the message “You must be employed and have graduated from college in
the past two years to qualify.” is printed.

T

4.8 Logical Operators

NOTE: Although it is similar, Program 4-15 is not the logical equivalent of Program
4-11. For example, Program 4-15 doesn’t display the message “You must be employed
to qualify.”

The | | Operator

The | | operator is known as the logical OR operator. It takes two expressions as operands
and creates an expression that is true when either of the sub-expressions are true. Here is
an example of an if statement that uses the || operator:

if (temperature < 20 || temperature > 100)
cout << "The temperature is in the danger zone.";

The cout statement will be executed if temperature is less than 20 OR temperature is
greater than 100. If either relational test is true, the entire expression is true and the cout
statement is executed.

TIP: You must provide complete expressions on both sides of the || operator. For
example, the following is not correct because the condition on the right side of the | |
operator is not a complete expression.

temperature < 0 || > 100
The expression must be rewritten as

temperature < 0 || temperature > 100

Table 4-8 shows a truth table for the || operator.

Table 4-8
Expression Value of the Expression
true || false true (1)
false || true true (1)
false || false false (0)
true || true true (1)

<&

All it takes for an OR expression to be true is for one of the sub-expressions to be true. It
doesn’t matter if the other sub-expression is false or true.

NOTE: The || operator also performs short circuit evaluation. If the sub-expression
on the left side of an || operator is true, the expression on the right side will not be
checked. Since it’s only necessary for one of the sub-expressions to be true, it would
waste CPU time to check the remaining expression.

Program 4-16 performs different tests to qualify a person for a loan. This one determines if
the customer earns at least $35,000 per year, or has been employed for more than five years.

185

186 Chapter 4 Making Decisions

Program 4-16

// This program demonstrates the logical || operator.
#include <iostream>
using namespace std;

int main()

{
// Constants for minimum income and years
const double MIN_ INCOME = 35000.0;
const int MIN_YEARS = 5;

double income; // Annual income
int years; // Years at the current job

// Get the annual income
cout << "What is your annual income? ";
cin >> income;

// Get the number of years at the current job.

cout << "How many years have you worked at "
<< "your current job? ";

cin >> years;

// Determine the user's loan qualifications.
if (income >= MIN INCOME || years > MIN YEARS)
cout << "You qualify.\n";
else
{
cout << "You must earn at least $"
<< MIN_INCOME << " or have been "
<< "employed more than " << MIN_YEARS
<< " years.\n";

}

return 0;

Program Output with Example Input Shown in Bold

What is your annual income? 40000 [Enter]
How many years have you worked at your current job? 2 [Enter]
You qualify.

Program Output with Example Input Shown in Bold

What is your annual income? 20000 [Enter]
How many years have you worked at your current job? 7 [Enter]
You qualify.

Program Output with Example Input Shown in Bold

What is your annual income? 30000 [Enter]
How many years have you worked at your current job? 3 [Enter]
You must earn at least $35000 or have been employed more than 5 years.

4.8 Logical Operators

The message “You qualify\n.”is displayed when either or both the expressions income >=
35000 or years > 5 are true. If both of these are false, the disqualifying message is printed.

The ! Operator

The ! operator performs a logical NOT operation. It takes an operand and reverses its truth
or falsehood. In other words, if the expression is true, the ! operator returns false, and if the
expression is false, it returns true. Here is an if statement using the ! operator:

if (! (temperature > 100))
cout << "You are below the maximum temperature.\n";

First, the expression (temperature > 100) is tested to be true or false. Then the ! opera-
tor is applied to that value. If the expression (temperature > 100) is true, the ! operator
returns false. If it is false, the ! operator returns true. In the example, it is equivalent to
asking “is the temperature not greater than 100?”

Table 4-9 shows a truth table for the ! operator.

Table 4-9
Expression Value of the Expression
ltrue false (0)
!false true (1)

Program 4-17 performs the same task as Program 4-16. The if statement, however, uses
the ! operator to determine if the user does 7ot make at least $35,000 or has not been on
the job more than five years.

Program 4-17

// This program demonstrates the logical ! operator.
#include <iostream>
using namespace std;

int main()

{
// Constants for minimum income and years
const double MIN_INCOME = 35000.0;
const int MIN_YEARS = 5;

double income; // Annual income
int years; // Years at the current job

// Get the annual income
cout << "What is your annual income? ";
cin >> income;

// Get the number of years at the current job.
cout << "How many years have you worked at "

<< "your current job? "; (")
program continues

187

188

Chapter 4 Making Decisions

Program 4-17 (continued)

cin >> years;

// Determine the user's loan qualifications.
if (!(income >= MIN INCOME || years > MIN YEARS))
{
cout << "You must earn at least S$"
<< MIN_INCOME << " or have been "
<< "employed more than " << MIN_YEARS
<< " years.\n";
}
else
cout << "You qualify.\n";
return 0;

The output of Program 4-17 is the same as Program 4-16.

Precedence and Associativity of Logical Operators

Table 4-10 shows the precedence of C++’s logical operators, from highest to lowest.

Table 4-10

Logical Operators in Order of Precedence

!
&&

The ! operator has a higher precedence than many of the C++ operators. To avoid an error,
you should always enclose its operand in parentheses unless you intend to apply it to a
variable or a simple expression with no other operators. For example, consider the follow-
ing expressions:

I(x > 2)

Ix > 2

The first expression applies the ! operator to the expression x > 2. It is asking, “Is x not
greater than 2?” The second expression, however, applies the ! operator to x only. It is ask-
ing, “Is the logical negation of x greater than 2?” Suppose x is set to 5. Since 5 is nonzero,
it would be considered true, so the ! operator would reverse it to false, which is 0. The

> operator would then determine if O is greater than 2. To avoid a catastrophe like this,
always use parentheses!

The s&& and || operators rank lower in precedence than the relational operators, so prece-

dence problems are less likely to occur. If you feel unsure, however, it doesn’t hurt to use
parentheses anyway.

(a > b) && (x < y) isthesameas a > b && x < y
(x ==y) || (b > a) isthesameas x ==y || b > a

4.9 Checking Numeric Ranges with Logical Operators 189

The logical operators have left-to-right associativity. In the following expression, a < b is
evaluated before y == z.

a<b |[|y-==z

In the following expression, y == z is evaluated first, however, because the && operator has
higher precedence than |

a<b || y==12z%&m>7]
The expression is equivalent to

(a < b) || ((y == 2) && (m > j))

—
49 Checking Numeric Ranges with Logical Operators

1 CONCEPT: Logical operators are effective for determining whether a number is in or
out of a range.

When determining whether a number is inside a numeric range, it’s best to use the && opera-
tor. For example, the following if statement checks the value in x to determine whether it
is in the range of 20 through 40:

if (x >= 20 && x <= 40)
cout << x << " is in the acceptable range.\n";

The expression in the if statement will be true only when x is both greater than or equal
to 20 AND less than or equal to 40. x must be within the range of 20 through 40 for this
expression to be true.

When determining whether a number is outside a range, the | | operator is best to use. The
following statement determines whether x is outside the range of 20 to 40:

if (x < 20 || x > 40)
cout << x << " is outside the acceptable range.\n";

It’s important not to get the logic of these logical operators confused. For example, the fol-
lowing if statement would never test true:

if (x < 20 &% x > 40)
cout << x << " is outside the acceptable range.\n";

Obviously, x cannot be less than 20 and at the same time greater than 40.

0 NOTE: C++ does not allow you to check numeric ranges with expressions such
as 5 < x < 20. Instead, you must use a logical operator to connect two relational
expressions, as previously discussed.

Checkpoint

4.18 The following truth table shows various combinations of the values true and
false connected by a logical operator. Complete the table by indicating if the
result of such a combination is TRUE or FALSE.

190 Chapter 4 Making Decisions

Logical Expression Result (true or false)

true && false
true && true

false && true
false && false

true || false
true || true
false || true
false || false
!true

tfalse

4.19 Assume the variables a = 2,b = 4,and ¢ = 6. Indicate by circling the T or F if
each of the following conditions is true or false:

a==4 || b>2 T F
6 <= c && a > 3 T F
1 !=Db && ¢ != 3 T F
a> -1]||] a<=b T F
I(a > 2) T F

4.20 Write an if statement that prints the message “The number is valid” if the variable
speed is within the range 0 through 200.

4.21 Write an if statement that prints the message “The number is not valid” if the
variable speed is outside the range 0 through 200.

-
4.10 Menus

1CONCEPT: You can use nested if/else statements or the if/else if statement to
create menu-driven programs. A menu-driven program allows the user to
determine the course of action by selecting it from a list of actions.

A menu is a screen displaying a set of choices the user selects from. For example, a program
that manages a mailing list might give you the following menu:

1. Add a name to the list.
Remove a name from the list.
Change a name in the list.
Print the list.

Quit the program.

Al

The user selects one of the operations by entering its number. Entering 4, for example,
causes the mailing list to be printed, and entering 5 causes the program to end. Nested
if/else statements or an if/else if structure can be used to set up such a menu. After
the user enters a number, the program compares the number with the available selections
and executes the statements that perform that operation.

Program 4-18 calculates the charges for membership in a health club. The club has three
membership packages to choose from: standard adult membership, child membership, and

4.10 Menus

senior citizen membership. The program presents a menu that allows the user to choose the

desired package and then calculates the cost of the membership.

Program 4-18

// This program displays a menu and asks the user to make a
// selection. An if/else if statement determines which item

// the user has chosen.
#include <iostream>
#include <iomanip>
using namespace std;

int main()

{
int choice; // To hold a menu choice
int months; // To hold the number of months
double charges; // To hold the monthly charges

// Constants for membership rates
const double ADULT = 40.0,

SENIOR = 30.0,

CHILD = 20.0;

// Constants for menu choices

const int ADULT_CHOICE = 1,
CHILD_CHOICE = 2,
SENIOR_CHOICE = 3,
QUIT CHOICE = 4;

// Display the menu and get a choice.
cout << "\t\tHealth Club Membership Menu\n\n"
<< "1l. Standard Adult Membership\n"
<< "2, Child Membership\n"
<< "3. Senior Citizen Membership\n"
<< "4, Quit the Program\n\n"
<< "Enter your choice: ";
cin >> choice;

// Set the numeric output formatting.
cout << fixed << showpoint << setprecision(2);

// Respond to the user's menu selection.
if (choice == ADULT_CHOICE)
{

cout << "For how many months? ";

cin >> months;

charges = months * ADULT;

cout << "The total charges are $" << charges <<

}
else if (choice == CHILD_CHOICE)

{

cout << "For how many months? ";

endl;

(program continues)

191

192

Chapter 4 Making Decisions

Program 4-18 (continued)

cin >> months;
charges = months * CHILD;
cout << "The total charges are $" << charges << endl;

}
else if (choice == SENIOR_CHOICE)
{
cout << "For how many months? ";
cin >> months;
charges = months * SENIOR;
cout << "The total charges are $" << charges << endl;
}
else if (choice == QUIT CHOICE)
{
cout << "Program ending.\n";
}
else
{
cout << "The valid choices are 1 through 4. Run the\n"
<< "program again and select one of those.\n";
}

return 0;

Program Output with Example Input Shown in Bold
Health Club Membership Menu

= ow N
e o e e

Standard Adult Membership
Child Membership
Senior Citizen Membership
Quit the Program

Enter your choice: 3 [Enter]
For how many months? 6 [Enter]
The total charges are $180.00

Let’s take a closer look at the program:

Lines 10-12 define the following variables:

e The choice variable will hold the user’s menu choice.

® The months variable will hold the number of months of health club membership.

® The charges variable will hold the total charges.

Lines 15-17 define named constants for the monthly membership rates for adult,

senior citizen, and child memberships.

Lines 20-23 define named constants for the menu choices.

Lines 26-32 display the menu and get the user’s choice.

Line 35 sets the numeric output formatting for floating point numbers.

Lines 38-67 is an if/else if statement that determines the user’s menu choice in

the following manner:

o If the user selected 1 from the menu (adult membership), the statements in lines
40-43 are executed.

4.11 Focus on Software Engineering: Validating User Input 193

e Otherwise, if the user selected 2 from the menu (child membership), the statements
in lines 47-50 are executed.

e Otherwise, if the user selected 3 from the menu (senior citizen membership), the
statements in lines 54-57 are executed.

e Otherwise, if the user selected 4 from the menu (quit the program), the statement
in line 61 is executed.

o [f the user entered any choice other than 1, 2, 3, or 4, the else clause in lines 63-67
executes, displaying an error message.

—
4.11 Focus on Software Engineering:

Validating User Input

CONCEPT: As long as the user of a program enters bad input, the program
will produce bad output. Programs should be written to filter out
bad input.

Perhaps the most famous saying of the computer world is “Garbage in, garbage out.” The
integrity of a program’s output is only as good as its input, so you should try to make sure
garbage does not go into your programs. Input validation is the process of inspecting data
given to a program by the user and determining if it is valid. A good program should give
clear instructions about the kind of input that is acceptable and not assume the user has
followed those instructions. Here are just a few examples of input validations performed
by programs:

e Numbers are checked to ensure they are within a range of possible values. For exam-
ple, there are 168 hours in a week. It is not possible for a person to be at work longer
than 168 hours in one week.

e Values are checked for their “reasonableness.” Although it might be possible for a
person to be at work for 168 hours per week, it is not probable.

e Ttems selected from a menu or other sets of choices are checked to ensure they are
available options.

e Variables are checked for values that might cause problems, such as division by zero.

Program 4-19 is a test scoring program that rejects any test score less than 0 or greater
than 100.

Program 4-19

// This test scoring program does not accept test scores
// that are less than 0 or greater than 100.

#include <iostream>

using namespace std;

int main()

{
// Constants for grade thresholds

const int A SCORE = 90,
(program continues)

194 Chapter 4 Making Decisions

Program 4-19 (continued)

}

B_SCORE = 80,
C_SCORE = 70,
D SCORE = 60,
MIN_SCORE = 0, // Minimum valid score
MAX SCORE = 100; // Maximum valid score

int testScore; // To hold a numeric test score

// Get the numeric test score.

cout << "Enter your numeric test score and I will\n"
<< "tell you the letter grade you earned: ";

cin >> testScore;

// Validate the input and determine the grade.
if (testScore >= MIN_SCORE && testScore <= MAX_ SCORE)
{
// Determine the letter grade.
if (testScore >= A SCORE)
cout << "Your grade is A.\n";
else if (testScore >= B_SCORE)
cout << "Your grade is B.\n";
else if (testScore >= C_SCORE)
cout << "Your grade is C.\n";
else if (testScore >= D_SCORE)
cout << "Your grade is D.\n";
else
cout << "Your grade is F.\n";

}
else
{
// An invalid score was entered.
cout << "That is an invalid score. Run the program\n"
<< "again and enter a value in the range of\n"
<< MIN_SCORE << " through " << MAX SCORE << ".\n";
}

return 0;

Program Output with Example Input Shown in Bold

Enter your numeric test score and I will

tell you the letter grade you earned: -1 [Enter]
That is an invalid score. Run the program
again and enter a value in the range of

0 through 100.

Program Output with Example Input Shown in Bold

Enter your numeric test score and I will
tell you the letter grade you earned: 81 [Enter]
Your grade is B.

=
4.12

4.12 Comparing Characters and Strings

Comparing Characters and Strings

1CONCEPT: Relational operators can also be used to compare characters and string

objects.

Earlier in this chapter you learned to use relational operators to compare numeric values.
They can also be used to compare characters and string objects.

Comparing Characters

As you learned in Chapter 3, characters are actually stored in memory as integers. On most
systems, this integer is the ASCII value of the character. For example, the letter ‘A’ is repre-
sented by the number 635, the letter ‘B’ is represented by the number 66, and so on. Table
4-11 shows the ASCII numbers that correspond to some of the commonly used characters.

Table 4-11 ASCII Values of Commonly Used Characters

Character ASCII Value
‘0 -9 48 - 57

N - 65-90

‘@’ -z 97 - 122
blank 32

period 46

Notice that every character, even the blank, has an ASCII code associated with it. Notice
also that the ASCII code of a character representing a digit, such as *1' or '2", is not the
same as the value of the digit itself. A complete table showing the ASCII values for all char-
acters can be found in Appendix B.

When two characters are compared, it is actually their ASCII values that are being com-
pared. 'A' < 'B' because the ASCII value of 'a' (65) is less than the ASCII value of 'B"
(66). Likewise '1' < '2' because the ASCII value of '1' (49) is less than the ASCII value
of *2' (50). However, as shown in Table 4-11, lowercase letters have higher ASCII codes
than uppercase letters, so 'a' > 'z'. Program 4-20 shows how characters can be com-
pared with relational operators.

Program 4-20

// This program demonstrates how characters can be
// compared with the relational operators.
#include <iostream>

using namespace std;

int main()

{

char ch;

(program continues)

195

196 Chapter 4 Making Decisions

Program 4-20 (continued)

// Get a character from the user.
cout << "Enter a digit or a letter: ";
ch = cin.get();

// Determine what the user entered.
if (ch >= '0' && ch <= '9")

cout << "You entered a digit.\n";
else if (ch >= 'A' && ch <= 'Z2")

cout << "You entered an uppercase letter.\n";
else if (ch >= 'a' && ch <= 'z'")

cout << "You entered a lowercase letter.\n";
else

cout << "That is not a digit or a letter.\n";

return 0;

Program Output with Example Input Shown in Bold

Enter a digit or a letter: t [Enter]
You entered a lowercase letter.

Program Output with Example Input Shown in Bold

Enter a digit or a letter: V [Enter]
You entered an uppercase letter.

Program Output with Example Input Shown in Bold

Enter a digit or a letter: 5 [Enter]
You entered a digit.

Program Output with Example Input Shown in Bold

Enter a digit or a letter: & [Enter]
That is not a digit or a letter.

Comparing string Objects

string objects can also be compared with relational operators. As with individual charac-
ters, when two string objects are compared, it is actually the ASCII value of the characters
making up the strings that are being compared. For example, assume the following defini-
tions exist in a program:

string strl = "ABC";
string str2 = "XYz";

The string object strl is considered less than the string object str2 because the char-
acters "ABC" alphabetically precede (have lower ASCII values than) the characters "xyz".
So, the following if statement will cause the message "strl is less than str2." to
be displayed on the screen.

if (strl < str2)
cout << "strl is less than str2.";

4.12 Comparing Characters and Strings 197

One by one, each character in the first operand is compared with the character in the cor-
responding position in the second operand. If all the characters in both string objects
match, the two strings are equal. Other relationships can be determined if two characters in
corresponding positions do not match. The first operand is less than the second operand if
the first mismatched character in the first operand is less than its counterpart in the second
operand. Likewise, the first operand is greater than the second operand if the first mis-
matched character in the first operand is greater than its counterpart in the second operand.

For example, assume a program has the following definitions:

string namel = "Mary";
string name2 = "Mark";

The value in namel, "Mary", is greater than the value in name2, "Mark". This is because
the first three characters in name1 have the same ASCII values as the first three characters
in name2, but the 'y' in the fourth position of "Mary" has a greater ASCII value than the
'k' in the corresponding position of "Mark".

Any of the relational operators can be used to compare two string objects. Here are some
of the valid comparisons of namel and name2.

namel > name2 // true
namel <= name2 // false
namel != name2 // true

string objects can also, of course, be compared to string literals:
namel < "Mary Jane" // true

Program 4-21 further demonstrates how relational operators can be used with string
objects.

Program 4-21

// This program uses relational operators to compare a string
// entered by the user with valid stereo part numbers.
#include <iostream>

#include <iomanip>

#include <string>

using namespace std;

int main()
{
const double PRICE_A
PRICE_B

249.0,
299.0;

string partNum; // Holds a stereo part number

// Display available parts and get the user's selection
cout << "The stereo part numbers are:\n"

<< "Boom Box: part number S-29A \n"

<< "Shelf Model: part number S-29B \n"

<< "Enter the part number of the stereo you\n"

(program continues)

198 Chapter 4 Making Decisions

Program 4-21 (continued)

<< "wish to purchase: ";
cin >> partNum;

// Set the numeric output formatting
cout << fixed << showpoint << setprecision(2);

// Determine and display the correct price

if (partNum == "S-29A")
cout << "The price is $" << PRICE_A << endl;
else if (partNum == "S-29B")
cout << "The price is $" << PRICE_B << endl;
else
cout << partNum << " is not a valid part number.\n";

return 0;

Program Output with Example Input Shown in Bold
The stereo part numbers are:

Boom Box: part number S-29A

Shelf Model: part number S-29B

Enter the part number of the stereo you

wish to purchase: $-29A [Enter]

The price is $249.00

Checkpoint

4.22 Indicate whether each of the following relational expressions is true or false.
Refer to the ASCII table in Appendix B if necessary.

A) gl < 'zt

B) ra' == 'a’
C) 's* < 7"
D) 'a' < 'a
E) "1+ ==1

F) '1' == 49

4.23 Indicate whether each of the following relational expressions is true or false.
Refer to the ASCII table in Appendix B if necessary.

A) "Bill" == "BILL"
B) "Bill" < "BILL"
"Bill" < "Bob"
"189" > 23"

E) 189" > "Bill"

=

"Mary" < "MaryEllen"
G) "MaryEllen" < "Mary Ellen"

4.13 The Conditional Operator

-
4.13 The Conditional Operator

1CONCEPT: You can use the conditional operator to create short expressions that
work like if/else statements.

The conditional operator is powerful and unique. It provides a shorthand method of
expressing a simple if/else statement. The operator consists of the question-mark (?) and
the colon (:). Its format is:

expression ? expression : expression;
Here is an example of a statement using the conditional operator:

x < 0?2y =10 : z = 20;

The statement above is called a conditional expression and consists of three sub-expressions
separated by the ? and : symbols. The expressions are x < 0,y = 10,and z = 20, as
illustrated here:

x <0 ? y = 10 : z = 20;

@ NOTE: Since it takes three operands, the conditional operator is considered a ternary
operator.

The conditional expression above performs the same operation as the following if/else

statement:
if (x < 0)
y = 10;

else
z = 20;

The part of the conditional expression that comes before the question mark is the expression
to be tested. It’s like the expression in the parentheses of an if statement. If the expression
is true, the part of the statement between the ? and the : is executed. Otherwise, the part
after the : is executed. Figure 4-10 illustrates the roles played by the three sub-expressions.

Figure 4-10

1st Expression: 3rd Expregsion:

Expression to Executes if the 1st

be tested. expression is false.
x <0 ? y = 10 : z = 20;

2nd Expression:
Executes if the 1st
expression is true.

199

200

Chapter 4 Making Decisions

If it helps, you can put parentheses around the sub-expressions, as in the following:

(x < 0) ?2 (y = 10) : (z = 20);

Using the Value of a Conditional Expression

Remember, in C++ all expressions have a value, and this includes the conditional expres-
sion. If the first sub-expression is true, the value of the conditional expression is the value
of the second sub-expression. Otherwise it is the value of the third sub-expression. Here is
an example of an assignment statement using the value of a conditional expression:

a=x>100 2 0 : 1;

The value assigned to a will be either 0 or 1, depending upon whether x is greater than 100.
This statement could be expressed as the following if/else statement:

if (x > 100)

a = 0;
else
a = 1;

Program 4-22 can be used to help a consultant calculate her charges. Her rate is $50.00
per hour, but her minimum charge is for five hours. The conditional operator is used in a
statement that ensures the number of hours does not go below five.

Program 4-22

// This program calculates a consultant's charges at $50
// per hour, for a minimum of 5 hours. The ?: operator
// adjusts hours to 5 if less than 5 hours were worked.
#include <iostream>

#include <iomanip>

using namespace std;

int main()

{
const double PAY RATE = 50.0; // Hourly pay rate
const int MIN_HOURS = 5; // Minimum billable hours
double hours, // Hours worked
charges; // Total charges

// Get the hours worked.
cout << "How many hours were worked? ";
cin >> hours;

// Determine the hours to charge for.
hours = hours < MIN_HOURS ? MIN HOURS : hours;

// Calculate and display the charges.

charges = PAY RATE * hours;

cout << fixed << showpoint << setprecision(2)
<< "The charges are $" << charges << endl;

return 0;

4.13 The Conditional Operator

Program Output with Example Input Shown in Bold

How many hours were worked? 10 [Enter]
The charges are $500.00

Program Output with Example Input Shown in Bold

How many hours were worked? 2 [Enter]
The charges are $250.00

Notice that in line 11 a constant named MIN_ HOURS is defined to represent the minimum
number of hours, which is 5. Here is the statement in line 20, with the conditional expression:

hours = hours < MIN_HOURS ? MIN HOURS : hours;

If the value in hours is less than 5, then 5 is stored in hours. Otherwise hours is assigned
the value it already has. The hours variable will not have a value less than 5 when it is used
in the next statement, which calculates the consultant’s charges.

As you can see, the conditional operator gives you the ability to pack decision-making
power into a concise line of code. With a little imagination it can be applied to many other
programming problems. For instance, consider the following statement:

cout << "Your grade is: " << (score < 60 ? "Fail." : "Pass.");
If you were to use an if/else statement, the statement above would be written as follows:

if (score < 60)

cout << "Your grade is: Fail.";
else

cout << "Your grade is: Pass.";

O NOTE: The parentheses are placed around the conditional expression because the <<
operator has higher precedence than the 2: operator. Without the parentheses, just the
value of the expression score < 60 would be sent to cout.

Checkpoint
4.24 Rewrite the following if/else statements as conditional expressions:

A) if (x > y)

z = 1;
else
z = 20;

B) if (temp > 45)
population = base * 10;
else
population = base * 2;
C) if (hours > 40)
wages *= 1.5;
else
wages *= 1;
D) if (result >= 0)
cout << "The result is positive\n";
else
cout << "The result is negative.\n";

201

202 Chapter 4 Making Decisions

4.25 The following statements use conditional expressions. Rewrite each with an if/
else statement.
A) 5 =k >90 ? 57 : 12;
B) factor = x >= 10 2 y * 22 : y * 35;
C) total += count == 1 ? sales : count * sales;
D) cout << (((num % 2) == 0) ? "Even\n" : "0dd\n");
4.26 What will the following program display?

#include <iostream>
using namespace std;

int main()

{
const int UPPER = 8, LOWER = 2;
int numl, num2, num3 = 12, numé4 = 3;
numl = num3 < num4 ? UPPER : LOWER;
num2 = num4 > UPPER ? num3 : LOWER;
cout << numl << " " << num2 << endl;
return 0;

}

-
4.14 The switch Statement

1 CONCEPT: The switch statement lets the value of a variable or expression determine
where the program will branch.

A branch occurs when one part of a program causes another part to execute. The if/else
if statement allows your program to branch into one of several possible paths. It performs
a series of tests (usually relational) and branches when one of these tests is true. The switch
statement is a similar mechanism. It, however, tests the value of an integer expression and
then uses that value to determine which set of statements to branch to. Here is the format
of the switch statement:

switch (IntegerExpression)
{
case ConstantExpression:
// place one or more
// statements here

case ConstantExpression:
// place one or more
// statements here

// case statements may be repeated as many
// times as necessary

default:
// place one or more
// statements here

4.14 The switch Statement

The first line of the statement starts with the word switch, followed by an integer expres-
sion inside parentheses. This can be either of the following:

e a variable of any of the integer data types (including char)
e an expression whose value is of any of the integer data types

On the next line is the beginning of a block containing several case statements. Each case
statement is formatted in the following manner:

case ConstantExpression:
// place one or more

// statements here

After the word case is a constant expression (which must be of an integer type), followed by
a colon. The constant expression may be an integer literal or an integer named constant. The
case statement marks the beginning of a section of statements. The program branches to
these statements if the value of the switch expression matches that of the case expression.

WARNING! The expression of each case statement in the block must be unique.

®
<&

NOTE: The expression following the word case must be an integer literal or constant.
It cannot be a variable, and it cannot be an expression such as x < 22 orn ==

50.

An optional default section comes after all the case statements. The program branches to
this section if none of the case expressions match the switch expression. So, it functions
like a trailing else in an if/else if statement.

Program 4-23 shows how a simple switch statement works.

Program 4-23

// The switch statement in this program tells the user something
the data just entered!

// he or she already knows:

#include <iostream>
using namespace std;

int main()

{
char choice;
cout << "Enter A, B, or C:
cin >> choice;
switch (choice)
{
case 'A': cout << "You
break;
case 'B': cout << "You
break;
case 'C': cout << "You
break;
default: cout << "You
}
return 0;
}

entered A.\n";

entered B.\n";
entered C.\n";

did not enter A, B, or C!\n";

(program continues)

203

204 Chapter 4 Making Decisions

Program 4-23 (continued)

Program Output with Example Input Shown in Bold

Enter A, B, or C: B [Enter]
You entered B.

Program Output with Example Input Shown in Bold

Enter A, B, or C: F [Enter]
You did not enter A, B, or C!

The first case statement is case 'A':, the second is case 'B':, and the third is case
'c':. These statements mark where the program is to branch to if the variable choice
contains the values 'A', 'B', or 'c'. (Remember, character variables and literals are con-
sidered integers.) The default section is branched to if the user enters anything other than
A, B, or C.

Notice the break statements that are in the case 'A',case 'B',and case 'C' sections.

switch (choice)

{
case 'A':cout << "You entered A.\n";
break; <-———
case 'B':cout << "You entered B.\n";
break; -———
case 'C':cout << "You entered C.\n";
break; <«
default: cout << "You did not enter A, B, or C!\n";
}

The case statements show the program where to start executing in the block and the break
statements show the program where to stop. Without the break statements, the program
would execute all of the lines from the matching case statement to the end of the block.

@ NOTE: The default section (or the last case section, if there is no default) does
not need a break statement. Some programmers prefer to put one there anyway, for
consistency.

Program 4-24 is a modification of Program 4-23, without the break statements.

Program 4-24

// The switch statement in this program tells the user something
// he or she already knows: the data just entered!

#include <iostream>

using namespace std;

int main()

{

char choice;

4.14 The switch Statement

cout << "Enter A, B, or C: ";
cin >> choice;

// The following switch is

// missing its break statements!
switch (choice)

{

case 'A': cout << "You entered A.\n";

case 'B': cout << "You entered B.\n";

case 'C': cout << "You entered C.\n";

default: cout << "You did not enter A, B, or C!\n";
}

return 0;

Program Output with Example Input Shown in Bold
Enter A, B, or C: A [Enter]

You
You
You
You

entered A.
entered B.
entered C.
did not enter A, B, or C!

Program Output with Example Input Shown in Bold
Enter A, B, or C: C [Enter]

You
You

entered C.
did not enter A, B, or C!

Without the break statement, the program “falls through” all of the statements below
the one with the matching case expression. Sometimes this is what you want. Program
4-25 lists the features of three TV models a customer may choose from. The Model 100
has remote control. The Model 200 has remote control and stereo sound. The Model 300
has remote control, stereo sound, and picture-in-a-picture capability. The program uses a
switch statement with carefully omitted breaks to print the features of the selected model.

Program 4-25

// This program is carefully constructed to use the "fall through"
// feature of the switch statement.

#include <iostream>

using namespace std;

int main()

{

int modelNum; // Model number

// Get a model number from the user.

cout << "Our TVs come in three models:\n";

cout << "The 100, 200, and 300. Which do you want? ";
cin >> modelNum;

(program continues)

205

206 Chapter 4 Making Decisions

Program 4-25 (continued)

// Display the model's features.
cout << "That model has the following features:\n";
switch (modelNum)

{
case 300: cout << "\tPicture-in-a-picture.\n";
case 200: cout << "\tStereo sound.\n";
case 100: cout << "\tRemote control.\n";
break;
default: cout << "You can only choose the 100,";
cout << "200, or 300.\n";
}

return 0;

Program Output with Example Input Shown in Bold
Our TVs come in three models:
The 100, 200, and 300. Which do you want? 100 [Enter]
That model has the following features:

Remote control.

Program Output with Example Input Shown in Bold
Our TVs come in three models:
The 100, 200, and 300. Which do you want? 200 [Enter]
That model has the following features:

Stereo sound.

Remote control.

Program Output with Example Input Shown in Bold
Our TVs come in three models:
The 100, 200, and 300. Which do you want? 300 [Enter]
That model has the following features:
Picture-in-a-picture.
Stereo sound.
Remote control.

Program Output with Example Input Shown in Bold
Our TVs come in three models:

The 100, 200, and 300. Which do you want? 500 [Enter]
That model has the following features:

You can only choose the 100, 200, or 300.

Another example of how useful this “fall through” capability can be is when you want
the program to branch to the same set of statements for multiple case expressions. For
instance, Program 4-26 asks the user to select a grade of pet food. The available choices are
A, B, and C. The switch statement will recognize either upper or lowercase letters.

Program 4-26

// The switch statement in this program uses the "fall through"
// feature to catch both uppercase and lowercase letters entered
// by the user.

#include <iostream>

4.14 The switch Statement

using namespace std;

int main()

{
char feedGrade;
// Get the desired grade of feed.
cout << "Our pet food is available in three grades:\n";
cout << "A, B, and C. Which do you want pricing for? ";
cin >> feedGrade;
// Display the price.
switch (feedGrade)
{
case 'a':
case 'A': cout << "30 cents per pound.\n";
break;
case 'b':
case 'B': cout << "20 cents per pound.\n";
break;
case 'c':
case 'C': cout << "15 cents per pound.\n";
break;
default: cout << "That is an invalid choice.\n";
}
return 0;
}

Program Output with Example Input Shown in Bold

Our pet food is available in three grades:
A, B, and C. Which do you want pricing for? b [Enter]
20 cents per pound.

Program Output with Example Input Shown in Bold
Our pet food is available in three grades:

A, B, and C. Which do you want pricing for? B [Enter]
20 cents per pound.

When the user enters 'a' the corresponding case has no statements associated with it, so
the program falls through to the next case, which corresponds with 'a" .
case 'a':
case 'A': cout << "30 cents per pound.\n";
break;

The same technique is used for 'b' and 'c'.

Using switch in Menu Systems

The switch statement is a natural mechanism for building menu systems. Recall that
Program 4-18 gives a menu to select which health club package the user wishes to purchase.
The program uses if/else if statements to determine which package the user has selected
and displays the calculated charges. Program 4-27 is a modification of that program, using
a switch statement instead of if/else if.

207

208

Chapter 4 Making Decisions

Program 4-27

// This program uses a switch statement to determine

// the item selected from a menu.
#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

int choice; // To hold a menu choice

int months; // To hold the number of months

double charges; // To hold the monthly charges

// Constants for membership rates
const double ADULT = 40.0,

CHILD = 20.0,

SENIOR = 30.0;

// Constants for menu choices

const int ADULT_CHOICE = 1,
CHILD_CHOICE = 2,
SENIOR_CHOICE = 3,
QUIT CHOICE = 4;

// Display the menu and get a choice.
cout << "\t\tHealth Club Membership Menu\n\n"
<< "1l. Standard Adult Membership\n"
<< "2. Child Membership\n"
<< "3. Senior Citizen Membership\n"
<< "4. Quit the Program\n\n"
<< "Enter your choice: ";
cin >> choice;

// Set the numeric output formatting.
cout << fixed << showpoint << setprecision(2);

// Respond to the user's menu selection.
switch (choice)
{
case ADULT CHOICE:
cout << "For how many months? ";
cin >> months;
charges = months * ADULT;

cout << "The total charges are $" << charges <<

break;

case CHILD_ CHOICE:
cout << "For how many months? ";
cin >> months;
charges = months * CHILD;

cout << "The total charges are $" << charges <<

break;

endl;

endl;

4.14 The switch Statement 209

case SENIOR_CHOICE:
cout << "For how many months? ";
cin >> months;
charges = months * SENIOR;
cout << "The total charges are $" << charges << endl;
break;

case QUIT CHOICE:
cout << "Program ending.\n";
break;

default:
cout << "The valid choices are 1 through 4. Run the\n"
<< "program again and select one of those.\n";

return 0;

Program Output with Example Input Shown in Bold
Health Club Membership Menu

Standard Adult Membership
Child Membership
Senior Citizen Membership
Quit the Program

=W N

Enter your choice: 2 [Enter]
For how many months? 6 [Enter]
The total charges are $120.00

Checkpoint

4.27 Explain why you cannot convert the following if/else if statement into a
switch statement.

if (temp == 100)
x = 0;

else if (population > 1000)
x = 1;

else if (rate < .1)
X = -1;

4.28 What is wrong with the following switch statement?

switch (temp)

{
case temp < 0 : cout << "Temp is negative.\n";
break;
case temp == 0: cout << "Temp is zero.\n";
break;
case temp > 0 : cout << "Temp is positive.\n";
break;

210 Chapter 4 Making Decisions

4.29

4.30

4.31

What will the following program display?

#include <iostream>
using namespace std;
int main()

{
int funny = 7, serious = 15;
funny = serious * 2;
switch (funny)
{ case 0 : cout << "That is funny.\n";
break;
case 30: cout << "That is serious.\n";
break;
case 32: cout << "That is seriously funny.\n";
break;
default: cout << funny << endl;
}
return 0;
}

Complete the following program skeleton by writing a switch statement that
displays “one” if the user has entered 1, “two” if the user has entered 2, and
“three” if the user has entered 3. If a number other than 1, 2, or 3 is entered, the
program should display an error message.

#include <iostream>
using namespace std;
int main()
{
int userNum;
cout << "Enter one of the numbers 1, 2, or 3: ";
cin >> userNum;
//
// Write the switch statement here.
//

return 0;

}

Rewrite the following program. Use a switch statement instead of the if/else
if statement.

#include <iostream>
using namespace std;
int main()
{
int selection;
cout << "Which formula do you want to see?\n\n";
cout << "1l. Area of a circle\n";
cout << "2. Area of a rectangle\n";
cout << "3. Area of a cylinder\n"
cout << "4. None of them!\n";
cin >> selection;
if (selection == 1)
cout << "Pi times radius squared\n";

—

4.15 More About Blocks and Variable Scope

else if (selection == 2)
cout << "Length times width\n";
else if (selection == 3)
cout << "Pi times radius squared times height\n";
else if (selection == 4)
cout << "Well okay then, good bye!\n";
else

cout << "Not good with numbers, eh?\n";
return 0;

4.15 More About Blocks and Variable Scope

1 CONCEPT: The scope of a variable is limited to the block in which it is defined.

C++ allows you to create variables almost anywhere in a program. Program 4-28 is a modi-
fication of Program 4-17, which determines if the user qualifies for a loan. The definitions
of the variables income and years have been moved to later points in the program.

Program 4-28

// This program demonstrates late variable definition
#include <iostream>
using namespace std;

int main()

{

// Constants for minimum income and years
const double MIN INCOME = 35000.0;
const int MIN_YEARS = 5;

// Get the annual income.

cout << "What is your annual income? ";
double income; // Variable definition
cin >> income;

// Get the number of years at the current job.

cout << "How many years have you worked at "
<< "your current job? ";

int years; // Variable definition

cin >> years;

// Determine the user's loan qualifications.

if (income >= MIN INCOME || years > MIN YEARS)
cout << "You qualify.\n";

else

{

cout << "You must earn at least $"
<< MIN_INCOME << " or have been "
<< "employed more than " << MIN_YEARS
<< " years.\n";

return 0;

211

212

Chapter 4 Making Decisions

It is a common practice to define all of a function’s variables at the top of the function.
Sometimes, especially in longer programs, it’s a good idea to define variables near the part
of the program where they are used. This makes the purpose of the variable more evident.

Recall from Chapter 2 that the scope of a variable is defined as the part of the program

where the variable may be used.

In Program 4-28, the scope of the income variable is the part of the program in lines 13
through 32. The scope of the years variable is the part of the program in lines 19 through 32.

The variables income and years are defined inside function main’s braces. Variables defined
inside a set of braces have local scope or block scope. They may only be used in the part of

the program between their definition and the block’s closing brace.

You may define variables inside any block. For example, look at Program 4-29. This version
of the loan program has the variable years defined inside the block of the if statement.

The scope of years is the part of the program in lines 21 through 31.

Program 4-29

// This program demonstrates a variable defined in an inner block.

#include <iostream>
using namespace std;

int main()

{

// Constants for minimum income and years
const double MIN_INCOME = 35000.0;
const int MIN_YEARS = 5;

// Get the annual income.

cout << "What is your annual income? ";
double income; // Variable definition
cin >> income;

if (income >= MIN_INCOME)

{
// Get the number of years at the current job.
cout << "How many years have you worked at "
<< "your current job? ";
int years; // Variable definition
cin >> years;
if (years > MIN_YEARS)
cout << "You qualify.\n";
else
{
cout << "You must have been employed for\n"
<< "more than " << MIN_ YEARS
<< " years to qualify.\n";
}
}

else

4.15 More About Blocks and Variable Scope

cout << "You must earn at least $" << MIN_INCOME
<< " to qualify.\n";
}

return 0;

Notice the scope of years is only within the block where it is defined. The variable is not
visible before its definition or after the closing brace of the block. This is true of any vari-
able defined inside a set of braces.

<&

NOTE: When a program is running and it enters the section of code that constitutes
a variable’s scope, it is said that the variable comes into scope. This simply means the
variable is now visible and the program may reference it. Likewise, when a variable
leaves scope, it may no longer be used.

Variables with the Same Name

When a block is nested inside another block, a variable defined in the inner block may have
the same name as a variable defined in the outer block. As long as the variable in the inner
block is visible, however, the variable in the outer block will be hidden. This is illustrated
by Program 4-30.

Program 4-30

// This program uses two variables with the name number.
#include <iostream>
using namespace std;

int main()

{

// Define a variable named number.
int number;

cout << "Enter a number greater than 0: ";
cin >> number;
if (number > 0)

{
int number; // Another variable named number.
cout << "Now enter another number: ";
cin >> number;
cout << "The second number you entered was "
<< number << endl;
}
cout << "Your first number was " << number << endl;

return 0;

Program Output with Example Input Shown in Bold

Enter a number greater than 0: 2 [Enter]
Now enter another number: 7 [Enter]

The second number you entered was 7
Your first number was 2

213

214

Chapter 4 Making Decisions

®

Program 4-30 has two separate variables named number. The cin and cout statements in
the inner block (belonging to the if statement) can only work with the number variable
defined in that block. As soon as the program leaves that block, the inner number goes out
of scope, revealing the outer number variable.

WARNING! Although it’s perfectly acceptable to define variables inside nested
blocks, you should avoid giving them the same names as variables in the outer blocks.
It’s too easy to confuse one variable with another.

Case Study: See the Sales Commission Case Study on this book’s companion Web site at
www.pearsonhighered.com/gaddis.

Review Questions and Exercises
Short Answer

1. Describe the difference between the if/else if statement and a series of if statements.
. In an if/else if statement, what is the purpose of a trailing else?
. What is a flag and how does it work?

. Can an if statement test expressions other than relational expressions? Explain.

. Briefly describe how the || operator works.

2

3

4

5. Briefly describe how the && operator works.

6

7. Why are the relational operators called relational?
8

. Why do most programmers indent the conditionally executed statements in a decision
structure?

Fill-in-the-Blank

9. An expression using the greater-than, less-than, greater-than-or-equal to, less-than-or-

equal-to, equal, or not-equal to operator is called a(n) expression.
10. A relational expression is either or
11. The value of a relational expression is 0 if the expression is or 1 if the

expression is
12. The if statement regards an expression with the value 0 as
13. The if statement regards an expression with a nonzero value as

14. For an if statement to conditionally execute a group of statements, the statements
must be enclosed in a set of

15. In an if/else statement, the if part executes its statement or block if the expression
is , and the else part executes its statement or block if the expression is

16. The trailing else in an if/else if statement has a similar purpose as the
section of a switch statement.

www.pearsonhighered.com/gaddis

17.
18.

19.

20.
21.
22.

23.

24.

25.

26.
27.
28.
29.
30.

Review Questions and Exercises

The if/else if statement is actually a form of the if statement.

If the sub-expression on the left of the logical operator is false, the right
sub-expression is not checked.

If the sub-expression on the left of the logical operator is true, the right
sub-expression is not checked.

The logical operator has higher precedence than the other logical operators.
The logical operators have associativity.

The logical operator works best when testing a number to determine if it
is within a range.

The logical operator works best when testing a number to determine if it
is outside a range.

A variable with scope is only visible when the program is executing in the
block containing the variable’s definition.

You use the operator to determine whether one string object is greater
then another string object.

An expression using the conditional operator is called a(n) expression.
The expression that is tested by a switch statement must have a(n) value.
The expression following a case statement must be a(n)

A program will “fall through” a case section if it is missing the statement.

What value will be stored in the variable t after each of the following statements
executes?

At = (12 > 1);

B) t = (2 <0);
O s = (8 55 (B e
D)t = (5 == 5);

Algorithm Workbench

31.
32.

33.

34.

35.

Werite an if statement that assigns 100 to x when y is equal to 0.

Write an if/else statement that assigns O to x when y is equal to 10. Otherwise it
should assign 1 to x.

Using the following chart, write an if/else if statement that assigns .10, .15, or .20
to commission, depending on the value in sales.

Sales Commission Rate
Up to $10,000 10%
$10,000 to $15,000 15%
Over $15,000 20%

Write an if statement that sets the variable hours to 10 when the flag variable minimum
1s set.

Write nested if statements that perform the following tests: If amount1 is greater than
10 and amount2 is less than 100, display the greater of the two.

215

216

Chapter 4 Making Decisions

36. Write an if statement that prints the message “The number is valid” if the variable
grade is within the range 0 through 100.

37.

38.

39.

40.

41.

Write an if statement that prints the message “The number is valid” if the variable
temperature is within the range —50 through 150.

Write an if statement that prints the message “The number is not valid” if the variable
hours is outside the range 0 through 80.

Assume strl and str2 are string objects that have been initialized with different
values. Write an if/else statement that compares the two objects and displays the

one that is alphabetically greatest.

Convert the following if/else if statement into a switch statement:

if (choice == 1)
{

cout << fixed << showpoint
}
else if (choice == || choice
{

cout << fixed << showpoint
}
else if (choice == 4)
{

cout << fixed << showpoint
}
else
{

cout << fixed << showpoint
}

<<

<<

Match the conditional expression with the

operation.
A)g=x<y ? a+b : x * 2;
B)g=x<y ? x* 2 : a+b;

C)x<y?2qg=0:q-=1;
_ if (x <Yy)
q=20;
else
q=1;
_if (x < y)
g =a+ b;
else
q = x * 2;
___if (x < y)
q=x* 2;
else
q = a + b;

True or False

42.

setprecision(2);
3)

setprecision(4);

setprecision(6);

setprecision(8);

if/else statement that performs the same

T F The = operator and the == operator perform the same operation when used

in a Boolean expression.

Review Questions and Exercises 217

43. T F A variable defined in an inner block may not have the same name as a vari-
able defined in the outer block.

44. T F A conditionally executed statement should be indented one level from the if
statement.

45. T F Alllines in a block should be indented one level.

46. T F It’s safe to assume that all uninitialized variables automatically start with 0
as their value.

47. T F When an if statement is nested in the if part of another statement, the only
time the inner if is executed is when the expression of the outer if is true.

48. T F When an if statement is nested in the else part of another statement, as in
an if/else if, the only time the inner if is executed is when the expression
of the outer if is true.

49. T F The scope of a variable is limited to the block in which it is defined.
50. T F You can use the relational operators to compare string objects.
51. T F x t=yisthesameas (x >y || x < y)

52.T F y < xisthesameasx >= y

53. T F x >= yisthesameas (x >y && x = y)

Assume the variables x = 5,y = 6, and z = 8. Indicate by circling the T or F whether
each of the following conditions is true or false:

54.T F x==5 ||y >3
5. T F 7 <=x && z > 4
56. T F 2 !=y && z != 4
57T F x>0 || x <=y

Find the Errors

Each of the following programs has errors. Find as many as you can.

58. // This program averages 3 test scores.
// It uses the variable perfectScore as a flag.
include <iostream>
using namespace std;

int main()
{
cout << "Enter your 3 test scores and I will ";
<< "average them:";
int scorel, score2, score3,
cin >> scorel >> score2 >> score3;
double average;
average = (scorel + score2 + score3) / 3.0;
if (average = 100);
perfectScore = true; // Set the flag variable
cout << "Your average is " << average << endl;
bool perfectScore;
if (perfectScore);
{
cout << "Congratulations!\n";
cout << "That's a perfect score.\n";
cout << "You deserve a pat on the back!\n";
return 0;

218

Chapter 4 Making Decisions

59. // This program divides a user-supplied number by another

// user-supplied number.

#include <iostream>
using namespace std;

int main()

{

}

double numl, num2, quotient;

cout << "Enter a number: ";
cin >> numl;

cout << "Enter another number:

cin >> num2;
if (num2 == 0)

"o
r

It checks for division by zero.

cout << "Division by zero is not possible.\n";
cout << "Please run the program again ";
cout << "and enter a number besides zero.\n";

else
quotient = numl / num2;
cout << "The quotient of

cout << quotient << endl;
return 0;

<< numl <<
cout << " divided by " << num2 << " is

’

60. // This program uses an if/else if statement to assign a

// letter grade (A, B, C, D,

#include <iostream>
using namespace std;

int main()

{

int testScore;

or F)

to

a numeric

test score.

cout << "Enter your test score and I will tell youl\n";
cout << "the letter grade you earned: ";

cin >> testScore;
if (testScore < 60)

cout << "Your grade is F.\n";

else if (testScore < 70)

cout << "Your grade is D.\n";

else if (testScore < 80)

cout << "Your grade is C.\n";

else if (testScore < 90)

cout << "Your grade is B.\n";

else

cout << "That is not a valid score.\n";

else if (testScore <= 100)

cout << "Your grade is A.\n";

return 0;

61.

62.

63.

64.

65.

Review Questions and Exercises

// This program uses a switch-case statement to assign a

// letter grade (A, B, C, D, or F) to a numeric test score.
#include <iostream>

using namespace std;

int main()

{
double testScore;
cout << "Enter your test score and I will tell you\n";
cout << "the letter grade you earned: ";
cin >> testScore;
switch (testScore)
{
case (testScore < 60.0):
cout << "Your grade is F.\n";
break;
case (testScore < 70.0):
cout << "Your grade is D.\n";
break;
case (testScore < 80.0):
cout << "Your grade is C.\n";
break;
case (testScore < 90.0):
cout << "Your grade is B.\n";
break;
case (testScore <= 100.0):
cout << "Your grade is A.\n";
break;
default:
cout << "That score isn't valid\n";
return 0;
}

The following statement should determine if x is not greater than 20. What is wrong
with it?

if (!x > 20)

The following statement should determine if count is within the range of 0 through
100. What is wrong with it?

if (count >= 0 || count <= 100)

The following statement should determine if count is outside the range of 0 through
100. What is wrong with it?

if (count < 0 && count > 100)

The following statement should assign O to z if a is less than 10, otherwise it should
assign 7 to z. What is wrong with it?

z = (a<10) : 0 2?2 7;

219

220

Chapter 4 Making Decisions

Programming Challenges

1. Minimum/Maximum

Write a program that asks the user to enter two numbers. The program should use the
conditional operator to determine which number is the smaller and which is the larger.

. Roman Numeral Converter

Write a program that asks the user to enter a number within the range of 1 through
10. Use a switch statement to display the Roman numeral version of that number.

Input Validation: Do not accept a number less than 1 or greater than 10.

. Magic Dates

The date June 10, 1960 is special because when we write it in the following format, the
month times the day equals the year.

6/10/60

Write a program that asks the user to enter a month (in numeric form), a day, and a
two-digit year. The program should then determine whether the month times the day is
equal to the year. If so, it should display a message saying the date is magic. Otherwise
it should display a message saying the date is not magic.

. Areas of Rectangles

The area of a rectangle is the rectangle’s length times its width. Write a program that
asks for the length and width of two rectangles. The program should tell the user which
rectangle has the greater area, or if the areas are the same.

. Body Mass Index

Write a program that calculates and displays a person’s body mass index (BMI). The
BMI is often used to determine whether a person with a sedentary lifestyle is over-
weight or underweight for his or her height. A person’s BMI is calculated with the
following formula:

BMI = weight X 703 / height?

where weight is measured in pounds and height is measured in inches. The program
should display a message indicating whether the person has optimal weight, is under-
weight, or is overweight. A sedentary person’s weight is considered to be optimal if his
or her BMI is between 18.5 and 235. If the BMI is less than 18.5, the person is consid-
ered to be underweight. If the BMI value is greater than 25, the person is considered
to be overweight.

. Mass and Weight

Scientists measure an object’s mass in kilograms and its weight in newtons. If you know
the amount of mass that an object has, you can calculate its weight, in newtons, with
the following formula:

Weight = mass X 9.8

Write a program that asks the user to enter an object’s mass, and then calculates and
displays its weight. If the object weighs more than 1,000 newtons, display a message
indicating that it is too heavy. If the object weighs less than 10 newtons, display a mes-
sage indicating that the object is too light.

3

VideoNote

Solving the Time
Calculator
Problem

10.

Programming Challenges

. Time Calculator

Werite a program that asks the user to enter a number of seconds.

e There are 60 seconds in a minute. If the number of seconds entered by the user is
greater than or equal to 60, the program should display the number of minutes in
that many seconds.

e There are 3,600 seconds in an hour. If the number of seconds entered by the user is
greater than or equal to 3,600, the program should display the number of hours in
that many seconds.

e There are 86,400 seconds in a day. If the number of seconds entered by the user is
greater than or equal to 86,400, the program should display the number of days in
that many seconds.

. Color Mixer

The colors red, blue, and yellow are known as the primary colors because they cannot
be made by mixing other colors. When you mix two primary colors, you get a second-
ary color, as shown here:

When you mix red and blue, you get purple.
When you mix red and yellow, you get orange.
When you mix blue and yellow, you get green.

Write a program that prompts the user to enter the names of two primary colors to
mix. If the user enters anything other than “red,” “blue,” or “yellow,” the program
should display an error message. Otherwise, the program should display the name of
the secondary color that results by mixing two primary colors.

. Change for a Dollar Game

Create a change-counting game that gets the user to enter the number of coins required
to make exactly one dollar. The program should ask the user to enter the number of
pennies, nickels, dimes, and quarters. If the total value of the coins entered is equal to
one dollar, the program should congratulate the user for winning the game. Otherwise,
the program should display a message indicating whether the amount entered was more
than or less than one dollar.

Days in a Month

Write a program that asks the user to enter the month (letting the user enter an inte-
ger in the range of 1 through 12) and the year. The program should then display the
number of days in that month. Use the following criteria to identify leap years:

1. Determine whether the year is divisible by 100. If it is, then it is a leap year if and
only if it is divisible by 400. For example, 2000 is a leap year but 2100 is not.

2. If the year is not divisible by 100, then it is a leap year if and if only it is divisible by
4. For example, 2008 is a leap year but 2009 is not.

Here is a sample run of the program:

Enter a month (1-12): 2 [Enter]
Enter a year: 2008 [Enter]
29 days

221

222

Chapter 4 Making Decisions

11.

112,

13.

14.

Math Tutor

This is a modification of Programming Challenge 17 from Chapter 3. Write a program
that can be used as a math tutor for a young student. The program should display two
random numbers that are to be added, such as:

247
+ 129

The program should wait for the student to enter the answer. If the answer is correct,
a message of congratulations should be printed. If the answer is incorrect, a message
should be printed showing the correct answer.

Software Sales

A software company sells a package that retails for $99. Quantity discounts are given
according to the following table.

Quantity Discount
10-19 20%
20-49 30%
50-99 40%
100 or more 50%

Werite a program that asks for the number of units sold and computes the total cost of
the purchase.

Input Validation: Make sure the number of units is greater than 0.

Book Club Points

Serendipity Booksellers has a book club that awards points to its customers based on
the number of books purchased each month. The points are awarded as follows:

e If a customer purchases 0 books, he or she earns 0 points.

e If a customer purchases 1 book, he or she earns 5 points.

e If a customer purchases 2 books, he or she earns 15 points.

e If a customer purchases 3 books, he or she earns 30 points.

e If a customer purchases 4 or more books, he or she earns 60 points.

Write a program that asks the user to enter the number of books that he or she has
purchased this month and then displays the number of points awarded.

Bank Charges

A bank charges $10 per month plus the following check fees for a commercial check-
ing account:

$.10 each for fewer than 20 checks
$.08 each for 20-39 checks

$.06 each for 40-59 checks

$.04 each for 60 or more checks

The bank also charges an extra $15 if the balance of the account falls below $400 (before
any check fees are applied). Write a program that asks for the beginning balance and the
number of checks written. Compute and display the bank’s service fees for the month.

Input Validation: Do not accept a negative value for the number of checks written. If a

negative value is given for the beginning balance, display an urgent message indicating
the account is overdrawn.

15.

16.

17.

18.

19.

Programming Challenges

Shipping Charges
The Fast Freight Shipping Company charges the following rates:

Weight of Package (in Kilograms) Rate per 500 Miles Shipped
2 kg or less $1.10
Over 2 kg but not more than 6 kg $2.20
Over 6 kg but not more than 10 kg $3.70
Over 10 kg but not more than 20 kg $4.80

Write a program that asks for the weight of the package and the distance it is to be
shipped, and then displays the charges.

Input Validation: Do not accept values of 0 or less for the weight of the package. Do
not accept weights of more than 20 kg (this is the maximum weight the company will
ship). Do not accept distances of less than 10 miles or more than 3,000 miles. These
are the company’s minimum and maximum shipping distances.

Running the Race

Werite a program that asks for the names of three runners and the time it took each
of them to finish a race. The program should display who came in first, second, and
third place.

Input Validation: Only accept positive numbers for the times.

Personal Best

Write a program that asks for the name of a pole vaulter and the dates and vault
heights (in meters) of the athlete’s three best vaults. It should then report, in order of
height (best first), the date on which each vault was made and its height.

Input Validation: Only accept values between 2.0 and 5.0 for the heights.

Fat Gram Calculator

Write a program that asks for the number of calories and fat grams in a food. The pro-
gram should display the percentage of calories that come from fat. If the calories from
fat are less than 30% of the total calories of the food, it should also display a message
indicating that the food is low in fat.

One gram of fat has 9 calories, so
Calories from fat = fat grams * 9
The percentage of calories from fat can be calculated as
Calories from fat =+ total calories

Input Validation: Make sure the number of calories and fat grams are not less than
0. Also, the number of calories from fat cannot be greater than the total number of
calories. If that happens, display an error message indicating that either the calories or
fat grams were incorrectly entered.

Spectral Analysis

If a scientist knows the wavelength of an electromagnetic wave, he or she can deter-
mine what type of radiation it is. Write a program that asks for the wavelength of an
electromagnetic wave in meters and then displays what that wave is according to the

223

224

Chapter 4

Making Decisions

chart below. (For example, a wave with a wavelength of 1E-10 meters would be an
X-ray.)

1x10-2 1x10-3 7x10°7 4x10-7 1x10-8 1% 10-1
‘l|||||||||||||||||||||||||||||||||=

Radio Waves/ Microwaves/ Infrared /Visible Light/ Ultraviolet X Rays /Gamma Rays

20. The Speed of Sound

211,

270

The following table shows the approximate speed of sound in air, water, and steel.

Medium Speed

Air 1,100 feet per second
Water 4,900 feet per second
Steel 16,400 feet per second

Write a program that displays a menu allowing the user to select air, water, or steel.
After the user has made a selection, he or she should be asked to enter the distance
a sound wave will travel in the selected medium. The program will then display the
amount of time it will take. (Round the answer to four decimal places.)

Input Validation: Check that the user has selected one of the available choices from the
menu. Do not accept distances less than 0.

The Speed of Sound in Gases

When sound travels through a gas, its speed depends primarily on the density of the
medium. The less dense the medium, the faster the speed will be. The following table
shows the approximate speed of sound at 0 degrees centigrade, measured in meters per
second, when traveling through carbon dioxide, air, helium, and hydrogen.

Medium Speed (Meters per Second)
Carbon Dioxide 258.0

Air 331.5

Helium 972.0

Hydrogen 1,270.0

Write a program that displays a menu allowing the user to select one of these four
gases. After a selection has been made, the user should enter the number of seconds it
took for the sound to travel in this medium from its source to the location at which it
was detected. The program should then report how far away (in meters) the source of
the sound was from the detection location.

Input Validation: Check that the user has selected one of the available menu choices.
Do not accept times less than 0 seconds or more than 30 seconds.

Freezing and Boiling Points

The following table lists the freezing and boiling points of several substances. Write a
program that asks the user to enter a temperature and then shows all the substances
that will freeze at that temperature and all that will boil at that temperature. For exam-
ple, if the user enters —20 the program should report that water will freeze and oxygen
will boil at that temperature.

23.

24.

Programming Challenges

Substance Freezing Point (°F) Boiling Point (°F)
Ethyl alcohol -173 172

Mercury —38 676

Oxygen —362 =306

Water 32 212

Geometry Calculator

Werite a program that displays the following menu:
Geometry Calculator

1. Calculate the Area of a Circle
2. Calculate the Area of a Rectangle
3. Calculate the Area of a Triangle
4. Quit
Enter your choice (1-4):
If the user enters 1, the program should ask for the radius of the circle and then display
its area. Use the following formula:
area = mr’

Use 3.14159 for 7t and the radius of the circle for . If the user enters 2, the program
should ask for the length and width of the rectangle and then display the rectangle’s
area. Use the following formula:

area = length * width

If the user enters 3 the program should ask for the length of the triangle’s base and its
height, and then display its area. Use the following formula:

area = base * height * .5

If the user enters 4, the program should end.

Input Validation: Display an error message if the user enters a number outside the range
of 1 through 4 when selecting an item from the menu. Do not accept negative values
for the circle’s radius, the rectangle’s length or width, or the triangle’s base or height.
Long-Distance Calls

A long-distance carrier charges the following rates for telephone calls:

Starting Time of Call Rate per Minute
00:00-06:59 0.05
07:00-19:00 0.45
19:01-23:59 0.20

Write a program that asks for the starting time and the number of minutes of the call,
and displays the charges. The program should ask for the time to be entered as a floating-
point number in the form HH.MM. For example, 07:00 hours will be entered as 07.00,
and 16:28 hours will be entered as 16.28.

Input Validation: The program should not accept times that are greater than 23:59. Also,
no number whose last two digits are greater than 59 should be accepted. Hint: Assuming
num is a floating-point variable, the following expression will give you its fractional part:

num - static_cast<int>(num)

225

226

Chapter 4 Making Decisions

25

26.

27

Mobile Service Provider

A mobile phone service provider has three different subscription packages for its
customers:

Package A: For $39.99 per month 450 minutes are provided. Additional minutes are
$0.45 per minute.

Package B: For $59.99 per month 900 minutes are provided. Additional minutes are
$0.40 per minute.

Package C: For $69.99 per month unlimited minutes provided.

Werite a program that calculates a customer’s monthly bill. It should ask which package
the customer has purchased and how many minutes were used. It should then display
the total amount due.

Input Validation: Be sure the user only selects package A, B, or C.

Mobile Service Provider, Part 2

Modify the Program in Programming Challenge 25 so that it also displays how much
money Package A customers would save if they purchased packages B or C, and how
much money Package B customers would save if they purchased Package C. If there
would be no savings, no message should be printed.

Mobile Service Provider, Part 3

Months with 30 days have 720 hours, and months with 31 days have 744 hours.
February, with 28 days, has 672 hours. You can calculate the number of minutes in
a month by multiplying its number of hours by 60. Enhance the input validation of
the Mobile Service Provider program by asking the user for the month (by name), and
validating that the number of minutes entered is not more than the maximum for the
entire month. Here is a table of the months, their days, and number of hours in each.

Month Days Hours
January 31 744
February 28 672
March 31 744
April 30 720
May 31 744
June 30 720
July 31 744
August 31 744
September 30 720
October 31 744
November 30 720

December 31 744

Loops and Files

o
(NH]
—
oo
<
I
)

5.1 The Increment and Decrement 5.7 Keeping a Running Total
Operators 5.8 Sentinels
5.2 Introduction to Loops: 5.9 Focus on Software Engineering:
The while Loop Deciding Which Loop to Use
5.3 Using the while Loop for Input 5.10 Nested Loops
Validation 5.11 Using Files for Data Storage
5.4 Counters 5.12 Optional Topics: Breaking and
5.5 The do-while Loop Continuing a Loop
5.6 The for Loop

The Increment and Decrement Operators

CONCEPT: ++ and -- are operators that add and subtract 1 from their operands.
To increment a value means to increase it by one, and to decrement a value means to
decrease it by one. Both of the following statements increment the variable num:

num = num + 1;
num += 1;

And num is decremented in both of the following statements:

num = num - 1;
num -= 1;

C++ provides a set of simple unary operators designed just for incrementing and decrement-
ing variables. The increment operator is ++, and the decrement operator is --. The following
statement uses the ++ operator to increment num:

num++;
And the following statement decrements num:

num--;

227

228

Chapter 5 Loops and Files

0 NOTE: The expression num++ is pronounced “num plus plus,” and num-- is
pronounced “num minus minus.”

Our examples so far show the increment and decrement operators used in postfix mode,
which means the operator is placed after the variable. The operators also work in prefix
mode, where the operator is placed before the variable name:

++num;
--num;

In both postfix and prefix mode, these operators add 1 to or subtract 1 from their operand.
Program 5-1 shows how they work.

Program 5-1
// This program demonstrates the ++ and -- operators.
#include <iostream>

using namespace std;

int main()

{
int num = 4; // num starts out with 4.
// Display the value in num.
cout << "The variable num is " << num << endl;
cout << "I will now increment num.\n\n";
// Use postfix ++ to increment num.
num++;
cout << "Now the variable num is " << num << endl;
cout << "I will increment num again.\n\n";
// Use prefix ++ to increment num.
++num;
cout << "Now the variable num is " << num << endl;
cout << "I will now decrement num.\n\n";
// Use postfix -- to decrement num.
num--;
cout << "Now the variable num is " << num << endl;
cout << "I will decrement num again.\n\n";
// Use prefix -- to increment num.
--num;
cout << "Now the variable num is " << num << endl;
return 0;
}

Program Output

The variable num is 4
I will now increment num.

Now the variable num
I will increment num

Now the variable num
I will now decrement

Now the variable num
I will decrement num

Now the variable num

is 5

again.

is 6
num.

is 5

again.

is 4

5.1 The Increment and Decrement Operators

The Difference Between Postfix and Prefix Modes

In the simple statements used in Program 5-1, it doesn’t matter if the increment or decre-
ment operator is used in postfix or prefix mode. The difference is important, however, when
these operators are used in statements that do more than just incrementing or decrementing.
For example, look at the following lines:

num = 4;
cout << num++;

This cout statement is doing two things: (1) displaying the value of num, and (2) incrementing
num. But which happens first? cout will display a different value if num is incremented first
than if num is incremented last. The answer depends on the mode of the increment operator.

Postfix mode causes the increment to happen after the value of the variable is used in the
expression. In the example, cout will display 4, then num will be incremented to 5. Prefix
mode, however, causes the increment to happen first. In the following statements, num will
be incremented to 5, then cout will display 3:

num = 4;
cout << ++num;

Program 5-2 illustrates these dynamics further:

Program 5-2

// This program demonstrates the prefix and postfix
// modes of the increment and decrement operators.
#include <iostream>
using namespace std;

int main()

{
int num = 4;
cout << num << endl; // Displays 4
cout << numt++ << endl; // Displays 4, then adds 1 to num
cout << num << endl; // Displays 5
cout << ++num << endl; // Adds 1 to num, then displays 6
cout << endl; // Displays a blank line

(program continues)

229

230 Chapter 5 Loops and Files

Program 5-2 (continued)
cout << num << endl; // Displays 6
cout << num-- << endl; // Displays 6, then subtracts 1 from num
cout << num << endl; // Displays 5

cout << --num << endl; // Subtracts 1 from num, then displays 4

return 0;

Program Output

4

o U

(= C) e) We))

Let’s analyze the statements in this program. In line 8, num is initialized with the value 4, so
the cout statement in line 10 displays 4. Then, line 11 sends the expression num++ to cout.
Because the ++ operator is used in postfix mode, the value 4 is first sent to cout, and then
1 is added to num, making its value 5.

When line 12 executes, num will hold the value 5, so § is displayed. Then, line 13 sends the
expression ++num to cout. Because the ++ operator is used in prefix mode, 1 is first added
to num (making it 6), and then the value 6 is sent to cout. This same sequence of events
happens in lines 16 through 19, except the -- operator is used.

For another example, look at the following code:

int x = 1;
int y
y = X++; // Postfix increment

The first statement defines the variable x (initialized with the value 1), and the second state-
ment defines the variable y. The third statement does two things:

e It assigns the value of x to the variable y.
e The variable x is incremented.

The value that will be stored in y depends on when the increment takes place. Because the
++ operator is used in postfix mode, it acts after the assignment takes place. So, this code
will store 1 in y. After the code has executed, x will contain 2. Let’s look at the same code,
but with the ++ operator used in prefix mode:

int x = 1;
int y;
y = ++x; // Prefix increment

5.1 The Increment and Decrement Operators

In the third statement, the ++ operator is used in prefix mode, so it acts on the variable
x before the assignment takes place. So, this code will store 2 in y. After the code has
executed, x will also contain 2.

Using ++ and —— in Mathematical Expressions

The increment and decrement operators can also be used on variables in mathematical
expressions. Consider the following program segment:

a = 2;

b = 5;

c = a * b++;

cout << a << " " << b << " " << ¢;

In the statement ¢ = a * b++, ¢ is assigned the value of a times b, which is 10. The variable
b is then incremented. The cout statement will display

2 6 10
If the statement were changed to read
c = a * ++b;

the variable b would be incremented before it was multiplied by a. In this case ¢ would be
assigned the value of 2 times 6, so the cout statement would display

2 6 12

You can pack a lot of action into a single statement using the increment and decrement
operators, but don’t get too tricky with them. You might be tempted to try something like
the following, thinking that ¢ will be assigned 11:

a = 2;
b = 5;
c = ++(a * b); // Error!

But this assignment statement simply will not work because the operand of the increment
and decrement operators must be an Ivalue. Recall from Chapter 2 that an Ivalue identifies
a place in memory whose contents may be changed. The increment and decrement opera-
tors usually have variables for their operands, but generally speaking, anything that can go
on the left side of an = operator is legal.

Using ++ and -- in Relational Expressions

Sometimes you will see code where the ++ and -- operators are used in relational expres-
sions. Just as in mathematical expressions, the difference between postfix and prefix mode
is critical. Consider the following program segment:

x = 10;
if (x++ > 10)
cout << "x is greater than 10.\n";

Two operations are happening in this if statement: (1) The value in x is tested to determine
if it is greater than 10, and (2) x is incremented. Because the increment operator is used
in postfix mode, the comparison happens first. Since 10 is not greater than 10, the cout

231

232 Chapter 5 Loops and Files

statement won’t execute. If the mode of the increment operator is changed, however, the if
statement will compare 11 to 10, and the cout statement will execute:

x = 10;
if (++x > 10)
cout << "x is greater than 10.\n";

Checkpoint
5.1 What will the following program segments display?
A) x = 2;
y = X++;
cout << x << y;
B) x = 2;
y = ++x;
cout << x << y;
C) x = 2;
Yy = 4;
cout << x++ << --y;
D) x = 2;
y = 2 * x++;
cout << x << y;
E) x = 99;

if (x++ < 100)
cout "It is true!\n";

else
cout << "It is false!\n";
F) x = 0;
if (++x)
cout << "It is true!\n";
else

cout << "It is false!\n";

—
5.2 Introduction to Loops: The while Loop

1 CONCEPT: A loop is part of a program that repeats.

Chapter 4 introduced the concept of control structures, which direct the flow of a pro-

c gram. A loop is a control structure that causes a statement or group of statements to repeat.
. C++ has three looping control structures: the while loop, the do-while loop, and the for

VideoNote . . « .

The while loop. The difference between these structures is how they control the repetition.

Loop

The while Loop

The while loop has two important parts: (1) an expression that is tested for a true or false
value, and (2) a statement or block that is repeated as long as the expression is true. Figure
5-1 shows the logic of a while loop.

5.2 Introduction to Loops: The while Loop 233

Figure 5-1

True
Statement(s)

False

Here is the general format of the while loop:

while (expression)
statement;

In the general format, expression is any expression that can be evaluated as true or false,
and statement is any valid C++ statement. The first line shown in the format is sometimes
called the loop header. It consists of the key word while followed by an expression
enclosed in parentheses.

Here’s how the loop works: the expression is tested, and if it is true, the statement is
executed. Then, the expression is tested again. If it is true, the statement is executed.
This cycle repeats until the expression is false.

The statement that is repeated is known as the body of the loop. It is also considered a
conditionally executed statement, because it is executed only under the condition that the
expression Is true.

Notice there is no semicolon after the expression in parentheses. Like the if statement, the
while loop is not complete without the statement that follows it.

If you wish the while loop to repeat a block of statements, its format is:

while (expression)

{
statement;
statement;
// Place as many statements here
// as necessary.
¥

The while loop works like an if statement that executes over and over. As long as the
expression inside the parentheses is true, the conditionally executed statement or block will
repeat. Program 5-3 uses the while loop to print “Hello” five times.

234 Chapter 5 Loops and Files

Program 5-3

// This program demonstrates a simple while loop.
#include <iostream>
using namespace std;

int main()

{

int number = 0;

while (number < 5)

{

cout << "Hello\n";
number++;

}

cout << "That's all!\n";
return 0;

Program Output
Hello

Hello

Hello

Hello

Hello

That's all!

Let’s take a closer look at this program. In line 7 an integer variable, number, is defined and
initialized with the value 0. In line 9 the while loop begins with this statement:

while (number < 5)

This statement tests the variable number to determine whether it is less than 5. If it is, then
the statements in the body of the loop (lines 11 and 12) are executed:

cout << "Hello\n";
number++;

The statement in line 11 prints the word “Hello.” The statement in line 12 uses the incre-
ment operator to add one to number. This is the last statement in the body of the loop, so
after it executes, the loop starts over. It tests the expression number < 5 again, and if it is
true, the statements in the body of the loop are executed again. This cycle repeats until the
expression number < 5 is false. This is illustrated in Figure 5-2.

Each repetition of a loop is known as an iteration. This loop will perform five itera-
tions because the variable number is initialized with the value 0, and it is incremented
each time the body of the loop is executed. When the expression number < 5 is tested
and found to be false, the loop will terminate and the program will resume execu-
tion at the statement that immediately follows the loop. Figure 5-3 shows the logic
of this loop.

5.2 Introduction to Loops: The while Loop 235

Figure 5-2
Test this expression.
If the expression is true,
while (number < 5) perform these statements.
{
cout << "Hello\n";
number++;
}
After executing the body of the loop, start over.
Figure 5-3

True

Print "Hello" Add 1 to
number

False

In this example, the number variable is referred to as the loop control variable because it
controls the number of times that the loop iterates.

The while Loop Is a Pretest Loop

The while loop is known as a pretest loop, which means it tests its expression before each
iteration. Notice the variable definition in line 7 of Program 5-3:

int number = 0;

The number variable is initialized with the value 0. If number had been initialized with
the value 5 or greater, as shown in the following program segment, the loop would never

execute:
int number = 6;
while (number < 5)
{

cout << "Hello\n";
number++;

}

An important characteristic of the while loop is that the loop will never iterate if the test
expression is false to start with. If you want to be sure that a while loop executes the first
time, you must initialize the relevant data in such a way that the test expression starts out
as true.

236

Chapter 5 Loops and Files

Infinite Loops

In all but rare cases, loops must contain within themselves a way to terminate. This means
that something inside the loop must eventually make the test expression false. The loop in
Program 5-3 stops when the expression number < 5 is false.

If a loop does not have a way of stopping, it is called an infinite loop. An infinite loop
continues to repeat until the program is interrupted. Here is an example of an infinite loop:

int number = 0;
while (number < 5)
{

cout << "Hello\n";

}

This is an infinite loop because it does not contain a statement that changes the value of
the number variable. Each time the expression number < 5 is tested, number will contain
the value 0.

It’s also possible to create an infinite loop by accidentally placing a semicolon after the first
line of the while loop. Here is an example:

int number = 0;
while (number < 5); // This semicolon is an ERROR!
{

cout << "Hello\n";
number++;

}

The semicolon at the end of the first line is assumed to be a null statement and disconnects
the while statement from the block that comes after it. To the compiler, this loop looks like:

while (number < 5);

This while loop will forever execute the null statement, which does nothing. The program
will appear to have “gone into space” because there is nothing to display screen output or
show activity.

Don’t Forget the Braces with a Block of Statements

If you write a loop that conditionally executes a block of statements, don’t forget to enclose
all of the statements in a set of braces. If the braces are accidentally left out, the while
statement conditionally executes only the very next statement. For example, look at the
following code.

int number = 0;
// This loop is missing its braces!
while (number < 5)

cout << "Hello\n";

number++;

In this code the number++ statement is not in the body of the loop. Because the braces
are missing, the while statement only executes the statement that immediately follows
it. This loop will execute infinitely because there is no code in its body that changes the
number variable.

5.2 Introduction to Loops: The while Loop

Another common pitfall with loops is accidentally using the = operator when you intend to
use the == operator. The following is an infinite loop because the test expression assigns 1
to remainder each time it is evaluated instead of testing whether remainder is equal to 1.

while (remainder = 1) // Error: Notice the assignment

{

cout << "Enter a number: ";
cin >> num;
remainder = num % 2;

}

Remember, any nonzero value is evaluated as true.

Programming Style and the while Loop
It’s possible to create loops that look like this:
while (number < 5) { cout << "Hello\n"; number++; }

Avoid this style of programming. The programming style you should use with the while
loop is similar to that of the if statement:

e [f there is only one statement repeated by the loop, it should appear on the line after
the while statement and be indented one additional level.
e If the loop repeats a block, each line inside the braces should be indented.

This programming style should visually set the body of the loop apart from the surround-
ing code. In general, you’ll find a similar style being used with the other types of loops
presented in this chapter.

In the Spotlight:
Designing a Program with a while Loop

A project currently underway at Chemical Labs, Inc. requires that a substance be continu-
ally heated in a vat. A technician must check the substance’s temperature every 15 minutes.
If the substance’s temperature does not exceed 102.5 degrees Celsius, then the technician
does nothing. However, if the temperature is greater than 102.5 degrees Celsius, the techni-
cian must turn down the vat’s thermostat, wait 5 minutes, and check the temperature again.
The technician repeats these steps until the temperature does not exceed 102.5 degrees
Celsius. The director of engineering has asked you to write a program that guides the tech-
nician through this process.

Here is the algorithm:

1. Prompt the user to enter the substance’s temperature.

2. Repeat the following steps as long as the temperature is greater than 102.5 degrees
Celsius:
a. Tell the technician to turn down the thermostat, wait S minutes, and check the tem-

perature again.

b. Prompt the user to enter the substance’s temperature.

3. After the loop finishes, tell the technician that the temperature is acceptable and to
check it again in 15 minutes.

237

238 Chapter 5 Loops and Files

After reviewing this algorithm, you realize that steps 2a and 2b should not be performed if
the test condition (temperature is greater than 102.5) is false to begin with. The while loop
will work well in this situation, because it will not execute even once if its condition is false.
Program 5-4 shows the code for the program.

Program 5-4

// This program assists a technician in the process
// of checking a substance's temperature.

#include <iostream>

using namespace std;

int main()

{

const double MAX TEMP = 102.5; // Maximum temperature

double temperature; // To hold the temperature

// Get the current temperature.

cout << "Enter the substance's Celsius temperature: ";

cin >> temperature;

// As long as necessary, instruct the technician

// to adjust the thermostat.

while (temperature > MAX TEMP)

{
cout << "The temperature is too high. Turn the\n";
cout << "thermostat down and wait 5 minutes.\n";
cout << "Then take the Celsius temperature again\n";
cout << "and enter it here: ";
cin >> temperature;

}

// Remind the technician to check the temperature

// again in 15 minutes.

cout << "The temperature is acceptable.\n";

cout << "Check it again in 15 minutes.\n";

return 0;

}

Program Output with Example Input Shown in Bold

Enter the substance's Celsius temperature: 104.7 [Enter]
The temperature is too high. Turn the
thermostat down and wait 5 minutes.
Then take the Celsius temperature again
and enter it here: 103.2 [Enter]

The temperature is too high. Turn the
thermostat down and wait 5 minutes.
Then take the Celsius temperature again
and enter it here: 102.1 [Enter]

The temperature is acceptable.

Check it again in 15 minutes.

5.3 Using the while Loop for Input Validation 239

—
5.3) Using the while Loop for Input Validation

1 CONCEPT: The while loop can be used to create input routines that repeat until
acceptable data is entered.

Perhaps the most famous saying of the computer industry is “garbage in, garbage out.” The
integrity of a program’s output is only as good as its input, so you should try to make sure
garbage does not go into your programs. Input validation is the process of inspecting data
given to a program by the user and determining if it is valid. A good program should give
clear instructions about the kind of input that is acceptable and not assume the user has
followed those instructions.

The while loop is especially useful for validating input. If an invalid value is entered, a loop
can require that the user reenter it as many times as necessary. For example, the following
loop asks for a number in the range of 1 through 100:

cout << "Enter a number in the range 1-100: ";
cin >> number;

while (number < 1 || number > 100)

{

cout << "ERROR: Enter a value in the range 1-100: ";
cin >> number;

}

This code first allows the user to enter a number. This takes place just before the loop. If
the input is valid, the loop will not execute. If the input is invalid, however, the loop will
display an error message and require the user to enter another number. The loop will con-
tinue to execute until the user enters a valid number. The general logic of performing input
validation is shown in Figure 5-4.

Figure 5-4
Read the first
value.
Is the
valie N\ | Display an _| Read another
invalid? error message. value.

No

240 Chapter 5 Loops and Files

The read operation that takes place just before the loop is called a priming read. It provides
the first value for the loop to test. Subsequent values are obtained by the loop.

Program 5-5 calculates the number of soccer teams a youth league may create, based on a
given number of players and a maximum number of players per team. The program uses
while loops (in lines 25 through 34 and lines 41 through 46) to validate the user’s input.

Program 5-5

// This program calculates the number of soccer teams
// that a youth league may create from the number of
// available players. Input validation is demonstrated
// with while loops.

#include <iostream>

using namespace std;

int main()
{
// Constants for minimum and maximum players
const int MIN_ PLAYERS = 9,
MAX PLAYERS = 15;

// Variables

int players, // Number of available players
teamPlayers, // Number of desired players per team
numTeams, // Number of teams
leftOver; // Number of players left over

// Get the number of players per team.
cout << "How many players do you wish per team? ";
cin >> teamPlayers;

// Validate the input.
while (teamPlayers < MIN PLAYERS || teamPlayers > MAX PLAYERS)
{
// Explain the error.
cout << "You should have at least " << MIN_ PLAYERS
<< " but no more than " << MAX PLAYERS << " per team.\n";

// Get the input again.
cout << "How many players do you wish per team? ";
cin >> teamPlayers;

// Get the number of players available.
cout << "How many players are available?
cin >> players;

",
’

// Validate the input.

while (players <= 0)

{
// Get the input again.
cout << "Please enter 0 or greater: ";
cin >> players;

5.4 Counters

// Calculate the number of teams.
numTeams = players / teamPlayers;

// Calculate the number of leftover players.
leftOver = players % teamPlayers;

// Display the results.

cout << "There will be " << numTeams << " teams with "
<< leftOver << " players left over.\n";

return 0;

Program Output with Example Input Shown in Bold

How many players do you wish per team? 4 [Enter]

You should have at least 9 but no more than 15 per team.
How many players do you wish per team? 12 [Enter]

How many players are available? -142 [Enter]

Please enter 0 or greater: 142 [Enter]

There will be 11 teams with 10 players left over.

Checkpoint

5.2 Write an input validation loop that asks the user to enter a number in the range
of 10 through 25.

5.3 Write an input validation loop that asks the user to enter Y’, ‘y’, ‘N, or ‘n’.

5.4 Write an input validation loop that asks the user to enter “Yes” or “No”.

—
54 Counters

1 CONCEPT: A counter is a variable that is regularly incremented or decremented each
time a loop iterates.

Sometimes it’s important for a program to control or keep track of the number of iterations
a loop performs. For example, Program 5-6 displays a table consisting of the numbers 1
through 10 and their squares, so its loop must iterate 10 times.

Program 5-6

// This program displays a list of numbers and
// their squares.

#include <iostream>

using namespace std;

int main()
{
const int MIN NUMBER = 1, // Starting number to square
MAX NUMBER 10; // Maximum number to square

(program continues)

241

242 Chapter 5 Loops and Files

Program 5-6 (continued)
int num = MIN_NUMBER; // Counter

cout << "Number Number Squared\n";

cout << M \n";

while (num <= MAX NUMBER)

{
cout << num << "\t\t" << (num * num) << endl;
num++; //Increment the counter.

}

return 0;

Program Output
Number Number Squared

16
25
36
49
64
81
0 100

H WO 00 J o U & WN

In Program 5-6, the variable num, which starts at 1, is incremented each time through the
loop. When num reaches 11 the loop stops. num is used as a counter variable, which means
it is regularly incremented in each iteration of the loop. In essence, num keeps count of the
number of iterations the loop has performed.

0 NOTE: It’s important that num be properly initialized. Remember, variables defined
inside a function have no guaranteed starting value.

= |
5.5 The do-while Loop

1

CONCEPT: The do-while loop is a posttest loop, which means its expression is
tested after each iteration.

The do-while loop looks something like an inverted while loop. Here is the do-while
loop’s format when the body of the loop contains only a single statement:

do
statement;
while (expression);

5.5 The do-while Loop

Here is the format of the do-while loop when the body of the loop contains multiple
statements:

do
{
statement;
statement;
// Place as many statements here
// as necessary.
} while (expression);

NOTE: The do-while loop must be terminated with a semicolon.

The do-while loop is a posttest loop. This means it does not test its expression until it has
completed an iteration. As a result, the do-while loop always performs at least one itera-
tion, even if the expression is false to begin with. This differs from the behavior of a while
loop, which you will recall is a pretest loop. For example, in the following while loop the
cout statement will not execute at all:

int x = 1;
while (x < 0)
cout << x << endl;

But the cout statement in the following do-while loop will execute once because the
do-while loop does not evaluate the expression x < 0 until the end of the iteration.

int x = 1;

do

cout << x << endl;
while (x < 0);

Figure 5-5 illustrates the logic of the do-while loop.

Figure 5-5

Statement(s)

True

Expression

False

You should use the do-while loop when you want to make sure the loop executes at least
once. For example, Program 5-7 averages a series of three test scores for a student. After the

243

244 Chapter 5 Loops and Files

average is displayed, it asks the user if he or she wants to average another set of test scores.
The program repeats as long as the user enters Y for yes.

Program 5-7

// This program averages 3 test scores. It repeats as
// many times as the user wishes.

#include <iostream>

using namespace std;

int main()

{
int scorel, score2, score3; // Three scores
double average; // Average score
char again; // To hold Y or N input
do
{
// Get three scores.
cout << "Enter 3 scores and I will average them: ";
cin >> scorel >> score2 >> score3;
// Calculate and display the average.
average = (scorel + score2 + score3) / 3.0;
cout << "The average is " << average << ".\n";
// Does the user want to average another set?
cout << "Do you want to average another set? (Y/N) ";
cin >> again;
} while (again == 'Y' || again == 'y');
return 0;
}

Program Output with Example Input Shown in Bold

Enter 3 scores and I will average them: 80 90 70 [Enter]
The average is 80.

Do you want to average another set? (Y/N) y [Enter]
Enter 3 scores and I will average them: 60 75 88 [Enter]
The average is 74.3333.

Do you want to average another set? (Y/N) n [Enter]

When this program was written, the programmer had no way of knowing the number of
times the loop would iterate. This is because the loop asks the user if he or she wants to
repeat the process. This type of loop is known as a user-controlled loop, because it allows
the user to decide the number of iterations.

Using do-while with Menus

The do-while loop is a good choice for repeating a menu. Recall Program 4-27, which dis-
played a menu of health club packages. Program 5-8 is a modification of that program, which
uses a do-while loop to repeat the program until the user selects item 4 from the menu.

Program 5-8

5.5 The do-while Loop

// This program displays a menu and asks the user to make a

// selection. A do-while loop repeats the program
// user selects item 4 from the menu.

#include <iostream>

#include <iomanip>

using namespace std;

int main()
{
// Constants for menu choices
const int ADULT_CHOICE = 1,
CHILD_CHOICE = 2,
SENIOR_CHOICE = 3,
QUIT CHOICE = 4;

// Constants for membership rates
const double ADULT = 40.0,

CHILD = 20.0,

SENIOR = 30.0;

// Variables
int choice;

int months;
double charges;

// Menu choice
// Number of months
// Monthly charges

// Set up numeric output formatting.
cout << fixed << showpoint << setprecision(2);

do

{
// Display the menu.

until the

cout << "\n\t\tHealth Club Membership Menu\n\n"

<< "1. Standard Adult Membership\n"
<< "2. Child Membership\n"
<< "3. Senior Citizen Membership\n"
<< "4. Quit the Program\n\n"
<< "Enter your choice: ";

cin >> choice;

// Validate the menu selection.

while (choice < ADULT CHOICE || choice > QUIT CHOICE)

{

cout << "Please enter a valid menu choice: ";

cin >> choice;

// Process the user's choice.

if (choice != QUIT CHOICE)

{
// Get the number of months.
cout << "For how many months? ";

(program continues)

245

246

Chapter 5 Loops and Files

Program 5-8 (continued)

cin >> months;

// Respond to the user's menu selection.

switch (choice)

{
case ADULT CHOICE:
charges = months * ADULT;
break;
case CHILD CHOICE:
charges = months * CHILD;
break;
case SENIOR_CHOICE:
charges = months * SENIOR;
}

// Display the monthly charges.
cout << "The total charges are $"

<< charges << endl;
}
} while (choice != QUIT CHOICE);
return 0;

}

Program Output with Example Input Shown in Bold

Health Club Membership Menu

Standard Adult Membership
Child Membership
Senior Citizen Membership
Quit the Program

=W N -
e e e e

Enter your choice: 1 [Enter]
For how many months? 12 [Enter]
The total charges are $480.00

Health Club Membership Menu

Standard Adult Membership
Child Membership
Senior Citizen Membership
Quit the Program

= w N -

Enter your choice: 4 [Enter]
Program ending.

Checkpoint

5.5 What will the following program segments display?

A) int count = 10;
do
{
cout << "Hello World\n";
count++;
} while (count < 1);

D

VideoNote
The for
Loop

")

5.6 The for Loop

B) int v = 10;
do
cout << v << endl;
while (v < 5);

C) int count = 0, number = 0, limit = 4;
do
{
number += 2;
count++;
} while (count < limit);
cout << number << " " << count << endl;

5.6 The for Loop

1 CONCEPT: The for loop is ideal for performing a known number of iterations.

In general, there are two categories of loops: conditional loops and count-controlled loops.
A conditional loop executes as long as a particular condition exists. For example, an input
validation loop executes as long as the input value is invalid. When you write a conditional
loop, you have no way of knowing the number of times it will iterate.

Sometimes you know the exact number of iterations that a loop must perform. A loop that
repeats a specific number of times is known as a count-controlled loop. For example, if
a loop asks the user to enter the sales amounts for each month in the year, it will iterate
twelve times. In essence, the loop counts to twelve and asks the user to enter a sales amount
each time it makes a count. A count-controlled loop must possess three elements:

1. Tt must initialize a counter variable to a starting value.

2. It must test the counter variable by comparing it to a maximum value. When the
counter variable reaches its maximum value, the loop terminates.

3. It must update the counter variable during each iteration. This is usually done by
incrementing the variable.

Count-controlled loops are so common that C++ provides a type of loop specifically for
them. It is known as the for loop. The for loop is specifically designed to initialize, test,
and update a counter variable. Here is the format of the for loop when it is used to repeat
a single statement:

for (initialization; test; update)
statement;

The format of the for loop when it is used to repeat a block is

for (initialization; test; update)
{
statement;
statement;
// Place as many statements here
// as necessary.

247

248

Chapter 5 Loops and Files

The first line of the for loop is the loop header. After the key word for, there are three
expressions inside the parentheses, separated by semicolons. (Notice there is not a semi-
colon after the third expression.) The first expression is the initialization expression. It is
normally used to initialize a counter variable to its starting value. This is the first action
performed by the loop, and it is only done once. The second expression is the test expres-
sion. This is an expression that controls the execution of the loop. As long as this expression
is true, the body of the for loop will repeat. The for loop is a pretest loop, so it evaluates
the test expression before each iteration. The third expression is the update expression. It
executes at the end of each iteration. Typically, this is a statement that increments the loop’s
counter variable.

Here is an example of a simple for loop that prints “Hello” five times:

for (count = 0; count < 5; count++)
cout << "Hello" << endl;

In this loop, the initialization expression is count = 0, the test expression is count < 5,
and the update expression is count++. The body of the loop has one statement, which is
the cout statement. Figure 5-6 illustrates the sequence of events that takes place during the
loop’s execution. Notice that Steps 2 through 4 are repeated as long as the test expression
1S true.

Figure 5-6

Step 1: Perform the initialization expression.

Step 2: Evaluate the test expression. If it is true, go to Step 3.
Otherwise, terminate the loop.

for (count = 0; count < 5; count++)

cout << "Hello" << endl; T <—— Step 3: Execute the body of the loop.

Step 4: Perform the update expression,
then go back to Step 2.

Figure 5-7 shows the loop’s logic in the form of a flowchart.

Figure 5-7

l

Assign 0 to
count

True cout Increment
statement count

False

5.6 The for Loop 249

Notice how the counter variable, count, is used to control the number of times that the
loop iterates. During the execution of the loop, this variable takes on the values 1 through
5, and when the test expression count < 5 is false, the loop terminates. Also notice that
in this example the count variable is used only in the loop header, to control the number
of loop iterations. It is not used for any other purpose. It is also possible to use the counter
variable within the body of the loop. For example, look at the following code:

for (number = 1; number <= 10; number++)

cout << number << " " << endl;

The counter variable in this loop is number. In addition to controlling the number of itera-
tions, it is also used in the body of the loop. This loop will produce the following output:

12345678910

As you can see, the loop displays the contents of the number variable during each iteration.
Program 5-9 shows another example of a for loop that uses its counter variable within the
body of the loop. This is yet another program that displays a table showing the numbers 1
through 10 and their squares.

Program 5-9

// This program displays the numbers 1 through 10 and
// their squares.

#include <iostream>

using namespace std;

int main()

{

}

1, // Starting value
10; // Ending value

const int MIN_ NUMBER
MAX NUMBER

int num;

cout << "Number Number Squared\n";
Cout << M \n";

for (num = MIN_NUMBER; num <= MAX NUMBER; num++)
cout << num << "\t\t" << (num * num) << endl;

return 0;

Program Output

Number Number Squared

H WO 00 Jo Ul & WN -

100

250 Chapter 5 Loops and Files

Figure 5-8 illustrates the sequence of events performed by this for loop, and Figure 5-9
shows the logic of the loop as a flowchart.

Figure 5-8
Step 1: Perform the initialization ~ Step 2: Evaluate the test expression. Step 4: Perform the update
expression. If it is true, go to Step 3. expression, then go
Otherwise, terminate the loop. back to Step 2.
for (num = MIN NUMBER; num <= MAX NUMBER; num++)
cout << num << "\t\t" << (num * num) << endl;
L Step 3: Execute the body of the loop.
Figure 5-9
Assign
MIN NUMBER
{0 num
num <=\ True Display num Increment
MAX NUMBE and num * num num
False

Using the for Loop Instead of while or do-while

You should use the for loop instead of the while or do-while loop in any situation that
clearly requires an initialization, uses a false condition to stop the loop, and requires an
update to occur at the end of each loop iteration. Program 5-9 is a perfect example. It
requires that the num variable be initialized to 1, it stops the loop when num is greater than
10, and it increments num at the end of each loop iteration.

Recall that when we first introduced the idea of a counter variable we examined Program
5-6, which uses a while loop to display the table of numbers and their squares. Because
the loop in that program requires an initialization, uses a false test expression to stop, and
performs an increment at the end of each iteration, it can easily be converted to a for loop.
Figure 5-10 shows how the while loop in Program 5-6 and the for loop in Program 5-9
each have initialization, test, and update expressions.

5.6 The for Loop 251

Figure 5-10

Initialization expression

Test expression

int num = MIN)(@IBER;
while (num << MAX NUMBER)
{

cout << num << "\t\t" << (num * num) << endl;
num++;

AN

Update expression

Initialization Test Update
expression expression expression

for (num = MIN NUMBER; num <= MAX NUMBER; num++)
cout << num << "\t\t" << (num * num) << endl;

The for Loop Is a Pretest Loop

Because the for loop tests its test expression before it performs an iteration, it is a pretest
loop. It is possible to write a for loop in such a way that it will never iterate. Here is an
example:

for (count = 11; count <= 10; count++)
cout << "Hello" << endl;

Because the variable count is initialized to a value that makes the test expression false from
the beginning, this loop terminates as soon as it begins.

Avoid Modifying the Counter Variable
in the Body of the for Loop

Be careful not to place a statement that modifies the counter variable in the body of the for
loop. All modifications of the counter variable should take place in the update expression,
which is automatically executed at the end of each iteration. If a statement in the body of
the loop also modifies the counter variable, the loop will probably not terminate when you
expect it to. The following loop, for example, increments x twice for each iteration:

for (x = 1; x <= 10; x++)
{
cout << x << endl;
x++; // Wrong!

252

Chapter 5 Loops and Files

Other Forms of the Update Expression

You are not limited to using increment statements in the update expression. Here is a loop
that displays all the even numbers from 2 through 100 by adding 2 to its counter:

for (num = 2; num <= 100; num += 2)
cout << num << endl;

And here is a loop that counts backward from 10 down to 0:

for (num = 10; num >= 0; num--)
cout << num << endl;

Defining a Variable in the for Loop’s
Initialization Expression

Not only may the counter variable be initialized in the initialization expression, it may be
defined there as well. The following code shows an example. This is a modified version of
the loop in Program 5-9.

for (int num = MIN_NUMBER; num <= MAX NUMBER; numt++)
cout << num << "\t\t" << (num * num) << endl;

In this loop, the num variable is both defined and initialized in the initialization expression.
If the counter variable is used only in the loop, it makes sense to define it in the loop header.
This makes the variable’s purpose more clear.

When a variable is defined in the initialization expression of a for loop, the scope of the
variable is limited to the loop. This means you cannot access the variable in statements
outside the loop. For example, the following program segment will not compile because the
last cout statement cannot access the variable count.

for (int count = 1; count <= 10; count++)
cout << count << endl;
cout << "count is now " << count << endl; // ERROR!

Creating a User Controlled for Loop

Sometimes you want the user to determine the maximum value of the counter variable in a
for loop, and therefore determine the number of times the loop iterates. For example, look
at Program 5-10. This is another program that displays a list of numbers and their squares.
Instead of displaying the numbers 1 through 10, this program allows the user to enter the
minimum and maximum values to display.

Program 5-10

// This program demonstrates a user controlled for loop.
#include <iostream>
using namespace std;

int main()
{
int minNumber, // Starting number to square
maxNumber; // Maximum number to square

5.6 The for Loop

// Get the minimum and maximum values to display.
cout << "I will display a table of numbers and "
<< "their squares.\n"
<< "Enter the starting number: ";
cin >> minNumber;
cout << "Enter the ending number: ";
cin >> maxNumber;

// Display the table.
cout << "Number Number Squared\n"

<L M \n";

for (int num = minNumber; num <= maxNumber; num++)
cout << num << "\t\t" << (num * num) << endl;

return 0;

Program Output with Example Input Shown in Bold

I will display a table of numbers and their squares.
Enter the starting number: 6 [Enter]

Enter the ending number: 12 [Enter]

Number Number Squared

81

100
121
144

Before the loop, the code in lines 11 through 16 asks the user to enter the starting and end-
ing numbers. These values are stored in the minNumber and maxNumber variables. These
values are used in the for loop’s initialization and test expressions:

for (int num = minNumber; num <= maxNumber; numt++)

In this loop, the num variable takes on the values from maxNumber through maxvalue, and
then the loop terminates.

Using Multiple Statements in the Initialization
and Update Expressions

It is possible to execute more than one statement in the initialization expression and the
update expression. When using multiple statements in either of these expressions, simply
separate the statements with commas. For example, look at the loop in the following code,
which has two statements in the initialization expression.

253

254 Chapter 5 Loops and Files

int x, y;
for (x =1, y = 1; x <= 5; x++)

{
cout << x << " plus " << y
<< " equals " << (x + y)
<< endl;
}

This loop’s initialization expression is
x=1, y=1

This initializes two variables, x and y. The output produced by this loop is

1 plus 1 equals 2
2 plus 1 equals 3
3 plus 1 equals 4
4 plus 1 equals 5
5 plus 1 equals 6

We can further modify the loop to execute two statements in the update expression. Here
is an example:

int x, vy;
for (x =1, y = 1; x <= 5; xt++, y++)

{
cout << x << " plus " << y
<< " equals " << (x + vYy)
<< endl;
¥

The loop’s update expression is
X++, y++

This update expression increments both the x and y variables. The output produced by this

loop is
1 plus 1 equals 2
2 plus 2 equals 4
3 plus 3 equals 6
4 plus 4 equals 8
5 plus 5 equals 10

Connecting multiple statements with commas works well in the initialization and update
expressions, but do 7ot try to connect multiple expressions this way in the test expression.
If you wish to combine multiple expressions in the test expression, you must use the && or
| | operators.

Omitting the for Loop’s Expressions

The initialization expression may be omitted from inside the for loop’s parentheses if it
has already been performed or no initialization is needed. Here is an example of the loop
in Program 5-10 with the initialization being performed prior to the loop:

int num = 1;
for (; num <= maxValue; num++)
cout << num << "\t\t" << (num * num) << endl;

5.6 The for Loop

You may also omit the update expression if it is being performed elsewhere in the loop or
if none is needed. Although this type of code is not recommended, the following for loop
works just like a while loop:

int num = 1;
for (; num <= maxValue;)
{

cout << num << "\t\t" << (num * num) << endl;
num++;

}

You can even go so far as to omit all three expressions from the for loop’s parentheses. Be
warned, however, that if you leave out the test expression, the loop has no built-in way of
terminating. Here is an example:
for (;7 i)
cout << "Hello World\n";

Because this loop has no way of stopping, it will display "Hello World\n" forever (or until
something interrupts the program).

In the Spotlight: @

Designing a Count-Controlled Loop with the for Statement

Your friend Amanda just inherited a European sports car from her uncle. Amanda lives in
the United States, and she is afraid she will get a speeding ticket because the car’s speed-
ometer indicates kilometers per hour. She has asked you to write a program that displays
a table of speeds in kilometers per hour with their values converted to miles per hour. The
formula for converting kilometers per hour to miles per hour is:

MPH = KPH * 0.6214
In the formula, MPH is the speed in miles per hour and KPH is the speed in kilometers per hour.

The table that your program displays should show speeds from 60 kilometers per hour
through 130 kilometers per hour, in increments of 10, along with their values converted to
miles per hour. The table should look something like this:

KPH MPH
60 37.3
70 43.5
80 49.7
etc. . ..

130 80.8

After thinking about this table of values, you decide that you will write a for loop that uses
a counter variable to hold the kilometer-per-hour speeds. The counter’s starting value will
be 60, its ending value will be 130, and you will add 10 to the counter variable after each
iteration. Inside the loop you will use the counter variable to calculate a speed in miles-per-
hour. Program 5-11 shows the code.

255

256 Chapter 5 Loops and Files

Program 5-11

// This program converts the speeds 60 kph through
// 130 kph (in 10 kph increments) to mph.

#include <iostream>

#include <iomanip>

using namespace std;

int main()
{
// Constants for the speeds
const int START KPH = 60, // Starting speed
END KPH = 130, // Ending speed
INCREMENT = 10; // Speed increment

// Constant for the conversion factor
const double CONVERSION FACTOR = 0.6214;

// Variables
int kph; // To hold speeds in kph
double mph; // To hold speeds in mph

// Set the numeric output formatting.
cout << fixed << showpoint << setprecision(1l);

// Display the table headings.
cout << "KPH\tMPH\n";

cout << M———mm————— \n";

// Display the speeds.

for (kph = START KPH; kph <= END_KPH; kph += INCREMENT)

{
// Calculate mph
mph = kph * CONVERSION_ FACTOR;

// Display the speeds in kph and mph.
cout << kph << "\t" << mph << endl;

b

return 0;

}

Program Output

KPH

MPH

[oc i) W S N B ©) I OV

5.7 Keeping a Running Total 257

Checkpoint

5.6 Name the three expressions that appear inside the parentheses in the for loop’s
header.

5.7 You want to write a for loop that displays “I love to program” 50 times.

Assume that you will use a counter variable named count.
A) What initialization expression will you use?
B) What test expression will you use?
C) What update expression will you use?
D) Write the loop.
5.8 What will the following program segments display?

A) for (int count = 0; count < 6; count++)
cout << (count + count);

B) for (int value = -5; value < 5; value++)
cout << value;
C) int x;
for (x = 5; x <= 14; x += 3)
cout << x << endl;
cout << x << endl;
5.9 Write a for loop that displays your name 10 times.
5.10 Write a for loop that displays all of the odd numbers, 1 through 49.

5.11 Write a for loop that displays every fifth number, zero through 100.

—
5.7 | Keeping a Running Total

1 CONCEPT: A running total is a sum of numbers that accumulates with each
iteration of a loop. The variable used to keep the running total is called
an accumulator.

Many programming tasks require you to calculate the total of a series of numbers. For
example, suppose you are writing a program that calculates a business’s total sales for a
week. The program would read the sales for each day as input and calculate the total of
those numbers.

Programs that calculate the total of a series of numbers typically use two elements:

e A loop that reads each number in the series.
e A variable that accumulates the total of the numbers as they are read.

The variable that is used to accumulate the total of the numbers is called an accumulator. It
is often said that the loop keeps a running total because it accumulates the total as it reads
each number in the series. Figure 5-11 shows the general logic of a loop that calculates a
running total.

258 Chapter 5 Loops and Files

Figure 5-11 Logic for calculating a running total

'

Set accumulator to 0

Read the niurmbet Add the number to the ||
accumulator

Is there a number
to read?

When the loop finishes, the accumulator will contain the total of the numbers that were
read by the loop. Notice that the first step in the flowchart is to set the accumulator variable
to 0. This is a critical step. Each time the loop reads a number, it adds it to the accumulator.
If the accumulator starts with any value other than 0, it will not contain the correct total
when the loop finishes.

Let’s look at a program that calculates a running total. Program 5-12 calculates a com-
pany’s total sales over a period of time by taking daily sales figures as input and calculating
a running total of them as they are gathered.

Program 5-12

// This program takes daily sales figures over a period of time
// and calculates their total.

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{
int days; // Number of days
double total = 0.0; // Accumulator, initialized with 0

// Get the number of days.
cout << "For how many days do you have sales figures? ";

cin >> days;

5.7 Keeping a Running Total

// Get the sales for each day and accumulate a total.
for (int count = 1; count <= days; count++)

{

double sales;

cout <<

"Enter the sales for day " << count << ":

cin >> sales;
total += sales; // Accumulate the running total.

// Display the total sales.

cout << fixed << showpoint << setprecision(2);
"The total sales are $" << total << endl;
return 0;

cout <<

Program Output with Example Input Shown in Bold

For how many days do you have sales figures? 5 [Enter]

Enter
Enter
Enter
Enter
Enter

the
the
the
the
the

The total

sales
sales
sales
sales
sales
sales

for
for
for
for
for

day
day
day
day
day

1: 489.32 [Enter]
2: 421.65 [Enter]
3: 497.89 [Enter]
4: 532.37 [Enter]
5: 506.92 [Enter]

are $2448.15

4

Let’s take a closer look at this program. Line 9 defines the days variable, which will hold
the number of days that we have sales figures for. Line 10 defines the total variable, which
will hold the total sales. Because total is an accumulator, it is initialized with 0.0.

In line 14 the user enters the number of days that he or she has sales figures for. The num-
ber is assigned to the days variable. Next, the for loop in lines 17 through 23 executes. In
the loop’s initialization expression, in line 17, the variable count is defined and initialized
with 1. The test expression specifies the loop will repeat as long as count is less than or
equal to days. The update expression increments count by one at the end of each loop
iteration.

Line 19 defines a variable named sales. Because the variable is defined in the body of the
loop, its scope is limited to the loop. During each loop iteration, the user enters the amount
of sales for a specific day, which is assigned to the sales variable. This is done in line 21.
Then, in line 22 the value of sales is added to the existing value in the total variable.
(Note that line 22 does not assign sales to total, but adds sales to total. Put another
way, this line increases total by the amount in sales.)

Because total was initially assigned 0.0, after the first iteration of the loop, total
will be set to the same value as sales. After each subsequent iteration, total will be
increased by the amount in sales. After the loop has finished, total will contain the
total of all the daily sales figures entered. Now it should be clear why we assigned 0.0
to total before the loop executed. If total started at any other value, the total would
be incorrect.

259

260

Chapter 5 Loops and Files

-
5.8 Sentinels

1 CONCEPT: A sentinel is a special value that marks the end of a list of values.

Program 5-12, in the previous section, requires the user to know in advance the number
of days he or she wishes to enter sales figures for. Sometimes the user has a list that is
very long and doesn’t know how many items there are. In other cases, the user might
be entering several lists, and it is impractical to require that every item in every list be
counted.

A technique that can be used in these situations is to ask the user to enter a sentinel at the
end of the list. A sentinel is a special value that cannot be mistaken as a member of the list
and signals that there are no more values to be entered. When the user enters the sentinel,
the loop terminates.

Program 5-13 calculates the total points earned by a soccer team over a series of games.
It allows the user to enter the series of game points, then -1 to signal the end of the list.

Program 5-13

// This program calculates the total number of points a

// soccer team has earned over a series of games. The user
// enters a series of point values, then -1 when finished.
#include <iostream>

using namespace std;

int main()
{
int game = 1, // Game counter
points, // To hold a number of points
total = 0; // Accumulator

cout << "Enter the number of points your team has earned\n";

cout << "so far in the season, then enter -1 when finished.\n\n";
cout << "Enter the points for game " << game << ": ";

cin >> points;

while (points != -1)
{
total += points;
game++;
cout << "Enter the points for game " << game << ": ";

cin >> points;
}
cout << "\nThe total points are " << total << endl;
return 0;

5.9 Focus on Software Engineering: Deciding Which Loop to Use

Program Output with Example Input Shown in Bold

Enter the number of points your team has earned
so far in the season, then enter -1 when finished.

Enter the points for game 1: 7 [Enter]
Enter the points for game 2: 9 [Enter]
Enter the points for game 3: 4 [Enter]
Enter the points for game 4: 6 [Enter]
Enter the points for game 5: 8 [Enter]
Enter the points for game 6: -1 [Enter]

The total points are 34

° 1

The value —1 was chosen for the sentinel in this program because it is not possible for a team
to score negative points. Notice that this program performs a priming read in line 18 to get
the first value. This makes it possible for the loop to immediately terminate if the user enters
—1 as the first value. Also note that the sentinel value is not included in the running total.

Checkpoint

5.12 Write a for loop that repeats seven times, asking the user to enter a number. The
loop should also calculate the sum of the numbers entered.

5.13 In the following program segment, which variable is the counter variable and
which is the accumulator?

int a, x, y = 0;

for (x = 0; x < 10; x++)
{
cout << "Enter a number: ";
cin >> a;
y += a;
¥
cout << "The sum of those numbers is " << y << endl;

5.14 Why should you be careful when choosing a sentinel value?

5.15 How would you modify Program 5-13 so any negative value is a sentinel?

Focus on Software Engineering:
Deciding Which Loop to Use

CONCEPT: Although most repetitive algorithms can be written with any of the three
types of loops, each works best in different situations.

Each of the three C++ loops is ideal to use in different situations. Here’s a short summary
of when each loop should be used.

¢ The while loop. The while loop is a conditional loop, which means it repeats as
long as a particular condition exists. It is also a pretest loop, so it is ideal in situations
where you do not want the loop to iterate if the condition is false from the beginning.

261

262

Chapter 5 Loops and Files

m—

For example, validating input that has been read and reading lists of data terminated
by a sentinel value are good applications of the while loop.

The do-while loop. The do-while loop is also a conditional loop. Unlike the while
loop, however, do-while is a posttest loop. It is ideal in situations where you always
want the loop to iterate at least once. The do-while loop is a good choice for repeat-
ing a menu.

The for loop. The for loop is a pretest loop that has built-in expressions for initializ-
ing, testing, and updating. These expressions make it very convenient to use a counter
variable to control the number of iterations that the loop performs. The initialization
expression can initialize the counter variable to a starting value, the test expression
can test the counter variable to determine whether it holds the maximum value, and
the update expression can increment the counter variable. The for loop is ideal in
situations where the exact number of iterations is known.

5.10) Nested Loops

1CON

CEPT: A loop that is inside another loop is called a nested loop.

A nested loop is a loop that appears inside another loop. A clock is a good example of
something that works like a nested loop. The second hand, minute hand, and hour hand
all spin around the face of the clock. Each time the hour hand increments, the minute hand
increments 60 times. Each time the minute hand increments, the second hand increments
60 times.

Here
plays

(o]
(o]

is a program segment with a for loop that partially simulates a digital clock. It dis-
the seconds from 0 to 59:

out << fixed << right;
out.fill('0");

for (int seconds = 0; seconds < 60; seconds++)

cout << setw(2) << seconds << endl;

0 NOTE: The £i11 member function of cout changes the fill character, which is a space
by default. In the program segment above, the £i11 function causes a zero to be printed
in front of all single digit numbers.

We can add a minutes variable and nest the loop above inside another loop that cycles
through 60 minutes:

cout << fixed << right;
cout.fill('0");

for (int minutes = 0; minutes < 60; minutes++)
{
for (int seconds = 0; seconds < 60; seconds++)
{
cout << setw(2) << minutes << ":";

cout << setw(2) << seconds << endl;

5.10 Nested Loops 263

To make the simulated clock complete, another variable and loop can be added to count
the hours:

cout << fixed << right;
cout.fill('0");

for (int hours = 0; hours < 24; hours++)
{
for (int minutes = 0; minutes < 60; minutes++)
{
for (int seconds = 0; seconds < 60; seconds++)
{
cout << setw(2) << hours << ":";
cout << setw(2) << minutes << ":";

cout << setw(2) << seconds << endl;

¥
The output of the previous program segment follows:

00:00:00
00:00:01
00:00:02
(The program will count through each second of 24 hours.)

23:59:59

The innermost loop will iterate 60 times for each iteration of the middle loop. The middle
loop will iterate 60 times for each iteration of the outermost loop. When the outermost loop
has iterated 24 times, the middle loop will have iterated 1,440 times and the innermost loop
will have iterated 86,400 times!

The simulated clock example brings up a few points about nested loops:

e An inner loop goes through all of its iterations for each iteration of an outer loop.

e Inner loops complete their iterations faster than outer loops.

e To get the total number of iterations of a nested loop, multiply the number of itera-
tions of all the loops.

Program 5-14 is another test-averaging program. It asks the user for the number of students
and the number of test scores per student. A nested inner loop, in lines 26 through 33, asks
for all the test scores for one student, iterating once for each test score. The outer loop in
lines 23 through 37 iterates once for each student.

Program 5-14

// This program averages test scores. It asks the user for the
// number of students and the number of test scores per student.
#include <iostream>
#include <iomanip>
using namespace std;
(program continues)

264 Chapter 5 Loops and Files

Program 5-14 (continued)

int main()
{
int numStudents, // Number of students
numTests; // Number of tests per student
double total, // Accumulator for total scores
average; // Average test score

// Set up numeric output formatting.
cout << fixed << showpoint << setprecision(l);

// Get the number of students.

cout << "This program averages test scores.\n";

cout << "For how many students do you have scores? ";
cin >> numStudents;

// Get the number of test scores per student.
cout << "How many test scores does each student have? ";
cin >> numTests;

// Determine each student's average score.
for (int student = 1; student <= numStudents; student++)

{
total = 0; // Initialize the accumulator.
for (int test = 1; test <= numTests; test++)
{
double score;
cout << "Enter score " << test << " for ";
cout << "student " << student << ": ";
cin >> score;
total += score;
}
average = total / numTests;
cout << "The average score for student " << student;
cout << " is " << average << ".\n\n";
}

return 0;

Program Output with Example Input Shown in Bold

This program averages test scores.

For how many students do you have scores? 2 [Enter]
How many test scores does each student have? 3 [Enter]
Enter score 1 for student 1: 84 [Enter]

Enter score 2 for student 1: 79 [Enter]

Enter score 3 for student 1: 97 [Enter]

The average score for student 1 is 86.7.

Enter score 1 for student 2: 92 [Enter]
Enter score 2 for student 2: 88 [Enter]
Enter score 3 for student 2: 94 [Enter]
The average score for student 2 is 91.3.

5.11 Using Files for Data Storage 265

—
5.11 Using Files for Data Storage

1 CONCEPT: When a program needs to save data for later use, it writes the data in a
file. The data can then be read from the file at a later time.

The programs you have written so far require the user to reenter data each time the
program runs, because data kept in variables and control properties is stored in RAM
and disappears once the program stops running. If a program is to retain data between
the times it runs, it must have a way of saving it. Data is saved in a file, which is usually
stored on a computer’s disk. Once the data is saved in a file, it will remain there after the
program stops running. Data that is stored in a file can be then retrieved and used at a
later time.

Most of the commercial software that you use on a day-to-day basis store data in files. The
following are a few examples.

e Word processors: Word processing programs are used to write letters, memos, reports,
and other documents. The documents are then saved in files so they can be edited and
printed.

¢ Image editors: Image editing programs are used to draw graphics and edit images such
as the ones that you take with a digital camera. The images that you create or edit
with an image editor are saved in files.

o Spreadsheets: Spreadsheet programs are used to work with numerical data. Numbers
and mathematical formulas can be inserted into the rows and columns of the spread-
sheet. The spreadsheet can then be saved in a file for use later.

e Games: Many computer games keep data stored in files. For example, some games
keep a list of player names with their scores stored in a file. These games typically
display the players’ names in order of their scores, from highest to lowest. Some games
also allow you to save your current game status in a file so you can quit the game and
then resume playing it later without having to start from the beginning.

e Web browsers: Sometimes when you visit a Web page, the browser stores a small file
known as a cookie on your computer. Cookies typically contain information about
the browsing session, such as the contents of a shopping cart.

Programs that are used in daily business operations rely extensively on files. Payroll pro-
grams keep employee data in files, inventory programs keep data about a company’s prod-
ucts in files, accounting systems keep data about a company’s financial operations in files,
and so on.

Programmers usually refer to the process of saving data in a file as writing data to the file.
When a piece of data is written to a file, it is copied from a variable in RAM to the file.
This is illustrated in Figure 5-12. An output file is a file that data is written to. It is called
an output file because the program stores output in it.

The process of retrieving data from a file is known as reading data from the file. When a
piece of data is read from a file, it is copied from the file into a variable in RAM. Figure 5-13
illustrates this process. An input file is a file that data is read from. It is called an input file
because the program gets input from the file.

266

Chapter 5 Loops and Files

Figure 5-12 Writing data to a file

Data is copied from
variables to the file.

Variable
payRate 1865
Variable
employeeID 74512

Variable Cindy Chandler

employeeName

S
Gy Chandler m@
Afile onthe disk(__ >

Figure 5-13 Reading data from a file

Data is copied from
the file to variables.

Variable -
payRate 1865[=
Variable 74517 |-
employeeID

Variable Cindy Chandler
employeeName

Gindy Chandler m@
Afile onthe disk(__ >

This section discusses ways to create programs that write data to files and read data from
files. When a file is used by a program, three steps must be taken.

1. Open the file—Opening a file creates a connection between the file and the program.
Opening an output file usually creates the file on the disk and allows the program to
write data to it. Opening an input file allows the program to read data from the file.

2. Process the file—Data is either written to the file (if it is an output file) or read from
the file (if it is an input file).

3. Close the file—After the program is finished using the file, the file must be closed.
Closing a file disconnects the file from the program.

Types of Files

In general, there are two types of files: text and binary. A text file contains data that has
been encoded as text, using a scheme such as ASCII or Unicode. Even if the file contains
numbers, those numbers are stored in the file as a series of characters. As a result, the file
may be opened and viewed in a text editor such as Notepad. A binary file contains data

Figure

5.11 Using Files for Data Storage

that has not been converted to text. Thus, you cannot view the contents of a binary file with
a text editor. In this chapter we work only with text files. In Chapter 12 you will learn to
work with binary files.

File Access Methods

There are two general ways to access data stored in a file: sequential access and direct
access. When you work with a sequential access file, you access data from the beginning of
the file to the end of the file. If you want to read a piece of data that is stored at the very end
of the file, you have to read all of the data that comes before it—you cannot jump directly
to the desired data. This is similar to the way cassette tape players work. If you want to
listen to the last song on a cassette tape, you have to either fast-forward over all of the songs
that come before it or listen to them. There is no way to jump directly to a specific song.

When you work with a random access file (also known as a direct access file), you can jump
directly to any piece of data in the file without reading the data that comes before it. This
is similar to the way a CD player or an MP3 player works. You can jump directly to any
song that you want to listen to.

This chapter focuses on sequential access files. Sequential access files are easy to work with,
and you can use them to gain an understanding of basic file operations. In Chapter 12 you
will learn to work with random access files.

Filenames and File Stream Objects

Files on a disk are identified by a filename. For example, when you create a document with
a word processor and then save the document in a file, you have to specify a filename. When
you use a utility such as Windows Explorer to examine the contents of your disk, you see
a list of filenames. Figure 5-14 shows how three files named cat.jpg, notes.txt, and resume
.doc might be represented in Windows Explorer.

5-14 Three files
. = =
cat.jpg notes. txt resume, doc

Each operating system has its own rules for naming files. Many systems, including Windows,
support the use of filename extensions, which are short sequences of characters that appear
at the end of a filename preceded by a period (known as a “dot”). For example, the files
depicted in Figure 5-14 have the extensions .jpg, .txt, and .doc. The extension usually indi-
cates the type of data stored in the file. For example, the .jpg extension usually indicates
that the file contains a graphic image that is compressed according to the JPEG image
standard. The .txt extension usually indicates that the file contains text. The .doc extension
usually indicates that the file contains a Microsoft Word document.

In order for a program to work with a file on the computer’s disk, the program must create
a file stream object in memory. A file stream object is an object that is associated with a spe-
cific file and provides a way for the program to work with that file. It is called a “stream”
object because a file can be thought of as a stream of data.

267

268

Chapter 5 Loops and Files

File stream objects work very much like the cin and cout objects. A stream of data may
be sent to cout, which causes values to be displayed on the screen. A stream of data may
be read from the keyboard by cin, and stored in variables. Likewise, streams of data may
be sent to a file stream object, which writes the data to a file. When data is read from a
file, the data flows from the file stream object that is associated with the file, into variables.

Setting Up a Program for File Input/Output

Just as cin and cout require the iostream file to be included in the program, C++ file
access requires another header file. The file £stream contains all the declarations necessary
for file operations. It is included with the following statement:

#include <fstream>

The fstream header file defines the data types ofstream, i fstream, and fstream. Before
a C++ program can work with a file, it must define an object of one of these data types.
The object will be “linked” with an actual file on the computer’s disk, and the operations
that may be performed on the file depend on which of these three data types you pick for
the file stream object. Table 5-1 lists and describes the file stream data types.

Table 5-1
File Stream Data Type Description
ofstream Output file stream. You create an object of this data type when you
want to create a file and write data to it.
ifstream Input file stream. You create an object of this data type when you
want to open an existing file and read data from it.
fstream File stream. Objects of this data type can be used to open files for

reading, writing, or both.

<&

NOTE: In this chapter we discuss only the ofstream and ifstream types. The
fstream type is covered in Chapter 12.

Creating a File Object and Opening a File
Before data can be written to or read from a file, the following things must happen:

e A file stream object must be created
e The file must be opened and linked to the file stream object.

The following code shows an example of opening a file for input (reading).

ifstream inputFile;
inputFile.open("Customers.txt");

The first statement defines an ifstream object named inputFile. The second statement
calls the object’s open member function, passing the string "Customers.txt" as an argu-
ment. In this statement, the open member function opens the Customers.txt file and links it
with the inputFile object. After this code executes, you will be able to use the inputFile
object to read data from the Customers.txt file.

5.11 Using Files for Data Storage

The following code shows an example of opening a file for output (writing).

ofstream outputFile;
outputFile.open("Employees.txt");

The first statement defines an ofstream object named outputFile. The second state-
ment calls the object’s open member function, passing the string "Employees.txt" as an
argument. In this statement, the open member function creates the Employees.txt file and
links it with the outputFile object. After this code executes, you will be able to use the
outputFile object to write data to the Employees.txt file. It’s important to remember that
when you call an ofstream object’s open member function, the specified file will be cre-
ated. If the specified file already exists, it will be erased, and a new file with the same name
will be created.

Often, when opening a file, you will need to specify its path as well as its name. For exam-
ple, on a Windows system the following statement opens the file C: \data\inventory.txt:

inputFile.open("C:\\data\\inventory.txt")

In this statement, the file C:\data\inventory.txt is opened and linked with inputFile.

NOTE: Notice the use of two backslashes in the file’s path. Two backslashes are
needed to represent one backslash in a string literal.

It is possible to define a file stream object and open a file in one statement. Here is an
example:

ifstream inputFile("Customers.txt");

This statement defines an ifstream object named inputFile and opens the Customer.txt
file. Here is an example that defines an ofstream object named outputFile and opens
the Employees.txt file:

ofstream outputFile("Employees.txt");

Closing a File

The opposite of opening a file is closing it. Although a program’s files are automatically closed
when the program shuts down, it is a good programming practice to write statements that
close them. Here are two reasons a program should close files when it is finished using them:

e Most operating systems temporarily store data in a file buffer before it is written to a
file. A file buffer is a small “holding section” of memory that file-bound data is first
written to. When the buffer is filled, all the data stored there is written to the file. This
technique improves the system’s performance. Closing a file causes any unsaved data
that may still be held in a buffer to be saved to its file. This means the data will be in
the file if you need to read it later in the same program.

e Some operating systems limit the number of files that may be open at one time. When
a program closes files that are no longer being used, it will not deplete more of the
operating system’s resources than necessary.

Calling the file stream object’s close member function closes a file. Here is an example:

inputFile.close();

269

270

Chapter 5 Loops and Files

Writing Data to a File

You already know how to use the stream insertion operator (<<) with the cout object to
write data to the screen. It can also be used with ofstream objects to write data to a file.
Assuming outputFile is an ofstream object, the following statement demonstrates using
the << operator to write a string literal to a file:

outputFile << "I love C++ programming\n";

This statement writes the string literal "I love C++ programming\n" to the file associ-
ated with outputFile. As you can see, the statement looks like a cout statement, except
the name of the ofstream object name replaces cout. Here is a statement that writes both
a string literal and the contents of a variable to a file:

outputFile << "Price: " << price << endl;

The statement above writes the stream of data to outputFile exactly as cout would write
it to the screen: It writes the string "Price: ", followed by the value of the price variable,
followed by a newline character.

Program 5-15 demonstrates opening a file, writing data to the file, and closing the file. After
this code has executed, we can open the demofile.txt file using a text editor and look at its
contents. Figure 5-15 shows how the file’s contents will appear in Notepad.

Program 5-15

// This program writes data to a file.
#include <iostream>

#include <fstream>

using namespace std;

int main()

{
ofstream outputFile;
outputFile.open("demofile.txt");

cout << "Now writing data to the file.\n";

// Write four names to the file.
outputFile << "Bach\n";
outputFile << "Beethoven\n";
outputFile << "Mozart\n";
outputFile << "Schubert\n";

// Close the file
outputFile.close();
cout << "Done.\n";
return 0;

Program Screen Output

Now writing data to the file.
Done.

5.11 Using Files for Data Storage 271

Figure 5-15

- =T
) demofilext - Notepad (=] 0. [

File Edit Format View Help

Bach -
Beethoven

Mozart

schubert

Notice that in lines 14 through 17 of Program 5-15, each string that was written to the file
ends with a newline escape sequence (\n). The newline specifies the end of a line of text.
Because a newline is written at the end of each string, the strings appear on separate lines
when viewed in a text editor, as shown in Figure 5-135.

Program 5-16 shows what happens if we write the same four names without the \n escape
sequence. Figure 5-16 shows the contents of the file that Program 5-16 creates. As you can
see, all of the names appear on the same line in the file.

Program 5-16

// This program writes data to a single line in a file.
#include <iostream>

#include <fstream>

using namespace std;

int main()

{
ofstream outputFile;
outputFile.open("demofile.txt");

cout << "Now writing data to the file.\n";

// Write four names to the file.
outputFile << "Bach";

outputFile << "Beethoven";
outputFile << "Mozart";
outputFile << "Schubert";

// Close the file

outputFile.close();
cout << "Done.\n";
return 0;

Program Screen Output

Now writing data to the file.
Done.

272

Chapter 5 Loops and Files

Figure 5-16

r ;)
) demofile.txt - Notepad (o] sl IS

File Edit Format View Help
BachBeethovenMozartschubert a

Program 5-17 shows another example. This program reads three numbers from the key-
board as input and then saves those numbers in a file named Numbers.txt.

Program 5-17

// This program writes user input to a file.
#include <iostream>

#include <fstream>

using namespace std;

int main()

{

ofstream outputFile;
int numberl, number2, number3;

// Open an output file.
outputFile.open("Numbers.txt");

// Get three numbers from the user.

cout << "Enter a number: ";
cin >> numberl;
cout << "Enter another number: ";

cin >> number2;
cout << "One more time. Enter a number: ";
cin >> number3;

// Write the numbers to the file.

outputFile << numberl << endl;

outputFile << number2 << endl;

outputFile << number3 << endl;

cout << "The numbers were saved to a file.\n";

// Close the file
outputFile.close();
cout << "Done.\n";
return 0;

5.11 Using Files for Data Storage

Program Screen Output with Example Input Shown in Bold

Enter a number: 100 [Enter]
Enter another number: 200 [Enter]

One
The

more time. Enter a number: 300 [Enter]
numbers were saved to a file.

Done.

Figure

In Program 5-17, lines 23 through 25 write the contents of the numberl, number2, and
number3 variables to the file. Notice that the endl manipulator is sent to the outputFile
object immediately after each item. Sending the end1l manipulator causes a newline to be
written to the file. Figure 5-17 shows the file’s contents displayed in Notepad, using the
example input values 100, 200, and 300. As you can see, each item appears on a separate
line in the file because of the endl manipulators.

5-17

-~ S s ™y
| Numbers.txt - Notepad Iilﬂlﬁ
File Edit Format View | Help|
100 -
200
300

L 4

Program 5-18 shows an example that reads strings as input from the keyboard and then
writes those strings to a file. The program asks the user to enter the first names of three
friends, and then it writes those names to a file named Friends.txt. Figure 5-18 shows an
example of the Friends.txt file opened in Notepad.

Program 5-18

// This program writes user input to a file.
#include <iostream>

#include <fstream>

#include <string>

using namespace std;

int main()

{
ofstream outputFile;
string namel, name2, name3;

// Open an output file.
outputFile.open("Friends.txt");

(program continues)

273

274 Chapter 5 Loops and Files

Program 5-18 (continued)

// Get the names of three friends.
cout << "Enter the names of three friends.\n";

cout << "Friend #1: ";
cin >> namel;
cout << "Friend #2: ";
cin >> name2;
cout << "Friend #3: ";

cin >> name3;

// Write the names to the file.

outputFile << namel << endl;

outputFile << name2 << endl;

outputFile << name3 << endl;

cout << "The names were saved to a file.\n";

// Close the file
outputFile.close();
return 0;

Program Screen Output with Example Input Shown in Bold

Enter the names of three friends.
Friend #1: Joe [Enter]

Friend #2: Chris [Enter]

Friend #3: Geri [Enter]

The names were saved to a file.

Figure 5-18

j Friends.tet - Notepad l o |lE] g
File Edit Format View Help
Joe &
chris
Geri

o A

Reading Data from a File

c The >> operator not only reads user input from the cin object, but also data from a file.
Assuming input File is an if stream object, the following statement shows the >>

VideoNote

Reading Data operator reading data from the file into the variable name:

from a File

inputFile >> name;

Let’s look at an example. Assume the file Friends.txt exists, and it contains the names
shown in Figure 5-18. Program 5-19 opens the file, reads the names and displays them on
the screen, and then closes the file.

Program 5-19

5.11 Using Files for Data Storage

// This program reads data from a file.
#include <iostream>
#include <fstream>

#include <string>

using namespace std;

int main()

{

ifstream inputFile;

string name;

inputFile.open("Friends.txt");
cout << "Reading data from the file.\n";

inputFile >>
cout << name

inputFile >>
cout << name

inputFile >>
cout << name

name;
<< endl;

name;
<< endl;

name;
<< endl;

inputFile.close();

return 0;

Program Output

Reading data from the file.

Joe
Chris
Geri

The Read Position

When a file has been opened for input, the file stream object internally maintains a special
value known as a read position. A file’s read position marks the location of the next byte
that will be read from the file. When an input file is opened, its read position is initially set
to the first byte in the file. So, the first read operation extracts data starting at the first byte.
As data is read from the file, the read position moves forward, toward the end of the file.

/7
1/

/7
//

!/
!/

1/

Read name 1 from the file
Display name 1

Read name 2 from the file
Display name 2

Read name 3 from the file
Display name 3

Close the file

Let’s see how this works with the example shown in Program 5-19. When the Friends.txt
file is opened by the statement in line 12, the read position for the file will be positioned
as shown in Figure 5-19.

Figure 5-19

J | o | e | \n | C | h | r | i | s | \n | G | e | r | i | \n |

f

Read position

275

276

Chapter 5 Loops and Files

Keep in mind that when the >> operator extracts data from a file, it expects to read pieces
of data that are separated by whitespace characters (spaces, tabs, or newlines). When the
statement in line 15 executes, the >> operator reads data from the file’s current read posi-
tion, up to the \n character. The data that is read from the file is assigned to the name object.
The \n character is also read from the file, but is not included as part of the data. So, the
name object will hold the value "Joe" after this statement executes. The file’s read position
will then be at the location shown in Figure 5-20.

Figure 5-20

IE

|o|e|\n C|h|r|i|s|\n|G|e|r|i|\n|

!

Read position

When the statement in line 18 executes, it reads the next item from the file, which is
"Chris", and assigns that value to the name object. After this statement executes, the file’s
read position will be advanced to the next item, as shown in Figure 5-21.

Figure 5-21

IE

|o|e|\n|C|h|r|i|s|\n G|e|r|i|\n|

f

Read position

When the statement in line 21 executes, it reads the next item from the file, which is
"Geri", and assigns that value to the name object. After this statement executes, the file’s
read position will be advanced to the end of the file, as shown in Figure 5-22.

Figure 5-22

N

e w]c s i]=[wlc]<]-]:]w

!

Read position

Reading Numeric Data From a Text File

Remember that when data is stored in a text file, it is encoded as text, using a scheme such
as ASCII or Unicode. Even if the file contains numbers, those numbers are stored in the
file as a series of characters. For example, suppose a text file contains numeric data, such
as that shown in Figure 5-17. The numbers that you see displayed in the figure are stored
in the file as the strings "10", "20", and "30". Fortunately, you can use the >> operator
to read data such as this from a text file, into a numeric variable, and the >> operator will
automatically convert the data to a numeric data type. Program 5-20 shows an example.
It opens the file shown in Figure 5-23, reads the three numbers from the file into int vari-
ables, and calculates their sum.

5.11 Using Files for Data Storage 277

Figure 5-23

j MumericData.txt - Notepad 2= | =]

File Edit Format View Help

10 ”
20

30

Program 5-20

// This program reads numbers from a file.
#include <iostream>

#include <fstream>

using namespace std;

int main()

{
ifstream inFile;
int valuel, value2, value3, sum;
// Open the file.
inFile.open("NumericData.txt");
// Read the three numbers from the file.
inFile >> valuel;
inFile >> value2;
inFile >> value3;
// Close the file.
inFile.close();
// Calculate the sum of the numbers.
sum = valuel + value2 + value3;
// Display the three numbers.
cout << "Here are the numbers:\n"
<< valuel << " " << value2
<< " " << value3 << endl;
// Display the sum of the numbers.
cout << "Their sum is: " << sum << endl;
return 0;
}

Program Output

Here are the numbers:
10 20 30
Their sum is: 60

278

Chapter 5 Loops and Files

Using Loops to Process Files

Although some programs use files to store only small amounts of data, files are typically
used to hold large collections of data. When a program uses a file to write or read a large
amount of data, a loop is typically involved. For example, look at the code in Program
5-21. This program gets sales amounts for a series of days from the user and writes those
amounts to a file named Sales.txt. The user specifies the number of days of sales data he or
she needs to enter. In the sample run of the program, the user enters sales amounts for five
days. Figure 5-24 shows the contents of the Sales.txt file containing the data entered by the

user in the sample run.

Program 5-21

// This program reads data from a file.
#include <iostream>

#include <fstream>

using namespace std;

int main()

{

ofstream outputFile; // File stream object
int numberOfDays; // Number of days of sales
double sales; // Sales amount for a day

// Get the number of days.
cout << "For how many days do you have sales? ";
cin >> numberOfDays;

// Open a file named Sales.txt.
outputFile.open("Sales.txt");

// Get the sales for each day and write it
// to the file.

for (int count = 1; count <= numberOfDays; count++)

{
// Get the sales for a day.

cout << "Enter the sales for day "
<< count << ": ";
cin >> sales;

// Write the sales to the file.
outputFile << sales << endl;

// Close the file.

outputFile.close();

cout << "Data written to Sales.txt\n";
return 0;

5.11 Using Files for Data Storage 279

Program Output (with Input Shown in Bold)

For how many days do you have sales? 5 [Enter]
Enter the sales for day 1: 1000.00 [Enter]
Enter the sales for day 2: 2000.00 [Enter]
Enter the sales for day 3: 3000.00 [Enter]
Enter the sales for day 4: 4000.00 [Enter]
Enter the sales for day 5: 5000.00 [Enter]
Data written to sales.txt.

Figure 5-24

j Sales.txt - Notepad E‘E‘ﬁ

File Edit Format View Help

1000 -
2000
3000
4000
5000

Detecting the End of the File

Quite often a program must read the contents of a file without knowing the number of
items that are stored in the file. For example, suppose you need to write a program that dis-
plays all of the items in a file, but you do not know how many items the file contains. You
can open the file and then use a loop to repeatedly read an item from the file and display
it. However, an error will occur if the program attempts to read beyond the end of the file.
The program needs some way of knowing when the end of the file has been reached so it
will not try to read beyond it.

Fortunately, the >> operator not only reads data from a file, but also returns a true or false
value indicating whether the data was successfully read or not. If the operator returns true,
then a value was successfully read. If the operator returns false, it means that no value was
read from the file.

Let’s look at an example. A file named ListOfNumbers.txt, which is shown in Figure 5-25,
contains a list of numbers. Without knowing how many numbers the file contains, Program
5-22 opens the file, reads all of the values it contains, and displays them.

280

Chapter 5 Loops and Files

Figure 5-25

Program 5-22

) ListOfNumbers.txt - Notepad (e (50 [

File Edit | Format | View Help

100 -
200
300
400
500
600
700

// This program reads data from a file.
#include <iostream>

#include <fstream>

using namespace std;

int main()

{

ifstream inputFile;
int number;

// Open the file.

inputFile.

open("ListOfNumbers.txt");

// Read the numbers from the file and
// display them.
while (inputFile >> number)

{

cout << number << endl;

}

// Close the file.

inputFile.

return 0;

Program Output

100
200
300
400
500
600
700

close();

5.11 Using Files for Data Storage 281

Take a closer look at line 16:
while (inputFile >> number)

Notice that the statement that extracts data from the file is used as the Boolean expression
in the while loop. It works like this:

e The expression inputFile >> number executes.

e If an item is successfully read from the file, the item is stored in the number variable,
and the expression returns true to indicate that it succeeded. In that case, the state-
ment in line 18 executes and the loop repeats.

e If there are no more items to read from the file, the expression inputFile >> number
returns false, indicating that it did not read a value. In that case, the loop terminates.

Because the value returned from the >> operator controls the loop, it will read items from
the file until the end of the file has been reached.

Testing for File Open Errors

Under certain circumstances, the open member function will not work. For example, the
following code will fail if the file info.txt does not exist:

ifstream inputFile;
inputFile.open("info.txt");

There is a way to determine whether the open member function successfully opened the file.
After you call the open member function, you can test the file stream object as if it were a
Boolean expression. Program 5-23 shows an example.

Program 5-23

// This program tests for file open errors.
#include <iostream>

#include <fstream>

using namespace std;

int main()

{
ifstream inputFile;
int number;

// Open the file.
inputFile.open("BadListOfNumbers.txt");

// If the file successfully opened, process it.
if (inputFile)
{

// Read the numbers from the file and

// display them.

while (inputFile >> number)

{

cout << number << endl;

(program continues)

282

Chapter 5 Loops and Files

Program 5-23 (continued)

// Close the file.
inputFile.close();

}
else
{
// Display an error message.
cout << "Error opening the file.\n";
}

return 0;

Program Output (Assume BadListOfNumbers.txt does not exist)

Error opening the file.

Let’s take a closer look at certain parts of the code. Line 12 calls the inputFile object’s
open member function to open the file ListOfNumbers.txt. Then the if statement in line
15 tests the value of the inputFile object as if it were a Boolean expression. When tested
this way, the inputFile object will give a true value if the file was successfully opened.
Otherwise it will give a false value. The example output shows this program will display an
error message if it could not open the file.

Another way to detect a failed attempt to open a file is with the fail member function, as
shown in the following code:

ifstream inputFile;
inputFile.open("customers.txt");
if (inputFile.fail())

{
cout << "Error opening file.\n";
}
else
{
// Process the file.
¥

The fail member function returns true when an attempted file operation is unsuccessful.
When using file I/O, you should always test the file stream object to make sure the file was
opened successfully. If the file could not be opened, the user should be informed and appro-
priate action taken by the program.

Letting the User Specify a Filename

In each of the previous examples, the name of the file that is opened is hard-coded as a
string literal into the program. In many cases, you will want the user to specify the name
of a file for the program to open. In C++ 11, you can pass a string object as an argument
to a file stream object’s open member function. Program 5-24 shows an example. This is a
modified version of Program 5-23. This version prompts the user to enter the name of the
file. In line 15, the name that the user enters is stored in a string object named filename.
In line 18, the filename object is passed as an argument to the open function.

5.11 Using Files for Data Storage

Program 5-24

// This program lets the user enter a filename.
#include <iostream>

#include <string>

#include <fstream>

using namespace std;

int main()

{

ifstream inputFile;
string filename;
int number;

// Get the filename from the user.
cout << "Enter the filename: ";
cin >> filename;

// Open the file.
inputFile.open(filename);

// If the file successfully opened, process it.

if (inputFile)

{
// Read the numbers from the file and
// display them.
while (inputFile >> number)
{
cout << number << endl;
}
// Close the file.
inputFile.close();
}
else
{
// Display an error message.
cout << "Error opening the file.\n";
}

return 0;

Program Output with Example Input Shown in Bold

Enter the filename: ListOfNumbers.txt [Enter]

100
200
300
400
500
600
700

283

284

Chapter 5 Loops and Files

- |
5.12

Using the c_str Member Function in Older Versions of C++

In older versions of the C++ language (prior to C++ 11), a file stream object’s open mem-
ber function will not accept a string object as an argument. The open member function
requires that you pass the name of the file as a null-terminated string, which is also known
as a C-string. String literals are stored in memory as null-terminated C-strings, but string
objects are not.

Fortunately, string objects have a member function named c_str that returns the con-
tents of the object formatted as a null-terminated C-string. Here is the general format of
how you call the function:

stringObject.c_str()

In the general format, stringobject is the name of a string object. The c¢_str function
returns the string that is stored in stringobject as a null-terminated C-string.

For example, line 18 in Program 5-24 could be rewritten in the following manner to make
the program compatible with an older version of C++:

inputFile.open(filename.c_str());

In this version of the statement, the value that is returned from filename.c_str() is
passed as an argument to the open function.

Checkpoint

5.16 What is an output file? What is an input file?

5.17 What three steps must be taken when a file is used by a program?

5.18 What is the difference between a text file and a binary file?

5.19 What is the difference between sequential access and random access?

5.20 What type of file stream object do you create if you want to write data to a file?
5.21 What type of file stream object do you create if you want to read data from a file?

5.22 Write a short program that uses a for loop to write the numbers 1 through 10 to
a file.

5.23 Write a short program that opens the file created by the program you wrote for
Checkpoint 5.22, reads all of the numbers from the file, and displays them.

Optional Topics: Breaking and Continuing a Loop

1 CONCEPT: The break statement causes a loop to terminate early. The continue

D

statement causes a loop to stop its current iteration and begin the next one.

WARNING! Use the break and continue statements with great caution. Because
they bypass the normal condition that controls the loop’s iterations, these statements
make code difficult to understand and debug. For this reason, you should avoid using
break and continue whenever possible. However, because they are part of the C++
language, we discuss them briefly in this section.

5.12 Optional Topics: Breaking and Continuing a Loop 285

Sometimes it’s necessary to stop a loop before it goes through all its iterations. The break
statement, which was used with switch in Chapter 4, can also be placed inside a loop.
When it is encountered, the loop stops, and the program jumps to the statement immedi-
ately following the loop.

The while loop in the following program segment appears to execute 10 times, but the
break statement causes it to stop after the fifth iteration.

int count = 0;
while (count++ < 10)

{

cout << count << endl;
if (count == 5)
break;

}

Program 5-25 uses the break statement to interrupt a for loop. The program asks the user
for a number and then displays the value of that number raised to the powers of 0 through
10. The user can stop the loop at any time by entering Q.

Program 5-25

// This program raises the user's number to the powers
// of 0 through 10.

#include <iostream>

#include <cmath>

using namespace std;

int main()

{
double value;
char choice;
cout << "Enter a number: ";
cin >> value;
cout << "This program will raise " << value;
cout << " to the powers of 0 through 10.\n";
for (int count = 0; count <= 10; count++)
{
cout << value << " raised to the power of ";
cout << count << " is " << pow(value, count);
cout << "\nEnter Q to quit or any other key ";
cout << "to continue. ";
cin >> choice;
if (choice == 'Q' || choice == 'q')
break;
}
return 0;
}

(program output continues)

286 Chapter 5 Loops and Files

Program 5-25 (continued)

Program Output with Example Input Shown in Bold

Enter a number: 2 [Enter]

This program will raise 2 to the powers of 0 through 10.
2 raised to the power of 0 is 1

Enter Q to quit or any other key to continue. C [Enter]

2 raised to the power of 1 is 2

Enter Q to quit or any other key to continue. C [Enter]

2 raised to the power of 2 is 4

Enter Q to quit or any other key to continue. Q [Enter]

Using break in a Nested Loop

In a nested loop, the break statement only interrupts the loop it is placed in. The follow-
ing program segment displays five rows of asterisks on the screen. The outer loop controls
the number of rows, and the inner loop controls the number of asterisks in each row. The
inner loop is designed to display 20 asterisks, but the break statement stops it during the
eleventh iteration.

for (int row = 0; row < 5; rowt++)
{
for (int star = 0; star < 20; star++)
{
cout << '*';
if (star == 10)
break;

}

cout << endl;

}

The output of the program segment above is:

*khkkkkrkhkxk
*kkkkhkkhkhkxk
*kkkkhkhkkxk
*kkkkhkxkkhkhkxk

*khkkhkxkkhkxkkhkkxk

The continue Statement

The continue statement causes the current iteration of a loop to end immediately. When
continue is encountered, all the statements in the body of the loop that appear after it are
ignored, and the loop prepares for the next iteration.

In a while loop, this means the program jumps to the test expression at the top of the loop.
As usual, if the expression is still true, the next iteration begins. In a do-while loop, the
program jumps to the test expression at the bottom of the loop, which determines whether
the next iteration will begin. In a for loop, continue causes the update expression to be
executed and then the test expression to be evaluated.

The following program segment demonstrates the use of continue in a while loop:

5.12 Optional Topics: Breaking and Continuing a Loop 287

int testval = 0;
while (testval++ < 10)

{
if (testval == 4)
continue;
cout << testvVal << " ";
}

This loop looks like it displays the integers 1 through 10. When testval is equal to 4,
however, the continue statement causes the loop to skip the cout statement and begin the
next iteration. The output of the loop is

12356782910

Program 5-26 demonstrates the continue statement. The program calculates the charges
for DVD rentals, where current releases cost $3.50 and all others cost $2.50. If a customer
rents several DVDs, every third one is free. The continue statement is used to skip the part
of the loop that calculates the charges for every third DVD.

Program 5-26

// This program calculates the charges for DVD rentals.
// Every third DVD is free.

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{
int dvdCount = 1; // DVD counter
int numDVDs; // Number of DVDs rented
double total = 0.0; // Accumulator
char current; // Current release, Y or N

// Get the number of DVDs.
cout << "How many DVDs are being rented? ";
cin >> numDVDs;

// Determine the charges.

do
{
if ((dvdCount % 3) == 0)
{
cout << "DVD #" << dvdCount << " is free!\n";
continue; // Immediately start the next iteration
}
cout << "Is DVD #" << dvdCount;
cout << " a current release? (Y/N) ";
cin >> current;
if (current == 'Y' || current == 'y')
total += 3.50;
else

total += 2.50;
} while (dvdCount++ < numDVDs);

(program continues)

288 Chapter 5 Loops and Files

Program 5-26 (continued)

}

// Display the total.

cout << fixed << showpoint << setprecision(2);
cout << "The total is $" << total << endl;
return 0;

Program Output with Example Input Shown in Bold

How many DVDs are being rented? 6 [Enter]

Is DVD
Is DVD
DVD #3
Is DVD
Is DVD
DVD #6

#1 a current release? (Y/N) y [Enter]
#2 a current release? (Y/N) n [Enter]
is free!
#4 a current release? (Y/N) n [Enter]
#5 a current release? (Y/N) y [Enter]
is free!

The total is $12.00

Case Study: See the Loan Amortization Case Study on this book’s companion Web site at
www.pearsonhighered.com/gaddis.

Review Questions and Exercises
Short Answer

1.

@ @

Why should you indent the statements in the body of a loop?

Describe the difference between pretest loops and posttest loops.

Why are the statements in the body of a loop called conditionally executed statements?
What is the difference between the while loop and the do-while loop?

Which loop should you use in situations where you wish the loop to repeat until the
test expression is false, and the loop should not execute if the test expression is false
to begin with?

. Which loop should you use in situations where you wish the loop to repeat until the

test expression is false, but the loop should execute at least one time?

7. Which loop should you use when you know the number of required iterations?

11.
12.

13.

14.

. Why is it critical that counter variables be properly initialized?

. Why is it critical that accumulator variables be properly initialized?
10.

Why should you be careful not to place a statement in the body of a for loop that
changes the value of the loop’s counter variable?

What header file do you need to include in a program that performs file operations?

What data type do you use when you want to create a file stream object that can write
data to a file?

What data type do you use when you want to create a file stream object that can read
data from a file?

Why should a program close a file when it’s finished using it?

www.pearsonhighered.com/gaddis

15

Review Questions and Exercises

. What is a file’s read position? Where is the read position when a file is first opened for
reading?

Fill-in-the-Blank

16

17

18

19
20
21
22
23

24.
25.
26.

27.
28.
29.

30.

31

32

33.
34.

. To a value means to increase it by one, and to a value means
to decrease it by one.

. When the increment or decrement operator is placed before the operand (or to the

operand’s left), the operator is being used in mode.

. When the increment or decrement operator is placed after the operand (or to the oper-
and’s right), the operator is being used in mode.

. The statement or block that is repeated is known as the of the loop.

. Each repetition of a loop is known as a(n)

. A loop that evaluates its test expression before each repetition is a(n) loop.
. A loop that evaluates its test expression after each repetition is a(n) loop.
. A loop that does not have a way of stopping is a(n) loop.
A(n) is a variable that “counts” the number of times a loop repeats.
A(n) is a sum of numbers that accumulates with each iteration of a loop.
A(n) is a variable that is initialized to some starting value, usually zero,
and then has numbers added to it in each iteration of a loop.
A(n) is a special value that marks the end of a series of values.
The loop always iterates at least once.
The and loops will not iterate at all if their test expressions
are false to start with.
The loop is ideal for situations that require a counter.
. Inside the for loop’s parentheses, the first expression is the , the second
expression is the , and the third expression is the
. A loop that is inside another is called a(n) loop.
The statement causes a loop to terminate immediately.
The statement causes a loop to skip the remaining statements in the cur-

rent iteration.

Algorithm Workbench

35

36.

37.

38.

39.

. Write a while loop that lets the user enter a number. The number should be multiplied
by 10, and the result stored in the variable product. The loop should iterate as long
as product contains a value less than 100.

Write a do-while loop that asks the user to enter two numbers. The numbers should
be added and the sum displayed. The user should be asked if he or she wishes to per-
form the operation again. If so, the loop should repeat; otherwise it should terminate.
Werite a for loop that displays the following set of numbers:

o, 10, 20, 30, 40, 50 ... 1000

Werite a loop that asks the user to enter a number. The loop should iterate 10 times and
keep a running total of the numbers entered.

Write a nested loop that displays 10 rows of ‘“# characters. There should be 15 ‘#’
characters in each row.

289

290

Chapter 5 Loops and Files

40. Convert the following while loop to a do-while loop:

41.

42.

43.

44,

45.

46.

int x
while (x > 0)

{

}

1;

cout << "enter a number: ";
cin >> x;

Convert the following do-while loop to a while loop:

char sure;

do

{
cout << "Are you sure you want to quit? ";
cin >> sure;

} while (sure != 'Y' && sure != 'N');

Convert the following while loop to a for loop:

int count = 0;
while (count < 50)
{
cout << "count is " << count << endl;
count++;
}
Convert the following for loop to a while loop:
for (int x = 50; x > 0; x--)
{
cout << x << " seconds to go.\n";
}

Write code that does the following: Opens an output file with the filename Numbers.txt,
uses a loop to write the numbers 1 through 100 to the file, and then closes the file.

Write code that does the following: Opens the Numbers.txt file that was created by
the code you wrote in question 44, reads all of the numbers from the file and displays
them, and then closes the file.

Modify the code that you wrote in question 45 so it adds all of the numbers read from
the file and displays their total.

True or False

47.

48.

49.

50.
S1.
52.
53.

T

T

=4 A4+

F

Fol mel 15el el

The operand of the increment and decrement operators can be any valid
mathematical expression.

The cout statement in the following program segment will display 5:

int x = 5;
cout << x++;

The cout statement in the following program segment will display 5:

int x = 5;
cout << ++x;

The while loop is a pretest loop.
The do-while loop is a pretest loop.
The for loop is a posttest loop.

It is not necessary to initialize counter variables.

Review Questions and Exercises 291

54. T F All three of the for loop’s expressions may be omitted.

55. T F One limitation of the for loop is that only one variable may be initialized in
the initialization expression.

56. T F Variables may be defined inside the body of a loop.

57. T F A variable may be defined in the initialization expression of the for loop.

58. T F In a nested loop, the outer loop executes faster than the inner loop.

59. T F In a nested loop, the inner loop goes through all of its iterations for every
single iteration of the outer loop.

60. T F To calculate the total number of iterations of a nested loop, add the number

of iterations of all the loops.

61. T F The break statement causes a loop to stop the current iteration and begin
the next one.

62.
63. T F In anested loop, the break statement only interrupts the loop it is placed in.

—
rr

The continue statement causes a terminated loop to resume.

64. T F When you call an ofstream object’s open member function, the specified file
will be erased if it already exists.

Find the Errors

Each of the following programs has errors. Find as many as you can.

65. // Find the error in this program.
#include <iostream>
using namespace std;

int main()

{
int numl = 0, num2 = 10, result;
numl++;
result = ++(numl + num2);
cout << numl << " " << num2 << " " << result;
return 0;
}

66. // This program adds two numbers entered by the user.
#include <iostream>
using namespace std;

int main()

{
int numl, num2;
char again;

while (again == 'y' || again == 'Y')
cout << "Enter a number: ";
cin >> numl;
cout << "Enter another number: ";
cin >> num2;
cout << "Their sum is << (numl + num2) << endl;
cout << "Do you want to do this again? ";
cin >> again;

return 0;

292

Chapter 5 Loops and Files

67. // This program uses a loop to raise a number to a power.
#include <iostream>
using namespace std;

int main()

{
int num, bigNum, power, count;
cout << "Enter an integer: ";
cin >> num;
cout << "What power do you want it raised to? ";
cin >> power;
bigNum = num;
while (count++ < power);
bigNum *= num;
cout << "The result is << bigNum << endl;
return 0;
}

68. // This program averages a set of numbers.
#include <iostream>
using namespace std;

int main()

{
int numCount, total;
double average;

cout << "How many numbers do you want to average? ";
cin >> numCount;
for (int count = 0; count < numCount; count++)
{

int num;

cout << "Enter a number: ";

cin >> num;

total += num;

count++;
}
average = total / numCount;
cout << "The average is << average << endl;
return 0;

}

69. // This program displays the sum of two numbers.
#include <iostream>
using namespace std;

int main()

{

int choice, numl, num2;

>

VideoNote
Solving the
Calories
Burned
Problem

Programming Challenges

do

{
cout << "Enter a number: ";
cin >> numl;
cout << "Enter another number: ";
cin >> num2;
cout << "Their sum is " << (numl + num2) << endl;
cout << "Do you want to do this again?\n";
cout << "1 = yes, 0 = no\n";
cin >> choice;

} while (choice = 1)

return 0;

}

70. // This program displays the sum of the numbers 1-100.

#include <iostream>
using namespace std;

int main()

{
int count = 1, total;
while (count <= 100)
total += count;
cout << "The sum of the numbers 1-100 is ";
cout << total << endl;
return 0;
}

Programming Challenges

il.

Sum of Numbers

Write a program that asks the user for a positive integer value. The program should use
a loop to get the sum of all the integers from 1 up to the number entered. For example,
if the user enters 50, the loop will find the sum of 1, 2, 3, 4, ... 50.

Input Validation: Do not accept a negative starting number.

. Characters for the ASCII Codes

Write a program that uses a loop to display the characters for the ASCII codes 0
through 127. Display 16 characters on each line.

. Ocean Levels

Assuming the ocean’s level is currently rising at about 1.5 millimeters per year, write
a program that displays a table showing the number of millimeters that the ocean will
have risen each year for the next 25 years.

. Calories Burned

Running on a particular treadmill you burn 3.6 calories per minute. Write a program that
uses a loop to display the number of calories burned after 5, 10, 15, 20, 25, and 30 minutes.

. Membership Fees Increase

A country club, which currently charges $2,500 per year for membership, has
announced it will increase its membership fee by 4% each year for the next six years.
Write a program that uses a loop to display the projected rates for the next six years.

293

294

Chapter 5 Loops and Files

6. Distance Traveled

The distance a vehicle travels can be calculated as follows:
distance = speed * time

For example, if a train travels 40 miles per hour for 3 hours, the distance traveled is
120 miles.

Write a program that asks the user for the speed of a vehicle (in miles per hour) and how
many hours it has traveled. The program should then use a loop to display the distance the
vehicle has traveled for each hour of that time period. Here is an example of the output:

What is the speed of the vehicle in mph? 40
How many hours has it traveled? 3
Hour Distance Traveled

1 40
80
3 120

Input Validation: Do not accept a negative number for speed and do not accept any
value less than 1 for time traveled.

. Pennies for Pay

Write a program that calculates how much a person would earn over a period of time
if his or her salary is one penny the first day and two pennies the second day, and con-
tinues to double each day. The program should ask the user for the number of days.
Display a table showing how much the salary was for each day, and then show the
total pay at the end of the period. The output should be displayed in a dollar amount,
not the number of pennies.

Input Validation: Do not accept a number less than 1 for the number of days worked.

. Math Tutor

This program started in Programming Challenge 15 of Chapter 3, and was modified
in Programming Challenge 9 of Chapter 4. Modify the program again so it displays a
menu allowing the user to select an addition, subtraction, multiplication, or division
problem. The final selection on the menu should let the user quit the program. After
the user has finished the math problem, the program should display the menu again.
This process is repeated until the user chooses to quit the program.

Input Validation: If the user selects an item not on the menu, display an error message
and display the menu again.

. Hotel Occupancy

Werite a program that calculates the occupancy rate for a hotel. The program should
start by asking the user how many floors the hotel has. A loop should then iterate once
for each floor. In each iteration, the loop should ask the user for the number of rooms
on the floor and how many of them are occupied. After all the iterations, the program
should display how many rooms the hotel has, how many of them are occupied, how
many are unoccupied, and the percentage of rooms that are occupied. The percentage
may be calculated by dividing the number of rooms occupied by the number of rooms.

NOTE: It is traditional that most hotels do not have a thirteenth floor. The loop in
this program should skip the entire thirteenth iteration.

10.

11.

112,

13.

14.

15.

Programming Challenges

Input Validation: Do not accept a value less than 1 for the number of floors. Do not
accept a number less than 10 for the number of rooms on a floor.

Average Rainfall

Write a program that uses nested loops to collect data and calculate the average rainfall
over a period of years. The program should first ask for the number of years. The outer
loop will iterate once for each year. The inner loop will iterate twelve times, once for
each month. Each iteration of the inner loop will ask the user for the inches of rainfall
for that month.

After all iterations, the program should display the number of months, the total inches
of rainfall, and the average rainfall per month for the entire period.

Input Validation: Do not accept a number less than 1 for the number of years. Do not
accept negative numbers for the monthly rainfall.

Population

Write a program that will predict the size of a population of organisms. The program
should ask the user for the starting number of organisms, their average daily popula-
tion increase (as a percentage), and the number of days they will multiply. A loop
should display the size of the population for each day.

Input Validation: Do not accept a number less than 2 for the starting size of the popu-
lation. Do not accept a negative number for average daily population increase. Do not
accept a number less than 1 for the number of days they will multiply.

Celsius to Fahrenheit Table

In Programming Challenge 10 of Chapter 3 you were asked to write a program that
converts a Celsius temperature to Fahrenheit. Modify that program so it uses a loop
to display a table of the Celsius temperatures 0-20, and their Fahrenheit equivalents.

The Greatest and Least of These

Write a program with a loop that lets the user enter a series of integers. The user should
enter —99 to signal the end of the series. After all the numbers have been entered, the
program should display the largest and smallest numbers entered.

Student Line Up

A teacher has asked all her students to line up single file according to their first name.
For example, in one class Amy will be at the front of the line and Yolanda will be at
the end. Write a program that prompts the user to enter the number of students in the
class, then loops to read that many names. Once all the names have been read it reports
which student would be at the front of the line and which one would be at the end of
the line. You may assume that no two students have the same name.

Input Validation: Do not accept a number less than 1 or greater than 25 for the number
of students.

Payroll Report

Write a program that displays a weekly payroll report. A loop in the program should
ask the user for the employee number, gross pay, state tax, federal tax, and FICA with-
holdings. The loop will terminate when 0 is entered for the employee number. After the
data is entered, the program should display totals for gross pay, state tax, federal tax,
FICA withholdings, and net pay.

295

296

Chapter 5 Loops and Files

16.

Input Validation: Do not accept negative numbers for any of the items entered. Do
not accept values for state, federal, or FICA withholdings that are greater than the
gross pay. If the sum state tax + federal tax + FICA withholdings for any employee is
greater than gross pay, print an error message and ask the user to reenter the data for
that employee.

Savings Account Balance

Write a program that calculates the balance of a savings account at the end of a period
of time. It should ask the user for the annual interest rate, the starting balance, and the
number of months that have passed since the account was established. A loop should
then iterate once for every month, performing the following:

A) Ask the user for the amount deposited into the account during the month. (Do not
accept negative numbers.) This amount should be added to the balance.

B) Ask the user for the amount withdrawn from the account during the month. (Do
not accept negative numbers.) This amount should be subtracted from the balance.

C) Calculate the monthly interest. The monthly interest rate is the annual interest rate
divided by twelve. Multiply the monthly interest rate by the balance, and add the
result to the balance.

After the last iteration, the program should display the ending balance, the total
amount of deposits, the total amount of withdrawals, and the total interest earned.

@ NOTE: If a negative balance is calculated at any point, a message should be displayed
indicating the account has been closed and the loop should terminate.

17.

18.

Sales Bar Chart

Write a program that asks the user to enter today’s sales for five stores. The program
should then display a bar graph comparing each store’s sales. Create each bar in the bar
graph by displaying a row of asterisks. Each asterisk should represent $100 of sales.

Here is an example of the program’s output.

1000 [Enter]
1200 [Enter]
1800 [Enter]
: 800 [Enter]

1900 [Enter]

Enter today's sales for store
Enter today's sales for store
Enter today's sales for store
Enter today's sales for store
Enter today's sales for store

U & W N
. e ee ee

SALES BAR CHART
(Each = $100)

Store Y

Store

*
1
2 LR R R R R R R
Store 3: **Fkkkkkkkkkkkhkkkk
4
5

Store Kk kkk kKK

Store Khkhkkkkkkhhkhhhkkkkkk

Population Bar Chart

Write a program that produces a bar chart showing the population growth of
Prairieville, a small town in the Midwest, at 20-year intervals during the past 100 years.
The program should read in the population figures (rounded to the nearest 1,000 peo-
ple) for 1900, 1920, 1940, 1960, 1980, and 2000 from a file. For each year it should

19.

20.

21l

270

Programming Challenges

display the date and a bar consisting of one asterisk for each 1,000 people. The data
can be found in the People.txt file.

Here is an example of how the chart might begin:

PRAIRIEVILLE POPULATION GROWTH
(each * represents 1,000 people)
1900 =*=*

1920 ***%*

1940 *kkk*k

Budget Analysis

Write a program that asks the user to enter the amount that he or she has budgeted
for a month. A loop should then prompt the user to enter each of his or her expenses
for the month and keep a running total. When the loop finishes, the program should
display the amount that the user is over or under budget.

Random Number Guessing Game

Write a program that generates a random number and asks the user to guess what the
number is. If the user’s guess is higher than the random number, the program should
display “Too high, try again.” If the user’s guess is lower than the random number,
the program should display “Too low, try again.” The program should use a loop that
repeats until the user correctly guesses the random number.

Random Number Guessing Game Enhancement

Enhance the program that you wrote for Programming Challenge 20 so it keeps a count
of the number of guesses that the user makes. When the user correctly guesses the ran-
dom number, the program should display the number of guesses.

Square Display

Write a program that asks the user for a positive integer no greater than 15. The pro-
gram should then display a square on the screen using the character X’. The number
entered by the user will be the length of each side of the square. For example, if the
user enters 5, the program should display the following:

XXXXX
XXXXX
XXXXX
XXXXX
XXXXX

If the user enters 8, the program should display the following:

XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX

298

Chapter 5 Loops and Files

23.

24.

256

26.

Pattern Displays

Write a program that uses a loop to display Pattern A below, followed by another loop
that displays Pattern B.

Pattern A Pattern B

+ A+
++ e+
+4+ et
4+ e+
+++++ +H++++
++++++ +++++
4 ++++
b Al
e+ ++
e+ +

Using Files—Numeric Processing

If you have downloaded this book’s source code from the companion Web site, you
will find a file named Random.txt in the Chapter 05 folder. (The companion Web
site is at www.pearsonhighered.com/gaddis.) This file contains a long list of random
numbers. Copy the file to your hard drive and then write a program that opens the file,
reads all the numbers from the file, and calculates the following:

A) The number of numbers in the file
B) The sum of all the numbers in the file (a running total)
C) The average of all the numbers in the file

The program should display the number of numbers found in the file, the sum of the
numbers, and the average of the numbers.

Using Files—Student Line Up

Modify the Student Line Up program described in Programming Challenge 14 so that
it gets the names from a file. Names should be read in until there is no more data to
read. If you have downloaded this book’s source code from the companion Web site,
you will find a file named LineUp.txt in the Chapter 05 folder. You can use this file to
test the program. (The companion Web site is at www.pearsonhighered.com/gaddis.)

Using Files—Savings Account Balance Modification

Modify the Savings Account Balance program described in Programming Challenge 16
so that it writes the final report to a file.

www.pearsonhighered.com/gaddis
www.pearsonhighered.com/gaddis

Functions

o
(NH]
—
o
<
I
)

6.1 Focus on Software Engineering: 6.9 Returning a Boolean Value
Modular Programming 6.10 Local and Global Variables

6.2 Defining and Calling Functions 6.11 Static Local Variables

6.3 Function Prototypes 6.12 Default Arguments

6.4 Sending Data into a Function 6.13 Using Reference Variables

6.5 Passing Data by Value as Parameters

6.6 Focus on Software Engineering: Using 6.14 Overloading Functions
Functions in a Menu-Driven Program 6.15 The exit () Function

6.7 The return Statement 6.16 Stubs and Drivers

6.8 Returning a Value from a Function

Focus on Software Engineering:
Modular Programming

CONCEPT: A program may be broken up into manageable functions.

A function is a collection of statements that performs a specific task. So far you have
experienced functions in two ways: (1) you have created a function named main in every
program you’ve written, and (2) you have used library functions such as pow and strcmp.
In this chapter you will learn how to create your own functions that can be used like library
functions.

Functions are commonly used to break a problem down into small manageable pieces.
Instead of writing one long function that contains all of the statements necessary to solve
a problem, several small functions that each solve a specific part of the problem can be
written. These small functions can then be executed in the desired order to solve the prob-
lem. This approach is sometimes called divide and conquer because a large problem is

299

300

Chapter 6 Functions

divided into several smaller problems that are easily solved. Figure 6-1 illustrates this idea
by comparing two programs: one that uses a long complex function containing all of the
statements necessary to solve a problem, and another that divides a problem into smaller

problems, each of which are handled by a separate function.

Figure 6-1

This program has one long, complex
function containing all of the statements
necessary to solve a problem.

|

int main()
{
statement;
statement;
statement;
statement;
statement;
statement;
statement;
statement;
statement;
statement;
statement;
statement;
statement;
statement;
statement;
statement;
statement;
statement;
statement;
statement;
statement;
statement;
statement;
statement;

Another reason to write functions is that they simplify programs. If a specific task is per-
formed in several places in a program, a function can be written once to perform that task,
and then be executed anytime it is needed. This benefit of using functions is known as code
reuse because you are writing the code to perform a task once and then reusing it each time
you need to perform the task.

—

In this program the problem has been
divided into smaller problems, each of
which is handled by a separate function.

!

int main()

{
statement;
statement; main function
statement;

}

void function2 ()

{
statement;
statement; function 2
statement;

}

void function3()

{
statement; .
statement ; function 3
statement;

}

void function4 ()

{
statement; function 4
statement;
statement;

6.2 Defining and Calling Functions

1 CONCEPT: A function call is a statement that causes a function to execute. A function
definition contains the statements that make up the function.

Figure

6.2 Defining and Calling Functions 301

When creating a function, you must write its definition. All function definitions have the
following parts:

Return type: A function can send a value to the part of the program that executed
it. The return type is the data type of the value that is sent from the
function.

Name: You should give each function a descriptive name. In general, the same
rules that apply to variable names also apply to function names.

Parameter list: The program can send data into a function. The parameter list is a list of
variables that hold the values being passed to the function.

Body: The body of a function is the set of statements that perform the function’s
operation. They are enclosed in a set of braces.

Figure 6-2 shows the definition of a simple function with the various parts labeled.

6-2
Return type Parameter list (This one is empty)
Function name
* Function body
int main ()
{
cout << "Hello World\n";
return 0;
}

The line in the definition that reads int main() is called the function header.

void Functions

You already know that a function can return a value. The main function in all of the pro-
grams you have seen in this book is declared to return an int value to the operating system.
The return 0; statement causes the value 0 to be returned when the main function finishes
executing.

It isn’t necessary for all functions to return a value, however. Some functions simply per-
form one or more statements, which follows terminate. These are called void functions.
The displayMessage function, which follows, is an example.

void displayMessage()
{
cout << "Hello from the function displayMessage.\n";

}

The function’s name is displayMessage. This name gives an indication of what the func-
tion does: It displays a message. You should always give functions names that reflect their
purpose. Notice that the function’s return type is void. This means the function does not
return a value to the part of the program that executed it. Also notice the function has no
return statement. It simply displays a message on the screen and exits.

302 Chapter 6 Functions

Calling a Function

A function is executed when it is called. Function main is called automatically when a
program starts, but all other functions must be executed by function call statements.
When a function is called, the program branches to that function and executes the state-
ments in its body. Let’s look at Program 6-1, which contains two functions: main and
displayMessage.

Program 6-1

// This program has two functions: main and displayMessage
#include <iostream>
using namespace std;

//***

// Definition of function displayMessage *

// This function displays a greeting. *
//***

void displayMessage()
{

cout << "Hello from the function displayMessage.\n";

//***

// Function main *
//***

int main()

{
cout << "Hello from main.\n";
displayMessage();
cout << "Back in function main again.\n";
return 0;

}

Program Output

Hello from main.
Hello from the function displayMessage.
Back in function main again.

The function displayMessage is called by the following statement in line 22:
displayMessage();

This statement is the function call. It is simply the name of the function followed by a set
of parentheses and a semicolon. Let’s compare this with the function header:

Function Header ———— void displayMessage()
Function Call ——» displayMessage();

6.2 Defining and Calling Functions 303

The function header is part of the function definition. It declares the function’s return type,
name, and parameter list. It is not terminated with a semicolon because the definition of
the function’s body follows it.

The function call is a statement that executes the function, so it is terminated with a semi-
colon like all other C++ statements. The return type is not listed in the function call, and, if
the program is not passing data into the function, the parentheses are left empty.

0 NOTE: Later in this chapter you will see how data can be passed into a function by
being listed inside the parentheses.

Even though the program starts executing at main, the function displayMessage is
defined first. This is because the compiler must know the function’s return type, the
number of parameters, and the type of each parameter before the function is called. One
way to ensure the compiler will know this information is to place the function definition
before all calls to that function. (Later you will see an alternative, preferred method of
accomplishing this.)

@ NOTE: Youshould always document your functions by writing comments that describe
what they do. These comments should appear just before the function definition.

Notice how Program 6-1 flows. It starts, of course, in function main. When the call to
displayMessage is encountered, the program branches to that function and performs its
statements. Once displayMessage has finished executing, the program branches back to
function main and resumes with the line that follows the function call. This is illustrated
in Figure 6-3.

Figure 6-3

void displayMessage()
>

cout << "Hello from the function displayMessage.\n";

b

int main()

{
cout << "Hello from main.\n"
displayMessage();
cout << "Back in function main again.\n";
return 0;
}

Function call statements may be used in control structures like loops, if statements, and
switch statements. Program 6-2 places the displayMessage function call inside a loop.

304 Chapter 6 Functions

Program 6-2

// The function displayMessage is repeatedly called from a loop.
#include <iostream>
using namespace std;

//***

// Definition of function displayMessage *

// This function displays a greeting. *
//*******'k*********************************

void displayMessage()
{

cout << "Hello from the function displayMessage.\n";

//***

// Function main *
//********************'k********************

int main()

{
cout << "Hello from main.\n";
for (int count = 0; count < 5; count++)
displayMessage(); // Call displayMessage
cout << "Back in function main again.\n";
return 0;
}

Program Output

Hello from main.

Hello from the function displayMessage.
Hello from the function displayMessage.
Hello from the function displayMessage.
Hello from the function displayMessage.
Hello from the function displayMessage.
Back in function main again.

It is possible to have many functions and function calls in a program. Program 6-3 has three
functions: main, first, and second.

Program 6-3

// This program has three functions: main, first, and second.
#include <iostream>
using namespace std;

6.2 Defining and Calling Functions

//***

// Definition of function first *

// This function displays a message. *
//***

void first()

{

cout << "I am now inside the function first.\n";

//***

// Definition of function second *

// This function displays a message. *
//***

void second()

{

cout << "I am now inside the function second.\n";

//***

// Function main *
//***

int main()

{
cout << "I am starting in function main.\n";
first(); // Call function first
second () ; // Call function second
cout << "Back in function main again. \n";
return 0;

}

Program Output

I am
I am
I am
Back

starting in function main.

now inside the function first.
now inside the function second.
in function main again.

In lines 32 and 33 of Program 6-3, function main contains a call to first and a call to
second:

first();
second();

Each call statement causes the program to branch to a function and then back to main
when the function is finished. Figure 6-4 illustrates the paths taken by the program.

305

306 Chapter 6 Functions

Figure 6-4

void first()

P {
}

cout << "I am now inside the function first.\n";

void second()

{ cout << "I am now inside the function second.\n";
}
int main()
{
cout << "I am starting in function main.\n"
first();

P> second();
cout << "Back in function main again.\n"; ¢
return 0;

Functions may also be called in a hierarchical, or layered, fashion. This is demonstrated by
Program 6-4, which has three functions: main, deep, and deeper.

Program 6-4

// This program has three functions: main, deep, and deeper
#include <iostream>
using namespace std;

//***

// Definition of function deeper *

// This function displays a message. *
//***

void deeper/()

{

cout << "I am now inside the function deeper.\n";

//***

// Definition of function deep *

// This function displays a message. *
//***

6.2 Defining and Calling Functions 307

void deep()

{
cout << "I am now inside the function deep.\n";
deeper(); // Call function deeper
cout << "Now I am back in deep.\n";

}

//***

// Function main *
//***

int main()

{
cout << "I am starting in function main.\n";
deep(); // Call function deep
cout << "Back in function main again.\n";
return 0;

}

Program Output

I am starting in function main.

I am now inside the function deep.

I am now inside the function deeper.
Now I am back in deep.

Back in function main again.

In Program 6-4, function main only calls the function deep. In turn, deep calls deeper. The
paths taken by the program are shown in Figure 6-5.

Figure 6-5
void deep()
{
» cout << "I am now inside the function deep.\n";
deeper();
> cout << "Now I am back in deep.\n";
}
void deeper()
P>
cout << "I am now in the function deeper.\n";
}
int main()
{
cout << "I am starting in function main.\n";
deep();
> cout << "Back in function main again.\n";
return 0;

308 Chapter 6 Functions

Checkpoint

6.1 Is the following a function header or a function call?
calcTotal();
6.2 Is the following a function header or a function call?
void showResults()
6.3 What will the output of the following program be if the user enters 10?

#include <iostream>
using namespace std;

void funcl()

{
cout << "Able was I\n";
}
void func2()
{
cout << "I saw Elba\n";
}
int main()
{
int input;
cout << "Enter a number: ";
cin >> input;
if (input < 10)
{
funcl();
func2();
}
else
{
func2();
funcl();
}
return 0;
}
6.4 The following program skeleton determines whether a person qualifies for a

credit card. To qualify, the person must have worked on his or her current job
for at least two years and make at least $17,000 per year. Finish the program by
writing the definitions of the functions qualify and noQualify. The function
qualify should explain that the applicant qualifies for the card and that the
annual interest rate is 12%. The function noQualify should explain that the
applicant does not qualify for the card and give a general explanation why.

#include <iostream>
using namespace std;

// You must write definitions for the two functions qualify
// and noQualify.

—
6.3

-t

2 Q

6.3 Function Prototypes

int main()

{
double salary;
int years;
cout << "This program will determine if you qualify\n";
cout << "for our credit card.\n";
cout << "What is your annual salary? ";
cin >> salary;
cout << "How many years have you worked at your ";
cout << "current job? ";
cin >> years;
if (salary >= 17000.0 && years >= 2)
qualify();
else
noQualify();
return 0;
}

Function Prototypes

CONCEPT: A function prototype eliminates the need to place a function definition
before all calls to the function.

Before the compiler encounters a call to a particular function, it must already know the
function’s return type, the number of parameters it uses, and the type of each parameter.
(You will learn how to use parameters in the next section.)

One way of ensuring that the compiler has this information is to place the function defini-
tion before all calls to that function. This was the approach taken in Programs 6-1, 6-2,
6-3, and 6-4. Another method is to declare the function with a function prototype. Here is
a prototype for the displayMessage function in Program 6-1:

void displayMessage();

The prototype looks similar to the function header, except there is a semicolon at the end.
The statement above tells the compiler that the function displayMessage has a void
return type (it doesn’t return a value) and uses no parameters.

NOTE: Function prototypes are also known as function declarations.

WARNING! You must place either the function definition or either/the function
prototype ahead of all calls to the function. Otherwise the program will not compile.

Function prototypes are usually placed near the top of a program so the compiler will
encounter them before any function calls. Program 6-5 is a modification of Program 6-3.
The definitions of the functions first and second have been placed after main, and a func-
tion prototype has been placed after the using namespace std statement.

309

310 Chapter 6 Functions

Program 6-5

// This program has three functions: main, first, and second.
#include <iostream>
using namespace std;

// Function Prototypes
void first();

void second();

int main()

{
cout << "I am starting in function main.\n";
first(); // Call function first
second () ; // Call function second
cout << "Back in function main again.\n";
return 0;

}

//*************************************

// Definition of function first. *

// This function displays a message. *
//*************************************

void first()

{

cout << "I am now inside the function first.\n";

//*************************************

// Definition of function second. *

// This function displays a message. *
//*************************************

void second()

{

cout << "I am now inside the function second.\n";

Program Output

(The program’s output is the same as the output of Program 6-3.)

When the compiler is reading Program 6-3, it encounters the calls to the functions first
and second in lines 12 and 13 before it has read the definition of those functions. Because
of the function prototypes, however, the compiler already knows the return type and param-
eter information of first and second.

@ NOTE: Although some programmers make main the last function in the program,
many prefer it to be first because it is the program’s starting point.

—

6.4 Sending Data into a Function

6.4 Sending Data into a Function

D

VideoNote
Functions
and
Arguments

1

<&

CONCEPT: When a function is called, the program may send values into the
function.

Values that are sent into a function are called arguments. You’re already familiar with how
to use arguments in a function call. In the following statement the function pow is being
called and two arguments, 2.0 and 4.0, are passed to it:

result = pow(2.0, 4.0);

By using parameters, you can design your own functions that accept data this way. A
parameter is a special variable that holds a value being passed into a function. Here is the
definition of a function that uses a parameter:

void displayValue(int num)

{

cout << "The value is " << num << endl;

}

Notice the integer variable definition inside the parentheses (int num). The variable num
is a parameter. This enables the function displayvalue to accept an integer value as an
argument. Program 6-6 is a complete program using this function.

NOTE: In this text, the values that are passed into a function are called arguments,
and the variables that receive those values are called parameters. There are several
variations of these terms in use. Some call the arguments actual parameters and call
the parameters formal parameters. Others use the terms actual argument and formal
argument. Regardless of which set of terms you use, it is important to be consistent.

Program 6-6

// This program demonstrates a function with a parameter.
#include <iostream>
using namespace std;

// Function Prototype
void displayValue(int);

int main()

{
cout << "I am passing 5 to displayValue.\n";
displayValue(5); // Call displayValue with argument 5
cout << "Now I am back in main.\n";
return 0;

}

(program continues)

311

312 Chapter 6 Functions

Program 6-6 (continued)

//***

// Definition of function displayValue. *

// It uses an integer parameter whose value is displayed. *
//***

void displayValue(int num)

{

cout << "The value is " << num << endl;

Program Output

I am passing 5 to displayValue.
The value is 5
Now I am back in main.

First, notice the function prototype for displayvalue in line 6:
void displayValue(int);

It is not necessary to list the name of the parameter variable inside the parentheses. Only
its data type is required. The function prototype shown above could optionally have been
written as:

void displayValue(int num);

However, the compiler ignores the name of the parameter variable in the function
prototype.

In main, the displayvalue function is called with the argument 5 inside the parentheses.
The number 5 is passed into num, which is displayValue’s parameter. This is illustrated
in Figure 6-6.

Figure 6-6

displayValue(5);

void displayValue(int num)

{

cout << "The value is " << num << endl;

Any argument listed inside the parentheses of a function call is copied into the function’s
parameter variable. In essence, parameter variables are initialized to the value of their cor-
responding arguments. Program 6-7 shows the function displayvalue being called several
times with a different argument being passed each time.

Program 6-7

6.4 Sending Data into a Function

// This program demonstrates a function with a parameter.
#include <iostream>
using namespace std;

// Function Prototype
void displayValue(int);

int main()

{

cout << "I am passing several values to displayValue.\n";
displayValue(5); // Call displayValue
displayValue(10); // Call displayValue
displayValue(2); // Call displayValue
displayValue(16); // Call displayValue
cout << "Now I am back in main.\n";
return 0;

with argument 5
with argument 10
with argument 2
with argument 16

//***

// Definition of function displayValue.

// It uses an integer parameter whose value is displayed. *
//***

void displayValue(int num)

{

*

cout << "The value is " << num << endl;

Program Output

I am passing

The
The
The
The
Now

®

value is
value is
value is
value is

several values to displayValue.
5
10
2
16

I am back in main.

WARNING! When passing a variable as an argument, simply write the variable name
inside the parentheses of the function call. Do not write the data type of the argument
variable in the function call. For example, the following function call will cause an error:

displayValue(int x); // Error!
The function call should appear as

displayValue(x); // Correct

Each time the function is called in Program 6-7, num takes on a different value. Any expres-
sion whose value could normally be assigned to num may be used as an argument. For
example, the following function call would pass the value 8 into num:

displayvalue(3 + 5);

313

314 Chapter 6 Functions

If you pass an argument whose type is not the same as the parameter’s type, the argument
will be promoted or demoted automatically. For instance, the argument in the following
function call would be truncated, causing the value 4 to be passed to num:

displayValue(4.7);

Often, it’s useful to pass several arguments into a function. Program 6-8 shows the defini-
tion of a function with three parameters.

Program 6-8
// This program demonstrates a function with three parameters.
#include <iostream>

using namespace std;

// Function Prototype
void showSum(int, int, int);

int main()

{
int valuel, value2, value3;
// Get three integers.
cout << "Enter three integers and I will display ";
cout << "their sum: ";
cin >> valuel >> value2 >> value3;
// Call showSum passing three arguments.
showSum(valuel, value2, value3);
return 0;
}

//**

// Definition of function showSum. *

// It uses three integer parameters. Their sum is displayed. *
//**

void showSum(int numl, int num2, int num3)

{

cout << (numl + num2 + num3) << endl;

Program Output with Example Input Shown in Bold

Enter three integers and I will display their sum: 4 8 7 [Enter]
19

In the function header for showSum, the parameter list contains three variable definitions
separated by commas:

void showSum(int numl, int num2, int num3)

Figure

6.4 Sending Data into a Function

WARNING! Each parameter variable in a parameter list must have a data type listed
before its name. For example, a compiler error would occur if the parameter list for the
showSum function were defined as shown in the following header:

void showSum(int numl, num2, num3) // Error!
A data type for all three of the parameter variables must be listed, as shown here:

void showSum(int numl, int num2, int num3) // Correct

In the function call in line 18, the variables valuel, value2, and value3 are passed as
arguments:

showSum(valuel, value2, value3);

When a function with multiple parameters is called, the arguments are passed to the param-
eters in order. This is illustrated in Figure 6-7.

6-7

Function Call — showSum(valuel, value2, value3)

¢S <

void showSum(int numl, int num2, int num3)

{
cout << (numl + num2 + num3) << endl;

}

The following function call will cause 5 to be passed into the numl parameter, 10 to be
passed into num2, and 15 to be passed into num3:

showSum(5, 10, 15);

However, the following function call will cause 15 to be passed into the numl parameter, 5
to be passed into num2, and 10 to be passed into num3:

showSum(15, 5, 10);

NOTE: The function prototype must list the data type of each parameter.

NOTE: Like all variables, parameters have a scope. The scope of a parameter is limited

to the body of the function that uses it.

315

316 Chapter 6 Functions

—
6.5 Passing Data by Value

1 CONCEPT: When an argument is passed into a parameter, only a copy of the
argument’s value is passed. Changes to the parameter do not affect
the original argument.

As you’ve seen in this chapter, parameters are special-purpose variables that are defined
inside the parentheses of a function definition. They are separate and distinct from the argu-
ments that are listed inside the parentheses of a function call. The values that are stored in
the parameter variables are copies of the arguments. Normally, when a parameter’s value
is changed inside a function, it has no effect on the original argument. Program 6-9 dem-
onstrates this concept.

Program 6-9

// This program demonstrates that changes to a function parameter
// have no effect on the original argument.

#include <iostream>

using namespace std;

// Function Prototype
void changeMe(int);

int main()

{
int number = 12;
// Display the value in number.
cout << "number is " << number << endl;
// Call changeMe, passing the value in number
// as an argument.
changeMe (number) ;
// Display the value in number again.
cout << "Now back in main again, the value of ";
cout << "number is " << number << endl;
return 0;
}

//**

// Definition of function changeMe. *

// This function changes the value of the parameter myValue. *
//**

6.5 Passing Data by Value 317

void changeMe(int myValue)

{

// Change the value of myValue to 0.

myValue = 0;

// Display the value in myValue.

cout << "Now the value is " << myValue << endl;
}

Program Output

number is 12
Now the value is 0
Now back in main again, the value of number is 12

Even though the parameter variable myvalue is changed in the changeMe function, the argu-
ment number is not modified. The myvalue variable contains only a copy of the number
variable.

The changeMe function does not have access to the original argument. When only a copy of
an argument is passed to a function, it is said to be passed by value. This is because the func-
tion receives a copy of the argument’s value and does not have access to the original argument.

Figure 6-8 illustrates that a parameter variable’s storage location in memory is separate
from that of the original argument.

Figure 6-8

Original Argument
(in its memory location)

Function Parameter
(in its memory location)

@ NOTE: Later in this chapter you will learn ways to give a function access to its original
arguments.

Chapter 6 Functions

Focus on Software Engineering: Using Functions

in a Menu-Driven Program

CONCEPT: Functions are ideal for use in menu-driven programs. When the user selects
an item from a menu, the program can call the appropriate function.

In Chapters 4 and 5 you saw a menu-driven program that calculates the charges for a health
club membership. Program 6-10 shows the program redesigned as a modular program. A
modular program is broken up into functions that perform specific tasks.

Program 6-10

// This is a menu-driven program that makes a function call

// for each selection the user makes.
#include <iostream>

#include <iomanip>

using namespace std;

// Function prototypes
void showMenu();
void showFees(double, int);

int main()
{
int choice; // To hold a menu choice
int months; // To hold a number of months

// Constants for the menu choices
const int ADULT_CHOICE =1,
CHILD_CHOICE = 2,
SENIOR_CHOICE = 3,
QUIT CHOICE = 4;

// Constants for membership rates
const double ADULT = 40.0,

CHILD = 20.0;

SENIOR = 30.0,

// Set up numeric output formatting.
cout << fixed << showpoint << setprecision(2);

do
{

// Display the menu and get the user's choice.

showMenu() ;
cin >> choice;

// Validate the menu selection.

while (choice < ADULT CHOICE || choice > QUIT CHOICE)

{

6.6 Focus on Software Engineering: Using Functions in a Menu-Driven Program

cout << "Please enter a valid menu choice: ";
cin >> choice;

}

// If the user does not want to quit, proceed.

if (choice != QUIT CHOICE)

{

}
} while

// Get the number of months.
cout << "For how many months? ";
cin >> months;

// Display the membership fees.
switch (choice)
{
case ADULT_CHOICE:
showFees (ADULT, months);
break;
case CHILD CHOICE:
showFees (CHILD, months);
break;
case SENIOR_CHOICE:
showFees (SENIOR, months);

(choice != QUIT CHOICE);

return 0;

//***

// Definition of function showMenu which displays the menu. *
//***

void showMenu()

{
cout <<
<<
<<
<<
<<
<<

"\n\t\tHealth Club Membership Menu\n\n"
"l. Standard Adult Membership\n"

"2. Child Membership\n"

"3. Senior Citizen Membership\n"

"4, Quit the Program\n\n"

"Enter your choice: ";

//**

// Definition of function showFees. The memberRate parameter holds *
// the monthly membership rate and the months parameter holds the *

// number of months. The function displays the total charges. *
//***'k***************'k***************'k******************************

void showFees(double memberRate, int months)

{
cout <<
<<

"The total charges are §"
(memberRate * months) << endl;

(program output continues)

319

320

Chapter 6 Functions

Program 6-10 (continued)

Program Output with Example Input Shown in Bold

= w N
e e e e

Health Club Membership Menu

Standard Adult Membership
Child Membership
Senior Citizen Membership
Quit the Program

Enter your choice: 1 [Enter]
For how many months? 12 [Enter]
The total charges are $480.00

= w N

Health Club Membership Menu

Standard Adult Membership
Child Membership
Senior Citizen Membership
Quit the Program

Enter your choice: 4 [Enter]

Let’s take a closer look at this program. First notice the showMenu function in lines 71
through 79. This function displays the menu and is called from the main function in
line 33.

The showFees function appears in lines 87 through 91. Its purpose is to display the total
fees for a membership lasting a specified number of months. The function accepts two
arguments: the monthly membership fee (a double) and the number of months of mem-
bership (an int). The function uses these values to calculate and display the total charges.
For example, if we wanted the function to display the fees for an adult membership lasting
six months, we would pass the ADULT constant as the first argument and 6 as the second
argument.

The showFees function is called from three different locations in the switch statement,
which is in the main function. The first location is line 54. This statement is executed when
the user has selected item 1, standard adult membership, from the menu. The showFees
function is called with the ADULT constant and the months variable passed as arguments.
The second location is line 57. This statement is executed when the user has selected item
2, child membership, from the menu. The showFees function is called in this line with
the CHILD constant and the months variable passed as arguments. The third location is
line 60. This statement is executed when the user has selected item 3, senior citizen mem-
bership, from the menu. The showFees function is called with the SENIOR constant and
the months variable passed as arguments. Each time the showFees function is called, it
displays the total membership fees for the specified type of membership, for the specified
number of months.

6.6 Focus on Software Engineering: Using Functions in a Menu-Driven Program

Checkpoint

6.5

6.6

6.7
6.8

6.9

Indicate which of the following is the function prototype, the function header,
and the function call:

void showNum(double num)
void showNum(double);
showNum(45.67);

Write a function named timesTen. The function should have an integer
parameter named number. When timesTen is called, it should display the
product of number times ten. (Note: just write the function. Do not write a
complete program.)

Write a function prototype for the timesTen function you wrote in Question 6.6.

What is the output of the following program?

#include <iostream>
using namespace std;

void showDouble(int); // Function prototype

int main()

{
int num;
for (num = 0; num < 10; num++)
showDouble (num) ;
return 0;
}

// Definition of function showDouble.
void showDouble(int value)

{

cout << value << "\t" << (value * 2) << endl;

}
What is the output of the following program?

#include <iostream>
using namespace std;

void funcl(double, int); // Function prototype

int main()

{
int x = 0;
double y = 1.5;
cout << x << " " << y << endl;
funcl(y, x);
cout << x << " " << y << endl;

return 0;

321

322 Chapter 6 Functions

—

6.10

void funcl(double a, int b)

{
cout << a << " " << b << endl;
a = 0.0;
b = 10;
cout << a << " " << b << endl;
}

The following program skeleton asks for the number of hours you’ve worked
and your hourly pay rate. It then calculates and displays your wages. The
function showbollars, which you are to write, formats the output of the
wages.

#include <iostream>
using namespace std;

void showDollars(double); // Function prototype

int main()

{

double payRate, hoursWorked, wages;

cout << "How many hours have you worked? "
cin >> hoursWorked;

cout << "What is your hourly pay rate? ";
cin >> payRate;

wages = hoursWorked * payRate;

showDollars (wages);

return 0;

// You must write the definition of the function showDollars

// here. It should take one parameter of the type double.

// The function should display the message "Your wages are $"

// followed by the value of the parameter. It should be displayed
// with 2 places of precision after the decimal point, in fixed
// notation, and the decimal point should always display.

6.7 The return Statement

1 CONCEPT: The return statement causes a function to end immediately.

When the last statement in a void function has finished executing, the function terminates
and the program returns to the statement following the function call. It’s possible, however,
to force a function to return before the last statement has been executed. When the return
statement is encountered, the function immediately terminates and control of the program
returns to the statement that called the function. This is demonstrated in Program 6-11.
The function divide shows the quotient of argl divided by arg2. If arg2 is set to zero,
the function returns.

6.7 The return Statement 323

Program 6-11

// This program uses a function to perform division. If division
// by zero is detected, the function returns.

#include <iostream>

using namespace std;

// Function prototype.
void divide(double, double);

int main()

{

double numl, num2;

cout << "Enter two numbers and I will divide the first\n";
cout << "number by the second number: ";

cin >> numl >> num2;

divide(numl, num2);

return 0;

//***

// Definition of function divide. *
// Uses two parameters: argl and arg2. The function divides argl *
// by arg2 and shows the result. If arg2 is zero, however, the *

// function returns. *
//***

void divide(double argl, double arg2)

{
if (arg2 == 0.0)
{
cout << "Sorry, I cannot divide by zero.\n";
return;
}
cout << "The quotient is " << (argl / arg2) << endl;
}

Program Output with Example Input Shown in Bold
Enter two numbers and I will divide the first

number by the second number: 12 O [Enter]
Sorry, I cannot divide by zero.

In the example running of the program, the user entered 12 and 0 as input. In line
16 the divide function was called, passing 12 into the argl parameter and 0 into
the arg2 parameter. Inside the divide function, the if statement in line 29 executes.
Because arg2 is equal to 0.0, the code in lines 31 and 32 executes. When the return
statement in line 32 executes, the divide function immediately ends. This means the
cout statement in line 34 does not execute. The program resumes at line 17 in the main
function.

324 Chapter 6 Functions

—
6.8

Returning a Value from a Function

1 CONCEPT: A function may send a value back to the part of the program that called

D

the function.

You’ve seen that data may be passed into a function by way of parameter variables. Data
may also be returned from a function, back to the statement that called it. Functions that
return a value are appropriately known as value-returning functions.

The pow function, which you have already seen, is an example of a value-returning function.
Here is an example:

VideoNote
Value-Returning double x;
Functions x = pow(4.0, 2.0);
The second line in this code calls the pow function, passing 4.0 and 2.0 as arguments. The
function calculates the value of 4.0 raised to the power of 2.0 and returns that value. The
value, which is 16.0, is assigned to the x variable by the = operator.
Although several arguments may be passed into a function, only one value may be returned
from it. Think of a function as having multiple communication channels for receiving data
(parameters), but only one channel for sending data (the return value). This is illustrated
in Figure 6-9.
Figure 6-9
argument ———pp»
argument —————pp»
Function ————Jpp» Return value
argument ——pp»
argument ————p»>

NOTE: It is possible to return multiple values from a function, but they must be

“packaged” in such a way that they are treated as a single value. This is a topic of
Chapter 11.

Defining a Value-Returning Function

When you are writing a value-returning function, you must decide what type of value the
function will return. This is because you must specify the data type of the return value in
the function header, and in the function prototype. Recall that a void function, which does
not return a value, uses the key word void as its return type in the function header. A

6.8 Returning a Value from a Function 325

value-returning function will use int, double, bool, or any other valid data type in its
header. Here is an example of a function that returns an int value:

int sum(int numl, int num2)

{
int result;
result = numl + num2;
return result;

}

The name of this function is sum. Notice in the function header that the return type is int,
as illustrated in Figure 6-10.

Figure 6-10

Return Type

|

int sum(int numl, int num2)

This code defines a function named sum that accepts two int arguments. The arguments
are passed into the parameter variables numl and num2. Inside the function, a variable,
result, is defined. Variables that are defined inside a function are called local variables.
After the variable definition, the parameter variables numl and num2 are added, and their
sum is assigned to the result variable. The last statement in the function is

return result;

This statement causes the function to end, and it sends the value of the result variable
back to the statement that called the function. A value-returning function must have a
return statement written in the following general format:

return expression;

In the general format, expression is the value to be returned. It can be any expression
that has a value, such as a variable, literal, or mathematical expression. The value of the
expression is converted to the data type that the function returns and is sent back to
the statement that called the function. In this case, the sum function returns the value in
the result variable.

However, we could have eliminated the result variable and returned the expression numl
+ num2, as shown in the following code:

int sum(int numl, int num2)

{

return numl + num2;

}

When writing the prototype for a value-returning function, follow the same conventions
that we have covered earlier. Here is the prototype for the sum function:

int sum(int, int);

326 Chapter 6 Functions

Calling a Value-Returning Function

Program 6-12 shows an example of how to call the sum function.

Program 6-12
// This program uses a function that returns a value.
#include <iostream>

using namespace std;

// Function prototype
int sum(int, int);

int main()

{
int valuel = 20, // The first value
value2 = 40, // The second value
total; // To hold the total
// Call the sum function, passing the contents of
// valuel and value2 as arguments. Assign the return
// value to the total variable.
total = sum(valuel, value2);
// Display the sum of the values.
cout << "The sum of " << valuel << " and "
<< value2 << " is " << total << endl;
return 0;
}

//***
// Definition of function sum. This function returns *

// the sum of its two parameters. *
//***

int sum(int numl, int num2)

{

return numl + num2;

Program Output
The sum of 20 and 40 is 60

Here is the statement in line 17 that calls the sum function, passing valuel and value2 as
arguments.

total = sum(valuel, value2);

This statement assigns the value returned by the sum function to the total variable. In this
case, the function will return 60. Figure 6-11 shows how the arguments are passed into the
function and how a value is passed back from the function.

6.8 Returning a Value from a Function 327

Figure 6-11

total = sum(valuel, value2);

|
40
20
m int sum(int numl, int num2)
{
return num + num;
}

When you call a value-returning function, you usually want to do something meaningful
with the value it returns. Program 6-12 shows a function’s return value being assigned to a
variable. This is commonly how return values are used, but you can do many other things
with them. For example, the following code shows a mathematical expression that uses a
call to the sum function:

int x = 10, y = 15;
double average;
average = sum(x, y) / 2.0;

In the last statement, the sum function is called with x and y as its arguments. The function’s
return value, which is 235, is divided by 2.0. The result, 12.5, is assigned to average. Here
is another example:

int x = 10, y = 15;
cout << "The sum is " << sum(x, y) << endl;

This code sends the sum function’s return value to cout so it can be displayed on the screen.
The message “The sum is 25” will be displayed.

Remember, a value-returning function returns a value of a specific data type. You can use
the function’s return value anywhere that you can use a regular value of the same data
type. This means that anywhere an int value can be used, a call to an int value-returning
function can be used. Likewise, anywhere a double value can be used, a call to a double
value-returning function can be used. The same is true for all other data types.

Let’s look at another example. Program 6-13, which calculates the area of a circle, has
two functions in addition to main. One of the functions is named square, and it returns
the square of any number passed to it as an argument. The square function is called in
a mathematical statement. The program also has a function named getRadius, which
prompts the user to enter the circle’s radius. The value entered by the user is returned from
the function.

Program 6-13

// This program demonstrates two value-returning functions.
// The square function is called in a mathematical statement.
#include <iostream>
#include <iomanip>
using namespace std;
(program continues)

328 Chapter 6 Functions

Program 6-13 (continued)

//Function prototypes
double getRadius();
double square(double);

int main()

{
const double PI = 3.14159; // Constant for pi
double radius; // To hold the circle's radius
double area; // To hold the circle's area
// Set the numeric output formatting.
cout << fixed << showpoint << setprecision(2);
// Get the radius of the circle.
cout << "This program calculates the area of ";
cout << "a circle.\n";
radius = getRadius();
// Calculate the area of the circle.
area = PI * square(radius);
// Display the area.
cout << "The area is " << area << endl;
return 0;
}

//******************'k************************************
// Definition of function getRadius. *
// This function asks the user to enter the radius of *

// the circle and then returns that number as a double. *
//***

double getRadius()

{

double rad;

cout << "Enter the radius of the circle: ";

cin >> rad;

return rad;
}
//***
// Definition of function square. *
// This function accepts a double argument and returns *
// the square of the argument as a double. *

//***

double square(double number)

6.8 Returning a Value from a Function

return number * number;

Program Output with Example Input Shown in Bold
This program calculates the area of a circle.

Enter the radius of the circle: 10 [Enter]
The area is 314.16

First, look at the getRadius function defined in lines 39 through 46. The purpose of the
function is to prompt the user to enter the radius of a circle. In line 41 the function defines
a local variable, rad. Lines 43 and 44 prompt the user to enter the circle’s radius, which is
stored in the rad variable. In line 45 the value of the rad value is returned. The getRadius
function is called in the main function, in line 23. The value that is returned from the func-
tion is assigned to the radius variable.

Next look at the square function, which is defined in lines 54 through 57. When the func-
tion is called, a double argument is passed to it. The function stores the argument in the
number parameter. The return statement in line 56 returns the value of the expression
number * number, which is the square of the number parameter. The square function is
called in the main function, in line 26, with the value of radius passed as an argument.
The function will return the square of the radius variable, and that value will be used in
the mathematical expression.

Assuming the user has entered 10 as the radius, and this value is passed as an argument to
the square function, the square function will return the value 100. Figure 6-12 illustrates
how the value 100 is passed back to the mathematical expression in line 26. The value 100
will then be used in the mathematical expression.

Figure 6-12

area = PI * square(radius);

|
10
100
double square(double number)
{
return number * number;
}

Functions can return values of any type. Both the getRadius and square functions in
Program 6-13 return a double. The sum function you saw in Program 6-12 returned an
int. When a statement calls a value-returning function, it should properly handle the return
value. For example, if you assign the return value of the square function to a variable, the
variable should be a double. If the return value of the function has a fractional portion and
you assign it to an int variable, the value will be truncated.

329

330 Chapter 6 Functions

In the Spotlight: @

Using Functions

Your friend Michael runs a catering company. Some of the ingredients that his recipes re-
quire are measured in cups. When he goes to the grocery store to buy those ingredients,
however, they are sold only by the fluid ounce. He has asked you to write a simple program
that converts cups to fluid ounces.

You design the following algorithm:

1. Display an introductory screen that explains what the program does.
2. Get the number of cups.
3. Convert the number of cups to fluid ounces and display the result.
This algorithm lists the top level of tasks that the program needs to perform and becomes

the basis of the program’s main function. The hierarchy chart shown in Figure 6-13 shows
how the program will broken down into functions.

Figure 6-13 Hierarchy chart for the program

main()

cupsToOunces

showlIntro() getCups() (double cups)

As shown in the hierarchy chart, the main function will call three other functions. Here are
summaries of those functions:

¢ showIntro—This function will display a message on the screen that explains what
the program does.

e getCups—This function will prompt the user to enter the number of cups and then
will return that value as a double.

e cupsToOunces— This function will accept the number of cups as an argument and
then return an equivalent number of fluid ounces as a double.

Program 6-14 shows the code for the program.

Program 6-14

// This program converts cups to fluid ounces.
#include <iostream>

#include <iomanip>

using namespace std;

6.8 Returning a Value from a Function

// Function prototypes

void showIntro();

double getCups();

double cupsToOunces (double);

int main()

{

// Variables for the cups and ounces.

double cups, ounces;

// Set up numeric output formatting.

cout << fixed << showpoint << setprecision(l);

// Display an intro screen.

showIntro();

// Get the number of cups.

cups = getCups();

// Convert cups to fluid ounces.

ounces = cupsToOunces(cups);

// Display the number of ounces.

cout << cups << " cups equals "

<< ounces << " ounces.\n";

return 0;
}
//**
// The showIntro function displays an *
// introductory screen. *

//**

void showIntro()

{
cout << "This program converts measurements\n"
<< "in cups to fluid ounces. For your\n"
<< "reference the formula is:\n"
<< " 1 cup = 8 fluid ounces\n\n";
}

//**
// The getCups function prompts the user *
// to enter the number of cups and then *

// returns that value as a double. *
//**

double getCups()

(program continues)

331

332 Chapter 6 Functions

Program 6-14 (continued)

{

double numCups;

cout << "Enter the number of cups: ";

cin >> numCups;

return numCups;
}
//**
// The cupsToOunces function accepts a *
// number of cups as an argument and *
// returns the equivalent number of fluid *
// ounces as a double. *

//**

double cupsToOunces (double numCups)

{

return numCups * 8.0;

}
Program Output with Example Input Shown in Bold

This program converts measurements
in cups to fluid ounces. For your
reference the formula is:

1 cup = 8 fluid ounces

Enter the number of cups: 2 [Enter]
2.0 cups equals 16.0 ounces.

-
6.9 Returning a Boolean Value

1 CONCEPT: Functions may return true or false values.

Frequently there is a need for a function that tests an argument and returns a true or false
value indicating whether or not a condition exists. Such a function would return a bool
value. For example, the following function accepts an int argument and returns true if the
argument is within the range of 1 through 100, or false otherwise.

bool isValid(int number)

{

bool status;

if (number >= 1 && number <= 100)

status = true;
else
status = false;

return status;

6.9 Returning a Boolean Value 333

The following code shows an if/else statement that uses a call to the function:

int value = 20;
if (isvalid(value))

cout << "The value is within range.\n";
else

cout << "The value is out of range.\n";

When this code executes, the message “The value is within range.” will be displayed.

Program 6-15 shows another example. This program has a function named isEven which
returns true if its argument is an even number. Otherwise, the function returns false.

Program 6-15

// This program uses a function that returns true or false.
#include <iostream>
using namespace std;

// Function prototype
bool isEven(int);

int main()

{

int val;

// Get a number from the user.

cout << "Enter an integer and I will tell you ";
cout << "if it is even or odd: ";

cin >> val;

// Indicate whether it is even or odd.
if (isEven(val))

cout << val << " is even.\n";
else
cout << val << " is odd.\n";

return 0;

//***
// Definition of function isEven. This function accepts an *
// integer argument and tests it to be even or odd. The function *
// returns true if the argument is even or false if the argument *

// is odd. The return value is a bool. *
//***

bool isEven(int number)

{
bool status;
if (number % 2 == 0)
status = true; // The number is even if there is no remainder.
else

status = false; // Otherwise, the number is odd.

return status;
} (program output continues)

334

Chapter 6 Functions

Program 6-15 (continued)

Program Output with Example Input Shown in Bold

Enter an integer and I will tell you if it is even or odd: 5 [Enter]
5 is odd.

—
6.10

The isEven function is called in line 18, in the following statement:
if (isEven(val))

When the if statement executes, isEven is called with val as its argument. If val is even,
isEven returns true , otherwise it returns false.

Checkpoint
6.11 How many return values may a function have?

6.12 Write a header for a function named distance. The function should return a
double and have two double parameters: rate and time.

6.13 Write a header for a function named days. The function should return an int
and have three int parameters: years, months, and weeks.

6.14 Write a header for a function named getkey. The function should return a char
and use no parameters.

6.15 Werite a header for a function named 1ightYears. The function should return a
long and have one long parameter: miles.

Local and Global Variables

1CONCEPT: A local variable is defined inside a function and is not accessible outside

the function. A global variable is defined outside all functions and is
accessible to all functions in its scope.

Local Variables

Variables defined inside a function are local to that function. They are hidden from the
statements in other functions, which normally cannot access them. Program 6-16 shows
that because the variables defined in a function are hidden, other functions may have sepa-
rate, distinct variables with the same name.

Program 6-16

// This program shows that variables defined in a function
// are hidden from other functions.

#include <iostream>

using namespace std;

void anotherFunction(); // Function prototype

6.10 Local and Global Variables

int main()

{
int num = 1; // Local variable
cout << "In main, num is " << num << endl;
anotherFunction();
cout << "Back in main, num is " << num << endl;
return 0;
}
//***
// Definition of anotherFunction *
// It has a local variable, num, whose initial value *
// 1is displayed. *

//*~k***
void anotherFunction()
{

int num = 20; // Local variable

cout << "In anotherFunction, num is " << num << endl;

Program Output

In main, num is 1
In anotherFunction, num is 20
Back in main, num is 1

Even though there are two variables named num, the program can only “see” one of them
at a time because they are in different functions. When the program is executing in main,
the num variable defined in main is visible. When anotherFunction is called, however, only
variables defined inside it are visible, so the num variable in main is hidden. Figure 6-14 illus-
trates the closed nature of the two functions. The boxes represent the scope of the variables.

Figure 6-14

Function main

——F—— This num variable is visible
only in main.

int num = 1;

Function anotherFunction

int num = 20; <——

This num variable is visible
only in anotherFunction.

Local Variable Lifetime

A function’s local variables exist only while the function is executing. This is known as the
lifetime of a local variable. When the function begins, its local variables and its parameter

335

336

Chapter 6 Functions

variables are created in memory, and when the function ends, the local variables and param-
eter variables are destroyed. This means that any value stored in a local variable is lost
between calls to the function in which the variable is declared.

Initializing Local Variables with Parameter Values

It is possible to use a parameter variable to initialize a local variable. Sometimes this sim-
plifies the code in a function. For example, recall the first version of the sum function we
discussed earlier:

int sum(int numl, int num2)

{
int result;
result = numl + num2;
return result;

}

In the body of the function, the result variable is defined and then a separate assignment
statement assigns numl + num2 to result. We can combine these statements into one, as
shown in the following modified version of the function.

int sum(int numl, int num2)

{

int result = numl + num2;
return result;

}

Because the scope of a parameter variable is the entire function in which it is declared, we
can use parameter variables to initialize local variables.

Global Variables

A global variable is any variable defined outside all the functions in a program. The scope
of a global variable is the portion of the program from the variable definition to the end.
This means that a global variable can be accessed by all functions that are defined after the
global variable is defined. Program 6-17 shows two functions, main and anotherFunc-
tion, that access the same global variable, num.

Program 6-17

// This program shows that a global variable is visible
// to all the functions that appear in a program after
// the variable's declaration.

#include <iostream>

using namespace std;

void anotherFunction(); // Function prototype
int num = 2; // Global variable

int main()

{

cout << "In main, num is " << num << endl;

6.10 Local and Global Variables 337

anotherFunction();

cout << "Back in main, num is " << num << endl;

return 0;
}
//***
// Definition of anotherFunction *
// This function changes the value of the *
// global variable num. *

//***

void anotherFunction()

{
cout << "In anotherFunction, num is " << num << endl;
num = 50;
cout << "But, it is now changed to " << num << endl;

Program Output

In main, num is 2

In anotherFunction, num is 2
But, it is now changed to 50
Back in main, num is 50

In Program 6-17, num is defined outside of all the functions. Because its definition appears
before the definitions of main and anotherFunction, both functions have access to it.

Unless you explicitly initialize numeric global variables, they are automatically initialized
to zero. Global character variables are initialized to NULL.* The variable globalNum in
Program 6-18 is never set to any value by a statement, but because it is global, it is auto-
matically set to zero.

Program 6-18

// This program has an uninitialized global variable.
#include <iostream>
using namespace std;

int globalNum; // Global variable, automatically set to zero

int main()

{

cout << "globalNum is " << globalNum << endl;
return 0;

Program Output
globalNum is 0

*The NULL character is stored as ASCII code 0.

338

Chapter 6 Functions

Now that you’ve had a basic introduction to global variables, I must warn you to restrict
your use of them. When beginning students first learn to write programs with multiple func-
tions, they are sometimes tempted to make all their variables global. This is usually because
global variables can be accessed by any function in the program without being passed as
arguments. Although this approach might make a program easier to create, it usually causes
problems later. The reasons are as follows:

e Global variables make debugging difficult. Any statement in a program can change
the value of a global variable. If you find that the wrong value is being stored in a
global variable, you have to track down every statement that accesses it to determine
where the bad value is coming from. In a program with thousands of lines of code,
this can be difficult.

e Functions that use global variables are usually dependent on those variables. If you
want to use such a function in a different program, most likely you will have to rede-
sign it so it does not rely on the global variable.

® Global variables make a program hard to understand. A global variable can be modi-
fied by any statement in the program. If you are to understand any part of the pro-
gram that uses a global variable, you have to be aware of all the other parts of the
program that access the global variable.

Because of this, you should not use global variables for the conventional purposes of stor-
ing, manipulating, and retrieving data. In most cases, you should declare variables locally
and pass them as arguments to the functions that need to access them.

Global Constants

Although you should try to avoid the use of global variables, it is generally permissible to
use global constants in a program. A global constant is a named constant that is available
to every function in a program. Because a global constant’s value cannot be changed during
the program’s execution, you do not have to worry about the potential hazards that are
associated with the use of global variables.

Global constants are typically used to represent unchanging values that are needed through-
out a program. For example, suppose a banking program uses a named constant to repre-
sent an interest rate. If the interest rate is used in several functions, it is easier to create a
global constant, rather than a local named constant in each function. This also simplifies
maintenance. If the interest rate changes, only the declaration of the global constant has to
be changed, instead of several local declarations.

Program 6-19 shows an example of how global constants might be used. The program cal-
culates an employee’s gross pay, including overtime. In addition to main, this program has
two functions: getBasePay and getOvertimePay. The getBasePay function accepts the
number of hours worked and returns the amount of pay for the non-overtime hours. The
getOvertimePay function accepts the number of hours worked and returns the amount of
pay for the overtime hours, if any.

Program 6-19

// This program calculates gross pay.
#include <iostream>
#include <iomanip>

6.10 Local and Global Variables

using namespace std;

// Global constants

const double PAY RATE = 22.5
const double BASE HOURS = 40
const double OT MULTIPLIER =

5
.0
1

// Hourly pay rate
// Max non-overtime hours
.5; // Overtime multiplier

~e

~e

// Function prototypes
double getBasePay(double);
double getOvertimePay(double);

int main()
{
double hours, // Hours worked
basePay, // Base pay
overtime = 0.0, // Overtime pay
totalPay; // Total pay

// Get the number of hours worked.
cout << "How many hours did you work? ";
cin >> hours;

// Get the amount of base pay.
basePay = getBasePay(hours);

// Get overtime pay, if any.
if (hours > BASE_HOURS)
overtime = getOvertimePay (hours);

// Calculate the total pay.
totalPay = basePay + overtime;

// Set up numeric output formatting.
cout << setprecision(2) << fixed << showpoint;

// Display the pay.
cout << "Base pay: $" << basePay << endl
<< "QOvertime pay $" << overtime << endl
<< "Total pay $" << totalPay << endl;
return 0;

//***
// The getBasePay function accepts the number of *
// hours worked as an argument and returns the *

// employee's pay for non-overtime hours. *
//***

double getBasePay(double hoursWorked)

{
double basePay; // To hold base pay

(program continues)

339

340 Chapter 6 Functions

Program 6-19 (continued)

// Determine base pay.
if (hoursWorked > BASE_HOURS)
basePay = BASE_HOURS * PAY RATE;
else
basePay = hoursWorked * PAY RATE;

return basePay;

//***
// The getOvertimePay function accepts the number *
// of hours worked as an argument and returns the *

// employee's overtime pay. *
//***

double getOvertimePay(double hoursWorked)
{

double overtimePay; // To hold overtime pay

// Determine overtime pay.
if (hoursWorked > BASE_HOURS)

{
overtimePay = (hoursWorked - BASE_HOURS) *

PAY RATE * OT_ MULTIPLIER;
}

else
overtimePay = 0.0;

return overtimePay;

Program Output with Example Input Shown in Bold
How many hours did you work? 48 [Enter]

Base pay: $902.00

Overtime pay: $270.60

Total pay: $1172.60

Let’s take a closer look at the program. Three global constants are defined in lines 7, 8,
and 9. The PAY RATE constant is set to the employee’s hourly pay rate, which is 22.55. The
BASE HOURS constant is set to 40, which is the number of hours an employee can work in
a week without getting paid overtime. The 0T MULTIPLIER constant is set to 1.5, which is
the pay rate multiplier for overtime hours. This means that the employee’s hourly pay rate
is multiplied by 1.5 for all overtime hours.

Because these constants are global and are defined before all of the functions in the pro-
gram, all the functions may access them. For example, the getBasePay function accesses
the BASE_HOURS constant in lines 57 and 58 and accesses the PAY_RATE constant in lines
58 and 60. The getovertimePay function accesses the BASE_HOURS constant in lines 76
and 78, the PAY RATE constant in line 79, and the 0T _MULTIPLIER constant in line 79.

6.10 Local and Global Variables

Local and Global Variables with the Same Name

You cannot have two local variables with the same name in the same function. This applies
to parameter variables as well. A parameter variable is, in essence, a local variable. So, you
cannot give a parameter variable and a local variable in the same function the same name.

However, you can have a local variable or a parameter variable with the same name as a
global variable, or a global constant. When you do, the name of the local or parameter vari-
able shadows the name of the global variable or global constant. This means that the global
variable or constant’s name is hidden by the name of the local or parameter variable. For
example, look at Program 6-20. This program has a global constant named BIRDS, set to
500. The california function has a local constant named BIRDS, set to 10000.

Program 6-20

}

// This program demonstrates how a local variable
// can shadow the name of a global constant.
#include <iostream>

using namespace std;

// Global constant.
const int BIRDS = 500;

// Function prototype
void california();

int main()

{
cout << "In main there are " << BIRDS
<< " birds.\n";
california();
return 0;
}

//**

// california function *
//**

void california()
{
const int BIRDS = 10000;
cout << "In california there are " << BIRDS
<< " birds.\n";

Program Output

In main there are 500 birds.
In california there are 10000 birds.

When the program is executing in the main function, the global constant BIRDS, which is set
to 500, is visible. The cout statement in lines 14 and 15 displays “In main there are 500 birds.”
(My apologies to folks living in Maine for the difference in spelling.) When the program is
executing in the california function, however, the local constant BIRDS shadows the global
constant BIRDS. When the california function accesses BIRDS, it accesses the local constant.
That is why the cout statement in lines 27 and 28 displays “In california there are 10000 birds.”

341

342

Chapter 6 Functions

—
6.11

|

Static Local Variables

If a function is called more than once in a program, the values stored in the function’s
local variables do not persist between function calls. This is because the local variables are
destroyed when the function terminates and are then re-created when the function starts
again. This is shown in Program 6-21.

Program 6-21

// This program shows that local variables do not retain
// their values between function calls.

#include <iostream>

using namespace std;

// Function prototype
void showLocal();

int main()

{
showLocal();
showLocal();
return 0;

}

//***

// Definition of function showLocal. *
// The initial value of localNum, which is 5, is displayed. *
// The value of localNum is then changed to 99 before the *

// function returns. *
//***

void showLocal()

{
int localNum = 5; // Local variable
cout << "localNum is " << localNum << endl;
localNum = 99;

}

Program Output

localNum is 5
localNum is 5

Even though in line 28 the last statement in the showLocal function stores 99 in localNum,
the variable is destroyed when the function returns. The next time the function is called,
localNum is re-created and initialized to 5 again.

Sometimes it’s desirable for a program to “remember” what value is stored in a local vari-
able between function calls. This can be accomplished by making the variable static.

6.11 Static Local Variables

Static local variables are not destroyed when a function returns. They exist for the lifetime
of the program, even though their scope is only the function in which they are defined.
Program 6-22 demonstrates some characteristics of static local variables:

Program 6-22

// This program uses a static local variable.
#include <iostream>
using namespace std;

void showStatic();

int main()

// Function prototype

{

// Call the showStatic function five times.

for (int count = 0; count < 5; count++)

showStatic();

return 0;
}
//**
// Definition of function showStatic. *
// statNum is a static local variable. Its value is displayed *
// and then incremented just before the function returns. *

//**

void showStatic()

{

static int statNum;

cout <<

statNum++;

Program Output

statNum
statNum
statNum
statNum
statNum

In line 26 of Program 6-22, statNum is incremented in the showStatic function, and
it retains its value between each function call. Notice that even though statNum is not
explicitly initialized, it starts at zero. Like global variables, all static local variables are
initialized to zero by default. (Of course, you can provide your own initialization value, if

is
is
is
is
is

0

1
2
3
4

necessary.)

If you do provide an initialization value for a static local variable, the initialization only
occurs once. This is because initialization normally happens when the variable is created, and
static local variables are only created once during the running of a program. Program 6-23,

"statNum is

" << statNum << endl;

which is a slight modification of Program 6-22, illustrates this point.

343

344

Chapter 6 Functions

Program 6-23

// This program shows that a static local variable is only
// initialized once.
#include <iostream>
using namespace std;

void showStatic(); // Function prototype

int main()

{

// Call the showStatic function five times.

for (int count = 0; count < 5; count++)

showStatic();

return 0;
}
//***
// Definition of function showStatic. *
// statNum is a static local variable. Its value is displayed *
// and then incremented just before the function returns. *

//***

void showStatic()

{
static int statNum = 5;
cout << "statNum is " << statNum << endl;
statNum++;

}

Program Output

statNum is 5
statNum is
statNum is
statNum is
statNum is

O 0 9 o

Even though the statement that defines statNum in line 24 initializes it to 5, the initializa-
tion does not happen each time the function is called. If it did, the variable would not be
able to retain its value between function calls.

Checkpoint
6.16 ~ What is the difference between a static local variable and a global variable?

6.17 What is the output of the following program?

#include <iostream>
using namespace std;

void myFunc(); // Function prototype

int main()

{

6.12 Default Arguments 345

int var = 100;

cout << var << endl;
myFunc () ;
cout << var << endl;
return 0;

}

// Definition of function myFunc
void myFunc()

{

int var = 50;

cout << var << endl;

}

6.18 What is the output of the following program?

#include <iostream>
using namespace std;

void showVar(); // Function prototype

int main()

{
for (int count = 0; count < 10; count++)
showVar();
return 0;
}

// Definition of function showVar
void showVar()

{
static int var = 10;
cout << var << endl;
var++;

}

—
6.12 Default Arguments

1 CONCEPT: Default arguments are passed to parameters automatically if no argument
is provided in the function call.

It’s possible to assign default arguments to function parameters. A default argument is
passed to the parameter when the actual argument is left out of the function call. The
default arguments are usually listed in the function prototype. Here is an example:

void showArea(double = 20.0, double = 10.0);

Default arguments are literal values or constants with an = operator in front of them,
appearing after the data types listed in a function prototype. Since parameter names are
optional in function prototypes, the example prototype could also be declared as

void showArea(double length = 20.0, double width = 10.0);

346

Chapter 6 Functions

®

In both example prototypes, the function showArea has two double parameters. The first
is assigned the default argument 20.0 and the second is assigned the default argument 10.0.
Here is the definition of the function:

void showArea(double length, double width)

{
double area = length * width;
cout << "The area is " << area << endl;

}

The default argument for length is 20.0 and the default argument for width is 10.0.
Because both parameters have default arguments, they may optionally be omitted in the
function call, as shown here:

showArea();

In this function call, both default arguments will be passed to the parameters. The param-
eter length will take the value 20.0 and width will take the value 10.0. The output of the
function will be

The area is 200

The default arguments are only used when the actual arguments are omitted from the func-
tion call. In the call below, the first argument is specified, but the second is omitted:

showArea(12.0);

The value 12.0 will be passed to length, while the default value 10.0 will be passed to
width. The output of the function will be

The area is 120

Of course, all the default arguments may be overridden. In the function call below, argu-
ments are supplied for both parameters:

showArea(12.0, 5.5);
The output of the function call above will be

The area is 66

NOTE: If a function does not have a prototype, default arguments may be specified in
the function header. The showArea function could be defined as follows:

void showArea(double length = 20.0, double width = 10.0)
{

double area = length * width;

cout << "The area is " << area << endl;

WARNING! A function’s default arguments should be assigned in the earliest occur-
rence of the function name. This will usually be the function prototype.

Program 6-24 uses a function that displays asterisks on the screen. Arguments are passed to
the function specifying how many columns and rows of asterisks to display. Default argu-
ments are provided to display one row of 10 asterisks.

6.12 Default Arguments

Program 6-24
// This program demonstrates default function arguments.
#include <iostream>

using namespace std;

// Function prototype with default arguments
void displayStars(int = 10, int = 1);

int main()

{
displayStars(); // Use default values for cols and rows.
cout << endl;
displayStars(5); // Use default value for rows.
cout << endl;
displayStars(7, 3); // Use 7 for cols and 3 for rows.
return 0;
}
//***
// Definition of function displayStars. *
// The default argument for cols is 10 and for rows is 1l.*
// This function displays a square made of asterisks. *

//***

void displayStars(int cols, int rows)

{
// Nested loop. The outer loop controls the rows
// and the inner loop controls the columns.
for (int down = 0; down < rows; down++)
{
for (int across = 0; across < cols; across++)
cout << "*x";
cout << endl;
}
}

Program Output

*kkxkkkkkx
*kkkk

*kkkkkx
*kkkkkx

*kkkkkkk

Although C++’s default arguments are very convenient, they are not totally flexible in their
use. When an argument is left out of a function call, all arguments that come after it must
be left out as well. In the displayStars function in Program 6-24, it is not possible to
omit the argument for cols without also omitting the argument for rows. For example, the
following function call would be illegal:

displayStars(, 3); // Illegal function call.

347

348 Chapter 6 Functions

It’s possible for a function to have some parameters with default arguments and some with-
out. For example, in the following function (which displays an employee’s gross pay), only
the last parameter has a default argument:

// Function prototype
void calcPay(int empNum, double payRate, double hours = 40.0);

// Definition of function calcPay
void calcPay(int empNum, double payRate, double hours)

{
double wages;
wages = payRate * hours;
cout << fixed << showpoint << setprecision(2);
cout << "Gross pay for employee number ";
cout << empNum << " is " << wages << endl;
}

When calling this function, arguments must always be specified for the first two param-
eters (empNum and payRate) since they have no default arguments. Here are examples of
valid calls:

calcPay (769, 15.75); // Use default arg for 40 hours
calcPay(142, 12.00, 20); // Specify number of hours

When a function uses a mixture of parameters with and without default arguments, the
parameters with default arguments must be defined last. In the calcPay function, hours
could not have been defined before either of the other parameters. The following prototypes
are illegal:

// Illegal prototype
void calcPay(int empNum, double hours = 40.0, double payRate);

// Illegal prototype
void calcPay(double hours = 40.0, int empNum, double payRate);

Here is a summary of the important points about default arguments:

® The value of a default argument must be a literal value or a named constant.

e When an argument is left out of a function call (because it has a default value), all the
arguments that come after it must be left out too.

e When a function has a mixture of parameters both with and without default argu-
ments, the parameters with default arguments must be declared last.

—
6.13 Using Reference Variables as Parameters

1 CONCEPT: When used as parameters, reference variables allow a function to access
the parameter’s original argument. Changes to the parameter are also
made to the argument.

Earlier you saw that arguments are normally passed to a function by value, and that the
function cannot change the source of the argument. C++ provides a special type of variable

6.13 Using Reference Variables as Parameters 349

called a reference variable that, when used as a function parameter, allows access to the
original argument.

A reference variable is an alias for another variable. Any changes made to the reference vari-
able are actually performed on the variable for which it is an alias. By using a reference vari-
able as a parameter, a function may change a variable that is defined in another function.

Reference variables are defined like regular variables, except you place an ampersand (&)
in front of the name. For example, the following function definition makes the parameter
refvar a reference variable:

void doubleNum(int &refVvar)

{

refvar *= 2;

O NOTE: The variable refvar is called “a reference to an int.”

This function doubles refvar by multiplying it by 2. Since refvar is a reference variable,
this action is actually performed on the variable that was passed to the function as an
argument. When prototyping a function with a reference variable, be sure to include the
ampersand after the data type. Here is the prototype for the doubleNum function:

void doubleNum(int &);

@ NOTE: Some programmers prefer not to put a space between the data type and the
ampersand. The following prototype is equivalent to the one above:

void doubleNum(int &);

@ NOTE: The ampersand must appear in both the prototype and the header of any func-
tion that uses a reference variable as a parameter. It does not appear in the function call.

Program 6-25 demonstrates how the doubleNum function works.

Program 6-25

// This program uses a reference variable as a function
// parameter.

#include <iostream>

using namespace std;

// Function prototype. The parameter is a reference variable.
void doubleNum(int &);

(program continues)

350 Chapter 6 Functions

Program 6-25 (continued)

int main()

{

int value = 4;

cout << "In main, value is " << value << endl;

cout << "Now calling doubleNum..." << endl;

doubleNum(value);

cout << "Now back in main. value is " << value << endl;

return 0;
}
//**
// Definition of doubleNum. *
// The parameter refVar is a reference variable. The value*
// in refvVar is doubled. *

//**

void doubleNum (int &refVar)

{

refvar *= 2;

Program Output

In main, value is 4
Now calling doubleNum...
Now back in main. value is 8

The parameter refvar in Program 6-25 “points” to the value variable in function main.
When a program works with a reference variable, it is actually working with the variable
it references, or points to. This is illustrated in Figure 6-15.

Figure 6-15

Reference Variable

Original Argument

4

Recall that function arguments are normally passed by value, which means a copy of the
argument’s value is passed into the parameter variable. When a reference parameter is used,
it is said that the argument is passed by reference.

Program 6-26 is a modification of Program 6-25. The function getNum has been added. The
function asks the user to enter a number, which is stored in userNum. userNum is a reference
to main’s variable value.

6.13 Using Reference Variables as Parameters 351

Program 6-26

// This program uses reference variables as function parameters.
#include <iostream>
using namespace std;

// Function prototypes. Both functions use reference variables
// as parameters.

void doubleNum(int &);

void getNum(int &);

int main()

{

int value;

// Get a number and store it in value.

getNum(value);

// Double the number stored in value.

doubleNum(value);

// Display the resulting number.

cout << "That value doubled is " << value << endl;

return 0;
}
//**
// Definition of getNum. *
// The parameter userNum is a reference variable. The user is *
// asked to enter a number, which is stored in userNum. *

//**

void getNum(int &userNum)

{

cout << "Enter a number: ";

cin >> userNum;
}
//***
// Definition of doubleNum. *
// The parameter refVar is a reference variable. The value *
// in refvar is doubled. *

//***

void doubleNum (int &refVvar)

{

refvar *= 2;

Program Output with Example Input Shown in Bold

Enter a number: 12 [Enter]
That value doubled is 24

352

Chapter 6 Functions

<&

NOTE: Only variables may be passed by reference. If you attempt to pass a nonvari-
able argument, such as a literal, a constant, or an expression, into a reference parameter,
an error will result. Using the doubleNum function as an example, the following state-
ments will generate an error.

doubleNum(5); // Error
doubleNum(userNum + 10); // Error

If a function uses more than one reference variable as a parameter, be sure to place the
ampersand before each reference variable name. Here is the prototype and definition for a
function that uses four reference variable parameters:

// Function prototype with four reference variables
// as parameters.
void addThree(int &, int &, int &, int &);

// Definition of addThree.
// All four parameters are reference variables.
void addThree(int &sum, int &numl, int &num2, int &num3)
{
cout << "Enter three integer values: ";
cin >> numl >> num2 >> num3;
sum = numl + num2 + num3;

WARNING! Don’t get carried away with using reference variables as function param-
eters. Any time you allow a function to alter a variable that’s outside the function, you
are creating potential debugging problems. Reference variables should only be used as
parameters when the situation requires them.

Checkpoint
6.19 What kinds of values may be specified as default arguments?

6.20 Write the prototype and header for a function called compute. The function
should have three parameters: an int, a double, and a long (not necessarily
in that order). The int parameter should have a default argument of 5, and
the long parameter should have a default argument of 65536. The double
parameter should not have a default argument.

6.21 Write the prototype and header for a function called calculate. The function
should have three parameters: an int, a reference to a double, and a long
(not necessarily in that order.) Only the int parameter should have a default
argument, which is 47.

6.22 What is the output of the following program?

#include <iostream>
using namespace std;

void test(int = 2, int = 4, int = 6);

6.23

6.13 Using Reference Variables as Parameters

int main()

{

test();

test(6);

test (3, 9);

test(1l, 5, 7);

return 0;
}
void test (int first, int second, int third)
{

first += 3;

second += 6;

third += 9;

cout << first << " " << second << " " << third << endl;
}

The following program asks the user to enter two numbers. What is the output
of the program if the user enters 12 and 14?

#include <iostream>
using namespace std;

void funcl(int &, int &);
void func2(int &, int &, int &);
void func3(int, int, int);

int main()

{
int x = 0, vy =0, z = 0;
cout << x << " " <K y << " " <K< z << endl;
funcl(x, y);
cout << x << " " << y << " " << z << endl;
func2(x, y, z);
cout << x << " " << y << " " << z << endl;
func3(x, y, z);
cout << x << " " <K<K y << " " << z << endl;
return 0;
}
void funcl(int &a, int &b)
{
cout << "Enter two numbers: ";
cin >> a >> b;
}
void func2(int &a, int &b, int &c)
{
b++;
c—=3
a=>b + c;
}
void func3(int a, int b, int c)
{

353

354 Chapter 6 Functions

- |
6.14 Overloading Functions

1 CONCEPT: Two or more functions may have the same name, as long as their
parameter lists are different.

Sometimes you will create two or more functions that perform the same operation, but
use a different set of parameters or parameters of different data types. For instance, in
Program 6-13 there is a square function that uses a double parameter. But, suppose you
also wanted a square function that works exclusively with integers, accepting an int as
its argument. Both functions would do the same thing: return the square of their argument.
The only difference is the data type involved in the operation. If you were to use both
these functions in the same program, you could assign a unique name to each function. For
example, the function that squares an int might be named squareInt, and the one that
squares a double might be named squareDouble. C++, however, allows you to overload
function names. That means you may assign the same name to multiple functions, as long
as their parameter lists are different. Program 6-27 uses two overloaded square functions.

Program 6-27

// This program uses overloaded functions.
#include <iostream>

#include <iomanip>

using namespace std;

// Function prototypes
int square(int);

double square(double);

int main()

{

int userInt;

double userFloat;

// Get an int and a double.

cout << fixed << showpoint << setprecision(2);

cout << "Enter an integer and a floating-point value: ";

cin >> userInt >> userFloat;

// Display their squares.

cout << "Here are their squares: ";

cout << square(userInt) << " and " << square(userFloat);

return 0;
}
//****'k******'k********'k******'k*'k******'k**************************
// Definition of overloaded function square. *
// This function uses an int parameter, number. It returns the *
// square of number as an int. *

//***

6.14 Overloading Functions 355

int square(int number)

{

return number * number;
}
//***
// Definition of overloaded function square. *
// This function uses a double parameter, number. It returns *
// the square of number as a double. *

//***

double square(double number)

{

return number * number;

Program Output with Example Input Shown in Bold

Enter an integer and a floating-point value: 12 4.2 [Enter]
Here are their squares: 144 and 17.64

Here are the headers for the square functions used in Program 6-27:
int square(int number)

double square(double number)

In C++, each function has a signature. The function signature is the name of the function
and the data types of the function’s parameters in the proper order. The square functions
in Program 6-27 would have the following signatures:

square(int)
square (double)

When an overloaded function is called, C++ uses the function signature to distinguish
it from other functions with the same name. In Program 6-27, when an int argument
is passed to square, the version of the function that has an int parameter is called.
Likewise, when a double argument is passed to square, the version with a double param-
eter is called.

Note that the function’s return value is not part of the signature. The following functions
could not be used in the same program because their parameter lists aren’t different.

int square(int number)

{
return number * number
}
double square(int number) // Wrong! Parameter lists must differ
{

return number * number

356

Chapter 6 Functions

Overloading is also convenient when there are similar functions that use a different num-
ber of parameters. For example, consider a program with functions that return the sum of
integers. One returns the sum of two integers, another returns the sum of three integers, and
yet another returns the sum of four integers. Here are their function headers:

int sum(int numl, int num2)
int sum(int numl, int num2, int num3)
int sum(int numl, int num2, int num3, int numé)

Because the number of parameters is different in each, they all may be used in the same pro-
gram. Program 6-28 is an example that uses two functions, each named calcweeklyPay,
to determine an employee’s gross weekly pay. One version of the function uses an int and
a double parameter, while the other version only uses a double parameter.

Program 6-28

// This program demonstrates overloaded functions to calculate
// the gross weekly pay of hourly paid or salaried employees.
#include <iostream>

#include <iomanip>

using namespace std;

// Function prototypes

void getChoice(char &);

double calcWeeklyPay(int, double);
double calcWeeklyPay(double);

int main()

{
char selection; // Menu selection
int worked; // Hours worked
double rate; // Hourly pay rate

double yearly; // Yearly salary

// Set numeric output formatting.
cout << fixed << showpoint << setprecision(2);

// Display the menu and get a selection.

cout << "Do you want to calculate the weekly pay of\n";
cout << "(H) an hourly paid employee, or \n";

cout << "(S) a salaried employee?\n";
getChoice(selection);

// Process the menu selection.
switch (selection)
{
// Hourly paid employee
case 'H' :
case 'h' : cout << "How many hours were worked? ";

6.14 Overloading Functions

cin >> worked;

cout << "What is the hourly pay rate? ";
cin >> rate;

cout << "The gross weekly pay is $";

cout << calcWeeklyPay(worked, rate) << endl;
break;

// Salaried employee

case 'S' :

case 's' : cout << "What is the annual salary? ";
cin >> yearly;
cout << "The gross weekly pay is $";
cout << calcWeeklyPay(yearly) << endl;

break;

}

return 0;
}
//***
// Definition of function getChoice. *
// The parameter letter is a reference to a char. *
// This function asks the user for an H or an S and returns *
// the validated input. *

//***

void getChoice(char & letter)

{
// Get the user's selection.
cout << "Enter your choice (H or S): ";
cin >> letter;

// Validate the selection.
while (letter != 'H' && letter != 'h' &&
letter != 'S' && letter != 's')

cout << "Please enter H or S: ";
cin >> letter;

//***
// Definition of overloaded function calcWeeklyPay.
// This function calculates the gross weekly pay of
// an hourly paid employee. The parameter hours holds the
// number of hours worked. The parameter payRate holds the

// hourly pay rate. The function returns the weekly salary.
//******'k***************'k************************************

L N

double calcWeeklyPay(int hours, double payRate)
{

(program continues)

357

358 Chapter 6 Functions

Program 6-28 (continued)

return hours * payRate;

}

//***
// Definition of overloaded function calcWeeklyPay. *
// This function calculates the gross weekly pay of *
// a salaried employee. The parameter holds the employee's *
// annual salary. The function returns the weekly salary. *

//***

double calcWeeklyPay(double annSalary)
{

return annSalary / 52;

Program Output with Example Input Shown in Bold
Do you want to calculate the weekly pay of

(H) an hourly paid employee, or

(S) a salaried employee?

Enter your choice (H or S): H [Enter]

How many hours were worked? 40 [Enter]

What is the hourly pay rate? 18.50 [Enter]

The gross weekly pay is $740.00

Program Output with Example Input Shown in Bold
Do you want to calculate the weekly pay of

(H) an hourly paid employee, or

(S) a salaried employee?

Enter your choice (H or S): S [Enter]

What is the annual salary? 68000.00 [Enter]

The gross weekly pay is $1307.69

—
6.15 The exit () Function

1 CONCEPT: The exit() function causes a program to terminate, regardless of which
function or control mechanism is executing.

A C++ program stops executing when the return statement in function main is encoun-
tered. When other functions end, however, the program does not stop. Control of the
program goes back to the place immediately following the function call. Sometimes, rare
circumstances make it necessary to terminate a program in a function other than main. To
accomplish this, the exit function is used.

When the exit function is called, it causes the program to stop, regardless of which func-
tion contains the call. Program 6-29 demonstrates its use.

6.15 The exit () Function

Program 6-29

// This program shows how the exit function causes a program
// to stop executing.

#include <iostream>

#include <cstdlib> // Needed for the exit function

using namespace std;

void function(); // Function prototype

int main()

{
function();
return 0;

//***

// This function simply demonstrates that exit can be used *

// to terminate a program from a function other than main. *
//**********************'k~k***********************************

void function()

{
cout << "This program terminates with the exit function.\n";
cout << "Bye!\n";
exit(0);
cout << "This message will never be displayed\n";
cout << "because the program has already terminated.\n";
}

Program Output

This program terminates with the exit function.

Bye!

To use the exit function, you must include the cstdlib header file. Notice the function
takes an integer argument. This argument is the exit code you wish the program to pass
back to the computer’s operating system. This code is sometimes used outside of the pro-
gram to indicate whether the program ended successfully or as the result of a failure. In
Program 6-29, the exit code zero is passed, which commonly indicates a successful exit. If
you are unsure which code to use with the exit function, there are two named constants,
EXIT_FAILURE and EXIT SUCCESS, defined in cstdlib for you to use. The constant
EXIT_FAILURE is defined as the termination code that commonly represents an unsuccess-
ful exit under the current operating system. Here is an example of its use:

exit(EXIT_FAILURE);

The constant EXIT_SUCCESS is defined as the termination code that commonly represents
a successful exit under the current operating system. Here is an example:

exit (EXIT_SUCCESS);

NOTE: Generally, the exit code is important only if you know it will be tested outside
the program. If it is not used, just pass zero, or EXIT SUCCESS.

359

360

Chapter 6 Functions

®

WARNING! The exit() function unconditionally shuts down your program.
Because it bypasses a program’s normal logical flow, you should use it with caution.

Checkpoint

6.24

6.25

What is the output of the following program?

#include <iostream>
#include <cstdlib>
using namespace std;

void showVals(double, double);
int main()
{
double x = 1.2, y = 4.5;
showVals(x, y);
return 0;
¥
void showVals(double pl, double p2)
{
cout << pl << endl;
exit(0);
cout << p2 << endl;
¥

What is the output of the following program?

#include <iostream>
using namespace std;

int manip(int);
int manip(int, int);
int manip(int, double);
int main()
{
int x = 2, y= 4, z;
double a = 3.1;

z = manip(x) + manip(x,
cout << z << endl;
return 0;

y) + manip(y,

;nt manip(int wval)
{
return val + val * 2;
}
int manip(int vall, int val2)
{
return (vall + val2) * 2;
}
int manip(int vall, double val2)
{

return vall * static_cast<int>(val2);

a);

—

6.16 Stubs and Drivers

6.16 Stubs and Drivers

|

Stubs and drivers are very helpful tools for testing and debugging programs that use func-
tions. They allow you to test the individual functions in a program, in isolation from the
parts of the program that call the functions.

A stub is a dummy function that is called instead of the actual function it represents. It
usually displays a test message acknowledging that it was called, and nothing more. For
example, if a stub were used for the showFees function in Program 6-10 (the modular
health club membership program), it might look like this:

void showFees(double memberRate, int months)

{
cout << "The showFees function was called with "
<< "the following arguments:\n"
<< "memberRate: " << memberRate << endl
<< "months: " << months << endl;
}

The following is an example output of the program if it were run with the stub instead of
the actual showFees function. (A version of the health club program using this stub func-
tion is available from the book’s companion Web site at www.pearsonhighered.com/gaddis.
The program is named HealthClubWithStub.cpp.)

Health Club Membership Menu

Standard Adult Membership
Child Membership
Senior Citizen Membership
Quit the Program

S w N

Enter your choice: 1 [Enter]

For how many months? 4 [Enter]

The showFees function was called with the following arguments:
memberRate: 40.00

months: 4

Health Club Membership Menu

Standard Adult Membership
Child Membership
Senior Citizen Membership
Quit the Program

= w N =

Enter your choice: 4 [Enter]

As you can see, by replacing an actual function with a stub, you can concentrate your test-
ing efforts on the parts of the program that call the function. Primarily, the stub allows
you to determine whether your program is calling a function when you expect it to, and
to confirm that valid values are being passed to the function. If the stub represents a func-
tion that returns a value, then the stub should return a test value. This helps you confirm
that the return value is being handled properly. When the parts of the program that call a
function are debugged to your satisfaction, you can move on to testing and debugging the
actual functions themselves. This is where drivers become useful.

361

www.pearsonhighered.com/gaddis

362

Chapter 6 Functions

A driver is a program that tests a function by simply calling it. If the function accepts argu-
ments, the driver passes test data. If the function returns a value, the driver displays the
return value on the screen. This allows you to see how the function performs in isolation
from the rest of the program it will eventually be part of. Program 6-30 shows a driver for
testing the showFees function in the health club membership program.

Program 6-30

// This program is a driver for testing the showFees function.
#include <iostream>
using namespace std;

// Prototype
void showFees(double, int);

int main()
{
// Constants for membership rates
const double ADULT = 40.0;
const double SENIOR = 30.0;
const double CHILD = 20.0;

// Perform a test for adult membership.

cout << "Testing an adult membership...\n"
<< "Calling the showFees function with arguments "
<< ADULT << " and 10.\n";

showFees (ADULT, 10);

// Perform a test for senior citizen membership.

cout << "\nTesting a senior citizen membership...\n"
<< "Calling the showFees function with arguments "
<< SENIOR << " and 10.\n";

showFees (SENIOR, 10);

// Perform a test for child membership.

cout << "\nTesting a child membership...\n"
<< "\nCalling the showFees function with arguments "
<< CHILD << " and 10.\n";

showFees (CHILD, 10);

return 0;

//**

// Definition of function showFees. The memberRate parameter holds*
// the monthly membership rate and the months parameter holds the *

// number of months. The function displays the total charges. *
//**

void showFees(double memberRate, int months)

{

cout << "The total charges are §$"
<< (memberRate * months) << endl;

Review Questions and Exercises

Program Output

Testing an adult membership...
Calling the showFees function with arguments 40 and 10.
The total charges are $400

Testing a senior citizen membership...
Calling the showFees function with arguments 30 and 10.
The total charges are $300

Testing a child membership...

Calling the showFees function with arguments 20 and 10.
The total charges are $200

As shown in Program 6-30, a driver can be used to thoroughly test a function. It can repeat-
edly call the function with different test values as arguments. When the function performs
as desired, it can be placed into the actual program it will be part of.

Case Study: See High Adventure Travel Agency Part 1 Case Study on the book’s companion
Web site at www.pearsonhighered.com/gaddis.

Review Questions and Exercises
Short Answer

1. Why do local variables lose their values between calls to the function in which they are
defined?

2. What is the difference between an argument and a parameter variable?

3. Where do you define parameter variables?

N

. If you are writing a function that accepts an argument and you want to make sure the
function cannot change the value of the argument, what do you do?

W

. When a function accepts multiple arguments, does it matter in what order the argu-
ments are passed?

. How do you return a value from a function?
. What is the advantage of breaking your application’s code into several small procedures?

. How would a static local variable be useful?

O 0] O\

. Give an example where passing an argument by reference would be useful.

Fill-in-the-Blank

10. The is the part of a function definition that shows the function name, return
type, and parameter list.

11. If a function doesn’t return a value, the word will appear as its return type.

12. Either a function’s or its must precede all calls to the function.

13. Values that are sent into a function are called

363

www.pearsonhighered.com/gaddis

364

Chapter 6 Functions

14.
15.

16.

17.

18.

19.

20.

21.

22.
23.
24.

25.

26.
27.

28.

29.
30.
31.

Special variables that hold copies of function arguments are called

When only a copy of an argument is passed to a function, it is said to be passed by

A(n) eliminates the need to place a function definition before all calls to the
function.
A(n) variable is defined inside a function and is not accessible outside the
function.

variables are defined outside all functions and are accessible to any function
within their scope.

variables provide an easy way to share large amounts of data among all the
functions in a program.

Unless you explicitly initialize global variables, they are automatically initialized to

If a function has a local variable with the same name as a global variable, only the
variable can be seen by the function.

local variables retain their value between function calls.
The statement causes a function to end immediately.

arguments are passed to parameters automatically if no argument is pro-
vided in the function call.

When a function uses a mixture of parameters with and without default arguments,
the parameters with default arguments must be defined

The value of a default argument must be a(n)

When used as parameters, variables allow a function to access the param-
eter’s original argument.

Reference variables are defined like regular variables, except there is a(n) in
front of the name.

Reference variables allow arguments to be passed by
The function causes a program to terminate.

Two or more functions may have the same name, as long as their are different.

Algorithm Workbench

32.

33.

34.

Examine the following function header, then write an example call to the function.
void showValue(int quantity)

The following statement calls a function named half. The half function returns a
value that is half that of the argument. Write the function.

result = half (number);
A program contains the following function.

int cube(int num)

{

return num * num * num;

3S.

36.

37.

Review Questions and Exercises

Write a statement that passes the value 4 to this function and assigns its return value
to the variable result.

Write a function named timesTen that accepts an argument. When the function is
called, it should display the product of its argument multiplied times 10.

A program contains the following function.

void display(int argl, double arg2, char arg3)

{
cout << "Here are the values: "
<< argl << "N < argz << mom
<< arg3 << endl;
}

Write a statement that calls the procedure and passes the following variables to it:

int age;
double income;
char initial;

Werite a function named getNumber that uses a reference parameter variable to accept
an integer argument. The function should prompt the user to enter a number in the
range of 1 through 100. The input should be validated and stored in the parameter
variable.

True or False

38.
39.
40.
41.

42.

43.

44.
45.
46.
47.
48.
49.
50.
S1.

S2.

53.

T F Functions should be given names that reflect their purpose.
T F Function headers are terminated with a semicolon.

T F Function prototypes are terminated with a semicolon.
T F

If other functions are defined before main, the program still starts executing
at function main.

=
S|

When a function terminates, it always branches back to main, regardless of
where it was called from.

—
]

Arguments are passed to the function parameters in the order they appear in
the function call.

The scope of a parameter is limited to the function which uses it.

Changes to a function parameter always affect the original argument as well.
In a function prototype, the names of the parameter variables may be left out.
Many functions may have local variables with the same name.

Overuse of global variables can lead to problems.

Static local variables are not destroyed when a function returns.

All static local variables are initialized to -1 by default.

L = S R R R R,
5ol 55| mgl mgl Rel el lAml gl

Initialization of static local variables only happens once, regardless of how
many times the function in which they are defined is called.

—
]

When a function with default arguments is called and an argument is left out,
all arguments that come after it must be left out as well.

T F It is not possible for a function to have some parameters with default argu-
ments and some without.

365

366 Chapter 6 Functions

>

VideoNote
Solving the
Markup
Problem

54. T F The exit function can only be called from main.

55. T F A stubis a dummy function that is called instead of the actual function it
represents.
Find the Errors

Each of the following functions has errors. Locate as many errors as you can.

56. void total(int valuel, value2, value3)

‘ return valuel + value2 + value3;
}
57. double average(int valuel, int value2, int value3)
{
double average;
average = valuel + value2 + value3 / 3;
}
58. void area(int length = 30, int width)
{
return length * width;
}
59. void getvalue(int value&)
{
cout << "Enter a value: ";
cin >> valueé&;
}

60. (Owverloaded functions)
int getvalue()

{
int inputValue;
cout << "Enter an integer: ";
cin >> inputValue;
return inputValue;
}
double getValue()
{
double inputValue;
cout << "Enter a floating-point number: ";
cin >> inputValue;
return inputValue;
}

Programming Challenges

1. Markup

Write a program that asks the user to enter an item’s wholesale cost and its markup
percentage. It should then display the item’s retail price. For example:

e If an item’s wholesale cost is 5.00 and its markup percentage is 100%, then the
item’s retail price is 10.00.

Programming Challenges

e If an item’s wholesale cost is 5.00 and its markup percentage is 50%, then the item’s
retail price is 7.50.

The program should have a function named calculateRetail that receives the
wholesale cost and the markup percentage as arguments and returns the retail price
of the item.

Input Validation: Do not accept negative values for either the wholesale cost of the
item or the markup percentage.

. Rectangle Area—Complete the Program

If you have downloaded this book’s source code from the companion Web site, you
will find a partially written program named AreaRectangle.cpp in the Chapter 06
folder. (The companion Web site is at www.pearsonhighered.com/gaddis.) Your job is
to complete the program. When it is complete, the program will ask the user to enter
the width and length of a rectangle and then display the rectangle’s area. The program
calls the following functions, which have not been written:

e getLength — This function should ask the user to enter the rectangle’s length and
then return that value as a double.

e getwidth — This function should ask the user to enter the rectangle’s width and then
return that value as a double.

e getArea — This function should accept the rectangle’s length and width as argu-
ments and return the rectangle’s area. The area is calculated by multiplying the
length by the width.

e displayData — This function should accept the rectangle’s length, width, and area
as arguments and display them in an appropriate message on the screen.

. Winning Division
Write a program that determines which of a company’s four divisions (Northeast,

Southeast, Northwest, and Southwest) had the greatest sales for a quarter. It should
include the following two functions, which are called by main.

® double getSales() is passed the name of a division. It asks the user for a division’s
quarterly sales figure, validates the input, then returns it. It should be called once for
each division.

® void findHighest() is passed the four sales totals. It determines which is the larg-
est and prints the name of the high grossing division, along with its sales figure.

Input Validation: Do not accept dollar amounts less than $0.00.

. Safest Driving Area

Werite a program that determines which of five geographic regions within a major city
(north, south, east, west, and central) had the fewest reported automobile accidents last
year. It should have the following two functions, which are called by main.

® int getNumAccidents() is passed the name of a region. It asks the user for the
number of automobile accidents reported in that region during the last year, vali-
dates the input, then returns it. It should be called once for each city region.

e void findLowest () is passed the five accident totals. It determines which is the
smallest and prints the name of the region, along with its accident figure.

Input Validation: Do not accept an accident number that is less than 0.

367

www.pearsonhighered.com/gaddis

368

Chapter 6 Functions

. Falling Distance

When an object is falling because of gravity, the following formula can be used to
determine the distance the object falls in a specific time period:

d =gt

The variables in the formula are as follows: d is the distance in meters, g is 9.8, and #
is the amount of time, in seconds, that the object has been falling.

Write a function named fallingDistance that accepts an object’s falling time (in
seconds) as an argument. The function should return the distance, in meters, that the
object has fallen during that time interval. Write a program that demonstrates the
function by calling it in a loop that passes the values 1 through 10 as arguments and
displays the return value.

. Kinetic Energy

In physics, an object that is in motion is said to have kinetic energy. The following
formula can be used to determine a moving object’s kinetic energy:

KE =Yy mv?

The variables in the formula are as follows: KE is the kinetic energy, 7 is the object’s
mass in kilograms, and v is the object’s velocity, in meters per second.

Write a function named kineticEnergy that accepts an object’s mass (in kilograms)
and velocity (in meters per second) as arguments. The function should return the
amount of kinetic energy that the object has. Demonstrate the function by calling it in
a program that asks the user to enter values for mass and velocity.

. Celsius Temperature Table

The formula for converting a temperature from Fahrenheit to Celsius is

5
C=3(F-32)

where F is the Fahrenheit temperature and C is the Celsius temperature. Write a func-
tion named celsius that accepts a Fahrenheit temperature as an argument. The func-
tion should return the temperature, converted to Celsius. Demonstrate the function by
calling it in a loop that displays a table of the Fahrenheit temperatures 0 through 20
and their Celsius equivalents.

. Coin Toss

Write a function named coinToss that simulates the tossing of a coin. When you call
the function, it should generate a random number in the range of 1 through 2. If the
random number is 1, the function should display “heads.” If the random number is 2,
the function should display “tails.” Demonstrate the function in a program that asks
the user how many times the coin should be tossed and then simulates the tossing of
the coin that number of times.

. Present Value

Suppose you want to deposit a certain amount of money into a savings account and
then leave it alone to draw interest for the next 10 years. At the end of 10 years you
would like to have $10,000 in the account. How much do you need to deposit today to

10.

ll,

Programming Challenges

make that happen? You can use the following formula, which is known as the present
value formula, to find out:

_F
(1 +r)"
The terms in the formula are as follows:

P =

e P is the present value, or the amount that you need to deposit today.

o Fis the future value that you want in the account. (In this case, F is $10,000.)
e 7 is the annual interest rate.

e 7 is the number of years that you plan to let the money sit in the account.

Werite a program that has a function named presentvalue that performs this calcula-
tion. The function should accept the future value, annual interest rate, and number of
years as arguments. It should return the present value, which is the amount that you
need to deposit today. Demonstrate the function in a program that lets the user experi-
ment with different values for the formula’s terms.

Future Value

Suppose you have a certain amount of money in a savings account that earns compound
monthly interest, and you want to calculate the amount that you will have after a spe-
cific number of months. The formula, which is known as the future value formula, is:

F=P X (1+i)f
The terms in the formula are as follows:

F is the future value of the account after the specified time period.
P is the present value of the account.

i is the monthly interest rate.

t is the number of months.

Write a program that prompts the user to enter the account’s present value, monthly
interest rate, and the number of months that the money will be left in the account. The
program should pass these values to a function named futurevalue that returns the
future value of the account, after the specified number of months. The program should
display the account’s future value.

Lowest Score Drop

Werite a program that calculates the average of a group of test scores, where the lowest
score in the group is dropped. It should use the following functions:

® void getScore () should ask the user for a test score, store it in a reference param-
eter variable, and validate it. This function should be called by main once for each
of the five scores to be entered.

¢ void calcAverage() should calculate and display the average of the four highest
scores. This function should be called just once by main and should be passed the
five scores.

e int findLowest() should find and return the lowest of the five scores passed to it.
It should be called by calcaAverage, which uses the function to determine which of
the five scores to drop.

Input Validation: Do not accept test scores lower than 0 or higher than 100.

370

Chapter 6 Functions

12. Star Search

13.

14.

A particular talent competition has five judges, each of whom awards a score between
0 and 10 to each performer. Fractional scores, such as 8.3, are allowed. A performer’s
final score is determined by dropping the highest and lowest score received, then aver-
aging the three remaining scores. Write a program that uses this method to calculate a
contestant’s score. It should include the following functions:

® void getJudgeData() should ask the user for a judge’s score, store it in a reference
parameter variable, and validate it. This function should be called by main once for
each of the five judges.

® void calcScore() should calculate and display the average of the three scores that
remain after dropping the highest and lowest scores the performer received. This
function should be called just once by main and should be passed the five scores.

The last two functions, described below, should be called by calcscore, which uses
the returned information to determine which of the scores to drop.

® int findLowest () should find and return the lowest of the five scores passed to it.
® int findHighest() should find and return the highest of the five scores passed to it.

Input Validation: Do not accept judge scores lower than 0 or higher than 10.

Days Out

Write a program that calculates the average number of days a company’s employees
are absent. The program should have the following functions:

e A function called by main that asks the user for the number of employees in
the company. This value should be returned as an int. (The function accepts no
arguments.)

e A function called by main that accepts one argument: the number of employees in
the company. The function should ask the user to enter the number of days each
employee missed during the past year. The total of these days should be returned as
an int.

e A function called by main that takes two arguments: the number of employees in
the company and the total number of days absent for all employees during the year.
The function should return, as a double, the average number of days absent. (This
function does not perform screen output and does not ask the user for input.)

Input Validation: Do not accept a number less than 1 for the number of employees. Do
not accept a negative number for the days any employee missed.

Order Status

The Middletown Wholesale Copper Wire Company sells spools of copper wiring for
$100 each. Write a program that displays the status of an order. The program should
have a function that asks for the following data:

e The number of spools ordered.
e The number of spools in stock.
e Whether there are special shipping and handling charges.

(Shipping and handling is normally $10 per spool.) If there are special charges, the
program should ask for the special charges per spool.

15.

16.

Programming Challenges

The gathered data should be passed as arguments to another function that displays

e The number of spools ready to ship from current stock.

e The number of spools on backorder (if the number ordered is greater than what is
in stock).

e Subtotal of the portion ready to ship (the number of spools ready to ship times
$100).

e Total shipping and handling charges on the portion ready to ship.

e Total of the order ready to ship.

The shipping and handling parameter in the second function should have the default
argument 10.00.

Input Validation: Do not accept numbers less than 1 for spools ordered. Do not accept
a number less than 0 for spools in stock or shipping and handling charges.

Overloaded Hospital

Write a program that computes and displays the charges for a patient’s hospital stay.
First, the program should ask if the patient was admitted as an in-patient or an out-
patient. If the patient was an in-patient, the following data should be entered:

e The number of days spent in the hospital

e The daily rate

e Hospital medication charges

e Charges for hospital services (lab tests, etc.)

The program should ask for the following data if the patient was an out-patient:

e Charges for hospital services (lab tests, etc.)
e Hospital medication charges

The program should use two overloaded functions to calculate the total charges. One
of the functions should accept arguments for the in-patient data, while the other func-
tion accepts arguments for out-patient information. Both functions should return the
total charges.

Input Validation: Do not accept negative numbers for any data.

Population

In a population, the birth rate is the percentage increase of the population due to births,
and the death rate is the percentage decrease of the population due to deaths. Write a
program that displays the size of a population for any number of years. The program
should ask for the following data:

The starting size of a population
The annual birth rate

The annual death rate

The number of years to display

Werite a function that calculates the size of the population for a year. The formula is
N =P + BP - DP

where N is the new population size, P is the previous population size, B is the birth rate,
and D is the death rate.

371

372

Chapter 6 Functions

17.

18.

19.

20.

Input Validation: Do not accept numbers less than 2 for the starting size. Do not accept
negative numbers for birth rate or death rate. Do not accept numbers less than 1 for
the number of years.

Transient Population

Modify Programming Challenge 16 to also consider the effect on population caused by
people moving into or out of a geographic area. Given as input a starting population
size, the annual birth rate, the annual death rate, the number of individuals who typi-
cally move into the area each year, and the number of individuals who typically leave
the area each year, the program should project what the population will be numyears
from now. You can either prompt the user to input a value for numYears, or you can
set it within the program.

Input Validation: Do not accept numbers less than 2 for the starting size. Do not accept
negative numbers for birth rate, death rate, arrivals, or departures.

Paint Job Estimator

A painting company has determined that for every 110 square feet of wall space,
one gallon of paint and eight hours of labor will be required. The company charges
$25.00 per hour for labor. Write a modular program that allows the user to enter
the number of rooms that are to be painted and the price of the paint per gallon. It
should also ask for the square feet of wall space in each room. It should then display
the following data:

e The number of gallons of paint required
e The hours of labor required

e The cost of the paint

e The labor charges

® The total cost of the paint job

Input validation: Do not accept a value less than 1 for the number of rooms. Do not
accept a value less than $10.00 for the price of paint. Do not accept a negative value
for square footage of wall space.

Using Files—Hospital Report

Modify Programming Challenge 15, Overloaded Hospital, to write the report it creates
to a file.

Stock Profit

The profit from the sale of a stock can be calculated as follows:
Profit = ((NS X SP) — SC) — ((NS X PP) + PC)

where NS is the number of shares, SP is the sale price per share, SC is the sale commis-
sion paid, PP is the purchase price per share, and PC is the purchase commission paid.
If the calculation yields a positive value, then the sale of the stock resulted in a profit.
If the calculation yields a negative number, then the sale resulted in a loss.

Write a function that accepts as arguments the number of shares, the purchase price per
share, the purchase commission paid, the sale price per share, and the sale commission
paid. The function should return the profit (or loss) from the sale of stock.

"

Programming Challenges 373

Demonstrate the function in a program that asks the user to enter the necessary data
and displays the amount of the profit or loss.

21. Multiple Stock Sales

Use the function that you wrote for Programming Challenge 20 (Stock Profit) in a
program that calculates the total profit or loss from the sale of multiple stocks. The
program should ask the user for the number of stock sales and the necessary data for
each stock sale. It should accumulate the profit or loss for each stock sale and then
display the total

22. isPrime Function

A prime number is a number that is only evenly divisible by itself and 1. For example,
the number 5 is prime because it can only be evenly divided by 1 and 5. The number 6,
however, is not prime because it can be divided evenly by 1, 2, 3, and 6.

Werite a function name isPrime, which takes an integer as an argument and returns

true if the argument is a prime number, or false otherwise. Demonstrate the function
in a complete program.

TIP: Recall that the % operator divides one number by another, and returns the
remainder of the division. In an expression such as numl % num2, the % operator will
return O if numl is evenly divisible by num2.

23. Prime Number List

Use the isPrime function that you wrote in Programming Challenge 22 in a program
that stores a list of all the prime numbers from 1 through 100 in a file.

24. Rock, Paper, Scissors Game

Write a program that lets the user play the game of Rock, Paper, Scissors against the
computer. The program should work as follows.

1. When the program begins, a random number in the range of 1 through 3 is gener-
ated. If the number is 1, then the computer has chosen rock. If the number is 2, then
the computer has chosen paper. If the number is 3, then the computer has chosen
scissors. (Don’t display the computer’s choice yet.)

2. The user enters his or her choice of “rock”, “paper”, or “scissors” at the keyboard.

(You can use a menu if you prefer.)

The computer’s choice is displayed.

4. A winner is selected according to the following rules:

(O8]

e If one player chooses rock and the other player chooses scissors, then rock wins.
(The rock smashes the scissors.)

e If one player chooses scissors and the other player chooses paper, then scissors
wins. (Scissors cuts paper.)

o If one player chooses paper and the other player chooses rock, then paper wins.
(Paper wraps rock.)

e If both players make the same choice, the game must be played again to deter-
mine the winner.

Be sure to divide the program into functions that perform each major task.

374

Chapter 6 Functions

Group Project

25. Travel Expenses

This program should be designed and written by a team of students. Here are some
suggestions:

One student should design function main, which will call the other functions in the pro-
gram. The remainder of the functions will be designed by other members of the team.
The requirements of the program should be analyzed so each student is given about
the same workload.

The parameters and return types of each function should be decided in advance.
Stubs and drivers should be used to test and debug the program.

The program can be implemented as a multifile program, or all the functions can be
cut and pasted into the main file.

Here is the assignment: Write a program that calculates and displays the total travel
expenses of a businessperson on a trip. The program should have functions that ask
for and return the following:

The total number of days spent on the trip

The time of departure on the first day of the trip, and the time of arrival back home
on the last day of the trip

The amount of any round-trip airfare

The amount of any car rentals

Miles driven, if a private vehicle was used. Calculate the vehicle expense as $0.27
per mile driven

Parking fees (The company allows up to $6 per day. Anything in excess of this must
be paid by the employee.)

Taxi fees, if a taxi was used anytime during the trip (The company allows up to $10
per day, for each day a taxi was used. Anything in excess of this must be paid by the
employee.)

Conference or seminar registration fees

Hotel expenses (The company allows up to $90 per night for lodging. Anything in
excess of this must be paid by the employee.)

The amount of each meal eaten. On the first day of the trip, breakfast is allowed
as an expense if the time of departure is before 7 a.m. Lunch is allowed if the time
of departure is before 12 noon. Dinner is allowed on the first day if the time of
departure is before 6 p.m. On the last day of the trip, breakfast is allowed if the
time of arrival is after 8 a.m. Lunch is allowed if the time of arrival is after 1 p.m.
Dinner is allowed on the last day if the time of arrival is after 7 p.m. The program
should only ask for the amounts of allowable meals. (The company allows up to $9
for breakfast, $12 for lunch, and $16 for dinner. Anything in excess of this must be
paid by the employee.)

The program should calculate and display the total expenses incurred by the busi-
nessperson, the total allowable expenses for the trip, the excess that must be reim-
bursed by the businessperson, if any, and the amount saved by the businessperson if
the expenses were under the total allowed.

Input Validation: Do not accept negative numbers for any dollar amount or for miles
driven in a private vehicle. Do not accept numbers less than 1 for the number of days.
Only accept valid times for the time of departure and the time of arrival.

o
(NH]
—
oo
<
I
)

7.1
7.2
7.3
7.4
7.5
7.6
7.7

Arrays Hold Multiple Values 7.8 Arrays as Function Arguments
Accessing Array Elements 7.9 Two-Dimensional Arrays

No Bounds Checking in C++ 7.10 Arrays with Three or More Dimensions
Array Initialization 7.11 Focus on Problem Solving and

The Range-Based for Loop Program Design: A Case Study
Processing Array Contents 7.12 If You Plan to Continue in

Focus on Software Engineering: Using Computer Science: Introduction
Parallel Arrays to the STL vector

Arrays Hold Multiple Values

CONCEPT: An array allows you to store and work with multiple values of the same

data type.

The variables you have worked with so far are designed to hold only one value at a time.
Each of the variable definitions in Figure 7-1 causes only enough memory to be reserved to
hold one value of the specified data type.

Figure 7-1

int count; Enough memory for 1 int

float price; Enough memoryfor1 float

56.981

char letter; Enough memory for1 char

375

376

Chapter 7 Arrays

Figure

An array works like a variable that can store a group of values, all of the same type. The
values are stored together in consecutive memory locations. Here is a definition of an array
of integers:

int days[61];

The name of this array is days. The number inside the brackets is the array’s size declarator.
It indicates the number of elements, or values, the array can hold. The days array can store
six elements, each one an integer. This is depicted in Figure 7-2.

7-2

days array: enough memory for six int values

Element0 Element1 Element2 Element3 Element4 Element5

An array’s size declarator must be a constant integer expression with a value greater than
zero. It can be either a literal, as in the previous example, or a named constant, as shown
in the following:

const int NUM DAYS = 6;
int days[NUM DAYS];

Arrays of any data type can be defined. The following are all valid array definitions:

float temperatures[100]; // Array of 100 floats
string names[10]; // Array of 10 string objects
long units[50]; // Array of 50 long integers
double sizes[1200]; // Array of 1200 doubles

Memory Requirements of Arrays

The amount of memory used by an array depends on the array’s data type and the number
of elements. The hours array, defined here, is an array of six shorts.

short hours[6];

On a typical PC, a short uses two bytes of memory, so the hours array would occupy 12
bytes. This is shown in Figure 7-3.

Figure 7-3

hours array: Each element uses two bytes

BN EEEEE
|

Element0 Element 1 Element2 Element3 Element4 Element5

—_— - - -

7.2 Accessing Array Elements

The size of an array can be calculated by multiplying the size of an individual element by
the number of elements in the array. Table 7-1 shows the typical sizes of various arrays.

Table 7-1
Array Definition Number of Elements Size of Each Element Size of the Array
char letters[25]; 25 1 byte 25 bytes
short rings[100]; 100 2 bytes 200 bytes
int miles[84]; 84 4 bytes 336 bytes
float temp[12]; 12 4 bytes 48 bytes
double distance[1000]; 1000 8 bytes 8000 bytes
—

7.2 Accessing Array Elements

1 CONCEPT: The individual elements of an array are assigned unique subscripts.
These subscripts are used to access the elements.

Even though an entire array has only one name, the elements may be accessed and used as
individual variables. This is possible because each element is assigned a number known as
a subscript. A subscript is used as an index to pinpoint a specific element within an array.
The first element is assigned the subscript 0, the second element is assigned 1, and so forth.
The six elements in the array hours would have the subscripts 0 through 5. This is shown
in Figure 7-4.

Figure 7-4

Subscripts
0 1

: :

- N
—
—
<—

0 NOTE: Subscript numbering in C++ always starts at zero. The subscript of the last
element in an array is one less than the total number of elements in the array. This
means that in the array shown in Figure 7-4, the element hours[6] does not exist.
hours[5] is the last element in the array.

Each element in the hours array, when accessed by its subscript, can be used as a short
variable. Here is an example of a statement that stores the number 20 in the first element
of the array:

hours[0] = 20;

377

378 Chapter 7 Arrays

O NOTE: The expression hours[0] is pronounced “hours sub zero.” You would read
this assignment statement as “hours sub zero is assigned twenty.”

Figure 7-5 shows the contents of the array hours after the statement assigns 20 to hours[0].

Figure 7-5

hours([0] hours[1l] Thours[2] hours[3] hours[4] hours([5]

! b l l 1

0 NOTE: Because values have not been assigned to the other elements of the array, ques-

tion marks will be used to indicate that the contents of those elements are unknown. If
an array is defined globally, all of its elements are initialized to zero by default. Local
arrays, however, have no default initialization value.

The following statement stores the integer 30 in hours[3].
hours[3] = 30;

Figure 7-6 shows the contents of the array after the previous statement executes:

Figure 7-6

hours([0] hours[1l] Thours[2] hours[3] hours[4] hours([5]

20 ? ? 30 ? ?

@ NOTE: Understand the difference between the array size declarator and a subscript.

The number inside the brackets of an array definition is the size declarator. The number
inside the brackets of an assignment statement or any statement that works with the
contents of an array is a subscript.

Inputting and Outputting Array Contents

Array elements may be used with the cin and cout objects like any other variable. Program
7-1 shows the array hours being used to store and display values entered by the user.

7.2 Accessing Array Elements

Program 7-1

// This program asks for the number of hours worked

// by six employees. It stores the values in an array.
#include <iostream>

using namespace std;

int main()

{
const int NUM_EMPLOYEES = 6;
int hours [NUM_EMPLOYEES];

// Get the hours worked by each employee.
cout << "Enter the hours worked by "
<< NUM_EMPLOYEES << " employees: ";

cin >> hours[0];

cin >> hours[1l];

cin >> hours[2];

cin >> hours[3];

cin >> hours[4];

cin >> hours[5];

// Display the values in the array.
cout << "The hours you entered are:”;
cout << " " << hours[0];

cout << " " << hours[l];

cout << " " << hours[2];

cout << " " << hours[3];

cout << " " << hours[4];

cout << " " << hours[5] << endl;
return 0;

Program Output with Example Input Shown in Bold

Enter the hours worked by 6 employees: 20 12 40 30 30 15 [Enter]
The hours you entered are: 20 12 40 30 30 15

Figure 7-7 shows the contents of the array hours with the values entered by the user in the
example output above.

Figure 7-7

hours([0] hours[1l] Thours[2] hours[3] hours[4] hours([5]

1 b : : :

20 12 40 30 30 15

379

380 Chapter 7 Arrays

>

VideoNote
Accessing
Array
Elements
With a Loop

Even though the size declarator of an array definition must be a constant or a literal, sub-
script numbers can be stored in variables. This makes it possible to use a loop to “cycle
through” an entire array, performing the same operation on each element. For example,
look at the following code:

const int ARRAY SIZE = 5;
int numbers[ARRAY SIZE];

for (int count = 0; count < ARRAY SIZE; count++)
numbers[count] = 99;

This code first defines a constant int named ARRAY SIZE and initializes it with the value 5.
Then it defines an int array named numbers, using ARRAY SIZE as the size declarator. As
a result, the numbers array will have five elements. The for loop uses a counter variable
named count. This loop will iterate five times, and during the loop iterations the count
variable will take on the values 0 through 4.

Notice that the statement inside the loop uses the count variable as a subscript. It assigns
99 to numbers[count]. During the first iteration, 99 is assigned to numbers[0]. During
the next iteration, 99 is assigned to numbers|[1]. This continues until 99 has been assigned
to all of the array’s elements. Figure 7-8 illustrates that the loop’s initialization, test, and
update expressions have been written so the loop starts and ends the counter variable with
valid subscript values (0 through 4). This ensures that only valid subscripts are used in the
body of the loop.

Figure 7-8

The loop ends when the
The variable count starts at 0, variable count reaches 5, which
which is the first valid subscript value. is the first invalid subscript value.

\

for (count = 0; count < ARRAY SIZE; count++)
numbers[count] = 99; T

The variable count is
incremented after
each iteration.

Program 7-1 could be simplified by using two for loops: one for inputting the values
into the array and another for displaying the contents of the array. This is shown in
Program 7-2.

Program 7-2

// This program asks for the number of hours worked

// by six employees. It stores the values in an array.
#include <iostream>

using namespace std;

7.2 Accessing Array Elements 381

int main()

{

const int NUM_EMPLOYEES = 6; // Number of employees
int hours[NUM_EMPLOYEES]; // Each employee's hours
int count; // Loop counter

// Input the hours worked.
for (count = 0; count < NUM_EMPLOYEES; count++)

{

cout << “Enter the hours worked by employee ”
<< (count + 1) << ": ";
cin >> hours[count];
¥

// Display the contents of the array.

cout << "The hours you entered are:";

for (count = 0; count < NUM_EMPLOYEES; count++)
cout << " " << hours[count];

cout << endl;

return 0;

Program Output with Example Input Shown in Bold

Enter
Enter
Enter
Enter
Enter
Enter

the
the
the
the
the
the

The hours

hours worked by employee 1: 20 [Enter]
hours worked by employee 2: 12 [Enter]
hours worked by employee 3: 40 [Enter]
hours worked by employee 4: 30 [Enter]
hours worked by employee 5: 30 [Enter]
hours worked by employee 6: 15 [Enter]
you entered are: 20 12 40 30 30 15

The first for loop, in lines 13 through 18, prompts the user for each employee’s hours. Take
a closer look at lines 15 through 17:

cout << "Enter the hours worked by employee "

<< (count + 1) << ": ";

cin >> hours[count];

Notice that the cout statement uses the expression count + 1 to display the employee
number, but the cin statement uses count as the array subscript. This is because the hours
for employee number 1 are stored in hours[0], the hours for employee number 2 are
stored in hours[1], and so forth.

The loop in lines 22 through 23 also uses the count variable to step through the array,
displaying each element.

382

Chapter

<&

7 Arrays

NOTE: You can use any integer expression as an array subscript. For example, the
first loop in Program 7-2 could have been written like this:

for (count = 1; count <= NUM_EMPLOYEES; count++)

{
cout << "Enter the hours worked by employee "
<< count << ": ";
cin >> hours[count - 1];
}

In this code the cin statement uses the expression count - 1 as a subscript.

Inputting data into an array must normally be done one element at a time. For example,
the following cin statement will not input data into the hours array:

cin >> hours; // Wrong! This will NOT work.

Instead, you must use multiple cin statements to read data into each array element, or use
a loop to step through the array, reading data into its elements. Also, outputting an array’s
contents must normally be done one element at a time. For example, the following cout
statement will not display the contents of the hours array:

cout << hours; // Wrong! This will NOT work.

Instead, you must output each element of the array separately.

Reading Data from a File into an Array

Reading the contents of a file into an array is straightforward: Open the file and use a loop
to read each item from the file, storing each item in an array element. The loop should iter-
ate until either the array is filled or the end of the file is reached. Program 7-3 demonstrates
by opening a file that has 10 numbers stored in it and then reading the file’s contents into
an array.

Program 7-3

// This program reads data from a file into an array.
#include <iostream>

#include <fstream>

using namespace std;

int main()

{
const int ARRAY SIZE = 10; // Array size
int numbers[ARRAY SIZE]; // Array with 10 elements
int count = 0; // Loop counter variable
ifstream inputFile; // Input file stream object

// Open the file.
inputFile.open("TenNumbers.txt");

7.2 Accessing Array Elements

// Read the numbers from the file into the array.
while (count < ARRAY SIZE && inputFile >> numbers[count])
count++;

// Close the file.
inputFile.close();

// Display the numbers read:

cout << "The numbers are: ";

for (count = 0; count < ARRAY SIZE; count++)
cout << numbers[count] << " ";

cout << endl;

return 0;

Program Output

The numbers are: 101 102 103 104 105 106 107 108 109 110

The while loop in lines 17 and 18 reads items from the file and assigns them to elements
of the numbers array. Notice that the loop tests two Boolean expressions, connected by the
&& operator:

e The first expression is count < ARRAY SIZE. The purpose of this expression is to

prevent the loop from writing beyond the end of the array. If the expression is true, the
second Boolean expression is tested. If this expression is false, however, the loop stops.
The second expression is inputFile >> numbers[count]. This expression reads a
value from the file and stores it in the numbers[count] array element. If a value is
successfully read from the file, the expression is true and the loop continues. If no
value can be read from the file, however, the expression is false and the loop stops.

Each time the loop iterates, it increments count in line 18.

Writing the Contents of an Array to a File

Writing the contents of an array to a file is also a straightforward matter. Use a loop to step
through each element of the array, writing its contents to a file. Program 7-4 demonstrates.

Program 7-4

// This program writes the contents of an array to a file.
#include <iostream>

#include <fstream>

using namespace std;

int main()

{

const int ARRAY SIZE = 10; // Array size

int numbers[ARRAY SIZE]; // Array with 10 elements
int count; // Loop counter variable
ofstream outputFile; // Output file stream object

(program continues)

383

384 Chapter 7 Arrays

Program 7-4 (continued)

// Store values in the array.
for (count = 0; count < ARRAY SIZE; count++)
numbers[count] = count;

// Open a file for output.
outputFile.open("SavedNumbers.txt");

// Write the array contents to the file.
for (count = 0; count < ARRAY SIZE; count++)
outputFile << numbers[count] << endl;

// Close the file.
outputFile.close();

// That's it!

cout << "The numbers were saved to the file.\n ";
return 0;

Program Output

The numbers were saved to the file.

Contents of the File savedNumbers.txt

O oo Jo Ul WN H O

—
7.3) No Bounds Checking in C++

1 CONCEPT: C++ does not prevent you from overwriting an array’s bounds.

C++ is a popular language for software developers who have to write fast, efficient code. To
increase runtime efficiency, C++ does not provide many of the common safeguards to pre-
vent unsafe memory access found in other languages. For example, C++ does not perform
array bounds checking. This means you can write programs with subscripts that go beyond
the boundaries of a particular array. Program 7-5 demonstrates this capability.

®

7.3 No Bounds Checking in C++

WARNING! Think twice before you compile and run Program 7-5. The program
will attempt to write to an area of memory outside the array. This is an invalid opera-
tion and will most likely cause the program to crash.

Program 7-5

// This program unsafely accesses an area of memory by writing
// values beyond an array's boundary.

// WARNING: If you compile and run this program, it could crash.
#include <iostream>

using namespace std;

int main()

{
const int SIZE = 3; // Constant for the array size
int values[SIZE]; // An array of 3 integers
int count; // Loop counter variable
// Attempt to store five numbers in the three-element array.
cout << "I will store 5 numbers in a 3-element array!\n";
for (count = 0; count < 5; count++)
values[count] = 100;
// If the program is still running, display the numbers.
cout << "If you see this message, it means the program\n";
cout << "has not crashed! Here are the numbers:\n";
for (count = 0; count < 5; count++)
cout << values[count] << endl;
return 0;
}

The values array has three integer elements, with the subscripts 0, 1, and 2. The loop, how-
ever, stores the number 100 in elements 0, 1, 2, 3, and 4. The elements with subscripts 3 and
4 do not exist, but C++ allows the program to write beyond the boundary of the array, as
if those elements were there. Figure 7-9 depicts the way the array is set up in memory when
the program first starts to execute, and what happens when the loop writes data beyond
the boundary of the array.

385

386

Chapter 7 Arrays

Figure 7-9
The way the values array is set up in memory.
The outlined area represents the array.
Memory outside the array Memory outside the array
(Each block = 4 bytes) (Each block = 4 bytes)

values[0] values[1l] values[2]

How the numbers assigned to the array overflow the array's boundaries.
The shaded area is the section of memory illegally written to.

Anything previously stored
here is overwritten.

100 100 100 100 100

values[0] values[1] values[2] values[3] values[4]
(Does not exist) (Does not exist)

Although C++ programs are fast and efficient, the absence of safeguards such as array
bounds checking usually proves to be a bad thing. It’s easy for C++ programmers to make
careless mistakes that allow programs to access areas of memory that are supposed to be
off-limits. You must always make sure that any time you assign values to array elements,
the values are written within the array’s boundaries.

Watch for Off-by-One Errors

In working with arrays, a common type of mistake is the off-by-one error. This is an easy
mistake to make because array subscripts start at 0 rather than 1. For example, look at the
following code:

// This code has an off-by-one error.

const int SIZE = 100;

int numbers[SIZE];

for (int count = 1; count <= SIZE; count++)
numbers[count] = 0;

The intent of this code is to create an array of integers with 100 elements, and store the
value 0 in each element. However, this code has an off-by-one error. The loop uses its coun-
ter variable, count, as a subscript with the numbers array. During the loop’s execution,
the variable count takes on the values 1 through 100, when it should take on the values 0
through 99. As a result, the first element, which is at subscript 0, is skipped. In addition, the
loop attempts to use 100 as a subscript during the last iteration. Because 100 is an invalid
subscript, the program will write data beyond the array’s boundaries.

7.4 Array Initialization

Checkpoint

7.1

7.2

7.3
7.4
7.5
7.6

7.7

m—

Define the following arrays:

A) empNums, a 100-element array of ints

) payRates, a 25-element array of floats

) miles, a 14-element array of longs

) cityName, a 26-element array of string objects
) lightYears, a 1,000-element array of doubles

Mg 0O

What’s wrong with the following array definitions?

int readings[-1];

float measurements[4.5];
int size;

string names[size];

What would the valid subscript values be in a four-element array of doubles?
What is the difference between an array’s size declarator and a subscript?
What is “array bounds checking”? Does C++ perform it?

What is the output of the following code?

int values[5], count;

for (count = 0; count < 5; count++)
values[count] = count + 1;
for (count = 0; count < 5; count++)

cout << values[count] << endl;

The following program skeleton contains a 20-element array of ints called fish.
When completed, the program should ask how many fish were caught by fisher-
men 1 through 20, and store this data in the array. Complete the program.

#include <iostream>
using namespace std;
int main()

{
const int NUM FISH = 20;
int fish[NUM FISH];
// You must finish this program. It should ask how
// many fish were caught by fishermen 1-20, and
// store this data in the array fish.
return 0;
}

7.4 Array Initialization

1 CONCEPT: Arrays may be initialized when they are defined.

Like regular variables, C++ allows you to initialize an array’s elements when you create the
array. Here is an example:

const int MONTHS = 12;
int days[MONTHS]

{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

387

388

Chapter 7 Arrays

The series of values inside the braces and separated with commas is called an initialization
list. These values are stored in the array elements in the order they appear in the list. (The
first value, 31, is stored in days[0], the second value, 28, is stored in days[1], and so
forth.) Figure 7-10 shows the contents of the array after the initialization.

Figure 7-10

Subscripts
0 1 2 3 4 5 6 7 8 9 10 11
[31 2831 [30]31[30[31[31[30]31][30]31]

Program 7-6 demonstrates how an array may be initialized.

Program 7-6
// This program displays the number of days in each month.
#include <iostream>

using namespace std;

int main()

{
const int MONTHS = 12;
int days[MONTHS] = { 31, 28, 31, 30,
31, 30, 31, 31,
30, 31, 30, 313%;
for (int count = 0; count < MONTHS; count++)
{
cout << "Month " << (count + 1) << " has ";
cout << days[count] << “ days.\n";
}
return 0;
}

Program Output

Month 1 has 31 days.
Month 2 has 28 days.
Month 3 has 31 days.
Month 4 has 30 days.
Month 5 has 31 days.
Month 6 has 30 days.
Month 7 has 31 days.
Month 8 has 31 days.

Month 9 has 30 days.
Month 10 has 31 days.
Month 11 has 30 days.
Month 12 has 31 days.

7.4 Array Initialization

0 NOTE: Notice that C++ allows you to spread the initialization list across multiple
lines. Both of the following array definitions are equivalent:

double coins[5]
double coins[5]

{0.05, 0.1, 0.25, 0.5, 1.0};
{0.05,
0.1,
0.25,
0.5,
1.0};

Program 7-7 shows an example with a string array that is initialized with strings.

Program 7-7

// This program initializes a string array.
#include <iostream>

#include <string>

using namespace std;

int main()

{
const int SIZE = 9;
string planets[SIZE] = { "Mercury", "Venus", "Earth", "Mars",
"Jupiter", "Saturn", "Uranus",
"Neptune", "Pluto (a dwarf planet)" };
cout << "Here are the planets:\n";
for (int count = 0; count < SIZE; count++)
cout << planets[count] << endl;
return 0;
}

Program Output

Here are the planets:
Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

Pluto (a dwarf planet)

Program 7-8 shows a character array being initialized with the first ten letters of the alpha-
bet. The array is then used to display those characters’ ASCII codes.

389

390 Chapter 7 Arrays

Program 7-8

// This program uses an array of ten characters to store the
// first ten letters of the alphabet. The ASCII codes of the
// characters are displayed.

#include <iostream>

using namespace std;

int main()

{
const int NUM_LETTERS = 10;
char letters[NUM LETTERS] = {'A', 'B', 'C', 'D', 'E',
'F', 'G', 'H', 'I', 'J'};
cout << "Character" << "\t" << "ASCII Code\n";
cout << Me———————o "< "\t" << Memmmmmeee \n";
for (int count = 0; count < NUM_LETTERS; count++)
{
cout << letters[count] << "\t\t";
cout << static_cast<int>(letters[count]) << endl;
}
return 0;
}

Program Output
Character ASCII Code

H@EZ Q" HEOQDP
(o))
O

<

NOTE: An array’s initialization list cannot have more values than the array has elements.

Partial Array Initialization

When an array is being initialized, C++ does not require a value for every element. It’s pos-
sible to only initialize part of an array, such as:

int numbers[7] = {1, 2, 4, 8};

This definition initializes only the first four elements of a seven-element array, as illustrated
in Figure 7-11.

7.4 Array Initialization 391

Figure 7-11

int numbers[7] = {1, 2, 4, 8};
|
4|

’J Uninitialized Elements
L1 | 2 | 8 | o | o | o |

numbers numbers numbers numbers numbers numbers numbers

(0] (1] [2] (3] [4] [5] [6]

It’s important to note that if an array is partially initialized, the uninitialized elements will
be set to zero. The uninitialized elements of a string array will contain empty strings.
This is true even if the array is defined locally. (If a local array is completely uninitialized,
its elements will contain “garbage,” like all other local variables.) Program 7-9 shows the
contents of the array numbers after it is partially initialized.

Program 7-9
// This program has a partially initialized array.
#include <iostream>

using namespace std;

int main()

{
const int SIZE = 7;
int numbers[SIZE] = {1, 2, 4, 8}; // Initialize first 4 elements
cout << "Here are the contents of the array:\n";
for (int index = 0; index < SIZE; index++)
cout << numbers[index] << " ";
cout << endl;
return 0;
}

Program Output

Here are the contents of the array:
1248000

If you leave an element uninitialized, you must leave all the elements that follow it unini-
tialized as well. C++ does not provide a way to skip elements in the initialization list. For
example, the following is not legal:

int numbers[6] = {2, 4, , 8, , 12}; // NOT Legal!

Implicit Array Sizing

It’s possible to define an array without specifying its size, as long as you provide an initial-
ization list. C++ automatically makes the array large enough to hold all the initialization
values. For example, the following definition creates an array with five elements:

double ratings[] = {1.0, 1.5, 2.0, 2.5, 3.0};

392 Chapter 7 Arrays

<&

"

@ 7.5
1

Because the size declarator is omitted, C++ counts the number of items in the initialization
list and gives the array that many elements.

NOTE: You must provide an initialization list if you leave out an array’s size declara-

tor. Otherwise, C++ doesn’t know how large to make the array.

The Range-Based for Loop

CONCEPT: The range-based for loop is a loop that iterates once for each element in
an array. Each time the loop iterates, it copies an element from the array
to a variable. The range-based for loop was introduced in C++ 11.

C++ 11 provides a specialized version of the for loop that, in many circumstances, simpli-
fies array processing. It is known as the range-based for loop. When you use the range-
based for loop with an array, the loop automatically iterates once for each element in the
array. For example, if you use the range-based for loop with an eight-element array, the
loop will iterate eight times. Because the range-based for loop automatically knows the
number of elements in an array, you do not have to use a counter variable to control its
iterations, as with a regular for loop. Additionally, you do not have to worry about step-
ping outside the bounds of an array when you use the range-based for loop.

The range-based for loop is designed to work with a built-in variable known as the range
variable. Each time the range-based for loop iterates, it copies an array element to the
range variable. For example, the first time the loop iterates, the range variable will contain
the value of element 0, the second time the loop iterates, the range variable will contain the
value of element 1, and so forth.

Here is the general format of the range-based for loop:

for (dataType rangeVariable : array)
statement;

Let’s look at the syntax more closely as follows:

® dataType is the data type of the range variable. It must be the same as the data type
of the array elements, or a type that the elements can automatically be converted to.

® rangeVariable is the name of the range variable. This variable will receive the value
of a different array element during each loop iteration. During the first loop iteration,
it receives the value of the first element; during the second iteration, it receives the
value of the second element, and so forth.

® array is the name of an array on which you wish the loop to operate. The loop will
iterate once for every element in the array.

® statement is a statement that executes during a loop iteration. If you need to execute
more than one statement in the loop, enclose the statements in a set of braces.

For example, assume that you have the following array definition:

int numbers[] = { 3, 6, 9 };

7.5 The Range-Based for Loop 393

You can use the following range-based for loop to display the contents of the numbers array:

for (int val : numbers)
cout << val << endl;

Because the numbers array has three elements, this loop will iterate three times. The first
time it iterates, the val variable will receive the value in numbers[0]. During the second
iteration, val will receive the value in numbers[1]. During the third iteration, val will
receive the value in numbers[2]. The code’s output will be as follows:

3
6
9

Here is an example of a range-based for loop that executes more than one statement in
the body of the loop:

int[] numbers = { 3, 6, 9 };
for (int val : numbers)
{

cout << "The next value is ";
cout << val << endl;

}
This code will produce the following output:

The next value is 3
The next value is 6
The next value is 9

If you wish, you can use the auto key word to specify the range variable’s data type. Here
is an example:

int[] numbers = { 3, 6, 9 };
for (auto val : numbers)
cout << val << endl;

Program 7-10 demonstrates the range-based for loop by displaying the elements of an int array.

Program 7-10
// This program demonstrates the range-based for loop.
#include <iostream>

using namespace std;

int main()

{
// Define an array of integers.
int numbers[] = { 10, 20, 30, 40, 50 };
// Display the values in the array.
for (int val : numbers)
cout << val << endl;
return 0;
}

(program output continues)

394 Chapter 7 Arrays

Program 7-10 (continued)

Program Output
10
20
30
40
50

Program 7-11 shows another example of the range-based for loop. This program displays
the elements of a string array.

Program 7-11

// This program demonstrates the range-based for loop.
#include <iostream>

#include <string>

using namespace std;

int main()

{
string planets[] = { "Mercury", "Venus", "Earth", "Mars",
"Jupiter", "Saturn", "Uranus",
"Neptune", "Pluto (a dwarf planet)" };
cout << "Here are the planets:\n";
// Display the values in the array.
for (string val : planets)
cout << val << endl;
return 0;
}

Program Output

Here are the planets:
Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

Pluto (a dwarf planet)

Modifying an Array with a Range-Based for Loop

As the range-based for loop executes, its range variable contains only a copy of an array
element. As a consequence, you cannot use a range-based for loop to modify the contents

7.5 The Range-Based for Loop

of an array unless you declare the range variable as a reference. Recall from Chapter 6 that
a reference variable is an alias for another value. Any changes made to the reference vari-
able are actually made to the value for which it is an alias.

To declare the range variable as a reference variable, simply write an ampersand (&) in front
of its name in the loop header. Program 7-12 shows an example.

Program 7-12

// This program uses a range-based for loop to
// modify the contents of an array.

#include <iostream>

using namespace std;

int main()

{
const int SIZE = 5;
int numbers[5];

// Get values for the array.

for (int &val : numbers)

{
cout << "Enter an integer value: ";
cin >> val;

// Display the values in the array.
cout << "Here are the values you entered:\n";
for (int val : numbers)

cout << val << endl;

return 0;

Program Output with Example Input Shown in Bold

Enter an integer value: 1 [Enter]
Enter an integer value: 2 [Enter]
Enter an integer value: 3 [Enter]
Enter an integer value: 4 [Enter]
Enter an integer value: 5 [Enter]

Here are the values you entered:
1

g W N

Notice that in line 12 the range variable, val, has an ampersand (&) written in front of its
name. This declares val as a reference variable. As the loop executes, the val variable will
not merely contain a copy of an array element, but it will be an alias for the element. Any
changes made to the val variable will actually be made to the array element it references.

395

396 Chapter 7 Arrays

Also notice that in line 20 we did not declare val as a reference variable (there is no amper-
sand written in front of the variable’s name). Because the loop is simply displaying the array
elements, and does not need to change the array’s contents, there is no need to make val
a reference variable.

The Range-Based for Loop versus the Regular for Loop

The range-based for loop can be used in any situation where you need to step through the
elements of an array, and you do not need to use the element subscripts. It will not work,
however, in situations where you need the element subscript for some purpose. In those
situations, you need to use the regular for loop.

O NOTE: You can use the auto key word with a reference range variable. For example,
the code in lines 12 through 16 in Program 7-12 could have been written like this:

for (auto &val : numbers)

{

cout << "Enter an integer value: ";
cin >> val;

—
7.6 Processing Array Contents

1 CONCEPT: Individual array elements are processed like any other type of variable.

Processing array elements is no different than processing other variables. For example, the
following statement multiplies hours[3] by the variable rate:

pay = hours[3] * rate;

And the following are examples of pre-increment and post-increment operations on array
elements:

int score[5] = {7, 8, 9, 10, 11}%;
++score[2]; // Pre-increment operation on the value in score[2]
score[4]++; // Post-increment operation on the value in score[4]

@ NOTE: When using increment and decrement operators, be careful not to confuse the
subscript with the array element. For example, the following statement decrements the
variable count, but does nothing to the value in amount[count]:

amount[count--];
To decrement the value stored in amount[count], use the following statement:

amount[count]--;

7.6 Processing Array Contents

Program 7-13 demonstrates the use of array elements in a simple mathematical statement.
A loop steps through each element of the array, using the elements to calculate the gross
pay of five employees.

Program 7-13

// This program stores, in an array, the hours worked by
// employees who all make the same hourly wage.

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

}

const int NUM_EMPLOYEES = 5; // Number of employees

int hours[NUM_EMPLOYEES]; // Array to hold hours
double payrate; // Hourly pay rate
double grossPay; // To hold the gross pay

// Input the hours worked.
cout << "Enter the hours worked by ";
cout << NUM_EMPLOYEES << " employees who all\n";
cout << "earn the same hourly rate.\n";
for (int index = 0; index < NUM_EMPLOYEES; index++)
{
cout << "Employee #" << (index + 1) << ": ";
cin >> hours[index];

// Input the hourly rate for all employees.
cout << "Enter the hourly pay rate for all the employees: "
cin >> payrate;

// Display each employee's gross pay.
cout << "Here is the gross pay for each employee:\n";
cout << fixed << showpoint << setprecision(2);
for (int index = 0; index < NUM_EMPLOYEES; index++)
{
grossPay = hours[index] * payrate;
cout << "Employee #" << (index + 1);
cout << ": §$" << grossPay << endl;

}

return 0;

Program Output with Example Input Shown in Bold

Enter the hours worked by 5 employees who all
earn the same hourly rate.

Employee #1: 5 [Enter]

Employee #2: 10 [Enter]

(program output continues)

397

398 Chapter 7 Arrays

Program 7-13

Employee
Employee
Employee

Enter the hourly pay rate for all the employees:

#3:

(continued)

15 [Enter]

#4: 20 [Enter]
#5: 40 [Enter]

Here is the gross pay for each employee:

Employee
Employee
Employee
Employee
Employee

#1:
#2:
#3:
#4:
#5:

$63.75

$127.50
$191.25
$255.00
$510.00

12.75 [Enter]

The following statement in line 33 assigns the value of hours[index] times payRate to
the grossPay variable:

grossPay = hours[index] * payRate;

Array elements may also be used in relational expressions. For example, the following
if statement tests cost[20] to determine whether it is less than cost[07]:

if (cost[20] < cost[0])

And the following statement sets up a while loop to iterate as long as value[place] does
not equal 0:

while (value[place] != 0)

Thou Shall Not Assign

The following code defines two integer arrays: newvalues and oldvalues. newValues is
uninitialized and oldvalues is initialized with 10, 100, 200, and 300:

const int SIZE = 4;
int oldvalues[SIZE] = {10, 100, 200, 300};
int newValues[SIZE];

At first glance, it might appear that the following statement assigns the contents of the array
oldvalues to newValues:

newValues = oldValues; // Wrong!

Unfortunately, this statement will not work. The only way to assign one array to another is
to assign the individual elements in the arrays. Usually, this is best done with a loop, such as:

for (int count = 0; count < SIZE; count++)
newValues[count] = oldValues[count];

The reason the assignment operator will not work with an entire array at once is complex,
but important to understand. Anytime the name of an array is used without brackets and
a subscript, it is seen as the array’s beginning memory address. To illustrate this, consider
the definition of the arrays newvalues and oldvalues above. Figure 7-12 depicts the two
arrays in memory.

7.6 Processing Array Contents 399

Figure 7-12

Memory Address 8012 —+ newValues Array

? ? ? ?

Memory Address 8024 —+
oldvalues Array

10 100 200 300

In the figure, newvalues is shown starting at memory address 8012 and oldvalues is
shown starting at 8024. (Of course, these are just arbitrary addresses, picked for illustration
purposes. In reality the addresses would probably be different.) Table 7-2 shows various
expressions that use the names of these arrays, and their values.

Table 7-2
Expression Value
oldvalues[0] 10 (Contents of Element 0 of oldvalues)
oldvalues[1] 100 (Contents of Element 1 of oldvalues)
oldvalues[2] 200 (Contents of Element 2 of oldvalues)
oldvalues[3] 300 (Contents of Element 3 of oldvalues)
newValues 8012 (Memory Address of newvalues)
oldvalues 8024 (Memory Address of oldvalues)

Because the name of an array without the brackets and subscript stands for the array’s
starting memory address, the following statement

newValues = oldValues;
is interpreted by C++ as
8012 = 8024;

The statement will not work because you cannot change the starting memory address of
an array.

Printing the Contents of an Array
Suppose we have the following array definition:

const int SIZE = 5;
int numbers [SIZE] = {10, 20, 30, 40, 50};

You now know that an array’s name is seen as the array’s beginning memory address. This
explains why the following statement cannot be used to display the contents of array:

cout << numbers << endl; //Wrong!

400 Chapter 7 Arrays

When this statement executes, cout will display the array’s memory address, not the array’s
contents. You must use a loop to display the contents of each of the array’s elements, as follows.

for (int count = 0; count < SIZE; count++)
cout << numbers[count] << endl;

" In C++ 11, you can use the range-based for loop to display an array’s contents, as shown here:

for (int val : numbers)
cout << val << endl;

Summing the Values in a Numeric Array

To sum the values in an array, you must use a loop with an accumulator variable. The loop
adds the value in each array element to the accumulator. For example, assume that the fol-
lowing statements appear in a program and that values have been stored in the units array.

const int NUM _UNITS = 24;
int units[NUM UNITS];

The following code uses a regular for loop to add the values of each element in the array
to the total variable. When the code is finished, total will contain the sum of the units
array’s elements.

int total = 0; // Initialize accumulator
for (int count = 0; count < NUM _UNITS; count++)
total += units[count];

" In C++ 11, you can use the range-based for loop, as shown here. When the code is finished,
. » total will contain the sum of the units array’s elements.

int total = 0; // Initialize accumulator
for (int val : units)
total += val;

0 NOTE: The first statement in both of these code segments sets total to 0. Recall
from Chapter 5 that an accumulator variable must be set to 0 before it is used to keep
a running total or the sum will not be correct.

Getting the Average of the Values in a Numeric Array

The first step in calculating the average of all the values in an array is to sum the values. The
second step is to divide the sum by the number of elements in the array. Assume that the fol-
lowing statements appear in a program and that values have been stored in the scores array.

const int NUM_SCORES = 10;
double scores[NUM_SCORES];

The following code calculates the average of the values in the scores array. When the code
completes, the average will be stored in the average variable.

double total = 0; // Initialize accumulator

double average; // Will hold the average

for (int count = 0; count < NUM_SCORES; count++)
total += scores[count];

average = total / NUM_SCORES;

7.6 Processing Array Contents

Notice that the last statement, which divides total by numScores, is not inside the loop.
This statement should only execute once, after the loop has finished its iterations.

In C++ 11, you can use the range-based for loop, as shown here. When the code completes,
the average will be stored in the average variable.

double total = 0; // Initialize accumulator
double average; // Will hold the average
for (int val : scores)

total += val;
average = total / NUM_SCORES;

Finding the Highest and Lowest Values in a Numeric Array

The algorithms for finding the highest and lowest values in an array are very similar. First,
let’s look at code for finding the highest value in an array. Assume that the following code
exists in a program, and that values have already been stored in the numbers array.

const int SIZE = 50;
int numbers[SIZE];

The code to find the highest value in the array is as follows.

int count;
int highest;

highest = numbers[0];
for (count = 1; count < SIZE; count++)

{
if (numbers[count] > highest)
highest = numbers[count];

}

First we copy the value in the first array element to the variable highest. Then the loop
compares all of the remaining array elements, beginning at subscript 1, to the value in highest.
Each time it finds a value in the array that is greater than highest, it copies that value to
highest. When the loop has finished, highest will contain the highest value in the array.

The following code finds the lowest value in the array. As you can see, it is nearly identical
to the code for finding the highest value.

int count;
int lowest;

lowest = numbers[0];
for (count = 1; count < SIZE; count++)

{
if (numbers[count] < lowest)
lowest = numbers[count];

}

When the loop has finished, Lowest will contain the lowest value in the array.

Partially Filled Arrays

Sometimes you need to store a series of items in an array, but you do not know the number
of items that there are. As a result, you do not know the exact number of elements needed

401

402

Chapter 7 Arrays

for the array. One solution is to make the array large enough to hold the largest possible
number of items. This can lead to another problem, however. If the actual number of items
stored in the array is less than the number of elements, the array will be only partially filled.
When you process a partially filled array, you must only process the elements that contain
valid data items.

A partially filled array is normally used with an accompanying integer variable that holds
the number of items stored in the array. For example, suppose a program uses the following
code to create an array with 100 elements, and an int variable named count that will hold
the number of items stored in the array:

const int SIZE = 100;
int numbers[SIZE];
int count = 0;

Each time we add an item to the array, we must increment count. The following code
demonstrates.

int num;

cout << "Enter a number or -1 to quit: ";
cin >> num;

while (num != -1 && count < SIZE)

{

count++;

numbers[count - 1] = num;

cout << "Enter a number or -1 to quit: ";
cin >> num;

}

Each iteration of this sentinel-controlled loop allows the user to enter a number to be stored
in the array, or -1 to quit. The count variable is incremented and then used to calculate
the subscript of the next available element in the array. When the user enters -1, or count
exceeds 99, the loop stops. The following code displays all of the valid items in the array.

for (int index = 0; index < count; index++)

{

cout << numbers[index] << endl;

}

Notice that this code uses count to determine the maximum array subscript to use.

Program 7-14 shows how this technique can be used to read an unknown number of items
from a file into an array. The program reads values from the file numbers.txt.

Program 7-14

//This program reads data from a file into an array.
#include <iostream>

#include <fstream>

using namespace std;

int main()
{
const int ARRAY SIZE = 100; // Array size
int numbers[ARRAY SIZE]; // Array with 100 elements

int count = 0;
ifstream inputFile;

inputFile.open("numbers.txt");

// Read the numbers from the
// After this loop executes,
// the number of values that
while (count < ARRAY SIZE &&

7.6 Processing Array Contents

// Loop counter variable
// Input file stream object

// Open the file.

file into the array.

the count variable will hold
were stored in the array.
inputFile >> numbers[count])

count++;

// Close the file.
inputFile.close();

// Display the numbers read.

cout << "The numbers are: ";
for (int index = 0; index < count; index++)
cout << numbers[index] << " ";

cout << endl;
return 0;

Program Output

The numbers are: 47 89 65 36 12 25 17 8 62 10 87 62

Look closer at the while loop that begins in line 18. It repeats as long as count is less
than ARRAY_SIzE and the end of the file has not been encountered. The first part of the
while loop’s test expression, count < ARRAY SIZE, prevents the loop from writing out-
side the array boundaries. Recall from Chapter 4 that the s& operator performs short-
circuit evaluation, so the second part of the while loop’s test expression, inputFile >>
values[count], will be executed only if count is less than ARRAY SIZE.

Comparing Arrays

We have already noted that you cannot simply assign one array to another array. You must
assign each element of the first array to an element of the second array. In addition, you
cannot use the == operator with the names of two arrays to determine whether the arrays
are equal. For example, the following code appears to compare two arrays, but in reality
does not.

int firstArray[] = { 5, 10, 15,
int secondArray[] = { 5, 10, 15,
if (firstArray == secondArray)
cout << "The arrays are the same.\n";
else
cout << "The arrays are not the same.\n";

20,
20,

25 };
25 };
// This is a mistake.

When you use the == operator with array names, the operator compares the beginning
memory addresses of the arrays, not the contents of the arrays. The two array names in this
code will obviously have different memory addresses. Therefore, the result of the expres-
sion firstArray == secondArray is false and the code reports that the arrays are not
the same.

404 Chapter 7 Arrays

To compare the contents of two arrays, you must compare the elements of the two arrays.
For example, look at the following code.

const int SIZE = 5;

int firstArray[SIZE] = { 5, 10, 15, 20, 25 };

int secondArray[SIZE] = { 5, 10, 15, 20, 25 };
bool arraysEqual = true; // Flag variable

int count = 0; // Loop counter variable

// Determine whether the elements contain the same data.
while (arraysEqual && count < SIZE)

{
if (firstArray[count] != secondArray[count])
arraysEqual = false;
count++;
}

if (arraysEqual)

cout << "The arrays are equal.\n";
else

cout << "The arrays are not equal.\n";

This code determines whether firstArray and secondArray contain the same values.
A bool variable, arraysEqual, which is initialized to true, is used to signal whether the
arrays are equal. Another variable, count, which is initialized to 0, is used as a loop counter
variable.

Then a while loop begins. The loop executes as long as arraysEqual is true and the
counter variable count is less than S1zE. During each iteration, it compares a different set
of corresponding elements in the arrays. When it finds two corresponding elements that
have different values, the arraysEqual variable is set to false. After the loop finishes, an
if statement examines the arraysEqual variable. If the variable is true, then the arrays
are equal and a message indicating so is displayed. Otherwise, they are not equal, so a dif-
ferent message is displayed.

7.7 Focus on Software Engineering:
Using Parallel Arrays

CONCEPT: By using the same subscript, you can build relationships between data
stored in two or more arrays.

Sometimes it’s useful to store related data in two or more arrays. It’s especially useful when
the related data is of unlike types. For example, Program 7-15 is another variation of the
payroll program. It uses two arrays: one to store the hours worked by each employee (as
ints), and another to store each employee’s hourly pay rate (as doubles).

Program 7-15
// This program uses two parallel arrays: one for hours

// worked and one for pay rate.
#include <iostream>

7.7 Focus on Software Engineering: Using Parallel Arrays 405

#include <iomanip>
using namespace std;

int main()

{
const int NUM_EMPLOYEES = 5; // Number of employees
int hours[NUM_EMPLOYEES]; // Holds hours worked
double payRate[NUM EMPLOYEES]; // Holds pay rates
// Input the hours worked and the hourly pay rate.
cout << "Enter the hours worked by " << NUM_EMPLOYEES
<< " employees and their\n"
<< "hourly pay rates.\n";
for (int index = 0; index < NUM_EMPLOYEES; index++)
{
cout << "Hours worked by employee #" << (index+l) << ": ";
cin >> hours[index];
cout << "Hourly pay rate for employee #" << (index+l) << ": ";
cin >> payRate[index];
}
// Display each employee's gross pay.
cout << "Here is the gross pay for each employee:\n";
cout << fixed << showpoint << setprecision(2);
for (int index = 0; index < NUM_EMPLOYEES; index++)
{
double grossPay = hours[index] * payRate[index];
cout << "Employee #" << (index + 1);
cout << ": $" << grossPay << endl;
}
return 0;
}

Program Output with Example Input Shown in Bold

Enter the hours worked by 5 employees and their
hourly pay rates.

Hours worked by employee #1: 10 [Enter]
Hourly pay rate for employee #1: 9.75 [Enter]
Hours worked by employee #2: 15 [Enter]
Hourly pay rate for employee #2: 8.62 [Enter]
Hours worked by employee #3: 20 [Enter]
Hourly pay rate for employee #3: 10.50 [Enter]
Hours worked by employee #4: 40 [Enter]
Hourly pay rate for employee #4: 18.75 [Enter]
Hours worked by employee #5: 40 [Enter]
Hourly pay rate for employee #5: 15.65 [Enter]
Here is the gross pay for each employee:
Employee #1: $97.50

Employee #2: $129.30

Employee #3: $210.00

Employee #4: $750.00

Employee #5: $626.00

406 Chapter 7 Arrays

Notice in the loops that the same subscript is used to access both arrays. That’s because the
data for one employee is stored in the same relative position in each array. For example, the
hours worked by employee #1 are stored in hours[0], and the same employee’s pay rate is
stored in payRate[0]. The subscript relates the data in both arrays.

This concept is illustrated in Figure 7-13.

Figure 7-13

[10 | 15 [20 | 40 [40 |

hours[0] hours[l] hours[2] hours[3] hours[4]

R

Employee Employee Employee Employee Employee

#1 #2 #3 #4 #5
[9.75 [s8.62 | 10.50 | 18.75 | 15.65 |

payRate[0] payRate[l] payRate[2] payRate[3]payRate[4]

Checkpoint
7.8 Define the following arrays:

A) ages, a 10-element array of ints initialized with the values 5, 7, 9, 14, 15,
17, 18, 19, 21, and 23.

B) temps, a 7-element array of £loats initialized with the values 14.7, 16.3,
18.43, 21.09, 17.9, 18.76, and 26.7.

C) alpha, an 8-element array of chars initialized with the values ‘J°, ‘B>, ‘L’,
<A9, c::-” c$s’ cHs’ and ‘M’.
7.9 Is each of the following a valid or invalid array definition? (If a definition is
invalid, explain why.)

int numbers[(1ioj} = {0, 0, 1, 0, 0, 1, 0, 0, 1, 13%;
int matrix[5] = {1, 2, 3, 4, 5, 6, 7};

double radii[l10] = {3.2, 4.7};

int table[7] = {2, , , 27, , 45, 39};

char codes[] = {'A', 'X', 'l', '2', 's'};

int blanks[];

7.10 Given the following array definition:
int values[] = {2, 6, 10, 14}%;
What does each of the following display?
A) cout << values[2];
B) cout << ++values[0];

cout << values[1l]++;

X = 2;
cout << values[++x];

7.8 Arrays as Function Arguments

7.11 Given the following array definition:
int nums[5] = {1, 2, 3};
What will the following statement display?
cout << nums[3];
7.12 What is the output of the following code? (You may need to use a calculator.)

double balance[5] = {100.0, 250.0, 325.0, 500.0, 1100.0};
const double INTRATE = 0.1;

cout << fixed << showpoint << setprecision(2);
for (int count = 0; count < 5; count++)
cout << (balance[count] * INTRATE) << endl;

7.13 What is the output of the following code? (You may need to use a calculator.)

const int SIZE = 5;

int time[SIZE] {1, 2, 3, 4, 5},
speed[SIZE] = {18, 4, 27, 52, 100},
dist[SIZE];

for (int count = 0; count < SIZE; count++)
dist[count] = time[count] * speed[count];
for (int count = 0; count < SIZE; count++)
{
cout << time[count] << " ";

cout << speed[count] << " ";
cout << dist[count] << endl;

7.8 Arrays as Function Arguments

D

VideoNote
Passing an
Array to a
Function

1 CONCEPT: To pass an array as an argument to a function, pass the name of the array.

Quite often you’ll want to write functions that process the data in arrays. For example,
functions could be written to put values in an array, display an array’s contents on the
screen, total all of an array’s elements, or calculate their average. Usually, such functions
accept an array as an argument.

When a single element of an array is passed to a function, it is handled like any other
variable. For example, Program 7-16 shows a loop that passes one element of the array
numbers to the function showvalue each time the loop iterates.

Program 7-16

// This program demonstrates that an array element is passed
// to a function like any other variable.

#include <iostream>

using namespace std;

void showValue(int); // Function prototype
(program continues)

407

408 Chapter 7 Arrays

Program 7-16 (continued)

int main()

{

const int SIZE = 8;

int numbers[SIZE] = {5, 10, 15, 20, 25, 30, 35, 40};

for (int index = 0; index < SIZE; index++)

showValue (numbers[index]);

return 0;
}
//**
// Definition of function showValue. *
// This function accepts an integer argument. *
// The value of the argument is displayed. *

//**

void showValue(int num)

{

cout << num << " ";

Program Output
5 10 15 20 25 30 35 40

Each time showVvalue is called in line 14, a copy of an array element is passed into the parame-
ter variable num. The showvalue function simply displays the contents of num and doesn’t work
directly with the array element itself. (In other words, the array element is passed by value.)

If the function were written to accept the entire array as an argument, however, the param-
eter would be set up differently. In the following function definition, the parameter nums
is followed by an empty set of brackets. This indicates that the argument will be an array,
not a single value.

void showValues(int nums[], int size)

{
for (int index = 0; index < size; index++)
cout << nums[index] << " ";
cout << endl;
}

The reason there is no size declarator inside the brackets of nums is because nums is not
actually an array. It’s a special variable that can accept the address of an array. When an
entire array is passed to a function, it is not passed by value, but passed by reference.
Imagine the CPU time and memory that would be necessary if a copy of a 10,000-element
array were created each time it was passed to a function! Instead, only the starting memory
address of the array is passed. Program 7-17 shows the function showvalues in use.

@ NOTE: Notice that in the function prototype, empty brackets appear after the data
type of the array parameter. This indicates that showvalues accepts the address of an
array of integers.

7.8 Arrays as Function Arguments 409

Program 7-17
// This program demonstrates an array being passed to a function.
#include <iostream>
using namespace std;

void showValues(int [], int); // Function prototype

int main()

{
const int ARRAY SIZE = 8;
int numbers[ARRAY SIZE] = {5, 10, 15, 20, 25, 30, 35, 40};
showValues (numbers, ARRAY SIZE);
return 0;
}

//***
// Definition of function showValue. *
// This function accepts an array of integers and *
// the array's size as its arguments. The contents *
// of the array are displayed. *

//***

void showValues(int nums[], int size)

{
for (int index = 0; index < size; index++)
cout << nums[index] << " ";
cout << endl;
}

Program Output
5 10 15 20 25 30 35 40

In Program 7-17, the function showvalues is called in the following statement which
appears in line 12:

showValues (numbers, ARRAY SIZE);

The first argument is the name of the array. Remember, in C++ the name of an array with-
out brackets and a subscript is actually the beginning address of the array. In this function
call, the address of the numbers array is being passed as the first argument to the function.
The second argument is the size of the array.

In the showvalues function, the beginning address of the numbers array is copied into the
nums parameter variable. The nums variable is then used to reference the numbers array.
Figure 7-14 illustrates the relationship between the numbers array and the nums param-
eter variable. When the contents of nums[0] is displayed, it is actually the contents of
numbers[0] that appears on the screen.

410

Chapter 7 Arrays

Figure 7-14

numbers Array of eight integers

[5 [10 | 15 | 20 [25 [30 | 385 | 40 |
nums[0] nums[1] nums|[2] ...and so forth
references references references

numbers[0] numbers[1] numbers[2]

NOTE: Although nums is not a reference variable, it works like one.

The nums parameter variable in the showvalues function can accept the address of any inte-
ger array and can be used to reference that array. So, we can use the showvalues function
to display the contents of any integer array by passing the name of the array and its size as
arguments. Program 7-18 uses the function to display the contents of two different arrays.

Program 7-18

// This program demonstrates the showValues function being
// used to display the contents of two arrays.

#include <iostream>

using namespace std;

void showValues(int [], int); // Function prototype

int main()

{
const int SIZEl = 8; // Size of setl array
const int SIZE2 = 5; // Size of set2 array
int setl[SIZEl] = {5, 10, 15, 20, 25, 30, 35, 40};
int set2[SIZE2] = {2, 4, 6, 8, 10};
// Pass setl to showValues.
showValues(setl, SIZEl);
// Pass set2 to showValues.
showValues (set2, SIZE2);
return 0;

}

//***

// Definition of function showValues. *
// This function accepts an array of integers and *
// the array's size as its arguments. The contents *
// of the array are displayed. *

//***

7.8 Arrays as Function Arguments 411

void showValues(int nums[], int size)

{
for (int index = 0; index < size; index++)
cout << nums[index] << " ";
cout << endl;
}

Program Output

5 10 15 20 25 30 35 40
2 46 810

Recall from Chapter 6 that when a reference variable is used as a parameter, it gives the
function access to the original argument. Any changes made to the reference variable are
actually performed on the argument referenced by the variable. Array parameters work
very much like reference variables. They give the function direct access to the original array.
Any changes made with the array parameter are actually made on the original array used
as the argument. The function doubleArray in Program 7-19 uses this capability to double
the contents of each element in the array.

Program 7-19

// This program uses a function to double the value of
// each element of an array.

#include <iostream>

using namespace std;

// Function prototypes
void doubleArray(int [], int);
void showValues(int [], int);

int main()
{
const int ARRAY SIZE = 7;
int set[ARRAY SIZE] = {1, 2, 3, 4, 5, 6, 7};

// Display the initial values.
cout << "The array's values are:\n";

showValues(set, ARRAY SIZE);

// Double the values in the array.
doubleArray(set, ARRAY SIZE);

// Display the resulting values.
cout << "After calling doubleArray the values are:\n";

showValues (set, ARRAY SIZE);

return 0;

(program continues)

412 Chapter 7 Arrays

Program 7-19 (continued)

//***
// Definition of function doubleArray *
// This function doubles the value of each element *
// in the array passed into nums. The value passed *

// into size is the number of elements in the array. *
//***

void doubleArray(int nums[], int size)
{
for (int index = 0; index < size; index++)
nums[index] *= 2;

//***

// Definition of function showValues. *
// This function accepts an array of integers and *
// the array's size as its arguments. The contents *

// of the array are displayed. *
//***

void showValues(int nums[], int size)

{
for (int index = 0; index < size; index++)
cout << nums[index] << " ";
cout << endl;
}

Program Output
The array's values are:
1234567

After calling doubleArray the values are:
2 46 8 10 12 14

Using const Array Parameters

Sometimes you want a function to be able to modify the contents of an array that is passed
to it as an argument, and sometimes you don’t. You can prevent a function from making
changes to an array argument by using the const key word in the parameter declaration.
Here is an example of the showvalues function, shown previously, rewritten with a const
array parameter:

void showValues(const int nums[], int size)

{
for (int index = 0; index < size; index++)
cout << nums[index] << " ";
cout << endl;
¥

When an array parameter is declared as const, the function is not allowed to make changes
to the array’s contents. If a statement in the function attempts to modify the array, an error

7.8 Arrays as Function Arguments 413

will occur at compile time. As a precaution, you should always use const array parameters
in any function that is not intended to modify its array argument. That way, the function
will fail to compile if you inadvertently write code in it that modifies the array.

Some Useful Array Functions

Section 7.6 introduced you to algorithms such as summing an array and finding the highest
and lowest values in an array. Now that you know how to pass an array as an argument
to a function, you can write general purpose functions that perform those operations. The
following In the Spotlight section shows an example.

In the Spotlight:
Processing an Array

Dr. LaClaire gives four exams during the semester in her chemistry class. At the end of the
semester she drops each student’s lowest test score before averaging the scores. She has
asked you to write a program that will read a student’s four test scores as input, and calcu-
late the average with the lowest score dropped. Here is the pseudocode algorithm that you
developed:

Read the student’s four test scores.

Calculate the total of the scores.

Find the lowest score.

Subtract the lowest score from the total. This gives the adjusted total.
Divide the adjusted total by 3. This is the average.

Display the average.

Program 7-20 shows the program, which is modularized. Rather than presenting the entire
program at once, let’s first examine the main function, and then each additional function
separately. Here is the first part of the program, including the main function:

Program 7-20 (main function)

// This program gets a series of test scores and
// calculates the average of the scores with the
// lowest score dropped.

#include <iostream>

#include <iomanip>

using namespace std;

// Function prototypes

void getTestScores(double[], int);
double getTotal(const double[], int);
double getLowest(const double[], int);

(program continues)

414

Chapter 7 Arrays

Program 7-20 (continued)

int main()

{

const int SIZE = 4; // Array size

double testScores[SIZE], // Array of test scores
total, // Total of the scores
lowestScore, // Lowest test score
average; // Average test score

// Set up numeric output formatting.
cout << fixed << showpoint << setprecision(1l);

// Get the test scores from the user.
getTestScores(testScores, SIZE);

// Get the total of the test scores.
total = getTotal(testScores, SIZE);

// Get the lowest test score.
lowestScore = getLowest(testScores, SIZE);

// Subtract the lowest score from the total.
total -= lowestScore;

// Calculate the average. Divide by 3 because
// the lowest test score was dropped.
average = total / (SIZE - 1);

// Display the average.
cout << "The average with the lowest score "

<< "dropped is " << average << ".\n";

return 0;

Lines 15 through 19 define the following items:

SIZE, an int constant that is used as an array size declarator
testScores, a double array to hold the test scores

total, a double variable that will hold the test score totals
lowestScore, a double variable that will hold the lowest test score
average, a double variable that will hold the average of the test scores

Line 25 calls the getTestScores function, passing the testScores array and the value of
the STIZE constant as arguments. The function gets the test scores from the user and stores
them in the array.

Line 28 calls the getTotal function, passing the testScores array and the value of the
SIZE constant as arguments. The function returns the total of the values in the array. This
value is assigned to the total variable.

7.8 Arrays as Function Arguments 415

Line 31 calls the getLowest function, passing the testScores array and the value of the
SIZE constant as arguments. The function returns the lowest value in the array. This value
is assigned to the lowestScore variable.

Line 34 subtracts the lowest test score from the total variable. Then, line 38 calculates the
average by dividing total by s1zE — 1. (The program divides by s1ZE — 1 because the
lowest test score was dropped.) Lines 41 and 42 display the average.

The getTestScores function appears next, as shown here:

Program 7-20 (getTestScores function)

//***
// The getTestScores function accepts an array and its size *
// as arguments. It prompts the user to enter test scores, *
// which are stored in the array. *

//***

void getTestScores(double scores[], int size)

{
// Loop counter
int index;
// Get each test score.
for(index = 0; index <= size - 1; index++)
{
cout << "Enter test score number "
<< (index + 1) << ": ";
cin >> scores[index];
}
}

The getTestScores function has two parameters:

® scores[]—A double array

® size—An int specifying the size of the array that is passed into the scores|]
parameter

The purpose of this function is to get a student’s test scores from the user and store them in
the array that is passed as an argument into the scores[] parameter.

The getTotal function appears next, as shown here:

Program 7-20 (getTotal function)

//***

// The getTotal function accepts a double array *
// and its size as arguments. The sum of the array's *
// elements is returned as a double. *

//***

(program continues)

416 Chapter 7 Arrays

Program 7-20 (continued)

double getTotal(const double numbers[], int size)

{
double total = 0; // Accumulator
// Add each element to total.
for (int count = 0; count < size; count++)
total += numbers[count];
// Return the total.
return total;
}

The getTotal function has two parameters:

® numbers[] —A const double array
® size —An int specifying the size of the array that is passed into the numbers|]
parameter

This function returns the total of the values in the array that is passed as an argument into
the numbers[] parameter.

The getLowest function appears next, as shown here:

Program 7-20 (getLowest function)

//***

// The getLowest function accepts a double array and *
// its size as arguments. The lowest value in the *

// array is returned as a double. *
//***

double getLowest(const double numbers[], int size)

{
double lowest; // To hold the lowest value

// Get the first array's first element.
lowest = numbers[0];

// Step through the rest of the array. When a
// value less than lowest is found, assign it
// to lowest.
for (int count = 1; count < size; count++)
{
if (numbers[count] < lowest)
lowest = numbers|[count];

// Return the lowest value.
return lowest;

7.8 Arrays as Function Arguments 417

The getLowest function has two parameters:

® numbers[]—A const double array
® size—An int specifying the size of the array that is passed into the numbers|]
parameter

This function returns the lowest value in the array that is passed as an argument into the
numbers|[] parameter. Here is an example of the program’s output:

Program 7-20

Program Output with Example Input Shown in Bold

Enter test score number 1: 92 [Enter]
Enter test score number 2: 67 [Enter]
Enter test score number 3: 75 [Enter]
Enter test score number 4: 88 [Enter]
The average with the lowest score dropped is 85.0.

Checkpoint

7.14 Given the following array definitions

double arrayl[4] = {1.2, 3.2, 4.2, 5.2};
double array2[4];

will the following statement work? If not, why?
array2 = arrayl;
7.15 When an array name is passed to a function, what is actually being passed?

7.16 ~ When used as function arguments, are arrays passed by value?

7.17 What is the output of the following program? (You may need to consult the
ASCII table in Appendix B.)

#include <iostream>
using namespace std;

// Function prototypes
void fillArray(char [], int);
void showArray(const char [], int);

int main ()

{
const int SIZE = 8;
char prodCode[SIZE] = {'0', '0O', 'O', 'O', 'O', 'O', '0O', '0'};
fillArray(prodCode, SIZE);
showArray (prodCode, SIZE);
return 0;
}

// Definition of function fillArray.
// (Hint: 65 is the ASCII code for 'A')

418

Chapter 7 Arrays

—

7.18

void fillArray(char arr[], int size)

{
char code = 65;
for (int k = 0; k < size; code++, k++)
arr[k] = code;
}

// Definition of function showArray.

void showArray(const char codes[], int size)

{
for (int k = 0; k < size; k++)
cout << codes[k];
cout << endl;
}

The following program skeleton, when completed, will ask the user to enter 10
integers, which are stored in an array. The function avgarray, which you must
write, is to calculate and return the average of the numbers entered.

#include <iostream>
using namespace std;

// Write your function prototype here

int main()

{
const int SIZE = 10;
int userNums[SIZE];
cout << "Enter 10 numbers: ";
for (int count = 0; count < SIZE; count++)
{
cout << "#" << (count + 1) << " ";
cin >> userNums[count];
}
cout << "The